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Abstract

Many previous studies have suggested that climate change impacts significantly1

on the hydro-climatic processes within the Ganges-Brahmaputra-Meghna (GBM)2

River Basin (RB). This study examines the observed climate characteristics3

and potential strengths and limitations of recent global high-resolution reanal-4

yses and satellite remote-sensing (SRS) products over the GBM RB for the5

most recent period (1980-2013) by (i) estimating trends and interannual vari-6

ations of precipitation and temperature and (ii) isolating precipitation varia-7

tions likely associated with El Niño Southern Oscillation (ENSO) and Indian8

Ocean Dipole (IOD). The surface temperature trends show widespread warming9

across the basin with a maximum increase of 0.6◦C/decade over western Nepal10

and southern Tibet from 1980–2013. Rainfall changes over 1980–2013 indicated11

pronounced decline over high rainfall regions of northeast India, Bhutan, Nepal,12

and Bangladesh, especially from 1998–2013. Basin-averaged trends show rainfall13

declines of up to 39 mm/decade in June-August in the Brahmaputra-Meghna14

RB from 1998–2013. Temperature variability based on Principal Component15

Analysis (PCA) indicates that the first mode is associated with sea surface16

temperature (SST) warming in the Arabic Sea and the western tropical Pacific17
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Ocean, while the second mode appears to be significantly correlated to SST18

anomalies in the western (eastern) tropical Indian (Pacific) Ocean. The results19

also indicate that ENSO and IOD events significantly influence rainfall vari-20

ability, contributing to about 10–20% (ENSO) and 8–10% (IOD) to the annual21

rainfall, mainly over the Bhutan, Nepal, Bangladesh, and northeastern India.22

The quality of reanalysis products is highly variable over the GBM RB. MERRA23

(Modern-Era Retrospective Analysis for Research and Applications) agrees well24

with observed temperature data from the Climate Research Unit (CRU TS3.22),25

while ERA-Interim appears closer to observed precipitation datasets. Climate26

Forecast System Reanalysis (CFSR) shows the least seasonal and interannual27

skills among the three products.28

Keywords: Ganges-Brahmaputra-Meghna River Basin, climate, reanalysis,

satellite remote-sensing, precipitation, temperature

1. Introduction29

Estimating long-term trends in surface air-temperature (hereinafter called30

“temperature”) and precipitation are crucial for identifying climate change. Pre-31

cipitation and temperature are two critical components of the water and energy32

cycles, and precipitation in particular, due to its high spatio-temporal variabil-33

ity, is one of the most difficult fluxes to simulate in dynamical models (Flato34

et al., 2013). So, as critical as it is in the water and energy cycles, precipitation35

is a critical metric in the quality of many existing and emerging retrospective36

analyses (reanalyses). Evaluating climate models require consistent long-term37

observational records. Hydrological or land surface models, in particular, require38

high quality of climate forcing data (e.g., precipitation) to simulate other com-39

ponents of the water balance (e.g., soil moisture, (sub-) surface runoff) terms.40

Satellite remote-sensing (SRS)-based estimates and reanalyses offer an alter-41

native approach to in-situ observations where gauge-based networks are sparse42

and their analyses are often delayed or not shared across a common hydrological43

basin (Duncan and Biggs, 2012; Peña-Arancibia et al., 2013).44
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Reanalysis outputs are generated by forecast models with fluxes constrained45

by available gauge- and SRS-based observations, and thus are sensitive to both46

the observing systems and model physics. The release of several global reanal-47

yses over the past two decades (e.g., Kalnay et al., 1996; Onogi et al., 2005;48

Uppala et al., 2005; Onogi et al., 2007; Saha et al., 2010; Dee et al., 2011; Rie-49

necker et al., 2011), provided several decades of various hydro-climatic data that50

are highly valuable for understanding the global/regional climate change pro-51

cess. The most widely used reanalysis products include those developed at the52

National Centers for Environmental Prediction (NCEP)/National Center for At-53

mospheric Research (NCAR) (see, Kalnay et al., 1996; Kanamitsu et al., 2002),54

and at the European Center for Medium-Range Weather Forecasts (ECMWF)55

(see, Uppala et al., 2005; Dee et al., 2011). Japan Meteorological Agency (JMA)56

and the Central Research Institute of Electric Power Industry (CRIEPI) have57

released two versions of reanalyses (JRA-25 and JRA-55) with the goal of pro-58

viding consistent and high-quality reanalysis specifically over Asia (Onogi et al.,59

2005, 2007; Kobayashi et al., 2015). More recently, the National Aeronautic and60

Space Administration (NASA) has produced a global high-resolution reanalysis61

called the Modern-Era Retrospective Analysis for Research and Applications62

(MERRA, Rienecker et al., 2011) covering the satellite-era, while NCEP pro-63

duced another high-resolution reanalysis called the Climate Forecast System64

Reanalysis (CFSR, Saha et al., 2010).65

While reanalysis products are considered to be near-perfect representations66

of the atmospheric state, they suffer from many deficiencies at various time-67

and spatial-scales. Considering that many global high-resolution reanalyses68

have become available during the past few years (e.g., Saha et al., 2010; Dee69

et al., 2011; Rienecker et al., 2011), it is vital to evaluate their skills in terms of70

how they represent key climate features over different parts of the world. The71

spatio-temporal heterogeneity of orography and climate (particularly, precipita-72

tion) of the Ganges-Brahmaputra-Meghna (GBM) River Basin (RB) in South73

Asia presents one of the most challenging tests to any observing and modelling74

systems. The Indian summer monsoon, which dominates the annual rainfall75
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contribution (by 60–90%) is a result of complex interplay between the atmo-76

sphere, land, and the Indian ocean processes that takes place at various spatial-77

and temporal-scales. The pressure gradients that is formed between the south78

and north Indian ocean leads to a cross-equatorial flow in the lower troposphere,79

which carries enormous moisture towards the Indian sub-continent. These mon-80

soon rainfall pattern is further modulated by steep mountains of the Himalayas81

(Barros et al., 2004) along various stages of its flow in the GBM RB, resulting82

in numerous high rainfall spots and dry regions.83

Only few studies have assessed the quality of rainfall and temperature vari-84

ability of reanalysis products over the GBM River Basin, with all of them fo-85

cussing over India and during the monsoon season (Misra et al., 2012; Kishore86

et al., 2016). Kishore et al. (2016) indicated that ECMWF reanalysis (ERA-87

Interim, Dee et al., 2011) was more closer to observed values than MERRA,88

CFSR, and JRA-25 during the monsoon season between 1989 and 2007. In an-89

other comparison study, Misra et al. (2012) indicated that there are significant90

differences in the climatology of evaporation in the three reanalyses: CFSR,91

MERRA, and NCEP II, which will have huge implications on precipitation and92

temperature across South Asia. Particularly, the study found significantly less93

continental evaporation in CFSR compared to MERRA and NCEP II, which94

may be attributed to how each reanalyses treat the atmospheric-land inter-95

actions. These results suggest that reanalysis products are still evolving and96

requires continuous validation over the Indian monsoon region.97

This study examines the long-term trends and interannual variability of rain-98

fall and temperature over the GBM RB, using various existing gridded gauge-99

based datasets, and global high-resolution reanalyses over the period 1980–2013.100

The primary objective here is to assess the quality of three global high-resolution101

reanalyses: (i) ERA-Interim [0.79◦×0.79◦], (ii) MERRA [0.50◦×0.67◦], (iii)102

CFSR [0.50◦×0.50◦], in estimating the long-term trends and the interannual103

variability of rainfall and temperature, which are important metrics for identi-104

fying climate change. The study is complemented by two SRS-based precipita-105

tion estimates: (i) Tropical Rainfall Measuring Mission (TRMM) Multisatellite106
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Precipitation Analysis (TMPA, 1998-2014) (Huffman et al., 2007) and (ii) Cli-107

mate Hazards Group InfraRed Precipitation (CHIRP, 1982-2014) (Funk et al.,108

2012), both of which have a relatively long period of precipitation records. Many109

studies have already examined the seasonal skills of various existing SRS-based110

precipitation estimates across different parts of the GBM RB (e.g., Andermann111

et al., 2011; Duncan and Biggs, 2012; Prakash et al., 2014; Khandu et al., 2016a),112

but have not addressed their long-term skills. Gauge-based datasets used here113

include: Asian Precipitation Highly Resolved Observational Data Integration114

Towards Evaluation of Water Resources (APHRODITE V1101, Yatagai et al.,115

2012), Climate Research Unit (CRU TS3.22, Harris et al., 2013), and Global116

Precipitation Climatology Centre (GPCC version 6, Schneider et al., 2014).117

Section 2 describes the climatological characteristics of the GBM RB. In118

Section 3, a brief review of the available rainfall and temperature datasets is119

presented as well as the statistical methods used to analayse and compare the120

various datasets. It also discusses the accuracy of several near-global high-121

resolution SRS-based precipitation products in the region and their contribution122

to the understanding of basin rainfall hydrology. The results are presented and123

discussed in Section 4 and Section 5 concludes the study.124

2. The Ganges-Brahmaputra-Meghna (GBM) River Basin (RB)125

The GBM RB in South Asia is a combination of three large river basins126

with a drainage area of about 1.7 million km2 (FAO , 2011). Although the127

three river basins have distinct physiological and climatological characteris-128

tics even, it is considered to be one river basin that is shared by India (64%),129

China (18%), Nepal (9%), Bangladesh (7%) and Bhutan (3%) (Fig. 1). The130

three river systems join upstream of the GBM delta in Bangladesh to form the131

third largest freshwater outlet (with a annual discharge of ∼1,350 km3) to the132

world’s oceans, being exceeded only by the Amazon and the Congo river sys-133

tems (Chowdhury and Ward , 2004; Steckler et al., 2010). The headwaters of134

Ganges (Brahmaputra) rivers originate from the Himalayan mountains of Gan-135
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gotori glaciers (northern slope of the Himalayas in Tibet) while the Meghna136

river, originates in the mountains of north-eastern India. The Ganges is joined137

by several smaller rivers (or tributaries) from across India and Nepal form-138

ing one of the largest alluvial plains in northern India. A portion of Ganges139

river (∼50%) is diverted into the Hooghly river at Farakka Barrage before140

reaching Bangladesh as a part of a treaty (called Farakka Treaty) signed be-141

tween India and Bangladesh in 1996 to share the precious Ganges river (see,142

http://www.thewaterpage.com/farakka_water_treaty.htm).143

[FIGURE 1 AROUND HERE.]144

The Brahmaputra river, also known as Yarlung Tsangpo (in Tibet), flows145

eastwards before turning southwards into Arunachal Pradesh (India). It then146

turns westwards, which is joined by many tributaries from northeast India and147

Bhutan, before entering Bangladesh (also called Jamuna). The Meghna river148

originates from the hilly mountains of Manipur (India), flowing southwest to149

join the Ganges and Brahmaputra rivers that together flow into the Bay of150

Bengal and a small part of West Bengal (India) forming the greatest deltaic151

plain in the world at the confluence.152

The GBM RB features distinct climatic characteristics due to the Indian153

monsoon variability and unique topographic regime that includes the Himalayan154

mountains and great plains of Ganges, Terai, parts of northeast India, and155

Bangladesh. These irregular topographic variations significantly impact on the156

spatial precipitation distribution through alteration of monsoonal flow, result-157

ing in pronounced orographic rainfall along the Southern Foothills of Nepal,158

Bhutan and northeast India and considerably lower rainfall on the lee sides of159

the mountains and the western Ganges RB. The Ganges RB is characterized by160

significant snowfall and precipitation in the northwest of its upper region and161

very high precipitation in the areas downstream regions (such as the delta re-162

gions of Bangladesh). The downstreams areas of Brahmaputra RB are directly163

located on the monsoon flow and hence, some of the areas receive significantly164

higher rainfall than the Ganges, while the world’s highest precipitation is re-165
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ceived at Cherapunji (Meghalaya, India) located in the Meghna RB.166

The winter precipitation over the western Himalayas is mainly driven by167

the mid-latitude sub-tropical jets known as the Western Disturbances, which is168

critical to the formation of snow/glaciers (Dimri et al., 2015). While the winter169

precipitation is well below 50 mm (as shown in Fig. 2a), the Indian monsoon170

accounts for 60-90% of the annual rainfall total in the GBM RB recording over171

1200 mm/month from June to September over Meghalaya (India) and southwest172

of Bhutan (Fig. 2b). The vector plots of winds (at 850 hPa pressure level) in173

Fig. 2 indicates the climate dynamics of the region e.g., winter (monsoon)174

precipitation is mainly forced by the westerlies of the Arabic Sea (southerlies175

of the Indian monsoon). The spatial temperature distribution is a function of176

altitude that decreases from as high as 40s (◦C) during summer in the plains177

(e.g., Bangladesh) to as low as -30s (◦C) in the Himalayas during winter. In178

this study, the Brahmaputra and Meghna RBs are treated as one river basin179

wherever a basin-average is calculated. The reason for merging them is that180

even though they have distinct climatological behaviours, they are affected by181

the monsoon at the same time.182

[FIGURE 2 AROUND HERE.]183

3. Data and methods184

3.1. Available observational data185

Accurate and reliable estimation of precipitation requires dense gauge or186

radar networks that are not easily achievable in rugged Himalayan mountain187

regions (e.g., Bhutan and Nepal). Thus, gridded precipitation products based188

on in-situ observations may not accurately estimate rainfall where these gauge189

networks are sparse (e.g., Duncan and Biggs, 2012; Khandu et al., 2016a). Figure190

3 shows the spatial distribution of rain gauges over GBM RB that were used to191

derive (a) APHRODITE V1101 (hereinafter as APHRODITE), (b) CRU version192

TS3.22 (hereinafter as CRU TS3.22), and (c) GPCC version 6 (hereinafter as193

GPCCv6). It is evident from Fig. 3 that gauge density is sparse across the GBM194
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RB, especially in the Tibetan region, western Ganges, Bhutan, Bangladesh, and195

northeast India. CRU TS3.22 has the least amount of stations (Fig. 3b).196

[FIGURE 3 AROUND HERE.]197

The accuracy of APHRODITE product was quantitatively evaluated across198

various parts of the GBM RB including Bhutan, Nepal, and India by various199

studies (e..g., Rajeevan and Bhate, 2008; Andermann et al., 2011; Xue et al.,200

2013; Prakash et al., 2015; Khandu et al., 2016a). Andermann et al. (2011)201

reported that APHRODITE shows the smallest error and high r-square values202

at both daily and monthly scales when compared to daily precipitation rates203

over Nepal. Comparison over India by Rajeevan and Bhate (2008) and Prakash204

et al. (2015) indicated that APHRODITE is well correlated (>0.6) with high-205

quality Indian Meteorological Department (IMD) daily precipitation (1.0◦ ×206

1.0◦ grid) data. Over Bhutan, Khandu et al. (2016a) found that APHRODITE207

was comparable to independently gridded precipitation estimates. All of these208

studies demonstrate that APHRODITE is a reliable product at least for the209

validation period. Prakash et al. (2015) evaluated several land-based precipita-210

tion data including APHRODITE, CRU TS3.22, and GPCCv6 over India using211

high-density IMD rainfall data and indicated that APHRODITE and GPCCv6212

were highly correlated with IMD data. The study also reported that GPCCv6213

estimates were found to be quantitatively closer to IMD data during the mon-214

soon, while APHRODITE precipitation estimates are found to be lower than215

GPCCv6 and IMD datasets (see also, Yatagai et al., 2012).216

Many global/near-global high-resolution SRS-based precipitation products217

have been released over the past decade with daily or finer temporal resolu-218

tions. Table 1 shows the details of various SRS-based precipitation products219

that have been applied across the GBM RB. The quality of these products220

have been investigated in a number of studies (e.g., Yin et al., 2008; Ander-221

mann et al., 2011; Duncan and Biggs, 2012; Shrestha et al., 2012; Xue et al.,222

2013; Prakash et al., 2014; Khandu et al., 2016a). These studies suggest that223

SRS-based estimates generally underestimate monsoon rainfall. Their limited224
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skills in detecting rainfall over rain-shadow regions and generally overestimating225

daily rainfall amounts over high-altitude regions is also reported in e.g., Ander-226

mann et al. (2011); Duncan and Biggs (2012); Prakash et al. (2014). Based on227

these findings, APHRODITE (1979–2007), GPCC (1979–2010) and TMPAv7228

(1998–2013) precipitation estimates (both daily and monthly) are used to ex-229

amine the long-term trends and variability of precipitation over the GBM RB230

and for evaluating various reanalysis products over the region. As a compromise231

between spatial resolution and estimation of long-term trends among different232

precipitation products, TMPAv7 product were linearly interpolated (using in-233

verse distance weighting function) to a 0.5◦ × 0.5◦ grid resolution.234

[TABLE 1 AROUND HERE.]235

Currently, there exists several gridded temperature datasets derived from236

surface observations across the globe. A list of high-resolution gridded tem-237

perature datasets derived from in-situ observations are shown in Table 2. The238

daily mean (Tave) gridded temperature data made available by APHRODITE239

is the only high-resolution (0.25◦ × 0.25◦) gauge-based product over Asia and240

covers the period from 1961–2007. A monthly time-series of gridded tempera-241

ture data compiled from a recent version of the Global Historical Climatology242

Network (GHCN2) and several other sources has been released by the Univer-243

sity of Delaware (UDEL, Legates and Willmott , 1990; Willmott and Robeson,244

1995). The dataset (currently version 3.01, UDELv3.01) has been recently used245

by Chowdary et al. (2014) to study the impacts of large-scale atmospheric-246

ocean interactions on surface temperature over India. CRU regularly updates247

its global-land surface temperature data (see, Harris et al., 2013) and is the248

mostly widely used temperature dataset globally.249

[TABLE 2 AROUND HERE.]250

3.2. Reanalysis products251

Reanalyses have made significant contributions to the global/regional hy-252

drological and climatic studies. With the release of many new high-resolution253
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reanalyses in the past decade (e.g., Kalnay et al., 1996; Onogi et al., 2007; Saha254

et al., 2010; Dee et al., 2011), their application into regional- and basin-scale255

studies have become increasingly valuable. Yet certain elements of the ana-256

lyzed fields (e.g, precipitation) remain highly uncertain at global and regional257

scale both in terms of trends and interannual variabilities. The reliability of258

reanalysis fields can considerably vary in space and time due to lack of ade-259

quate observational data, instrumental changes, changing mix of observations,260

biases in observations, etc., which can introduce spurious variability and trends261

into reanalysis fields. Since reanalysis products are increasing used as regional262

climate forcing data and hydrological model inputs, it is vital to estimate their263

accuracies. A reanalysis system consists of (i) a “data assimilation system” that264

combines available observations from various data sources and (ii) a “forecast265

model” consisting of a atmospheric model at its core, which is often coupled to266

a land surface model and/or ocean model (e.g., Kalnay et al., 1996; Dee et al.,267

2011; Onogi et al., 2007).268

Many reanalysis products have been assessed using gauge-bsed observations269

over various parts of the GBM RB (e.g., Peña-Arancibia et al., 2013; Shah and270

Mishra, 2014; Forsythe et al., 2014; Kishore et al., 2016). Shah and Mishra271

(2014) evaluated MERRA, ERA-Interim, and CFSR with observed data from272

IMD, APHRODITE and TMPAv7 and found a precipitation (temperature) bias273

of 10% (-0.39◦C), 34% (-0.21◦C), and 11% (-0.44◦C), respectively, during the274

monsoon over the Indian subcontinent. These products also failed to reproduce275

the observed trends in the monsoon season precipitation and temperature over276

India. Kishore et al. (2016) reported that precipitation fields of ERA-Interim,277

MERRA, CFSR, and JRA-25 generally showed very good correlation with IMD278

data and captured the annual cycle reasonably well. However, these studies279

are carried out at continental scales and there is a urgent need to address their280

potential applications in hydro-climatic studies over the GBM RB. Three global281

atmospheric reanalyses namely, (a) ERA-Interim/Land (Balsamo et al., 2015),282

hereinafter referred to as ERA-Interim only, (b) MERRA Land (Rienecker et al.,283

2011), hereinafter referred to as MERRA only, and (c) CFSR (Saha et al.,284
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2010) were considered here mainly because of their improvement in simulating285

the land-surface state (see, Table 3 for details). These land-based reanalyses286

has been particularly designed to accurately simulate the land-surface state287

(moisture content/temperature) of soil, vegetation, and snow/ice to understand288

the impacts of climate change in recent years (Rienecker et al., 2011; Balsamo289

et al., 2015)290

[TABLE 3 AROUND HERE.]291

3.3. Sea surface temperature data292

In order to determine the mechanisms for seasonal and interannual vari-293

abilities of rainfall and temperature, their time-series were correlated with the294

observed sea surface temperatures (SSTs) provided by the Met Office Hadley295

Centre, UK. The Hadley Centre Global Sea Ice and Sea Surface Temperature296

(HadISST, Rayner et al., 2003) is a combination of monthly globally fields of297

SST and sea ice concentration covering the period 1871-present. The global-298

complete monthly HadISST data, which is provided at a 1◦×1◦ grid, is developed299

using a complex process involving a reduced space optimal interpolation tech-300

nique that is applied to SST data from the Marine Data Bank (mainly obtained301

through ship tracks) and International Comprehensive Ocean-Atmospheric Data302

Set (ICOADS) through to 1981. From here, these datasets are complemented303

by a blend of in-situ and adjusted SRS-derived SSTs. Where the SSTs are304

covered with ice, a different analysis is performed by combining sea ice data305

from historical charts from shipping, expeditions and other activities, passive306

microwave SRS retrievals, and NCEP operational ice analyses. Here, we use307

HadISST data from 1980–2013 covering 50◦N-50◦S.308

In addition, two ocean-atmospheric indices were used covering the same309

period, namely: (a) Niño3.4 index (Trenberth, 1990) and (b) Dipole Mode Index310

(DMI, Saji et al., 1999) to examine the impacts of natural climate variabilities311

such as El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD),312

respectively. It should be noted that ENSO and IOD variability may also be313
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influenced by long-term changes due to e.g., climate change. ENSO is commonly314

measured by sea surface temperature (SST) anomalies in the equatorial Pacific315

ocean, typically over (5◦N–5◦S, 120◦–170◦W), which is also known as Niño3.4316

region (see, Trenberth, 1990). ENSO events are said to occur if SST anomalies317

exceed 4◦C for 6 months or more. Warm and cold ENSO phases are referred to as318

El Niño and La Niña events, respectively, which are represented by anomalous319

warming of the central and eastern tropical Pacific (warm phase), and vice320

versa. ENSO events are marked by significant variations in surface and upper-321

air conditions such as prolonged droughts and heavy rainfall events at the surface322

and anomalous warming or cooling of the upper-tropospheric lower-stratospheric323

(UTLS) region. Niño3.4 index was obtained from the National Oceanic and324

Atmospheric Administration (NOAA, see, http://www.esrl.noaa.gov/psd/325

data/climateindices/list/).326

IOD is measured by the difference of SST anomalies between the western327

(50◦E–70◦E and 10◦S–10◦N) and eastern (90◦E–110◦E and 10◦S–0◦S) equato-328

rial Indian ocean, which is also referred to as DMI. Positive IOD events are329

identified by a cooler than normal water in the tropical eastern Indian Ocean330

and warmer than normal water in the tropical western Indian Ocean. These pos-331

itive IOD events are associated with a shift of active convection from eastern332

Indian Ocean to the west leading to potentially higher than normal rainfall over333

parts of the Indian subcontinent. DMI was obtained from the Japan Agency334

for Marine-Earth Science and Technology (see, http://www.jamstec.go.jp/335

frsgc/research/d1/iod/).336

3.4. Statistical analyses337

Monthly rainfall and temperature anomalies are calculated relative to the338

data period from e.g., 1980–2010 and long-term trends are estimated and tested339

using both parametric (e.g., Helsel and Hirsch, 2002, pp 221–264) and non-340

parametric (e.g. Mann, 1945; Kendall , 1962; Sen, 1968; Hirsch and Slack , 1984)341

methods. Parametric tests are considered to be more powerful but require data342

to be independent and normally distributed, which is rarely the case for climate343
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datasets. Non-parametric methods on the other hand, do not require the as-344

sumption of normality and therefore, are considered to be more robust. Thus,345

both parametric and non-parametric tests are applied here to robustly deter-346

mine the trend estimates of precipitation and temperature. The two statistical347

methods are described in Appendix A1 and Appendix A2.348

Further, both weather and climate are a result of complex non-linear inter-349

action between various components of the Earth system and contain significant350

temporal and spatial correlations, which makes the physical interpretation dif-351

ficult. Principal Component Analysis (PCA, Preisendorfer , 1988) is one of the352

widely used data exploratory tools used in atmospheric/oceanic science that353

allows for a space-time display of spatio-temporal data such as precipitation354

and temperature, in a very few modes. PCA is multipurpose and have been355

used in various geophysical and climatic applications for dimensionality reduc-356

tion (or removing irrelevant small-scale signals/noise), pattern extraction, and357

comparison of different datasets (see, Hannachi et al., 2007; Forootan, 2014,358

for a detailed review of its mathematical derivation and applications). PCA is359

applied here to isolate the likely influences of ENSO and IOD on the surface360

temperature changes in the GBM RB. A mathematical representation of the361

PCA method is briefly described in Appendix A3.362

4. Results363

4.1. Trend and amplitudes of rainfall and temperature364

The mean annual amplitudes of monthly rainfall from gauge-based GPCCv6,365

SRS-based TMPAv7 and CHIRP, and three reanalysis products (i.e., ERA-366

Interim, MERRA, and CFSR) are shown in Fig. 4. Precipitation over the GBM367

RB shows significant spatial variability across all months as a result of the Indian368

monsoon and the orographic effects of the Himalayan mountains. The largest369

precipitation amplitudes are seen over the Brahmaputra-Meghna RB, while the370

Ganges RB show relatively low rainfall amplitudes except over few regions such371

as central Nepal (Fig. 4a–c). These annual amplitude maps closely relate the372
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average monsoon rainfall from June-September (JJAS) as indicated in Fig. 5.373

Note that the spatial patterns of JJAS rainfall is more localised, especially in374

the GPCCv7 data (Fig. 5a) indicating that SRS-based products depict a larger375

footprint (Fig. 5b–c). There are three regions: (a) Meghalaya, (b) southwest376

Bhutan, and (c) northern Arunuchal Pradesh that receive the highest monthly377

rainfall amount (∼1200 mm during the JJAS) and hence shows the largest378

amplitude in all the observed datasets (Fig. 4a–c). Both TMPAv7 and CHIRP379

(1998–2013) show similar magnitudes of annual maps as GPCCv6 (Fig. 4b–c)380

but substantially underestimate monsoon rainfall in the high rainfall regions381

(Fig. 5b–c), albeit for different periods.382

[FIGURE 4 AROUND HERE.]383

[FIGURE 5 AROUND HERE.]384

However, reanalysis products (specifically ERA-Interim and MERRA) sig-385

nificantly underestimate the annual amplitude (Fig. 4d–e) and the JJAS rainfall386

amount (Fig. 5d–e). MERRA, in particular failed to generate rainfall structures387

over Nepal and along the coastal areas of the Bay of Bengal (Fig. 4e and 5e),388

while both ERA-Interim and MERRA can barely represent the monsoon rainfall389

(Fig. 5d–e). CFSR, on the other hand, highly overestimates the annual ampli-390

tude and also misplaces the high rainfall region of southwest of Bhutan towards391

the east (Fig. 4f and 5f). While a strong agreement between TMPAv7 and392

GPCCv6 is expected, the differences between GPCCv6 and reanalysis products393

(especially, ERA-Interim and MERRA) is striking, given that both products394

are adjusted with observed rainfall datasets. For example, MERRA underesti-395

mates annual amplitude by 21–37% over the GBM RB (Table 4). CHIRP and396

APHRODITE estimates are also considerably lower than the other observed397

products over the basin (Table 4), which has been noted by Prakash et al.398

(2015).399

[TABLE 4 AROUND HERE.]400
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Figure 6 shows the spatial variability of surface temperature over the GBM401

RB (over the period 1980–2010) based on observed data (CRU TS3.22 and402

UDEL) and three reanalysis products (ERA-Interim, MERRA, and CFSR). The403

annual amplitude of temperature increases with altitude with both CRU TS3.22404

and UDEL gauge datasets (Fig. 6a–b) showing considerably high (>8◦C) varia-405

tions in the Tibetan region (located entirely in the Brahmaputra RB) and parts406

of the western Ganges RB (Indian region). The temperature varies between 5◦C407

and 8◦C in western Nepal, northern Bhutan, and Arunuchal Pradesh (in India)408

while the lowest annual variations (∼5◦C) are seen in Bangladesh and eastern409

India. The annual amplitude of temperature shown by the reanalysis products410

shows very similar spatial structures but their magnitudes varies considerably411

across the basin. While ERA-Interim tend to underestimate annual amplitudes412

(Fig. 6c), MERRA and CFSR products (Fig. 6d–e) overestimate annual am-413

plitudes (by around 3–4◦C) with respect to CRU TS3.22 dataset, especially in414

the Ganges RB and in the Tibetan region. The basin averaged annual ampli-415

tudes (of temperature) are provided in Table 4, which indicates that MERRA416

depicts the largest annual variation followed by CFSR in the GBM RB. The417

maximum surface temperature over Ganges and Brahmaputra-Meghna basins418

occur during May and July, respectively, while their minimum temperatures419

occur in January.420

[FIGURE 6 AROUND HERE.]421

Changes in temperature and precipitation are estimated both in observa-422

tions and reanalysis products for the period 1980-2010 using both parametric423

and non-parametric methods described in Section 3.4. However, precipitation424

trends are also calculated for the various time periods between 1980 and 2013425

to shows the precipitation changes based on APHRODITE (1980-2007) and426

SRS-based (TMPAv7 and CHIRP) precipitation products. Rainfall trends be-427

tween 1980 and 2007 are found to be negative (up to 10-15 mm/decade) mainly428

over the Ganges RB, consistently shown by all the observed products (i.e.,429

APHRODITE, CRU TS3.22, GPCCv6, results not shown). Figure 7 shows the430
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precipitation changes over the GBM RB based on GPCCv6 (1980–2010), TM-431

PAv7 and CHIRP (1998–2013), and the three reanalyses (1980–2010). While432

the changes in GPCCv6 are similar to those between 1980 and 2010 (Fig. 7a),433

significant increasing (decreasing) trends are seen from 1998-2013 over the west-434

ern Ganges (Brahmaputra-Meghna) RBs showing large decreases (of about 20-435

30 mm/decade) over Bangladesh, northeast India, western Nepal, and south-436

western Bhutan (Fig. 7b–c). Between 1998 and 2013, both TMPAv7 and437

CHIRP indicate strong decline of rainfall over the years in the Brahmaputra-438

Meghna RB (39 mm/dec in TMPAv6 during June-August). However, the in-439

creasing trend (12 mm/decade by TMPAv7) found over the Ganges RB is not440

replicated in CHIRP (Table 5) as it shows few areas with increasing trends in441

the western Ganges RB (Fig. 7c).442

[FIGURE 7 AROUND HERE.]443

Among the reanalyses, ERA-Interim tends to capture the observed trends444

but their magnitudes are significantly larger over western Nepal and eastern445

India (Fig. 7d) compared to GPCCv6 (Fig. 7a), while MERRA and CFSR446

show completely opposite signs of change over the Brahmaputra-Meghna RB447

(Fig. 7e–f). The magnitude of seasonal rainfall changes given in Table 5 shows448

decreasing rainfall in all the seasons over both the river basins especially in449

winter by most of the datasets including reanalysis products. Consistent with450

the spatial patterns (Fig. 7), MERRA and CFSR show anomalously large in-451

creasing trends during summer in the Brahmaputra-Meghna RB from 1980-2010452

(Table 5). Precipitation changes in reanalyses depend on model parameteriza-453

tions (e.g., convection scheme, moisture transport) and quality of assimilated454

observations and is also one of the most difficult physical processes to model.455

Instrumental changes and changing mix of observations might affect the pre-456

cipitation fields by introducing spurious jumps. Another important factor to457

be considered is the models ability to simulate the weakening Indian monsoon458

circulation (Ramanathan et al., 2005; Chung and Ramanathan, 2006) and the459

affects of ENSO and IOD on the rainfall trends. The reliability of reanalyses to460
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some extent, are seasonally dependent as shown in Table 5.461

[TABLE 5 AROUND HERE.]462

Observed changes in temperature based on CRU TS3.22 and UDEL (Fig.463

8a–b) show significant warming over majority of the GBM basin with intense464

warming (up to 0.6◦C/decade) over northern Brahmaputra RB (southern Ti-465

bet). The warming patterns are very similar between CRU TS3.22 and UDEL466

but the later did not show any significant warming over Bangladesh. The warm-467

ing trends in the northern parts of GBM RB are well captured by the reanalysis468

products, even though their magnitudes differ considerably over the region (Fig.469

8c–e). In reanalyses, temperature is still closely related to the model parame-470

terizations and model uncertainty may play some role in the representation of471

climate variability in reanalyses. Representation of temperature in reanalyses472

generally appears more robust than precipitation, likely due to direct assim-473

ilation of near surface temperature data from both radiosonde and satellite474

sources. However, ERA-Interim barely shows any significant warming over the475

region (Fig. 8c) despite their use of both near surface atmospheric temperature476

and water vapour to constrain soil moisture (Dee et al., 2011).477

MERRA and CFSR (Fig. 8d–e) indicate few areas of negative spurious478

trends in the northern Brahmaputra (western Ganges) RB. CFSR also uses pre-479

cipitation observations over land to better constrain their soil moisture (Saha480

et al., 2010). The excessive warming seen in CFSR over the Himalayan re-481

gion (Fig. 8e) correlates well with the precipitation increases indicating that482

warming in this region may be caused by other changes such as limited water483

storage capacity in the coupled land model. The basin-averaged trends are es-484

timated for all the four seasons and are given in Table 6. Consistent with the485

spatial patterns observed in Fig. 8, the basin-averaged seasonal trends based486

on CRU TS3.22 and UDEL also indicates significant warming in both the river487

basins during the spring, autumn, and winter. CRU TS3.22 also showed signifi-488

cant warming trends (0.21◦C/dec) in the Brahmaputra-Meghna RB during sum-489

mer. ERA-Interim was not able to reproduce these seasonal temperature trends,490
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but MERRA and CFSR agreed well with observed data in the Brahmaputra-491

Meghna RB (Table 6). Note that all the reanalysis products indicate negative492

(although not significant) temperature trends in summer over the Ganges RB.493

[FIGURE 8 AROUND HERE.]494

[TABLE 6 AROUND HERE.]495

4.2. Interannual variability of precipitation and temperature496

The interannual variability of temperature and precipitation over the GBM497

basin was examined by applying PCA on the deseasonalized (annual and semi-498

annual components removed) and detrended (linear trend removed) anomalies of499

various products for the period 1980 to 2010. PCA was applied to the monthly500

anomalies (annual signals removed) of CRU TS3.22 to derive the EOFs (spatial501

patterns) and PCs (temporal patterns), while the rest of the datasets were pro-502

jected onto these EOFs to produce their temporal patterns. Only the first two503

leading modes are considered here due to their distinguished variance contribu-504

tion. Figure 9 shows the PCA modes of CRU TS3.22 temperature data together505

with the projected temporal components of UDEL and the three reanalysis tem-506

perature fields. The first orthogonal mode explains about 43% of the variance507

indicating strong positive anomalies over the western GBM RB and northern508

Brahmaputra basin (Fig. 9a). The second EOF (with a variance of 13%, Fig.509

9b) shows positive (negative) anomalies over Ganges (Brahmaputra-Meghna)510

RB and strong positive (negative) anomalies over central India (western Tibet).511

[FIGURE 9 AROUND HERE.]512

The first PC (Fig. 9c) shows considerable interannual variability, indicat-513

ing the extreme warm (e.g., 1988, 1999) and cold (e.g., 1997–1998, 2008–2009)514

episodes between 1998 and 2010. The patterns are quite similar in the second515

PC (Fig. 9d) but tend to differ during the periods 1982–1984 and 1996–2000.516

UDEL agrees very well with CRU TS3.22 with a correlation of 0.95 and 0.90517

for PC 1 and PC 2, respectively (Table 7). The temporal patterns are captured518
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very well by the reanalysis products (Fig. 9c–d), especially with ERA-Interim519

and MERRA showing high correlations with CRU TS3.22 (Table 7). The corre-520

lations between CRU TS.22 and MERRA for PC 2 is found to be higher (0.79)521

than those with ERA-Interim (0.68) whereas CFSR agrees only moderately for522

both the PCs.523

[TABLE 7 AROUND HERE.]524

In order to examine the mechanisms for these interannual variations, the525

two PCs (Fig. 9c–d) are correlated with the SST anomalies (50◦N–50◦S) for526

the period 1980 to 2010. It must be mentioned here that several studies have527

attempted to understand the role of SST variations on temperature, but were528

only focussed on the Indian sub-continent (Hingane et al., 1985; Kothawale529

et al., 2010; Chowdary et al., 2014). Figure 10 shows the correlation between530

the two PCs (Fig. 9c-d) and the SST anomalies (50◦N–50◦S). The two PCs are531

correlated with each grid element of the SST dataset to generate a temporal532

correlation as shown in Fig. 10. EOF 1 appears to be highly correlated with533

SST anomalies over the Arabian Sea, moderately correlated with SST anoma-534

lies over Bay of Bengal and the western tropical Pacific Ocean, and negatively535

correlated with SST over the western Pacific Ocean (Fig. 10a and c). This sug-536

gests that warm temperatures in the western Ganges basin are likely driven by537

local (i.e., Arabic Sea), and remote forcings such as weak La Niña-type events538

arising from warmer SSTs in the western tropical Pacific Ocean. EOF 2, on539

the other hand, is found to be highly correlated with SST anomalies in the540

western tropical Indian Ocean and the western tropical Pacific Ocean. The cor-541

relation patterns over the tropical Indian Ocean are similar to that of the IOD542

(Saji et al., 1999) and those over western tropical Pacific Ocean resemble the543

El Niño pattern indicating that both ENSO and IOD play a significant role in544

surface temperature variability across the GBM RB. Their effects are positive545

(negative) in the Ganges (Brahmaputra-Meghna) RB.546

These correlation patterns are very weak in the reanalysis products with only547

MERRA (and to some extent ERA-Interim) being able to capture the spatial548

19



patterns (Fig. 10e–h). Even though PC 1 of MERRA shows positive correlation549

over western tropical Pacific Ocean (Fig. 10e), their magnitudes are relatively550

closer to CRU TS3.22 than ERA-Interim (Fig. 10g–h) and CFSR (Fig. 10i–j).551

To quantify the relation between surface temperature and the remote SSTs, PC552

2 (Fig. 9c) is correlated with Niño3.4 and DMI indices (Table 8). The corre-553

lation between PC 2 and Niño3.4 (DMI) is found to be 0.55 (0.23) based on554

observed CRU TS3.22 data and statistically significant at 5% significance level.555

Correlation with Niño3.4 index is higher for MERRA, followed by ERA-Interim556

and CFSR, which is found to be consistent with the spatial correlation patterns557

shown in Fig. 10. However, it is observed that CFSR temperature product558

is better correlated with DMI than those of MERRA and ERA-Interim. This559

results shown here are quite interesting because ERA-Interim, albeit having560

consistent temporal anomalies with respect to CRU TS3.22 indicates lower cor-561

relations with SSTs. This may lead to biases in seasonal precipitation amounts562

during major ENSO and IOD episodes.563

[TABLE 8 AROUND HERE.]564

To quantify the impact of ENSO and IOD on the rainfall variations over565

the GBM RB, the normalized ENSO/IOD indices (Niño3.4 and DMI) are fitted566

to the rainfall anomalies (annual signals removed) of APHRODITE (1998–2007),567

TMPAv7 (1998–2013), GPCCv6 (1980–2010), and the reanalysis products (1980–2010).568

The significance of the regression estimates are tested using a student’s t-test569

at 95% confidence level based on the correlations between Niño3.4/DMI indices570

and rainfall anomalies at each grid. Correlations between Niño3.4 (and DMI)571

and rainfall anomalies are found to be significant over few regions with values572

of up to 0.4 for Niño3.4 (and 0.3 for DMI). Figure 11 shows the rainfall contri-573

bution of ENSO and IOD on the total annual rainfall. In general, the positive574

ENSO mode (or El Niño) is associated with significant reduction of rainfall (∼15575

mm/yr) mainly over the western Ganges RB (including southern Nepal, Uttar576

Pradesh, Bihar, Meghalaya in India and southwest of Bhutan).577

20



While the ENSO impacts are mainly concentrated over western Nepal and578

its surroundings from 1980 to 2007 (Fig. 11a), the period of 1998–2013 saw579

widespread reduction of rainfall in the Ganges and northern Brahmaputra RBs580

(Fig. 11b). However, a slight increase (∼5–10 mm/yr) in rainfall can be seen581

over Bangladesh during the same period. The IOD mode (Fig. 11c–d), on the582

other hand is associated with increase (decrease) in rainfall in the southeastern583

parts of Ganges RB (Bangladesh and Meghalaya in India). During the same584

period, widespread decreases in rainfall are observed over Bangladesh, which585

are likely associated with frequent positive IOD events during the period (Fig.586

11d). Overall, the influence of ENSO is found to be more dominant (∼10–20%587

of total rainfall) than the IOD phenomenon (∼8–10%). These estimates were588

obtained by dividing the ENSO and IOD amplitudes by root-mean-squares of589

the total rainfall (see e.g., Forootan et al., 2015).590

[FIGURE 11 AROUND HERE.]591

The influence of ENSO and IOD on precipitation between 1980 and 2010592

shown by GPCCv6 (Fig. 12a and e) are found to be consistent with those593

indicated in APHRODITE from 1980–2007 (Fig. 11a and c), but with a slightly594

higher precipitation contribution in GPCCv6. This could be due to the more595

frequent events of La Niña (e.g., in 2007–2008) and El Niño (e.g., in 2006 and596

2009–2010) events towards the end of 2010 (see, Khandu et al., 2016b). Among597

the reanalysis products, ERA-Interim shows the closest agreement with gauge-598

based precipitation product, GPCCv6 (Fig. 12b and f) whereas MERRA (Fig.599

12c and g) and CFSR (Fig. 12d and h) either underestimate or overestimate600

rainfall contribution due to ENSO and IOD events. However, it should be601

noted that the spatial patterns of ENSO and IOD contributions are captured602

reasonably well by all the products.603

[FIGURE 12 AROUND HERE.]604
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5. Conclusion605

This study examined the seasonal and interannual variability of rainfall and606

temperature over the GBM RB using available observational gauge-, SRS-based,607

and global high-resolution reanalysis products covering the period 1980–2013.608

The reanalysis systems in particular, provide long time-series of climate datasets609

that are important for understanding various aspects of global/regional cli-610

mate variability and change. They also act as reference climate forcing data611

for regional climate and hydrological modelling. The trend results indicate612

widespread warming across the GBM RB during the last 30 years. Warming613

appears to be more intense over the northern parts of the basin (western Nepal614

and Tibetan region) than the southern (e.g., Bangladesh) and western parts of615

the GBM RB with a maximum increase in temperature of 0.6◦C/decade over616

the northern Brahmaputra RB (southern Tibet). Rainfall changes over various617

periods between 1980 and 2013 indicate significant decline over the GBM RB. In618

particular, SRS-based precipitation products such as TMPAv7 and CHIRP re-619

veal pronounced monsoon rainfall decline over the last 15 years (from 1998–2013)620

in the high rainfall regions of northeast India, southwest Bhutan, Nepal, and621

Bangladesh (39 mm/decade during June-August). However, the monsoon rain-622

fall appears to be increasing in the Ganges RB between 1998 and 2013 at a rate623

of 12 mm/decade, but are found to be insignificant.624

In terms of the interannual variations, temperature variations can be sum-625

marized in the first two orthogonal modes of PCA, which accounts for ∼56%626

of the total variability. The first EOF shows basin-wide positive anomalies627

with increasing magnitudes towards the west and north and are associated with628

warming SSTS over the Arabic Sea and the western tropical Pacific Ocean. The629

second EOF indicates a dipole-type pattern with positive (negative) anoma-630

lies over Ganges (Brahmaputra-Meghna) RBs and are significantly correlated631

to SST anomalies over western tropical Indian Ocean and eastern tropical Pa-632

cific Ocean. Thus, it is observed that surface temperature variations over the633

basin are both influenced by local (e.g., Arabic Sea) and remote (e.g., ENSO634
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and IOD) SST variations. Similarly, ENSO and IOD events are found to have635

significant influences on the seasonal rainfall across the GBM RB. The contribu-636

tion of ENSO and IOD to the total annual rainfall is about 10–20% and 8–10%,637

respectively, affecting rainfalls mainly over southwest Bhutan, Nepal, northern638

Bangladesh, and northern parts of India (e.g., Bihar, Uttar Bangladesh, West639

Bengal, and Meghalaya).640

The quality of the reanalysis products are found to be relatively poor over641

the GBM RB compared to the observed gauge-based datasets. It should be642

mentioned here that no single reanalysis is superior to others for both rainfall643

and temperature in reproducing the changes and variability. Among the re-644

analysis products examined in this study, MERRA temperature data is found645

to agree well with CRU TS3.22, while ERA-Interim is closer to GPCCv6 pre-646

cipitation data in terms of trends and interannual variability. MERRA and647

ERA-Interim products are able to barely capture the spatial precipitation vari-648

ability across the GBM RB during the monsoon, while CFSR tends to shift649

the high rainfall regions e.g., southwest of Bhutan, to the east. The annual650

amplitudes of MERRA precipitation fields is found to be significantly lower (by651

about 21–37%) compared to the GPCCv6 data, while CFSR overestimated it652

by about 9%. Despite showing considerable biases in precipitation and temper-653

ature, these products are able to represent the spatial patterns of ENSO and654

IOD contributions on precipitation.655
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Appendix A1. Trend estimation668

For illustration purposes, let us consider a matrix Xn×m, containing the669

time-series of monthly rainfall (or temperature) over the GBM RB, after re-670

moving their long-term temporal mean, where n describes the time (in months)671

and m represents the spatial locations (as stations or grids).672

(i) Multiple linear regression (MLR): The MLR model can be formulated673

to characterize trends and seasonality in the dataset:674

X = x(j) = β0 + β1(j).t+ β2(j).cos(2πt) + β3(j).sin(2πt)

+β4(j).cos(4πt) + β5(j).sin(4πt) + ε(t), (1)

where β0-β5 are the coefficients of MLR for j = 1, ...,m, and ε are the675

residuals. The coefficients β1...5(j) are estimated by the least squares ad-676

justment method and represents the terms linear trends (β1), mean an-677

nual variability (β2, β3), and semi-annual variability (β4, β5). The inter-678

annual variability (X̂) is usually related to large-scale ocean-atmospheric679

phenomenon such as ENSO and IOD modes, among others, and can be680

formulated as:681

X̂ = x̂(j)−
[
β̂1(j).t+ β̂2(j).cos(2πt) + β̂3(j).sin(2πt)

+β̂4(j).cos(4πt) + β̂5(j).sin(4πt)
]
, (2)

(ii) Sen’s slope estimation: The least squares estimation of regression co-682

efficient β̂1 is vulnerable to gross errors and sensitive to non-normality of683

the probability distribution. Sen (1968)’s slope estimator is a common ap-684

proach for assessing trends in hydrological time-series (e.g., precipitation)685
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as it is less sensitive to outliers. In this method, the slopes (Ti) of all data686

pairs in time are first calculated by687

Ti =
xk − xl
k − l

for i = 1, 2, ....n, (3)

where xk and xl are data values at time k and l (k > l), respectively.688

The median values of these n values of Ti is the Sen’s slope (β̂), which is689

calculated as:690

β̂ =

Tn+1
2

n is odd

1
2

(
Tn

2
+ Tn+2

2

)
n is even

(4)

where β can be both positive (increasing trend) or negative (decreasing691

trend).692

Appendix A2. Significance testing693

The significance of linear trends estimated above should be tested by deter-694

mining whether the derived trends in rainfall and temperature are significantly695

different from zero. Typically, the null hypothesis is H0: β1 = 0 (no trend),696

while the alternative hypothesis, H1: β1 6= 0 (trend). Two approaches were697

used in this study and are briefly described below:698

(i) Mann-Kendall Test: The Mann-Kendall test (Mann, 1945; Kendall ,699

1962) is a non-parametric approach, which searches for a trend in time-700

series without specifying whether the trend is linear or non-linear. The701

test statistics (S) is defined as:702

S =

n−1∑
i=1

n∑
j=i+1

sgn(xj − xi), (1)

where n is the number of data points. Assuming (xj − xi)=θ, the value of703

sgn(θ) is calculated as:704

sgn(θ) =


1 if θ > 0

0 if θ = 0

−1 if θ < 0

(2)
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S represents the sum of positive and negative changes for all the data pairs705

and for samples (n > 10), the test is conducted using a normal distribution706

with mean, variance, and test value of:707

E[S] = 0

Var[S] =
n(n− 1)(2n+ 5)−

∑n
k=1 tk(tk − 1)(2tk + 5)

18
, (3)

708

Z =



S−1√
Var(S)

if S > 0

0 if S = 0

S+1√
Var(S)

if S < 0

(4)

If |Z| > zα/2 (where α/2 indicates the quantile of the normal distribution),709

the null hypothesis (no trend, denoted by H0) is rejected at α significance710

level (at 5%) in a two sided test. For seasonal and annual time-series,711

it is also important to take into account the autocorrelation structure (or712

serial correlation) in the data. Autocorrelation increases the probability of713

detecting significant trends. Hamed and Rao (1998) suggested a modified714

Mann-Kendall approach by considering the autocorrelation between the715

ranks of the data. This is done by modifying the variance, Here, the716

modified Mann-Kendall test was used and the null hypothesis was tested717

at 95% confidence level.718

(ii) Student t-test : Students t-test is one of the widely used method for719

determining whether the trend is statistically significant. For example,720

consider a time-series of rainfall anomalies (x(t)) with an estimated linear721

trend of β̂1, it’s residuals (ε(t)) can be derived as difference of observed722

rainfall anomalies (x(t)) and those estimated from e.g., MLR model (x̂(t))723

over t = 1, 2, ..., n months:724

ε(t) = x(t)− x̂(t), (5)
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and the standard error (Sβ) of β̂1 is defined as725

Sβ =
Sε√∑n

t=1(t− t̄)2
, (6)

where S2
ε , variance of the residuals (ε) is given by726

S2
ε =

1

n− 2

n∑
t=1

ε(t)
2
, (7)

In order to examine whether the trend in x(t) is significantly different from727

0, a test value is computed as a ratio between the estimated trend (β̂1)728

and its standard error (Sβ):729

tβ =
β̂1
Sβ

(8)

assuming that tβ follows a t-distribution. The null hypothesis (no trend730

or H0 is rejected if |t| < tcrit , where tcrit is the point on the student’s731

t-distribution with n − 2 degrees of freedom. It should be noted that732

while the t-test is simple and powerful to normally distributed data (e.g.,733

temperature), it is less powerful against non-normally distributed data734

(e.g., monthly rainfall).735

Appendix A3. Principal Component Analysis (PCA)736

The central idea of the PCA analysis is to find a set of orthogonal spatial pat-737

terns (Empirical Orthogonal Functions or EOFs) along with a set of associated738

uncorrelated time-series or principal components (PCs) that captures most of739

the observed variance (expressed in %) from the available spatio-temporal data740

such as precipitation and temperature. In summary, the EOF decomposition741

can be written as X(n,m)
∼= P(n,k)E

T
(m,k) where X(n,m) is the time (n)-space742

(m) data (e.g., precipitation), E(m,k) contains the EOFs with k number of re-743

tained modes, and P(n,k) are the PCs obtained by projecting the original data744

(X(n,m)) on the orthogonal base-functions E(m,k), i.e., P(n,k) = X(n,m)E(m,k).745

This method can be applied at various stages of the analysis in order to find746

any meaningful links to various dynamics of the climate system using a subset747

of PCs.748
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Table 1: Details of rain gauge products and near-global high-resolution SRS-based precipita-

tion products that have been regularly applied over various parts of the GBM RB.

Product Period Spatial Resl. Temporal Resl. Coverage References

Rain gauge products

APHRODITE 1951-2007 0.25◦ × 0.25◦ Daily Asia Yatagai et al. (2012)

IMD 1971-2005 1.0◦ × 1.0◦ Daily India Rajeevan and Bhate (2009)

GPCCv6 1901-2010 0.50◦ × 0.50◦ Monthly Global-land Schneider et al. (2014)

CRU TS3.23 1901-2014 0.50◦ × 0.50◦ Monthly Global-land Harris et al. (2013)

CPC 1948-present 0.25◦ × 0.25◦ Daily Global-land Xie et al. (2007)

Satellite-based precipitation estimates

CHIRP 1981-present 0.05◦ × 0.05◦ Weekly 50S-50N Funk et al. (2014)

CMORPH 2003-present 0.25◦ × 0.25◦ 3-hourly 50S-50N Joyce et al. (2004)

CPC-RFE 2001-present 0.10◦ × 0.10◦ Daily South Asia Xie et al. (2002)

GSMaP MVK 2002-present 0.10◦ × 0.10◦ 1-hourly 60S-60N Ushio et al. (2009)

NRL-Blend 2002-present 0.10◦ × 0.10◦ 3-hourly 60S-60N Turk and Miller (2005)

PERSIANN 2000-present 0.25◦ × 0.25◦ 6-hourly 50S-50N Sorooshian et al. (2000)

TRMM 3B42v6 1998-2010 0.25◦ × 0.25◦ 3-hourly 50S-50N Huffman et al. (2007)

TRMM 3B42v7 1998-2014 0.25◦ x× 0.25◦ 3-hourly 50S-50N Huffman and Bolvin (2013)

Table 2: List of gridded temperature datasets used in this study. All datasets consist of land

surface air temperatures derived from ground-based stations across the region.

Product Period Spatial Resl. Temporal Resol. Coverage References

APHRODITE 1951-2007 0.25◦ × 0.25◦ Daily Asia Yasutomi et al. (2011)

CRU 1901-2013 0.50◦ × 0.50◦ Monthly Global-land Harris et al. (2013)

UDel 1900-2012 0.50◦ × 0.50◦ Monthly Global-land Willmott and Robeson (1995)
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Table 3: Details of the three reanalyses used in this study. All datasets consist of terrestrial

surface air temperatures.

Product Period Spatial Resl. Temporal Resl. Coverage References

ERA-Interim Land 1979-2010 0.79◦ × 0.79◦ 6-hourly Global Dee et al. (2011)

MERRA Land 1980-2010 0.67◦ × 0.50◦ 6-hourly Global Rienecker et al. (2011)

CFSR 1979-present 0.50◦ × 0.50◦ 6-hourly Global Saha et al. (2010)

Table 4: Annual amplitudes of various rainfall and temperature products over the Ganges and

Brahmaputra-Meghna-RBs over the period 1980-2013.

Data—
Rainfall [mm/yr] Temperature [◦C]

Ganges Brahmaputra-Meghna Ganges Brahmaputra-Meghna

APHRODITE [1980-2007] 260.3 263.9 - -

GPCCv6 [1980-2007] 311.7 (310.0) 351.4 (346.3) - -

CRU TS3.22 [1980-2007] 284.1 (280.4) 334.5 (330.0) 6.9 7.0

TMPAv7 [1998-2013] 320.7 330 - -

CHIRP [1998-2013] 342.4 308.8 - -

ERA-Interim [1980-2010] 308.8 329.2 5.6 5.3

MERRA [1980-2010] 244.2 219.4 9.0 8.7

CFSR [1980-2010] 345.4 379.5 8.2 8.4

Table 5: Linear trends in rainfall (mm/decade) derived from observations and reanalysis

products. Values that are significant at 95% confidence level are highlighted in bold.

Rainfall Products—
Ganges [mm/dec] Brahmaputra-Meghna [mm/dec]

Winter Spring Summer Autumn Winter Spring Summer Autumn

GPCCv6 [1980-2010] -0.7 -12 0.2 -2.9 -0.8 0.2 -4.5 -1.9

TRMMv7 [1998-2013] 2.1 -6.1 12.4 -6.6 -0.1 -4.6 -39.0 -3.3

CHIRP [1998-2013] 1.1 -2.0 -7.0 -10.3 0.0 -3.9 -20.2 -9.2

ERA-Interim [1980-2010] -1.5 -9.5 -5.8 -3.6 -6.8 -12.6 -6.9 -2.8

MERRA [1980-2010] 1.1 9.0 3.0 -2.0 5.9 17.4 3.0 -1.1

CFSR [1980-2010] -0.8 18.1 1.9 -2.1 0.9 19.8 5.0 -3.2
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Table 6: Linear trends in temperature (◦C/decade) derived from observations and reanalysis

products. The values that are significant at 95% confidence level are shown in bold.

CRU TS3.22 UDEL ERA-Interim MERRA CFSR

Ganges

Spring 0.38 0.36 0.08 0.16 0.52

Summer 0.1 0.03 -0.22 -0.4 -0.17

Autumn 0.41 0.27 0.08 0.21 0.31

Winter 0.41 0.26 0.32 0.31 0.42

Brahmaputra-Meghna

Spring 0.42 0.39 0.15 0.26 0.43

Summer 0.21 0.09 -0.06 0.1 0.02

Autumn 0.46 0.28 0.06 0.28 0.33

Winter 0.64 0.48 0.35 0.43 0.8

Table 7: Correlation between CRU TS3.22 and other temperature products over the GBM

RB. Correlations were computed between the PCs of first two leading modes of CRU TS3.22

and other products.

Temperature products PC 1 PC 2

UDEL 0.95 0.90

ERA-Interim 0.89 0.68

MERRA 0.79 0.77

CFSR 0.41 0.48

Table 8: Correlation between SST anomalies and the first two PCs of various temperature

products for the period 1981 to 2010. The correlation values that are signficant at 95%

confidence level are highlighted bold.

Temperature Products Nino3.4 vs PC 2 DMI vs PC 2

CRU TS3.22 0.53 (at 3 month lag) 0.24 (at 3 month lag)

UDEL 0.56 (at 3 month lag) 0.22 (at 3 month lag)

ERA-Interim 0.35 (at 3 month lag) 0.05 (at 3 month lag)

MERRA 0.46 (at 3 month lag) 0.13 (at 3 month lag)

CFSR 0.27 (at 3 month lag) 0.30 (at 3 month lag)
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Figure 1: Overview of the Ganges-Brahmaputra-Meghna RB in South Asia. Brahmaputra

and Meghna RBs are merged together, which is represented by the thick black polygon, while

the Ganges River Basin is shown in thick blue polygons. This representation will be used for

the remainder of this study. Source: Khandu et al. (2016b).
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Figure 2: a) winter (DJF) and (b) monsoon (JJAS) rainfall climatology (1980–2010) based

on GPCCv6 precipitation analysis over the GBM RB. The temporal mean wind fields at 850

hPa level obtained from ERA-Interim was also plotted to show the directions of winds during

the two seasons.

Longitude [ ° ]

L
a
ti
tu

d
e
 [
 °

 ]

a) APHRODITE V1101

 

 

75.0E 80.0E 85.0E 90.0E 95.0E
15N

20N

25N

30N

Longitude [ ° ]

b) CRU TS3.22

 

 

75.0E 80.0E 85.0E 90.0E 95.0E
Longitude [ ° ]

c) GPCC full Data Analsis v6

 

 

75.0E 80.0E 85.0E 90.0E 95.0E

N
u
m

b
e
r 

o
f 
S

ta
ti
o
n
s

1

2

3

4

5

6

7

8

Figure 3: Spatial distribution of rain gauge stations across the GBM RB and its neighbouring

regions that were used in (a) APHRODITE, (b) CRU TS3.22, and (c) GPCCv6. Modified

from Khandu et al. (2016a).
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Figure 4: Spatial variations of mean annual amplitudes of monthly rainfall over the GBM

RB based on a) GPCCv6 (1980–2010), (b) TMPAv7 (1998–2013, c) CHIRP (1998–2013), d)

ERA-Interim (1980–2010), e) MERRA (1980–2010), f) CFSR (1980–2010)..
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Figure 5: Spatial distribution of monsoon (JJAS) rainfall over the GBM RB a) GPCCv6

(1980–2010), (b) TMPAv7 (1998–2013, c) CHIRP (1998–2013), d) ERA-Interim (1980–2010),

e) MERRA (1980–2010), f) CFSR (1980–2010).
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Figure 6: Spatial patterns of annual amplitudes of temperature over the GBM RB based

on a) CRU TS3.22, b) UDEL, c) ERA-Interim, d) MERRA, and e) CFSR for the period

1980–2010.
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Figure 7: Precipitation changes over the GBM RB based on a) GPCCv6 (1980–2010),

(b) TMPAv7 (1998–2013, c) CHIRP (1998–2013), d) ERA-Interim (1980–2010), e) MERRA

(1980–2010), f) CFSR (1980–2010). Trend values that are not significant at 95% confidence

level are masked out.
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Figure 8: Spatial variation of temperature trends based on a) CRU TS3.22, b) UDEL, c)

ERA-Interim, d) MERRA, and e) CFSR for the period 1980–2013 in the GBM RB. Trend

values that are not significant at 95% confidence level are not shown.
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Figure 9: Spatial patterns or EOFs (a & b) and temporal components or PCs (c & d) based

on first two leading modes of PCA analysis on monthly temperature anomaly of CRU TS3.22

over the period 1980–2013. PCs of UDEL, ERA-Interim, MERRA, and CFSR indicated in c

& d are derived by projecting their respective anomalies onto the EOFs of CRU TS3.22.
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Figure 10: Correlation between the temporal components (PC 1 and PC2) and monthly SST

data of HadSST over the period 1980–2013.
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Figure 11: Regression of Niño3.4 index and DMI on precipitation anomalies of APHRODITE

(1980-2007) and TMPAv7 (1998-2013). Values that are not significant at 95% confidence level

based on student’s t-test are not shown.

15N

20N

25N

30N

a)

GPCCv6

b)

ERA−Interim

c)

MERRA CFSR

 

 

d)

E
N

S
O

 R
a
in

fa
ll 

[m
m

/y
r]

−15

−10

−5

0

5

10

15

75E 85E 95E
15N

20N

25N

30N

d)

75E 85E 95E

f)

75E 85E 95E

g)

 

 

h)

75E 85E 95E

IO
D

 R
a
in

fa
ll 

[m
m

/y
r]

−15

−10

−5

0

5

10

15

Figure 12: Regression Niño3.4 index and DMI on the precipitation anomalies of GPCCv6

and reanalysis products for the period 1980-2010. Precipitation contributions that are not

significant at 95% confidence level based on student’s t-test are not shown.
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