
ARTICLE

Received 13 May 2016 | Accepted 9 Aug 2016 | Published 30 Sep 2016

Tuning graphitic oxide for initiator- and metal-free
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Graphitic oxide has potential as a carbocatalyst for a wide range of reactions. Interest in this

material has risen enormously due to it being a precursor to graphene via the chemical

oxidation of graphite. Despite some studies suggesting that the chosen method of graphite

oxidation can influence the physical properties of the graphitic oxide, the preparation method

and extent of oxidation remain unresolved for catalytic applications. Here we show that

tuning the graphitic oxide surface can be achieved by varying the amount and type of oxidant.

The resulting materials differ in level of oxidation, surface oxygen content and functionality.

Most importantly, we show that these graphitic oxide materials are active as unique

carbocatalysts for low-temperature aerobic epoxidation of linear alkenes in the absence of

initiator or metal. An optimum level of oxidation is necessary and materials produced via

conventional permanganate-based methods are far from optimal.
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C
arbocatalysis has become an increasingly popular area of
research in recent years. This has, to some extent, been
due to the discovery of graphene1 and the subsequent

study of graphene-related materials2. One particularly interesting
area is the use of oxygen-functionalized materials such as
graphene oxide and graphitic oxide (GO). These materials have
become popularized due to their use as a precursor to various
graphene materials via the chemical oxidation of graphite3. This
oxidation supplements the remarkable physical properties of
graphene with a degree of functionality on the surface, enabling
their use as carbocatalysts. Bielawski and co-workers4 first
demonstrated the ability of graphene oxide and GO to catalyse
oxidation and hydration reactions. Since this seminal work, these
materials have been used in a wide range of reactions and
consequently have been the subject of many extensive reviews5–8.
However, a detailed study of the effect of the preparation method
and hence the degree of surface oxidation remains an uncharted
area of study for GO. Therefore, any rationalization of the
resulting structure of GO and its catalytic activity is currently
missing.

Despite the number of examples of carbocatalysis by graphene
and related materials, the aerobic epoxidation of linear alkenes
remains unreported. Recently, the oxidation of benzylic and cyclic
hydrocarbons has been shown to be catalysed by sulfur, boron
and nitrogen-doped graphenes. Styrene was also studied, with
lengthy reaction times leading to the formation of epoxide9,10.
Other N-containing sp2 carbons and onion-like carbons have also
been shown to catalyse the epoxidation of trans-stilbene11 and
styrene12. The epoxidation of linear alkenes is an important
chemical process due to the requirement of epoxides as chemical
intermediates. The silver-catalysed production of ethylene oxide
from ethene and O2 currently represents the only example of the
direct oxidation of an alkene to an epoxide using oxygen as
oxidant13. Alkenes that contain an allylic hydrogen can only be
succesfully oxidized when utilizing expensive and stoichiometric
oxidants such as hydrogen peroxide. We have previously
shown that the more favourable use of atmospheric oxygen
as oxidant can be facilitated by gold catalysts along with the
addition of catalytic amounts of radical initiators such as azo-bis-
isobutyronitrile and tert-butyl hydroperoxide14. Both commercial
cyclic and linear internal alkenes were shown to contain
stabilizers. On removal of these, cyclic alkenes could be
epoxidized in the absence of radical initiators15. However,
initiators are required for the epoxidation of terminal linear
alkenes16. Hence, apart from the special case of ethene, the
epoxidation of terminal alkenes with oxygen has not yet been
achieved. Here we show that the low-temperature epoxidation of
linear alkenes (oct-1-ene, dec-1-ene and dodec-1-ene) in the
absence of radical initiators using a metal-free GO catalyst and
atmospheric oxygen as the sole oxidant is possible. The activity of
the catalysts for this epoxidation reaction is shown to be highly
dependent on the amount and type of oxidant used in the
preparation of GO. The conventional permanganate-based
Hummers (HU) preparation method17 for the bulk production
of highly oxidized GO is, in this case, found to be inferior to the
less common chlorate-based Hofmann (HO) method18. The
effects of oxidant and level of oxidation on the physical properties

of the final graphenes have been studied previously19–21; however,
we consider this to be the first instance where the catalytic
applications have been shown to be markedly affected by the
chosen method of oxidation. Recent work by Nishina et al. has
also demonstrated that properties of the final graphene oxides can
be affected depending on whether oxygen content is tailored by
oxidation of graphite or reduction of highly oxidized graphene
oxide22. This, along with the current study, should encourage
focussing attention on optimizing the preparation method of GO
for specific applications.

Results
Initial results. Initial studies were conducted using a
partially oxidized GO prepared using a modified HO method,
in which potassium chlorate (20 g per 5 g of graphite) was used
(GO-HO20) in place of the standard 55 g per 5 g of graphite
(GO-HO55) that is used in most preparations. We initially
intended employing this material as a support following previous
work on carbon-supported gold catalysts; however, this GO was
found to be active in the absence of metal or radical initiators for
the epoxidation of dec-1-ene (dec-1-ene 10 ml, 90 �C, GO-HO20
0.1 g) (Fig. 1). Reactions conducted in the absence of oxygen
resulted in no conversion, suggesting that activity for dec-1-ene
epoxidation was a result of catalysis with the activation of
molecular oxygen rather than the stoichiometric use of surface
oxygen. Time online studies (Fig. 2) also showed that the catalyst
was active over long periods of time leading to oxygenated
products far in excess of what would be expected from the
stoichiometric use of surface oxygen. Therefore, we decided to
extend this study to a range of GOs produced by modified HO
and HU methods in order to assess the effects of amount and type
of oxidant. Schwartz et al.23 studied the effect of oxygen coverage
on the activity of oxygen-functionalized graphenes for the
oxidative dehydrogenation of isobutane. This was achieved by
the production of highly oxidized GO by the HU oxidation
method, followed by partial thermal reduction of the surface.
These authors concluded that activity was independent of oxygen
coverage and more likely to be dictated by the sp2 to sp3 ratio of
the surface carbon. In the present study, a range of GOs were
prepared using increasing amounts of oxidant. For the HO
method, the oxidant mass ranged from 1 to 55 g of potassium

o

Figure 1 | Epoxidation of a terminal linear alkene. (48 h, dec-1-ene 10 ml,

90 �C, GO 0.1 g). The epoxidation of a terminal linear alkene such as dec-1-

ene usually requires the use of stoichiometric oxidants, supported metal

catalysts and/or radical initiators.
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Figure 2 | Time online studies for the metal and initiator free epoxidation

of a linear alkene using GO as a carbocatalyst. Conversion (black

diamond) and selectivity towards epoxide (empty circle) and allylic

products (black circle) (dec-1-ene 10 ml, 90 �C, GO 0.1 g). The continued

oxidation over longer time frames is indicative of catalysis rather than

stoichiometric use of surface oxygen. Allylic oxidation diminishes with time

as the epoxide becomes the major product.
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chlorate per 5 g of graphite and for the HU method, 5 to 15 g of
potassium permanganate per 5 g of graphite. The GOs were
characterized by X-ray photoelectron spectroscopy (XPS), X-ray
diffraction (XRD) and thermogravimetric analysis (TGA) to
determine if a structure-activity relationship could be observed
for these GO materials for the epoxidation of terminal alkenes so
that the origin of this catalysis could be determined.

XRD analysis. Powder XRD analysis was conducted on all
HO and HU samples to assess the crystallinity and degree of
oxidation. The XRD of low-oxidized HO samples GO-HO1 to
GO-HO15 (Fig. 3a) shows the gradual oxidation of the graphite
surface with the increase in oxidant amount. This results in the
gradual break-up of the lattice and loss of crystallinity demon-
strated by an overall decrease in the intensity of the 002 peak at
26.5�. The 101 and 004 reflections at 45� and 55�, respectively,
also decrease in intensity, showing the gradual de-graphitization
of the material. A further increase in the amount of oxidant
results in switching from highly crystalline graphitic-like
materials to GO-type materials in which the principal reflection is
at B11�, representative of the 002 plane and an increased
d-spacing from 3.5 to 7 Å shown in the XRD patterns of

GO-HO15 to GO-HO55 (Fig. 3b). XRD of HU samples GO-HU5,
GO-HU10 and GO-HU15 (Fig. 3c) shows a high degree of
oxidation and amorphous character similar to the highly oxidized
HO samples. The disappearance of the 002 reflection of graphite
on oxidation and emergence of that relating to GO is in
agreement with results published by Kim et al. on the effect of
oxidation on graphene oxide structure20.

XPS analysis. The functionality and degree of surface oxidation
of each of the samples were analysed by XPS. In graphite and low-
oxidized HO samples such as GO-HO1 (Fig. 4a), the principal
peak observed at B284.6 eV is representative of the C–C bonding
of sp2 hybridized carbons. The use of higher amounts of oxidant
results in increased lattice oxidation and consequently a decrease
in sp2 character. Therefore, from GO-HO2 to GO-HO55 a
reduction in the C–C peak is observed. This is accompanied by
the development of a peak at 286.7 eV, which represents hydroxyl
functionality. Furthermore, highly oxidized samples show the
presence of various peaks above 287 eV, which suggest the
presence of epoxy, carbonyl and carboxylic groups, although in
HO samples these are limited to small amounts of carboxylic and
epoxy groups. Carboxylic functionality is more easily observed in
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Figure 3 | XRD analysis of graphitic oxide. (a) Low and (b) highly oxidized graphite samples by HO and (c) HU method. Chemical oxidation of graphite

utilizing increasing amounts of either potassium chlorate or permanganate as oxidant leads to a de-graphitization of the surface leading to loss of

crystallinity and the formation of a more amorphous GO-like material.
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Figure 4 | XPS analysis of increasingly oxidized graphite. (a) HO and (b) HU method. The increasing level of oxidation of graphite is represented by the

loss of C–C character and the introduction of oxygen functionality. HU materials show a higher degree of carboxylic functionality compared to HO catalysts

due to the increased lattice break-up and subsequent oxidation of edge sites.
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Figure 5 | TGA of graphitic oxide. GO prepared by (a) HO and (b) HU method using increasing amounts of oxidant. (Conditions: 30–500 �C, rate:

5 �C min� 1, N2 flow; 20 ml min� 1, GO mass 10 mg) (c) TGA–MS, Mz 64 (SO2). TGA of a range of oxidized GOs produces increasing weight losses of H2O,

CO and CO2. Materials prepared by HU method show a higher weight loss associated with organosulfates than HO catalysts that are tuned to have similar

oxygen compositions.
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highly oxidized HU samples (Fig. 4b) at B289 eV. These results
are in agreement with previous investigations carried by Pumera
et al., who described the higher carboxylic functionality at
edge sites in GO-HU’s compared to GO-HO’s, which contain
predominantly hydroxyl and epoxy groups24.

TGA analysis. TGA was conducted on the full range of GO-HO
(Fig. 5a) and GO-HU (Fig. 5b) catalysts in order to assess their
thermal decomposition under a nitrogen atmosphere over time.

Here only few data examples are chosen for presentation clarity.
Low-oxidized GO-HO1 and GO-HO2 demonstrated low weight
loss at B250 �C, most likely due to the loss of lattice water. In
GO-HO4, GO-HO5 and GO-HO10, this weight loss at 250 �C is
preceded by loss of carbon dioxide, carbon monoxide and lower-
temperature release of water. Weight loss due to these molecules
is more apparent in GO-HO15 to GO-HO25. In highly oxidized
materials such as GO-HO30 to GO-HO55 and all GO-HU
materials, a significant weight loss occurs between 50 and 120 �C,
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Figure 6 | Activity of graphitic oxide for the epoxidation of terminal linear alkenes. (a) Unwashed and (b) washed GO samples for the epoxidation of dec-

1-ene (48 h, dec-1-ene 10 ml, 90 �C, GO 0.1 g). Unwashed samples for the epoxidation of (c) dodec-1-ene (48 h, dodec-1-ene 10 ml, 90 �C, GO 0.1 g) and

(d) oct-1-ene (72 h, oct-1-ene 10 ml, 80 �C, GO 0.1 g). Samples prepared by HO method:J, HU method: D. The epoxidation of linear alkenes by GO is dictated

by an apparent minimum level of surface oxygen and also an optimum, above which, activity decreases. Activity is also sensitive to the presence of both

inorganic and organosulfates with the former being removed by additional washing and the latter explain the discrepancy between HU and HO catalysts.
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most likely due to the loss of physisorbed water. This is followed
by further weight loss up to 200 �C due to formation of
carbon monoxide and carbon dioxide plus loss of residual water.
In highly oxidized GO-HU5, GO-HU10 and GO-HU15 samples,
a weight loss between 200 and 250 �C can be explained following
the work of Eigler et al.25. The authors demonstrated the loss of
covalently bound organosulfate groups and formation of SO2

accompanied by small amounts of water, carbon monoxide and
carbon dioxide. Thermal gravimetric analysis coupled with mass
spectrometry (TGA–MS) analysis of our samples showed a direct
relationship between the extent of oxidation and the presence of
organosulfate groups bound to the GO surface (Fig. 5c). HO
catalysts prepared using o20 g of potassium chlorate were free
from organosulfates. Above this level, organosulfates were shown
to be present in all catalysts, the level of which roughly follows
level of oxidation. Organosulfate was shown to be present in all
HU catalysts. Furthermore, HU samples displayed a much higher
level of organosulfate even when tuned to the same level of
oxygen as HO catalysts. This is viewed most clearly in GO-HU5,
which, despite being analogous in level of oxygen to GO-HO25,
contains similar levels of organosulfate to GO-HO55, the most
highly oxidized HO catalyst.

Epoxidation of linear alkenes. The GO materials were tested for
the solvent-free epoxidation of dec-1-ene in the absence of radical
initiators (Fig. 6a). It was found that a critical amount of surface
oxygen (B20 wt%) was required for a GO to be active in the
epoxidation reaction. This was achieved using 20 g of potassium
chlorate per 5 g of graphite. When lower quantities of oxidant
were used, no activity was observed. Furthermore, activity was

shown to be at a maximum at an oxygen concentration of 25 wt%,
achieved with 30 g of potassium chlorate as oxidant. Above this
level, activity for the epoxidation of dec-1-ene decreased, with
highly oxidized HU samples displaying little or no activity.
Interestingly, HU samples with oxygen coverage of 25 wt% were
less active than HO samples with an analogous amount of
oxygen.

One of the major findings of this study was the deleterious
effect of low amounts of sulfur for this reaction. Sulfuric acid is
essential to the chemical oxidation of graphite due to its oxidizing
and intercalating nature26. However, the latter means it is also
difficult to remove sulfur completely by washing with water. XPS
and TGA–MS analysis showed that sulfur was present in all GO
samples. The combination of residual sulfur ions and covalently
bound organosulfate resulted in the sulfur content in the GOs
ranging from B1 to 2 wt% (Fig. 7b,d). Subjecting samples to an
additional washing step resulted in the removal of the majority of
residual sulfur ions as confirmed by ion chromatography of the
washings and XPS of the dried catalyst. This additional washing
step had a significant effect on the activity of the low-oxidized GO
samples, as catalysts with as little as 15 wt% oxygen showing
activity for the epoxidation of dec-1-ene (Fig. 6b). Only 4 g of
potassium chlorate was required to achieve this level of oxygen
coverage, which has major implications in the design of
GO catalysts, when compared with the standard method of
preparation used in previous literature that required 55 g per 5 g
of graphite. The highest activity both in unwashed and washed
samples was seen at 25 wt% oxygen. Interestingly, highly oxidized
HU and HO species showed no increase in conversion even after
washing, suggesting that the correlation between oxidation and
activity is not linear. It was also observed that increasing the
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Figure 7 | Level of oxygen and sulfur determined by XPS analysis before and after additional washing step. Before (black symbols) and after (empty

symbols) graphite oxide washing with water. Samples prepared by HO (a,b) and HU (c,d) methods. The non-linear relationship between the amount of

oxidant and the level of oxygen demonstrates the need for tuning of GO for specific applications. Additional washing leads to the significant reduction of

sulfur in HO catalysts, however, less so in HU catalysts due to the retention of covalently bound organosulfates.
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amount of permanganate from 10 to 15 g had little effect on the
level of surface oxygen (Fig. 7c), but increased the level of
organosulfates (Fig. 5c), explaining the lower activity of the
higher-oxidized material.

Unwashed catalysts were also tested for the epoxidation of
dodec-1-ene and oct-1-ene (Fig. 6c,d, respectively). Activities
followed a similar trend to that in dec-1-ene epoxidation, where
an optimum level of oxygen was observed at 25 wt%. Above this
level, both HO and HU catalysts decrease in activity. In both
cases, HU catalysts tuned to the same level of oxygen as HO were
lower in activity. On the basis of these data, we propose that
overoxidation of surface carbon leads to loss of activity, caused by
the formation of covalently bound organosulfates, which have a
major effect on catalysis despite being present in relatively low
amounts. The lower activity of HU catalysts, even after additional
washing, can be explained by the higher level of covalently bound
sulfates compared to analogous HO catalysts.

A major implication of our findings is that HU samples,
commonly used due to the increased level of oxidation and
improved safety of the method, are not necessarily the optimum
materials for all applications. Certainly for this reaction and
similar oxidation reactions, the production of lower-oxidized
GOs or the removal of organosulfate by washing with base may
be preferred. This is in contradiction to the many examples,
where these sulfur groups aid reaction such as in the acid-
catalysed ring opening of epoxides27. Limitations of chemical
oxidation methods stem from the liberation of toxic and explosive
gases. However, the synthesis of active materials through use of
low quantities of oxidants in both HO and HU methods suggests
that these preparation methods could become more accessible to
a wider circle of applications. The removal of both sulfur ions and
organosulfates by extensive washing in basic solutions could
provide active epoxidation catalysts. Alternatively, graphene
oxides prepared by sulfur-free methods such as the pyrolysis of
sugars28 or microwave-assisted techniques29 would completely
avoid this poison and offer a route to cleaner epoxidation
catalysts, providing the required level of surface oxygen can be
obtained.

In summary, the solvent and initiator-free aerobic epoxidation
of linear alkenes has been facilitated using GO as a metal-free
catalyst. An optimum level of surface oxidation of B25 wt% was
found for the production of an active catalyst. This dependency is
not necessarily linearly linked with oxygen weight percent, rather

the extent of oxidation and incorporation of inorganic and
organosulfate groups. However, a minimum level of 15 wt%
oxygen is required. Removal of inorganic sulfur via an additional
washing step enabled the activation of the graphites, even for
samples prepared with as little as 4 g of potassium chlorate, which
is significantly lower than the literature standard of 55 g per 5 g of
graphite (Fig. 8). This becomes significant when considering the
hazards involved in the use of large amounts of oxidant. HU
samples displayed lower activities than HO catalysts even when
tuned to obtain analogous amounts of oxygen as the optimum
HO catalyst. These lower-active HU samples contain a much
higher level of organosulfates, which remain after additional
water washings, as described by TGA–MS.

We suggest that the most commonly used highly oxidized HU
catalysts, as obtained by chemical oxidation, may not be the
optimum material for all applications and that tailoring of the
level of oxidation may be needed. Sulfur acts as a deactivator in
the formation of active catalyst for the epoxidation reaction both
in the form of inorganic and organosulfate; however, it is
unavoidable in current chemical oxidation methods without
further treatment of the obtained materials. Recent developments
in sulfur-free methods for producing GO such as the pyrolysis of
sugars may hold the key to the production of highly active and
clean epoxidation catalysts. Removal of all sulfur groups should
be facilitated by additional base washing to yield highly pure and
active catalysts.

Methods
Preparation of GO by modified HO method. GO was prepared from graphite,
according to the reported HO method19. Graphite (o20mm, Sigma-Aldrich) was
added to a mixture of concentrated sulfuric (75 ml) and nitric acid (25 ml),which
was allowed to cool to 10 �C in an ice bath. Potassium chlorate (1–55 g) was added
stepwise to the mixture over a period of 30 min with vigorous stirring. Stirring was
continued for 14 h after which the mixture was left in air for 96 h, followed by
repeated decantation and centrifugation of remaining GO material.

Preparation of GO by modified HU methods. GO was prepared according to
previously reported HU method19 using graphite (o20 mm) as a precursor.
Graphite (5 g) was added to a mixture of concentrated sulfuric (87.5 ml) and nitric
acid (27.5 ml) under vigorous stirring. Potassium permanganate (5–15 g) was
added stepwise over a period of 2 h. The mixture was then allowed to reach room
temperature over a period of 4 h, followed by heating to 35 �C for 30 min.
Deionized water (250 ml) was added, causing the temperature to rise to 70 �C.
A further portion of deionized water (1 l) was added, followed by addition of 3%
H2O2 for the removal of any residual potassium permanganate. The mixture was
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allowed to settle overnight after which the GO was separated and washed
repeatedly via centrifugation.

Centrifugation. Centrifugation was conducted (14,000 r.p.m., 30 min, 20 �C) using a
Beckman coulter centrifuge, JLA.16.250 rotor. Samples were dispersed in deionized
water (200 ml) before centrifugation. This was repeated until a neutral pH was
obtained after which the final supernatant was decanted and the retained HU and HO
samples were dried in a vacuum (20 �C) or a regular oven (110 �C), respectively.

Additional washing procedure and ion chromatography. GO was subjected to
an additional washing for the removal of sulfur. GO (0.3 g) was washed with high
performance liquid chromatography (HPLC) grade water (300 ml) under vigorous
stirring for 6 h. After this period, a sample of the washing solution was analysed by
ion chromatography using a Thermo Scientific Dionex system. GO was dried as
described above.

Epoxidation of linear alkenes. Dec-1-ene and dodec-1-ene reactions were
conducted in a round-bottomed flask (50 ml) fitted with a reflux condenser. The
flask was charged with alkene (10 ml) and GO catalyst (0.1 g) after which the
mixture was heated to 90 �C and stirred for 48 h utilizing atmospheric oxygen as
the oxidant. Oct-1-ene reactions were conducted in a Colaver reactor (50 ml)
pressurized with oxygen (3 bar). The amount of substrate and catalyst was
concurrent with the above reactions. Reactions proceeded at 80 �C for 72 h. After
the reaction, the mixture was centrifuged and analysed by gas chromatography.
Major products were concurrent with those identified in previous studies on gold
catalysed epoxidation of dec-1-ene16. The major product in all cases was the
epoxide. Using dec-1-ene as an example: allylic products such as dec-1-en-3-ol,
dec-1-en-3-one and dec-2-en-1-ol along with 1,2-decanediol, cracked acid and
aldehydes made up the remainder of the product stream. Mesitylene was used as an
external standard and an averaged response factor applied to unknown products,
however, these accounted for o10% of products.

X-ray photoelectron spectroscopy. XPS was carried out using a Kratos Axis
Ultra DLD system and according to the following method. A monochromatic Al
Ka X-ray source was operating at 120 W. Data were collected with pass energies of
160 eV for survey spectra, and 40 eV for the high-resolution scans. The system was
operated in the hybrid mode, using a combination of magnetic immersion and
electrostatic lenses, and acquired over an area B300� 700mm2. A magnetically
confined charge compensation system was used to minimize charging of the
sample surface, and all spectra were taken with a 90� take-off angle. A base pressure
of B1� 10� 9 torr was maintained during collection of the spectra. Binding
energies were calibrated using the C1s binding energy of carbon taken as 284.7 eV.

Powder X-ray diffraction. XRD analysis was conducted using a PANalytical
X’pert pro diffractometer using a Cu Ka X-ray source. Typical scans ranged 2y
from 10 to 80� at 40 kV and 40 mA, although some wide scans were conducted for
higher-oxidized samples below 10�.

TGA analysis. TGA analysis was carried out using a Perkin Elmer TGA 4000.
Standard conditions were consistent with those recommended in the literature25.
GO samples were typically heated in the temperature range 30–500 �C, with a ramp
rate of 5 �C min� 1 using a N2 flow of 20 ml min� 1. Approximately 10 mg of
catalyst was used for highly oxidized sample and 50 mg for low-oxidized samples.

TGA coupled with mass spectrometry. Hyphenated TGA–MS was run on a
Pyris 1 TGA linked to a Perkin Elmer Clarus 580 gas chromatography mass
spectrometer (GC-MS) using a TL-9000 interface. TGA was performed under
helium with temperature ranging from 30 to 500 �C (5 �C min� 1), using c.a. 10 mg
sample in each experiment. The GC–MS was set up, to negate the GC column, with
the effluent gas analysed by MS, m/z 18 (H2O), 44 (CO2) and 64 (SO2).

Data availability. All data are available from the authors upon reasonable request.
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