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Abstract 

Potassium graphite reduction of the half-sandwich Ni(II) ring-expanded 

diamino/diamidocarbene complexes CpNi(RE-NHC)Br gave the Ni(I) derivatives 

CpNi(RE-NHC) (RE-NHC = 6-Mes (1), 7-Mes (2), 6-MesDAC (3)) in yields of 40-50%. 

The electronic structures of paramagnetic 1-3 were investigated by CW X-/Q-band EPR 

and Q-band 1H ENDOR spectroscopy. Whilst small variations in the g values were 

observed between the diaminocarbene complexes 1 and 2, pronounced changes in the g 

values were detected between the almost isostructural 1 and diamidocarbene species 3. 

These results highlight the sensitivity of the EPR g tensor to changes in the electronic 

structure of the Ni(I) centers generated by incorporation of heteroatom substituents onto 

the backbone ring positions. Variable temperature EPR analysis also revealed the 

presence of a second Ni(I) site in 3. The experimental g values for these two Ni(I) sites 

detected by EPR in frozen solutions of 3 are consistent with resolution on the EPR 

timescale of the disordered components evident in the X-ray crystallographically 

determined structure and the corresponding DFT calculated g tensor. Q-band 1H ENDOR 

measurements revealed a small amount of unpaired electron spin density on the Cp rings, 

consistent with the calculated SOMO of the complexes 1-3. The magnitude of the 1H A 

values for 3 were also notably larger compared to 1 and 2, again highlighting the 

influence of the diamidocarbene on the electronic properties of 3.    
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Introduction 

The chemistry of Ni(I) has undergone a significant resurgence in recent years. 

While clearly established as an oxidation state of importance in bio-inorganic 

chemistry,1-12 the role of Ni(I) in homogeneous catalytic cycles has remained less clear 

cut.13,14 This has now started to change thanks to the increased number of Ni(I) species 

that have been prepared and characterized15-53 and, as a result, investigated in relation to 

catalytic,23-29,43-45,54-61 as well as stoichiometric, transformations.18,19,30-42 A significant 

portion of the very latest work has employed N-heterocyclic carbene (NHC) ligands in 

efforts to prepare highly reactive two- and three-coordinate Ni(I) species, a number of 

which are shown in Scheme 1. Thus, use of the N-aryl NHCs IMes (1,3-bis(2,4,6-

trimethylphenyl)imidazol-2-ylidene) and IPr (1,3-bis(2,6-diisopropylphenyl)imidazol-2-

ylidene) has allowed formation of three-coordinate bis-NHC halide complexes (A) with 

applications in catalytic C-C bond formation.43-45 In pioneering studies, the Hillhouse 

group showed that IPr was sufficiently bulky to stabilize even two-coordinate mono-

carbene Ni(I) complexes bearing amido, aryl and, remarkably, even alkyl ancillary 

ligands (B/C).46-50 Very recently, the groups of Wolf51,52 and Hazari53 independently 

prepared a range of CpNi(NHC) (Cp = C5H5, C5Me5 (Cp*), C5(C6H4-4-Et)5)) complexes 

(D) and indenyl (Ind) analogues, again employing IPr and IMes (as well as the saturated 

derivative SIPr), via reduction of either the half-sandwich precursors CpNi(NHC)Cl or 

treatment of the dimer [Ni(NHC)(-Cl)]2 with NaCp or LiInd. As an alternative to the 

use of bulky 5-membered ring NHCs, Whittlesey’s group have employed ring-expanded 

NHCs (RE-NHCs), a generic name for carbene ligands based on ring sizes of 6-8,62-69 for 

the synthesis of a series of Ni(RE-NHC)(PPh3)Br derivatives.70-72 In the case of the 6-
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membered N-mesityl (6-Mes) derivative E, treatment with additional 6-Mes led to 

formation of the highly unusual two-coordinate Ni(I) salt, [Ni(6-Mes)2]Br (F).73 

 

  

 

Scheme 1. Selected examples of mononuclear nickel(I) NHC complexes. A: Ar = 2,6-

iPr2C6H3 (Dipp), X = Cl; Ar = 2,4,6-Me3C6H2 (Mes) X = Cl, Br, I; B: R1 = R2 = SiMe3; 

R1 = H, R2 = Dipp, 2,6-MesC6H3 (Dmp), 2,6-DippC6H3; C: R3 = CH(SiMe3)2, Dmp; D: 

Ar = Dipp (D1), Mes (D2), R4 = H; Ar = Dipp, R4 = Me (D3), R4 = C6H4-4-Et, Ar = 

Dipp (D4).     

 

An attractive feature of RE-NHCs is that they are open to electronic manipulation 

through alterations at the backbone ring positions.74-80 One particular approach is to 

incorporate heteroatom substituents as has been used in the design of diamidocarbenes 

(DACs), which contain C=O groups  to the N atoms.81-83 While 6-Mes and the 
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diamidocarbene analogue 6-MesDAC are essentially isostructural, the electronic 

properties of the latter are altered significantly, with the carbene exhibiting enhanced -

acceptor capabilities.84-87 

Herein, we compare and contrast the impact of the ring-expanded 

diaminocarbenes 6-Mes and 7-Mes with that of 6-MesDAC on the structural and 

electronic properties of CpNi(NHC) complexes using X-ray crystallography coupled with 

theory (TD-DFT). Further insights into the structure and unpaired spin density 

distributions in these paramagnetic complexes have been obtained using continuous wave 

(CW) electron paramagnetic resonance (EPR) and electron nuclear double resonance 

(ENDOR) spectroscopy. 

 

Experimental 

 All manipulations were performed under an atmosphere of dry argon using 

standard Schlenk line or glovebox techniques and employed dried and degassed solvents. 

NMR spectra were recorded on Bruker Avance 500 and 400 spectrometers at 25 C and 

internally referenced to residual solvent resonances. UV/Vis spectra were recorded on a 

Varian Cary 50 spectrophotometer. Elemental analyses were determined by Elemental 

Microanalysis Ltd, Okehampton, Devon, UK. 6-Mes,62 7-Mes,62 6-MesDAC88 and 

CpNi(PPh3)Br89 were prepared according to literature procedures.  

CpNi(6-Mes)Br (1Br). A benzene (3 mL) solution of 6-Mes (333 mg, 

1.04 mmol, 1.05 eq) was added to a benzene (3 mL) solution of CpNi(PPh3)Br (489 mg, 

0.990 mmol) and the mixture stirred at room temperature for 2 h. The solvent was 

removed in vacuum and the residue was washed with hexane (3 x 10 mL) and extracted 
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with toluene (20 mL). After filtration, the solution was concentrated to ca. 5 mL. A 

purple microcrystalline powder of 1Br formed after adding hexane (15 mL) to the 

solution. The crystals were isolated and dried in vacuo. Yield 356 mg (69%). Single 

crystals suitable for X-ray diffraction were formed by diffusion of hexane into a 

concentrated toluene solution of the compound. 1H NMR (400 MHz, C6D6): δ 6.99 (s, 

2H, m-CH), 6.81 (s, 2H, m-CH), 4.56 (s, 5H, Cp), 2.79 (s, 6H, o-CH), 2.72 (m, 2H, 

NCH2CH2), 2.61 (m, 2H, NCH2CH2), 2.19 (s, 6H, p-CH3), 1.91 (s, 6H, o-CH3), 1.64 (m, 

1H, NCH2CH2), 1.14 (dt, 3JHH = 4.3 Hz, 1JHH = 13.3 Hz, 1H, NCH2CH2). 
13C{1H} NMR 

(100 MHz, C6D6): δ 203.0 (s, NCN), 145.2 (s, i-C), 138.1 (s, o-C), 137.6 (s, o-C), 135.0 

(s, p-C), 131.1 (s, m-CH), 128.7 (s, m-CH), 93.8 (s, Cp), 47.0 (s, NCH2CH2), 21.1 (s, o-

CH3), 21.1 (s, p-CH3), 21.0 (s, NCH2CH2), 18.3 (s, o-CH3). Anal. Calcd. (%) for 

C27H33BrN2Ni∙0.25C7H8 (547.21): C 63.11, H 6.45, N 5.12. Found C 63.16, H 6.37, N 

5.12; 

CpNi(6-Mes) (1). KC8 (97.4 mg, 0.720 mmol) was added in small portions at 238 

K to a toluene (12 mL) solution of 1Br (343 g, 0.655 mmol). The reaction mixture was 

warmed to room temperature and stirred for 28 h before being filtered. The filtrate was 

concentrated to ca. 5 mL and then stored at 243 K to yield X-ray quality, yellow crystals 

of 1. Yield 127 mg (44%). 1H NMR (500 MHz, C6D6): δ 10.8 (br s), 9.3 (br s), 7.5 (br s), 

-14.7 (br s), -47.7 (br s). µeff (C6D6) = 1.8(1) µB. UV/Vis (Et2O, λmax /nm, (εmax 

/L·mol−1·cm−1)): 342 (10600), 368 (11000), 418 (9700). Anal. Calcd. (%) for C27H33N2Ni 

(444.27): C 73.00, H 7.49, N 6.31. Found C 72.57, H 7.18, N 6.26. 

CpNi(7-Mes)Br (2Br). A toluene (20 mL) solution of 7-Mes (537 mg, 

1.60 mmol) was added dropwise at 193 K to a toluene (30 mL) solution of CpNi(PPh3)Br 
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(761 mg, 1.54 mmol) and the mixture stirred at room temperature for 1.5 h. The solvent 

was removed in vacuum and the residue washed with hexane (3 x 20 mL). After 

extraction with toluene (40 mL), the filtrate was concentrated to ca. 15 mL. Violet 

crystals formed upon cooling to 257 K. The crystals were washed with pentane (10 mL) 

and dried under vacuum. Yield 420 mg (51%). Single crystals suitable for X-ray 

diffraction were isolated from toluene/hexane. 1H NMR (400 MHz, C6D6): δ 7.01 (s, 2H, 

m-CH), 6.81 (s, 2H, m-CH), 4.52 (s, 5H, Cp), 3.46 (m, 2H, NCH2CH2), 2.96 (m, 2H, 

NCH2CH2), 2.91 (s, 6H, o-CH3), 2.19 (s, 6H, p-CH3), 1.94 (s, 6H, o-CH3), 1.88 (m, 2H, 

NCH2CH2), 1.15 (m, 2H, NCH2CH2). 
13C{1H} NMR (100 MHz, C6D6): δ 215.7 (s, 

NCN), 147.1 (s, i-C), 138.2 (s, o-C), 137.3 (s, o-C), 135.0 (s, p-C), 131.3 (s, m-CH), 

128.9 (s, m-CH), 94.0 (s, Cp), 54.8 (s, NCH2CH2), 24.9 (s, NCH2CH2), 21.9 (s, o-CH3), 

21.0 (s, p-CH3), 19.1 (s, o-MesCH3). Anal. Calcd (%) for C28H35BrN2Ni (538.20): C 

62.49, H 6.56, N 5.21. Found C 63.24, H 6.40, N 5.25. 

 CpNi(7-Mes) (2). As for 1 but using KC8 (113 mg, 0.836 mmol) and a toluene 

(15 mL) solution of 2Br (409 mg, 0.760 mmol) with stirring for 18 h. After filtration, the 

filtrate was concentrated to ca. 1 mL and layered with hexane (1.5 mL) to afford yellow, 

X-ray quality crystals of 2 upon cooling to 238 K. Yield 156 mg (46%). 1H NMR 

(500 MHz, C6D6): δ 15.1 (br s), 12.0 (br s), 11.3 (br s), 4.9 (br s), -7.5 (br s), -52.4 (br s). 

µeff (C6D6) = 1.9(1) µB. UV/Vis (Et2O, λmax /nm, (εmax /L·mol−1·cm−1)): 377 (10100), 446 

(7100). Anal. Calcd for C28H35N2Ni (458.30): C 73.38, H 7.70, N 6.11; Found C 72.61, H 

7.31, N 5.80. 

CpNi(6-MesDAC)Br (3Br). A benzene (30 mL) solution of 6-MesDAC (990 mg, 

2.63 mmol) and CpNi(PPh3)Br (1.22 g, 2.48 mmol) was stirred at room temperature for 2 
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h before being reduced to dryness. The residue was washed with hexane (3 x 20 mL) and 

extracted into toluene (60 mL). After filtration, the filtrate was concentrated to ca. 30 mL 

and cooled to 243 K to yield dark brown microcrystals. Yield 913 mg (59%). Single 

crystals suitable for X-ray diffraction formed upon diffusion of hexane into a 

concentrated toluene solution of 3Br. 1H NMR (400 MHz, C6D6): δ 6.92  (s, 2H, m-CH), 

6.70 (s, 2H, m-CH), 4.53 (s, 5H, Cp), 2.76 (s, 6H, o-CH3), 2.12 (s, 6H, p-CH3), 1.76 (s, 

6H, o-CH3), 1.60 (s, 3H, C(CH3)2), 1.41 (s, 3H, C(CH3)2). 
13C{1H} NMR (100 MHz, 

C6D6): δ 237.9 (s, NCN), 168.7 (s, CO), 139.4 (s, i-C), 139.2 (s, p-C), 138.3 (s, o-C), 

135.7 (s, o-C), 131.1 (s, m-CH), 129.1 (s, m-CH), 95.8 (s, Cp), 51.4 (s, C(CH3)2), 28.5 (s, 

C(CH3)2), 21.0 (s, p-CH3), 20.9 (s, o-CH3), 18.9 (s, C(CH3)2), 18.8 (s, o-CH3). Anal. 

Calcd for C29H33BrN2NiO2∙0.2(C7H8) (598.62): C 61.00, H 5.83, N 4.68; Found C 61.08, 

H 5.65, N 4.12. 

CpNi(6-MesDAC) (3). As for 1, but using KC8 (47.2 mg, 0.349 mmol), a toluene 

(5 mL) solution of 3Br (199 g, 0.317 mmol) and stirring at room temperature for 47 h. 

Dark green crystals of 3 formed after concentrating the filtrate to 3 mL and cooling to 

243 K. Yield 73 mg (46%). X-ray quality crystals were obtained by cooling a 

concentrated toluene/n-hexane solution of the complex to 238 K. 1H NMR (500 MHz, 

C6D6): δ 15.5 (br s), 12.0 (br s), 1.3 (br s). µeff (C6D6) = 1.9(1) µB. UV/Vis (Et2O, λmax 

/nm, (εmax /L·mol−1·cm−1)): 313 (10300), 442 (31400), 592 (9300). Anal. Calcd for 

C29H33N2NiO2 (500.29): C 69.62, H 6.65, N 5.60. Found: C 69.74, H 6.52, N 5.60; 

 X-ray crystallography. Data for 1-3, as well as 1Br-3Br (ESI), were collected 

using an Agilent SuperNova diffractometer and Cu-K radiation at 150 K (Table 1). 

Convergence was relatively straightforward throughout and only points of note are 
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mentioned hereafter. The nickel center and cyclopentadienyl ring in 3 were seen to be 

disordered over 2 sites in a 58:42 ratio. Some ADP restraints were included in the final 

least-squares cycles for the fractional occupancy disordered carbon atoms. The structure 

of 3 was also investigated at 273 K (Figure S10). The rationale was to investigate 

whether or not the disorder had been frozen into the sample by flash cooling before the 

X-ray experiment. Additionally, it was deemed interesting to probe whether or not the 

disorder ratio might alter with temperature as a means of gaining further insight into the 

disorder type present given the CW X-band EPR spectral features (vide infra). The room 

temperature solid state structure was revealed to have the same phase as that observed for 

3 at 150 K. In addition, the disorder ratio refined to 55:45 at 273 K indicating that, in this 

instance, a distinction between dynamic and static disorder cannot be made via X-ray 

crystallography. The asymmetric unit in 1Br (Figure S7) was seen to contain four 

molecules of the nickel complex and two molecules of toluene. One of the solvent 

molecules was refined as being disordered over two proximate sites in a 60:40 ratio. ADP 

restraints were applied to fractional occupancy carbons to assist convergence. In addition 

to one molecule of the carbene complex, the asymmetric unit in 3Br (Figure S9) was seen 

to contain one half of a molecule of toluene, disordered over two positions. The 

disordered moieties of solvent exhibited site-occupancies of 28% and 22%, respectively. 

As the rings in each component were close to being overlaid, they were each treated as 

rigid hexagons in the refinement and ADP restraints were also included in this region to 

assist convergence. The methyl carbons (C30 and C30A) were refined subject to being 

located 1.54 Å from the carbon atoms to which they are bonded, respectively. In addition, 
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the C34A···C30A, C30A···C33A, C30···C35 and C30···C33 distances were restrained to 

being similar.  

Crystallographic data for compounds 1Br, 1, 2Br, 2, 3Br, 3 and 3a have been 

deposited with the Cambridge Crystallographic Data Center as supplementary publication 

CCDC 1487678-1487684. Copies of the data can be obtained free of charge on 

application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax(+44) 1223 336033, 

e-mail: deposit@ccdc.cam.ac.uk]. 

EPR/ENDOR spectroscopy. Samples for EPR and ENDOR measurements were 

prepared under an N2 atmosphere in a glovebox. A solution of each complex was 

prepared by dissolving ca. 4 mg of 1-3 in 200 L of dry THF (in all cases, a small 

quantity of dry toluene was also added to improve the quality of the polycrystalline glass 

formed in frozen solution, and thereby enhance the quality of the EPR spectra). The 

solutions were transferred to an EPR tube, sealed in the glove box and then cooled to 77 

K before rapid transfer to the pre-cooled EPR cavity. The X-band CW EPR 

measurements were performed on a Bruker EMX spectrometer utilizing an ER4119HS 

resonator, 100 kHz field modulation at 140 K. Additional X-band EPR measurements 

were performed at variable temperatures (from 6-140 K) on a Bruker Elexsys E500 

spectrometer equipped with an Oxford Instruments liquid-helium cryostat and an 

ER4119HS resonator operating at 100 KHz. The Q-band EPR and ENDOR 

measurements were also recorded on a Bruker Elexsys E500 spectrometer using a Bruker 

ER5106 QT-E Q-band resonator operating at 12.5 kHz field modulation. The ENDOR 

spectra were obtained using 1 dB RF power from an ENI 3200L RF amplifier at 100 kHz 
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RF modulation depth and 0.5 mW microwave power. EPR simulations were performed 

using the Easyspin toolbox.90 

 

Results and Discussion 

 Synthesis of CpNi(RE-NHC)Br. Complexes 1Br-3Br were synthesized 

according to Scheme 2 upon reaction of 6- and 7-Mes or 6-MesDAC with equimolar 

CpNi(PPh3)Br at or below room temperature. 1H and 31P{1H} NMR spectroscopy 

indicated that the phosphine substitution by carbene occurred within 2 h. The resulting 

nickel(II) products proved to be highly soluble in benzene, toluene or THF, but 

effectively insoluble in hexane; they were isolated in moderate yields and characterized 

by 1H and 13C{1H} NMR spectroscopy, elemental analysis, and single-crystal X-ray 

diffraction measurements (ESI). The data for 1-Br and 2-Br matched those reported very 

recently by Buchowicz and co-workers who described the synthesis of these same 

compounds via an alternative route involving the reaction of Ni(DME)Br2, LiCp, and in-

situ generated 6- or 7-Mes.91 3-Br yielded no real surprises in terms of characterization; 

as expected for a DAC ligand, the Ni-carbene bond length (1.8715(18) Å) was shorter 

than in either 1-Br (1.9082(19) Å) or 2-Br (1.9010(18) Å), while the 13C carbene 

resonance was shifted further downfield ( 237.9 c.f. 1-Br:  203.0; 2-Br:  215.7).85, 92 
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Scheme 2. Preparation of the nickel(II) halide precursors 1Br-3Br and their reduction to 

the nickel(I) compounds 1-3. 

 

Synthesis and Structural Identification of Ni(I) Complexes. Reduction of 1Br-

3Br with KC8 in toluene (Scheme 2) afforded the highly air-sensitive Ni(I) derivatives 1-

3, respectively, in yields of 44-46% upon low temperature crystallization. Single-crystal 

X-ray diffraction (Figure 1) in each case showed coordination of a nickel center by a 

carbene and an η5-Cp ligand (analogous to D).51-53 In this context, it is noteworthy that 3 

features disorder of the CpNi fragment in a 58:42 ratio with respect to the DAC ligand 

(Figure 1, bottom). As for D, the geometries of the nickel centers with respect to the 

ligands in 1-3 is bent (Table 2), although the C(1)−Ni−Cpcentroid angles (1: 

159.1481(13)°); 2: 160.565(3) Å; 3: 161.1(3)/160.4(2) Å)93 were significantly larger than 

in either CpNi(IPr) (D1, 154.3(1)°) or CpNi(IMes) (D2, 152.0(1)°), but smaller than in 

the Cp* derivative D3 (164.8(1)°).51-53 Moreover, whereas the Ni−Cipso distances to the 

flanking aryl rings in D were all greater than 3 Å (D1: 3.2438(11); D2: 3.40853(3); D3: 

3.14599(4) Å) and therefore only slightly smaller than the sum of the van der Waals radii 
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for Ni and C (3.67 Å), the corresponding distances in 1-3 were considerably shorter (1: 

2.7702(15) Å; 2: 2.6056(15) Å; 3: 2.666(2)/2.663(2) Å).93 This most likely reflects the 

increased NCN angles of the RE-NHCs compared to their 5-membered counterparts. 

The room temperature 1H NMR spectra of 1-3 in C6D6 exhibited broad, but 

diagnostic, signals in the range  15.5 to  -52.4. The Cp ligands in 1 and 2 gave rise to 

significantly upfield resonances ( -47.7,  -52.4 respectively) similar to those observed 

in D1 and D2 (δ -40.7 and -38.2 respectively)51-53 whereas, in the case of 3, the 

resonances for both the Cp and 6-MesDAC appeared in the narrow range of  15.5 to  

1.3. 

 

Table 2. Selected bond lengths (Å) and angles () for 1-3 

 1 2 3a 

Ni(1)-C(1) 1.8743(15) 1.8759(15) 1.8164(17) 

(1.8351(16)) 

Ni(1)-Cpcentr. 1.7894(8) 1.7951(8) 1.792(4) (1.771(3)) 

C(1)-Ni(1)-Cpcentr. 159.1 160.6 161.1 (160.4) 

Ni(1)-C(1)-N(1) 114.61(11) 114.61(11) 110.5(1) (133.7(1)) 

Ni(1)-C(1)-N(2) 128.67(11) 128.67(11) 134.1(1) (110.92(1))  

a Metrics for the major and, in parentheses, minor components. 
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Figure 1. Molecular structures of (top left) CpNi(6-Mes) (1), (top right) CpNi(7-Mes) (2) and (bottom) CpNi(6-MesDAC) (3). 

Ellipsoids are shown at the 30% level. All hydrogen atoms have been removed for clarity.
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Electronic Properties of 1-3. The solution magnetic moments (Evans method) 

were consistent with the presence of a single unpaired electron in 1-3. The yellow-orange 

color of the diaminocarbene complexes was reflected in the appearance of intense 

absorption maxima at 342, 368, and 418 nm for 1, and 377 and 446 nm for 2. In contrast, 

dark green 3 showed bands at 313, 442, and 592 nm. To probe the electronic structure in 

more detail, (TD-)DFT calculations were performed (B3LYP/def2-TZVP level).94-103 The 

optimized computed structures of 1-3 agreed well with the experimental structural data. 

According to a Löwdin population analysis, the spin density was located very strongly on 

the Ni center in all three compounds (1: 88%; 2: 93%; 3: 94%) and, as found in D, 

displayed a similar asymmetric shape directed slightly towards the ipso-C of an N-

mesityl substituent. The calculations reproduced the experimental features of the UV-Vis 

spectra (ESI; Figures S11, S13 and S15). The calculated electronic transitions with the 

relevant molecular orbitals are given in the ESI (Tables S1-S3; Figures S12, S14 and 

S16). The results for complexes 1 and 2 indicate that for the visible bands at 368 and 418 

nm (for 1), as well as 377 and 446 nm (for 2), the transitions have a complex 

composition. While the HOMOs feature partial metal and partial π-Cp character, the 

LUMO is mainly based on π*-orbitals of the mesityl substituents, with small 

contributions from the π*-orbitals of the carbene ligands. For compound 3, similar 

contributing HOMOs are present with less metal character and an increased contribution 

of the π-orbitals of the mesityl moiety. In contrast to complexes 1 and 2, the LUMOs of 3 

feature significant contributions from the π*-orbitals of the DAC ligand (Figure S16), 

which might be due to the higher π-acceptor character. 
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 EPR and ENDOR Spectra of 1-3. The continuous wave (CW) EPR and ENDOR 

spectra of the three paramagnetic Ni(I) compounds were recorded in frozen THF/toluene 

solution at X- (9.5 GHz) and Q- (34.5 GHz) band frequencies. The experimental and 

simulated EPR spectra for 1 are shown in Figure 2 (the corresponding EPR spectra for 2 

and 3 are given in Figures S18 and S19). Owing to the well-defined rhombic nature of the 

g tensor, the EPR spectra were readily simulated using the Easyspin program90 and the 

resulting spin Hamiltonian parameters are listed in Table 3. The pronounced g shifts 

observed in the spectra are partially accounted for by the large spin-orbit coupling 

constant for Ni (565 cm-1), whilst the low symmetry of the complexes themselves are 

responsible for the rhombic g tensor. The DFT derived g values calculated on the basis of 

the crystal structures are in reasonably good agreement with the experimental g values 

(Table 3). Although the overall magnitude of the experimental g values are larger than 

the DFT calculated values, the general trend observed in the g shifts and decreasing giso 

values for 1-3 match reasonably well (Table 3). In particular, the systematic decrease in 

all three g1 values from 1 to 3 and the similarities in the g1 values, are reproduced 

extremely well by the theoretical calculations. Whilst this trend is also reproduced in the 

calculated g2 values for 1 and 2, the theoretically predicted g2 value for 3 is unexpectedly 

larger than the experimental value (Table 3) and we currently do not have an explanation 

for this observation. It is also interesting to note the unusual trend observed with respect 

to the g-strain in the complex, which causes the two low field g values to broaden more 

compared to the high field g value in the Q-band spectrum (Figure 2). 

 It should be stated that the g values of d9 Ni(I) metal centers are highly dependent 

on the ligand coordination environment and many EPR studies of complexes bearing 
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Ni(I) centers that are 4-, 5- or 6-coordinate have been reported over the years,104,105 with 

some recent studies focussing on the catalytic role of Ni(I).106,107 By comparison, far 

fewer studies have been reported for low coordinate Ni(I) complexes.71,108-114 One 

characteristic trend with the 3-coordinate systems, is that reversed g values are frequently 

observed compared to the higher coordinate systems, and the g tensor components are 

very dependent on whether the complex adopts a T- or Y-shape arrangement around the 

Ni(I) center.109,110 This case of reversed EPR g values has been previously reported for 

the CpNi(I) complexes (Table 3).51-53 The observed g values are consistent with the spin 

density plots for 1-3 which revealed considerable spin density localization on the nickel 

centers (Figure S17). It has also been reported by Hazari53 that the SOMO and spin 

density plots for the analogous CpNi(IPr) complex had a significant Ni dxz orbital 

contribution. Assuming a similar orbital ground state in 1-3, this would also account for 

the observed rhombic g tensor.  
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Figure 2. Experimental (black) and simulated (red) CW X- and Q-band EPR spectra of 

CpNi(6-Mes) (1) recorded at 140 K and 50 K respectively in frozen THF/toluene (95:5 

v:v) solution. Simulation parameters used in Easyspin: g = [2.052, 2.204, 2.324]; 

linewidth simulated with g strain (labelled gStrain in Easyspin): gStrain (X-band) = 

[0.022, 0.055, 0.025]; gStrain (Q-band) = [0.007, 0.050, 0.035]. Experimental 

conditions: Microwave frequencies 9.320 GHz and 34.112 GHz; n# points, 4096. 

 

 The EPR g values for 1-3 are clearly very sensitive to changes in the NHC 

structure. Indeed, we have previously shown how the g values for the 3-coordinate Ni(I) 

complexes E shown in Scheme 1 varied markedly as a function of the NHC ring size.71 

Both Wolf51,52 and Hazari53 also reported variations in the g values of the Ni(I) 

complexes CpNi(NHC) with IPr ligands (Scheme 1, D and Table 3). Despite the almost 
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isostructural nature of 1 and 3, the differences in the g values for both complexes 

(particularly evident in the giso values) is very pronounced (Table 3), highlighting how the 

perturbations to the electronic structure of the Ni centers created by the DAC ligand can 

be manifested in the EPR spectra. Furthermore, the relative orientation of the g tensor 

with respect to the molecular axes and the spin density plot for complex 3 is shown in 

Figure 3. The g tensor orientation was determined based on the ORCA calculation of the 

g matrix using the crystal structure as the input file, with the 1H A matrix defined relative 

to the molecular frame. Although two components of g are clearly orthogonal to the Cp 

ring, one component is directed along the Cp-Ni-NHC direction, and this likely accounts 

for the sensitivity of the g values to changes in NHC structure. 
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Figure 3. Orientations of the principal Ni g and Cp HA tensors with respect to the 

molecular axes and spin density plot for complex 3. 

 

 At 140 K, additional peaks were observed in the X-band CW EPR spectrum of 3 

(Figure S19). Therefore, variable temperature EPR measurements were performed to 

examine the origin of these additional peaks. The resulting variable temperature X-band 

EPR spectra are shown in Figure 4 and clearly reveal a temperature dependent spectral 

profile. At temperatures below ca. 70 K, only a single Ni(I) center was detected (site Ni1 

in Figure 1, characterized by the g1,2,3 values of 2.032, 2.095, 2.262; Table 3), whereas 

above 70 K, the second Ni(I) center is simultaneously present (site Ni1a, with g1,2,3 values 

of 2.054, 2.076, 2.262; Table 3). This second Ni(I) site appears to align with the observed 

disorder of the CpNi fragment over two similar positions, as detected in the X-ray 

structure (Figure 1). Indeed, the DFT calculated g values for this second Ni1a site, based 

on the coordinates from the X-ray crystal structure, are in very good agreement with the 

experimental values (Table 3). 
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Figure 4. Experimental (black) and simulated (red) CW X-band EPR spectra of CpNi(6-

MesDAC) (3) recorded at variable temperatures (6-140 K) in frozen THF/toluene (95:5 

v:v) solution. 

 

 According to the EPR simulations, the relative abundances of the two sites 

Ni1:Ni1a at 140 K are ca. 90:10, whereas below 70 K only site Ni1 is observed (Figure 

4). Although the crystal structures show a relatively consistent disorder ratio between Ni1 

and Ni1a, which appears to be temperature independent, it must be borne in mind that 

crystallography cannot easily discriminate between static and dynamic disorder since the 

electron density maps represent averages of the molecular conformations for the whole 

crystal. The variable temperature EPR data (recorded in frozen solution, as opposed to 

the single crystal, where the relative populations may be expected to be different) 
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suggests that a dynamic process is certainly occurring such that the relative equilibrium 

populations between the two sites, visible on the EPR timescale, is strongly influenced by 

the temperature. Further analysis is required to understand the nature of the dynamic 

model responsible for the variable site occupancies detected by EPR for 3.        

 Owing to the strong interaction between the Cp ring and the Ni(I) centers, angular 

selective Q-band 1H ENDOR experiments were also performed on 1-3 in order to 

measure the Cp 1H couplings. The resulting experimental and simulated spectra for 3 are 

shown in Figure 5 (the corresponding spectra for 1 and 2 are given in Figures S20 and 

S21). Although the overall profiles of the ENDOR spectra were relatively similar for all 

three complexes, the magnitude of the couplings generally appeared larger for 3 

compared to 1 and 2 (Figure S22). 

  

 

-8 -6 -4 -2 0 2 4 6 8

n - n
H
 / MHz

g-value

2.085

2.094

2.104

2.120

2.152

2.182

2.222

2.261

2.032

2.058



 23 

Figure 5. Experimental (black trace) and simulated (red trace) CW Q-band 1H ENDOR 

spectra of CpNi(6-MesDAC) (3) recorded in frozen THF solution (10 K). The g values 

corresponding to the static magnetic field positions used for the ENDOR measurement 

are given in the figure. The ENDOR spectra are plotted as the difference from the 1H 

Larmor frequency (νH ≈ 15 MHz). Simulation parameters used in Easyspin: g, gFrame, 

A, AFrame are reported in Tables 3 and 4, ENDOR linewidth, 0.40 MHz. 

  

 Due to the rhombic g tensor, the DFT calculated 1H tensors were used as a 

starting point for the ENDOR simulations, particularly in defining the Euler angles of the 

HA tensor with respect to the molecular frame and g frame. According to the DFT 

calculations, the five Cp ring protons were all found to be inequivalent (Table 4), as 

expected for the bent orientation of the Cp ring with respect to the Ni-NHC orientation. 

Nevertheless, some of these Cp ring protons produce similar 1H hyperfine tensors (or at 

least within the resolution of the experimental powder ENDOR spectra, some of these 

tensors would appear indistinguishable).115-118 The two Cp protons labelled H10,11 (see 

Figure 3 for labels) produce the largest proton couplings (labelled H(Cp)large in Table 4), 

which are clearly observable in the ENDOR spectra, followed by a second set of protons 

which produce a relatively smaller coupling (labelled H(Cp)small in Table 4) arising from 

the two Cp protons labelled H7,9. Only these two sets of proton couplings (referred to as 

H(Cp)large and H(Cp)small), with aiso values of -6.3 and 3.23 MHz respectively, were 

included in the ENDOR simulations. For clarity, some of the experimental and 

deconvoluted 1H ENDOR simulations for CpNi(6-MesDAC) (3) at three selected field 

positions are shown in Figure 6. The remaining Cp proton (labelled H8), with a calculated 
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aiso of only -0.1 MHz (Table S4) was not included in the simulation, as the peaks could 

not be identified in the experimental spectrum with a sufficiently high degree of 

accuracy. In addition, the peaks from this remaining Cp proton overlap with the weaker 

couplings (< 1 MHz) arising from the remote protons of the NHC ring (as determined by 

the ORCA calculations), and these latter, weak couplings were also not included in the 

simulation. 

 

 

Figure 6. Experimental (black trace) and simulated CW Q-band 1H ENDOR spectra of 

CpNi(6-MesDAC) (3) recorded in frozen THF solution (10 K) at the three static field 

positions corresponding to the g values of 2.094, 2.120 and 2.261. The x-axis scale shows 

the absolute ENDOR frequencies. Red trace = simulation for H(Cp)large only, blue trace = 

simulation for H(Cp)small only (see Table 4 for parameters).   

 

38 40 42 48 50 52 54

2.094

2.120

Frequency / MHz

2.261

40 42 44 46 52 54 56

 

42 44 46 48 52 54 56 58



 25 

 The experimental and simulated 1H ENDOR spectra for 1 and 2 are given in 

Figures S20 and S21, and the agreement between the experimental and simulated spectra 

is very good (Table 4). The principal components of the Cp HA tensors for 1 and 2 were 

similar to each other (mirroring the similarities in the g values discussed earlier), 

compared to the slightly larger magnitude of the HA tensors observed for 3. With the 

exception of one proton, it should be noted that the Cp 1H hyperfine couplings in all three 

complexes are quite large, and this is largely due to the combination of the relatively 

short Ni-1H(Cp) distances (these vary from 2.70 to 3.07 Å giving dipolar values from A|| 

= 8.0, A = -4.0 MHz to A|| = 5.5, A = -2.7 MHz in a classic point dipole approximation; 

Table S4) along with the appreciable Fermi contact contribution. Indeed, the 1H hyperfine 

couplings for 5 coordinated Cp rings or 6 coordinated arene rings in paramagnetic first 

row transition metal complexes are generally large, so the current findings are consistent 

with previous reports.119-121 The contribution of the dominant anisotropic hyperfine terms 

coupled with the appreciable aiso terms for the Cp 1H’s confirm the small amount of 

unpaired spin associated with the Cp ring, which is consistent with the calculated SOMOs 

of the complexes (Figure S17). It is interesting to note the slightly different nature of the 

SOMO in 3 compared to 1 and 2, which also offers a potential explanation for the 

differences observed in the hyperfine values of 3 relative to 1 and 2. Therefore the 

electronic perturbations to the CpNi(NHC) complex 3 created by the diamidocarbenes 

(DACs), is clearly manifested not only through differences in the UV spectra, differences 

in the SOMO and differences in the EPR g values, but also through subtle variations to 

the spin densities on the Cp ring protons as revealed by 1H ENDOR spectroscopy.        
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Conclusions 

 Potassium graphite reduction of the Ni(II) ring-expanded N-heterocyclic 

diamino/diamidocarbene complexes CpNi(RE-NHC)Br produces the paramagnetic 

CpNi(RE-NHC) complexes (RE-NHC = 6-Mes (1), 7-Mes (2), 6-MesDAC (3). The 

structure of these three complexes was investigated by X-ray diffraction, DFT 

calculations, and EPR/ENDOR spectroscopy. The X-ray structures confirmed that the 

nickel centers in 1-3 are coordinated to the RE-NHC and the η5-Cp ligand similar to the 

previously described 5-membered ring NHC complexes D.51-53 In the case of the 

diamidocarbene complex 3, the molecular structure revealed the CpNi fragment was 

disordered over two positions. 

 According to the DFT calculations, the spin densities in 1-3 were localized 

primarily on the Ni centers in all cases. The results obtained from the EPR/ENDOR 

measurements are consistent with the structures determined crystallographically. The 

rhombic g tensor displayed considerable anisotropy, as expected for low symmetry Ni(I) 

centers, with the smallest deviations from ge found in the diamidocarbene complex 3, 

highlighting the electronic perturbation that results from the presence of the DAC ligand. 

Variable temperature EPR measurements of 3 also revealed the presence of a second 

Ni(I) center at temperatures above 70 K. The calculated g values for this second Ni(I) 

center are consistent with the nickel site (Ni1a) present in the minor disordered 

component present in the X-ray structure. A dynamic equilibrium between these two 

sites, which is manifested on the EPR timescale, appears to be responsible for the 

temperature dependent profile of the complex in frozen solution. The 1H hyperfine 

tensors for the Cp ring protons were also evaluated through simulation of the angular 
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selective ENDOR measurements. Whilst the structures of the tensors were similar for the 

three complexes, a slightly higher spin density was detected on the Cp ring for 3 

compared to 1 and 2. 

 It remains to be established whether the electronic differences we have seen 

translate into variations in reactivity. However, given the high levels of both 

stoichiometric and catalytic reactivity seen with the 5-membered ring NHC analogues51-53 

(D in Scheme 1), the recently reported catalytic C-C coupling activity of the 

corresponding Ni(II) precursors 1-Br and 2-Br91 (shown herein to be readily accessible 

by straightforward phosphine exchange by a corresponding free RE-NHC in an easy and 

useful synthetic method) and the fact that variations of the substituents in RE-NHCs is 

known to have an impact in catalysis,55,71 we are hopeful that studies to elucidate this will 

be forthcoming. 

 

Supporting Information Available: 1H and 13C{1H} NMR spectra for 1Br-3Br 

and 1-3, experimental UV-vis spectra, TD-DFT calculations and computational details, 

EPR spectra of 2-3, 1H ENDOR spectra for 1-2, point dipole calculation of the 1H Cp 

dipolar couplings, Cartesian coordinates for 1-3. This material is available free of charge 

via the Internet at http://pubs.acs.org. 
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Table 1. Data Collection and Refinement Details for the Crystal Structures of 1-3. 

 

 

Identification code 1 2 3 
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Empirical formula C27H33N2Ni C28H35N2Ni C29H33N2NiO2 

Formula weight 444.26 458.29 500.28 

Crystal system monoclinic triclinic orthorhombic 

Space group P21/n P-1 Pbcn 

a/Å 9.0299(2) 9.0066(3) 26.0692(4) 

b/Å 30.5459(7) 9.4373(3) 9.07493(17) 

c/Å 9.5199(2) 15.9678(5) 21.6239(4) 

α/° 90 100.212(3) 90 

β/° 117.041(3) 93.339(3) 90 

γ/° 90 113.601(3) 90 

U/Å3 2338.79(12) 1211.38(7) 5115.70(16) 

Z 4 2 8 

ρcalc/gcm-3 1.262 1.256 1.299 

μ/mm-1 1.292 1.262 1.305 

F(000) 948.0 490.0 2120.0 

Crystal size/mm3 0.2044 × 0.1321 × 0.0817 0.194 × 0.0941 × 0.0862 0.1192 × 0.0946 × 0.0612 

2 range for data collection/° 10.828 to 143.898 10.778 to 144.074 8.178 to 143.998 

Index ranges -10 ≤ h ≤ 11,  

-35 ≤ k ≤ 37,  

-11 ≤ l ≤ 10 

-11 ≤ h ≤ 11,  

-9 ≤ k ≤ 11,  

-19 ≤ l ≤ 19 

-24 ≤ h ≤ 32,  

-10 ≤ k ≤ 11,  

-26 ≤ l ≤ 25 

Reflections collected 14915 11545 25391 

Independent reflections, Rint 4567, 0.0345 4745, 0.0210 5016, 0.0378 

Data/restraints/parameters 4567/0/277 4745/0/286 5016/0/324 

Final R1, wR2 [I>=2σ (I)] 0.0365,  0.0939 0.0358, 0.0931 0.0372, 0.0982 

Final R1, wR2 [all data] 0.0409,  0.0979 0.0377, 0.0947 0.0483, 0.1052 

Largest diff. peak/hole / e Å-3 0.58/-0.28 0.79/-0.44 0.31/-0.33 
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Table 3. Experimental and DFT-calculated principal g spin Hamiltonian parameters for 

the CpNi(RE-NHC) complexes 1-3. 

 

Compound  g values Ref 

  g1 g2 g3 giso  

1 Exp 

DFT 

2.052 

2.082 

2.204 

2.180 

2.324 

2.255 

2.193 

2.172 

t.w. 

2 Exp 

DFT 

2.052 

2.082 

2.154 

2.132 

2.313 

2.244 

2.17 

2.153 

t.w. 

3 
 

Exp 

 

DFT 

2.032 

(2.054) 

2.054 

(2.058) 

2.095 

(2.076) 

2.202 

(2.150) 

2.262 

(2.262) 

2.241 

(2.240) 

2.130 

(2.131) 

2.166 

(2.149) 

t.w. 

D11  2.377 2.306 2.050  51,52 

D11 

D12 

 2.362 

2.349 

2.306 

2.267 

2.049 

2.062 

 53 

53 

E  2.405-

2.275 

2.322-

2.216 

2.073-

2.034 

 71 

 
Note: The g values are quoted ± 0.003; giso = (g1+g2+g3)/3. The Euler rotation of the g 

tensor, defined with respect to the molecular frame = 32±1°, 82±1°, 162±1° for (1-3).  

For CpNi(6-MesDAC) (3), two Ni(I) centers were identified from the VT EPR spectra, 

labelled Ni1 and Ni1b (the g values for the latter are given in italics). 1NHC = imidazol-

2-ylidene. 2NHC = imidazolin-2-ylidene. See Scheme 1 for structures of D1 and E.  
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Table 4. Experimental and DFT-calculated principal 1H hyperfine spin Hamiltonian 

parameters for the CpNi(RE-NHC) complexes 1-3. 

 
Compound  Cp proton A values (MHz) Euler angles for A 

(°) 
   A1 A2 A3 aiso   

1 

Exp 
Hlarge 

Hsmall 

-3.7 

-2.3 

-9.1 

-3.4 

-10.9 

6.8 

-5.4 

0.4 

32 

16 

94 

85 

183 

-158 
         

DFT 

H9 (Hlarge) 

H10 (Hlarge) 

H8 (Hsmall) 

H11(Hsmall) 

4.7 

4.0 

-2.6 

-2.8 

-5.5 

-6.0 

-3.4 

-3.9 

-7.4 

-9.8 

6.8 

6.0 

-2.7 

-3.9 

0.3 

-0.2 

 

 

 

 

 

 

 

 

 

 

 

 

2 

Exp 
Hlarge 

Hsmall 

3.9 

-2.3 

-6.4 

-3.4 

-11.2 

6.8 

-4.6 

0.4 

32 

16 

94 

85 

183 

-158 
         

DFT 

H2 (Hlarge) 

H13 (Hlarge) 

H3 (Hsmall) 

H8 (Hsmall) 

3.9 

4.9 

-2.1 

-2.8 

-6.4 

-5.3 

-5.7 

-4.0 

-10.5 

-6.6 

6.7 

6.8 

-4.3 

-2.3 

-0.4 

0.0 

 

 

 

 

 

 

 

 

 

 

 

 

3 

Exp 
Hlarge 

Hsmall 

3.0 

-4.7 

-8.6 

6.8 

-13.3 

-7.6 

-6.3 

-1.8 

32 

16 

96 

85 

183 

-158 
         

DFT 

H10 (Hlarge) 

H11 (Hlarge) 

H7 (Hsmall) 

H9 (Hsmall) 

3.3 

3.8 

-4.7 

-4.7 

-6.8 

-6.1 

6.8 

6.3 

-12.1 

-10.2 

-7.0 

-6.6 

-5.2 

-4.2 

-1.7 

-1.7 

32 

45 

16 

-34 

97 

64 

85 

92 

171 

101 

-158 

-101 

 

Note: The A values are quoted ± 0.1 MHz; Aiso = (A1+A2+A3)/3. Hlarge = large proton 

couplings, Hsmall = small proton couplings, from the Cp ring. The labelled protons 

responsible for Hlarge and Hsmall given in the table are numbered as in the geometry 

optimized crystal structure used to perform the DFT calculation to obtain g and A 

tensors. The Euler rotation of the A tensor, is defined with respect to the molecular frame, 

with values given in degrees for 1-3. 
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Table of Contents Synopsis 
 

 

Continuous wave X-/Q-band EPR and Q-band 1H ENDOR spectroscopy, in combination 

with computational methods, has been used to probe the electronic structure of the 

paramagnetic half-sandwich Ni(I) ring-expanded diamino/diamidocarbene complexes 

CpNi(RE-NHC) (RE-NHC = 6-Mes, 7-Mes, 6-MesDAC). 
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