
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/95092/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Houston, David M. J., Robins, Bethan, Bugert, Joachim J., Denyer, Stephen P. and Heard, Charles M. 2017.
In vitro permeation and biological activity of punicalagin and zinc (II) across skin and mucous membranes

prone to Herpes simplex virus infection. European Journal of Pharmaceutical Sciences 96 , pp. 99-106.
10.1016/j.ejps.2016.08.013 

Publishers page: http://dx.doi.org/10.1016/j.ejps.2016.08.013 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



  1   11 

 

 

In Vitro Permeation and Biological Activity Of Punicalagin And 

Zinc (II) Across Skin and Mucous Membranes Prone To Herpes 

simplex Virus Infection  

 

David MJ Houstona,b, Bethan Robinsa, Joachim J Bugertb,c, Stephen P Denyera,d, 

Charles M Hearda* 

 

 

a Cardiff School of Pharmacy & Pharmaceutical Science, Cardiff University, Cardiff 

CF10 3NB Wales, United Kingdom 

b Department of Microbiology & Infectious Diseases, School of Medicine, Cardiff 

University, Cardiff CF14 4XW Wales, United Kingdom 

 

c Institute of Microbiology, Armed Forces Medical Academy, Neuherbergstraße 11, 

80937 München, Germany 

dUniversity of Brighton, Mithras House, Lewes Road, Brighton BN2 4AT. 

 

 



  2   22 

Abstract 

Coadministration of pomegranate rind extract (PRE) and zinc (II) ions has recently 

been reported as a potential new topical treatment for Herpes simplex virus (HSV) 

infections. In the current work we examined the in vitro topical delivery of 

punicalagin (major phytochemical of PRE) and zinc from hydrogels across epithelial 

membranes that can become infected with HSV.  

Porcine epidermal, buccal and vaginal mucous membranes were excised and mounted 

in Franz diffusion cells and dosed with a simple hydrogel containing PRE and zinc 

sulphate (ZnSO4). The permeation of punicalagin and zinc were determined by HPLC 

and ICPMS respectively; punicalagin was also determined in the basal layers by 

reverse tape stripping. Receptor phases from the epidermal membrane experiment 

were also used to challenge HSV-1 in Vero host cells, and ex vivo porcine skin was 

used to probe COX-2 modulation. 

Punicalagin and zinc permeated each of the three test membranes, with significantly 

greater amounts of both delivered across the epidermal membrane. The amounts of 

punicalagin permeating the buccal and vaginal membranes were similar, although the 

amount of zinc permeating the vaginal membrane was comparatively very large – it is 

known that zinc interacts with vaginal mucosa. The punicalagin recovered by reverse 

tape stripping of the epidermal, buccal and vaginal membranes gave 0.47 ± 0.016, 

0.45 ± 0.052 and 0.51 ± 0.048 nM cm-2 respectively, and were statistically the same 

(p<0.05). A 2.5 log reduction was achieved against HSV-1 using diffusion cell 

receptor phase, and COX-2 expression was reduced by 64% in ex vivo skin after 6h.   

Overall, a hydrogel containing 1.25 mg mL-1 PRE and 0.25 M ZnSO4 was able to 

topically deliver both the major bioactive compound within PRE and Zn (II) across all 

membranes and into the site specific region of Herpes simplex vesicular clusters, 

while maintaining potentiated virucidal and anti-inflammatory properties. This novel 

therapeutic system therefore has potential for the topical treatment of HSV infections. 

Key words:  Punica granatum L., pomegranate rind extract, punicalagin, zinc, 

virucidal, anti-inflammatory, drug delivery, Herpes simplex virus, skin, buccal cavity, 

vagina, reverse tape stripping. 
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1. Introduction 

 The pomegranate, fruit of the Punica granatum L tree, has been venerated 

since ancient times for its benefits to health (Jurenka, 2008). In recent years 

pomegranates have been studied more rigorously, partly in response to public 

preference to medicines of natural origin. The major class of phytochemicals in the 

pomegranate is the polyphenols and accounts for much of their antioxidant activity, 

flavour and colour. Extracts from the rind of the pomegranate have a large number of 

these polyphenols e.g. flavonoids, anthocyanins such as delphinidin, cyanidin and 

proanthocyanidins. Of particular interest are the hydrolysable tannins: punicalagin,  

punicalin, pedunicalin, as well as gallic and ellagic acid esters of glucose (Mustafa et 

al. 2009). The remaining phytochemicals present are organic and phenolic acids, 

sterols and triterpenoids, fatty acids, triglycerides, and saccharides (Seeram et al. 

2005). Punicalagin, a large polyphenolic compound with a molecular mass of 1084.7, 

constitutes 80-85% w/w of total pomegranate tannins. Punicalagin and its degradation 

compounds are thought to be the main bioactive extracts present in PRE and (Seeram 

et al. 2005). Other bioactivities have been described for PRE and punicalagin, 

including antiproliferation, apoptopic and antimicrobial properties (Seeram et al. 

2005; Negi and Jayaprakasha, 2003; Howell and D'Souza 2013). 

Pomegranate extracts have shown antiviral effects against norovirus (Su et al. 

2010), influenza virus (Haidari et al. 2009), HIV-1 (Neurath et al 2005) and 

poxviruses (Konowalchuk and Speirs, 1976) and it has been postulated that the 

interaction of plant polyphenolic compounds with the viral capsid protein may cause 

irreversible damage or reversible blocking of certain regions/areas of the capsid 

protein (Li et al. 2012). The phytochemicals of the pomegranate are concentrated in 

the pericarp and thus the pharmacological activity of PRE has been examined (Al-

Zoreky, 2009). The combination of PRE and FeSO4 was reported to produce an 

eleven-log reduction in the plaque forming ability of Pseudomonas aeruginosa and 

Escherichia coli phages within two minutes of application of an aqueous mixture at 

room temperature (Stewart et al. 1998). More recently, we have demonstrated that the 

combination of PRE and ZnSO4 has potent virucidal activity against Herpes simplex 

virus-1 (HSV-1), Herpes simplex virus-2 (HSV-2) and aciclovir-resistant HSV-1 

(Houston, 2011; Houston et al, submitted not yet accepted, a) where up to 6-log 

reduction was attributed to the potentiation of punicalagin, in a mechanism that is 
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currently under investigation. Furthermore, it was also found that PRE downregulates 

the short-lived endogenous inflammatory enzyme COX-2 when applied topically to 

ex vivo skin (Houston et al, submitted not yet accepted, b), which supports other 

reports of anti-inflammatory activity of PRE (Colombo et al. 2013). Together, these 

attributes indicate that coadministered PRE and zinc (II) has potential in a range of 

topical herpetic disorders.  

HSV types 1 and 2 commonly infect skin and mucosal membranes. As there is 

currently no cure, individuals infected with HSV will harbour latent virus in regional 

nerve ganglia for the remainder of their lives. Symptoms of primary herpes include 

fever, malaise, tender lymphadenopathy of the head and neck, and vesicles and ulcers 

anywhere on oral mucosa, the pharynx, lips and perioral skin. The gingiva is typically 

enlarged and erythematous and lesions are painful, making it difficult to eat and drink. 

An important consideration for drug therapy is that the earlier the treatment is 

initiated, the better the outcome, especially for antiviral drugs; however, the lesions 

usually resolve within 10-14 days even without drug intervention. The HSV virus, 

which is always present in the body, tends to overcome the immune system and erupt 

as fluid-filled blisters that turn into sores when immune defences are run down - this 

is especially common during a cold viral infection. Recurring herpes has vesicles and 

ulcers occurring on keratinized mucosal surfaces and the lesions are grouped in a tight 

cluster - often a sudden prodrome of pain, tingling, or numbness precedes the onset of 

lesions.  The frequency of recurrence varies with the individual (Pringle, 2016). 

Genital herpes generally causes mild symptoms; it is also possible to be infected and 

have no symptoms, so not everyone who is infected may be aware of the infection. 

When symptoms are present, they consist of typically painful blisters around the 

genital or rectal area. The blisters break open, form ulcers, and take 2 to 4 weeks to 

heal. With the first outbreak of genital herpes, a person may also experience flu-like 

symptoms including fever, body aches, and swollen lymph nodes. Immediately prior 

to an outbreak, there may be an itching, burning, or tingling sensation of the skin. In 

women, genital herpes usually causes blistering lesions on the vulva and around the 

vaginal opening that progress to ulcer formation. The infection spreads to involve the 

cervix in most cases, leading to cervicitis (inflammation of the cervix). In some cases 

cervicitis may be the only sign of genital herpes infection. Infection and inflammation 
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of the urethra accompanies the infection in some women, leading to pain on urination. 

After the initial infection, a person may or may not have outbreaks later in life. 

The current work thus investigated the in vitro topical delivery of PRE and 

ZnSO4 and its breadth of applicability to the various anatomical regions prone to 

infection with HSV-1 and HSV-2. Herpes simplex labialis lesions (cold sores) mainly 

affect the perioral region (in which case normal skin can be used as a model for 

determining penetration), however, they also occur on the lips and in the mucous 

membranes of the buccal cavity, such as inner cheeks and gums (Pringle, 2016).  

Anogenital infections of HSV can involve the areas of normal skin or mucous 

membranes, or both. Depending on the progression of the lesion, the precise location 

of the viral load can vary from within the skin to near or on the surface (Salameh et al. 

2012). Here, we used porcine skin, buccal and vaginal membranes excised by blunt 

dissection which, being intact, would represent the minimum amounts of permeants 

delivered into these membranes. In the case of advanced lesions the skin barrier 

would compromised and so the amounts deliverable would be expected to be 

substantially greater, particularly given the hydrophilic nature of the actives and the 

hydrated state of the buccal and vaginal mucosal membranes. 

The objective of this work was thus to determine the in vitro or ex vivo 

permeation of punicalagin and zinc (II) using models for HSV-1 and HSV-2 vesicular 

specific sites, from topically applied hydrogel formulations containing PRE and 

ZnSO4 and to determine if virucidal and anti-inflammatory activities are retained 

following membrane permeation.  

 

2. Materials and methods 

2.1. Materials 

 Pomegranates were obtained from a local supermarket and were of Spanish 

origin. Hydroxypropylmethyl cellulose (Methocel 856N) was a gift from The Dow 

Chemical Company, MI, USA. Zinc sulphate (ZnSO4), Dulbecco's modified eagle 

medium (DMEM), potassium hydrogen phthalate, bovine serum albumen (BSA), 

bromophenol blue (99%, UV-VIS), dimethyl sulfoxide (DMSO, 99%), gentamycin 

sulfate, glycerol (99%), glycine (99%), N,N,N',N'-tetramethyl-ethylenediamine 
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(TEMED, 99%), positive control lysate for COX-2 (Human cells-13 lysate, 250 μg in 

0.1 mL), sodium bicarbonate (NaHCO3, 99%), sodium chloride (NaCl, 99.9%), 

sodium dodecyl sulphate (SDS), tris (hydroxymethyl)methylamine (Tris base, 

99.8%), Thermo Scientific SuperSignal® west dura extended duration substrate, filter 

paper QL100 (equivalent to Whatman Grade 1), nitrocellulose transfer membrane 

(Whatman Protran® BA85 with pore size of 0.45 μm), trifluoroacetic acid (TFA) and 

all other solvents were of analytical grade or equivalent were obtained from Fisher 

Scientific (Loughborough, UK). Aprotinin (≥98%), dithiothreitol (DTT, 1 M in 

water), ethylene diamine tetraacetic acid (EDTA, 98%), Hanks’ balanced salt buffer 

(HBSB), leupeptin hydrochloride (≥70%), monoclonal anti-β-actin antibody produced 

in mouse (clone AC-74, ascites fluid, A 5316), [4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid] (HEPES, ≥99.5%), phenylmethylsulphonyl fluoride 

(PMSF, ≥99%), phosphate buffer solution (PBS, pH 7.4), polyoxyethylene-sorbitan 

monolaurate (Tween® 20), ponceau S, RIPA buffer and punicalagin were all 

purchased from Sigma-Aldrich (Poole, UK).  Cyclooxygenase-2 antibody (COX-2, 

#4842), anti-rabbit immunoglobulins (IgG) horseradish-peroxidase (HRP)-linked 

antibodies and positive controls for COX-2 (RAW 264.7 cells lysate, untreated or 

LPS treated) by Cell Signaling Technology were purchased from New England 

BioLabs Ltd. (Hitchin, UK). MXB autoradiography film (blue sensitive: 18 × 24 cm²) 

was obtained from Genetic Research Instrumentation (Braintree, UK). Full range 

Rainbow® recombinant protein molecular weight marker (12 - 225 kDa) was 

purchased from GE Healthcare Life Sciences (Little Chalfont, UK) and Bio-Rad 

protein assay reagent from Bio-Rad Laboratories GmbH (Munich, Germany). Freshly 

excised porcine ears, cheeks and vaginas were obtained from a local abattoir and 

immersed in iced HBSB solution upon excision, and used within 1 h of slaughtering. 

 

2.2. Preparation of Pomegranate Rind Extract (PRE) 

 Six fresh pomegranates were peeled; the rinds cut into thin strips 

approximately 2 cm in length, blended in deionised H2O (25% w/v) and boiled for 

approximately 10 min. The crude suspension was then transferred into centrifuge 

tubes and centrifuged at 10,400g 
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membrane filter. The solution was then freeze-dried, occluded from light and stored at 

- ion of each extract was analysed, 

and consisted of 20% w/w of PRE. The PRE was reconstituted by adding 2 mg to 10 

mL of pH 4.5 phthalate buffer. The solution was sonicated for 10 min at 50-60 Hz and 

-FG syringe driven filter 

unit and stored at -20°C until further use. 

 

2.3. Hydroxypropyl Methylcellulose (HPMC) Hydrogel 

 Using the ‘hot/cold’ technique, 2.5g HPMC (Methocel 856N) was added to 40 

mL pH 4.5 phthalate buffer at 80 °C with constant stirring until all particles are 

thoroughly wetted. 60 mL cold or iced deionised H2O was then added to the solution 

with constant agitation for 30 min. This enabled the hydration of the powder and the 

increase in the viscosity of the resulting hydrogel, which was then cooled to 4°C. PRE 

and ZnSO4 were added to 60 ml of cold phthalate buffer: hydrogel H1 0.5 mg mL-1 

PRE, 0.1 M ZnSO4; H2 1.25 mg mL-1 PRE, 0.25 M ZnSO4; blank contained neither 

PRE nor ZnSO4 (Table 1). Agitation of the hydrogel continued for 30 min after the 

addition of the cooled water to guarantee a uniform and evenly dispersed hydrogel. 

All formulations were refrigerated for a minimum of four hours after agitation so that 

a uniform hydrogel was formed (Dodov et al. 2005). It had previously been found that 

HPMC yielded gels with good tactile and rheological properties (Houston, 2011). 

 

2.4. Preparation of Porcine Membranes 

 Heat separated epidermis was used to model drug delivery to HSV-1 and -2 

vesicular clusters which form in the early stages of a HSV or cold sore lesion 

formation, where the skin and barrier function are still essentially intact, and could 

also represent surrounding non-labial regions either of the mouth or vagina. 

 The freshly excised porcine ears were gently washed under cool running water 

and full thickness skin was removed from the dorsal cartilage by blunt dissection, 

using a scalpel. The skin was further sectioned into 2 cm2 squares and immersed in 

water at 55°C for 1 min (Kligman and Christophers, 1963) then used straight away. 
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For the COX-2 determinations (Section 2.10), ex vivo full thickness skin was 

carefully liberated from cleaned, shaved ears, whilst being bathed continually with 

HBSB (Houston et al. submitted not yet accepted, b).  

 Heat separated buccal membrane was used as HSV-1 and -2 most commonly 

transverse the trigeminal nerve which enables the virus to present not only on the 

prolabium but also within the buccal cavity, it was important to determine the 

delivery of both punicalagin and zinc across the buccal mucosa. Porcine cheeks were 

collected from a local abattoir as soon as possible after slaughter, then transported to 

the lab immersed in iced buffered HBSB and application of test materials began 

within an hour of excision. The buccal membrane was carefully excised from the 

underlying tissues using a scalpel until only the top mucosal membrane remained, this 

was sectioned into 2 cm2 pieces and immersed in water at 55°C for 1 min, then used 

immediately. 

 Porcine vaginal membrane was used to model the presentation of HSV-1 and -

2 vesicular clusters within and around the vaginal cavity soft tissue in female Herpes 

simplex infection. Porcine vaginas were collected from a local abattoir as soon as 

possible after slaughter, then transported to the lab immersed in iced buffered HBSB 

and application of test materials began within an hour of excision. Excess fat and 

muscle was cut away from the porcine inner vaginal wall via scalpel dissection. The 

vaginal cavity was opened by cutting one vaginal wall from the vaginal opening to the 

cervix. The vaginal mucosal membrane was then trimmed using a scalpel until only 

the mucosal membrane remained, this was sectioned into 2 cm2 pieces and used 

immediately. 

 

2.5. In Vitro Membrane Permeation Determination 

 All-glass Franz diffusion cells (FDC) were used with nominal diffusional area 

of 1 cm diameter (0.88 cm2) and nominal receptor phase volume of 3 mL. The 

relevant membrane was mounted epithelium-uppermost on the lightly pre-greased 

flanges of the receptor. The donor chamber was placed on top of the membrane and 

clamped into position. A micro-stirrer bar was added to the receptor compartment, 

filled with deionised H2O and the sampling arm capped. The cells were placed on a 
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multiple stirrer plate in a thermostatically controlled water bath set at 37°C for 15 min 

to allow the temperature to reach equilibrium. An infinite dose of 300 mg aliquot of 

hydrogel H1, H2 and blank was applied (without stirring due to the fragility of the 

buccal and vaginal membranes), thus allowing determination of maximal levels of 

drug delivery. At specific timepoints the receptor fluids were removed using a sterile 

pipette and stored in 10 mL glass vials until further use; the receptor chamber was 

then refilled with deionised H2O. 

 

2.6. Reverse Tape Stripping 

 Tape stripping is typically performed to determine depth profiles for drug 

penetration into biological membranes, mainly (Williams, 2003). Here we took a 

different approach in the knowledge that replicating HSV infects the viable epidermis, 

thus the amount of permeant localised within the basal layer is of particular interest. 

Thus instead of stripping the outer layer of the membrane, which is in contact with the 

donor phase, the inner side (which is in contact with the receptor fluid) was the 

starting point of the stripping procedure. 

 The membrane was removed from the FDC after 24 h using forceps and 

dabbed clean of formulation carefully and trimmed to the area of application. A drop 

of cyanoacrylate adhesive was applied to a ceramic tile, the membrane was placed on 

the adhesive, donor phase side downwards. Regular adhesive tape strips (Sellotape) 

were then gently pressed onto the membrane and the tape was then carefully removed 

using forceps, placed in an Eppendorf vial containing 2 mL of methanol and rocked 

overnight. The tape was removed from the vial and the methanol evaporated under 

vacuum before 2 mL of deionised H2O was added. To allow a comparative 

determination of the levels of actives in the basal layer areas of the 3 test membranes, 

reverse tape stripping was conducted after 24 h.  

 

2.7. Analysis of Punicalagin by HPLC 

 In this work punicalagin was used as marker for PRE – punicalagin is the 

tannin in highest concentration in PRE and has previously been shown to exert the 
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greatest effect on Herpes simplex virus (Houston, 2011; Houston et al, unpublished a). 

The analysis was performed using an Agilent series 1100 HPLC system fitted with a 

Phenomenex Gemini NX C18 110A 250 x 2.6 mm column. Gradient elution was 

used, involving A = methanol with 0.1% trifluoroacetic acid (TFA) and B = deionised 

H2O with 0.1% TFA: 0 min A 5% B 95%, 15 min A 20% B 80%, 30 min A 60% B 

40%, 40 min A 60% B 40%. Injection volume was 20 L and detection was by UV at 

258nm. Punicalagin naturally occurs as a pair of isomers (anomers), α and β, in the 

ratio of 1:2 (Figure 1). Aqueous solutions of punicalagin standard were analysed over 

a range of concentrations and the resulting calibration curves of the α and β anomers 

(Figure 1) were used to determine total punicalagin levels by summation of the areas 

of the two corresponding peaks in the test sample chromatograms. 

 

2.8. Analysis of Zinc by Inductively Coupled Plasma Mass Spectrometry (ICPMS) 

 The levels of zinc permeating the skin were determined by ICPMS analysis 

(Li et al. 2012) using a Thermo Elemental X Series 2 ICP-MS system equipped with a 

Plasma Screen.  Analysis was performed using 66Zn as the analytical mass. 

Calibration was carried out using standard solutions prepared from single element 

stock standards. Periodic checks for accuracy were performed by analysis of a 

solution of the international rock standard JB1a as an unknown - this standard was 

prepared by digesting a sample in HF/HNO3 and then HNO3. Data were plotted as 

cumulative permeation vs time.  It was necessary to pool the repeat samples and so 

replicate data were not obtained.  

 

2.9. Virucidal Activity of Receptor Phase Against HSV-1 

 Here we determined whether the receptor phases retained virucidal activity 

against HSV-1 following termination of the permeation experiment, using Vero host 

cells. The method is described in detail elsewhere (Houston, 2011; Houston et al. 

submitted not yet accepted a) and briefly involved HSV-1 incubation with the test 

material for 30 min before serial dilution and plating onto 24 well-plate of confluent 

Vero cells for a 3 day incubation, at which point the plaques were counted and results 

calculated a log-reduction.  
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2.10. Western Blot Analysis of COX-2 

 Our previous work has demonstrated that constituent phytochemicals of 

topically applied PRE penetrate ex vivo skin and result in the downregulation of 

COX-2 expression (Houston et al. submitted not yet accepted b) - here we tested the 

hypothesis that these phytochemicals as permeants in the receptor phase retain this 

previously observed antiinflammatory activity. In a departure from the method 

outlined in section 2.5, full thickness, ex vivo porcine membranes were used and the 

receptor phase was HBSB to prolong viability. Following termination of the 

penetration experiment (6 h) the membranes were retrieved, cleaned and homogenised 

in RIPA buffer using a probe homogeniser. The relative levels of inflammation 

marker COX-2 was carried out by Western blotting analysis using β-actin as the 

loading control, and followed a previously reported method (Houston 2011; Abu 

Samah and Heard, 2014) 

 

2.11. Data Processing 

 Statistical tests were performed using Instat 3 for Macintosh. A one way 

analysis of variance test was applied with a confidence interval of 95%, and a p value 

of <0.05 was considered significant.  If values were found to be of significance a 

Turkey-Kramer multiple comparison test was applied. 

 

3. Results and discussion 

3.1. Permeation of Punicalagin and Zinc (II) across Epidermal Membranes  

 Figure 2 depicts the permeation profiles of punicalagin across heat-separated 

epidermis from hydrogels H1 and H2; a blank gel was run as a control. Results show 

that the permeation of punicalagin from H2 was higher than H1 due to the higher 

concentration and therefore higher chemical potential within this gel. Thus a greater 

release and permeation of punicalagin from the hydrogel matrix would be expected. 

Permeation of punicalagin from H2 was detectable within 0.5 h (1 nM cm-2). 
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However, Table 1 shows that punicalagin permeation after 6h was approximately 4x 

more from H2 compared to H1 (4.2 ± 0.15 vs 0.96 ± 0.36 nM cm-2); the same 

difference was maintained after 12h (5.4 ± 0.35 vs 1.4 ± 0.36 nM cm-2). This was 

surprising given the 2.5x difference in PRE loading between the two hydrogels. 

 Figure 3 shows the permeation of zinc across the epidermal membranes from 

hydrogels H1 and H2 and blank. It can be seen that zinc was detectable in the receptor 

phase after application of the control blank gel and was due to a leaching of zinc 

which is naturally found in the skin. Table 1 shows that zinc permeation after 6h was 

approximately 2.3x more from H2 compared to H1 (520 vs 220 ± nM cm-2); the same 

difference was maintained after 12h (630 vs 260 nM cm-2). This differential was in 

line with 2.5x difference in ZnSO4 loading between the two hydrogels.  

 Together, Figures 2 and 3 demonstrate that both punicalagin and zinc 

permeated the epidermis following the topical application of hydrogels H1 and H2. 

This is despite the fact that punicalagin is a large molecule with a MW of 1084.7, 

whereas the optimum for skin permeation is around 350, and the purported general 

impermeability of skin to small polar molecules such as Zn2+. In the formulations zinc 

was in present excess over punicalagin and this was reflected in the permeation data 

show there was a molar excess of permeated zinc/punicalagin which was greater for 

H1 (approx. x207) than H2 (approx. x120). 

 

3.2. Localisation of Punicalagin in Heat Separated Epidermis Basal Layer Region 

 Epidermal membranes were recovered at 24 h and subjected to reverse tape 

stripping, with three strips taken on each occasion. Figure 4 shows that from both 

hydrogels applied, punicalagin localised at significantly higher concentration within 

the lowest strip, i.e. the basal layer (p<0.05). The second and third tape strip revealed 

a significantly lower level of punicalagin delivery by both gels, towards the skin 

surface. The fact that localisation from hydrogels H1 and H2 were the same indicates 

in both cases the attainment of membrane saturation ie no capacity to bind further 

molecules. The effect on binding of the probable presence of other constituents within 

PRE is unknown. Overall, these data confirm that punicalagin was successfully 

delivered to the skin site where HSV-1 and -2 vesicular clusters occur. 
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3.3. Virucidal Activity of Franz Diffusion Cell Receptor Phases Against HSV-1 

 The receptor phases were recovered after 24h and used to challenge HSV-1 

infected host cells, and the HSV-1 virucidal data are shown in Figure 5. When the 

skin was dosed with blank hydrogel the receptor phase from the blank hydrogel 

showed negligible log reduction of viral load. However, the receptor phase from 

hydrogel H2 resulted in a significant 2.57 ± 0.36 log reduction of HSV-1 plaque-

forming units (pfus). This demonstrates the successful delivery of both punicalagin 

and Zn II across the heat separated epidermis in the concentration ranges of both 

compounds that provide virucidal activity (Houston et al. submitted not yet accepted 

a) 

3.4. Anti-inflammatory Activity 

 To verify that the permeation of punicalagin from hydrogel H2 retained anti-

inflammatory activity as found previously (Houston et al. submitted not yet accepted 

b), the relative levels of COX-2 were determined by Western blotting analysis of ex 

vivo skin. Hydrogel H2 and blank control were applied to ex vivo full thickness 

porcine skin within a Franz diffusion cell for 6 h. After this time SDS-PAGE and 

Western blotting were carried out for COX-2, as an inflammatory marker, using β-

Actin as ubiquitous protein loading control. Figure 6 shows the bands produced by 

Western blot analysis for COX-2 expression at ~ 72 kDa and the protein loading 

control of β-actin at ~42 kDa. Densitometric analysis of the bands for COX-2 were 

normalised using β-actin, levels of COX-2 expression in the control were arbitrarily 

assigned a value of 100%. The application of hydrogel H2 caused the statistically 

significant reduction of COX-2 expression by 67.69 ± 3.93% (p<0.01), and 

demonstrates the permeated compounds were able to modulate the arachidonic acid 

inflammation pathway by downregulating COX-2 production.  The reduction of 

COX-2 following the application of the hydrogel H2 was statistically the same as that 

observed when (1 mg mL-1) PRE was dosed – data not shown. 

3.5. Permeation of Punicalagin and Zinc II Across Buccal Membranes  

 Buccal membrane was used as a model for the presentation of HSV-1 lesions 

within mucous membranes of the buccal cavity. Figure 7 shows the permeation of 
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punicalagin from hydrogel H2 across buccal membrane compared to that across 

epidermal and vaginal membranes. Permeation of punicalagin was detectable within 

0.5 h (1 nM cm-2). After 6h the permeation of punicalagin across buccal membrane 

was approximately half that across epidermal membrane (1.95 ± 0.5 vs 4.2 ± 0.15 nM 

cm-2 respectively). After 12 h, the differential was the same (2.6 ± 0.7 vs 5.4 ± 0.35 

nM cm-2 respectively). 

Pooled skin extracts analysed by ICPMS revealed that the amount of zinc 

leached from the buccal membrane after application of blank hydrogel was much 

lower concentration in comparison to epidermal membrane (Table 1). Figure 8 shows 

the permeation of zinc across the buccal membrane from H2, after blank subtraction 

in comparison with that across epidermal and vaginal membranes. Table 1 shows that 

after 6h the permeation of zinc across buccal membrane was ~ one quarter of that 

across epidermal membrane (125 vs 520 nM cm-2). After 12 h, the differential was 

similar at 3.5x (180 vs 630 nM cm-2 respectively). The permeation of profile of zinc 

over the 24 h period is similar to that through HSE - a plateau was observed after 1 h, 

maintained up to 12 h and tailing off. 

3.6. Permeation of Punicalagin and Zinc II Across Vaginal Membranes 

 The permeation of punicalagin from hydrogel H2 across the vaginal 

membrane, along with that across epidermal and buccal membranes, is illustrated in 

Figure 7. Permeation of punicalagin was detectable within 0.5 h (0.7 nM cm-2). The 

permeation of punicalagin across vaginal membrane was lower than across buccal 

membrane, although not statistically significant at the 95% level. Table 1 shows that 

at 6 h the amounts permeated were 1.45 ± 0.25 vs 1.95 ± 0.5 nM cm-2 respectively 

(p>0.05); at 12 h the amounts permeated were 1.7 ± 0.3 vs 2.6 ± 0.7 nM cm-2 

respectively (p>0.05).  However, as with buccal membranes the permeation of 

punicalagin across vaginal membranes was statistically lower than across epidermal 

membranes 

 The permeation of zinc across the vaginal mucosal membrane from H2 after 

blank subtraction is shown in Figure 8.  The leaching of zinc from the vaginal 

membranes after application blank hydrogel was not significantly different (p>0.05) 

to that leached from the buccal membrane (not shown), but was a lot less than that 
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from the epidermal membrane. However, the permeation profile in Figure 8 reveals 

that zinc permeated to a much greater extent compared to both epidermal and buccal 

membranes. Although zinc salts have been reported to inactivate HSV-1 isolates 

(Arens and Travis, 2000) zinc salt solutions have also been reported to cause 

sloughing of sheets of vaginal epithelial cells (Bourne et al. 2005). Although this 

provides for increased permeation of biocide, it also has the potential to cause damage 

to the vaginal mucosal membrane that might increase susceptibility to secondary 

infections at a later time. 

3.7. Comparison of Reverse Tape Stripping Epidermal, Buccal and Vaginal 

Membranes after 24 h Application of H2 

 Figure 9 shows a comparison of the punicalagin recovered by reverse tape 

stripping of the epidermal, buccal and vaginal membranes. The values, 0.47 ± 0.016, 

0.45 ± 0.052 and 0.51 ± 0.048 nM cm-2 respectively, were in close agreement and 

statistically the same (p<0.05). The results indicate that punicalagin is being delivered 

similarly through all three membranes to the target site where vesicular clusters occur. 

4. Conclusions 

This work has demonstrated that a simple hydrogel based upon 2.5% HPMC, 

1.25 mg mL-1 PRE and 0.25 M ZnSO4 in pH4.5 phthalate buffer was able to topically 

deliver the major bioactive compound within PRE and Zn (II) across membranes and 

to the site specific regions of Herpes simplex vesicular clusters. This is despite the 

relatively large MW of punicalagin and small charged nature of zinc ions which 

would conventionally suggest their relatively low permeability. In doing so, the 

potentiated virucidal and anti-inflammatory activities observed previously were 

maintained. In summary, a novel therapeutic system for the topical treatment of HSV-

1 and HSV-2 lesions is proposed based on the pomegranate in combination with Zn 

(II). 
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Figure legends 
 

 

 

Figure 1 HPLC chromatogram of punicalagin showing peaks for  and  anomers in 

1:2 ratio and resulting calibration curves. 

 

 

Figure 2 Cumulative permeation of punicalagin across epidermis after application of 1 

mL hydrogels H1, H2 and blank control (mean ± SD, n= 4). 

 

Figure 3 Cumulative permeation of zinc across epidermis after of 1 mL hydrogels H1, 

H2 and blank control (mean ± SD, n= 4). 

 

Figure 4 Reverse tape stripping: punicalagin recovered after 24h by reverse tape 

stripping three times epidermal membranes (1 being lowest) dosed with formulation, 

for each pair of bars: left = H1 and right = H2 (mean ± SD, n= 4). 

 

Figure 5 Virucidal log reduction of HSV-1 after the incubation with receptor phase 

following 24 h application of H1 and H2 to epidermis, blank was negligible (mean ± 

SD, n= 4). 
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Figure 6 Modulation of COX-2 protein expression following dosing of ex vivo skin 

with receptor phase following 6h application of H2 and phthalate buffer as a control 

to ex vivo skin. Protein was extracted and 30 µg was loaded and separated through 

SDS-PAGE. The histogram represents numerical data of COX-2 normalised using β-

actin. Levels in the control were arbitrarily assigned a value of 100% (mean ± SD, n= 

4). 

 

Figure 7 Permeation profile of punicalagin from H2 and blank across the epidermal, 

buccal and vaginal membranes (mean ± SD, n= 4). 

 

Figure 8 Permeation profiles for zinc across epidermal, buccal and vaginal 

membranes after application of H2 (singlicate determination). 

 

Figure 9 Reverse tape stripping: comparison of punicalagin recovered from lowest 

reverse tape strip after 24 h application of hydrogel H2 to epidermal, buccal and 

vaginal membranes (mean ± SD, n= 4). 
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Table 1: Cumulative permeation of punicalagin (mean ± SD, n= 4) and zinc (n=1) 

from 2.5% HPMC hydrogels across epidermal, buccal and vaginal membranes. H2: 

PRE 1.25 mg mL-1, ZnSO4 0.25 M; H1 PRE 0.5 mg mL-1, ZnSO4 0.1 M; blank PRE 

0, ZnSO4 0. 

Membrane Hydrogel Punicalagin 6h 

nM cm-2 

Zn 6h 

nM cm-2 

Punicalagin 12h 

nM cm-2 

Zn 12h 

nM cm-2 

 

Epidermal 

H2 4.2 ± 0.15 520 5.4 ± 0.35 630 

H1 0.96 ± 0.36 220 1.4 ± 0.36 260 

blank - 85 - 90 

 

Buccal 

H2 1.95 ± 0.5 125 2.6 ± 0.7 180 

blank - 10 - 13 

 

Vaginal 

H2 1.45 ± 0.25 22 x 103 1.7 ± 0.3 29 x 103 

blank - 0.5 - 0.5 
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Figure 1 
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Figure 4  
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Figure 5  
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Figure 7  
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Figure 8 
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Figure 9 
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