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Abstract

We prove that if E ⊂ R2d , for d � 2, is an Ahlfors–David regular product set of sufficiently large Haus-
dorff dimension, denoted by dimH(E ), and φ is a sufficiently regular function, then the upper Minkowski
dimension of the set

{
w ∈ E : φl(w) = tl; 1 � l � m

}
does not exceed dimH(E ) − m, in line with the regular value theorem from the elementary differential
geometry. Our arguments are based on the mapping properties of the underlying Fourier integral operators
and are intimately connected with the Falconer distance conjecture in geometric measure theory. We shall
see that our results are, in general, sharp in the sense that if the Hausdorff dimension is smaller than a
certain threshold, then the dimensional inequality fails in a quantifiable way. The constructions used to
demonstrate this are based on the distribution of lattice points on convex surfaces and have connections
with combinatorial geometry.
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1. Introduction

The regular value theorem in elementary differential geometry says that if φ : X → Y , where
X is a smooth manifold of dimension n and Y is a smooth manifold of dimension m < n with φ

a submersion on the set

{
x ∈ X: �φ(x) = y

}
, (1.1)

for y is a fixed element of Y , then the set

�φ−1(y) = {
x ∈ X: �φ(x) = y

}
(1.2)

is either empty or is an (n − m)-dimensional submanifold of X.
In this paper we consider the situation where Y = Rm and X is replaced by E × E, where

E ⊂ Rd is a set of a given Hausdorff dimension, which, in general, is far from being a smooth
manifold. A direct analog of the regular value theorem would be a statement that the set

{
(x, y) ∈ E × E: φl(x, y) = tl; 1 � l � m

}
is either empty or has fractal dimension exactly 2s − m, where s is the Hausdorff dimension
of E. We are able to show, under some reasonable hypotheses on φ, that the upper Minkowski
dimension of

{
(x, y) ∈ E × E: φl(x, y) = tl , 1 � l � m

}
does not exceed 2s − m.

Generalizations of the regular value theorem have been recently considered in the context of
Banach spaces. See [1] and the references contained therein.

To put these ideas into context, we recall that Falconer [7] formulated the now celebrated
Falconer distance conjecture, which says that if the Hausdorff dimension of a compact set E

in Rd , for d � 2, is greater than d
2 , then the Lebesgue measure of the distance set

�(E) = {|x − y|: x, y ∈ E
}

is positive. See also [17,18] and [19] for related results. In [7], Falconer proved that the con-
clusion holds if the Hausdorff dimension of E is greater than d+1

2 by showing that for μ,
a probability measure on E,

μ × μ
{
(x, y): t � |x − y| � t + ε

}
� ε. (1.3)

The key to (1.3), though Falconer did not express himself using this language, is the
L2(Rd) → L2

d−1
2

(Rd) bound for the averaging operator

Tf (x) =
∫

f (x − y)dσt (y),
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where dσt is the Lebesgue measure on the sphere of radius t and L2
s (R

d) denotes the usual L2-
Sobolev space of L2 functions with s generalized derivatives in L2(Rd). See [21] for Sobolev
estimates for geometric averaging operators.

In this paper we shall see that under some reasonable assumptions on smooth functions φl :
Rd × Rd → R, a suitable analog of (1.3) can be used to prove the geometric inequality

dimM
{
(x, y) ∈ E × E: φl(x, y) = tl; 1 � l � m

}
� 2 · dimH(E) − m, (1.4)

provided that the Hausdorff dimension of E is sufficiently large in the sense to be quantified
below. We note that in the model case when m = 1 and φ(x, y) = |x − y|, this connection is
explored in [4]. Before formulating the results, we introduce the main analytic tool used in this
paper, the generalized Radon transform.

1.1. Generalized Radon transforms

Given f : Rd → R, define

T �φt
f (x) :=

∫
{φl(x,y)=tl ;1�l�m}

f (y)ψ(x, y) dσx,t (y), (1.5)

where dσx,t is the Lebesgue measure on the set {y: φl(x, y) = tl; 1 � l � m} and ψ is a smooth
cut-off function. Here �φ = (φ1, . . . , φm) and t = (t1, . . . , tm). We shall assume throughout the
rest of this paper

{(∇xφl(x, y)
)}m

l=1 and
{∇yφl(x, y)

}m

l=1 (1.6)

form two linearly independent sets of vectors in Rd in a neighborhood of the sets

{
x: φl(x, y) = tl; 1 � l � m

}
and

{
y: φl(x, y) = tl; 1 � l � m

}
, (1.7)

respectively. This can be justified by details in the note of Phong and Stein [20] and is meant to
provided an underlying smooth structure. We call T �φt

the Radon transform associated to �φ. More
precisely,

T �φt
f (x) : C∞(

Rn
y

) → C∞(
Rn

x × Rm
t

)
. (1.8)

For the purposes of this paper, we treat t as a fixed parameter. The article [20] treats these oper-
ators in more generality and provides their basic theory.

1.2. Main results

Given E compact in Rd , for d � 2, define

S
�φ
t (E) = {

(x, y) ∈ E × E: φl(x, y) = tl; 1 � l � m
}
. (1.9)
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Recall that E ⊂ Rd is said to be Ahlfors–David regular if there exists a Borel measure μ,
supported on E and C > 0, such that for all x ∈ E,

C−1δs � μ
(
Bδ(x)

)
� Cδs (1.10)

for every δ > 0, where s is the Hausdorff dimension of E and Bδ(x) is the ball of radius δ

centered at x.

Theorem 1.1. Let E ⊂ Rd , for d � 2, be compact and Ahlfors–David regular. Choose a smooth
�φ such that T �φt

and S
�φ
t (E) are as in (1.5) and (1.9), respectively. Suppose

T �φt
: L2(Rd

) → L2
s

(
Rd

)
(1.11)

with constants uniform in t ∈ T = T1 × T2 × · · · × Tm, Tj an interval in R, for some s > 0 and
assume

dimH(E) > d − s. (1.12)

Then for t ∈ T ,

dimM
(
S

�φ
t (E)

)
� 2 · dimH(E) − m. (1.13)

Remark 1.2. Our method easily extends to the situation where E ×E is replaced by E ×F , with
the right-hand side of (1.13) replaced by dimH(E) + dimH(F ) − m. It is also not particularly
essential for our method that both E and F are subsets of the same Euclidean space Rd . We can
take E ⊂ Rd1 and F ⊂ Rd2 . However, due to the current state of knowledge of Sobolev bounds
for generalized Radon transforms, our best results are in the case when d1 = d2, making our
hypotheses reasonable.

Remark 1.3. It would be very interesting to extend our result to sets of the form{
w ∈ E : �φ(w) = �t},

where E ⊂ Rn is of a sufficiently large Hausdorff dimension and �φ is sufficiently regular. This
requires a rather intricate analysis of the Hausdorff dimension of projections of E and tensor
product properties of the resulting measures. We hope to address this issue in a sequel.

The following definition is stated in [20].

Definition 1.4. We say that φ : Rd × Rd → R satisfies the Phong–Stein rotational curvature
condition at t if

det

(
0 ∇xφ

−(∇yφ)T
∂2φ

dxidyj

)
	= 0 (1.14)

on the set {(x, y): φ(x, y) = t}.
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We now list some corollaries of Theorem 1.1 designed to illustrate concrete situations where
the degree of smoothing of the operator T �φt

can be explicitly calculated. This list is not meant to
be exhaustive but to simply illustrate the range of applicability of our methods.

Corollary 1.5. Suppose that m = 1 and �φ = φ : Rd → R satisfies the Phong–Stein rotational
curvature condition. Then the conclusion of Theorem 1.1 holds under the assumption that the
Hausdorff dimension of E is greater than d+1

2 .

Corollary 1.6. Suppose that m = d − 1 and

φl(x, y) = (xl+1 − yl+1) − γl(x1 − y1), (1.15)

where the curve

Γ = {(
s, γ1(s), . . . , γd−1(s)

)
: s ∈ [0,1]} (1.16)

has non-vanishing curvature and torsion. Then (1.13) holds if the Hausdorff dimension of E is
greater than d − 1

d
.

We shall prove Corollary 1.5 below. To prove Corollary 1.6, observe that by the van der Corput
Lemma [22,21] if σΓ denotes the Lebesgue measure on Γ , then

∣∣̂σΓ (ξ)
∣∣ � |ξ |− 1

d . (1.17)

It follows that (1.11) holds with s = 1
d

and thus Corollary 1.6 follows from Theorem 1.1.
We are able to consider more general families of curves under a variety of geometric assump-

tions. Ref. [12] and those contained therein give a thorough description of such estimates.

Remark 1.7. It would be very interesting to consider the set

{(
x1, . . . , xk

) ∈ E1 × E2 × · · · × Ek: φl

(
x1, . . . , xk

) = tl , l = 1, . . . ,m
}

and prove that the upper Minkowski dimension of this does not exceed

dimH(E1) + · · · + dimH(Ek) − m.

A natural approach to this question, in view of this paper, is via regularity properties of multi-
linear variants of generalized Radon transforms. These are operators of the form

M(f1, . . . , fk−1)(x) =
∫

· · ·
∫

f1
(
y1) . . . fk−1

(
yk−1)dK

(
x, y1, . . . , yk−1),

where dK is a smooth cut-off function times the Lebesgue measure on the set

{(
x, y1, . . . , yk−1): φl

(
x, y1, . . . yk−1) = tl; 1 � l � m

}
.
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Some special cases of these operators have been studied in conjunction with the study of
finite point configuration and Falconer type problems; see [11,4]. However, nothing resembling
a general theory of such operators is currently available. We hope to address this issue in a
subsequent paper.

1.3. Applications to the variable coefficient Falconer distance problem

Again, the Falconer distance conjecture states that if the Hausdorff dimension of E is greater
than d

2 , then the Lebesgue measure of the set of distances, �(E) = {|x −y|: x, y ∈ E} is positive.
The best known results, due to Wolff [24] for d = 2 and Erdogan [5] for d > 2, say that if the
Hausdorff dimension of E is greater than d

2 + 1
3 , then the Lebesgue measure of �(E) is positive.

Techniques of this paper allow us to extend Falconer’s result to a variable coefficient setting.
More precisely, let φ : Rd × Rd → R be a metric on Rd and define

�φ(E) = {
φ(x, y): x, y ∈ E

}
.

The main result of this subsection is the following:

Theorem 1.8. Suppose that φ : Rd × Rd → R is a metric on Rd satisfying the rotational curva-
ture condition of Phong and Stein described above. Let E be a compact subset of Rd , d � 2, of
Hausdorff dimension greater than d+1

2 . Then the Lebesgue measure of �φ(E) is positive.

Remark 1.9. Theorem 1.8 opens the door to a systematic study of the Falconer distance problem
on Riemannian manifolds. This has already led us to some interesting connection with the sharp
Weyl formula (see e.g. [21]). We shall address this issue in a subsequent paper [6].

To prove Theorem 1.8, observe that the proofs of Theorem 1.1 and Corollary 1.5 above imply
that if the Hausdorff dimension of E is greater than d+1

2 and μ is a Frostman measure on E, then

μ × μ
{
(x, y) ∈ E × E: t − ε � φ(x, y) � t + ε

}
� ε.

Now, for any cover of �φ(E) by intervals (tj , tj + εj ),

1 = μ × μ(E × E) �
∑
j

μ × μ
{
(x, y): tj � φ(x, y) � tj + εj

}
�

∑
j

εj (1.18)

and it follows that there exists a uniform constant c such that

∑
j

εj � c > 0 (1.19)

for any covering of �φ(E). Thus the Lebesgue measure of �φ(E) is positive.
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1.4. Sharpness of results

There are at least two notions of sharpness that could be discussed in this context. The first
and the most important question is to find a threshold α0 such that if the Hausdorff dimension
of E is smaller than α0, then the conclusion of Theorem 1.1 does not in general hold. A result
of this type is proved in Section 4 but is stated below. In the same section we shall discuss the
extent to which our main technical estimate (2.1) is best possible.

Theorem 1.10. Let m = 1. There exists φ : Rd × Rd → R satisfying (1.5) with the following
property: for every s < d+1

2 there exists a set E of Hausdorff dimension s such that

dimM
(
S

φ
t (E)

)
> 2 · dimH(E) − 1. (1.20)

As the reader shall see below, we set φ(x, y) = ‖x − y‖B , where B is a paraboloid and ‖ · ‖B

denotes the norm induced by B . It is important to note that the best sharpness example we are
able to construct for the function φ(x, y) = |x −y| only shows that (1.20) holds if s < d

2 , instead
of s < d+1

2 in the case of the paraboloid induced metric. We do not know whether this is merely
an artifact of our method, or whether there is indeed a distinction between the Euclidean metric
and the metric induced by the paraboloid B . A related construction can be found in [2] in the
context of Fourier averages.

This shows that Corollary 1.5 cannot, in general, be improved. The construction used to obtain
Theorem 1.10 can be extended to treat the case of m > 1.

1.5. Organization

This paper is organized as follows. In Section 2 below, we prove Theorem 1.1. In Section 3,
we establish Corollary 1.5. In the final part of the paper, Section 4, we discuss the extent to which
our results are optimal.

2. Proof of the main result

Lemma 2.1. Let E ⊂ Rd be a compact Ahlfors–David regular set of Hausdorff dimension α > 0
and μ be a Frostman measure on E. If

μ × μ
{
(x, y) ∈ E × E: tl � φl(x, y) � tl + ε, 1 � l � m

}
� εm, (2.1)

then the conclusion of Theorem 1.1 holds.

To prove the lemma note that since each φl is Lipschitz, the ε neighborhood of S
�φ
�t (E), denoted

by (S
�φ
�t (E))ε , is contained in the set{

(x, y) ∈ Eε × Eε : tl � φl(x, y) � tl + ε, 1 � l � m
}
, (2.2)

where Eε denotes the ε-neighborhood of E, and thus

μ × μ
{(

S
�φ
�t (E)

)ε} � μ × μ
{
(x, y) ∈ E × E: tl � φl(x, y) � tl + ε, 1 � l � m

}
� εm, (2.3)

where the last inequality follows from (2.1) and μ being supported only on the set E.
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On the other hand, for ε sufficiently small, (1.10) implies that

μ × μ
{(

S
�φ
�t (E)

)ε} � ε2αε−γ ,

where γ is the upper Minkowski dimension of S
�φ
�t (E). We conclude that

dimM
(
S

�φ
�t (E)

)
� 2α − m,

as desired.
Hence, the proof of Theorem 1.1 reduces to the following claim.

Proposition 2.2. Let μ be a probability measure on E and T �φt
: L2(Rd) → L2

s (R
d) with d − s <

α < d , for α = dimH(E), the Hausdorff dimension of E. Then

μ × μ
{
(x, y) ∈ E × E: tl � φl(x, y) � tl + ε, 1 � l � m

}
� εm. (2.4)

To prove this, take Schwartz the class functions η0(ξ) supported in the ball {|ξ | � 4} and η(ξ)

supported in the annulus{
1 < |ξ | < 4

}
with ηj (ξ) = η

(
2−j ξ

)
for j � 1 (2.5)

with

η0(ξ) +
∞∑

j=1

ηj (ξ) = 1. (2.6)

Define the Littlewood–Paley piece of μj by the relation

μ̂j (ξ) = μ̂(ξ)ηj (ξ). (2.7)

Consider the left-hand side of (2.4). This can be rewritten as

∑
j,k

∫ ∫
{tl�φl(x,y)�tl+ε: 1�l�m}

ψ(x, y) dμj (x) dμk(y) =
∑
j,k

〈
μj ,T

εμk

〉
(2.8)

where 〈·,·〉 denotes the L2(Rd) inner product and

T εμk(x) =
∫

{tl�φl(x,y)�tl+ε: 1�l�m}
ψ(x, y) dμk(y)

=
t1+ε∫
t1

· · ·
tm+ε∫
tm

∫
�

ψ(x, y)μk(y) dσx,r (y) dr1 · · ·drm, (2.9)
φ(x,y)=r
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where dσx,r is the Lebesgue measure on the set {y: �φ(x, y) = r} and r = (r1, . . . , rm). It should
be noted that the innermost integral on the right side of (2.9) is just T �φr

applied to μk . It follows
that the right-hand side of (2.8) becomes

∑
j,k

t1+ε∫
t1

· · ·
tm+ε∫
tm

〈
μj ,T �φr

(μk)
〉
dr1 · · ·drm.

We will now use the mapping properties of T �φr
to prove 〈μ,T �φr

μ〉 is uniformly bounded in r

over the domain of integration. This, in turn, will prove our desired theorem.
We have 〈

μ,T �φr
(μ)

〉 = ∑
j,k

〈
μj ,T �φr

(μk)
〉

(2.10)

=
∑

|j−k|�K

〈
μj ,T �φr

(μk)
〉 + ∑

|j−k|>K

〈
μj ,T �φr

(μk)
〉

(2.11)

for K large enough; the choice of K will be justified later. We will estimate each of the above
sums separately. For the first sum,∑

|j−k|�K

〈
μj ,T �φr

(μk)
〉

�
∑

|j−k|�K

2j d−α
2 2k d−α

2 2−ks � 1 (2.12)

provided that d − s < α < d . Indeed, as ηj ∼ η2
j ,∑

|j−k|�K

〈
μj ,T �φr

(μk)
〉 = ∑

|j−k|�K

〈
μ̂j , T̂ �φr

(μk)
〉

∼
∑

|j−k|�K

〈
μ̂j , T̂ �φr

(μk)ηj

〉
�

∑
|j−k|�K

‖μj‖2
∥∥T̂ �φr

(μk)ηj

∥∥
2 (2.13)

where we use the Cauchy–Schwartz inequality. Since μ is an Ahlfors–David regular measure on
a set of Hausdorff dimension α, that

‖μj‖2 � 2
j (d−α)

2 . (2.14)

Indeed,

‖μj‖2
2 =

∫ ∣∣μ̂(ξ)
∣∣2

η
(
2−j ξ

)
dξ

=
∫ ∫ ∫

e2πi(x−y)·ξ η
(
2−j ξ

)
dξ dμ(x)dμ(y)

= 2dj

∫ ∫
η̂
(
2j (x − y)

)
dμ(x)dμ(y).
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The absolute value of this quantity is bounded, for every N > 0, by

CN2dj

∫ ∫ (
1 + 2j |x − y|)−N

dμ(x)dμ(y)

= CN 2dj

∫ ∫
|x−y|�2−j

(
1 + 2j |x − y|)−N

dμ(x)dμ(y)

+ CN2dj
∞∑
l=0

∫ ∫
2l�2j |x−y|�2l+1

(
1 + 2j |x − y|)−N

dμ(x)dμ(y)

= I + II.

By the Ahlfors–David property,

I � CN2dj 2−jα.

Since μ is compactly supported, there exists M > 0 such that

II = CN2dj

j+M∑
l=0

∫ ∫
2l�2j |x−y|�2l+1

(
1 + 2j |x − y|)−N

dμ(x)dμ(y).

This expression is

� CN2dj

j+M∑
l=0

2−jα2lα2−lN � CN2j (d−α).

It follows that I + II � 2j (d−α) and (2.14) is established.
We also have that ∥∥T̂ �φr

(μk)ηj

∥∥
2 � 2−ks2

k(d−α)
2 (2.15)

by the mapping properties of the operator T �φr
in the regime of |j − k| < K .

The following lemma is a variant of a calculation in [14]. We will use it to get a bound on the
second sum.

Lemma 2.3. For any M > 2d + m + 1 there exists a constant CM > 0 such that for all indices
j , k with |j − k| > K with K large enough,

〈T �φr
μj ,μk〉 � CM2−M max{j,k}.

To prove the lemma, for simplicity, we replace T �φr
by T and write

T μk(x) =
∫

�
ψ(x, y)μk(y) dσx,r (y),
{y: φ(x,y)=r}
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where dσx,r is the Lebesgue measure on the set {y: �φ(x, y) = r}. It follows from our upcoming
arguments that as long as tl � rl � tl + ε, the estimates hold uniformly in r .

As φ satisfies the property that {∇yφl(x, y)}ml=1 are linearly independent on a relatively open,
bounded subset of {y: φ(x, y) = t} from (1.6), we can assume that |∑l ∇yφl(x, y)| ≈ 1 on this
set by making the support of ψ small enough. Next, we use an approximation argument on T by
letting

Tnμk(x) = nm

∫
Rd

ψ(x, y)Πlχl

(
n
(
φl(x, y) − rl

))
μk(y)dy (2.16)

where {χl}ml=1 is a family of smooth cutoffs supported near 0 and equal to 1 near 0. It is shown
in [10] that

nmΠlχl

(
n
(
φl(x, y) − rl

))
dy (2.17)

converges to the measure that appears in T �φr
as n → ∞. Therefore, proving the estimate in the

case where T �φr
is replaced by Tn is sufficient by convergence theorems found in [9] which in turn

shows the uniformity in r . We will drop the domains of integration in the upcoming calculations
for brevity.

By Fourier inversion, we have

Tnμ(x) =
∫

eiy·ξ eis·( �φ(x,y)−r)ψ(x, y)Πlχ̂l

(
n−1sl

)
μ̂(ξ) dξ ds dy

and therefore

T̂nμ(η) =
∫

e−ix·ηeiy·ξ eis·( �φ(x,y)−r)ψ(x, y)Πlχ̂l

(
n−1sl

)
μ̂(ξ) dx dy ds dξ. (2.18)

Invoking the properties of the Fourier transform on L2, we see that

〈Tnμj ,μk〉 = 〈T̂nμj , μ̂k〉
=

∫
e−ix·ηeiy·ξ eis·( �φ(x,y)−r)ψ(x, y)Πlχ̂l

(
n−1sl

)
μ̂j (ξ)μ̂k(η) dx dy ds dξ dη (2.19)

=
∫

μ̂j (ξ)μ̂k(η)Πlχ̂l

(
n−1sl

)
Ijk(ξ, η, s) dη dξ ds (2.20)

where

Ijk(ξ, η, s) = ψ0
(
2−j |ξ |)ψ0

(
2−k|η|) ∫

eis·( �φ(x,y)−r)eiy·ξ e−ix·ηψ(x, y) dx dy (2.21)

and ψ0 is smooth cutoff equal to 1 on {1 � |z| � 10} and vanishing in the ball of radius 1/2. The
justification of such cutoffs comes from the support of μ̂j (ξ) and μ̂k(η) and again that ηj ≈ η2

j .
We will show that ∣∣Ijk(ξ, η, s)

∣∣ � CM2−M max(j,k) (2.22)

when |j − k| > K for a large enough K .
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Computing the critical points of the phase function in (2.21), we see that∑
l

|s|s̃l∇xφl(x, y) = η and
∑

l

|s|s̃l∇yφl(x, y) = −ξ, (2.23)

where s = |s|(s̃1, . . . , s̃m) and (s̃1, . . . , s̃m) ∈ Sm−1, the unit sphere. The compactness of the
support of ψ and the domain of the variable (s̃1, . . . , s̃m) along with the linear independence
condition from (1.6) implies that∣∣∣∣∑

l

s̃l∇xφl(x, y)

∣∣∣∣ ≈
∣∣∣∣∑

l

s̃l∇yφl(x, y)

∣∣∣∣ ≈ 1. (2.24)

More precisely, the upper bound follows from smoothness and compact support. The lower
bound follows from the fact that a continuous non-negative function achieves its minimum on a
compact set. This minimum is not zero because of the linear independence condition (1.6).

It follows that

|ξ | ≈ |η| (2.25)

when we are near the critical points in (x, y). The support of the cutoffs ψ0, when |j − k| > K ,
tell us that we are supported away from critical points in (x, y) since (2.25) no longer holds. This
condition implies that for some h or h′ in {1,2, . . . , d},(∑

l

sl
∂φl

∂xh

− ηh

)
	= 0 or

(∑
l

sl
∂φl

∂yh′
+ ξh′

)
	= 0. (2.26)

Without loss of generality, assume the former holds and that k > j . It is immediate that
e−ix·ηeis·( �φ(x,y)−r) is an eigenfunction of the differential operator

L = 1

i(
∑

l sl
∂φl

∂xh
− ηh)

∂

∂xh

. (2.27)

We integrate by parts in (2.21) using this operator. The expression that we get after performing
this procedure M > 2d + m + 1 times is

I (ξ, η, s) � sup
x,y

∣∣∣∣∑
l

sl
∂φl

∂xh

− ηh

∣∣∣∣−M

. (2.28)

Now, suppose that we are in the region {|s| � |η|} (i.e. |s| � c|η| with a sufficiently large constant
c > 0). Since |∑l sl∇xφl | ≈ |s| it follows, after possibly changing our initial choice of h, that∣∣∣∣∑

l

sl
∂φl

∂xh

− ηh

∣∣∣∣ �
∣∣∣∣∣∣∣∣∑

l

sl
∂φl

∂xh

∣∣∣∣ − |η|
∣∣∣∣ ≈ |η|. (2.29)

Similarly, if {|s| � |η|} then, again after possibly changing our initial choice of h,



S. Eswarathasan et al. / Advances in Mathematics 228 (2011) 2385–2402 2397
∣∣∣∣∑
l

sl
∂φl

∂xh

− ηh

∣∣∣∣ �
∣∣∣∣∣∣∣∣∑

l

sl
∂φl

∂xh

∣∣∣∣ − |η|
∣∣∣∣ ≈ |s|. (2.30)

In either region, ∣∣Ijk(ξ, η, s)
∣∣ � sup

(|s|, |η|)−M � 2−Mk. (2.31)

Considering (2.20), the integrand (Πlχ̂l(n
−1sl))Ijk(ξ, η, s) is integrable in s as the first term

is at most 1 and Ijk is bounded about by |s|−M . Performing the remaining integrations and
keeping in mind the support properties of μ̂j and μ̂k , it follows that∑

|j−k|>K

〈
μj ,T �φr

(μk)
〉
�

∑
|j−k|>K

CM2−(M−2d)max(j,k) � 1. (2.32)

This completes the proof of Lemma 2.3.
We are now ready to give the final step of the proof to Proposition 2.2. Since both sums in

(2.11) are bounded by 1, this implies that the left-hand side of (2.8) is bounded above by εm after
completing the integrations in (2.9).

3. Proof of Corollary 1.5

In order to establish Corollary 1.5, we need to prove that the estimate (1.11) holds with s =
d−1

2 under the Phong–Stein condition (1.14). This follows, for example, from the main result
in [20]. See also [13] and [21] for a thorough description of related estimates. In this section,
we place this estimate into the context of general Fourier integral operator theory for the sake of
clarity.

The Radon transform, which sends a function to its averages on a given family of subman-
ifolds, has appeared frequently in many areas of analysis and geometry. Its appearance, for
example, in the study of the ∂-Neumann problem and integral geometry [20] brought microlocal
analysis past its initial uses in the analysis of parametrics and the propagation of singularities.
The condition (1.14) can be viewed as a nondegeneracy assumption when taking Hörmander’s
viewpoint of Fourier integral operators [13].

Let us consider the integral operator

Tf (x) =
∫

K(x,y)f (y) dy (3.1)

where f ∈ L2(Rd) and

K(x,y) =
∫

eiΨ (x,y,θ)a(x, y, θ) dθ (3.2)

for Ψ ∈ C∞(Rd × Rd × RN) and a ∈ C∞
0 (Rd × Rd × RN).

The L2 mapping properties of T are determined by the geometric properties of the canonical
relation

C = {
(x,∇xΨ,y,∇yΨ ): ∇θΨ = 0

}
(3.3)
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which is a subset of T ∗(Rd × Rd). If the set {∇x,y,θ (∂Ψ/∂θi)}di=1 is linearly independent on
{∇θΨ = 0}, then C is an immersed submanifold. Moreover, these conditions put K into the
general framework of Fourier integral distributions [13]. We now call the operator T a Fourier
integral operator associated to C. When Tφt is viewed as a Fourier integral operator, (3.2) be-
comes ∫

ei(φ(x,y)−t)τ a(x, y, τ ) dτ (3.4)

for τ ∈ R.
The best possible situation for L2 estimates for T comes when C is locally the graph of a

canonical transformation [13]. This is equivalent to(
HessxyΨ HessxθΨ

HessθyΨ HessθθΨ

)
	= 0 (3.5)

where Hessz′,z′′Ψ is the mixed Hessian of Ψ in the variables z′ and z′′. The resulting L2 es-
timate for T is L2(Rd) → L2

d−N
2

(Rd). Computing determinant in the case of (3.4), we get the

Monge–Ampere determinant that appears in the definition of the Phong–Stein rotational curva-
ture condition. Hence, (1.14) guarantees that Tφt has as its canonical relation a local canonical
graph and is smoothing of order d−1

2 on L2(Rd).
By (1.12) and the fact that s = d−1

2 , it follows that α > d+1
2 and the proof of Corollary 1.5 is

complete.

4. Sharpness of results

4.1. Proof of Theorem 1.10

We use a construction very closely related to the one in [15]. However, we will start with a
variant of the incidence example due to Pavel Valtr [3,23] as an exercise for our intuition. Let us
note that a similar object can be found in [16] in a slightly different context. Let

Pn =
{(

i1

n
,
i2

n
, . . . ,

id−1

n
,

id

n2

)
: 0 � ij � n − 1, for 1 � j � d − 1, and 1 � id � n2

}
. (4.1)

Notice that in each of the first d − 1 coordinates, there are n evenly distributed points, but in the
last dimension, there are n2 evenly distributed points. Now, let

H = {(
t1, t2, . . . , td−1, t

2
1 + · · · + t2

d−1

) ∈ Rd : tl ∈ R
}

(4.2)

and define

LH = {H + p, p ∈ Pn}. (4.3)

Note that LH is a collection of shifted paraboloids.
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Fig. 1. On the left, we see a picture of the set P5, on the right, we see it again with a few parabolic arcs, which intersect
a point in each column.

Let N = nd+1. By construction, #Pn = #LH = N . Also by construction, each element of LH

is incident to about nd−1 ≈ N
d−1
d+1 elements of Pn. Thus the total number of incidences between

Pn and LH is

≈ N1+ d−1
d+1 = N

2d
d+1 = N2− 2

d+1 .

We are now ready to define the convex body B . With the combinatorial construction in (4.1),
(4.3), and (4.3) in hand, we flip the paraboloid upside down and glue it to another copy. Explicitly,
let

BU = {
(x1, x2, . . . , xd) ∈ Rd : xi ∈ [−1,1], for 1 � i � d − 1,

and xd = 1 − (
x2

1 + x2
2 + · · · + x2

d−1

)}
,

and

BL = {
(x1, x2, . . . , xd) ∈ Rd : xi ∈ [−1,1], for 1 � i � d − 1,

and xd = −1 + x2
1 + x2

2 + · · · + x2
d−1

}
.

Now, let

B ′ = (
BU ∩ {

(x1, x2, . . . , xd) ∈ Rd : xd � 0
}) ∪ (

BL ∩ {
(x1, x2, . . . , xd) ∈ Rd : xd � 0

})
.

Finally, define B to be the convex body B ′, with the ridge at the transition between BU and BL

smoothed.
We now transition to show how the upper Minkowski dimension of a particular (S

φ
t (E)) for

an E given below gives the desired sharpness result.
Let {qi}i∈N be a sequence of positive integers such that qi+1 = qi

i and q1 = 2. Let Ei be the

q
− d

s

i neighborhood of the set

q−1{x ∈ Zd : 0 � xj � q
d

d+1 , 1 � j � d − 1, 0 � xd � q
2d

d+1
}
,
i i i
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where Zd denotes the standard integer lattice. We set E = ⋂
i Ei . See [8], Chapter 8 for a proof

that E = ⋂
i Ei is an Ahlfors–David regular set of Hausdorff dimension s.

Define φ(x, y) := ‖x − y‖B , where ‖ · ‖B is the norm induced by a symmetric convex
body B with a smooth boundary and non-vanishing Gaussian curvature that we now construct.
A fairly straightforward calculation shows that as long as ∂B is smooth and has everywhere
non-vanishing Gaussian curvature, then φ(x, y) = ‖x − y‖B satisfies the Phong–Stein rotational
curvature hypothesis away from t = 0.

By the definition of Minkowski dimension [25], our problem of calculating dimM(S
φ
t (E))

reduces to counting the number of δ-balls (or boxes) needed to cover S
φ
t (E). We will see that the

number of δi -boxes needed to cover Ei is the same as the number needed to cover E.

Set δi = q
− d

s

i and partition the set [0,1]d into boxes of sidelength ∼ δi . The set E being
Ahlfors–David regular implies that μ(B(x, δi)) ∼ δs

i whenever x ∈ E. Hence there are ∼ δ−s
i

boxes of the δ−d
i boxes from the partitioning of [0,1]d , each of which contains a non-isolated

point of E. The definition of E = ⋂
i Ei shows that the number of δi -boxes needed to cover Ei is

the same as the number of δi boxes needed to cover E. Our problem of calculating dimM(S
φ
t (E))

now reduces to the problem of calculating the number of balls of radius q
− d

s

i needed to cover

S
φ
t (Ei).

Given x ∈ Ei and keeping mind the definition of E, the number of balls of radius q
− d

s

i needed

to cover {y : ‖x − y‖B = 1} is � q
d(d−1)
d+1

i . It follows that the number of balls of radius q
− d

s

i needed

to cover S
φ
t (Ei) and, consequently, S

φ
t (E), is

� qd
i · q

d(d−1)
d+1

i = q
2d2
d+1
i = (

q
− d

s

i

)− 2ds
d+1

.

Therefore the upper Minkowski dimension of S
φ
t (E) is at least 2ds

d+1 . This number is greater

than 2s − 1 if s < d+1
2 .

4.2. Sharpness of the method

It is known that the estimate (2.1), which is at the core of our method, is essentially sharp
in the case m = 1. See [17,18] for the proof of this fact in the d = 2 case and [15] for the
construction in dimensions d � 3. Mattila’s example is for the function φ(x, y) = |x − y|, where
| · | is the Euclidean distance. The construction in [15] is for the convex body B used in the proof
of Theorem 1.10 above. We now give a proof of sharpness of the exponent 3

2 in (2.1) in the case
d = 2 and φ(x, y) = x · y as this result appears to be new. We believe that when m = 1, the
exponent d+1

2 is sharp in all dimensions for any function φ satisfying the Phong–Stein rotational
curvature condition, but are unable to prove this at the moment.

Consider the estimate

μ × μ
{
(x, y): 1 � x · y � 1 + ε

}
� ε. (4.4)

We will modify the referenced examples to show that for no s < 3 does
2
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Is(μ) =
∫ ∫

|x − y|−s dμ(x)dμ(y) < ∞ (4.5)

imply (4.4).
We denote by Cα , a Cantor set of Hausdorff dimension 0 < α < 1. Let F = (Cα ∩ [ 1

2 ,1]) ∪
(C−1

α ∩ [ 1
2 ,1]). Now define M2(α) = {rω : r ∈ F,ω ∈ S1} ⊂ R2. Set μ = Hα|F × L1|[0,1] where

Hα is the α-dimensional Hausdorff measure. This measure is meant to be a fractal analog of that
from polar coordinates in the plane.

Pick a point x = rω ∈ M2(α). Notice that if r ∈ F , then so is 1
r
. Notice that {y: 1 � x · y �

1 + ε} is contained in a strip formed by the two lines which are both perpendicular to the vector
x and pass through the points 1

r
ω and ω respectively.

We argue that within an ε-annulus we can fit a rectangle of width ∼ ε and length ∼ √
ε. Simi-

larly, an ε-strip fits an annulus of width ∼ ε and inner arc-length ∼ √
ε. This rectangle intersects

M2(α) for x in a set of positive μ measure. The measure of this intersection is ∼ ε1/2+α . It
follows that

μ{y: 1 � x · y � 1 + ε} � εα+1/2 (4.6)

for x in a set of positive μ measure and consequently

μ × μ
{
(x, y): 1 � x · y � 1 + ε

} =
∫

μ{y: 1 � x · y � 1 + ε}dμ(x)

� εα+1/2. (4.7)

Hence,

μ × μ
{
(x, y): 1 � x · y � 1 + ε

}
� ε (4.8)

only for

εα+ 1
2 � ε, (4.9)

which can only hold when α � 1
2 . Thus the estimate (4.4) does not in general hold for sets with

Hausdorff dimension less than 3
2 .
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