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Abstract 

The human chemokine family consists of around 50 peptides that control the 

migratory patterns and positioning of all leukocytes. One such member of this family 

is CXCL14. Very highly expressed in many healthy tissues including skin, gut and 

kidney, loss of CXCL14 expression in chronic inflammatory conditions and certain 

forms of cancer has led to a proposed role for CXCL14 in immune surveillance at 

these sites. The function and target cells of CXCL14 are poorly defined however, 

largely because the identity of its receptor remains unknown.  

Here, I have combined the evaluation of chemotactic responses toward CXCL14 with 

detection of putative CXCL14 receptor(s) on the surface of cells using a synthetic, 

fluorochrome-conjugated CXCL14, to definitively identify CXCL14 target cells in 

human. Monocytes were identified as the major target cells in peripheral blood, 28.4 

± 6.1% Monocytes migrating toward 1 µM CXCL14 in ex vivo transwell chemotaxis 

assays compared to 3.01 ± 0.65% toward buffer alone (p=0.0031). Responses to 

CXCL14 also identified tissue phagocytes extracted from healthy human skin, 

including an apparently novel population of skin-resident CD14+ cells characterised 

by lack of CD45 expression. Screening of CXCL14-responsive cells by RNA 

sequencing for expression of G protein-coupled receptors revealed five major 

candidates for the CXCL14 receptor, all of which are orphan receptors; GPR35, 

GPR68, GPR84, GPR141 and GPR183. At present, I am in the process of testing 

these candidates in functional assays. Finally, I report on a novel ability of CXCL14 to 

potently synergise with other chemokines, particularly CXCL12. This ‘synergy’ with 

CXCL12 likely occurs via a direct interaction between CXCL14 and the receptor for 

CXCL12, CXCR4, which is broadly expressed on immune cells.  

This work identifies mononuclear phagocytes in blood and tissue as the primary 

targets for CXCL14, providing new and exciting insights into the role played by 

CXCL14 in immune surveillance of peripheral tissues. 
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Chapter 1   Introduction 

The human immune system includes cellular and soluble effectors that together, 

comprise an extremely effective defence against a wide variety of threats to the 

integrity of the host. Chemokines are a family of small soluble peptides which possess 

a range of physiological functions, but are defined on the basis of their ability to induce 

directional migration or chemotaxis in nearby responsive cells. In cooperation with 

cell-surface adhesion molecules and other molecules with chemotactic activity (e.g. 

components of the complement cascade), chemokines control the migratory patterns 

and positioning of all immune cells. Chemokines exert their effects by activating 7-

transmembrane (7TM) receptors coupled to intracellular G proteins (G protein-

coupled receptors; GPCRs), which are selectively expressed on the target cell 

surface. In human, approximately 48 chemokines and 18 typical chemokine receptors 

have been identified to date (Griffith et al., 2014). The specific expression, regulation 

and receptor binding patterns of each member creates a highly sophisticated 

functional diversity in the chemokine system. Chemokines play pivotal roles in 

complex immune processes such as acute and chronic inflammation, the generation 

of adaptive cellular and humoral immune responses, memory cell differentiation and 

immune surveillance. Their function extends beyond the immune response however, 

with chemokines playing vital roles in such disparate processes as behaviour, 

angiogenesis and reproduction (reviewed in (Hara and Tanegashima, 2012, Kitaya 

and Yamada, 2011, Rossi and Zlotnik, 2000)). Chemokine function in the context of 

the human immune system will be discussed in detail later on in this chapter. First, I 

will discuss the immune cell populations which are present in human blood and 

peripheral tissues, their functions in health and disease, and the methods used by 

researchers to study them. My research focuses on monocytes in the blood as well 

as macrophages and dendritic cells in tissues, collectively known as the mononuclear 

phagocyte system. 

1.1 The Mononuclear Phagocyte System 

The term “leukocytes” denotes a diverse group of cell types that mediate the body’s 

immune response. Leukocytes have a common origin in haematopoietic stem cells 

(HSCs). However, development along distinct differentiation pathways in response to 

internal and external cues gives rise to leukocyte subsets distinguished by their 

physical and functional characteristics. The mononuclear phagocyte system (MPS) 

represents a sub-group of leukocytes originally described as a population of bone 
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marrow-derived cells that circulate in the blood as monocytes and populate tissues 

as macrophages in the steady-state and during inflammation (van Furth and Cohn, 

1968). Macrophages are resident in every organ throughout the body, with 

macrophages resident in different tissues displaying remarkable heterogeneity with 

respect to phenotype, function and turnover (Davies et al., 2013a). Recently, evidence 

has emerged that many macrophage populations are seeded in tissues during early 

embryogenesis, independent of the haematopoietic system. Although these 

embryonic macrophages are maintained throughout life by local proliferation during 

homeostasis, it appears that they are reconstituted by circulating monocytes following 

inflammation (Epelman et al., 2014). The discovery of dendritic cells (DCs) as a 

distinct lineage of mononuclear phagocytes, specialised in antigen presentation to T 

cells and the initiation of adaptive immune responses (Steinman et al., 1974), 

revealed additional roles of the MPS in shaping immunity. Whereas the relationship 

between monocytes, tissue DCs and their progenitors is now beginning to emerge, 

other areas such as the origin and renewal of tissue macrophages remain less well-

defined. 

1.1.1 Monocytes 

‘Monocyte’ is the name given to the stage of the MPS which exists in the blood. 

Functionally characterised by their ability to phagocytose material, produce cytokines 

and present antigen, early studies identified mononuclear phagocytes on the basis of 

morphology and glass adherence (van Furth and Cohn, 1968). Human monocytes 

develop in the bone marrow from dividing monoblasts (bipotent cells that differentiate 

from HSCs) and are released into the bloodstream as non-diving cells, where they 

represent approximately 4-10% of circulating leukocytes. With the half-life of human 

monocytes in circulation being estimated at around 22 hours (van Furth and Cohn, 

1968), it is conceivable that as much as 50% of circulating monocytes leave the 

bloodstream under steady-state conditions each day. Their fate, however, upon 

entering peripheral tissues, remains a topic for speculation. It is thought that 

monocytes represent a systemic reservoir of myeloid precursors, giving rise to tissue 

macrophages and DCs under both steady-state and inflammatory conditions. (Wiktor-

Jedrzejczak and Gordon, 1996). However, experimental data demonstrating the 

differentiation of monocytes in vivo remain scarce, and the contribution of monocytes 

to this complex cellular system is a very active area of research (Auffray et al., 2009, 

Geissmann et al., 2010, Perdiguero and Geissmann, 2016). 
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Human monocytes were initially described using histological and cytochemical 

techniques. Typical morphological features of blood monocytes include an irregular 

kidney-shaped nucleus and a high cytoplasm-to-nucleus ratio. (Ziegler-Heitbrock, 

2000). Monocytes are also the largest of the mononuclear leukocyte subsets, 

measuring 13-18 µm in diameter. However, they are still very heterogenous in size 

and shape, making them difficult to distinguish by morphology or by light scatter 

analysis alone from blood DCs, activated lymphocytes and natural killer (NK) cells. 

More recently, monocytes have been identified based on specific expression of 

particular cell-surface markers, with detection by flow cytometry. Expression of 

markers such as CD14 and CD33, combined with lack of expression of lineage 

markers that identify T, B, NK cells and DCs, is routinely used to distinguish 

monocytes from other cell types.  

The function of monocytes has largely been inferred from manipulations performed in 

the laboratory using monocytes isolated from blood. In vitro, monocytes display 

adherence to plastic, are highly phagocytic and, upon stimulation, produce large 

amounts of reactive oxygen species (ROS) and cytokines such as tumour necrosis 

factor-alpha (TNFα), interleukin (IL)-1β, IL-6 and IL-10, in addition to other 

inflammatory mediators (prostaglandins, complement factors, proteolytic enzymes 

etc.). Expression of a large array of pattern recognition receptors (PRRs), including 

Toll-like receptors (TLRs), enables monocytes to respond to various microorganisms 

including bacteria, fungi and viruses, while expression of scavenger receptors also 

facilitates the recognition of lipids and dying cells (van Furth and Cohn, 1968, 

Blumenstein et al., 1997). More recently, important roles for monocytes in adaptive 

immunity have been described. Monocytes affect the polarisation and expansion of 

lymphocytes, shaping primary and memory T-cell responses in humans and mice 

(Geissmann et al., 2008). This is despite the observation that monocytes are far less 

efficient antigen presenting cells (APCs) than DCs (Banchereau and Steinman, 1998). 

Cytokine-driven culture systems allow the in vitro differentiation of monocytes into 

macrophages and DCs, supporting the proposal that monocytes give rise to these cell 

types in vivo (Sallusto and Lanzavecchia, 1994, Zhou and Tedder, 1996). Such 

findings must be interpreted with caution, however, as monocytes are primed to 

respond rapidly to any alterations in their environment. Isolating them, purifying them 

on gradients and culturing them in vitro, therefore, all affect their phenotype and 

behaviour. 
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1.1.1.1 Identification of monocyte subsets 

The division of blood monocytes into functional subsets was first confirmed around 20 

years ago (Ziegler-Heitbrock, 1996), having been alluded to some years previously 

(Esa et al., 1986, Yasaka et al., 1981). At this time, human monocytes were already 

being identified by flow cytometry on the basis of expression of CD14, the co-receptor 

for lipopolysaccharide (LPS), a component of the cell wall of gram-negative bacteria. 

The introduction of CD16 as an additional monocyte marker, however, led to the 

observation that a minor proportion of monocytes combined expression of CD16 (a 

low affinity receptor for the Fc portion of IgG antibodies) with low-level CD14 

expression. This CD14+CD16+ subset was distinguishable from the vast majority of 

monocytes, which had strong CD14 expression but lacked CD16 (CD14++CD16-). The 

demonstration that the CD14+CD16+ subset was expanded in various infectious 

diseases including sepsis, Tuberculosis and HIV, led to the CD16-expressing subset 

being referred to as “pro-inflammatory monocytes” (Ziegler-Heitbrock, 1996). In vitro 

observations supported this designation, as it was demonstrated that CD16+ 

monocytes had higher major histocompatibility complex (MHC) class II expression 

and, after stimulation by TLR ligands, produced greater quantities of TNFα (Belge et 

al., 2002). A major breakthrough was made when two morphologically, phenotypically 

and functionally distinct subsets of monocytes were first described in mouse 

(Geissmann et al., 2003). The two subsets were defined on the basis of differential 

expression of chemokine receptors and unique migratory properties. A short-lived 

“inflammatory subset” demonstrated high CCR2 and low CX3CR1 expression, and 

was actively recruited to inflamed tissues in the mouse. In contrast, a “resident 

subset”, with a longer half-life in peripheral blood, which did not express CCR2 and 

had high CX3CR1 expression, was preferentially recruited to non-inflamed tissues 

(Geissmann et al., 2003). In this study, the researchers showed that chemokine 

receptor expression also defined the two major monocyte subsets in human. 

CD14++CD16- human monocytes expressed CCR2 while lacking CX3CR1 

expression, while the CD14+CD16+ human subset had high expression of CX3CR1 

and was negative for CCR2. Human CD16+ monocytes also lacked expression of 

CCR1, CXCR1 and CXCR2, all of which are receptors for inflammatory chemokines, 

suggesting that like their murine CX3CR1highCCR2- counterparts, CD16+ human 

monocytes are likely excluded from inflamed tissues (Geissmann et al., 2003). This 

contrasted with the original designation of the CD16+ subset of human monocytes as 

inflammatory, and led to confusion regarding the functional differences between 

monocyte subsets, which still remains. Whole-genome expression arrays have since 
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confirmed that the human and murine monocyte subsets are indeed homologous 

(Cros et al., 2010). Due to the lack of a clear understanding of their different functions 

in vivo, the major CD14++CD16- monocyte population in humans has since been 

termed “classical monocytes”, with the CD16+ subset termed “non-classical 

monocytes”. More recently, monocytes with an intermediate phenotype between the 

classical and non-classical subsets have been described. These cells have high 

CD14 and low CD16 expression (CD14++CD16+) and are found at low frequency in 

blood. However, they possess unique features and have been shown to expand in 

inflammation (Moniuszko et al., 2009, Skrzeczynska-Moncznik et al., 2008). Division 

of human blood monocytes into three subsets; classical, intermediate and non-

classical, is therefore now widely accepted by the wider research community (Ziegler-

Heitbrock et al., 2010). Classical monocytes represent 85-90% of circulating blood 

monocytes, with the intermediate and non-classical subsets constituting the 

remaining 10-15%. 

1.1.1.2 Functional differences between monocyte subsets 

Although functional differences between the three monocyte subsets have been 

described ex vivo, there is little data regarding their different functions in vivo. Both 

classical and non-classical monocytes can give rise to DCs during in vitro culture 

(Sanchez-Torres et al., 2001). Subsequently, CD16+ monocytes were shown to 

transmigrate through a layer of resting endothelial cells more efficiently than classical 

monocytes (Randolph et al., 2002), suggesting that CD16+ monocytes may 

preferentially give rise to tissue DCs during the steady-state. It is unclear, however, 

how properties ascribed to CD16+ monocytes previously are now to be segregated 

between the intermediate and non-classical subsets. More recently, it was observed 

that human CD14+CD16++ non-classical monocytes “crawled” along the endothelium 

following intravenous transfer into mice; behaviour that was not observed in 

CD14++CD16- classical monocytes. Here, the authors proposed that non-classical 

monocytes patrol blood vessels, perhaps acting as a blood-resident macrophage 

population that does not exit so readily into peripheral tissues (Cros et al., 2010), 

consistent with their longer half-life in circulation (Geissmann et al., 2003, Hanna et 

al., 2015). Comprehensive genotypic and phenotypic analysis of the three human 

monocyte subsets during healthy conditions has established that the intermediate 

subset is much more closely related to the non-classical subset than the classical 

subset (Wong et al., 2011). Indeed, like the non-classical subset, the intermediate 

subset has been shown to expand during disease (Moniuszko et al., 2009), while 
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intermediate monocytes best support viral replication during HIV infection (Kim et al., 

2010). 

The question of whether the monocyte subsets represent distinct cell types, or rather 

a single lineage at varying stages of differentiation, is an intriguing one. It has been 

proposed that the intermediate subset represents the direct intermediary link between 

the classical and non-classical subsets (Ziegler-Heitbrock et al., 2010). During the 

course of certain infections, there is first an expansion of the intermediate subset, 

subsequently followed by an increase in the non-classical subset (Weiner et al., 1994, 

Ziegler-Heitbrock et al., 2010). Furthermore, intermediate monocytes have been 

shown to express a large number of genes (Wong et al., 2011) and cell-surface 

markers (Ancuta et al., 2009, Wong et al., 2011) at levels between that of the classical 

and non-classical subsets. Monocyte repopulation kinetics in patients following 

haematopoietic stem cell transplantation (HSCT) support this notion, with classical 

monocytes appearing in the blood first, followed by the intermediate and then the non-

classical subsets (Haniffa et al., 2009). Preliminary in vitro experiments demonstrated 

that classical monocytes spontaneously down-regulated several classical subset-

associated markers, coupled with the acquisition of some, but not all, of the non-

classical associated markers (Wong et al., 2011). However, proof of the lineage 

relationship between the three subsets is still required. 

1.1.1.3 Monocyte subsets in mouse 

In mice, the subdivision of monocytes into three subsets has also been proposed, 

although the markers used to identify them are different. Monocyte development and 

survival in mice is completely dependent on colony-stimulating factor 1 (CSF1; also 

known as M-CSF). Mice that are deficient in this growth factor or its receptor CSF1R 

(also known as M-CSFR) exhibit severe monocytopenia (Dai et al., 2002, Wiktor-

Jedrzejczak and Gordon, 1996). CSF1R+ monocytes are divided into subsets on the 

basis of Ly6C and CD43 expression. Classical monocytes show high Ly6C 

expression and low CD43 (Ly6C++CD43+), intermediate monocytes have high 

expression of both markers (Ly6C++CD43++), while the non-classical monocytes 

combine low Ly6C with high CD43 (Ly6C+CD43++) (Ziegler-Heitbrock et al., 2010). 

CD14 is expressed by mouse monocytes, although the signal is too weak to be used 

as a mouse monocyte marker. Fate-mapping studies have revealed that in mouse, 

the abundant subset of Ly6Chi classical monocytes gives rise to Ly6Clo non-classical 

monocytes during the steady-state (Yona et al., 2013), suggesting that the same may 

be true in human. 
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1.1.2 Dendritic cells 

1.1.2.1 Myeloid DCs 

Peripheral blood DCs are divided into conventional (myeloid) and plasmacytoid 

subsets. Myeloid DCs account for approximately 50% of circulating DCs in human. 

They are identified by expression of MHC class II as well as the DC-associated 

integrin CD11c, while being negative for the monocyte markers CD14 and CD16. Two 

subsets of myeloid DC have been described, distinguished by differential expression 

of CD1c and CD141. Both express the common myeloid markers CD13 and CD33, 

indicating their derivation from the myeloid lineage. CD1c+ DCs outnumber CD141+ 

DCs in peripheral blood by approximately 10-fold (Ziegler-Heitbrock et al., 2010).  

Both subsets of blood myeloid DC have the potential to act as sentinel cells; in vitro, 

they secrete cytokines when activated, effectively stimulate T cells and rapidly mature 

in response to TLR agonists (Kohrgruber et al., 1999, Piccioli et al., 2007). However, 

blood DCs do not have typical characteristics of DCs as seen in tissue; they lack 

dendrites and also lack typical markers of mature DCs, such as CD83. In blood, they 

most likely do not present antigen to T cells (as they do during in vitro co-culture), as 

the close cell-to-cell contacts that are necessary would not be permitted under flow 

conditions. Rather, it is assumed that blood DCs are in transit, maturing into fully 

functional DCs only following entry into tissues. Blood CD11c+ DCs can be induced 

to undergo macrophage differentiation by culture with M-CSF (Robinson et al., 1999). 

However, the relationship between blood DCs and tissue phagocytes is not fully 

understood. 

1.1.2.2 Plasmacytoid DCs 

Plasmacytoid DCs (pDCs) are present in circulation in roughly equivalent numbers to 

myeloid DCs, and are potent producers of type I interferon (IFN) in response to viruses 

(Siegal et al., 1999). Following contact with viruses, it has been shown that pDCs can 

enter lymph nodes through high endothelial venules (HEVs) to prime T cells (Cella et 

al., 1999). Human pDCs have low CD11c expression and lack myeloid markers 

including CD14 and CD33, distinguishing them from conventional DCs and 

monocytes. CD303 (BDCA-2) expression is specific to pDCs in blood and is used as 

a marker to identify these cells by flow cytometry. The three DC subsets as well as 

the three monocytes subsets in human peripheral blood, in addition to the markers 

commonly used to identify them, are shown in Figure 1.1. 
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Figure 1.1. Monocyte and dendritic cell populations in human peripheral blood during 
steady-state conditions.  
Expression of markers commonly used to identify these populations are indicated. Additionally, 

frequencies (%) of monocyte subsets within the monocyte pool and dendritic cells within the 

dendritic cell pool are specified. cDC; conventional DC, pDC; plasmacytoid DC. 
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1.2 Other Leukocyte Subsets in Peripheral Blood 

Peripheral blood mononuclear cells (PBMC) include lymphocytes (which are sub-

divided into T, B and NK cells), monocytes and DCs. The frequencies of these 

populations in human vary across individuals, however lymphocytes typically 

comprise 65-90% of PBMC; monocytes comprise 10-30% of PBMC, while DCs are 

rare, only comprising 1-2% of PBMC. Also present in circulation are granulocytes of 

which the majority are neutrophils, the most abundant leukocyte subset in peripheral 

blood. 

1.2.1 T lymphocytes 

The CD3+ compartment of peripheral blood comprises CD4+ and CD8+ αβ T cells, in 

a roughly 2:1 ratio; CD4+ T cells comprise 25-60% of PBMC, while CD8+ T cells 

comprise 5-30% of PBMC. Both CD4+ and CD8+ T cells can be further sub-divided 

into naïve, effector, central memory and effector memory subsets that exist in resting 

or activated states, all of which express particular markers that can be used in their 

identification. CD4+ T cells give rise to so-called T helper (TH) cells, which assist other 

immune cell subsets in immunological processes, including maturation of B cells into 

plasma cells and memory B cells, as well as activation of cytotoxic T cell and 

macrophage killing activity. TH cells can be further classified into various functional 

subsets based on the expression profiles of specific cytokines, surface markers and 

transcription factors. These include regulatory T cells (Tregs), TH1, TH2, TH9 and TH17 

cells, as well as follicular helper T cells (TFH). Different subsets have different roles in 

the immune response to pathogens, with TH1 cells being most important against 

intracellular bacteria and protozoa, while TH2 cells are most effective against 

extracellular pathogens including helminths. Comprehensive reviews of the T helper 

cell functional subsets can be found in (Bluestone et al., 2009, Jiang and Dong, 2013, 

Nakayamada et al., 2012). 

CD8+ T cells, on the other hand, possess the ability to directly kill infected, transformed 

or otherwise damaged cells, giving them the name cytotoxic T cells. CD8+ T cells 

recognise short (8-10 amino acids) self- or pathogen-derived peptides presented on 

the surface of target cells by MHC class I molecules. Upon activation by a professional 

APC, CD8+ T cells are licensed to kill target cells, which they achieve via the release 

of cytotoxins (perforin and granzymes) or via cell-surface interactions, such as those 

mediated by Fas ligand on the T cell and Fas on the target cell. Both lead to activation 

of the intracellular caspase cascade and apoptosis of the cell. Of note, ~2-5% of CD3+ 



 
 

10 
 

cells in peripheral blood are gamma delta (γδ) T cells, an innate lymphoid population 

with important roles in immune responses to bacteria, recognition of lipid antigens and 

antigen presentation to conventional T cells. 

1.2.2 B lymphocytes 

B cells comprise ~5-20% of PBMC and are easily identified by expression of CD19 or 

CD20, expression of which is specific to B cells in peripheral blood. CD19 forms part 

of the B cell receptor complex, the B cell’s antigen receptor that upon activation, leads 

to proliferation and differentiation of the B cell, giving rise to effector cells. Circulating 

B cells comprise naïve and memory subsets, in addition to antibody-secreting 

plasmablasts (short-lived, proliferating antibody-secreting cells) and plasma cells 

(long-lived, non-proliferating antibody-secreting cells). The main function of B cells is 

the secretion of antibodies, making B cells the major mediators of humoral immunity 

(in contrast to T cells, which are the major mediators of cellular immunity). Antibodies 

assist in the removal of extracellular pathogens by several means, including 

opsonisation, initiation of the complement cascade and activation of the direct killing 

activities of cytotoxic T cells and NK cells (antibody-dependent cell-mediated 

cytotoxicity; ADCC). B cells express MHC class II, having important roles in antigen 

presentation, while they can also regulate the activity of other cell types via the 

production of a range of cytokines. 

1.2.3 Natural killer cells 

NK cells comprise ~5-15% of PBMC and represent the third immune cell subset that 

differentiates from the common lymphoid progenitor, which generates T and B 

lymphocytes. NK cells are distinguished from the other leukocyte subsets by 

expression of neural cell adhesion molecule (NCAM), also known as CD56, which 

facilitates their simple identification by flow cytometry. In contrast to their lymphoid 

counterparts, NK cells are effectors of the innate immune system as they do not 

require prior activation to kill target cells. NK cells play a role that is analogous to CD8+ 

cytotoxic T cells, defending the host from tumours and virally infected cells. They differ 

from cytotoxic T cells however in that they are capable of killing tumour cells that lack 

MHC class I. This led to the ‘missing self’ hypothesis, which predicted the existence 

of activating and inhibitory receptors on the surface of NK cells (Karre et al., 1986). 

Subsequent discovery of such classes of receptor revealed the molecular basis for 

how NK cells decide upon which targets to kill. Activating receptors include CD16, 

which recognises the Fc portion of IgG antibody and mediates ADCC (Kruse et al., 
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2014). Inhibitory receptors include the killer cell immunoglobulin-like receptors (KIRs), 

which recognise both classical (HLA-A, B, C) and non-classical (HLA-E) MHC class I 

ligands. Normal cells express MHC class I, with recognition by KIRs inhibiting NK cell 

killing activity (Moretta and Moretta, 2004). NK cells therefore integrate signals from 

a sophisticated repertoire of receptors that has evolved to regulate NK cell activity, 

ensuring that the host is protected against pathogens and the development of 

tumours, while preventing damaging autoimmune responses. 

1.2.4 Granulocytes 

Granulocytes (also known as polymorphonuclear cells) are a collection of cell types 

characterised by the presence of cytoplasmic granules. The neutrophil is the most 

abundant of the granulocytes, constituting 50-60% of total circulating leukocytes in 

peripheral blood. As professional phagocytes, neutrophils represent the most rapid 

responders of the immune system, reaching the site of an infection within 30-60 

minutes of its detection. Once they have arrived at the infection site, neutrophils are 

very short-lived, rapidly phagocytosing pathogens coated with antibodies and 

complement, as well as damaged cells or cellular debris, before undergoing 

programmed cell death. Neutrophils also produce neutrophil extracellular traps 

(NETs), comprising a web of fibres composed of chromatin and serine proteases that 

trap and kill microbes extracellularly. Furthermore, they produce inflammatory 

mediators including chemokines that recruit monocytes to the site of infection and 

stimulate their differentiation into macrophages, thus increasing phagocytosis and 

enhancing clearance of the infection. 

Other granulocytes include eosinophils (~1-5% of circulating leukocytes) which are 

important in immunity against extracellular pathogens including parasites and 

helminths. Eosinophils, along with mast cells and basophils, also mediate allergic 

responses via histamine release. Upon activation, these cells rapidly release 

preformed mediators including histamine (and heparin, in the case of mast cells), in 

addition to synthesising lipid mediators of inflammation (prostaglandins and 

leukotrienes). Also produced are a range of cytokines that activate effector functions 

of other immune cells. Mast cells circulate in an immature form, while mature (tissue) 

mast cells are extremely similar in appearance and function to basophils. Basophils 

are fully mature when in circulation, leading to the initial assumption that mast cells 

were tissue-resident basophils. However, it has since been shown that the two cells 

develop from different haematopoietic lineages (Franco et al., 2010). Basophils are 
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the least abundant type of immune cell in peripheral blood, accounting for ~0.1-0.3% 

of circulating leukocytes. 
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1.3 The Skin as an Immunological Organ 

As the largest organ in the body, the skin acts as a critical physical barrier, protecting 

the organs and tissues within from the external environment. The skin is also home 

to vast numbers of immune cells. These immune cells are diverse in many aspects 

including origin and function, and maintain an immunological barrier to infection that 

complements the physical barrier provided by the tissue itself. In this section, I will 

outline the anatomical make-up of the largest organ in the body, before discussing in 

detail the immune cells that are present. 

1.3.1 Anatomy of the skin 

The skin is a highly complex organ which fulfils a variety of functions including, but 

not limited to, physical sensing, temperature control, barrier function and immunity, 

as recently reviewed in a special issue of Science entitled “Exploring the Skin” (21 

November 2014, Vol 346, Issue 6212). Human skin consists of two main 

compartments, namely the outer epidermis and underlying dermis. The epidermis 

forms a physical barrier, limiting the entry of microorganisms that make up the 

substantial microbiome on the skin, as well as other pathogens and particulate matter 

in the environment. Composed of four stratified layers, the epidermis is made up of 

specialised epithelial cells called keratinocytes, which constitute more than 90% of 

total epidermal cells. The outermost layer of the epidermis, the stratum corneum, is 

composed of dead keratinocytes (known as corneocytes) that perform the main 

barrier functions. Keratinocytes in the basal layer of the epidermis (known as the 

stratum basale) are responsible for establishing the upper layer of corneocytes 

through cell division, their progeny migrating upwards as they differentiate and 

eventually die. Keratinocytes do not only provide a structural role however, as they 

provide key support in immune defence through production of cytokines, chemokines 

and antimicrobial proteins in response to pathogenic stimuli (Nestle et al., 2009). 

Epidermal keratinocytes express several TLRs (Janeway, 1989), TLR activation on 

keratinocytes leading to the production of a number of inflammatory chemokines 

including CXCL8, CCL2 and CXCL10, which control the recruitment of neutrophils, 

monocytes and inflammatory T cells, respectively. In addition, keratinocytes can be 

induced to secrete inflammatory mediators such as TNFα and type I IFN (Miller and 

Modlin, 2007). Specialised cells of the epidermis also include melanocytes, which 

produce the skin pigment melanin, and Langerhans cells, a specialised type of DC 

and the major epidermis-resident immune cell. 
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While the epidermis has a simple histology, the underlying dermis is anatomically 

more complicated, with a far greater diversity of immune cells. The dermis is 

composed of a network of resident stromal cells called fibroblasts that produce a 

collagen-rich extracellular matrix. Separated from the epidermis by a continuous 

basement membrane, the dermis contains many specialised immune cells, including 

DCs (of which there are several subsets), CD4+ and CD8+ T cells, innate lymphoid 

populations such as γδ T cells and NK cells, in addition to macrophages and mast 

cells. Blood vessels and lymphatic vessels are distributed throughout the dermis, 

facilitating entry of immune cells from the blood and exit to the lymph node, 

respectively. Hair follicles serve as a niche for keratinocyte, melanocyte and mast cell 

progenitors (Kumamoto et al., 2003). The anatomy of human skin and the immune 

cells which are resident there during normal conditions are shown in Figure 1.2. 
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Figure 1.2. Anatomy and resident immune cells of healthy human skin. 
The complex structure of the skin reflects the range of functions that it performs, which include 

maintaining a protective barrier, regulating body temperature, gathering sensory information 

from the environment and having an active role in the immune system. The epidermis is 

organised into distinct layers of keratinocytes at different stages of differentiation, namely the 

stratum basale, stratum spinosum, stratum granulosum and the outermost layer, the stratum 

corneum, which is responsible for the vital barrier function of the skin. Langerhans cells 

represent the specialised DCs of the epidermis, while CD8+ cytotoxic T cells can be found in 

the stratum basale and stratum spinosum. The dermis is composed of collagen, elastic tissue 

and reticular fibres. It contains many specialised immune cells, including dermal DCs, CD4+ 

and CD8+ T cells, innate lymphoid cells such as γδ T cells, macrophages and mast cells. 

Fibroblasts in the dermis also have important immune functions including cytokine production. 

Blood and lymphatic vessels are present throughout the dermis. The entire surface of the skin 

receives its nerve supply from the central nervous system, which gathers sensory information 

regarding touch, pressure, temperature and pain. Figure adapted from (Nestle et al., 2009) 
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1.3.2 Mononuclear phagocyte system (MPS) of the skin 

The MPS in the skin consists of a number of different cell types, each with unique but 

overlapping functions with respect to the immune response, including phagocytosis, 

cytokine production and antigen presentation. Data obtained from countless studies 

performed in both human and mouse have informed us of their origin and function. 

Here, I will attempt to summarise the existing literature on the MPS in skin, beginning 

with the specialised epidermal DC population, Langerhans cells. 

1.3.2.1 Langerhans cells 

Langerhans cells (LCs) represent the specialised DC of the epidermis, where they 

constitutively reside in the suprabasal layers and are regularly spaced between 

keratinocytes (Valladeau and Saeland, 2005). Their location makes LCs the first 

immunological barrier to the external environment. Studies using human skin explants 

have shown that upon uptake of exogenous antigen, LCs stop sampling the external 

environment, upregulate and redistribute MHC class II molecules on their cell surface, 

and upregulate their expression of co-stimulatory molecules such as CD40 as well as 

the chemokine receptor CCR7 (Larsen et al., 1990). In mouse, up-regulation of CCR7 

has been shown to be essential for LC migration via dermal lymphatic vessels to skin 

draining lymph nodes (Ohl et al., 2004), where they localise in T-cell areas and 

present antigen to T cells (Randolph et al., 2008). LCs migrate to the draining lymph 

nodes during the steady state (Hemmi et al., 2001), while their rate of migration has 

been shown to be increased during inflammation (Stoitzner et al., 2005). 

LCs in both human and mouse are identified based on the expression of the 

haematopoietic marker CD45 and MHC class II. They also express langerin (also 

known as CD207) on the cell-surface, a type II C-type lectin receptor that binds 

mannose and related sugars (Valladeau et al., 2000). A unique feature of LCs is the 

presence of a special type of intracytoplasmic organelle known as the Birbeck 

granule. Their function remains poorly defined, however it has been shown that their 

formation is a consequence of antigen capture by langerin, leading to a proposed role 

in antigen processing and presentation (Valladeau et al., 2000). Other surface 

markers used to identify LCs include CD1a, a human-specific cell surface molecule 

expressed at very high levels by LCs and which presents microbial lipid antigens to T 

cells, and E-cadherin, an adhesion molecule that anchors LCs to neighbouring 

keratinocytes (Tang et al., 1993). 
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Most lymphoid-organ and cutaneous DC populations are eliminated following lethal 

irradiation, being replaced by circulating donor-derived precursor cells following 

congenic HSCT (Holt et al., 1994, Iijima et al., 2007). LCs in humans (and mice) are 

partially resistant to radiotherapy however, establishing a unique origin of these cells. 

Recipient LCs that remain in mice following the radiation regimen are able to 

repopulate the skin independently of donor circulating precursor cells, with 

incorporation of bromodeoxyuridine (BrdU) confirming that recipient LCs were 

proliferating in situ (Merad et al., 2008, Merad et al., 2002). Therefore, in the absence 

of inflammation, it is hypothesised that epidermal LCs are maintained through self-

renewal. It has been shown that murine LCs are seeded in the epidermis from 

embryonic (yolk sac-derived) precursors prior to birth, independent of haematopoiesis 

(Merad et al., 2008), and that they have a relatively long half-life during the steady-

state, estimated at 53-78 days (Vishwanath et al., 2006). Indeed, following conditional 

ablation of LCs in langerin-DTR (diphtheria toxin receptor) transgenic mice, their 

repopulation occurs slowly over several weeks, compared with several days for 

conventional DCs (Kissenpfennig et al., 2005). While equivalent studies are more 

difficult to carry out in humans, experimental results suggest that human LCs share 

similar properties with mouse LCs in terms of their origin and reconstitution kinetics. 

Human LCs proliferate in situ (Czernielewski and Demarchez, 1987, Vaigot et al., 

1985), while donor LCs have been shown to persist for years in a recipient of a human 

limb graft (Kanitakis et al., 2004). Furthermore, recipient LCs have been identified in 

the epidermis more than one year after transplantation in patients that have received 

allogeneic HSCT, despite complete engraftment of donor cells in the blood (Collin et 

al., 2006). These results establish that, similar to their mouse counterparts, human 

LCs can renew locally and are able to resist radiation-based transplantation regimens. 

LCs that are lost during the steady-state or following minor injuries are repopulated 

locally and independently of circulating precursor cells throughout the lifespan of the 

mouse. Cell-cycle analysis has shown that ~2-3% of LCs in mouse and human 

epidermis are proliferating (Merad et al., 2008); this is likely sufficient to maintain LC 

numbers during the steady-state due to their slow rate of turnover. Renewal of LCs 

lost during inflammation appears to involve a different mechanism however. Following 

exposure of murine skin to ultraviolet B radiation, which leads to inflammation and 

severe LC loss, repopulation of LCs is mediated by circulating monocytes (Ginhoux 

et al., 2006, Merad et al., 2002). Here, repopulation of epidermal LCs by blood 

monocytes was dependent on expression of the chemokine receptors CCR2 and 

CCR6 by monocytes. The infiltrating monocytes proliferated locally and repopulated 
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the LC pool in 10-15 days (Merad et al., 2002). Of note, in absence of inflammation 

(i.e. during the steady-state), mice that lack CCR2 or CCR6 have normal numbers of 

LCs in the epidermis (Cook et al., 2000, Sato et al., 2000). Observations made using 

human cells in vitro support a similar process occurring in human. Monocytes give 

rise to LCs during in vitro culture with granulocyte macrophage colony-stimulating 

factor (GM-CSF), IL-4 and transforming growth factor-beta 1 (TGF-β1), while 

differentiation into LCs is accompanied by the sequential expression of CCR2 and 

CCR6 (Geissmann et al., 1998). Expression of TGF-β1 by keratinocytes, as well as 

LCs themselves, is required for LCs to develop in vivo (Borkowski et al., 1996). 

Experiments performed by our research group using skin-equivalent models, in which 

skin is reconstituted in vitro from skin stem cells, showed that monocytes can 

differentiate into LCs in the epithelium. This study also proposed that chemokine (C-

X-C motif) ligand 14 (CXCL14) is important in guiding monocytes to the epidermal 

niches where this differentiation takes place (Schaerli et al., 2005). The role of 

CXCL14 (and other chemokines) in the development and maintenance of tissue 

phagocytes is discussed later on. 

Of note, an additional epidermal DC subset, distinguishable from LCs by the 

expression of macrophage mannose receptor (MMR; also known as CD206), is found 

in the inflamed epidermis of patients with atopic dermatitis (Wollenberg et al., 2002). 

Referred to as inflammatory dendritic epidermal cells (IDECs), these cells 

overexpress high-affinity Fc receptor for IgE (FcεR1), facilitating their reactivity to IgE-

bound allergens and resulting in the pro-inflammatory allergen-specific response 

observed in these patients (Bieber, 2007).  

1.3.2.2 Dermal DCs 

The DC populations found in peripheral tissue may be divided into conventional DCs, 

plasmacytoid DCs and monocyte-derived DCs. During steady-state conditions, pDCs 

are absent from the skin, only being found in inflamed skin where they promote wound 

repair through production of type I interferons (Gregorio et al., 2010), and so they will 

not be discussed here. In mouse, it has been shown that Ly6Chi monocytes (the 

equivalent of human CD14++CD16- classical monocytes) continuously extravasate 

from the blood into tissues including skin and lung during the steady-state, where they 

perform functions including carriage of antigen to draining lymph nodes and activation 

of T cells (Jakubzick et al., 2013, Tamoutounour et al., 2013). In these studies 

however, differentiation of monocytes into DCs was not observed, revising a long-

held view that monocytes differentiate into macrophages or DCs by default upon 
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entering tissues. Moreover, McGovern et al. has recently shown that CD14+, non-

autofluorescent cells in human dermis, traditionally referred to as CD14+ DCs, align 

more closely with blood monocytes and dermal macrophages at both a phenotypic 

and transcriptional level, and are distinct from conventional DCs. The authors also 

demonstrated that in patients following HSCT, reconstitution of CD14+ dermal cells 

coincided with the recovery of blood monocytes (McGovern et al., 2014, Haniffa et al., 

2009). The short half-life of these cells during the steady-state (< 6 days) has led to 

the suggestion that CD14+ cells in the dermis are in fact a short-lived, resident 

monocyte population, and provides new evidence for the fate of monocytes that leave 

the blood to enter peripheral tissues on a continuous basis.  

Conventional DC populations in human dermis also have a short life-span (in contrast 

to epidermal LCs), while it seems that they too are dependent on blood-borne 

precursors for their continual replenishment (McGovern et al., 2014). It has been 

shown in mouse that conventional DCs are derived from the circulating myeloid DC 

populations already discussed, sometimes referred to as pre-conventional DCs 

(Geissmann et al., 2010). Attempts have been made to identify cell surface markers 

which can be used to distinguish the various DC subsets that reside in human dermis 

under normal conditions. Human dermis is populated by at least three DC subsets; 

CD141hi DCs (Haniffa et al., 2012), CD1a+ DCs (Angel et al., 2006) and CD14+ “DCs” 

(although recent evidence suggests that they may in fact be a tissue-resident 

monocyte population – see above) (Haniffa et al., 2009, Nestle et al., 1993). CD1c 

has also been shown to be a useful marker for identifying myeloid DCs in the dermis 

(Nestle et al., 1993, Zaba et al., 2007). CD141hi DCs lack CD14 expression, while 

CD14+ DCs co-express CD141 which is further upregulated during spontaneous 

migration from skin explant culture (Chu et al., 2012). Recently, it has been shown 

that CD141hi tissue DCs are the counterparts of CD141+ blood DCs (Haniffa et al., 

2012). 

1.3.2.3 Dermal macrophages 

Macrophages, the phagocytic cells first described over a century ago by Metchnikoff 

(Gordon, 2008), are distributed throughout the body being found in almost every 

tissue. In similar fashion to LCs, the relationship between blood monocytes and tissue 

macrophages is complicated and represents one of the most rapidly evolving fields of 

research within immunology. As a single cell type, macrophages exhibit unparalleled 

heterogeneity, with macrophages in different anatomical locations displaying 

remarkably different functions Examples include clearance of surfactant by alveolar 
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macrophages in the lung, synaptic pruning and immune surveillance in the brain by 

microglia and regulation of the host-microbe balance by intestinal macrophages 

(Davies et al., 2013a). The suggestion that blood monocytes give rise to tissue 

macrophages was first made by Van Furth and colleagues, who observed a rapid 

entry of monocytes from the blood into the peritoneal cavity in a model of sterile 

inflammation (van Furth and Cohn, 1968). It was later discovered that blood and bone 

marrow precursors can be differentiated into macrophages by in vitro culture with GM-

CSF (Stanley et al., 1976, Stanley et al., 1975), while more recent studies have 

confirmed the precursor-progeny relationship between blood monocytes and tissue 

macrophages in the context of infection and inflammation (Epelman et al., 2014, 

Tamoutounour et al., 2013). During the inflammatory response, tissue macrophages 

can become polarised into one of several specific activation states, depending on the 

type of inflammation. Two well-established polarised phenotypes are the classically-

activated “M1” macrophages and alternatively-activated “M2” macrophages 

(reviewed by (Mantovani et al., 2005)). The M1 phenotype is linked with TH1 

responses and IFN-γ production by antigen-activated immune cells, leading to a 

strong pro-inflammatory macrophage phenotype characterised by production of 

interferons and antimicrobial effectors such as nitric oxide. The M2 phenotype, on the 

other hand, is induced by the TH2-associated chemokines IL-4 and IL-13 and is 

characterised by enhanced endocytic activity, increased MHC class II expression and 

reduced pro-inflammatory cytokine secretion (Martinez and Gordon, 2014). During the 

steady-state, the function of macrophages, as well as their relationship with blood 

monocytes, is less clear. 

Human dermal macrophages are large cells with a foamy cytoplasm that express 

CD14 but not CD1a. A study of the phenotypic profile of dermal DCs and 

macrophages in normal human skin identified CD163 (a scavenger receptor 

expressed by most tissue macrophages) and factor XIIIa (a component of the 

coagulation cascade with a potential function in wound healing) as useful markers for 

macrophage identification (Zaba et al., 2007). Macrophages are also highly 

autofluorescent cells, their autofluorescence being most visible in channels excited 

by the 488 nm laser when phenotyping by flow cytometry (Haniffa et al., 2009). Dermal 

macrophages are predominantly sessile, i.e. are largely absent among emigrant cells 

during skin tissue culture, although it has been shown that they are capable of 

migrating to lymph nodes under certain conditions of inflammation (van Furth et al., 

1985). In comparison to dermal DCs, dermal macrophages have a poor capacity for 

antigen presentation. They express genes that support specific roles in scavenging 
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cell debris and killing microorganisms, in addition to expressing high levels of the anti-

inflammatory chemokine IL-10 (Tamoutounour et al., 2013), suggesting that they may 

have a more anti-inflammatory, wound healing, M2-like function. Some dermal 

macrophages, especially those located in close proximity to blood vessels, produce 

chemokines that play a role in the extravasation of neutrophils into the dermis during 

infection (Abtin et al., 2014). Therefore, in addition to roles in tissue homeostasis and 

repair, dermal macrophages might have important roles in the immune response to 

invading microorganisms. 

Human dermal macrophages have a slower rate of turnover and a longer half-life than 

dermal DCs (Haniffa et al., 2009, McGovern et al., 2014). Early reports postulated 

that all tissue macrophages were derived from blood monocytes. However, it has 

since become apparent that the majority of macrophage subsets are seeded in tissues 

from yolk sac-derived progenitors during embryonic development, prior to the 

appearance of the haematopoietic system. Furthermore, they maintain themselves 

during adult life by local proliferation, independently of input from circulating 

precursors (Schulz et al., 2012, Perdiguero and Geissmann, 2016). However, there 

is recent evidence to show that macrophages found in the dermis of adult mice consist 

of a subset that is established prenatally and a subset that develops after birth from 

Ly6Chi monocytes (Jakubzick et al., 2013, Tamoutounour et al., 2013). It has been 

postulated that the contribution of monocytes to the dermal macrophage pool may 

increase throughout life, especially following episodes of inflammation; a feature that 

has been shown for cardiac macrophages in mouse (Epelman et al., 2014). Therefore, 

it is likely that the origin of dermal macrophages is complex, consisting of a pool that 

is established prenatally and a pool established after birth. 

1.3.2.4 Summary of the mononuclear phagocyte system 

Recent findings have challenged the overly simplistic view that there is a population 

of cells arising from a bone marrow progenitor, which enter the blood as monocytes 

and subsequently enters tissues, where they differentiate into macrophages and DCs. 

Certain members of the MPS which are resident in peripheral tissues are of 

haematopoietic origin and require continuous reconstitution from blood-borne 

precursors (conventional DCs for example). Other populations however, including 

macrophages and LCs, are seeded during embryogenesis and maintained in 

adulthood by local proliferation, independently of the haematopoietic system. 

Renewal of tissue-resident MPS populations may therefore be achieved by several 

mechanisms, namely 1) self-renewal of differentiated cells, 2) differentiation of a 



 
 

22 
 

tissue-resident precursor or 3) extravasation and differentiation of circulating 

precursors such as blood monocytes (Merad et al., 2002, Kennedy and Abkowitz, 

1998). In reality, these mechanisms are unlikely to be mutually exclusive, and could 

operate in parallel or sequentially during the life of the organism. Which mechanism(s) 

predominate at any given time is also likely to depend on environmental influences 

such as infection and inflammation. The relationship between the haematopoietic 

progenitor cells, circulating precursors and differentiated cells of the MPS 

(macrophages and DCs) which are present in normal human skin is shown in Figure 
1.3. 



 
 

23 
 

 

Figure 1.3. The mononuclear phagocyte system. 
The cells of the mononuclear phagocyte system are derived from multipotent progenitor cells 

(myeloid colony-forming units (M-CFU)) in the bone marrow of the mature adult or the yolk sac 

of the developing embryo. In the bone marrow, monocytes develop from a common myeloid 

progenitor (CMP), via the pro-monocyte precursor step. Monocyte exit into the bloodstream is 

dependent on expression of the chemokine receptor CCR2. The CMP also gives rise to the 

common DC progenitor (CDP), which develops into pre-DCs in the bone marrow before being 

released into circulation. The major subset of classical monocytes gives rise to the 

intermediate and non-classical subsets. During the steady-state, there is likely continuous low-

level recruitment of classical and non-classical monocytes into tissues, where they replenish 

the resident macrophage pool, having sentinel and wound-healing functions. Classical 

monocytes likely also give rise to tissue cells with DC-like functions, including superior antigen-

presenting capacity in comparison to macrophages, and which traffic to draining lymph nodes 

where they activate T cell responses. In contrast, Langerhans cells in the epidermis and a pool 

of dermal macrophages are maintained during the steady-state through local proliferation. 

Recent studies indicate that they initially develop from myeloid stem cells in the yolk sac of the 

developing embryo, and are seeded in tissues before birth. In response to inflammation, 

classical monocytes differentiate into inflammatory macrophages, which depending on the 

inflammatory milieu, may polarise into specific phenotypes, broadly defined as M1 and M2. 

Figure adapted from (Lawrence and Natoli, 2011).
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1.3.3 Other immune cell types present in healthy human skin 

1.3.3.1 T cells 

T cells are present in vast quantities in healthy skin, with T cells in human skin 

outnumbering those found in the blood. CD4+ T cells are found in large numbers in 

the dermis, with only a small fraction of skin CD4+ T cells being located in the 

epidermis. In contrast, CD8+ T cells are predominantly localised to the epidermis in 

human, where they persist for long periods and are commonly referred to as tissue-

resident memory T cells (TRM). In contrast to T cells, B cells are rare in healthy skin 

(Mueller et al., 2014). 

1.3.3.2 Innate lymphoid cells 

A number of innate lymphoid cell (ILC) populations are found in healthy human skin. 

γδT cells in the dermis and epidermis contribute to immune responses as well as 

maintaining barrier integrity. Dendritic epidermal γδT cells (DETC), a subset that 

exists only in mice, produce molecules including JAML and CD100 in response to 

infection or wounding that assist in wound closure. In addition, several other innate 

lymphoid populations have been described in mouse skin, including NKp46+ NK cells 

and Thy-1+ IL-13-producing ILC2 cells, and there is evidence to suggest that 

equivalent populations exist in healthy human skin (Mueller et al., 2014). 

1.3.3.3 Mast cells 

Mast cells are derived from haematopoietic progenitor cells and undergo 

differentiation and maturation in peripheral tissues, not being found as mature cells in 

the blood. The stem cell growth factor receptor (SCFR, also known as c-kit) is typically 

expressed on mast cells in various tissues, independently of maturation stage or 

activation status, and serves as a good marker for this cell type (Valent and 

Bettelheim, 1992). The prototypical function of mast cells is IgE receptor-mediated 

release of histamine in allergic reactions. Mast cells in the dermis therefore have an 

important role in the pathology of allergic skin conditions such as atopic dermatitis 

(Liu et al., 2011b). 
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1.3.4 Methods employed to study immune cells in human skin 

Investigations into the functions of human leukocytes are usually conducted on 

immune cells isolated from blood. The reason for this is clear; obtaining a peripheral 

blood sample from a human donor is much less invasive than taking a tissue sample. 

Furthermore, it is often with considerable difficulty that immune cells are isolated from 

solid organs such as skin, while immune cell isolation from blood is comparatively 

easy. Therefore, despite the relative ease with which skin samples can be obtained 

compared to other organs, we still have only a rudimentary understanding of the origin 

and function of many of the immune cell subsets which reside there. 

Much research on immune cell function in skin has employed imaging techniques 

such as immunofluorescence and immunohistochemistry, which allow the 

visualisation of cell-associated markers in situ. However, these techniques are limited 

by the number of colours that can be used simultaneously (generally up to four). 

Interest is therefore extremely high in using isolation techniques that allow multicolour 

flow cytometry on immune cells extracted from skin, as this allows much more 

sophisticated and complex phenotyping to be performed. Several groups, including 

ours, have devised techniques for the obtaining single cell suspensions from skin 

samples. Some of these techniques involve initial mechanical disruption of the tissue, 

followed by the release of cells using an enzyme-based digestion protocol. Others 

involve allowing skin cells to spontaneously emigrate from skin explants in culture, 

although in these protocols there is an extended period of time (generally 2-3 days) 

between tissue sampling and immune cell recovery. Furthermore, certain cell types 

present in human skin (dermal macrophages for instance) do not spontaneously 

emigrate from skin explants, instead remaining fixed in the tissue, and can only be 

recovered by proteolytic digestion (Haniffa et al., 2009). 

The recruitment of immune cells to peripheral sites depends on their extravasation 

from the blood, followed by chemotaxis to their intended destination within the tissue. 

Chemokines are heavily involved in both of these processes. In cooperation with 

adhesion molecule interactions, chemokines present on blood microvascular 

endothelial cells contribute to leukocyte extravasation, whereas chemokine-producing 

tissue cells define the destination of extravasated leukocytes. Here, I will introduce 

the human chemokine system and discuss its role in controlling leukocyte migration, 

with particular attention paid to the homeostatic immune processes occurring in skin 

during the steady-state. This will bring me on to the focus of my PhD, the human 

chemokine CXCL14.
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1.4 The Chemokine Superfamily 

Chemokines are crucial players in instructing all immune cells where to go. From their 

initial development and maturation in the primary lymphoid organs (bone marrow and 

thymus) and exit into the bloodstream, to their extravasation into peripheral tissues, 

to their arrival at distinct locations within the tissue where differentiation to effector 

cells takes place, chemokines are present at every step along the life cycle of a 

leukocyte. There is emerging evidence, however, that chemokines do not only 

regulate cell migration, instead having sophisticated effects on target cells that include 

adhesion, survival and proliferation (Burns et al., 2006), as well as inhibition of HIV 

entry (Berger et al., 1999, Oberlin et al., 1996). Furthermore, chemokines have their 

own functions (independent of interacting with host cells), such as direct antimicrobial 

activity against many types of pathogenic microorganisms (Wolf and Moser, 2012). 

This remarkable diversity in the functions of chemokines is an important reason why 

chemokine biology has become such an active area of research since the discovery 

of the first chemokine, namely chemokine (C-X-C motif) ligand 8 (CXCL8). 

1.4.1 Chemokines 

The field of chemokine research began nearly 30 years ago with the discovery of 

CXCL8 (also known as interleukin-8) by peptide sequencing, which followed the 

observation that activated monocytes secreted a soluble factor that showed specific 

chemoattractant activity for neutrophils (Baggiolini et al., 1989). Several agonists 

which demonstrated chemotactic activity on immune cells were known at the time, 

including the complement protein C5a, the formylated peptide fMet-Leu-Phe, and the 

lipid leukotriene B4. CXCL8 triggered responses in neutrophils similar to those 

induced by the known chemoattractants, but acted through a novel receptor, leading 

to the suggestion that CXCL8 represented a novel class of chemotactic proteins. The 

search for proteins related to CXCL8 began, and the analogs identified were named 

“chemokines”, in abbreviation of “chemotactic cytokines”. The three-dimensional 

structure of CXCL8 has since been elucidated (Clore et al., 1990). It has all the 

hallmarks of the chemokine family and is shown in Figure 1.4. 

Chemokines are structurally very similar, highly basic proteins of 70-125 amino acids 

with molecular masses ranging from 6 to 14 kDa. It is possible to divide the chemokine 

family into subsets based on the position of two highly conserved, N-terminal cysteine 

residues. Although sequence identity among chemokines is often quite low, their 

overall tertiary structure is strikingly similar (Clark-Lewis et al., 1995). Most 
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chemokines contain four cysteine residues in highly conserved positions which form 

two disulphide bonds, one between the first and third cysteines and one between the 

second and fourth cysteines. These disulphide bonds are instrumental in determining 

the 3-dimensional folding of the peptide, creating a structure which contains three β-

sheets with short loops (see Figure 1.4). The two major structural subsets of 

chemokines are the C-X-C chemokines (also known as α-chemokines), where the 

two N-terminal cysteines are separated by a single amino acid; and the C-C 
chemokines (also known as β-chemokines), where the two N-terminal cysteines are 

adjacent. There are only three chemokines that fall outside of these two categories. 

XCL1 (also known as lymphotactin) and XCL2, which possess only two rather than 

the usual four cysteine residues, corresponding to the second and fourth cysteines of 

the other classes. The third is CX3CL1 (fractalkine), in which the two N-terminal 

cysteines are separated by a sequence of three amino acid residues. The human 

chemokine superfamily is summarised in Table 1.1. 

Although there are examples of membrane-bound chemokines (CX3CL1 for example 

(Imai et al., 1997)), most chemokines are secreted. To elicit chemotaxis in vivo 

therefore, they must be immobilised on cell or extracellular matrix surfaces. Being 

highly basic proteins consisting of many positively charged amino acids, 

immobilisation of chemokines occurs by low-affinity interaction with negatively 

charged glycosaminoglycans (GAGs) (Krohn et al., 2013, Lortat-Jacob et al., 2002). 

Proteoglycans consist of a protein core to which GAG chains are attached, GAGs 

representing a heterogeneous population of large, unbranched polysaccharides that 

fall into five main groups; heparin, heparan sulphate, chondroitin sulphate, dermatan 

sulphate and hyaluronic acid. They are ubiquitously present in the extracellular matrix 

and on the surface of cells, including leukocytes themselves. Interaction with GAG is 

thought to facilitate the retention of chemokines on cell surfaces, thereby forming a 

high local concentration required for cell activation. This interaction occurs via the C-

terminal portion of the chemokine, leaving the N-terminal region of the chemokine free 

to activate the receptor (Handel et al., 2005, Proudfoot, 2006). 
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Figure 1.4. Ribbon structure of the prototypical chemokine CXCL8. 
An N-terminal region precedes the first cysteine residue. Following the first two cysteines is a 

loop of approximately ten residues which, in most cases, is succeeded by one strand of a 310 

helix. The region of the peptide between the second cysteine and the 310 helix is known as the 

N-loop. The single-turn 310 helix is succeeded by three anti-parallel β strands, forming a β-

pleated sheet. Finally, there is a C-terminal α-helix. Each structural unit is connected by turns 

known as the 30s, 40s and 50s loops, which reflects the numbering of residues in the mature 

protein. The 30s and 50s loops contain the latter two of the four cysteine residues. The first 

two cysteines following the N-terminal sequence limit the flexibility of the N-loop, owing to the 

disulphide bridges formed with the third and fourth cysteines. Despite this, the flexibility of the 

N loop is greater than the flexibility of the other regions of the protein (excluding the N and C 

termini). The flexibility of the N loop is thought to play an important role in chemokine receptor 

binding and/or activation. Figure adapted from (Fernandez and Lolis, 2002). 

 

1.4.2 Chemokine receptors 

Chemokine receptors are 7TM GPCRs, typically 340-370 amino acids in length, which 

are embedded in the lipid bilayer of the cell membrane. Differentially expressed on all 

leukocytes, most chemokine receptors signal following ligand binding via coupling of 

the receptor to G proteins of the Gi subtype. This was first elucidated in experiments 

which showed that treatment of neutrophils with Bordetella pertussis toxin inhibited 
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stimulation with CXCL8 (Thelen et al., 1988). The conclusion that the CXCL8 receptor 

is coupled to heterotrimeric Gi proteins, which are sensitive to pertussis toxin 

treatment, has become the paradigm for the signal transduction of all chemokine 

receptors known today. In the human genome, a total of 18 ‘chemotactic’ chemokine 

receptors have been identified to date, namely CCR1-10, CXCR1-6, XCR1 and 

CX3CR1 (Table 1.1). The exception to this paradigm is the atypical chemokine 

receptors which do not signal, instead appearing to shape chemokine gradients and 

reduce inflammation by scavenging chemokines in a G protein-independent manner 

(Nibbs and Graham, 2013). There are five atypical chemokine receptors; DARC 

(ACKR1), D6 (ACKR2), CXCR7 (ACKR3), CCRL1 (ACKR4) and CCRL2 (ACKR5). 

The structure of a typical human chemokine receptor (CCR1) is shown in Figure 1.5. 

 

 

Figure 1.5. Structure and amino acid sequence of the human chemokine receptor CCR1. 
The typical structure of a chemokine receptor is depicted, showing the seven transmembrane 

domains (numbered I-VII), three extracellular loops (ECL1-3) and three intracellular loops 

(ICL1-3). The shaded horizontal band represents the cell membrane. Amino acids are listed 

with a single letter code. The residues highlighted in red depict peptide motifs which are 

conserved among all typical chemokine receptors. 
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Although sequence identity between signalling chemokine receptors varies 

considerably (ranging from 25-80%), they all share several peptide motifs which are 

also highly conserved throughout vertebrate evolution. The amino acid sequence 

DRYLAIV (Asp-Arg-Tyr-Leu-Ala-Ile-Val), or subtle variations of that sequence, is 

found in the cytoplasmic region of the receptor at the junction of the third 

transmembrane domain (TM-III) and the second intracellular loop (ICL-2). It has been 

proposed that the DRYLAIV motif plays a crucial role in coupling the receptor to 

intracellular signal transduction pathways following chemokine engagement 

(Nomiyama and Yoshie, 2015), especially since the motif is substantially altered in 

the atypical chemokine receptors, indicating that this sequence is necessary for G 

protein-coupling. There are several other motifs and residues that are conserved 

among chemokine receptors. These include TLPxW, a conserved motif located in the 

2nd transmembrane region and NPxxY, a conserved motif located at the boundary 

between the 7th transmembrane region and the cytoplasmic tail. These conserved 

amino acid sequences are thought to act as molecular “micro-switches”, in that they 

mediate the transition of the receptor from an inactive to an active state by inducing 

conformational changes (Nygaard et al., 2009). The conserved motifs important to 

chemokine receptor function are indicated in Figure 1.5. A comprehensive review of 

the functional roles of conserved chemokine receptor motifs can be found in 

(Nomiyama and Yoshie, 2015). 
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Table 1.1. The human chemokine superfamily. 
 

Chemokine 
   

Common name Systematic name Receptor Leukocyte distribution Key immune functions 
IL-8 CXCL8    

GCP-2 CXCL6 CXCR1 Neutrophil > monocyte, NK, mast cell, basophil, 
CD8+ T cell Neutrophil trafficking 

     
NAP-2 CXCL7 CXCR2 Neutrophil > monocyte, NK, mast cell, basophil, 

CD8+ T cell 
Neutrophil egress from bone marrow, neutrophil 
trafficking 

ENA-78 CXCL5  
  

GROα CXCL1    
GROβ CXCL2    
GROγ CXCL3    
PF4 CXCL4  

 
 

IP-10 CXCL10 CXCR3 TH1, CD8+ TCM and TEM, Treg, TFH, NK, NKT, pDC, B 
cell 

TH1-type adaptive immunity 

MIG CXCL9  
 

 
I-TAC CXCL11    
SDF-1 CXCL12 CXCR4 Most (if not all) leukocytes Haematopoiesis, organogenesis, bone marrow homing 

BCA-1 CXCL13 CXCR5 B cell, TFH, TFR, CD8+ TEM B and T cell trafficking to B cell zone of lymph nodes 

SR-PSOX CXCL16 CXCR6 TH1, TH17, γδ T, ILC, NKT, NK, plasma cell Innate lymphoid cell function, adaptive immunity 
DMC CXCL17 Unknown  Macrophage homing to mucosal sites, in particular lung 
BRAK CXCL14 Unknown  Monocyte and macrophage homing to mucosal sites 

MCP-1 CCL2  
 

 
MCP-4 CCL13 CCR2 Classical monocyte, macrophage, TH1, iDC, 

basophil, NK 
Monocyte trafficking, TH1-type adaptive immunity 

MCP-3 CCL7 CCR5  
 

MCP-2 CCL8 CCR1   
MIP-1β CCL4 CCR3   
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MIP-1α CCL3 CCR5 Monocyte, macrophage, TH1, NK, Treg, CD8+ T cell, 
DC, neutrophil 

TH1-type adaptive immunity 

   
 

 
RANTES CCL5    
MPIF-1 CCL23  

 
 

HCC-1 CCL14 CCR1 Monocyte, macrophage, neutrophil, TH1, basophil, 
DC 

Innate and adaptive immunity 

HCC-2 CCL15  
 

 
HCC-4 CCL16    

Eotaxin CCL11 CCR3 Eosinophil > basophil, mast cell TH2-type adaptive immunity, eosinophil distribution and 
trafficking 

Eotaxin-2 CCL24    
Eotaxin-3 CCL26    

TARC CCL17 
CCR4 TH2, skin- and lung-homing, T, Treg, TH17, CD8+ T, 

monocyte, B cell, iDC 
Homing of T cells to skin and lung, TH2-type immune 
responses MDC CCL22 

MIP-3α CCL20 CCR6 TH17 > iDC, γδ T, NKT, NK, Treg, TFH iDC trafficking, TH17 adaptive immune responses 
ELC CCL19 

CCR7 Naïve T, TCM, mature DC, B cell Mature DC, B and T cell trafficking to T cell zone of lymph 
nodes, egress of DC and T cells from tissue SLC CCL21 

I-309 CCL1 
CCR8 TH2, Treg, skin TRM, γδ T Immune surveillance in skin, TH2-type adaptive immunity 

PARC CCL18 
TECK CCL25 CCR9 Gut-homing, T, thymocytes, B cell, DC, pDC Homing of T cells to gut, GALT development and function 

CTACK CCL27 
CCR10 Skin-homing T cell, IgA+ plasma cells Humoral immunity at mucosal sites including skin 

MEC CCL28 
Lymphotactin XCL1 

XCR1 Cross-presenting CD8+ DC, thymic DC Antigen cross-presentation by CD8+ T cells 
SCM-1β XCL2 

Fractalkine CX3CL1 CX3CR1 Non-classical monocyte, macrophage, TH1, CD8+ 
TEM, NK, γδ T cell, DC 

Patrolling monocytes in innate immunity and TH1-type 
adaptive immunity 

 
Table is modified from (Xu et al., 2015) and (Griffith et al., 2014). 
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Abbreviations: DC, dendritic cell; GALT, gut-associated lymphoid tissue; iDC, immature dendritic cell; ILC, 

innate lymphoid cell; NK, natural killer; NKT, natural killer T; TCM, central memory T cell; TEM, effector memory 

T cell; TFH, T follicular helper cell; TFR, follicular regulatory T cell; TH, T helper; Treg, regulatory T cell; TRM, 

resident memory T cell.  > indicates higher level of receptor expression relative to other cell types.
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1.4.3 Interaction between chemokines and their receptors 

Interaction between chemokines and their receptors is normally considered in the 

context of a 1:1 stoichiometric complex. A two-step model was initially proposed for 

the activation of chemokine receptors (Monteclaro and Charo, 1996), while more 

recent studies have sought to elucidate the molecular basis for this interaction 

(Nomiyama and Yoshie, 2015, Rajagopalan and Rajarathnam, 2006, Scholten et al., 

2012). In the first step, an interaction occurs between the core globular domain of the 

chemokine, and the N-terminal extension and second extracellular loop of its receptor. 

This initial interaction has been shown to define receptor specificity and affinity 

(Monteclaro and Charo, 1996). A conformational change in the chemokine occurs, 

presumed to be largely mediated by the flexible N-loop, which brings about the next 

step. The N-terminal portion of the chemokine prior to the first cysteine interacts with 

specific residues in the ligand-binding pocket, which is buried in the cavity formed by 

the extracellular loops (Nygaard et al., 2009). This interaction induces an overall 

conformational change in the receptor, exemplified by the reorganisation of the 

transmembrane bundle consisting of seven α-helices (Govaerts et al., 2003). It is now 

understood that this transmembrane reorganisation is a hallmark of the transition from 

inactive to active states. Activation of the chemokine receptor is shortly followed by 

exchange of bound GDP for GTP by the α-subunit of the heterotrimeric G protein. The 

G proteins disassociate from the receptor and activate several effector molecules 

downstream, which results in a cascade of diverse signalling events within the 

cytoplasm of the cell. The signalling cascades which are elicited following chemokine 

receptor activation are comprehensively reviewed here (Mellado et al., 2001a, Patel 

et al., 2013), and include activation of the mitogen-activated protein kinase (MAPK) 

cascade and release of calcium ions (Ca2+) from intracellular stores. It has been 

demonstrated that induction of such signalling cascades by chemokines leads to 

activation of transcription factors and altered gene expression in cells. The termination 

of chemokine receptor signalling in the continued presence of agonist is accomplished 

by a coordinated series of events, characterised by three distinct processes; 

desensitisation, sequestration and down-regulation, which are mediated by a family 

of adapter molecules called beta-arrestins. Within seconds of chemokine receptor 

activation, phosphorylation of serine and threonine residues within the cytoplasmic 

loops and C-terminal domain of the receptor by G protein-coupled receptor kinases 

(GRKs) leads to the recruitment of beta-arrestins. Binding of beta-arrestins blocks 

coupling between the receptor and heterotrimeric G proteins, leading to termination 
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of signalling by G protein effectors (desensitisation). Receptor-bound beta-arrestins 

bind to components of the clathrin endocytic machinery, mediating endocytosis of 

receptors via clathrin-coated pits within minutes of chemokine binding (sequestration). 

Once internalised, receptors are trafficked to an acidified endosomal compartment, 

wherein the ligand is dissociated and the receptor is either recycled to the plasma 

membrane or targeted for degradation (down-regulation) (Luttrell and Lefkowitz, 

2002). 

It has been demonstrated that the length and amino acid composition of the N-

terminus determines to which receptor(s) a chemokine will bind, whether it will bind 

with high or low affinity, and whether binding has agonistic or antagonistic effects 

(Clark-Lewis et al., 1995). For example, CXC chemokines are further classified 

according to the presence of the tripeptide motif ELR (glutamic acid-leucine-arginine) 

in the N-terminal region. Chemokines which possess an ELR motif are specific for 

CXCR1 and/or CXCR2, expressed on cells of myeloid lineage. In contrast, ELR-

negative chemokines do not interact with CXCR1/2 and attract a variety of leukocytes 

via binding to alternative chemokine receptors. Truncation of the N-terminus by 

enzymatic cleavage of N-terminal residues has been shown to result in either 

increased or decreased activity of chemokines, or even altered receptor specificity 

(Mortier et al., 2008). N-terminal modifications, including glycosylation and 

citrullination, have also been detected on natural chemokines and been shown to 

modify their activity (Struyf et al., 2003) 

The biological consequences of chemokines binding their receptors are multiple and 

varied, and have been extensively studied both in vivo and in vitro. As per their 

definition, an activity of all chemokines is to induce the migration of cells expressing 

the corresponding receptor toward areas of higher chemokine concentration. 

Leukocyte activation by chemokines leads not only to chemotaxis, but also to 

responses that facilitate cell mobility, including the re-structuring of cytoskeletal fibres 

and adhesion molecule expression. It has also been shown, however, that 

chemokines may induce responses which are unrelated to leukocyte migration such 

as cell activation and differentiation (Takahama, 2006), apoptosis (Murooka et al., 

2006), angiogenesis (Strieter et al., 1995) or tumour growth and metastasis (O'Hayre 

et al., 2008, Zlotnik, 2006). Which signalling cascade(s), and ultimately which cellular 

responses are triggered, depends on the chemokine and the receptor engaged. The 

requirement for chemokine receptor-mediated signals ranges from the apparently 

redundant (as in the case of CCR5, which is missing in some individuals), to the 
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essential (as in the case of CXCR4, which is essential for late embryogenesis and 

organogenesis) (Murphy et al., 2000). 

1.4.4 Chemokines in the control of immune cell migration 

Chemokines are critical players in the cell migration required for immune cell 

development and homeostasis, to that required for the generation of cellular and 

humoral immune responses, to the pathological recruitment of immune effector cells 

in disease (Griffith et al., 2014). As different chemokines have different roles in the 

immune response, chemokines are also divided into functional subsets. The 

inflammatory chemokines are generally absent from healthy tissues, but their 

expression is rapidly induced in response to proinflammatory stimuli such as 

cytokines (e.g. TNFα and IL-1β) and microbial products such as LPS. Under 

pathological conditions, the inflammatory chemokines control the recruitment of 

immune effector cells to the inflammatory site. Typical inflammatory chemokines 

include CXCL8 and CXCL1 which, along with complement proteins like C5a, recruit 

neutrophils in the very early stages of an infection by binding to the receptors CXCR1 

and CXCR2, respectively. Inflammatory chemokines are also important in the later 

stages of the immune response to an infection. For example, CXCL9, CXCL10 and 

CXCL11 recruit TH1 cells during the adaptive immune response, via binding to the 

receptor CXCR3. The inflammatory chemokines typically have a high potency, with 

concentrations of <10 nM sufficient to stimulate chemotaxis of target cells. There is 

apparent redundancy within the inflammatory chemokines, with a single chemokine 

being capable of binding to several receptors and single receptor being recognized 

by several chemokines. This contrasts with the homeostatic chemokines, which 

control the migratory patterns of immune cells during the steady-state, i.e. in the 

absence of inflammation. The homeostatic chemokines exhibit much less 

redundancy, each member usually only binding to a single chemokine receptor. 

1.4.4.1 Chemokines in homeostatic immune processes 

The development and differentiation of immune cell precursors, which takes place in 

the bone marrow and the thymus, is under fine control by homeostatic chemokines. 

The development of haematopoietic precursors from the bone marrow called 

thymocytes into mature T cells takes place in the thymus, and depends on the 

interaction of CCL21, CCL25 and CXCL12, produced by the thymic epithelium, with 

CCR7, CCR9 and CXCR4 expressed on thymocytes (Love and Bhandoola, 2011). In 

the bone marrow, the steady-state retention and development of haematopoietic stem 
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cells (HSCs) is heavily dependent on CXCL12 (also known as stromal cell-derived 

factor 1; SDF-1) produced by bone marrow stromal cells, its interaction with CXCR4 

on HSCs promoting their retention within bone marrow niches (Ara et al., 2003). This 

is exemplified in patients treated with granulocyte colony-stimulating factor (G-CSF), 

which promotes the destruction of CXCL12 in the bone marrow leading to rapid 

mobilisation of HSCs into peripheral blood (Petit et al., 2002) – a common method of 

obtaining HSCs for transplant. CXCL12-CXCR4 interactions have also been shown 

to be necessary for the normal development of multiple immune cell lineages in the 

bone marrow, including B cells, monocytes, neutrophils, NK cells and pDCs (Mercier 

et al., 2012). Similarly, CCR2 expression on monocytes is necessary for their 

mobilisation from the bone marrow into circulation, as well as their recruitment to sites 

of inflammation (Boring et al., 1997, Tsou et al., 2007)  

Secondary lymphoid organs (SLOs) include the lymph nodes and spleen, as well as 

Peyer’s patches in the gut. The homeostatic production of chemokines plays an 

essential role in the development of SLOs during early life, in addition to maintaining 

the architecture of mature SLOs and recruiting immune cells to these sites (Griffith et 

al., 2014). Networks of follicular dendritic cells in the B cell follicles produce CXCL13, 

promoting the homeostatic localisation of B cells in the lymph node via CXCR5 (Legler 

et al., 1998). At the same time, follicular reticular cells (FRCs) within the T cell area 

produce CCL19, CCL21 and CXCL12, which promote the entry and localisation of 

naïve T cells via CCR7 and CXCR4. Most naïve lymphocytes enter lymph nodes via 

HEVs, which present CCL21 and CCL19 on the luminal endothelium. CXCL12, 

produced by FRCs and transcytosed across the HEV for presentation on the luminal 

endothelium, also participates in this process. Once they have entered the lymph 

node, T cells follow CCL19 and CCL21 gradients into the T cell area (Masopust and 

Schenkel, 2013). Here, naïve T cells scan DCs for antigen using their T cell receptor 

(TCR), the DCs also being recruited to the T cell area of the lymph node via CCL19 

and CCL21 gradients following up-regulation of CCR7 in response to antigen capture. 

Prolonged signalling of CCL19 via CCR7 on naïve T cells eventually leads to down-

regulation of the receptor and loss of CCR7-mediated retention signals. At this time, 

T cells that have not encountered their cognate antigen exit the lymph node via 

sphingosine-1-phopshate (S1P) gradients, after which CCR7 is upregulated and the 

cycle begins again (Cyster, 2005). Even in the absence of an immune response 

therefore, naïve lymphocytes actively migrate, circulating from the blood to the SLOs 

and back into the blood. 
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Immune processes which occur in the steady-state and are under the control of 

homeostatic chemokines also occur in peripheral tissues. ‘Immune surveillance’ is the 

process by which immune cells patrol the body’s tissues, recognising and destroying 

invading microorganisms to prevent infection, as well as guarding against cancer by 

eliminating transformed cells. Effective immune surveillance depends on the 

localisation of immune cells throughout all of the body’s tissues, not only in lymphoid 

organs, and chemokines are thought to play an important role in this process. Much 

of the research conducted on the cells governing immune homeostasis in peripheral 

tissues (including skin) concerns resident T cell populations. Work by our group has 

identified the chemokine receptor CCR8 as a marker for skin-resident T cells. CCR8 

was shown to be expressed on the majority of T cells in healthy human skin, while 

CCR8+ T cells are rare in blood and completely absent from the gut (another epithelial 

tissue and common site of pathogen entry) (McCully et al., 2012, Schaerli et al., 2004). 

These data suggest that healthy skin is the physiological target site of CCR8+ T cells. 

Adding further weight to this notion is the fact that the sole ligand of CCR8, chemokine 

(C-C motif) ligand 1 (CCL1), is constitutively expressed at strategic locations in 

healthy human skin, including dermal microvessels and in close proximity to LCs in 

the epidermis (Schaerli et al., 2004). It has since been demonstrated that CCR8 

expression on skin T cells specifically identifies those cells with a ‘long-lived memory’ 

phenotype (McCully et al., 2012). Murine models of skin infection with herpes simplex 

virus (HSV) have identified a skin-resident population of CD8+ tissue-resident T cells 

with a memory phenotype (TRM). These cells are long-lived, patrol the tissue in a 

sentinel-like fashion and provided local protection to re-infection with HSV (Gebhardt 

et al., 2009). The existence of CCR8+ TRM cells in healthy human skin has led to the 

suggestion that they too have sentinel function, engaging in immune surveillance. 

Whether or not they confer long-term immune protection, however, remains to be 

elucidated. It has been discovered that skin-specific factors produced by 

keratinocytes during the steady-state, including prostaglandin E2 (PGE2) and the 

active vitamin D metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), induce CCR8 

expression on activated human naïve T cells during in vitro culture (McCully et al., 

2015, McCully et al., 2012). These findings provide the strongest evidence yet that 

expression of CCR8 identifies T cells with a specific function to home to healthy 

human skin. CCR4, CCR6 and CCR10 have all been implicated in the homing of 

effector T cells to the skin during inflammatory conditions, however it is unlikely that 

these receptors regulate homeostatic migration. CCR10+ cells are not detected in 

healthy skin, while the CCR4 ligands CCL17 and CCL22, and the sole CCR6 ligand 

CCL20 are barely detectable in normal skin but increase substantially with the 
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inflammation associated with atopic dermatitis, psoriasis and cutaneous lymphomas 

(McCully and Moser, 2011). Furthermore, CCR4+ T cells have been identified in 

inflammatory conditions affecting the liver and lung (Oo et al., 2010, Vijayanand et al., 

2010), indicating that CCR4 aids the non-selective migration of effector cells to many 

inflamed sites. Of note, another chemokine receptor with a well-defined selective 

tissue-homing function during homeostasis is CCR9 which, in conjunction with the 

α4β7 integrin, is involved in T cell-homing to the gut in response to constitutive 

expression of CCL25 by intestinal epithelial cells (Iwata et al., 2004). 

Apart from CCL1, the only other homeostatic chemokines that are detectable in 

healthy human skin are CXCL12 and CXCL14 (McCully and Moser, 2011, Meuter and 

Moser, 2008, Pablos et al., 1999). Unlike CCL1, however, CXCL14 is also present in 

many other peripheral tissues during the steady-state. Its widespread expression in 

the periphery but absence from primary and secondary lymphoid tissues makes 

CXCL14 unique among the homeostatic chemokines. CXCL14 is highly selective for 

blood monocytes, while failing to exhibit chemotactic activity on lymphocytes (Kurth 

et al., 2001). It is therefore intriguing to think that CXCL14 may play an important role 

in maintaining resident populations of myeloid ‘immune surveillance’ cells in healthy 

peripheral tissues. In skin, these may include such populations as dermal 

macrophages and DCs, or epidermal LCs. Confusion persists with regard to the target 

cells of CXCL14 however, owing to the fact that the receptor for CXCL14 has not yet 

been discovered. Here, I will summarise what is known about CXCL14, including its 

spatial and temporal patterns of expression, its activity on immune cells and work 

involving the CXCL14-knockout mouse. I will follow this by outlining the aims of this 

project and the important research questions with regard to CXCL14 function that I 

have sought to answer during my PhD. 

1.4.5 Chemokine (C-X-C motif) ligand 14 

1.4.5.1 Structural properties 

CXCL14, also known as breast and kidney-expressed chemokine (BRAK), B cell- and 

monocyte-activating chemokine (BMAC) and macrophage inflammatory protein 2-

gamma (MIP-2g), was one of the last chemokines to be discovered (Frederick et al., 

2000, Hromas et al., 1999, Sleeman et al., 2000). Initially expressed as a 99-amino 

acid pro-peptide, cleavage of a 22-amino acid sequence from the NH2-terminal end 

yields a full-length protein consisting of 77 amino acids (Figure 1.6). Unlike some 

members of the α-chemokine sub-family, CXCL14 does not possess an ELR motif in 
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its N-terminal region. In fact, CXCL14 has an unusually short N-terminal amino acid 

sequence, there being just two amino acid residues (Ser-Lys) prior to the first 

cysteine. In most chemokines, the N-terminal region consists of five or more amino 

acids, and these residues have been shown to be important in receptor interaction 

(Clark-Lewis et al., 1994). Another unique characteristic of CXCL14 is that its peptide 

sequence includes an insertion of five amino acids (41VSRYR45), not seen in any other 

CXC chemokines (Figure 1.7). Despite these peculiarities in its structure, the amino 

acid sequence of CXCL14 is highly conserved among vertebrate species as diverse 

as mammals, birds and fish. Indeed, human and mouse CXCL14 differ by only two 

conservative amino acid substitutions (Ile36 -> Val36 and Val41 -> Met41) (Wolf and 

Moser, 2012). CXCL12 is the only other human chemokine which is as highly 

conserved throughout evolution (DeVries et al., 2006). In fact, both CXCL12 and 

CXCL14 are regarded as evolutionary ancient chemokines due to their highly 

conserved sequence throughout different vertebrate classes (Figure 1.6). 

Interestingly, there is recent evidence to show that CXCL14 and CXCL12 modulate 

one-another’s activity, suggesting that the two chemokines may have evolved 

together (Salogni et al., 2009, Tanegashima et al., 2013a, Tanegashima et al., 

2013b).
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Figure 1.6. Structure, peptide sequence and evolutionary conservation of CXCL14 and CXCL12. 
(a) Mature human CXCL14 is a 77 amino acid peptide with all the hallmark structural features of a 

chemokine, including three anti-parallel β-strands and a C-terminal α-helix. Its high isoelectric point (pI 

= 9.90) is also consistent with its function as an antimicrobial peptide. (b) Human CXCL12 is a 68 amino 

acid peptide that has a similar structure to CXCL14. Both chemokines exhibit a remarkable degree of 

sequence similarity throughout evolution. Sequence alignments were performed using Clustal Omega 

multiple sequence alignment tool. Amino acids conserved between all species are shown by an asterisk. 

Figure adapted from (Wolf and Moser, 2012) and (Lu et al., 2016).  
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Figure 1.7. Sequence alignment of CXCL14 and selected other CXC chemokines. 
Alignment of human CXCL14 with other CXC chemokines reveals unique features of CXCL14. 

Evident is the short N-terminal region of CXCL14, there being only two amino acids prior to 

the first cysteine. The five-residue sequence unique to CXCL14 (VSRYR) is also highlighted 

in blue. The four cysteine residues that are characteristic of all CC and CXC chemokines are 

highlighted in red. Other residues shared between CXCL14 and most or all of the other 

chemokines are indicated by an arrow. Sequence alignments were performed using Clustal 

Omega multiple sequence alignment tool. 

 

1.4.5.2 Expression in human tissues 

Published studies regarding the functions of CXCL14 in physiological and 

pathological situations are few in number, and in many cases contradictory. Initial 

studies revealed that CXCL14 transcripts were abundant in many human tissues 

during the steady-state, notably in skin, but also in intestine, kidney, pancreas, heart, 

brain, placenta, liver, skeletal muscle and breast (Cao et al., 2000, Frederick et al., 

2000, Hromas et al., 1999, Kurth et al., 2001). Expression in healthy peripheral 

tissues, but absence from secondary lymphoid organs (Meuter and Moser, 2008), 

suggested that CXCL14 has a unique role among chemokines in the control of 

immune cell trafficking during homeostasis. In skin, CXCL14 protein is present at 

remarkably high levels throughout the epidermis, where it is associated with basal 

keratinocytes as well as more differentiated keratinocytes in a suprabasal location 

(Frederick et al., 2000, Schaerli et al., 2005). Epidermal expression of CXCL14 

appears much more prominent than any other chemokine with constitutive expression 

at this site, including CCL1, which targets skin-homing immune surveillance T cells 
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and CXCL12, which has broad target cell selectivity (Schaerli et al., 2005). In the 

dermis, CXCL14 expression is much more scattered and was demonstrated to 

localise with blood vessels in the superficial dermal plexus. Furthermore, it was shown 

that macrophages, mast cells and possibly fibroblasts are CXCL14-producing cells in 

human dermis under normal conditions (Meuter and Moser, 2008, Schaerli et al., 

2005).  

1.4.5.3 Chemoattractant activity and target cells 

Studies performed by our group have shown that CXCL14 is a low potency 

chemoattractant for human blood monocytes and the human monocytic cell line THP-

1 (Kurth et al., 2001, Schaerli et al., 2005, Sleeman et al., 2000). Using an in vitro 

model of human epidermis, where epidermal equivalents (EEs) were generated from 

epidermal stem cells derived from outer root sheaths of healthy human hair follicles, 

it was shown that CXCL14 produced by EEs recruited CD14+ monocytes to the 

suprabasal layer. Here, they underwent differentiation into Langerhans-like cells, 

acquiring DC-like morphology, while expression of CD1a and langerin was detected 

on some cells (Schaerli et al., 2005). Monocytes have been shown to be the 

precursors for differentiation into LCs in inflammatory settings in mouse, and this in 

vitro data suggest that the same may be true in human skin. Others have provided 

evidence for a role for CXCL14 in the chemotaxis of immature DCs (Salogni et al., 

2009, Shellenberger et al., 2004), neutrophils (Cao et al., 2000) and activated NK 

cells (Starnes et al., 2006). Furthermore, CXCL14 involvement in trophoblast and NK 

cell recruitment to the uterus during pregnancy has been proposed (Kuang et al., 

2009b, Mokhtar et al., 2010). The in vivo relevance, however, of many of these 

findings is yet to be established. The target cells and physiological functions of 

CXCL14 reported in the literature are summarised in Table 1.2. 

Up to this point, work conducted using the CXCL14 knockout (CXCL14-KO) mouse 

has failed to enhance our understanding of its physiological functions. Differences in 

the expression pattern of CXCL14 exist between human and mouse; CXCL14 is 

expressed in the lungs of mice, while being absent from human lungs (Meuter and 

Moser, 2008). Our group has reported previously a severe breeding defect in these 

mice (Meuter et al., 2007), which may arise from abnormal trophoblast migration to 

the uterus (Kuang et al., 2009a). In viable CXCL14-KO mice no immune phenotype 

was detected, with macrophage and DC populations in healthy epithelial tissues, 

recruitment of immune cells to inflamed peritoneum and skin wound healing following 

mechanical injury all appearing to be unimpaired (Meuter et al., 2007). This may be 
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explained by functional redundancy, as is commonly seen in the chemokine system 

i.e. other chemokine(s) being able to compensate for the absence of CXCL14. 

However, its unique features, including extremely high expression in a range of 

healthy non-lymphoid tissues and selectivity for myeloid cells (monocytes in 

particular), point toward a non-redundant function for CXCL14 in immune regulation 

that remains to be elucidated. 

1.4.5.4 Antimicrobial activity 

The ability to kill microorganisms, including common pathogens, has been described 

for the majority of chemokines. In vitro experiments using CXCL14 have revealed that 

CXCL14 has broad-spectrum antimicrobial activity for gram-positive and gram-

negative bacteria, including skin commensals as well as frequent pathogens, while 

CXCL14 also killed the yeast Candida albicans (Maerki et al., 2009). CXCL14 was 

also shown to be important in the clearance of Streptococcus pneumoniae pulmonary 

infection in mice (Dai et al., 2015). This, together with CXCL14 expression in the 

epidermis as well as the taste buds of the tongue (Hevezi et al., 2009) strongly support 

a role for CXCL14 in antimicrobial immunity in vivo. CXCL14 shares several structural 

features with non-chemokine anti-microbial peptides, such as a high density of 

positive charges at physiological pH, a core structure consisting of three anti-parallel 

β-strands reminiscent of β-defensin, and a C-terminal α-helix that is typical of LL-37 

(Wolf and Moser, 2012).  

1.4.5.5 CXCL14 in disease 

Expression of CXCL14 by epidermal keratinocytes is suppressed at the sites of skin 

inflammation characteristic of atopic dermatitis and psoriasis (Kurth et al., 2001, 

Maerki et al., 2009). Furthermore, treatment of freshly isolated keratinocytes and 

dermal adherent cells (including fibroblasts) with the pro-inflammatory cytokines 

TNFα and IL-1β dramatically reduced their expression of CXCL14, in complete 

contrast to inflammatory chemokines such as CCL20 which displayed vastly 

increased expression (Schaerli et al., 2005). These findings further support an 

important role for CXCL14 in the control of immune cell function in peripheral tissues 

during the steady-state. Although numerous reports have implicated CXCL14 in 

cancer, its expression is increased in some forms of cancer and decreased in others, 

leading to confusion on whether CXCL14 displays anti-tumour or tumour-promoting 

properties (Augsten et al., 2009, Frederick et al., 2000, Ozawa et al., 2006, Shurin et 

al., 2005, Wente et al., 2008). 
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Table 1.2. CXCL14 target cells and reported functions of CXCL14 in human immunity 

 

Abbreviations: DC, dendritic cell; iDC, immature dendritic cell; mono-DC, monocyte-derived DC; NK, natural 

killer; HPC, haematopoietic precursor cell; PGE2, prostaglandin E2. 

 

Target cells for CXCL14 Functional effects of CXCL14 
activity

Source of CXCL14 Reference

B cells, macrophages, CESS (human B 
cell line), A20 (murine B cell line), THP-
1 (human monocytic leukaemia cell 
line)

Chemoattraction of CESS and THP-
1 cells

Synthesised murine CXCL14 Sleeman et al. 2000

Human neutrophils and monocyte-
derived DC

Strong neutrophil 
chemoattractant, weaker 
chemoattractant for human mono-
DC

Human CXCL14 in 
supernatant from 
transfected 293T cells

Cao et al. 2000

Freshly isolated human monocytes 
(weak), monocytes treated with PGE2 

or forskolin (strong)

Monocyte chemoattractant. 
CXCL14 signals via Bordetella 
pertussis toxin-sensitive receptor 
in PGE2-treated monocytes

Synthesised human CXCL14 Kurth et al. 2001

Human endothelial cells, monocyte-
derived iDCs

Potent inhibitor of chemotaxis for 
human endothelial cells

Recombinant human CXCL14 Shellenberger et al. 2004

Human monocyte-derived iDCs Stimulates iDC migration and 
maturation. Induces NF-Κb 
activation in these cells

Recombinant human CXCL14 Shurin et al. 2005

CD14+ DC precursors derived from 
CD34+ HPCs and blood CD14+ 

monocytes

Stimulation of CD14+ monocyte 
migration, possible contribution 
to the differentiation of CD14+ 

precursors into Langerhans-like 
cells in epidermal tissue under 
steady state conditions

Recombinant human CXCL14 
and CXCL14 from 
supernatant of primary 
keratinocyte culture

Schaerli et al. 2005

Activated human NK cells, monocyte-
derived iDCs

Stimulation of activated human 
NK cells and iDCs, no effect on 
proliferation or cytotoxic activity 
of NK cells

Recombinant human CXCL14 
and synthesised human 
CXCL14

Starnes et al. 2006

Human and murine iDCs Mediator for activin A-induced 
migration of iDCs

Recombinant human CXCL14 Salogni et al. 2009

Human trophoblasts Inhibition of human trophoblast 
invasion and migration

Recombinant human CXCL14 Kuang et al. 2009

Human uterine NK cells Stimulation of uterine NK cell 
migration during the secretory 
phase of the menstrual cycle

Recombinant human CXCL14 Mokhtar et al. 2010

Human THP-1 cells and iDCs Chemoattractant for THP-1 cells 
and iDCs

Recombinant human CXCL14 Tanegashima et al. 2010

PGE2-treated THP-1 cells Chemoattractant for THP-1 cells Recombinant human CXCL14 Dai et al. 2015
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1.4.5.6 Identity of the CXCL14 receptor(s) 

Discrepancies in the CXCL14 target cells reported by different research groups may 

be explained by the different sources of CXCL14 used, or the varying sources of cells 

(e.g. primary DCs from blood/tissue vs. DCs derived from monocytes cultured in vitro). 

In any case, the target cells of any chemokine are defined by expression of its cognate 

receptor. At this time, the identity of the receptor to which CXCL14 binds in order to 

induce chemotaxis of target cells is unknown. It has been shown recently that CXCL14 

is able to bind the CXCL12 receptor CXCR4 (Tanegashima et al., 2013a, 

Tanegashima et al., 2013b), which is consistent with its proposed role in modulating 

CXCL12 activity at CXCR4 (Salogni et al., 2009, Tanegashima et al., 2013a). 

Curiously, CXCR4 is expressed ubiquitously, suggesting that all types of leukocytes 

are potential target cells for CXCL14 binding and, possible, function. This contrasts 

with the limited numbers of immune cells that were shown to respond to CXCL14. In 

addition, it has since been demonstrated that CXCL14 does not trigger activation of 

intracellular signalling events upon binding to CXCR4 (Otte et al., 2014), suggesting 

that binding to CXCR4 is not sufficient to initiate CXCL14-mediated chemotactic 

responses. Therefore, the receptor used by CXCL14 to elicit chemotaxis of target 

cells including monocytes remains elusive, thus preventing the definitive identification 

of CXCL14 targets. 

 

1.5 Hypotheses 

Monocytes are the primary target cells of the human chemokine CXCL14, which 

induces chemotaxis of monocytes via an as yet unidentified GPCR. The ability to 

respond to CXCL14 will identify monocyte-derived cells in healthy human skin, a 

peripheral site in which CXCL14 is very highly expressed during the steady-state. 

 

1.6 Research Aims 

 To define the target cells of CXCL14 in human peripheral blood, by their ability 

to migrate in response to CXCL14 in addition to their expression of putative 

CXCL14 receptor(s) 

 By the same approach, determine which immune cell populations resident in 

healthy human skin are targets for CXCL14 
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 To confirm the identity of the receptor by which CXCL14 induces chemotaxis 

of target cells 

 To investigate the function of CXCL14 with respect to other homeostatic 

chemokines, most notably CXCL12 
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Chapter 2   Materials and Methods 

2.1 Chemokines 

2.1.1 Chemokines used in functional assays 

Human CXC chemokines used in this study were CXCL8, CXCL10, CXCL12, 

CXCL13 and CXCL14. Human CC chemokines used were CCL2, CCL5, CCL19 and 

CCL21. All had been chemically synthesised previously according to established 

protocols (Clark-Lewis et al., 1991). The mouse chemokine murine CCL1 was 

chemically synthesised by Almac (Craigavon, UK). 

2.1.2 Fluorochrome-labelled chemokines 

A custom-made, synthetic version of human CXCL14 conjugated to the fluorochrome 

Alexa Fluor® 647 (AF-CXCL14) was synthesised by Almac. Briefly, an additional 

Lysine residue was added to the C-terminus of the mature human CXCL14 peptide, 

to which the Alexa Fluor® 647 compound was covalently attached. A custom-made 

AF647-labeled murine CCL1 (AF-muCCL1) synthesised by Almac was also used. 

 

2.2 Cell Culture Media and Buffers 

2.1.1 Media 

Complete RPMI Medium 

The cell culture medium used throughout, unless otherwise stated, was RPMI-1640 

medium (Life Technologies; Paisley, Scotland) supplemented with 10% heat-

inactivated foetal calf serum (FCS), 50 mg/ml penicillin/streptomycin, 2 mM L-

glutamine, 1 mM sodium pyruvate and 1% non-essential amino acids (NEAA; all from 

Life Technologies). 

Complete DMEM Medium 

Where indicated, Dulbecco’s Modified Eagle Medium (DMEM; Life Technologies) 

used to culture cells was supplemented with 10% FCS and 50 ng/ml 

penicillin/streptomycin. 
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2.2.1 Buffers 

FACS Buffer 

Fluorescence-activated cell sorting (FACS) buffer comprised of sterile phosphate-

buffered saline (PBS) supplemented with 2% FCS and 0.02% sodium azide, passed 

through a 0.22 μm filter prior to use. 

MACS Buffer 

Magnetic-activated cell sorting (MACS) buffer comprised of sterile PBS supplemented 

with 2% FCS and 5 mM EDTA, passed through a 0.22 μm filter prior to use. 

Chemotaxis Buffer 

Plain RPMI-1640 was supplemented with 1% human serum albumin (CSL Behring, 

Bern) and 20 mM HEPES (Life Technologies). 

 

2.3 Blood Cell Isolation 

2.3.1 Isolation of peripheral blood mononuclear cells 

All research involving work with human blood and tissue samples was approved by 

the local Research Ethics Commission and informed consent was obtained from each 

participating subject. PBMC were prepared from the heparinised blood of healthy 

human volunteers using Lymphoprep density gradient separation media (Axis-Shield; 

Dundee, Scotland). Blood was layered on 15 ml Lymphoprep to a total maximum 

volume of 40 ml, prior to centrifugation at 1680 rpm at 18 °C for 20 minutes with no 

brake. The PBMC layer, which is present following centrifugation at the interface 

between the Lymphoprep and the plasma, was aspirated manually using a 

pasteurette and transferred to a fresh tube. PBMC were washed three times in PBS 

to remove platelets, and then resuspended in MACS buffer. Cell counts were 

performed using a haemocytometer, with trypan blue (Sigma-Aldrich; Gillingham, UK) 

staining used to assess cell viability. Total PBMC were used in some experiments, 

while in others one or more leukocyte subsets were enriched from PBMC using MACS 

technology (see below). 
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2.3.2 Enrichment of monocytes from PBMC 

Total monocytes were isolated from PBMC using either anti-CD14 microbeads 

(positive selection) or using the Monocyte Isolation Kit II (negative selection; both from 

Miltenyi Biotec; Bisley, UK), according to the manufacturer’s instructions. In negative 

selection, incubation with a cocktail of biotin-conjugated monoclonal antibodies 

(mAbs) directed against CD3, CD7, CD16, CD19, CD56, CD123 and glycophorin A, 

is followed by incubation with anti-biotin microbeads. Cells are washed in MACS 

buffer before magnetically-labelled non-monocytes are depleted over an LS column 

placed in the magnetic field of a MidiMACS separator. Cells were passed through a 

second LS column during negative selection (only a single column was used in 

positive selection). In early 2014, Miltenyi Biotec released the ‘pan-monocyte isolation 

kit’, which contains an improved cocktail that does not deplete CD16+ cells, allowing 

for the simultaneous enrichment of classical (CD14++CD16-), intermediate 

(CD14++CD16+) and non-classical (CD14+CD16++) monocytes. This kit was used for 

the negative selection of peripheral blood monocytes from then on. In all cases, 

monocyte purity ranged from 94 to 99%. 

2.3.3 Enrichment of myeloid DCs from PBMC 

Blood myeloid DCs comprise two subsets; CD1c+ DCs and CD141+ DCs. Total 

myeloid DCs were isolated from PBMC using the myeloid DC isolation kit (Miltenyi 

Biotec), according to the manufacturer’s instructions. Non-myeloid DCs were labelled 

with a cocktail of biotin-conjugated mAbs before subsequent magnetic depletion with 

anti-biotin microbeads over a single LD column. The resulting myeloid DC purity was 

60-70%, representing a significant enrichment from the 1-2% myeloid DC that make 

up total PBMC. 

2.3.4 Enrichment of T cells from PBMC 

Total CD3+ T cells were isolated from PBMC using the Pan-T cell Isolation Kit (Miltenyi 

Biotec), according to the manufacturer’s instructions. Briefly, T cells were isolated by 

negative selection using a cocktail of biotin-conjugated mAbs against CD14, CD15, 

CD16, CD19, CD34, CD36, CD56, CD123 and CD235a (Glycophorin A). Non-T cells 

were subsequently magnetically depleted using anti-biotin microbeads over two 

consecutive LS columns. Resulting T cell purity ranged from 96 to 99%. 
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2.3.5 Enrichment of neutrophils 

Following separation of peripheral blood by centrifugation over a Lymphoprep 

gradient as previously described, the granulocyte layer at the interface of the 

Lymphoprep and the red blood cell pellet was recovered. Red blood cells which had 

been transferred along with the granulocytes were lysed using red cell lysis buffer 

(eBioscience; Hatfield, UK) for 15 min at RT. Neutrophils were subsequently purified 

by negative selection using the EasySep™ Human Neutrophil Enrichment Kit 

(StemCell Technologies, Cambridge, UK). Briefly, non-neutrophils were depleted 

using a cocktail of bi-specific tetrameric antibody complexes directed against CD2, 

CD3, CD9, CD19, CD36, CD56, glycophorin A, and dextran-coated magnetic 

particles. Labelled cells were then depleted using an EasySep™ magnet. Resulting 

neutrophil purity ranged from 95-97%. 

 

2.4 Cell Culture 

2.4.1 Stimulations 

PBMC, purified monocytes or THP-1 cells were stimulated for 1-2 days with 

Prostaglandin E2 (PGE2; Sigma-Aldrich). PGE2 was used at a concentration of 1 µM, 

unless otherwise stated. Selective EP receptor agonists used included 

19R(OH)PGE1, Butaprost and Cay10598, while selective EP receptor antagonists 

used included SC19220, AH6809 and ONO-AE3-208 (all from Cayman Chemical; 

Ann Arbor, Michicgan, USA). Agonists and antagonists were used at 10 µM 

concentration. Sodium butyrate (Sigma-Aldrich) was used at a concentration of 1 mM. 

Cells were cultured in 12-, 24- or 48-well plates (Nunc, Thermo Fisher Scientific) in a 

humidified incubator maintained at 37 °C and a mixture of 95% air, 5% CO2. 

2.1.2 Generation of monocyte-Derived DCs 

Monocytes purified from PBMC by negative selection were seeded at 5 x 105 cells/ml 

in 6-well plates, and cultured for 6 days in medium supplemented with 100 ng/ml GM-

CSF and 50 ng/ml IL-4 (both from Miltenyi Biotec). Medium and cytokines were 

replenished on days 2 and 4. On day 6, immature DCs were harvested and either 

used for phenotyping/functional assays or placed back into culture for 24 hours in 

cRPMI supplemented with 100 ng/ml LPS (Sigma-Aldrich) and 20 ng/ml TNFα, 

(Miltenyi Biotec), to induce maturation. 
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2.1.3 T cell expansions 

T cell blasts expressing CXCR3, CCR5 and CCR2 were generated according to the 

protocol described in (Qin et al., 1998). Briefly, CD3+ T cells were resuspended at 2 x 

106/ml in cRPMI in 24-well plates. Human T Activator CD3/CD28 Dynabeads® 

(Invitrogen) were added at a bead/cell ratio of 1:4, while medium was supplemented 

with 100 U/ml IL-2 (Proleukin, Chiron). After 5-6 days, beads were removed using a 

magnet and T cell blasts were re-plated in fresh cRPMI containing 100 U/ml IL-2 and 

expanded up to day 21, with media and IL-2 replenished every 3-4 days. 

2.4.2 Culture of immortalised cell-lines 

THP-1 

THP-1, a human acute myeloid leukaemia cell-line, was purchased from the American 

Type Culture Collection (ATCC; LGC Standards, Teddington, UK). THP-1 cells were 

cultured in cRPMI supplemented with 50 µM 2-mercaptoethanol (2-ME; Sigma-

Aldrich) and were maintained at a cell density of between 2 x 105 and 8 x 105 cells/ml. 

300-19 

The murine pre-B cell line 300.19 has been routinely used by our group and others 

for stable transfection with chemokine receptors (Loetscher et al., 1996, Petkovic et 

al., 2004). Parental (non-transfected) and stable 300.19 transfectants were cultured 

in cRPMI supplemented with 50 µM 2-ME. Cultures were not allowed to exceed a cell 

density of 2 x 106 cells/ml. 300.19 cell lines stably transfected with the human 

chemokine receptors CCR2, CCR5, CCR7, CXCR3, CXCR4, CXCR5 and CCRL2, 

and the mouse chemokine receptor muCCR8, were used in functional assays. 

293T 

Human embryonic kidney (HEK) 293T cells were cultured in DMEM in a T75 flask. 

When cells reached 90-100% confluence, they were passaged by detaching the cells 

using 0.05% trypsin-EDTA (Life Technologies) for 5 min at 37 °C. 293T cells were 

used between passage 2 and 4 for production of lentiviral particles (see below). 

All cell-lines were routinely tested by PCR for the presence of mycoplasma 

contamination, and any cultures found to be contaminated were thrown out and 

replaced. 
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2.5 Recovery of Immune Cells from Human Split Skin 

Human split skin samples (approx. 10 cm2, 0.4 mm thick) were obtained using a 

dermatome from the breast region of healthy patients undergoing cosmetic surgery. 

The skin was cut into 1 cm2 fragments and partially digested in in 30 ml cRPMI 

(without serum) containing dispase II (2.5 mg/ml), collagenase D (1 mg/ml) and 

DNase I (20 U/ml; all from Roche diagnostics, Burgess Hill, UK)  in a sterile 

Erlenmeyer flask (Corning; Sigma-Aldrich) for 18-20 minutes at 37 °C in a shaking 

water bath. Digestion was stopped by transferring the skin to a petri dish containing 

cold PBS, and the epidermis was carefully separated from the dermis using forceps. 

In some experiments, the epidermis and the dermis were cultured separately for 48-

72 hours at 37 °C in 6-well plates, in cRPMI supplemented with 10% human AB serum 

(Sigma-Aldrich). Immune cells which spontaneously migrated out of the tissue during 

this period were harvested by collecting the supernatant. In other experiments, the 

dermis was subjected to overnight digestion in medium containing 10% human AB 

serum and 1 mg/ml collagenase D, which caused total disruption of the tissue. In both 

cases, single-cell suspensions were obtained by passing the supernatant through a 

40-µm cell strainer. Remaining tissue fragments were subjected to mechanical 

disruption using a syringe plunger and thorough washing with PBS in order to collect 

as many cells as possible. Cells were washed twice in PBS, counted and 

resuspended in MACS buffer prior to use in phenotyping and/or functional assays. 

 

2.6 Phenotyping and Functional Assays 

2.6.1 Transwell chemotaxis assay 

Corning® HTS transwell 96 well permeable supports with 5 μm pores, or HTS 

transwell 24 well permeable supports with 8 µm pores (Sigma-Aldrich) were used in 

chemotaxis assays. Chemokine was resuspended in chemotaxis buffer to the desired 

concentration and placed in the lower chamber. A well containing chemotaxis buffer 

with no chemokine (blank) was used as a control for random cell migration. Cells were 

resuspended in chemotaxis buffer and placed in the upper chamber; ~100,000 cells 

were used per test (Figure 2.1). The transwell plate was incubated at 37 °C for 

between 0.5 and 5 hours, depending on the cell type being tested. See Table 2.1 for 

a summary of the specific assay conditions used for each cell type. Upon termination 

of the assay, the volume in the lower chamber containing migrated cells was collected. 
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If required, staining for phenotypic markers was performed as described below, and 

migration was assessed by flow cytometry. AccuCheck counting beads (Life 

Technologies) were used to enable absolute cell counts, and each test was run in 

duplicate. Cell migration is expressed either as a percentage of the total input cells or 

as the chemotactic index, which is defined as the number of cells migrated in 

response to chemokine divided by the number of cells which migrated in response 

blank. 

 

 

Figure 2.1. Transwell system used in chemotaxis assays. 
(Top) Chemokine (resuspended in chemotaxis buffer) is placed in the lower chamber. The 

insert is then lowered into the well, while cells are placed in the upper chamber. The cells and 

the chemokine are separated by a permeable membrane containing pores of 5 or 8 µm in 

diameter. The transwell plate is then incubated at 37 °C for between at 0.5 and 5 hours. 

(Bottom) Upon termination of the assay, the insert is lifted out of the well and cells which have 

migrated are collected from the lower chamber, stained for phenotypic analysis and counted 

by flow cytometry.
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Table 2.1. Parameters of the transwell chemotaxis assay used for different cell 
types. 

Cell Pore size (µm) 24- or 96-well Assay duration (hours) 
Primary cells       
PBMC 5 96 2-4 
Monocytes 5 96 2-4 
T cells 5 96 2-4 
Neutrophils 5 96 0.5-1 
Blood myeloid DCs 5 96 2-4 
Monocyte-derived DCs 5 or 8 24 or 96* 4 
Skin cells 5 or 8 24 or 96* 4 

Cell lines       
THP-1 5 or 8 24 or 96* 3-5 
300.19 transfectants 5 96 3-5 

* The 8-µm pore polycarbonate inserts are only available in 24-well format. 

 

2.6.2 Cell staining and flow cytometry 

All fluorochrome-conjugated mAbs used in flow cytometry experiments, including the 

clone and supplier, are shown in Table 2.2. To begin, cells were washed in PBS by 

centrifugation at 400 x g for 6 min. This was followed by staining with Live/Dead 

Fixable Aqua Dead Cell Stain Kit (Life Technologies), used at 1:100 dilution, for 12 

min at room temperature. This allowed for the exclusion of dead cells from the 

analysis. All subsequent steps were performed in FACS buffer. A wash step was 

followed by blocking of endogenous Fc receptors using human normal 

immunoglobulin (KIOVIG; Baxter, Staines-upon-Thames, UK) at 1:1000 dilution for 

15 min at 4 °C. Cells were then incubated with mAbs directed against cell-surface 

antigens for 30 min at 4 °C. Appropriate isotype controls were used in all cases. A 

wash step was followed by resuspension of cells in 150 µl FACS buffer for acquisition. 

Sample acquisition was performed using the FACS Canto II or Fortessa instruments 

(BD, Oxford, UK). Live cells were gated based on their light scatter properties, the 

exclusion of aggregates on forward scatter area/height plots, while dead cells were 

discarded on the basis of Live/Dead staining. Data analysis was performed using 

FlowJo software version 10.0.4 (TreeStar Inc). 
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Table 2.2. Fluorochrome-conjugated monoclonal antibodies used for flow cytometry. 

Antigen Conjugate Dilution Clone Supplier 
Cell-surface marker      
CD1a FITC 1 in 60 HI149 BioLegend 
CD1c (BDCA-1) BV421 1 in 20 L161 BioLegend 
CD3 BV421 1 in 30 UCHT1 BioLegend 
CD4 APC 1 in 30 RPA-T4 BD 
CD11b PE 1 in 30 ICRF44 eBioscience 
CD11c PE 1 in 30 S-HCL-3 BD 
CD14 PE-Cy7 1 in 40 61D3 eBioscience 
CD14 BV421 1 in 40 M5E2 BioLegend 
CD15 APC 1 in 10 HI98 BD 
CD16 FITC 1 in 30 3G8 BD 
CD19 PE-Cy5 1 in 20 HIB19 BioLegend 
CD19 APC 1 in 30 SJ25C1 eBioscience 
CD33 PE 1 in 30 WM53 BD 
CD33 BV421 1 in 40 WM53 BD 
CD45 PerCP/Cy5.5 1 in 30 HI30 BioLegend 
CD56 PE 1 in 10 B159 BD 
CD86 (B7-2) PE 1 in 10 2331 BD 
CD141 (BDCA-3) APC 1 in 20 M80 BioLegend 
CD163 PE 1 in 20 GHI/61 BioLegend 
CD207 (Langerin) PE 1 in 40 10E2 BioLegend 
CD209 (DC-SIGN) FITC 1 in 30 DCN46 BD 
CD303 (BDCA-2) BV421 1 in 20 201A BioLegend 
HLA-DR APC-H7 1 in 40 L243 BD 
Chemokine receptor         
CCR2 APC 1 in 30 K036C2 BioLegend 
CCR5 PE 1 in 20 2D7 BD 
CCR7 PE-Cy7 1 in 25 G043H7 BioLegend 
CXCR1 PE 1 in 40 5A12 BD 
CXCR3 FITC 1 in 10 49801.111 R&D 
CXCR4 PE 1 in 10 12G5 eBioscience 
CXCR4 BV421 1 in 20 12G5 BioLegend 
CXCR5 PE 1 in 20 51505.111 R&D 
CCRL2 PE 1 in 20 K097F7 BioLegend 

All monoclonal antibodies listed are mouse anti-human. Abbreviations: DC-SIGN; Dendritic Cell-

Specific Intercellular adhesion molecule-3-Grabbing Non-integrin, FITC; fluorescein isothiocyanate, PE; 

phycoerythrin, BV; brilliant violet; APC, allophycocyanin; Cy, cyanine; PerCP, peridinin chlorophyll. 

 



 
 

57 
 

2.6.3 Labelling with Alexa Fluor® 647-conjugated CXCL14 

Alexa Fluor® 647-CXCL14 (AF-CXCL14) was used to label the putative CXCL14 

receptor on the surface of cells. Binding of AF-CXCL14 was performed in FACS buffer 

for 30 min at 4 °C in a step prior to antibody staining. Binding of AF-muCCL1 to cells 

was used as a control for non-specific binding. Use of AF-muCCL1 to detect murine 

CCR8 expression by primary mouse T cells has recently been published by our group 

(McCully et al., 2015). 

2.6.4 Intracellular Ca2+ rise 

The murine pre-B cell line 300.19 stable transfected with CXCR4 (300.19-CXCR4+) 

was used in experiments measuring intracellular Ca2+ rise. 2 x 105 cells were prepared 

in 200 µl mixed salt buffer (MSB; 136 mM NaCl, 4.8 mM KCl, 20 mM HEPES, 1 mM 

CaCl2 and 10 mM glucose). Cells were loaded with 1 µM Fura-2-acetoxymethyl ester 

(Fura-2AM; ThermoFisher), a ratiometric fluorescent dye which binds to free 

intracellular calcium, on poly-D-lysine-coated slides (MatTek, Ashland, 

Massachusetts, USA) for 20 min at 37 °C. Loaded cells were washed with MSB and 

imaging was recorded with a 40x oil-immersion objective on an inverted microscope 

(Axiovert 200; Carl Zeiss) with excitation at 340 nm and 380 nm using the Polychrom 

V illumination system from TILL photonics GmbH. An image was recorded each 

second. The first chemokine injection was made after 50 seconds of recording, while 

in instances where a second chemokine injection was made, this was done at 100 

seconds. Recording was stopped after 300 seconds. Analysis was performed using 

ImageJ software, with the 340/380 ratio providing a relative measure of cytoplasmic-

free Ca2+ concentration. Fluorescence values were exported to Microsoft Excel for the 

generation of graphs. 

2.6.5 Chemokine receptor internalisation 

Cells were incubated for 1 hour at 37 °C in cRPMI supplemented with the indicated 

chemokine and concentration. Expression of its cognate receptor on the cell surface 

was determined by flow cytometry.
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2.7 Techniques used to Study Protein-Protein Interactions 

2.7.1 Nuclear magnetic resonance spectroscopy and surface plasmon 
resonance 

Nuclear magnetic resonance (NMR) and surface plasmon resonance (SPR) 

experiments were carried out in order to study the physical interaction between two 

chemokines (NMR and SPR) or between chemokine and GAGs (SPR). Reagents 

(chemokines) were provided by myself, however the experiments were performed by 

Hugues Lortat-Jacob and Yoan Monneau at the University of Grenoble (Grenoble, 

France).  

NMR experiments were performed at 298K on a Bruker 850-MHz spectrometer with 

1.7 mm CryoProbe. SOFAST-HMQC spectra were recorded on 30 µl of either 75 µM 

free 15N-labelled CXCL12 or a 1:1 mixture of 15N-labelled CXCL12 and unlabelled 

CXCL14 (each at a concentration of 75 µM). The CXCL12 residues whose NMR 

signal changed position in the presence of CXCL14 were identified by visual 

comparison of the spectra from CXCL12 alone and CXCL12 + CXCL14. 

SPR experiments were performed on a Biacore instrument (GE Healthcare). 

Reducing end biotinylated heparan sulphate and C-terminal biotinylated CXCL12 or 

CXCL14 were prepared as described (Sadir et al., 2004, Sarrazin et al., 2005). 

Heparan sulphate (20 µg/ml), CXCL12 or CXCL14 (both at 5 µg/ml) were injected 

over a streptavidin-activated sensorchip and captured to a level of 80, 1600 and 2900 

resonance units (RU), respectively. For binding assays, the protein of interest (soluble 

CXCL12 or CXCL14) in HBS-P running buffer (10mM HEPES, 0.15 M NaCl, 0.005% 

P20, pH 7.4) were injected at 50 µl/min over both a negative control (streptavidin only) 

and a functionalized surface for 5 min at 25°C. The surfaces were regenerated with a 

3 min pulse of 2 M NaCl (HS) or a 1 min pulse of 10 mM HCl (CXCL12 or CXCL14). 

2.7.2 Förster resonance energy transfer 

Förster (or fluorescence) resonance energy transfer (FRET) experiments were carried 

out in order to study the formation of CXCR4 and CCR2 homodimers on transiently 

transfected HEK293T cells. All FRET experiments were performed by Mario Mellado 

and Laura Martinez-Munoz at the National Centre for Biotechnology in Madrid, Spain. 

HEK293T cells were transiently cotransfected with CXCR4-CFP (cyan fluorescent 

protein, donor fluorophore) and CXCR4-YFP (yellow fluorescent protein, acceptor 
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fluorophore) at different ratios, and FRET saturation curves were extrapolated from 

the data using a non-linear regression equation applied to a single binding site model 

in GraphPad Prism version 5.0 (GraphPad Software, Inc., CA, USA), as previously 

described (Martinez Munoz et al., 2009). 

To determine the effect of ligand treatments on CXCR4 homodimer formation, 

HEK293T cells were transiently cotransfected with CXCR4-CFP/CXCR4-YFP 

(donor/acceptor) at a fixed ratio that gives maximum FRET efficiency (established 

from the FRET saturation curve). Cotransfected cells were then stimulated for 30 

minutes at 37ºC with CXCL12 (1 nM or 100 nM), CXCL14 (300 nM) or CXCL12 + 

CXCL14 (1 nM + 300 nM, respectively). An increase in FRET efficiency is indicative 

of CXCR4 homodimer formation. 

To determine the effect of ligand treatments on the CCR2 homodimer formation, 

HEK293T cells were transiently cotransfected with CCR2-CFP/CCR2-YFP at a fixed 

ratio that gives maximum FRET efficiency. Cotransfected cells were then stimulated 

for 30 minutes at 37ºC with CCL2 (0.1 nM or 100 nM), CXCL14 (300 nM) or CCL2 + 

CXCL14 (0.1 nM + 300 nM, respectively). An increase in FRET efficiency is indicative 

of CCR2 homodimer formation. 

 

2.8 Quantitative Real-time PCR 

2.8.1 RNA isolation 

Cells for RNA extraction were resuspended in Buffer RLT Plus (Qiagen) for cell lysis, 

to which 2-ME was added immediately prior to use (10 µl 2-ME per 1 ml Buffer RLT 

Plus). Cells in lysis buffer were stored at -80 °C prior and thawed prior to RNA 

extraction. Total RNA was extracted from cells using the RNeasy Plus Mini Kit 

(Qiagen), which incorporates a step for removal of genomic DNA. The recovered RNA 

was resuspended in 35 µl deionised water and examined using a NanoDrop ND1000 

(Thermo Scientific) for RNA concentration and purity (ratios of OD at wavelengths of 

230, 260, and 280 nm). RNA was either used the same day for cDNA generation, or 

was stored at -80 °C prior to use. 
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2.8.2 Generation of cDNA 

cDNA was synthesised from 1 µg RNA by reverse transcription (RT) using the High 

Capacity RNA-to-cDNA kit (Applied Biosystems), according to the manufacturer’s 

instructions. cDNA was used immediately in quantitative real-time PCR (qPCR) 

experiments, or placed at -20 °C for long-term storage.  

2.8.3 qPCR 

The amount of target gene transcript was determined using pre-designed TaqMan 

Gene Expression Assays and reagents (all from Thermo Fisher), according to the 

manufacturer’s instructions. Briefly, each 20 µl reaction contained cDNA (2 µl), 

TaqMan Gene Expression Assay (1 µl), TaqMan Universal MasterMix II, no UNG (10 

µl) and RNase-free water (7 µl). A no template control (where no cDNA is added) 

served as a control for extraneous nucleic acid contamination, while a no reverse 

transcriptase control (where the cDNA generation step is carried out in the absence 

of reverse transcriptase) served as a control for carryover of genomic DNA. Reactions 

were performed using a ViiA7 real-time PCR system (Applied Biosystems). All tests 

were performed in triplicate. TaqMan Gene Expression Assays with the following 

Thermo Fisher assay identification numbers were used: 

ACTB (Beta-actin) – Hs99999903_m1 

CCR2 – Hs00704702_s1 

2.8.4 Analysis 

Relative quantification of target gene mRNA levels was performed using the 

comparative 2-ΔΔCt method, as described (Livak and Schmittgen, 2001, Schmittgen et 

al., 2000). Briefly, relative quantification relates the PCR signal of the target transcript 

in a treatment group to that of another sample, such as an untreated control. Target 

expression levels are normalised to that of an internal control gene. Steps were taken 

to ensure the reliability of the data obtained from real-time qPCR experiments; the 

internal control gene selected was β-actin, as treatment of the cells was found to have 

little effect on the expression level of β-actin. Also, PCR performed on a range of 

cDNA dilutions revealed that the PCR efficiencies of both target and internal control 

genes were between 90 and 100%. Data was analysed using the ExpressionSuite 

Software (Life Technologies). mRNA abundance was normalised to the amount of β-

actin expressed by cells, and is presented as relative expression in arbitrary units.
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2.9 RNA Sequencing 

2.9.1 Sample preparation 

Primary cells 

CD14++CD16- classical monocytes, CD14+CD16++ non-classical monocytes and B 

cells were FACS sorted from three healthy donors. Briefly, PBMC were isolated from 

40 ml peripheral blood by Lymphoprep centrifugation. 10 million PBMC were set 

aside, while monocytes were isolated from the remaining PBMC (approx. 50 million) 

by negative selection using the pan-monocyte isolation kit (Miltenyi Biotec). 

Monocytes were stained with anti-human CD14-PE-Cy7 and anti-human CD16-FITC 

to enable sorting of the classical and non-classical subsets.  

The leftover PBMC were stained with anti-human CD14-PE-Cy7, anti-human CD16-

FITC, anti-human CD3-BV421 (for exclusion of monocytes, NK cells and T cells, 

respectively) and anti-human CD19-APC to enable FACS sorting of CD19+ B cells. 

Dead cells were excluded during the sort by Live/Dead stain. FACS sorting was 

performed using a BD FACSAria II, and cells were sorted into cRPMI + 20% FCS. 

Cells were kept cold at all times. Cells recovered from the sort were spun down, 

resuspended in Buffer RLT Plus and stored at -80°C prior to shipping. 

THP-1 

THP-1 cells were cultured for 24 hours under four conditions; 1 µM PGE2, 1 mM 

sodium butyrate, PGE2 and sodium butyrate (Na-but) combined, or medium alone. 

Migration of PGE2- and PGE2+Na-but-treated THP-1 cells toward CXCL14 was 

assessed by transwell chemotaxis assay. The assay was run for 3 hours, and 

migrated cells were collected from two wells per condition.  

24 hour bulk-treated cells, and cells that had migrated toward CXCL14, were 

collected, spun down and resuspended in Buffer RLT Plus and stored at -80 °C for 

storage prior to shipping. 

All samples were shipped to the Vaccine and Gene Therapy Institute, Port Saint Lucie, 

Florida for next-generation RNA sequencing. Samples were shipped on dry ice to 

prevent thawing in transit. 
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2.9.2 Sequencing 

RNA was isolated from samples for sequencing in accordance with the protocol above 

(2.8.1 RNA Isolation). Next-generation sequencing (NGS) of mRNA was performed 

on the Illumina Genome Analyser II sequencing machine, providing a read coverage 

of approximately 40 million mapped reads per sample (bi-directional, with 20 million 

mapped reads in each direction). Sequencing files arrived as FASTQ files, two files 

per sample (forward and reverse reads). The human genome assembly (GRCh37) 

and the companion gene coordinates file (Homo_sapiens.GRCh37.75.gtf.gz) were 

downloaded from Ensembl.org and indexed using bowtie2. Reads were mapped to 

the genome using Tophat2, using the gene coordinates reference to steer mapping 

towards known transcripts. Resulting BAM files (mapped reads) were processed 

using Cufflinks to produce normalised expression counts per gene (reads mapped per 

kilobase length of transcript per million mapped reads; RPKM). Samples were 

compared using Cuffdiff to calculate the fold-change in expression of each gene, 

which was log-transformed. 

 

2.10   Cloning of Small Hairpin RNA 

2.10.1  Design of shRNA inserts 

Small hairpin RNA (shRNA) sequences targeted against the chemokine receptor 

CCR2 were designed for expression in the pLenti-SU6EW Lentiviral vector, kindly 

provided by Professor Philip Taylor (Cardiff University). A simplified vector map is 

shown in Figure 2.2. This vector contains the mouse U6 promoter, which requires an 

initial ‘G’ nucleotide for the shRNA insert to be expressed. ShRNAs were designed 

based on sequences published online by Sigma-Aldrich in their MISSION™ shRNA 

library. Sequences beginning with a natural ‘G’ nucleotide were favoured, however 

where none were available an artificial ‘G’ nucleotide was added at the start of the 

sequence. Forward and reverse shRNA primers were synthesised by Sigma-Aldrich 

and reconstituted in DNase/RNase-free water to a final concentration of 100 µM. 
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Figure 2.2. pLSU6EW lentiviral transfer vector used for expression of shRNA in THP-1 
cells. 
Shown is a simplified map of the pLSU6EW plasmid, into which shRNA sequences targeted 

against the chemokine receptor CCR2 was cloned downstream of a mouse U6 promoter. The 

plasmid co-expresses enhanced green fluorescence protein (eGFP) and also contains an 

ampicillin resistance gene to aid with selection of positive colonies. 

 

2.10.2  Cloning of shRNA into pLenti-SU6EW 

ShRNA was cloned into the pLSU6EW vector using the In-Fusion HD cloning kit 

(Clontech; Takara Bio Europe SAS, Saint-Germain-en-Laye, France), according to 

the manufacturer’s instructions. First, the vector was linearised downstream of the U6 

promoter using Pme1, a restriction endonuclease that blunt cuts the sequence 

GTTT_^AAAC, for 60 min at 37 °C. The enzyme was inactivated for 15 min at 65 °C, 

followed by purification of the linearised vector using a NucleoSpin column 

(Macherey-Nagel, Germany). A reaction without enzyme was run in parallel, and 

digested as well as undigested vector were run on a 1% agarose gel to confirm 

linearization. Next, the shRNA insert was prepared. Forward and reverse shRNA 

primers were mixed 1:1 (25 µl each, 50 µl total volume) and heated at 98 °C for 10 

min to stimulate annealing of the primers, before cooling to room temperature. The 

cloning reaction was performed by combining 200 ng Pme1-digested pLSU6EW 

vector with 2 µl shRNA insert (giving a vector:insert ratio of approximately 1:5) and 2 

µl 5X In-Fusion HD enzyme premix containing T4 DNA ligase (Clontech), adjusted to 



 
 

64 
 

a final volume of 10 µl using deionised water. The cloning reaction was incubated at 

50 °C for 15 min, before cooling on ice. 

2.10.3  Transformation of E. coli and selection of positive clones 

The product of the cloning reaction was used for transformation of TOP10 Chemically 

Competent E. coli (Invitrogen) by heat shock. Briefly, 1 µl product was added to 20 µl 

TOP10 E. coli cells and incubated on ice for 30 min. The plasmid/competent cell 

mixture was then placed on a heat block at 42 °C for 30 seconds (heat shock), 

followed immediately by a one-minute recovery on ice. After the recovery, 250 µl 

S.O.C. medium (Invitrogen) was added, followed by incubation for 60 min at 37 °C on 

a shaking platform, set at a speed of 220 rpm. The bacterial culture was then spread 

out and grown on a LB agar plate supplemented with 100 µg/ml ampicillin for the 

selection of transformed cells at 37 °C overnight. 

The next day, colonies were selected on the basis of being a good size, round and 

separated from other colonies, with 12-20 colonies selected per plate for colony PCR. 

RT-PCR of the colonies was performed using the following forward and reverse 

primers (Forward: 5’-GGTACAGTGCAGGGGAAAGA-3’ and Reverse: 5’-

CAAACCTACAGGTGGGGTCT-3’). PCR reactions were performed for 30 cycles 

using the following parameters: 

1. 98 °C for 30 min 

2. 98 °C for 10 sec 

3. 60 °C for 30 sec         Repeat steps 2-4 for 30 cycles 

4. 72 °C for 60 sec 

5. 72 °C for 10 min 

6. 4 °C for infinity 

The final PCR product was separated from the PCR reaction on a 1.5% agarose gel 

to confirm successful cloning of the shRNA insert into the vector. The PCR product 

without insert (where the vector has simply re-ligated, without incorporating the 

shRNA insert) is approx. 550 bp in size, and could easily be distinguished from PCR 

products where the shRNA insert is included (approx. 600 bp in size). 

2.10.4  Purification of plasmid DNA by mini-prep and sequencing 

Up to five positive colonies were sampled using a pipette tip and transferred to 10 ml 

LB broth supplemented with 100 µg/ml ampicillin. Bacteria were placed in a 37 °C 
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incubator on a shaking platform (180 rpm) and left overnight. The next day, 1 ml of 

the bacterial culture was aspirated and stored at 4 °C, while up to 5 ml was used for 

purification of plasmid DNA, performed using the QIAprep Spin Miniprep Kit (Qiagen), 

as per the manufacturer’s instructions. Plasmid DNA was eluted into 30 µl deionised 

H2O, and purified plasmids were examined using a NanoDrop ND1000 for their DNA 

concentration and quality. The resulting vectors were sequenced in both directions to 

confirm identity, with the same forward and reverse primers used for sequencing as 

were used in the colony PCR (primer sequences are shown above). Up to 200 ng 

plasmid was mixed with 2 pM forward or reverse primer and sent to Eurofins 

(Wolverhampton, UK) for sequencing. The resulting sequences were analysed using 

CLC Genomics Workbench 5 (CLC Bio). 

After the sequence of the vector had been confirmed, 1 ml of the E. coli stock left over 

from the mini-prep was added to 200 ml LB broth supplemented with 100 µg/ml 

ampicillin, and placed in a 37 °C incubator on a shaking platform (180 rpm) and left 

overnight. The next day, plasmid DNA was purified using the QIAfilter Plasmid Maxi 

Kit (Qiagen), according to the manufacturer’s instructions. Plasmid DNA was eluted 

into 100 µl deionised H2O, while DNA concentration and quality were confirmed using 

a NanoDrop ND1000. The plasmid was stored at -80°C until use in the production of 

lentiviral particles 

 

2.11  Production of Lentivirus and Transduction of THP-1 cells 

2.11.1  Packaging of lentiviral particles 

For production of lentivirus, HEK293T packaging cells were seeded at 2-2.5 x 106 

cells in a T75 flask on the afternoon of the day prior to commencing virus production. 

The next morning, confluency was checked under the microscope (ideal confluency 

= 50-70%). The spent medium was aspirated from the flask and cells were gently 

washed in pre-warmed PBS. PBS was then aspirated and replaced with 12 ml fresh, 

pre-warmed complete DMEM. Cells were placed back at 37 °C while the lentiviral 

components were prepared. 

A second generation lentivirus system, consisting of three plasmids, was used in the 

production of lentivirus, while Effectene transfection reagent (Qiagen) was used to 

transfect 293T cells. Briefly, 1 µg lentiviral plasmid (pLSU6EW containing shRNA 

insert) was combined with 0.75 µg pCMVdelta8.91 (plasmid containing the HIV 
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structural genes gag, pol and rev) and 0.5 µg pMD2g (plasmid containing the 

Vesicular Stomatitis Virus envelope protein VSV-G, used to pseudotype the virus so 

that it can infect any mammalian cell). pCMVdelta8.91 and pMD2g were kindly 

provided by Professor Philip Taylor (Cardiff University). After mixing the three 

plasmids together, the volume was made up to 300 µl with Buffer EC. 18 µl Enhancer 

was added, followed by vortexing for 1 second and incubation at room temperature 

for 5 min. 60 µl Effectene was then added, followed by vortexing for 10 seconds and 

incubation at room temperature for 10 min. The prepared lentiviral mix was added to 

2.6 ml pre-warmed DMEM, before being transferred dropwise to the 293T cells. Cells 

were subsequently cultured for 48-60 hours at 37 °C. 

Media containing lentiviral particles was collected post-transfection and centrifuged at 

500 x g for 10 min to pellet cell debris from the 293T cells. Clear supernatant 

containing the lentiviral particles was mixed with Lenti-X concentrator (Clontech) at a 

3:1 ratio (15 ml supernatant + 5 ml Lenti-X concentrator), inverted several times to 

mix, and then placed at 4 °C overnight. The following day, the supernatant was 

centrifuged at 1500 x g for 45 min at 4 °C to pellet the lentiviral particles. Following 

removal of the supernatant, the virus pellet was resuspended in 1 ml serum-free AimV 

medium (Invitrogen) and stored at -80 °C. 

2.11.2  Transduction of THP-1 cells 

2 x 105 THP-1 cells in 300 µl cRPMI were seeded per well in a 24-well plate, and 100 

µl lentivirus was added (final volume = 400 µl). The following day, 600 µl cRPMI was 

added to make the volume up to 1 ml. After two more days, THP-1 cells were 

photographed using the EVOS FL Cell Imaging System (Life Technologies) to 

document eGFP expression. The cells were then harvested and washed twice in 

medium by centrifugation at 400 x g for 5 min, before being placed back into culture. 

The proportion of eGFP+ cells (transduction efficiency) was accurately determined by 

flow cytometry. eGFP+ cells were FACS sorted using a BD FACSAria prior to 

functional assays. 
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2.12   Stable Expression of Orphan GPCRs in 300.19 cells 

2.12.1  Cloning of GPCRs 

mRNA was obtained from monocytes isolated from PBMC using CD14 microbeads, 

and generation of cDNA was performed as previously described. Custom primers 

were designed for the amplification and cloning of four orphan GPCR cDNAs by PCR. 

Forward and reverse primers are shown below: 

GPR68 – Forward: ATAGGATCCGCCCAAAGATGGGGAACATC 

     Reverse: TATCTCGAGTTAGGCCAACCTGCCCGTG 

GPR84 – Forward: ATAGGATCCGCCTCTATCATGTGGAACAGCTC 

     Reverse: TATCTCGAGTTAATGGAGCCTATGGAAACTCCG 

GPR141 – Forward: ATAGGATCCGCCTCGATGCCTGGCCACAATACCTCCA 

       Reverse: TATCTCGAGTTAACGGCACAAAACACAATTCCATAAGCC 

GPR183 – Forward: ATAGGATCCGGACCACCACCAATGGATATAC 

       Reverse: TATCTCGAGTCACTTTCCATTTGAAGACTTGG 

Following amplification, the PCR product was purified using the NucleoSpin Gel and 

PCR Clean-up kit (Macherey-Nagel). cDNA was cloned into the pBlueScript II (pBS) 

vector by linearization of the vector using the restriction endonucleaseas BamHI and 

XhoI, followed by ligation with T4 DNA ligase and 2x Rapid Ligation Buffer (both 

Promega; Southampton, UK), as per the manufacturer’s instructions. The resulting 

vectors were used to transform Stellar™ Competent Cells (Clontech), followed by 

selection of positive clones based on resistance to ampicillin and subsequent mini-

prep of plasmid DNA, as previously described. The resulting vectors were sequenced 

in both directions to confirm identity. The only receptor for which we obtained a cDNA 

clone from a different source was GPR35, which was purchased from Bloomsburg 

University cDNA Resource Centre (Bloomsburg, PA, USA) and is distributed in 

Invitrogen’s pcDNA3.1+ vector. 

After the identity had been confirmed, the cDNA clone was excised from pBS using 

BamHI and XhoI restriction endonucleases and ligated into the lentiviral transfer 

vector pSIEW (kindly provided by Prof. Philip Taylor, Cardiff University) using T4 DNA 

ligase and 2x Rapid Ligation Buffer. 
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2.12.2  Packaging of lentiviral particles 

Production of lentivirus incorporating the GPCR clone was performed using HEK293T 

packaging cells, as previously described. 

2.12.3  Transduction of 300.19 cells 

1 x 105 300.19 cells in 300 µl cRPMI were seeded per well in a 24-well plate, and 100 

µl lentivirus was added (final volume = 400 µl). The following morning (day 1), 600 µl 

cRPMI was added to make the volume up to 1 ml. On the afternoon of the same day, 

1 ml cRPMI was added to make the volume up to 2 ml. On day 2, the volume was 

made up to 10 ml with cRPMI, and cells were transferred to a T25 flask. On day 3, 

300.19 cells were photographed using the EVOS FL Cell Imaging System (Life 

Technologies) to document eGFP expression. The cells were then harvested and 

washed twice in medium by centrifugation at 400 x g for 5 min, before being placed 

back into culture. The proportion of eGFP+ cells (transduction efficiency) was 

accurately determined by flow cytometry. eGFP+ cells were FACS sorted using a BD 

FACSAria prior to functional assays. 

 

2.13    Statistical Analysis 

All statistical analysis was performed with the use of GraphPad Prism version 6 

(GraphPad Software, Inc.). Column statistics were carried out in the first instance to 

assess distribution of data sets and identify whether datasets were parametric or non-

parametric. For comparison of two sample means, either Student's t test (parametric), 

Mann-Whitney U test (unpaired, non-parametric), or Wilcoxon signed-rank test 

(paired, non-parametric) were used. For comparison of the means of three or more 

groups, either the one-way analysis of variance (ANOVA) followed by Bonferroni post-

hoc test (parametric data sets), or the Kruskal-Wallis test followed by Dunn’s post-

hoc test (unpaired, non-parametric data sets) were used. In instances where groups 

were split on two independent variables, the two-way ANOVA was used. Data are 

displayed as mean ± standard error of the mean (s.e.m.). In each case, the statistical 

test used to determine significance is indicated, and p < 0.05 was considered 

significant. 
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Chapter 3  CXCL14 Target Cells in Blood and Skin 

3.1 Introduction 

CXCL14 is a fascinating member of the chemokine family. Its high level of expression 

in healthy peripheral tissues, especially those of mucosal origin, but total absence 

from secondary lymphoid tissues makes it unique among the constitutively expressed, 

so-called ‘homeostatic’ chemokines. Failure to promote chemotaxis of naïve or 

activated T cells (Cao et al., 2000, Sleeman et al., 2000) distinguishes CXCL14 from 

other non-ELR CXC chemokines. However, attempts to accurately describe CXCL14 

target cells have been hindered by not knowing the identity of its cognate receptor, 

leading to conflicting experimental observations from different groups. Cells which 

have been reported to display chemotaxis toward CXCL14 include CESS (a human 

B cell line), human neutrophils, human and murine immature dendritic cells, human 

monocytes (especially following activation with PGE2), activated human NK cells from 

blood and human uterine NK cells (Cao et al., 2013, Cao et al., 2000, Hara and 

Tanegashima, 2012, Kurth et al., 2001, Shellenberger et al., 2004, Sleeman et al., 

2000, Starnes et al., 2006). Inconsistencies in the data obtained from these studies 

may be explained by use of CXCL14 from different sources. Sources include 

synthesised protein, CXCL14 isolated from conditioned media from transfected 

mammalian cells, as well as commercially available recombinant CXCL14 from 

various suppliers. 

In this study, immune cells were isolated from the peripheral blood and skin of healthy 

human subjects, and their ability to respond to CXCL14 was assessed using two 

methods: (1) Leukocyte migratory responses toward CXCL14 were measured by 

transwell chemotaxis assay, and (2) binding of a custom-made, synthetic CXCL14 

with an Alexa Fluor 647 fluorochrome covalently attached to its C-terminus (AF-

CXCL14) was assessed by flow cytometry. Fluorochrome-labelled chemokines have 

been used by ourselves and other to study the distribution of chemokine receptors on 

immune cells (McCully et al., 2015, Strong et al., 2006). It was therefore our intention 

to apply AF-CXCL14 in investigating the distribution of the putative CXCL14 receptor 

on immune cells isolated from human blood and skin. 

3.2 Aim 

 To identify the leukocyte subsets in human blood and peripheral tissues (focus 

on skin) which represent the major targets for CXCL14 
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3.3 CXCL14 Target Cells in Peripheral Blood 

3.3.1 Gating strategy for identification of immune cell subsets in PBMC 
by flow cytometry 

Single cell suspensions of PBMC were stained with fluorochrome-conjugated 

monoclonal antibodies (mAbs) directed against CD3, CD14, CD16, CD19 and CD56. 

Following exclusion of dead cells and cell aggregates, this staining panel enabled the 

identification of T, B, NK and NKT cells, as well as monocytes. A representative gating 

strategy is shown (Figure 3.1). Gating on the three monocyte subsets defined by 

differential expression of CD14 and CD16 was performed following exclusion of 

CD56+ NK cells, as NK cells also express CD16. DC populations in peripheral blood 

were analysed in other experiments (see Figure 3.7 and Figure 3.8) due to their low 

frequency in PBMC. 

 
Figure 3.1. Gating strategy for identification of the major subsets in human PBMC by 
flow cytometry. 
PBMC were isolated from the blood of healthy volunteers by density centrifugation. Live single 

cells were gated on by excluding debris (top left panel), dead cells (top centre panel) and cell 

aggregates (top right panel). Cells were stained with fluorochrome-conjugated mAbs directed 

against lineage markers, enabling the identification of i) T cells (CD3+), ii) NK cells (CD56+), 

iii) NKT cells (CD3+CD56+) and iv) B cells (CD19+). After using Boolean gating to exclude 

CD56+ NK cells (which express CD16), the three monocyte subsets, defined by CD14 and 

CD16 expression, are shown; v) classical (CD14++CD16-), vi) intermediate (CD14++CD16+) 

and vii) non-classical (CD14+CD16++) monocytes. Numbers indicate the percentage of each 

cell type in PBMC and is representative of >8 donors. 
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3.3.2 Monocytes display chemotactic responses toward CXCL14, while 
T, B and NK cells do not 

Chemotactic responses of PBMC to CXCL14 were assessed using the transwell 

chemotaxis assay. Input cells, as well as migrated cells recovered from the lower 

chamber, were stained with the same antibody panel as shown in Figure 3.1. 

Representative FACS plots show the accumulation of CD14+ monocytes in the 

migrated cell fraction with increasing concentration of CXCL14. Collective data from 

five independent experiments using different donors shows the chemotactic response 

of monocytes, T cells, B cells and NK cells in response to CXCL14 (Figure 3.2). 

Migration is presented as the percentage of input cells of each cell type that migrated 

to the lower chamber in response to the indicated concentrations. A dose-dependent 

migration of monocytes toward CXCL14 was observed, the response ranging from 

3.01 ± 0.65% toward buffer alone (blank), to 28.4 ± 6.1% toward 1 µM CXCL14 

(p=0.0031). T and B cells did not migrate toward CXCL14. NK cells displayed a small 

increase in migration from blank (2.91 ± 0.4%) to 100 nM CXCL14 (4.2 ± 0.32%), 

although this did not reach significance (p=0.064).  
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Figure 3.2. Monocytes migrate in response to CXCL14, while T, B and NK cells do not. 
Migratory responses of PBMC toward CXCL14 were tested by transwell chemotaxis assay. 

(a) FACS plots from a representative experiment demonstrate the increase in the proportion 

of CD14+ monocytes, relative to other cell types, among the cells that migrated in response 

to increasing concentrations of CXCL14. Forward scatter vs side scatter is plotted in the upper 

panels, monocytes being indicated by a red circle and arrow. AccuCheck counting beads, 

added to samples to enable enumerate migrated cells, are also shown. In the lower panels, 

numbers indicate the frequency of monocytes (CD14+; x-axis) and T cells (CD3+; y-axis) 

amongst total migrated cells. (b) Migration of monocytes, T, B and NK cells toward CXCL14. 

Data are presented as the percentage of input cells of each cell subset recovered from the 

lower chamber, and are mean + s.e.m. of 5 independent experiments using PBMC from 

different donors; **P = 0.0031, Kruskall-Wallis ANOVA. 
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3.3.3 Alexa Fluor 647-conjugated CXCL14 can be used to label cells 
expressing putative CXCL14 receptors 

PBMC were incubated with AF-CXCL14 in a step prior to staining with the antibody 

panel described in Figure 3.1. Binding of AF-CXCL14 was performed at 4 °C; at this 

temperature; there should be minimal internalisation of the receptor. Detection by flow 

cytometry therefore depends on the interaction between chemokine and receptor 

being relatively stable and able to withstand several wash steps before acquisition. 

FACS plots from a representative experiment show binding of a range of 

concentrations (0-100 nM) of AF-CXCL14 to monocytes, T, B and NK cells. Numbers 

indicate the percentage of AF-CXCL14+ cells (Figure 3.3). As expected, and in 

agreement with the migration data, monocytes were positive for expression of 

CXCL14 receptor(s), the majority of monocytes staining positively at 50 and 100 nM 

AF-CXCL14. In contrast, the majority of T, B and NK cells were negative for receptor 

expression. 50 nM AF-CXCL14 was selected as the optimal concentration for labelling 

as it allowed for the greatest differentiation between cells which do respond to 

CXCL14 (monocytes) and cells which do not (T, B and NK cells). It should be noted 

that at this concentration, a small minority of T and NK cells do exhibit binding of AF-

CXCL14; this staining may be non-specific, or it may identify minor subsets of each 

cell type that respond toward CXCL14. Indeed, γδ-T cells constitute around 2-5% of 

peripheral blood T cells, which is consistent with the proportion of CD3+ cells which 

labelled with 50 nM AF-CXCL14 in Figure 3.3. In addition, it has been reported that 

NK cells isolated from peripheral blood, upon activation in vitro with IL-2, undergo 

modest migration in response to CXCL14 (Starnes et al., 2006). However, further 

investigation is required to determine if there exists distinct subsets or activation 

states within these broadly defined lymphocyte populations that represent targets for 

CXCL14. 
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Figure 3.3. Alexa Fluor 647-CXCL14 can be used to label cells expressing CXCL14 
receptor(s). 
PBMC were incubated with 0-100 nM AF-CXCL14 for 30 minutes at 4 °C, followed by staining 

with mAbs to distinguish the different cell types. Shown are representative FACS plots of AF-

CXCL14 binding (x-axis) to CD14+ monocytes (top row), CD3+ T cells (second row), CD19+ 

B cells (third row) and CD56+ NK cells (bottom row). Numbers indicate the percentage of AF-

CXCL14+ cells. Plots are representative of >5 independent experiments. 50 nM AF-CXCL14 

was selected as the optimal concentration for labelling and this concentration was used in all 

future experiments. 
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3.3.4 Classical and intermediate monocytes are the major targets of 
CXCL14, while non-classical monocytes are not targets 

In order to look more closely at the monocyte subsets defined by differential CD14 

and CD16 expression, monocytes were purified from PBMC by negative selection. 

Dot plots show depletion of T, B, NK and NKT cells, and concurrent enrichment of 

monocytes (Figure 3.4a). Of the three subsets, classical monocytes displayed the 

greatest migratory response toward CXCL14, 16.2 ± 3.45% classical monocytes 

(CD14++CD16-) migrating toward 1 µM CXCL14 (compared to 0.7 ± 0.15% toward 

buffer alone; p=0.0045) correlating to a chemotactic index (CI) of >20. Intermediate 

monocytes (CD14++CD16+) displayed a more modest response toward CXCL14, 8.58 

± 2.28% intermediate monocytes migrating toward 1 µM CXCL14 (compared to 0.45 

± 0.15% toward buffer alone; p=0.0054). In contrast, non-classical monocytes 

(CD14+CD16++) did not display migration toward CXCL14. Although background 

migration was higher for this subset (3.1 ± 0.46% non-classical monocytes migrated 

toward buffer only), no specific migration toward CXCL14 was observed (2.78 ± 

0.42% non-classical monocytes migrated toward 1 µM CXCL14) (Figure 3.4b). In 

concurrence with the migration data, binding of AF-CXCL14 revealed that the majority 

of classical monocytes express CXCL14 receptor(s), 72.0 ± 6.28% staining positively 

for receptor expression. Intermediate monocytes also demonstrated binding of AF-

CXCL14 (50.7 ± 6.65% intermediate monocytes were AF-CXCL14+), while only a 

small fraction of non-classical monocytes displayed binding (6.3 ± 5.05% non-

classical monocytes were AF-CXCL14+) (Figure 3.4c and d). 
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Figure 3.4. Classical and Intermediate monocytes are the major targets of CXCL14, 
while non-classical monocytes are not targets. 
Monocytes were purified from PBMC by negative selection. (a) Enrichment of monocytes 

following depletion of T, B, NK and NKT cells. Classical (CD14++ CD16-; red gate), 

intermediate (CD14++ CD16+; blue gate) and non-classical (CD14+ CD16++; green gate) 

monocytes are shown. (b) Migration of classical, intermediate and non-classical monocytes in 

response to CXCL14. Data are mean + s.e.m. of 5 donors from 3 independent experiments. 

**P<0.01, Kruskall-Wallis ANOVA. (c) Representative FACS plots show binding of 50 nM AF-

CXCL14 to the three monocyte subsets (blue histograms). Grey filled histograms represent 

unlabelled cells. Numbers indicate the percentage of AF-CXCL14+ cells. (d) Graph shows 

cumulative data of AF-CXCL14 binding to monocyte subsets. Data shown is mean ± s.e.m. 

from 2-4 donors. 
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The absence of appreciable AF-CXCL14 binding to lymphoid cell populations was 

confirmed in several experiments using PBMC. Representative FACS plots (Figure 
3.5a) in addition to cumulative data (Figure 3.5b) demonstrate that T cells (4.0 ± 

0.73% AF-CXCL14+), B cells (2.4 ± 0.34% AF-CXCL14+) and NK cells (3.6 ± 0.35% 

AF-CXCL14+) display extremely weak binding, confirming that each of the lymphocyte 

subsets likely do not represent targets for CXCL14. 

 

Figure 3.5. Lymphoid populations do not express CXCL14 receptor(s). 
PBMC were labelled with 50 nM AF-CXCL14 for 30 min at 4 °C. (a) Representative FACS 

plots show binding of AF-CXCL14 (blue histograms) to T, B and NK cells. Grey filled 

histograms represent unlabelled cells. (b) Cumulative data of AF-CXCL14 binding to T, B and 

NK cells. Data shown is mean ± s.e.m. and is from 3 independent experiments. 

 

3.3.5 Neutrophils migrate toward a high concentration of CXCL14, but 
do not bind AF-CXCL14 

Neutrophils were isolated by negative selection from the granulocyte/red blood cell 

fraction following Ficoll separation of peripheral blood and phenotyping was 

performed by flow cytometry. Following gating on live, single cells (Figure 3.6a), 

staining with fluorochrome-conjugated antibodies directed against the typical 

neutrophil markers CD15, CD16 and CXCR1 confirmed their identity (Figure 3.6b). 

Migration of neutrophils in response to the CXCR1-ligand CXCL8 and CXCL14 was 

assessed by transwell chemotaxis assay. In contrast to PBMC, which require a 

duration of 3-4 hours for substantial migration to be observed, neutrophil migration 

was extremely rapid. Indeed, migrated neutrophils could be seen in the lower chamber 

after as little as 15 minutes, and the assay was terminated after 1 hour. This likely 

reflects the fact that in vivo, neutrophils are the first cells to arrive at the site of 
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inflammation. Peak migration in response to CXCL8 was observed at 10 nM (78.5 ± 

16.0% neutrophils migrated toward 10 nM CXCL8). The relatively low concentration 

of CXCL8 required for induction of optimal migratory responses in neutrophils is 

consistent with the role of CXCL8 as an inflammatory chemokine. In contrast, much 

higher concentrations of CXCL14 were required to stimulate neutrophil migration. 

Neutrophils displayed a weak response toward 300 nM CXCL14 (4.8 ± 3.6% cells 

migrated), while a much stronger response was observed toward 1000 nM CXCL14 

(48.2 ± 19.3% cells migrated; Figure 3.6c). Binding of AF-CXCL14 to neutrophils was 

also performed, however virtually no binding was observed (Figure 3.6d). The 

discrepancy between migration toward CXCL14 and binding of AF-CXCL14 may be 

explained by a low density of the putative CXCL14 receptor on the cell surface, 

necessitating a high concentration of CXCL14 to stimulate neutrophil migration, while 

prohibiting sufficient amounts of AF-CXCL14 to bind for it to be detected by flow 

cytometry. An alternative explanation for the lack of binding observed may be that 

neutrophils possess a receptor for CXCL14 that is distinct from the one expressed by 

monocytes, which binds CXCL14 with lower affinity.
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Figure 3.6. Neutrophils undergo migration in response to CXCL14. 
Neutrophils were purified by negative selection as described in Materials and Methods and 

subjected to flow cytometric analysis. (a) Gating strategy to identify live, single cells and (b) 
FACS plots showing expression of neutrophil-associated markers CD15, CD16 and CXCR1 

(black histograms). Grey filled histograms indicate stained with isotype-matched control 

antibodies. (c) Migration of neutrophils in response to CXCL8 (blue) and CXCL14 (red) was 

assessed by transwell chemotaxis assay. Data shown is mean + s.e.m. of two independent 

experiments. (d) Binding of 50 nM AF-CXCL14 to neutrophils (right). Cells incubated with 

buffer alone (i.e. no AF-CXCL14) are shown (left) to display how AF-CXCL14+ gate was 

positioned. Plots shown are representative of two experiments. The percentage of cells which 

are AF-CXCL14+ is indicated. 
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3.3.6 Plasmacytoid DCs are Not Targets for CXCL14 

Human blood DCs can be subdivided into three distinct populations. There are two 

subsets of myeloid DC, which are positive for the common myeloid marker CD33 and 

are distinguished on the basis of differential expression of CD1c and CD141. The third 

population is the plasmacytoid DCs (pDC), with CD303 (BDCA-1) shown to be a 

unique marker for identification of these cells (Ziegler-Heitbrock et al., 2010). All three 

DC populations also express MHC class II. PBMC were stained for HLA-DR and 

CD303 expression, which identified a small population of pDC, accounting for 0.2-

0.5% of total PBMC (Figure 3.7a). Binding studies with AF-CXCL14 revealed that the 

large majority of pDC were negative for expression of CXCL14 receptor(s) (Figure 
3.7b). In migration assays using PBMC, pDC did not undergo chemotaxis at all in 

response to CXCL14. In fact, no pDC were found in the lower chamber upon 

termination of the assay. This Indicates that either pDCs do not respond to CXCL14, 

or that they were unable to move through the pores. A suitable positive control for 

migration of pDC could not be found. Despite expression of high levels of CXCR3, 

pDC do not respond efficiently to CXCR3 ligands (Vanbervliet et al., 2003). Migration 

toward CXCL12 has been shown by others (Vanbervliet et al., 2003), but my attempts 

to replicate this were unsuccessful (data not shown). However, the fact that pDC are 

smaller in size than monocytes and neutrophils would suggest that they should be 

capable of passing through the pores in the transwell insert. 

 

Figure 3.7. Plasmacytoid DCs are not targets for CXCL14. 
PBMC were stained for markers which identify plasmacytoid DC (pDC). (a) After gating on 

live, single cells, plotting HLA-DR vs CD303 enabled identification of pDC. Shown is a plot 

from a representative experiment, where the number indicates the percentage of pDC in total 

PBMC for this particular donor. Staining was performed on PBMC from three donors in total. 

(b) Binding of AF-CXCL14 to pDC. Numbers indicate percentage of AF-CXCL14+ cells, and 

are representative of two independent experiments using different donors. 
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3.3.7 Myeloid DC are not targets for CXCL14 

PBMC were stained for cell-surface markers which facilitate identification of the two 

populations of myeloid DC. After gating on live, single cells, gating on CD33+ cells 

was followed by exclusion of monocytes based on CD14 and CD16 expression. 

Plotting CD1c vs CD141 revealed the two subsets of myeloid DC (Figure 3.8a). 

CD1c+ DC account for approximately 0.3-0.5% of PBMC, while CD141+ DC are a very 

minor population, accounting for only 0.01-0.05% of PBMC. 

To enable a proper analysis of these populations, myeloid DC were enriched from 

PBMC by negative selection using MACS technology. Although the selection did not 

yield a pure population of myeloid DC, >99% of non-DCs were removed (in one 

experiment starting with 40 million PBMC, 0.2 million cells were recovered post-

enrichment) Removal of contaminating non-DCs revealed a second population of 

CD141+ DCs, which had intermediate CD141 expression while being completely 

negative for CD1c, which contrasts with the CD141high cells which have low 

expression of CD1c (Figure 3.8b). The published literature on blood DC populations 

describes a single population of CD141+ DCs only (Boltjes and van Wijk, 2014, 

Ziegler-Heitbrock et al., 2010). Therefore, I am unsure of the relevance of this 

observation at this time. 

Migratory responses of myeloid DC toward CXCL14 and CCL21 were assessed by 

transwell chemotaxis assay. CD1c+ DC did not display migration in response to 

CXCL14, however they did display a 4-fold increase in migration toward CCL21 

(11.78% cells migrated toward 100 nM CCL21, compared to 2.84% toward buffer 

alone; Figure 3.8c). The majority of CD1c+ DC failed to bind AF-CXCL14 (Figure 
3.8d), confirming that these cells are not targets for CXCL14. Frustratingly, very low 

numbers of CD141+ DC were recovered post-enrichment (as they are >10-fold lower 

in abundance in PBMC compared to CD1c+ DC, the number recovered from 40 million 

PBMC was in the region of 5,000). This prohibited the proper examination of CD141+ 

DCs for responses toward CXCL14, and it is my intention to re-examine this 

population in future experiments. 
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Figure 3.8. Myeloid DC are not targets for CXCL14. 
Cells were stained for markers which identify the two subsets of myeloid DC. (a) Total PBMC. 

After gating on live, single cells, gating on CD33+ cells (left) was followed by exclusion of 

monocytes based on CD14 and CD16 expression (centre). Plotting CD1c vs CD141 identifies 

the two populations of myeloid DC (right); CD1c+ DC (red gate) and a small population of 

CD141+ DC (blue gate). Numbers indicates the percentage of each population in total PBMC, 

representative of two donors. (b) Myeloid DC enriched by negative selection. FSC vs SSC plot 

shows that monocytes, which have a higher FSC/SSC profile than lymphocytes and DCs, were 

not present in the enriched fraction (left). Gating on cells expressing the common myeloid 

marker CD33 was performed (centre), followed by gating on myeloid DC subsets (right). 

Removal of non-DCs revealed a second CD141+ DC population, characterised by 

intermediate CD141 expression and an absence of CD1c expression (green gate). Numbers 

indicate the percentage of each population in the total enriched cells. (c) Migration of CD1c+ 

DCs toward CXCL14 and 100 nM CCL21. Data shown is mean + s.e.m. of two independent 

experiments. (d) Binding of 0 and 50 nM AF-CXCL14 to CD1c+ myeloid DCs. Numbers 

indicate percentage AF-CXCL14+ cells and are representative of two donors. 
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3.3.8 In vitro monocyte-derived DCs do not respond to CXCL14 

Monocytes were purified from PBMC by negative selection and cultured in the 

presence of GM-CSF and IL-4 to generate monocyte-derived DCs (mo-DC) (Sallusto 

and Lanzavecchia, 1994). After 6 days, monocytes had lost expression of CD14 and 

gained expression of the DC and macrophage C-type lectin receptor DC-SIGN 

(CD209; Figure 3.9a). Immature mo-DC were matured with a combination of LPS and 

TNFα for 24 hours, displaying a marked change in morphology characterised by 

clustering of cells and elongation/increase in size. Mo-DC also up-regulated 

expression of MHC class II and the co-stimulatory molecule CD86 (B7-2; Figure 
3.9b). Both immature and mature mo-DC were tested for migration toward CXCL14 

and expression of CXCL14 receptor(s). While immature mo-DC did appear to display 

weak but uniform binding of AF-CXCL14, no migration toward CXCL14 was observed. 

Apparent labelling with AF-CXCL14 may be explained by non-specific uptake of the 

reagent due to immature DCs having high endocytic activity. Mature mo-DC, which 

are less endocytically active, did not label with AF-CXCL14 and also did not migrate 

toward CXCL14. Finally, mo-DC acquired strong responsiveness to CCL21 following 

maturation, consistent with up-regulation of CCR7 which facilitates their traffic to the 

lymphoid organs in vivo (Figure 3.9c). 
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Figure 3.9. In vitro monocyte-derived DCs do not respond to CXCL14. 
Blood monocytes were cultured for 6 days in the presence of GM-CSF and IL-4 to generate 

immature monocyte-derived DCs (mo-DC), followed by maturation for 24 hours in the 

presence of LPS and TNFα. (a) By day 6, immature mo-DC have lost CD14 expression and 

up-regulated expression of DC-SIGN (CD209). (b) Comparison of the morphology of immature 

and mature mo-DC as well as surface expression of MHC class II and the costimulatory 

molecule CD86, two proteins involved in antigen presentation and activation of T cells. In (a) 

and (b), grey filled histograms indicate staining with isotype-matched control antibodies. (c) 
Binding of AF-CXCL14 and migration toward CXCL14 or CCL21 of immature (top) and mature 

(bottom) mo-DC. Grey filled histogram indicates unstained cells. Migration is mean + s.e.m. of 

two independent experiments, while microscope images and staining plots are representative 

of 2-3 independent experiments.
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3.4 Responses to CXCL14 can be modelled in the Human 
Monocytic Leukaemia Cell-line THP-1 

3.4.1 Responsiveness to CXCL14 is maintained in cultured monocytes 
by prostaglandin E2 

It was demonstrated in previous work by our group that addition of PGE2 to 1-2 day 

monocyte cultures induced acquisition of responsiveness to CXCL14 (Kurth et al., 

2001). In clear contrast to my own findings, the study by Kurth et al. showed that 

monocytes freshly isolated from peripheral blood responded only very weakly to 

CXCL14. Despite my observation that freshly isolated monocytes exhibit a robust and 

reproducible migratory response toward CXCL14, I decided to see if the PGE2 effect 

on monocytes was still valid. Freshly isolated PBMC were placed into culture in 

medium alone, or in medium supplemented with 1 µM PGE2. Migration toward 

CXCL14 was assessed the following day using the transwell chemotaxis assay. 

Interestingly, it was observed that monocytes cultured in medium alone up-regulated 

CD16 expression, so that the majority of cells were positive for both CD14 and CD16. 

In contrast, up-regulation of CD16 expression was not observed in monocytes 

cultured with PGE2, the relative proportions of the three monocyte subsets defined by 

CD14 and CD16 expression resembling that seen in freshly isolated PBMC (shown 

in Figure 3.1). A further observation was that the minor population of CD14+CD16++ 

non-classical monocytes was largely absent from the cells recovered after 24 hours 

in culture, either alone or with PGE2 (Figure 3.10a). Of note, >50% of monocytes 

were dead following overnight culture in medium alone, while this figure was reduced 

to 10-30% by addition of PGE2 (data not shown). 

Migration of PBMC toward CXCL14 following 1-day culture is shown (Figure 3.10b). 

Here, migration toward chemokine is displayed in the form of the chemotactic index, 

i.e. the fold-increase in migration compared to buffer alone (blank). This was done to 

normalise the data, as each of the different cell subsets gave varying levels of 

background migration (from 1-2% for monocytes to ~10% for T and NK cells). PGE2-

treated monocytes exhibited a nearly 11-fold increase in migration to 1000 nM 

CXCL14 (15.62 ± 0.01% migration to 1000 nM CXCL14, compared to 1.44 ± 0.23% 

migration toward buffer alone; p<0.001). Unstimulated monocytes, as well as T cells, 

B cells and NK cells (either unstimulated or PGE2-stimulated) did not display any 

migration toward CXCL14 (Figure 3.10b). 
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Figure 3.10. Overnight culture with prostaglandin E2 maintains monocyte 
responsiveness to CXCL14. 
PBMC were cultured for 20-24 hours in medium alone, or in medium supplemented with 1 µM 

PGE2. (a) Representative FACS plots showing the monocyte subsets defined by CD14 and 

CD16 expression in freshly isolated monocytes (left) and in monocytes following overnight 

culture (right). Numbers indicate the frequency (percentage) of each of the three populations. 

(b) Migration of overnight-cultured PBMC to CXCL14, where migration is expressed as the 

fold-increase in migrated cells compared to the blank (chemotactic index). Data shown is mean 

+ s.e.m. of two independent experiments. ***P<0.001 compared to all other groups using two-

way ANOVA. (-) indicates no treatment i.e. cells cultured in medium alone. 
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3.4.2 Induction of CXCL14-responsiveness in monocytes by PGE2 can 
be replicated in THP-1 cells 

In order to study the monocyte response to CXCL14 more closely, I attempted to 

reproduce my findings from primary human monocytes in a monocytic cell-line. A 

modest chemotactic response toward CXCL14 has previously been reported in the 

human monocytic leukaemia cell-line THP-1 (Hara and Tanegashima, 2012, 

Tanegashima et al., 2010b). THP-1 cell-responsiveness toward CXCL14 was tested 

by transwell chemotaxis assay. THP-1 cells were cultured in the absence (medium 

alone) or presence of 1 µM PGE2. After 24-48 hours in culture, migration toward 

CXCL14, as well as the monocyte chemoattractant CCL2, was performed. Culture 

with PGE2 elicited a strong response to micromolar concentrations of CXCL14, while 

THP-1 cells cultured in medium alone failed to migrate (33.6 ± 5.2% of PGE2-treated 

cells, compared to 1.42 ± 0.33% of untreated cells migrated toward 3 µM CXCL14; 

p<0.001) (Figure 3.11a). PGE2-treated THP-1 cells did not migrate to sub-micromolar 

concentrations of CXCL14 (not shown). Of note, the chemotactic response of THP-1 

cells to CCL2 was unaffected by stimulation with PGE2 (Figure 3.11b). 

 

Figure 3.11. The monocytic leukaemia cell-line THP-1 can also be induced to migrate to 
CXCL14 by treatment with PGE2. 
Migration of THP-1 cells in response to (a) CXCL14 or (b) CCL2 following 1-2 day culture in 

medium alone, or in medium supplemented with 1 µM PGE2. Data shown are mean + s.e.m. 

(a) is an average of 10 independent experiments; ***P<0.001 using a two-way ANOVA. (b) is 

an average of two independent experiments. 
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PGE2 exerts its effects on cells via four receptors, designated EP1 to EP4. In order to 

determine at which receptor(s) PGE2 was inducing responsiveness toward CXCL14, 

THP-1 cells were treated with a number of selective EP receptor agonists and 

antagonists. THP-1 cells stimulated with 1 µM PGE2 migrated well in response to 3 

µM CXCL14, as expected (37.9% of input cells migrated). The combined EP1 and 

EP3 agonist 19R(OH)PGE2 did not induce a migratory response to CXCL14 above 

that of unstimulated THP-1 cells (1.3% migrated), while the EP2 agonist Butaprost 

induced a weak response to CXCL14 (8.49% migrated). In contrast, the EP4 agonist 

Cay10598 induced the strongest response to CXCL14, similar to that induced by 

PGE2 itself (35.2% migrated; Figure 3.12a). 

Next, THP-1 cells were stimulated overnight with 1 µM PGE2 in the presence of 

various selective EP receptor antagonists. Again, THP-1 cells stimulated with PGE2 

alone migrated well in response to 3 µM CXCL14 (35.6% of input cells migrated). 

Addition of the selective EP1 antagonist SC19220, as well as the EP1-3 antagonist 

AH6809, had only a modest inhibitory effect on migration to CXCL14 (32.1% and 

26.6% of cells migrated toward 3 µM CXCL14, respectively). In contrast, the selective 

EP4 antagonist ONO-AE3-208 completely abolished induction of CXCL14 

responsiveness by PGE2, migration returning to the level of unstimulated THP-1 cells 

(1.4% of cells migrated toward 3 µM CXCL14; Figure 3.12b). These data clearly show 

that it is primarily the EP4 receptor which is responsible for the induction of CXCL14 

responsiveness by PGE2 in THP-1 cells. EP2 and EP4 have been shown to induce 

elevation of cyclic AMP (cAMP) levels in cells following activation, in contrast to EP3 

which prevents conversion of ATP to cAMP through inhibition of adenylate cyclase 

activity (Sugimoto and Narumiya, 2007). Involvement of EP4 (and possibly EP2 also) 

in the induction of CXCL14 responses in THP-1 cells by PGE2 was confirmed by 

showing that induction can also be achieved by treatment with forskolin, a naturally 

occurring compound which raises levels of cAMP in cells through direct activation of 

adenylate cyclase (data not shown). 
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Figure 3.12. PGE2 induces CXCL14-responsiveness in THP-1 cells primarily via the EP4 
receptor. 
(a) THP-1 cells were cultured for 24 hours in the presence of 1 µM PGE2 or the selective EP 

receptor agonists 19R(OH)PGE2, Butaprost or CAY10598 (10 µM of each). Migration in response 

to 3 µM CXCL14 was assessed by transwell chemotaxis assay. Migration is normalised to PGE2 

(given as 100%). (b) THP-1 cells were cultured for 24 hours in the presence of 1 µM PGE2 alone 

or in combination with 10 µM of the selective EP receptor antagonists SC19220, AH6809 and 

ONO-AE3-208. Migration in response to 3 µM CXCL14 was assessed by transwell chemotaxis 

assay. Migration is normalised to PGE2 alone (given as 100%). For both (a) and (b), data shown 

is from a single experiment which is representative of two independent experiments. 

 

 

3.4.3 The β-sheets region of CXCL14 has chemotactic activity, while the 
N-terminal and C-terminal regions do not 

Synthetic peptides of discrete regions of CXCL14 were synthesised as described in 

(Dai et al., 2015), and are shown in Table 3.1. The peptides were tested to determine 

which portion(s) of the molecule are responsible for the different roles of CXCL14, 

namely its chemotactic and antimicrobial activities. Interestingly, we found that there 

is a division of labour within the CXCL14 molecule. The central part of the molecule 

representing the β-sheet was able to induce chemotaxis of PGE2-treated THP-1 cells 

(7.79 ± 2.03% cells migrated toward 10 µM peptide 14-54, compared to 0.38 ± 0.16% 

toward buffer only). The strength of the migratory response was approximately 4-fold 

lower compared to that elicited by native CXCL14 (Figure 3.11a), indicating that other 

components of the peptide are required for induction of a full response. The N-terminal 

and C-terminal peptides, however, failed to induce chemotaxis by themselves (Figure 
3.13). Interestingly, antimicrobial activity against gram-negative bacteria was largely 

associated with the N-terminal peptide 1-13, although the central β-sheet also had 

some killing activity (Dai et al., 2015). While other CXC chemokines have five or more 
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residues in their NH2-terminal region which have been shown to be essential for 

interaction with their cognate receptors (Clark-Lewis et al., 1994, Rajagopalan and 

Rajarathnam, 2006), CXCL14 has a short NH2-terminus, consisting of only two amino 

acids. It may be therefore that the N-terminal region of CXCL14 is not important for 

interaction with its receptor, a notion that would appear to be supported by the lack of 

chemotactic activity possessed by the N-terminal peptides. In addition, a unique 

characteristic of CXCL14 is that it has an insertion of five amino acids (41VSRYR45) 

which is not seen in other CXC chemokines (underlined in Table 3.1). This insertion 

is within the β-sheet region of the peptide, possibly representing a novel determinant 

governing its chemotactic activity. 

 

Table 3.1. Synthetic peptides, representing discrete regions of CXCL14, tested for chemotactic 
activity on PGE2-treated THP-1 cells. 

Peptidea Molecular weight (Da) Amino acid sequence 
N-terminal 1-17 1955.33 SKCKCSRKGPKIRYSDV 
N-terminal 1-13 1492.20 SKCKCSRKGPKIR 
N-terminal 1-11 1221.50 SKCKCSRKGPK 
N-terminal 1-10 1093.33 SKCKCSRKGP 
N-terminal 1-9 996.21 SKCKCSRKG 
N-terminal 1-8 939.16 SKCKCSRK 
β-sheets 14-54 4917.50 YSDVKKLEMKPKYPHCEEKMVIITTKSVSRYRGQEHCLHPK 
C-terminal 55-77 3048.00 LQSTKRFIKWYNAWNEKRRVYEE 

aNumbering represents the position of the amino acid residues in the full-length CXCL14 protein 
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Figure 3.13. The β-sheets region of CXCL14 has chemotactic activity, while the N-
terminal and C-terminal regions do not. 
THP-1 cells were treated for 24 hours with 1 µM PGE2, followed by testing migratory responses 

toward each of the synthetic CXCL14 peptides listed in Table 3.1. Peptide concentrations 

ranging from 0.1-10 µM were tested for chemotactic activity. Data shown is mean + s.e.m. of 

two independent experiments. 
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3.4.4 AF-CXCL14, the reagent used to identify cells expressing CXCL14 
receptor(s), is functionally active 

I confirmed that AF-CXCL14, used to identify CD14hi monocytes as CXCL14 target 

cells in peripheral blood (see Figures 3.3-3.5) was functionally active by its ability to 

induce chemotaxis of PGE2-treated THP-1 cells. Cells gave a very robust migration 

in response to 3 µM AF-CXCL14, although no migration was observed in response to 

1 µM (Figure 3.14). These results may suggest that attachment of the AF647 

fluorochrome at its C-terminus has rendered AF-CXCL14 slightly less active than the 

native chemokine. However, the fact that it is active in the range (1-3 µM) that native 

CXCL14 is active on PGE2-treated THP-1 cells indicates that the reagent is suitable 

for use in binding studies. Of note, in future binding studies using immune cells 

isolated from human skin (see next section), binding of murine CCL1 conjugated to 

AF647 (AF-muCCL1) was used as a control for non-specific binding of AF-CXCL14. 

Chemotactic activity of AF-muCCL1 on 300.19 cells stably transfected with its 

cognate receptor murine CCR8 (muCCR8) was confirmed by myself in our lab (Figure 
3.14), while use of this reagent to label muCCR8 expressed on the surface of primary 

murine T cells has recently been published by our group (McCully et al., 2015). 

 

 

Figure 3.14. AF-CXCL14 and AF-muCCL1 have chemotactic activity. 
(a) THP-1 cells were treated overnight with PGE2, and migration toward AF-CXCL14 was 

assessed the following day by transwell chemotaxis assay. (b) 300.19 cells stably transfected 

with murine CCR8 were assessed for migration toward AF-muCCL1 by transwell chemotaxis 

assay. Data are mean + s.e.m. of two independent experiments. 
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3.5 CXCL14 Target Cells in Human Skin 

3.5.1 Gating strategy to identify immune cell populations isolated from 
epidermis by flow cytometry 

Human split skin samples were partially enzymatically digested to enable separation 

of the dermis from the epidermis. Epidermal sheets devoid of dermal tissue were left 

intact and placed into culture for 2-3 days, during which time the resident immune 

cells emigrated out of the tissue into the medium. Emigrant cells were collected and 

single cell suspensions were stained with fluorochrome-conjugated mAbs against 

CD45, CD3, CD1a, CD14, CD207 (langerin) and HLA-DR. A representative 

experiment is shown. The forward scatter vs. side scatter gate shows a disparate 

population, consisting of cells of all shapes, sizes and granularities. Following 

exclusion of cell aggregates and dead cells (the majority of emigrant cells recovered 

from the epidermis were found to be dead), gating on CD45 vs side scatter reveals 

three distinct populations (Figure 3.15a). There is a minor population of CD45+ SSClo 

cells (~2% of total live cells), the majority of which are CD3+ T cells (Figure 3.15b). 

The remaining CD45+ cells are here referred to as “high” side scatter, accounting for 

~22% of all live cells (CD45+ SSChi). The majority of these cells are Langerhans cells, 

a specialised population of DCs that reside in the epidermis, as evidenced by their 

expression of CD1a, HLA-DR and langerin (Figure 3.15c). The CD45neg population, 

which typically does not include cells of haematopoietic origin as CD45 is considered 

a marker expressed on all immune cells, are discussed later on in this chapter (see 

Figure 3.20 and Figure 3.21).
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Figure 3.15. Gating strategy to identify immune cell populations isolated from human 
epidermis by flow cytometry. 
Epidermal sheets were cultured for 48-72 hours, after which time emigrant cells were collected 

and stained with fluorochrome-conjugated mAbs and analysed by flow cytometry. Shown are 

plots from a single experiment that is representative of three independent experiments using 

skin from different donors. (a) Following exclusion of debris (far left), cell aggregates (centre 

left) and dead cells (centre right), plotting CD45 vs side scatter (far right) reveals three discrete 

populations; a CD45+, low side-scatter (SSC) population (2% of total live cells; red gate), a 

CD45+, high side-scatter population (22% of total live cells; blue gate) and a CD45-neg 

population (75% of total live cells; green gate). (b) The CD45+ SSC-lo population is largely 

comprised of CD3+ T cells. (c) Analysis of the CD45+ SSC-hi epidermal population. Gating 

on CD1a vs CD14 reveals that 98% of cells have high expression of CD1a, while lacking CD14 

(left). Subsequent analysis of these cells reveals that they express high levels of MHC class II 

as well as staining uniformly positive for langerin (black histograms), confirming that they are 

Langerhans cells. Grey filled histograms indicate staining with isotype-matched control 

antibodies. 

 

3.5.2 Gating strategy to identify immune cell populations isolated from 
dermis by flow cytometry 

Like the epidermis, dermal tissue was also cultured for 2-3 days to allow immune cells 

to emigrate out of the tissue. Following collection of dermal emigrant cells, single-cell 

suspensions were stained with fluorochrome-conjugated mAbs against the same 
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markers as for the epidermis, except langerin was replaced with CD1c (Langerin is a 

specific marker for Langerhans cells, and these cells are only present in the 

epidermis). A representative experiment is shown. In similar fashion to the epidermis, 

exclusion of cell aggregates and dead cells followed by plotting CD45 vs side scatter 

reveals three distinct populations. Unlike the epidermis however, the most abundant 

population is that characterised by CD45 expression and low side scatter (CD45+ 

SSClo; 46% of all live cells). The CD45+ cells with high side scatter (CD45+ SSChi) 

accounts for 39% of all live cells. Only a minority of emigrant cells recovered were 

negative for CD45 expression, accounting for 13% of all live cells recovered from the 

dermis (Figure 3.16a). 

Similarly to the epidermis, the majority (91%) of CD45+ SSClo cells are CD3+ T cells. 

The remaining 9% likely comprise of other lymphoid populations such as NK cells 

(Figure 3.16b). Found within the CD45+ SSChi population are the dermal DCs, of 

which there are two major subsets; CD1a+ DC and CD14+ DC (Haniffa et al., 2015). 

Tissue CD14negCD141hi DC, distinct from CD14+ and CD1c+ DCs, have been recently 

described, but these cells are rare in healthy skin and are not discussed here. The 

CD1a+ DCs are more abundant than the CD14+ DCs, by approximately 2-fold (Figure 
3.16c). The two DC populations can also be distinguished by their level of expression 

of other cell-surface markers including HLA-DR and CD1c, with the CD1a+ DC having 

higher expression of both. The two types of dermal DC also separate into distinct 

populations on the CD45 vs SSC plot, with CD1a+ DC having a higher side scatter 

profile and lower CD45 expression than the CD14+ DC (Figure 3.16d). 
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Figure 3.16. Gating strategy to identify immune cell populations isolated from human 
dermis by flow cytometry. 
Dermal tissue was cultured for 48-72 hours, after which time emigrant cells were collected and 

stained with fluorochrome-conjugated mAbs and analysed by flow cytometry. Shown are plots 

from a single experiment, representative of three independent experiments. (a) Following 

exclusion of debris (far left), cell aggregates (centre left) and dead cells (centre right), plotting 

CD45 vs side scatter (far right) reveals three discrete populations; a CD45+ SSC-lo population 

(46% of live cells; red gate), a CD45+ SSC-hi population (39% of live cells; blue gate) and a 

CD45-neg population (13% of live cells; green gate). (b) The CD45+ SSC-lo population 

comprises mostly of CD3+ T cells. (c) Contained within the CD45+ SSC-hi population are the 

two subsets of dermal DC; CD1a+ DC and CD14+ DC. CD1a vs CD14 is plotted for cells 

stained with all antibodies (left), while also shown is the same plot for the fluorescence-minus-

one (FMO) control, where cells were stained with all antibodies except for anti-CD1a-FITC 

(right). (d) Comparison of CD1a+ DC (left) and CD14+ DC (right) for expression of HLA-DR 

and CD1c (black histograms). Grey filled histograms indicate staining with isotype-matched 

control antibodies. Numbers are MFI (geometric mean). In the lower plots, the position of each 

of the DC subsets on the CD45 vs SSC plot is shown (cell type indicated is shown in blue). 
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3.5.3 Epidermal Langerhans cells are not targets for CXCL14 

The bulk population of emigrant cells recovered from the epidermis were tested for 

expression of CXCL14 receptor(s) by binding of AF-CXCL14, while functional 

responses to CXCL14 were tested by transwell chemotaxis assay. LCs displayed only 

a very weak binding of AF-CXCL14, with a slight increase in fluorescence in 

comparison to AF-muCCL1 control (Figure 3.17a). In four donors tested, 11.15 ± 

2.21% LCs stained positively with AF-CXCL14 (Figure 3.17b). However, the fact that 

there is an overall shift in the populations along the axis, rather than a distinct 

population of ‘positive’ cells, leads me to believe that this perceived staining is due to 

non-specific binding/uptake. This is supported by the observation that LCs did not 

undergo chemotaxis in response to CXCL14 (0.24 ± 0.08% LCs migrated in response 

to 1 µM CXCL14, compared to 0.14 ± 0.02% in response to buffer alone; p=0.43) 

(Figure 3.17c). It can therefore be concluded that LCs are probably not targets for 

CXCL14. 

 
Figure 3.17. Langerhans cells are not targets for CXCL14. 
(a) Binding of AF-CXCL14 to epidermal emigrant cells was analysed by flow cytometry. 

Representative dot plot and histogram to show binding of 50 nM AF-CXCL14 to Langerhans 

cells (LCs). Number indicates the percentage of positive cells. Grey filled histogram indicates 

binding of AF-muCCL1. (b) Cumulative data from four donors shows the percentage of LCs 

which are AF-CXCL14+. Data shown is mean ± s.e.m. (c) Migration of LCs toward CXCL14. 

Data is mean + s.e.m. of four independent experiments using different donors. 
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3.5.4 Lymphocytes isolated from both epidermis and dermis are not 
targets for CXCL14 

Bulk epidermal and dermal emigrant cells were tested for expression of CXCL14 

receptor(s) by binding of AF-CXCL14, while functional responses to CXCL14 were 

tested by transwell chemotaxis assay. As demonstrated in Figure 3.15 (epidermis) 

and Figure 3.16 (dermis), the majority of cells found in the CD45+ SSClo gate were 

CD3+ T cells. Only a small minority of T cells displayed labelling with AF-CXCL14 

(4.29 ± 0.32% dermal T cells and 3.80 ± 0.13% epidermal T cells were AF-CXCL14+) 

(Figure 3.18a). Neither dermal nor epidermal T cells displayed specific migration 

toward CXCL14, although migration of both was observed in response to CXCL12. 

The analysis and interpretation of dermal T cell migratory responses was slightly 

complicated by the fact that they displayed high background migration, 15.5 ± 1.7% 

of dermal T cells migrating toward buffer alone. However, CXCL14 (100-1000 nM) 

failed to stimulate migration above background, while 38.2 ± 10.4% of dermal T cells 

migrated in response to 100 nM CXCL12 (chemotactic index = 2.46). Epidermal T 

cells exhibited lower background migration, 5.4 ± 1.6% of cells migrating toward buffer 

alone. Again, no specific migration toward CXCL14 was observed, while 24.1 ± 17.4% 

migrated toward 100 nM CXCL12 (chemotactic index = 4.46; Figure 3.18b). These 

data indicate that skin lymphocytes, like lymphocytes in blood, are not targets for 

CXCL14. 
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Figure 3.18. Skin lymphocytes are not targets for CXCL14. 
Lymphocytes from dermis and epidermis were assessed for binding of AF-CXCL14 and 

chemotactic responses toward CXCL14. (a) Representative dot plots show binding of 50 nM 

AF-CXCL14 to the CD45+SSC-lo population present in emigrant cells recovered from the 

dermis (left) and epidermis (right), the majority of which are CD3+ T cells. (b) Cumulative data 

from three independent experiments shows the percentage of dermal and epidermal T cells 

which were AF-CXCL14+. Data is displayed as mean ± s.e.m. (c) Migration of dermal and 

epidermal T cells toward 100-1000 nM CXCL14 and 100 nM CXCL12 is shown. Data shown 

is mean + s.e.m. of four independent experiments. 

 

3.5.5 CD14+ DCs express CXCL14 receptor(s), while CD1a+ DCs do not 

Both dermal DC subsets are of myeloid origin, as demonstrated in patients who are 

deficient in blood monocytes and myeloid DCs due to IRF8 and GATA2 mutation. 

These patients lack dermal DC subsets and have reduced numbers of macrophages, 

however their epidermal LC pool is completely intact (Bigley et al., 2011, Hambleton 

et al., 2011). This implies that dermal DCs are directly dependent on either circulating 

monocytes and/or DCs, or a shared HSC-derived precursor. The specific 

contributions, however, of circulating monocytes and DCs to skin DC subsets remain 

unclear. Although it has recently been demonstrated that the CD14+ DC subset which 
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resides in human dermis is in fact more transcriptionally aligned to monocytes and 

macrophages than DCs (McGovern et al., 2014), I will continue to refer to them as 

CD14+ DCs here, as per the existing convention. 

Skin DCs were assessed for binding of AF-CXCL14. Only a minor proportion of CD1a+ 

DCs (13.5 ± 1.8%) stained positively for expression of CXCL14 receptors. In contrast, 

CD14+ DCs displayed strong binding of the labelled chemokine (91.7 ± 1.2% CD14+ 

DCs were AF-CXCL14+). Representative data for AF-CXCL14 binding is displayed in 

the form of dot plots (and accompanying histograms) in Figure 3.19a, and cumulative 

data from three donors is displayed graphically in Figure 3.19b. Migratory responses 

toward CXCL14 were assessed by transwell chemotaxis assay. CD1a+ DCs displayed 

minimal migration toward CXCL14 (2.03 ± 0.31% CD1a+ DCs migrated toward 1000 

nM CXCL14, compared to 0.90 ± 0.67% toward buffer alone; chemotactic index = 

2.26), while migrating slightly more toward CXCL12 (4.88 ± 3.94% cells migrated 

toward 100 nM CXCL12). Despite their presumed expression of CXCL14 receptor(s), 

CD14+ DCs did not migrate in response to CXCL14 Figure 3.19c. Non-specific 

migration of CD14+ DCs was extremely low (0.04 ± 0.02% CD14+ DCs migrated 

toward buffer alone); indeed, in one experiment no CD14+ DCs were recovered from 

the lower chamber. I hypothesised that the setup of the transwell assay was not 

optimal to observe migration of this particular cell subset, and so I made several 

attempts to address this issue. Migration assays were performed using filters with 

larger pores (8 µm instead of the usual 5 µm), while pre-coating of the transwell filters 

with collagen type-IV was also tested in the theory that this may aid cell attachment, 

and hence migration. However, no migration of CD14+ DCs was observed (data not 

shown). 
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Figure 3.19. CD14+ DCs are targets for CXCL14. 
Dermal DCs were assessed for binding of AF-CXCL14. (a) Representative dot plots and 

histogram to show binding of AF-CXCL14 (and AF-muCCL1 as control) to CD1a+ DCs (top) 

and CD14+ DCs (bottom). Numbers indicate the percentage of AF-CXCL14+ cells. Grey filled 

histogram indicates binding of AF-muCCL1. (b) Cumulative data shows the % of AF-CXCL14+ 

cells found within the two subsets of dermal DC. Data shown is mean ± s.e.m. of three 

independent experiments using different donors. (c) Migration of the dermal DC subsets 

toward CXCL14 (100-1000 nM) and CXCL12 (100 nM) is shown. Data shown is mean + s.e.m. 

of three donors. 
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3.5.6 Within the CD45neg population of the epidermal emigrant cells, 
there is a subset which are targets for CXCL14 

When studying immune cells extracted from tissue, many researchers exclude from 

their analysis all cells that are negative for expression of CD45, on account of this 

‘pan-immune cell’ marker being considered to be present on all cells of 

haematopoietic origin. However, upon examination of the CD45neg population isolated 

from human skin samples, I made a startling discovery. Approximately 75% of the live 

emigrant cells recovered from the epidermis were negative for CD45 expression (see 

Figure 3.15a). Upon further analysis of this population, we found that a subset of the 

CD45neg cells expressed both CD14 and CD1a, cell-surface proteins with roles in 

pathogen-sensing (CD14) and antigen presentation (CD1a) normally associated with 

immune cells of the myeloid lineage (Figure 3.20a). Remarkably, these 

CD45negCD1a+CD14+ displayed strong binding of AF-CXCL14, with representative 

staining plots shown in Figure 3.20b. This contrasted with the remaining CD45neg 

cells, which lack CD1a and CD14 expression and displayed only very weak binding. 

Data from four donors is combined in Figure 3.20c, where 85.2 ± 3.6% epidermal 

CD45negCD1a+CD14+ cells stained positive for AF-CXCL14, while only 10.6 ± 5.0% 

CD45-CD1a-CD14- cells were positive (p=0.0003). This staining data was reflected 

exquisitely in transwell chemotaxis assays, with CD45negCD1a+CD14+ cells 

demonstrating a dose-dependent increase in migration toward CXCL14 (16.4 ± 3.3% 

CD45negCD1a+CD14+ cells migrated toward 1000 nM CXCL14, compared to 2.2 ± 

0.9% toward buffer alone; chemotactic index = 7.6, p=0.02). In contrast, the remaining 

CD45neg cells failed to migrate toward CXCL14 (1.6 ± 0.33% CD45negCD1aneg cells 

migrating toward 1000 nM CXCL14, compared to 2.1 ± 0.6% toward buffer alone; 

chemotactic index = 0.77, p=0.88). The CD45negCD1a+CD14+ cells did not migrate in 

response to CXCL12 (Figure 3.20d), an intriguing finding because CXCR4 is 

expressed on virtually all cells of haematopoietic origin. Lack of CXCR4 expression, 

combined with being CD45-negative, may indicate that these cells are unusual in their 

origin/function. 
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Figure 3.20. Contained within the CD45-neg epidermal fraction is a population of cells 
which are targets for CXCL14. 
(a) Representative dot plots show expression of CD1a and CD14 by the CD45-neg fraction of 

the epidermal emigrant cells. Cells stained with all antibodies except for anti-CD1a-FITC are 

shown for comparison (FITC FMO; right). (b) Representative dot plots and histogram show 

binding of AF-muCCL1 and AF-CXCL14 to CD1a+CD14+ cells (top row), and CD1anegCD14neg 

cells (bottom row). Numbers indicate the % of AF-CXCL14+ cells. Grey filled histogram 

indicates binding of AF-muCCL1. (c) Cumulative data shows the % of AF-CXCL14+ cells 

found within the epidermal CD45neg population. Data shown is mean ± s.e.m. of four donors, 

***P<0.001 using a paired t-test. (d) Migration of CD1a+CD14+ cells (left) and the remaining 

CD45neg fraction (right) toward 100-1000 nM CXCL14 and 100 nM CXCL12. Data is mean + 

s.e.m. of four donors, *P<0.05 compared to 0 nM using a Kruskall-Wallis ANOVA. 
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3.5.7 CD45negCD1a+CD14+ cells are also found in the dermis 

In contrast to the epidermis, only a minority of dermal emigrant cells were negative 

for CD45 expression (Approximately 13% of live cells were CD45neg; Figure 3.16a). 

However, as for the epidermis, I identified a minor subset within the CD45neg fraction 

which was positive for both CD14 and CD1a expression (Figure 3.21a). Despite there 

being small numbers of cells, I was able to show that they bound AF-CXCL14, in 

contrast to the remaining CD45neg, most of which were negative for expression of 

CXCL14 receptor(s) (Figure 3.21b). Combined data from three donors is shown in 

(Figure 3.21c), where 80.6 ± 9.5 dermal CD1a+CD14+ cells stained positive for AF-

CXCL14, while 25.9 ± 5.9% dermal CD1anegCD14neg cells were AF-CXCL14+. This 

indicates that the CD1a+CD14+ cells expressed CXCL14 receptor(s), which again was 

confirmed by migration to CXCL14. Despite high non-specific background migration 

(14.3 ± 8.5% migration toward buffer alone), CD1a+CD14+ cells migrated strongly 

toward 1000 nM CXCL14 (66.9 ± 19.8% migration; chemotactic index = 4.7). 

However, this did not reach significance (p=0.21, Kruskall-Wallis ANOVA), which can 

probably be explained by the low number of experimental repeats (n=3). In contrast, 

CD1anegCD14neg cells failed to migrate toward CXCL14 (23.6 ± 7.5% cells migrated 

toward 1000 nM CXCL14, compared to 24.8 ± 8.1% toward buffer alone; chemotactic 

index = 1.05) (Figure 3.21d). 
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Figure 3.21. Contained within the CD45neg dermal fraction is a population of cells which 
are targets for CXCL14. 
(a) Representative dot plots show expression of CD1a and CD14 by the CD45-neg fraction of 

the dermal emigrant cells. Cells stained with all antibodies except for anti-CD1a-FITC are 

shown for comparison (FITC FMO; right). (b) Representative dot plots and histograms show 

binding of AF-muCCL1 and AF-CXCL14 to CD1a+CD14+ cells (top), and CD1anegCD14neg 

cells (bottom). Numbers indicate the % of AF-CXCL14+ cells. Grey filled histogram indicates 

binding of AF-muCCL1. (c) Cumulative data shows the % of AF-CXCL14+ cells found within 

the epidermal CD45neg population, and is mean ± s.e.m. of three donors *P<0.05 using a paired 

T test. (d) Migration of CD1a+CD14+ cells (left) and the remaining CD45neg fraction (right) 

toward 100-1000 nM CXCL14 and 100 nM CXCL12. Data is mean + s.e.m. of three donors. 
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3.5.8 Dermal macrophages are extracted by overnight proteolytic 
digestion of the dermis 

Following separation of the dermis and epidermis, dermal tissue was digested 

overnight in medium containing collagenase D. Upon inspection the following day, the 

tissue had completely dissociated. Here, cells recovered from the dermis by total 

overnight digestion are referred to as extracted cells, in contrast to cells which are 

allowed to spontaneously migrate out of the tissue over 2-3 days and have been 

referred to thus far as emigrant cells. Extracted single cell-suspensions were stained 

with fluorochrome-conjugated mAbs against CD45, HLA-DR, CD1c, CD14 and 

CD163. The FITC channel was left empty to aid in the identification of macrophages, 

as they have higher autofluorescence than the other immune cell subsets, and 

autofluorescence is most readily detectable in channels excited by the 488-nm laser 

(Haniffa et al., 2009). Following successive exclusion of debris, cell aggregates and 

dead cells, the live single cell population was successively refined by gating on CD45+ 

cells, which includes DCs, macrophages, lymphocytes and mast cells, and then on 

HLA-DR+ cells, which excludes mast cells and lymphocytes. This resulted in two major 

fractions separable by autofluorescence (AutoF): AutoFlo and AutoFhigh (Figure 
3.22a). The AutoFhigh macrophages account for between one-third and one-half of the 

CD45+HLA-DR+ fraction. The same gating strategy performed on dermal emigrant 

cells was performed, showing a total absence of AutoFhigh cells from the CD45+HLA-

DR+ fraction, confirming that macrophages can only be recovered from the dermis by 

overnight digestion and do not emigrate out of the tissue (Figure 3.22b). Phenotyping 

of the AutoFhigh fraction confirmed their expression of CD163 and CD14 (although the 

latter is expressed at lower levels than on CD14+ DC) and absence of CD1c (Figure 
3.22c). Binding studies were performed using AF-CXCL14 and interestingly, we 

observed a subset of macrophages, accounting for approximately 25% of the total 

population, which were AF-CXCL14+. These were clearly distinct from the remaining 

75% of AutoFhigh cells, which did not bind AF-CXCL14 (Figure 3.22d). 
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Figure 3.22. Macrophages are extracted from the dermis by overnight digestion, and a 
proportion of them express CXCL14 receptor(s). 
Dermis was subjected to overnight collagenase digestion, and recovered cells were stained 

with fluorochrome-conjugated monoclonal antibodies and analysed by flow cytometry. (a) 
Gating strategy used to identify resident macrophages. Successive gating on cells, singlets 

and live cells (top panels) was followed by progressive refinement of the total live cell 

population by gating on CD45+ cells, then HLA-DR+ cells. Autofluorescence (AutoF), recorded 

in the FITC channel (488-nm laser), was plotted vs SSC on the CD45+HLA-DR+ cells, 

enabling identification of AutoFhigh macrophages. Plots are representative of two independent 

experiments. (b) The same gating strategy, performed on dermal emigrant cells, reveals that 

no AutoFhigh macrophages are present in the emigrant cells. (c) Surface phenotype of resident 

CD45+HLA-DR+ dermal cells. Macrophages were gated on as described in (a), while dermal 

DCs populations were gated on as described in Figure 3.16; macrophages (blue), CD14+ DCs 

(red) and CD1a+ DCs (green). (d) Binding of AF-CXCL14 to dermal macrophages, detected 

by flow cytometry. Number indicates % of cells which are AF-CXCL14+, and is representative 

of two donors. 
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In an unexpected finding, overnight digestion of the dermis yielded much greater 

numbers of CD45negCD1a+CD14+ cells than were recovered when cells were allowed 

to spontaneously emigrate from this tissue. Amazingly, in one donor, there were 

equivalent numbers of CD45negCD1a+CD14+ cells as total CD45+ cells. 16% of live, 

single cells recovered were CD45negCD1a+CD14+ (Figure 3.23a), compared to 17% 

of live single cells which were CD45+ (see Figure 3.22a).  It would therefore appear 

that large numbers of these cells are residing in the dermal tissue and that, like 

macrophages, most are fixed in the dermis and can only be recovered by total 

digestion. Expression of CXCL14 receptor(s) on extracted CD45negCD1a+CD14+ cells 

was confirmed by binding of AF-CXCL14 (Figure 3.23b), while phenotyping 

confirmed expression of CD14 (Figure 3.23c). Interestingly these cells do not express 

CD163, which is present on dermal macrophages and CD14+ DC. They also lack 

expression of CD1c which is highly expressed on CD1a+ DC (Figure 3.22c and 

(Haniffa et al., 2009)). The unique phenotype of these cells, coupled with their 

apparent abundance relative to the well characterised immune cell populations that 

are present in human skin, provides strong support for a thorough investigation of this 

novel cell population. 
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Figure 3.23. Large numbers of CD45negCD1a+CD14+ cells are recovered following 
overnight proteolytic digestion of the dermis. 
Dermis was subjected to overnight collagenase digestion and phenotyping was performed on 

extracted cells by flow cytometry. (a) Dot plots show gating on CD45-neg cells (left) followed 

by plotting CD1a vs CD14 expression (right). Numbers indicate the percentage of total live 

single cells. (b) Binding of AF-CXCL14 to CD45negCD1a+CD14+ cells is indicated by the blue 

histogram. Grey filled histogram indicates binding of AF-muCCL1. (c) Expression of CD14, 

CD163 and CD1c on CD45negCD1a+CD14+ cells. Grey filled histogram indicates staining with 

isotype-matched control antibodies. Data are from a single donor.
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3.6 Discussion 

The importance of chemokines in the control of immune cell traffic (as well as function) 

is underscored by various studies demonstrating a correlation between defects in the 

chemokine system and disease (Griffith et al., 2014, McDermott et al., 2015). While 

the role played by chemokines in recruiting immune effector cells to inflammatory sites 

is well described (Griffith et al., 2014), their role in maintaining immune homeostasis 

during the steady-state is much less understood. CXCL14 is considered a 

homeostatic chemokine, owing to its high level of expression in a wide range of 

healthy tissues including skin, lung and kidney, as well as gastrointestinal and 

reproductive tracts. Its absence from secondary lymphoid organs, however, sets 

CXCL14 apart from the other homeostatic chemokines CXCL12, CCL19, CCL21 and 

CXCL13 (Meuter and Moser, 2008). In this part of the project, I have performed a 

thorough interrogation of immune cell subsets isolated from human blood and skin for 

their ability to respond to CXCL14. I report that CXCL14 selectively induces migration 

of CD14+ blood monocytes (and neutrophils, see below), while other leukocyte 

subsets present in peripheral blood, including T cells, B cells, NK cells and DCs, do 

not migrate. Furthermore, migration toward CXCL14 and/or expression of CXCL14 

receptor(s) identified CD14+ populations in healthy human skin, assigning a novel role 

to CXCL14 in the maintenance of myeloid populations in peripheral tissues during the 

steady-state. These findings have profound implications for the maintenance of 

mucosal immunity in humans, while revealing more about the true function of this 

poorly defined chemokine. 

Since its discovery at the end of the 20th century (Frederick et al., 2000, Hromas et 

al., 1999, Kurth et al., 2001), a whole host of functions have been described for 

CXCL14, from induction of chemotaxis in a range of human leukocyte subsets 

including B cells, monocytes, neutrophils, DC precursors and activated NK cells (Cao 

et al., 2000, Kurth et al., 2001, Shellenberger et al., 2004, Sleeman et al., 2000, 

Starnes et al., 2006) to broad-spectrum antimicrobial activity (Dai et al., 2015, Maerki 

et al., 2009). However, several contradictions can be found within this body of 

literature. For instance, there are reports describing a role for CXCL14 in the 

recruitment of human DCs and DC precursors in vitro (Schaerli et al., 2005, 

Shellenberger et al., 2004). However, no defect in the distribution or function of DCs 

could be found upon thorough examination of the CXCL14-KO mouse (Meuter et al., 

2007). While this may be explained by functional redundancy in the chemokine 

system, clarification of the immune cell subsets targeted by CXCL14 is long overdue. 
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Attempts to identify the targets of CXCL14 have been hampered by the fact that the 

identity of the receptor to which CXCL14 binds is not known. We therefore acquired 

a custom-made, synthetic CXCL14 with an Alexa Fluor 647 fluorochrome attached to 

its C-terminus (AF-CXCL14). Having a reagent which could be used to ‘label’ cells 

expressing CXCL14 receptor(s) proved an invaluable tool for investigating the 

distribution of the CXCL14 receptor on leukocyte subsets. 

Migration toward CXCL14 and expression of CXCL14 receptor(s) identified 

monocytes as the major targets of CXCL14 among blood leukocytes, while also 

distinguishing between the three monocyte subsets which are defined by differential 

expression of CD14 and CD16. Classical (CD14++CD16-) monocytes displayed the 

strongest response, migration being observed toward as low as 100 nM CXCL14 and 

increasing up to 1 µM of the chemokine. Intermediate (CD14++CD16+) monocytes 

displayed a weaker response to CXCL14, while non-classical (CD14+CD16++) 

monocytes showed no response at all. The three monocytes subsets exhibit unique 

genotypic and phenotypic profiles (Ingersoll et al., 2010, Wong et al., 2011), however 

the functional differences between them is yet to be elucidated. Due to the 

‘inflammatory’ chemokine receptors CXCR1, CXCR2 and CCR2 being selectively 

expressed on classical monocytes, it has been proposed that classical monocytes 

have a function which resembles that traditionally assigned to monocytes, exiting 

circulation to enter inflamed tissues where they differentiate into macrophages or DCs 

(Geissmann et al., 2003, van Furth and Cohn, 1968). By contrast, it has been 

proposed that non-classical monocytes are excluded from sites of inflammation and 

that they may even remain in the bloodstream, operating as a blood-resident 

macrophage population (Cros et al., 2010, Geissmann et al., 2003). Classical 

monocytes are by far the most abundant subset, and the short half-life of monocytes 

in blood (~22 hours) suggests that they are continuously leaving the blood in large 

numbers. Their ability to respond to CXCL14 may therefore provide new insights into 

the fate of classical monocytes. By entering tissues in response to CXCL14, classical 

monocytes may replenish tissue-resident phagocyte populations during the steady-

state. The ability to respond to CXCL14 was found to identify several populations 

isolated from healthy human skin including dermal CD14+ DCs, as well as a novel 

population of cells which do not express CD45. The full implications of these findings 

are discussed below, as well as in the General Discussion. To complete the 

discussion regarding blood monocytes; there is intense debate regarding the 

developmental relationship of the three monocyte subsets. However, re-population 

kinetics in patients following HSCT suggest that classical monocytes likely give rise 
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to the intermediate, followed by non-classical subsets (McGovern et al., 2014). The 

data presented here are compatible with this notion. Classical monocytes lose the 

ability to respond to CXCL14 as they move along the developmental pathway toward 

non-classical monocytes. This, in turn, correlates with the requirement of classical 

monocytes to respond effectively to signals (including CXCL14) to enter tissues. In 

contrast, non-classical monocytes are unresponsive to the same signals, instead 

remaining in the bloodstream. 

The other leukocyte subset in peripheral blood which migrated toward CXCL14 in 

chemotaxis assays was neutrophils. However, binding of AF-CXCL14 to neutrophils 

was not observed. Neutrophils were unresponsive to 100 nM CXCL14 (unlike 

monocytes, which showed some migration toward 100 nM CXCL14), neutrophil 

responses beginning at 300 nM and increasing up to 1 µM. This may indicate that 

neutrophils express CXCL14 receptor(s) at lower levels than monocytes, perhaps 

below the threshold that is detectable using fluorescently-labelled CXCL14. One 

potential way of confirming expression of CXCL14 receptor(s) by neutrophils would 

be to test binding of radiolabelled CXCL14, which is a more sensitive approach to 

detecting chemokine receptor expression, and has been used previously to detect 

CXCL14 receptor expression on THP-1 cells (Tanegashima et al., 2010b). However, 

we have yet to perform this experiment. Chemotactic activity for neutrophils has been 

described previously (Cao et al., 2000), highlighting the importance of further 

investigation to determine whether or not neutrophils are targets for CXCL14. It must 

be noted that eosinophils and basophils, also present in peripheral blood, were not 

tested for CXCL14 responses. The predominant role of these cell types is in the 

mediation of allergic responses, with inflammatory chemokines (especially the CCR3 

ligands) being involved in the recruitment and local activation of these cells in chronic 

allergic conditions including asthma (Uguccioni et al., 1997, Ying et al., 1999). Due to 

there being no publications reporting the involvement of CXCL14 in allergic 

conditions, it was not considered pertinent to include these cell types in my analysis. 

With the exception of neutrophils, binding of AF-CXCL14 to immune cells from blood 

and skin correlated extremely well with migratory responses, giving us confidence that 

the reagent was binding to its intended target. The observation that AF-CXCL14 had 

chemotactic activity for PGE2-treated THP-1 cells also convinced us of its suitability 

for use. Others have established the specificity of binding of labelled chemokines by 

demonstrating that unlabelled ligand efficiently competes with labelled chemokine for 

binding to the receptor (Strong et al., 2006). In binding experiments performed with 
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monocytes however, addition of excess (10X) unlabelled CXCL14 resulted in a 

considerable increase in binding of AF-CXCL14 (data not shown). The reason for this 

puzzling finding is not clear at this point. A possible explanation is that high chemokine 

concentrations drive the formation of CXCL14 oligomers which have a greater affinity 

for the CXCL14 receptor, leading to an increase in binding (see Introduction to 

Chapter 5 for a review of chemokine oligomer formation). 

CXCL14 expression is found in many peripheral tissues, however its pattern of 

expression and the cells by which it is produced has been most extensively studied 

in the skin, where epidermal keratinocytes as well as macrophages and mast cells in 

the dermis produce CXCL14 during the steady-state (Maerki et al., 2009, Meuter and 

Moser, 2008, Schaerli et al., 2005). Using an in vitro tissue model, human epidermal 

equivalents were shown to be capable of inducing the differentiation of CD14+ 

monocytes into Langerhans-like cells. CXCL14 was assigned an important role in this 

process, guiding CD14+ cells to distinct epidermal niches, where their differentiation 

into LCs took place (Schaerli et al., 2005). Further to this, it has been shown that 

human blood monocytes can be differentiated into Langerhans-like cells in vitro by 

culture with GM-CSF, IL-4 and TGFβ1 (Geissmann et al., 1998). While there is strong 

evidence that monocytes give rise to LCs in mouse during inflammation (Ginhoux et 

al., 2006), a direct relationship between blood monocytes and tissue DCs during the 

steady-state is yet to be demonstrated. The ultimate fate of a large proportion of 

monocytes, therefore, remains something of a mystery. In light of the observation that 

monocytes were the primary targets of CXCL14 in blood, I postulated that ability to 

respond to CXCL14 and/or expression of CXCL14 receptor(s) may identify tissue cells 

which have differentiated from monocyte precursors under non-inflammatory 

conditions. In this regard, I performed a thorough analysis of cells isolated from 

healthy human skin for responsiveness to CXCL14. LCs isolated from the epidermis 

did not express CXCL14 receptor(s) and did not exhibit migration toward CXCL14, 

indicating that CXCL14 does not play an important role in the differentiation of LCs 

during the steady-state. This has been indicated by studies in mouse which have 

shown that during the steady-state, epidermal LC populations are maintained through 

local proliferation and self-renewal, independently of circulating precursors including 

monocytes (Merad et al., 2002). This situation changes upon injury to the epidermis 

however. Following exposure of mouse skin to ultraviolet B radiation, which leads to 

skin inflammation and loss of LCs, circulating monocytes were shown to replenish 

epidermal LCs. Furthermore, recruitment of monocytes to the skin was dependent on 

their expression of CCR2, as well as production of the CCR2 ligands CCL2 and CCL7 
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by inflamed skin (Ginhoux et al., 2006, Merad et al., 2002). Interestingly, CCR2 

exhibits a remarkably similar pattern of expression on circulating monocytes as does 

the putative CXCL14 receptor, with CCR2 being most highly expressed on classical 

CD14++CD16- monocytes, while expression is absent from the non-classical 

CD14+CD16++ subset. In contrast, in the steady-state, mice that lack CCR2 have 

normal numbers of LCs in the skin (Sato et al., 2000). In agreement with a CXCL14-

independent mechanism of LC generation, our group has shown previously that mice 

which lack CXCL14 possess normal numbers of fully functional LCs (Meuter et al., 

2007). 

Cells isolated from the dermis included the two resident populations of dermal myeloid 

DCs. Human dermal DCs were initially described more than 20 years ago as a DC 

population distinct from epidermal LCs which spontaneously emigrates from skin 

explants cultured ex vivo (Lenz et al., 1993, Nestle et al., 1993).  Phenotypic analysis 

of dermal emigrant cells confirmed that there were in fact two dermal DC subsets, 

distinguished by differential expression of CD14 and CD1a (a comprehensive review 

of human dermal DCs can be found in (Haniffa et al., 2015)). I was able to identify the 

two dermal DC populations in my own analyses. Consistent with the published 

literature, CD1a+ DC outnumbered CD14+ DC by approximately 2:1 (Nestle et al., 

1993), while CD1a+ DC exhibited higher expression of HLA-DR and CD1c (Haniffa et 

al., 2009, Haniffa et al., 2015). How the dermal DC populations are maintained during 

the steady-state, and whether the two subsets are derived from the same or distinct 

precursors, is not clear. It was therefore interesting to find that expression of CXCL14 

receptor(s) distinguished so clearly between the two subsets, with AF-CXCL14 

binding to CD14+ DCs but not to CD1a+ DCs. A shared ability to respond to CXCL14 

may indicate that CD14+ monocytes in the blood populate and replenish the CD14+ 

dermal DC population in the skin. Indeed, it was recently proposed that dermal CD14+ 

‘DCs’ be re-classified as a tissue-resident population of monocyte-derived 

macrophages (McGovern et al., 2014). In this study, dermal CD14+ cells were shown 

to be phenotypically and transcriptionally related to blood CD14+ monocytes and 

dermal macrophages, while being distinct from CD1a+ DCs and CD16+ blood 

monocytes. Furthermore, the decline and reconstitution kinetics of CD14+ blood 

monocytes and dermal CD14+ cells in patients following HSCT supported their 

precursor-progeny relationship (McGovern et al., 2014). These findings, combined 

with the short half-life of dermal CD14+ cells (maximum 6 days) (McGovern et al., 

2014) might finally explain the fate of at least a proportion of blood monocytes which 

exit the bloodstream in large numbers on a daily basis. 
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In contrast to dermal DCs, macrophages do not migrate spontaneously from skin 

explants cultured ex vivo, instead remaining fixed in the tissue. Macrophages also 

express CD14 and have an overlapping antigen expression profile with CD14+ dermal 

DCs, which can make them difficult to distinguish (Zaba et al., 2007). I therefore 

employed a strategy to isolate and phenotype dermal macrophages described by 

Haniffa and colleagues (Haniffa et al., 2009). The strategy involved overnight 

collagenase digestion of the dermal tissue, after which time the tissue was completely 

dissociated. The higher side scatter properties of macrophages makes them highly 

autofluorescent cells, with autofluorescence being most easily detected in the FITC 

channel. Dermal DCs and macrophages both fall into the CD45+MHC class II+ fraction 

of dermal cells. Therefore, following successive gating on CD45 and HLA-DR, 

macrophages were identified on the basis of their autofluorescence. Expression of 

CD14, in addition to the tissue macrophage marker CD163 (Haniffa et al., 2009), 

confirmed their identity. Interestingly, approximately 25% of dermal macrophages 

expressed CXCL14 receptor(s), as demonstrated by binding of AF-CXCL14. The 

precursor-progeny relationship between blood monocytes and tissue macrophages 

first proposed nearly 50 years ago (van Furth and Cohn, 1968) has recently been 

confirmed in mouse models of inflammation (Epelman et al., 2014, Tamoutounour et 

al., 2013). Despite this, there is increasing evidence that many tissue macrophage 

populations are embryonic-derived, being seeded in tissues prior to birth and 

maintaining themselves through adult life by local proliferation, independently of input 

from circulating precursors (Perdiguero and Geissmann, 2016). Recent findings from 

mouse however show that dermal macrophages consist of a subset that is established 

prenatally, and a subset that develops after birth from Ly6Chi monocytes (Jakubzick 

et al., 2013, Tamoutounour et al., 2013). It could be postulated that my findings 

indicate that the same is true in human, with binding of AF-CXCL14 identifying dermal 

macrophages which are derived from CD14hi blood monocytes. This hypothesis 

should be investigated by transcriptional profiling of the two dermal macrophage 

subsets (AF-CXCL14pos and AF-CXCL14neg) to see if the former is more closely 

related to blood monocytes. 

Finally, I have described for the first time a population of cells extracted from human 

skin that co-express the myeloid DC markers CD14 and CD1a, but which are negative 

for the pan-leukocyte marker CD45. The distinction between CD45+ and CD45neg cells 

by flow cytometry was very clear, therefore I am confident in stating that these cells 

are a true CD45neg population. These cells demonstrated binding of AF-CXCL14 as 

well as robust migratory responses, identifying this novel population as CXCL14 
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target cells. CD45negCD1a+CD14+ cells were present among emigrant cells recovered 

from both the dermis and epidermis. Proteolytic digestion of the dermis yielded far 

greater numbers, suggesting that they represent a significant compartment in healthy 

human skin. There are numerous published accounts of research undertaken in 

human and mouse that describe selection of CD45+ leukocytes for further analysis, 

while CD45-negative cells are discarded (Haniffa et al., 2009, Malosse and Henri, 

2016, McGovern et al., 2014). It is highly likely, therefore, that these cells have been 

overlooked in the past. CD45 is a member of the protein tyrosine phosphatase family, 

a family of signalling molecules that regulate a variety of cellular processes including 

cell growth, division and differentiation. At least 8 isoforms of CD45 have been 

described, all of which are generated by alternative splicing of a single gene to 

produce 8 different mRNAs. Each of the CD45 isoforms has a unique extracellular 

domain, and the isoforms are differentially expressed on all cells of haematopoietic 

origin. The role of CD45 in T cell activation has been most extensively studied, where 

it is essential for the activation of T cells via the TCR. The intracellular portion of CD45 

has intrinsic tyrosine phosphatase activity and associates with several components of 

the TCR signalling cascade, including Lck and Zap-70, to support signal transduction 

(Altin and Sloan, 1997). The role of CD45 in mononuclear phagocytes is not very well 

understood, although it has been shown that macrophages from CD45-knockout mice 

are unable to maintain integrin-mediated adhesion and are deficient in cytokine 

signalling, suggesting a role for CD45 in the activation of intracellular signalling 

cascades in these cells (Roach et al., 1997, Zhu et al., 2008). We have no data yet 

regarding the function of this novel population of CD45negCD1a+CD14+ cells found in 

human skin. The fluorochrome-conjugated anti-CD45 mAb used to characterise them 

by flow cytometry recognises all of the known CD45 isoforms. RNA-seq of 

CD45negCD1a+CD14+ cells will reveal if they are truly CD45-neg, or if they express a 

novel isoform of CD45 that has not been described. The approaches that should be 

taken to further characterise these cells and confirm their origin/identity are detailed 

in the General Discussion. 
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Chapter 4   Attempts to Identify the CXCL14 Receptor 

4.1 Introduction 

4.1.1 The GPCR superfamily 

The human genome is thought to consist of approximately 21,000 protein-coding 

genes (Pennisi, 2012), with the GPCR superfamily representing the largest class of 

membrane proteins in human. Approximately 800 different human genes (or ~4% of 

the entire protein-coding genome) are known, or have been predicted based on 

sequence homology, to code for GPCRs. The receptors themselves display incredible 

diversity in size, function and the nature of the ligands by which they are bound. 

However, they all share some common architectural features. All GPCRs are 

embedded in the plasma membrane of the cell by seven sequences of 25 to 35 

consecutive amino acid residues that show a high degree of hydrophobicity 

(transmembrane domains; TM1-TM7). The transmembrane domains are linked by 

three extracellular loops (ECL1-ECL3) and three intracellular loops (ICL1-ICL3). 

Finally, there is an extracellular N-terminus and an intracellular C-terminus (Figure 

1.5). More than half of the ~800 GPCRs identified in human have sensory functions, 

mediating perception of our external environment in the form of olfaction, light 

perception, taste and pheromone signalling (Mombaerts, 2004). The remaining ~360 

non-sensory GPCRs mediate signalling by endogenous ligands, ranging from small 

molecules such as nucleotides, lipids and small peptides, to complex proteins. 

GPCRs bound by endogenous ligands mediate diverse physiological processes as 

nervous transmission, mood regulation and feeding behaviour, to the immune 

response and the growth and metastasis of certain types of tumours. Several 

classification systems have been used to organise the GPCR superfamily, with some 

systems grouping the receptors by how their ligand binds, and others grouping them 

based on structural and/or functional features. Recently, the GRAFS system has been 

used to group the mammalian GPCRs into five main families (Glutamate, Rhodopsin, 

Adhesion, Frizzled and Secretin = GRAFS), based on sequence homology and 

functionality (Fredriksson et al., 2003b). The largest of these families is the Class A 

of Rhodopsin-like receptors, with about 284 members which recognise endogenous 

ligands (in addition to >400 sensory receptors). All of the class A receptors share 

sequence homology with rhodopsin, the light-sensitive receptor of rod photoreceptor 

cells and the first GPCR to have its crystal structure determined (Palczewski et al., 

2000). The remaining GPCRs are divided into the Secretin family (class B, and which 
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has 15 members), Glutamate family (class C, 22 members), Adhesion family (class 

D, 33 members) and Frizzled family (class E, 11 members). Finally, there are six 

GPCRs (five non-sensory GPCRs and one olfactory receptor) which have ambiguous 

structural similarities to several different GPCR families, and as such cannot be 

readily assigned to any of the five main families. A breakdown of the five human 

GPCR families are shown in Table 4.1. The fact that GPCRs which are bound by 

endogenous ligands are the targets for the majority of drugs in clinical use (Overington 

et al., 2006), highlights the importance of enhancing our understanding of GPCRs to 

the treatment of human disease.

 

 Table 4.1. Families of the human GPCR superfamily. 

Family Class A 
(rhodopsin) 

Class B 
(secretin) 

Class C 
(glutamate) 

Class D 
(adhesion) 

Class E 
(frizzled) Other 

Receptors with known 
endogenous ligands 

197 15 12 1 11 0 

Orphans 87 (54)a - 7 (1)a 32 (6)a 0 5 (1)a 
Sensory (olfaction) 390 - - - - 1 
Sensory (vision) 10 - - - - - 
Sensory (taste) 30 - 3 - - - 
Sensory (pheromone) 5 - - - - - 
Total 719 15 22 33 11 6 

aNumbers in brackets refer to orphan receptors for which an endogenous ligand has been proposed in 

at least one publication, but has yet to be confirmed. 

 

4.1.2 Chemokine receptors 

The rhodopsin family of GPCRs can be sub-divided into four main groups, which have 

been designated α, β, γ, δ (Fredriksson et al., 2003b). Upon analysis of the 

phylogenetic relationship between all of the human GPCRs (minus olfactory 

receptors), all 18 signalling and 5 non-signalling chemokine receptors are seen to 

cluster on a single branch of the γ-subgroup of rhodopsin-like receptors, confirming 

their relatedness to one-another in evolutionary, and not only functional terms (Figure 
4.1). The genes encoding the chemokine receptors also appear in clusters on several 

chromosomes. For example, CCR1-5, CCR8, CCR9, CCR11 (CCRL1), CCRL2, 

CX3CR1, CCBP2 (ACKR2) and XCR1 are all positioned on chromosome 3p2. This 

can likely be explained by local gene duplication from a common ancestor giving rise 
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to the other members, which also explains their relatedness to each other in 

evolutionary terms. The human CC and CXC chemokines themselves show a similar 

chromosomal arrangement, forming two major clusters on chromosome 17 and 

chromosome 4, respectively (Zlotnik et al., 2006). Of note, the gene which encodes 

human CXCL14 is located separately from the CXC cluster, on chromosome 5, 

perhaps indicating that the receptor for CXCL14 does not cluster with the other 

chemokine receptors either. 

Other receptors which mediate chemotaxis in response to non-chemokine 

chemoattractants, such as the formyl peptide receptors (FPR1, FPRL1 and FPRL2) 

and the complement protein C5a receptors (C5R1 and C5R2), also cluster in close 

proximity to the chemokine receptors. This indicates that receptors which mediate the 

specific function of chemotaxis are all closely related. The branch of the γ-subgroup 

of the rhodopsin family of GPCRs that includes the chemokine receptors also includes 

several orphan receptors. These are receptors for which there is no confirmed ligand, 

and they have the prefix ‘GPR’ in their name. The GPCR superfamily contains more 

than 100 orphan receptors, the majority of which are found within the family of 

rhodopsin-like receptors (Figure 4.1).
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Figure 4.1. The human GPCR family tree. 
Phylogenetic or evolutionary tree of the human GPCR superfamily, showing their organisation into five families based on shared sequence homology, namely 

rhodopsin (blue), secretin (red), glutamate (orange), adhesion (purple) and frizzled (green). The family of rhodopsin-like receptors can be subdivided into four 

main groups, namely α, β, γ and δ, as shown. The chemokine receptors (shaded in red) all cluster together on a single branch of the γ-subgroup of rhodopsin-

like receptors, indicating their evolutionary relatedness and high degree of sequence homology. The receptors highlighted in red and blue are those for which 

the structure has been solved e.g. CXCR4. This figure is adapted from The GPCR Network, a collaboration between a number of researchers working on 

GPCRs, and is freely available to download from http://gpcr.usc.edu/index.html.  
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4.1.3 The CXCL14 receptor 

CXCL14 exhibits unique structural and functional features among the chemokine 

family. A very short N-terminus of just two amino acids prior to the first cysteine 

residue suggests that CXCL14 may induce receptor activation by a different 

mechanism compared to other chemokines, many of which have been shown to 

depend on their N-terminal sequence for their activity (Clark-Lewis et al., 1995). 

Sensitivity to pertussis toxin treatment confirms that the CXCL14 receptor, like all 

other signalling chemokine receptors, couples to an intracellular G protein of the Gαi 

class (Kurth et al., 2001).  

CXCL14 is considered a homeostatic chemokine, constitutively produced by tissue 

cells in the absence of infection. The other homeostatic chemokines, including 

CXCL12, CXCL13, CCL19 and CCL21, all induce chemotaxis of target cells via a 

single chemokine receptor, namely CXCR4 (CXCL12), CXCR5 (CXCL13) and CCR7 

(CCL19 and CCL21). The selectivity of CXCL14 for monocytes (albeit neutrophils 

exhibit a weak response) is unique among the homeostatic chemokines and suggests 

that CXCL14 acts via an as yet unidentified receptor. However, it must be assumed 

that the receptor for CXCL14 will possess certain structural features shared by all 

chemokine receptors, such as key amino acid motifs which have been shown to be 

important in coupling to intracellular G proteins and activation of signalling events 

following chemokine binding (Nomiyama and Yoshie, 2015). 

 

4.1.4 Hypothesis 

The receptor for CXCL14 is a GPCR, distinct from the known chemokine receptors, 

which is expressed in cells that exhibit functional responses to CXCL14, namely 

CD14++CD16- classical monocytes and PGE2-treated THP-1 cells. 

 

4.2 Aims 

 Using an RNA sequencing approach, to identify candidates for the CXCL14 

receptor based on differential expression in cells which are targets for CXCL14 
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(human CD14hi monocytes, PGE2-treated THP-1 cells) and cells which are not 

(human CD16hi monocytes, lymphocytes, untreated THP-1 cells). 

 
 Following identification of suitable candidates, to perform sequence and 

phylogenetic analysis in order to discern their relatedness to known 

chemokine receptors, as well as a comprehensive literature search of reported 

functions and known ligands. 

 
 To screen the final list of candidates by two methods: stable expression of the 

receptor in an appropriate cell-line, and short hairpin RNA (shRNA)-mediated 

knockdown in THP-1 cells.
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4.3 RNA Sequencing of THP-1 cells 

4.3.1 Induction of CXCL14 responsiveness in THP-1 cells with PGE2 is 
enhanced by sodium butyrate 

I have already shown that the human myeloid leukaemia cell line THP-1 can be 

induced to migrate in response to CXCL14 by treatment with PGE2 (Figure 3.11). Due 

to the difficulties inherent in working with primary immune cells (time-consuming 

isolation procedures, variability between donors), THP-1 cells were initially used as a 

model for studying the CXCL14 receptor. Sodium butyrate, the sodium salt of butyric 

acid, is a compound which causes histone hyperacetylation through the inhibition of 

histone deacetylase (HDAC) activity. This activity can enhance gene expression, 

which in turn increases protein expression. Inhibition of HDAC activity is estimated to 

affect the expression of only 2% of mammalian genes (Candido et al., 1978, Davie, 

2003). However, it has been shown previously that sodium butyrate treatment 

enhances the surface expression of some chemokine receptors (Meiser et al., 2008, 

Sabroe et al., 2000). It was observed that addition of sodium butyrate to THP-1 

cultures alongside PGE2 led to significantly enhanced migration of THP-1 cells toward 

CXCL14 (Figure 4.2a). Treatment with sodium butyrate failed to induce a migratory 

response toward CXCL14 in THP-1 cells by itself (Figure 4.2b). 
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Figure 4.2. Sodium butyrate enhances the effect of PGE2 in THP-1 cells. 
THP-1 cells were cultured for 24 hours with (a) 1 µM PGE2 or (b) medium only in the presence 

(+) or absence (-) of 1 mM sodium butyrate. Migration toward 1 µM (left) and 3 µM (right) 

CXCL14 was then assessed by transwell chemotaxis assay. Results are shown in matched 

experiments, where the Wilcoxon matched pairs test was used to determine significance. P 

values are indicated. *P<0.05, **P<0.01, ns = not significant. 
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4.3.2 THP-1 sample collection 

Due to their ease of handling and manipulation compared to primary cells, in addition 

to the robustness and reproducibility of the response to CXCL14 following stimulation, 

THP-1 cells were considered a reliable model for investigating the identity of the 

CXCL14 receptor. THP-1 cells treated with six different conditions were collected from 

a single experiment and subjected to transcriptome analysis by RNA sequencing (see 

Materials and Methods). The six conditions were chosen based on the following 

hypotheses: 

a. Expression of the CXCL14 receptor will be low or absent in untreated THP-

1, because these cells do not respond to CXCL14 

b. Treatment with PGE2 likely increases cell-surface CXCL14 receptor 

expression, as demonstrated by induction of migration to CXCL14. It 

therefore follows that expression of the gene encoding the CXCL14 receptor 

will also be up-regulated with PGE2 treatment 

c. Addition of sodium butyrate along with PGE2 will strengthen any PGE2-

related response 

d. Migration toward CXCL14 will select for only those cells which have acquired 

responsiveness toward the chemokine (as opposed to bulk-treated cells 

where likely some cells acquire responsiveness while others do not). 

Therefore, expression of the receptor will be even greater in the migrated (as 

opposed to bulk-treated) population

 

Table 4.2. Six treatment conditions of THP-1 cells submitted for RNA sequencing. 

Sample Treatment 
duration 

                   Treatment Selected by migration 
to CXCL14? 

Number of cells 
collected (x105) 

  PGE2 Sodium butyrate 
1 24 hr - - No 5 
2 24 hr - + No 5 
3 24 hr + - No 5 
4 24 hr + - Yes 1 
5 24 hr + + No 5 
6 24 hr + + Yes 1 
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Untreated and sodium butyrate (Na-But)-treated THP-1 cells displayed very minimal 

migratory responses toward CXCL14, 0.62% and 2.07% of cells migrating toward 3 

µM CXCL14, respectively. In contrast, PGE2- and PGE2 + Na-But-treated THP-1 cells 

displayed considerable migration, 25.5% and 44.5% of cells migrating toward 3 µM 

CXCL14, respectively. Background migration (i.e. migration in response to medium 

alone, without chemokine) was very low in all cases (<1%). For the RNA sequencing, 

5 x 105 bulk treated cells were collected for each of the four conditions. For collection 

of PGE2-treated and PGE2+Na-But-treated cells that migrated in response to 

CXCL14, transwell chemotaxis assays were performed in triplicate. One of the wells 

was used to quantify the migration (Figure 4.3), while migrated cells from the other 

two wells were pooled (105 migrated cells were collected for each of the two 

conditions). 

 

 

Figure 4.3. Result of the transwell chemotaxis assays performed in experiment where 
THP-1 cells were collected for RNA sequencing. 
THP-1 cells were cultured for 24 hours in medium only (untreated) or medium supplemented 

with PGE2, sodium butyrate (Na-But) or PGE2 + Na-But. Migration toward buffer only (no 

chemokine) or 3 µM CXCL14 was assessed by transwell chemotaxis assay. Numbers shown 

above the bars indicate the % of total input cells which migrated in response to the chemokine. 
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4.3.3 Data analysis 

Initial analysis revealed that on average, across the six treatment groups, 

approximately 15,000 genes were expressed in THP-1 cells (i.e. had an expression 

level above zero). So as to select only those genes which encode for GPCRs in my 

analysis, the entire list of expressed genes was cross-referenced with the 

comprehensive list of GPCRs published and regularly updated by the Committee on 

Receptor Nomenclature and Drug Classification, part of the International Union of 

Basic and Clinical Pharmacology (NC-IUPHAR). The up-to-date list of all known 

GPCRs, including orphan receptors, is available to view and download at 

http://www.guidetopharmacology.org/GRAC/ReceptorFamiliesForward?type=GPCR. 

Of the ~360 non-olfactory GPCRs, 282 were expressed in one or more samples. 

Those which did not fit the expected expression profile of the CXCL14 receptor laid 

out in my experimental hypotheses (see hypotheses a–d above) were eliminated first. 

Genes which had high expression (>10 RPKM) in untreated THP-1 cells were 

eliminated (21 genes), followed by genes in which expression was completely absent 

or very low (<0.5 RPKM) in cells treated with PGE2 (140 genes). Genes which failed 

to exhibit any increase in expression with PGE2 compared to untreated were excluded 

(52 genes). Note that here, even genes which showed only a very modest increase 

with PGE2 treatment (less than 2-fold) were included in my analysis. Finally, genes 

where an up-regulation with PGE2 + sodium butyrate could be attributed to an effect 

of the sodium butyrate (as an identical change in expression was observed in the 

sodium butyrate only-treated group) were also excluded (17 genes). See Figure 4.4 

for a flow-chart showing the process of excluding genes from our analysis. 

Remaining were a total of 52 genes, which were categorised into the five GPCR 

families shown in Figure 4.1. 37 of the 52 belong to the class A of rhodopsin-like 

receptors, which includes all of the known chemokine receptors. Of these 37, nine 

code for orphan receptors. Of the 28 non-orphan class A receptors, associated gene 

ontology (GO) terms were used to select receptors with known or suspected function 

in chemotaxis, while also aiding in the elimination the receptors with well-

characterised functions which are distinct from chemotaxis. For example, genes 

PTGER1 and TSHR encode the PGE2 receptor EP1 and the thyroid stimulating 

hormone (TSH) receptor, respectively. These genes have known function in lipid 

signalling (PTGER1) and regulation of thyroxine production in response to TSH 

(TSHR), and as such do not have chemotactic function and could be excluded (16 

genes were excluded on the basis that their function and ligand(s) are well-described 
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and unrelated to chemotaxis, and these are listed in Table 4.3). 12 non-orphan 

receptors were identified to have chemotactic function based on associated gene 

ontologies, leading to a final exhaustive list of 21 class A GPCR-encoding genes with 

expression profiles that matched that expected of the putative CXCL14 receptor, of 

which 9 encoded for orphan receptors (Figure 4.5). 
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Table 4.3. Class A GPCRs with non-chemotactic functions excluded from list of genes identified by RNA sequencing of THP-1 cells. 
Gene symbol Receptor name Endogenous ligand(s) Function
LPAR6 Lysophosphatidic acid 

receptor 6
Lysophospatidic acid Implicated in myeloid cell maturation.

ADORA2B Adenosine A2B receptor Adenosine, netrin-1 (mouse) Induces cAMP accumulation upon binding adenosine. Expressed in mouse brain where it mediates 
netrin-1-dependent outgrowth of dorsal spinal cord axons.

ADORA3 Adeonsine A3 receptor Adenosine Expressed in cardiac ventricular cells, where it mediates the protective effect of adenosine 
release during cardiac ischaemia.

MLNR Motilin receptor Motilin, a hormone synthesised by cells 
of the small intestine

Expressed in enteric neurons of the duodenum and colon, where it regulates gastrointestinal tract 
contraction.

SUCNR1 Succinate receptor 1 Succinate, an intermediate of the citric 
acid cycle

Mediates the hypertensive effect of succinate and is expressed in the retina of rodents, where it is 
a potent angiogenic factor, mediating vessel outgrowth during retinal development.

F2RL3 Protease-activated receptor 4 
(PAR4)

Thrombin Important for activation of human platelets by thrombin.

S1PR2 Sphingosine-1-phosphate 
receptor 2

Sphingosine 1-phosphate Inhibition of cell migration.

ADRA2B Alpha-2B-adrenergic receptor Adrenaline and noradrenaline Regulates neurotransmitter release from sympathetic nerves and from adrenergic nerves in the 
central nervous system.

ADRA2C Alpha-2C-adrenergic receptor Adrenaline and noradrenaline Regulates neurotransmitter release from sympathetic nerves and from adrenergic nerves in the 
central nervous system.

PTGER1 Prostaglandin E receptor type 
1 (EP1)

Prostaglandin E2 (PGE2) Mediates some of the non-immune related physiological effects of PGE2 in mice, including stress 
behaviour, sensitivity to pain and regulation of blood pressure.

GPBAR1 G protein-coupled bile acid 
receptor 1

Bile acids and steroid hormones Mediates increased energy expenditure in brown adipose tissue in response to bile acids, which 
helps to prevent obesity.

GRPR Gastrin-releasing peptide 
receptor

Gastrin-releasing peptide Activation of GRPR in human airways is associated with the proliferative response of bronchial 
cells and with long-term tobacco use.

SSTR2 Somatostatin receptor 2 Somatostatin Mediates the biological effects of somatostatin, a peptide hormone that regulates the endocrine 
system.

TSHR Thyroid-stimulating hormone 
receptor

Thyroid-stimulating hormone Mediates the activity of the pituitary hormone TSH that stimulates the thyroid gland to produce 
thyroxine,  a hormone which affects many biological processes including metabolism, body 
temperature and heart rate.

CHRM3 Muscarinic acetylcholine 
receptor 3

Acetylcholine Mediates neurotransmission in the ocular iris pupillary sphincter and the detrusor muscle in 
humans.

CHRM4 Muscarinic acetylcholine 
receptor 3

Acetylcholine Inhibits acetylcholine release in the striatum.
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Figure 4.4. Flow chart showing the strategy for identifying gene candidates for the 
CXCL14 receptor based on RNA sequencing of THP-1 cells. 
Candidates were selected from the ~360 non-sensory GPCR-encoding genes. Genes which 

are unlikely to encode the CXCL14 receptor were successively eliminated on the basis of their 

expression profiles, which class of GPCR they belonged to, and whether or not they have a 

function which is well-characterised and distinct from chemotaxis.
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Figure 4.5. List of gene candidates for the CXCL14 receptor identified from RNA-seq of THP-1 
cells. 
Shown is the log(2) fold-change in expression of the class A GPCRs that were included in my analyses, 

based on the selection strategy laid out above. To simplify, data shown is mean + s.e.m. and is an 

average of the fold-change in expression in the four treatment groups (PGE2 bulk, PGE2 migrated, PGE2 

+ butyrate bulk, PGE2 + butyrate migrated) relative to untreated THP-1. The numbers to the right show 

the range in expression in arbitrary units, i.e. expression in untreated THP-1 is on the left, while the 

highest recorded expression across all of the treatment groups is on the right. The number in brackets 

represents the average level of expression across all groups (excluding untreated and butyrate alone). 

Abbreviations: PTAFR; Platelet-activating factor receptor, LTB4R2; Leukotriene B4 Receptor 2, HRH1; 

Histamine Receptor H1, FPR; Formyl Peptide Receptor; CMKLR1; Chemokine-Like Receptor 1, 

CCRL2; C-C chemokine Receptor-Like 2, C5AR; Complement component 5a Receptor, C3AR; 

Complement component 3a Receptor, OPRL1;  Opioid Receptor Like-1, LPAR1; Lysophosphatidic Acid 

Receptor 1.
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The candidates for the CXCL14 receptor include an atypical chemokine receptor 

(CCRL2), as well as a number of chemotactic receptors whose ligands are diverse 

and include fatty acids (CMKLR1), components of the complement cascade (C3AR1, 

C5AR1 and C5AR2) and N-formylated peptides (FPR1 and FPR2). Furthermore, 

there are a number of orphan GPCRs of unknown function and ligand specificity. 

However, despite the fact that sequencing of THP-1 cells has considerably focused 

our efforts to identify the CXCL14 receptor from the total number of non-sensory 

GPCRs (which number around 360; Figure 4.1) to just 21 candidates, to thoroughly 

investigate 21 candidates in turn would still represent a very considerable undertaking 

in terms of time and resources. Therefore, I decided to perform a second RNA-seq 

study, this time in primary human cells, in the expectation that it would allow me to 

exclude some of the existing candidates and refine my search even further. 

 

4.4 RNA Sequencing of Primary Cells 

4.4.1 Primary cell sample collection 

I have previously shown that, among the leukocyte subsets present in peripheral 

blood in human, CD14++CD16- classical monocytes are the major responders to 

CXCL14, demonstrating a dose-dependent migratory response toward the chemokine 

in addition to expression of CXCL14 receptor(s). On the other hand, CD14+CD16++ 

non-classical monocytes, in addition to lymphocyte populations, do not migrate 

toward CXCL14 and do not express CXCL14 receptor(s) (Figure 3.2 and Figure 3.4). 

Primary immune cell populations were FACS sorted for RNA sequencing from 

peripheral blood taken from three healthy human donors. One ‘positive responder’ 

cell (CD14+ classical monocytes) and two ‘negative responder’ cells (CD16+ non-

classical monocytes and B cells) were selected as the populations to be interrogated. 

FACS sorting of the three populations from three healthy human donors was 

performed simultaneously, as described in the Materials and Methods. Migratory 

responses of classical monocytes and non-classical monocytes toward CXCL14 were 

assessed in parallel to the sorting of populations for RNA sequencing by FACS, with 

the results of the chemotaxis assay shown in Figure 4.6. Although the responses 

differed, as can be expected due to donor-to-donor variation, all three donors 

exhibited migration of their classical monocytes toward CXCL14, while the non-

classical monocytes showed no response.  
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Table 4.4. Primary immune cell populations sorted from the peripheral blood of three 
healthy human donors for RNA sequencing. 

Donor Sample  Cell type Number of cells (x 105) 
1 1-a Classical monocytes 2.4 
  1-b Non-classical monocytes 0.8 
  1-c B cells 1 
2 2-a Classical monocytes 1.6 
  2-b Non-classical monocytes 0.3 
  2-c B cells 1.5 
3 3-a Classical monocytes 1.8 

  3-b Non-classical monocytes 1 
  3-c B cells 1.2 

 

 

 

Figure 4.6. Migration of classical and non-classical monocytes toward CXCL14 from the 
three donors used in sorting populations for RNA sequencing. 
Transwell chemotaxis assays were performed using the same monocytes purified by negative 

selection as used for FACS sorting of populations for RNA sequencing. Migration is expressed 

as percentage of input and each condition was run in duplicate. 
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4.4.2 Data analysis 

4.4.2.1 Expression of monocyte- and B cell-associated markers confirms 
reliability of sequencing data 

Recent studies into human monocytes have reported that each of the three monocyte 

subsets possesses a unique cell-surface marker and gene expression profile 

(Ingersoll et al., 2010, Wong et al., 2011). B cells represent an entirely different 

lineage of immune cell compared to monocytes, and express several cell-surface 

proteins which are unique to B cells, including components of the B cell receptor 

(BCR) complex and immunoglobulins. The reliability of the sequencing data obtained 

from the primary human immune cells could therefore be verified by expression of 

genes which are specific to each particular cell type. Expression of selected cell type-

specific genes is shown in Table 4.5. As expected, expression of CD14 and CD16 

(the latter is composed of two Fc receptors; CD16a and CD16b) segregate with the 

classical and non-classical monocytes, respectively. Differential expression of 

chemokine receptors defined the three cell types, with the inflammatory chemokine 

receptors CCR2, CCR5 and CCR1 being most highly expressed on the classical 

monocytes, and the CX3CR1 receptor being specific to non-classical monocytes, as 

expected. B cells displayed expression of CCR7 (required for their recirculation via 

the peripheral lymphoid organs) and although the expression level of CXCR5 was 

comparatively low in B cells (RPKM of 1.3, compared to 389.3 for CCR7), CXCR5 

expression was completely absent from both monocyte subsets. Finally, expression 

of genes which code for BCR (CD19-22) members and immunoglobulins was specific 

to B cells, with expression being very high (RPKM in the hundreds if not thousands) 

in B cells and very low or absent in both monocyte subsets. The data shown in Table 
4.5 therefore provides reassurance that my selection of candidate GPCRs for the 

CXCL14 receptor is based on reliable data, since the expression profiles of B cell- 

and monocyte-associated markers are as expected.
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Table 4.5. Expression of cell-specific markers by sorted classical monocytes, non-classical 
monocytes and B cells. 

Cell type Gene 
Absolute expression values 

Classical 
monocytes 

Non-classical 
monocytes 

B cells 

Classical 
monocytes 

CD14 8.0 0.1 1.0 
CD11b (ITGAM)* 6.9 0.4 1.1 

CCR2 45.6 0.2 5.2 
  CCR5 6.5 0.4 0.2 
  CCR1 59.4 4.0 0.1 

Non-classical 
monocytes 

CD16a (FCGR3A)* 32.3 1414.1 0.4 
CD16b (FCGR3B)* 1.9 197.9 0.0 

CX3CR1 2.4 190.4 0.2 

B cells CD19 0.0 0.0 12.6 
  CD20 (MS4A1)* 2.7 0.8 3494.1 
  CD21 (CR2)* 0.0 0.0 19.3 
  CD22 1.0 0.3 217.4 
  IGHM 0.6 0.4 1511.0 
   IGHA1 0.1 0.0 249.4 
  IGHA2 0.0 0.0 53.2 
  IGHD 0.2 0.1 212.3 
  CCR7 0.3 0.3 389.3 
  CXCR5 0.0 0.0 1.3 

Expression is given as reads per kilobase of transcript per million mapped reads (RPKM). *gene name 

is shown in brackets next to the common name. Chemokine receptors are highlighted in red. 

Abbreviations; IGHM, immunoglobulin heavy constant mu; IGHA, immunoglobulin heavy constant 

alpha; IGHD, immunoglobulin heavy constant delta.

 

4.4.2.2 Expression of GPCRs 

It was decided that the best strategy for analysing the primary cell RNA-seq data set 

would be to treat it independently of the THP-1 data, and produce a separate list of 

the differentially expressed GPCRs which fit the expected expression profile of the 

CXCL14 receptor. Then, I will compare the two lists and see which receptors are 

present in both, prior to generating the final list of candidates. For the analysis of the 

primary cell RNA-seq, it was important to define the hypotheses for the expected 

expression profile of the gene encoding the CXCL14 receptor, which were as follows: 
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a. Expression of the CXCL14 receptor will be highest in classical monocytes 

b. The CXCL14 receptor will be expressed in classical monocytes from each of 

the three donors 

c. Expression of the CXCL14 receptor will be low or absent in non-classical 

monocytes and B cells 

Like in the THP-1 study, the entire list of expressed genes was cross-referenced with 

the exhaustive list of non-sensory GPCRs published by the Committee on Receptor 

Nomenclature and Drug Classification, part of the International Union of Basic and 

Clinical Pharmacology (NC-IUPHAR). Of the ~360 non-sensory GPCRs, 212 were 

expressed in one or more of the three cell types. Genes which had a higher 

expression in B cells or non-classical monocytes compared to classical monocytes 

were excluded from analysis first (140 genes). Genes which were highest in classical 

monocytes, but whose expression in classical monocytes was still extremely low 

(<0.5) were subsequently eliminated (36 genes). Next, genes which were highest in 

classical monocytes, but still had relatively high expression (>15) in one or both of the 

other subsets, were eliminated (6 genes). 

Left at this point were 30 genes. I decided to look at their expression values in each 

of the three donors, and exclude any genes in which expression was completely 

absent in classical monocytes from one or more donors. For example, GPR61, a class 

A gene encoding an orphan receptor, had average expression values of 0.91, 0 and 

0.05 in classical monocytes, non-classical monocytes and B cells, respectively. 

However, a closer look at the expression across the three donors reveals that GPR61 

was only expressed in classical monocytes from donor 2 (expression value 2.71), and 

that expression was completely absent in classical monocytes from donors 1 and 3. 

This “pairwise” analysis led to the elimination of 8 more genes, leaving a total of 22 

genes. The remaining 22 genes were divided into the different classes of GPCR, and 

comprised 20 genes encoding class A receptors, one gene encoding a class B 

receptor (CALCRL) and one gene encoding a receptor of the frizzled class (FZD5). 

The 20 genes encoding class A receptors are shown in Figure 4.7. Of these, 7 are 

orphan receptors. Of the other 13, the chemokine receptors CCR2, CCR5 and CCR1 

are present, as are the chemotactic receptors formyl peptide receptor 3 (FPR3) and 

histamine receptor H1 (HRH1), the latter being present in the list of candidate 

receptors generated from the THP-1 study (Figure 4.5). Also present in both lists is 

the atypical chemokine receptor CCRL2. 
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Figure 4.7. List of candidate GPCRs identified from RNA-seq of primary human 
monocytes and B cells. 
Shown is the log(2) fold-change in expression of the class A GPCRs selected based on their 

expression profile in classical monocytes, non-classical monocytes and B cells from three 

human donors. Data shown is mean + s.e.m. and is the fold-increase in expression in the 

positive responder (classical monocytes) compared to the negative responders (non-classical 

monocytes and B cells). The numbers to the right show the expression level in classical 

monocytes, while the values in brackets show the expression level in non-classical monocytes 

and B cells, respectively. Expression is given as RPKM (Reads Per Kilobase of transcript per 

Million mapped reads). Abbreviations: CCRL2; C-C chemokine Receptor-Like 2, CCR; C-C 

chemokine receptor, PTGER2; Prostaglandin E Receptor, subtype 2, RXFP2; Relaxin/insulin-

Like Family Peptide receptor 2, S1PR3; Sphingosine-1-Phosphate Receptor 3, FFAR2; Free 

Fatty Acid Receptor 2, ADORA3; Adenosine A3 Receptor, FPR3; Formyl Peptide Receptor 3, 

HCAR2; Hydroxycarboxylic Acid Receptor 2, HRH1; Histamine Receptor H1, PTGIR; 

Prostaglandin I2 (prostacyclin) Receptor. 
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4.5 Final List of Candidates for the CXCL14 Receptor 

Upon combining the RNA-seq data from the THP-1 study and the primary cells, the 

class A GPCRs with expression profiles in both data sets which matched that 

predicted for the putative CXCL14 receptor are as follows: 

CCRL2 – C-C chemokine receptor-like 2 (ACKR5); an atypical chemokine receptor 

which binds a number of CC and CXC chemokines but does not couple to G protein-

mediated signalling pathways 

HRH1 – histamine receptor H1; a receptor that mediates the biological activities of 

the biogenic amine histamine, an inflammatory mediator released by basophils and 

mast cells that mediates vasodilation and pruritus 

GPR183 – orphan receptor 

GPR35 – orphan receptor 

GPR84 – orphan receptor 

GPR141 – orphan receptor 

GPR68 – orphan receptor 

These seven receptors were subjected to a range of investigations into their suitability 

as candidates for the CXCL14 receptor, beginning with a comprehensive review of 

the existing published literature. 

 

4.5.1 Investigation of non-orphan receptors 

4.5.1.1 Histamine receptor H1 

The seven candidates include five orphan receptors and two receptors of known 

function/ligand specificity. The gene HRH1 encodes one of four histamine receptors 

(HRH1-4). HRH1 and HRH2 are expressed on T-helper cells, with HRH1 being 

predominantly expressed on TH1 cells and HRH2 being expressed on TH2 cells (Jutel 

et al., 2001). Indeed, stimulation of naïve T cells with the TH1 cytokine IL-12 results in 

up-regulation of HRH1 expression, while stimulation with the TH2 cytokine IL-4 results 

in its suppression. TH1 cells respond to histamine stimulation by mobilisation of 
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intracellular calcium stores that can be blocked by a HRH1 antagonist. Furthermore, 

mice lacking HRH1 have lower percentages of IFNγ-producing cells compared to wild 

type mice (Jutel et al., 2001). It has also been observed that HRH1-deficient mice 

have reduced airway inflammation in a model of asthma, and this was attributed to 

defective T-cell trafficking to the lung, the authors identifying histamine as a 

chemotactic factor for T cells. Indeed, blockade of HRH1, but not of HRH2, ablated 

the migratory response in vitro (Bryce et al., 2006). 

Although HRH1 has been demonstrated to possess chemotactic activity, the fact that 

its expression on cells of the immune system appears to be restricted to T cells means 

that it is likely not the CXCL14 receptor. I have demonstrated that T cells isolated from 

both human blood and skin do not respond to CXCL14 or express CXCL14 

receptor(s). Therefore, HRH1 is not being considered a candidate for the CXCL14 

receptor. 

4.5.1.2 C-C Chemokine receptor-like 2 

CCRL2 (also known as ACKR5) is thought to be an atypical chemokine receptor, 

involved in modulating responses to other chemokines. This was first alluded to by 

Hartmann et al., who demonstrated that CCL5 was able to induce expression of 

CCRL2 on B-cell lines, and that the MAP kinases were phosphorylated upon CCL5 

stimulation of CCRL2-transfected cells, suggesting a direct effect of CCL5 through 

CCRL2. MAP kinase phosphorylation was insensitive to pertussis toxin treatment, 

suggesting that CCRL2 does not couple to Gαi proteins. Furthermore, no calcium 

mobilisation or migratory responses upon CCL5 stimulation were detected in B-cell 

lines or CCLR2-transfected cells (Hartmann et al., 2008). Later, the homeostatic 

chemokine CCL19 was identified as a CCRL2 ligand, CCL19 binding to CCRL2 with 

an affinity comparable to binding of CCR7. Binding of CCL19 to CCRL2 did not result 

in calcium mobilisation or migration, however confocal microscopy revealed that 

CCRL2 was internalised following binding of CCL19 (Leick et al., 2010). The 

chemotactic protein chemerin has also been identified as a protein that binds, but is 

not internalised by, CCRL2 (Zabel et al., 2008). Therefore, although it has been shown 

to mediate certain signalling events following chemokine binding, it is thought that 

CCRL2 is a non-classical chemokine receptor that is involved in modulating the 

activities of other chemokines and chemoattractant molecules. 

Our lab possessed 300.19 cells stably transfected with CCRL2 (CCRL2-expressing 

lines were generated several years ago by previous members of the lab). Two 
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separate lines were used in chemotaxis assays for testing responses toward CXCL14. 

Surface expression of CCRL2 was confirmed by flow cytometry (Figure 4.8a). Both 

lines failed to display any migration in response to CXCL14 (Figure 4.8b). As CCRL2 

is not thought to mediate chemotaxis in response to any chemokine, it was not 

possible to include a positive control for migration. 

 

 

Figure 4.8. The 300.19 cell-line stably expressing CCRL2 does not migrate in response 
to CXCL14. 
Two CCRL2-expressing 300.19 cell lines, designated ‘2B2’ and ‘3C3’, were tested for 

migratory response toward CXCL14. (a) Surface expression of CCRL2 was confirmed by flow 

cytometry. Black empty histogram indicates staining of untransfected cells. (b) Migration 

toward up to 3 µM CXCL14 was assessed using the transwell chemotaxis assay. Migration is 

displayed as % of input cells and is from a single experiment, where each condition was run 

in duplicate. 
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Following exclusion of HRH1 and CCRL2, this left five orphan GPCRs remaining as 

the primary candidates for the CXCL14 receptor; GPR35, GPR68, GPR84, GPR141 

and GPR183. To confirm the identity of the receptor, the candidates were to be 

screened by two methods, as outlined in the aims. Before these experiments were 

commenced however, sequence similarity and phylogenetic relationships of the five 

candidates in relation to the existing chemokine receptors was investigated. 

4.5.2 Investigation of the five orphan receptors 

4.5.2.1 Sequence analysis 

Chemokine receptors are distinguished from other GPCRs by several features of their 

amino acid sequence, most notably the presence of a number of conserved amino 

acid motifs at discrete locations. The DRYLAIV motif, located at the junction of the 

third transmembrane domain and the second intracellular loop, is thought to play a 

crucial role in coupling the receptor to the Gαi proteins that mediate activation of signal 

transduction pathways associated with chemotaxis following chemokine engagement 

(Nomiyama and Yoshie, 2015). The observation that the DRYLAIV motif is 

substantially altered in the atypical chemokine receptors, so-called because they are 

unable to initiate classical signalling pathways after ligand binding (Nibbs and 

Graham, 2013), reinforces this notion. Other motifs conserved among chemokine 

receptors include the TLPxW motif and the NPxxY motif, located in the 2nd 

transmembrane region and at the boundary between the 7th transmembrane region 

and cytoplasmic tail, respectively. These conserved sequences are thought to act as 

molecular micro-switches, mediating transition of the receptor from an inactive to an 

active conformation following ligand binding (Nygaard et al., 2009). 

Sequence analysis of the five candidates reveals interesting features with regard to 

their amino acid sequences. None of them have a canonical DRYLAIV motif, each of 

the five candidates possessing a different amino acid in at least three positions. 

Indeed, only GPR68 and GPR35 have an intact DRY motif, these three residues (Asp-

Arg-Tyr) thought to be of greatest importance for coupling to intracellular Gαi proteins. 

Four of the five candidates also show changes in each of the other two motifs, the 

exception being GPR84 which has an intact NPxxY motif (Table 4.6). However, the 

chemokine receptor CXCR6 has a DRFIVVV motif, and yet still mediates chemotaxis 

of certain subsets of T cells in response to CXCL16. CXCL16 has unusual features, 

being considerably larger than most other chemokines (254 amino acids), containing 

a mucin-like stalk which enables it to be expressed as a cell surface-bound molecule 
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as well as a soluble chemokine (Matloubian et al., 2000, Wilbanks et al., 2001). The 

unusual features of CXCL14 in comparison to other chemokines (e.g. very short N-

terminal sequence prior to the first cysteine residue) may therefore indicate that the 

CXCL14 receptor too has features that distinguish it from the typical chemokine 

receptors. 

Chemokine receptors are typically 340-370 amino acids in length, with GPR68 (365 

amino acids), GPR35 (309 amino acids) and GPR183 (361 amino acids) fitting this 

profile. GPR84 is a little longer at 396 amino acids, while GPR141 is a little shorter 

(299 amino acids). Finally, many of the chemokine receptor-encoding genes cluster 

on chromosome 3 of the human genome, therefore the cytogenetic location of the 

candidates may give some clue as to whether it likely codes for an as yet 

undiscovered receptor. All of the genes encoding the five candidates are found on 

different chromosomes, with none being present on chromosome 3 (Table 4.6). 

However, other chemokine receptor genes are found at unique locations throughout 

the genome, including CXCR3 (Xq13.1), CXCR4 (2q22.1) and CXCR5 (11q23.3). 

 

Table 4.6. Properties of the five candidates for the CXCL14 receptor. 

Receptor Conserved motifs Number of amino 
acids 

Cytogenetic 
location   DRYLAIV TLPxW NPxxY 

GPR68 DRYLAVA SLPxW DPxxY 365 14q32.11 
GPR84 GRYLLIA LLQxF NPxxY 396 12q13.13 
GPR35 DRYVAVR TLPxV DAxxY 309 2q37.3 
GPR141 TRYLIFF TVPxR DLxxF 299 7p14.1 
GPR183 DRFIAVV ALPxR DPxxY 361 13q32.3 

 

Overall sequence similarity between the chemokine receptors is highly variable, 

chemokine receptors typically displaying anything between 25 and 80% amino acid 

identity. A dendogram showing the degree of protein sequence similarity between all 

known human chemokine receptors and the five candidates under investigation is 

shown in Figure 4.9. The shorter the distance to the point of divergence of two 

receptors, the more similar their sequences are. What is clear is that none of the five 

orphan receptors exhibit a great degree of sequence similarity to any of the known 

chemokine receptors, or to one-another. What is worth noting however, is that those 

which do have similar sequences (such as CXCR1 and CXCR2) are bound by the 

same ligands (CXCL6, CXCL7 and CXCL8). Those receptors which only have a single 
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ligand (e.g. CXCR4 and CXCR5) do not show much similarity to the other receptors. 

Upon considering the sequence analysis of the five CXCL14 receptor candidates, it 

is clear that they all represent distinct receptors with unique features. However, owing 

to its high level of expression in many healthy tissues and selectivity for monocytes, 

CXCL14 is a unique chemokine. Hence, it is not alarming that the candidates for its 

receptor under investigation are themselves unique from the chemokine receptors 

already described. 
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Figure 4.9. Sequence similarity of the CXCL14 receptor candidates to the known human 
chemokine receptors. 
Dendrogram showing the degree of protein sequence similarity among all known human chemokine 

receptors and my five candidates. Protein sequences were obtained from the National Centre for 

Biotechnology Information protein database. The phylogenetic tree was constructed using the ClustalW 

program provided by the European Bioinformatics Institute and analysed using TreeView. The scale 

bar reflects the horizontal distance at which sequences diverge by 10% (90% identity). Amino acid 

identity between a pair of chemokine receptors is given by 1 − x, where x is the sum of the 2 horizontal 

distances to the right of the pair's vertical branch point. For example, the horizontal distances before 

the vertical branch point of CXCR1 and CXCR2 are 12.9 and 11.8%, respectively. Therefore, the amino 

acid identity between these chemokine receptors is 100 − (12.9 + 11.8)% or 75.3%.
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4.5.2.2 Literature search 

GPR68 

GPR68 is a gene which encodes a member of the GPCR family known as ovarian 

cancer G protein-coupled receptor 1 (OGR1), due to its initial isolation from an ovarian 

cell line cDNA library (Xu and Casey, 1996). An approximately 3-kb transcript has 

been detected in a variety of tissues including brain, spleen, lung, placenta and 

peripheral blood leukocytes. Later it was reported that OGR1 mediates the activation 

of downstream signalling cascades including intracellular calcium release and inositol 

phosphate formation in response to protons (Ludwig et al., 2003). It has therefore 

been proposed that OGR1 is a proton-sensing receptor involved in pH homeostasis. 

However, others have reported that OGR1 is a receptor for 

sphingosylphosphorylcholine, a bioactive lipid (Mogi et al., 2005, Xu et al., 2000). 

Therefore, the precise nature of its function and ligand specificity remains 

controversial. 

GPR84 

A cDNA encoding GPR84 was identified using an expressed sequence tag (EST) 

database search method (Wittenberger et al., 2001). The deduced 396-amino acid 

protein is 85% identical to its mouse ortholog indicating. Northern blot analysis has 

revealed wide-ranging expression of a 1.5-bk transcript in brain, heart, muscle, colon, 

thymus, spleen, kidney, liver, intestine, placenta, lung and peripheral blood leukocytes 

(Wittenberger et al., 2001). As of yet, there is no data on the function of this receptor, 

nor have any ligands been predicted. Its high sequence similarity to the mouse 

ortholog is consistent with that of CXCL14, making GPR84 a promising candidate. 

GPR141 

By searching human genome databases for sequences similar to rhodopsin-like 

GPCRs, Fredriksson et al. identified a number of new GPCR-encoding genes, 

including GPR141 (Fredriksson et al., 2003a). The deduced 299-amino acid protein 

has a TRY motif instead of DRY at the junction between the third transmembrane 

region and the second intracellular loop, while there is no classic NPxxY motif in TM7. 

Human GPR141 shares 67% amino acid identity with mouse GPR141, while an 

ortholog has also been reported in zebrafish, suggesting that GPR141 is relatively 
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well conserved throughout evolution. As of yet, there is no data on the likely ligand(s) 

or physiological function of this receptor. 

GPR35 

The GPR35 gene was discovered by searching for genes related to GPR1 by PCR of 

genomic DNA with degenerate primers based on the conserved transmembrane 

regions (O'Dowd et al., 1998). The gene encodes a predicted 309-amino acid protein. 

Expression of GPR35 transcripts was detected in all foetal and adult human tissues 

examined, with expression highest in adult lung, small intestine, colon and stomach 

(Horikawa et al., 2000). In 2015, Albert Zlotnik’s group published work demonstrating 

that the human chemokine CXCL17 induced chemotactic responses in PGE2-treated 

THP-1 cells by signalling through a novel chemokine receptor. Treatment of THP-1 

cells with PGE2 resulted in increased expression of GPR35, confirmed by RT-PCR. 

Transfection of human or mouse cells with GPR35 resulted in responsiveness to 

CXCL17 in the form of calcium mobilisation, however they were unable to show that 

GPR35 mediated chemotactic responses toward CXCL17 (Maravillas-Montero et al., 

2015). When CXCL17 was first described, it was shown to induce robust chemotactic 

responses in CD14+ human blood monocytes, while CD16+ cells (a mix of CD16+ 

monocytes, granulocytes and NK cells) and CD3+ T cells were unresponsive 

(Pisabarro et al., 2006). It remains to be confirmed if GPR35 truly represents the 

receptor by which CXCL17 induces chemotaxis of target cells.  

I tested migratory responses of human PBMC and PGE2-treated THP-1 cells toward 

CXCL17 by transwell chemotaxis assay, as these were reported previously by 

Pisabarro et al. and Maravillas-Montero et al., respectively. However, no migration 

toward CXCL17 was observed (Figure 4.10). 
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Figure 4.10. CXCL17 did not induce migration of PGE2-treated THP-1 cells or primary 
human monocytes. 
Migratory responses of (a) PGE2-treated THP-1 cells or (b) primary human monocytes toward 

CXCL14 (grey bars) and CXCL17 (black bars) were assessed by the transwell chemotaxis 

assay. Migration is presented as the percentage of input cells and are mean + s.e.m. of two 

independent experiments. 

  

GPR183 

GPR183, also known as Epstein-Barr virus-induced gene 2 (EBI2), was first identified 

as an orphan GPCR which is highly expressed in spleen and upregulated upon 

Epstein-Barr virus (EBV) infection (Birkenbach et al., 1993). It was subsequently 

shown that EBI2 is constitutively expressed in naïve B cells, its level increasing after 

activation, where it has a role in B-cell migration within lymphoid follicles and their 

position in the early stages of a humoral response (Gatto et al., 2009, Pereira et al., 

2009). 7α,25-dihydroxycholesterol (7α,25-OHC) was identified as an endogenous 

ligand for EBI2, 7α,25-OHC triggering pertussis toxin-sensitive EBI2 activation as well 

as B-cell migration in vitro (Hannedouche et al., 2011, Liu et al., 2011a). It has recently 

been shown that EBI2 forms heterodimers with CXCR5, and by doing so regulates 

CXCL13-mediated B-cell responses (Barroso et al., 2012), thereby further 
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demonstrating the role of EBI2 in B-cell positioning in lymphoid follicles. In my 

RNAseq data from primary cells, GPR183 (EBI2) displayed a high level of expression 

in B cells (average of 215 across the three donors). However, its expression in 

classical monocytes was nearly 50-fold higher compared to B cells (average of 10,150 

across the three donors), while expression was almost absent in non-classical 

monocytes. Therefore, it was decided to include GPR183 in my investigations. 

At this point, the five orphan receptors were to be screened using two techniques: 

 Knockdown of gene expression (and hence protein expression) by RNA 

interference in THP-1 cells 

 Expression of the receptor by stable retroviral transduction of the murine pre-

B cell line 300.19 

Knockdown and/or stable expression of the receptor would then be followed by 

assessment of migratory responses toward CXCL14 by transwell chemotaxis assay. 

For the knockdown experiments, I would be looking for either a partial or complete 

abolishment of the migratory response toward CXCL14 (following overnight pre-

treatment of THP-1 cells with PGE2). In contrast, in the stable expression 

experiments, I would be looking for transduced cells to display a migratory response 

to CXCL14, with non-transduced cells as a control giving no response. 

 

4.6 Methods Used to Screen CXCL14 Receptor Candidates 

4.6.1 Method 1: Expression in the murine pre-B cell-line 300.19 

The five candidate receptors were cloned into the lentiviral vector pSIEW which co-

expresses enhanced green fluorescent protein (eGFP), incorporated into lentiviral 

particles and expressed in the 300.19 cell line, as described in Materials and Methods. 

Suitable reagents were not available for detecting expression of the orphan receptors 

on the cell surface. Therefore, in order to be confident that following lentiviral 

transduction the gene was being transcribed and that the resulting protein was being 

folded correctly and trafficked to the cell surface, a positive control was required. 
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4.6.1.1 Method validation – expression of murine CCR8 in 300.19 cells 

The murine pre-B cell line 300.19 has been routinely used by our group for stable 

expression of exogenous chemokine receptors. To confirm that 300.19 cells were 

amenable to lentiviral transduction in our hands, and that the receptor was being 

expressed, 300.19 cells were transduced with lentiviral particles containing the murine 

CCR8 (muCCR8) gene. Expression of muCCR8 on the surface of transduced 300.19 

cells (identified by expression of eGFP) was subsequently confirmed by two methods; 

binding of Alexa Fluor 647-labelled muCCL1 (AF-muCCL1) and chemotactic 

responses toward muCCL1 (Figure 4.11). 

 
Figure 4.11. Following transduction with lentiviral particles containing muCCR8, 300.19 
cells express the receptor on the cell surface and migrate toward muCCL1. 
300.19 cells were transduced with lentiviral particles which co-express muCCR8 and eGFP. 

(a) Following the transduction with lentiviral particles, 300.19 cells in which the viral DNA had 

successfully integrated into the host cell genome were identified by expression of eGFP (In 

the plot shown, 27% of cells are eGFP+). Transduction of 300.19 cells with lentiviral particles 

expressing muCCR8 was performed on three separate occasions, with similar results. (b) 

Binding of AF-muCCL1 (detected by flow cytometry; black line indicates binding to non-

transduced cells) and migratory responses toward muCCL1 (assessed by transwell 

chemotaxis assay) of transduced (eGFP+, top) and non-transduced (eGFP-, bottom) cells. 

Migration is displayed as percentage of input and is mean + s.e.m. of two independent 

experiments. 
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4.6.1.2 Expression of orphan GPCRs 

I had demonstrated that stable expression of a GPCR in 300.19 cells by lentiviral 

transduction can be achieved, and that the receptor is expressed on the cell surface 

and is fully functional. Therefore, 300.19 cells were subsequently transduced with 

lentiviral particles incorporating each of the five orphan receptors under investigation. 

Transduced cells were FACS sorted on the basis of expression of eGFP and, 

following recovery in culture for 2-3 days, subjected to assessment of responses 

toward CXCL14. As shown in Figure 4.12, none of the five receptors mediated 

chemotactic responses toward 1-1000 nM CXCL14, while transduced cells also did 

not bind AF-CXCL14. Unfortunately, therefore, this technique has not revealed the 

identity of the CXCL14 receptor.
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Figure 4.12. None of the five orphan receptors mediate chemotaxis toward CXCL14 or 
binding of AF-CXCL14. 
The murine pre-B cell line 300.19 was stably transduced with one of five orphan GPCRs in 

turn, and chemotactic responses toward CXCL14 were assessed by transwell migration assay 

(bar charts). In addition, binding of AF-CXCL14 was assessed by flow cytometry (blue 

histograms). Black line indicates binding of AF-CXCL14 to non-transduced cells. Migration is 

displayed as percentage of input cells and is mean + s.e.m. of two independent experiments. 

 

4.6.2 Method 2: ShRNA-mediated gene-silencing 

RNA interference (RNAi) is defined as a mechanism of post-transcriptional gene 

silencing produced by small RNAs, which take the form of endogenous microRNA 

(miRNA) and exogenous small interference RNA (siRNA) or short hairpin RNA 

(shRNA). Delivery of shRNA to cells has been shown to be an effective strategy for 
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long-term gene silencing (Brummelkamp et al., 2002, Yu et al., 2002). ShRNA is 

transcribed in the nucleus from an expression vector bearing a short double-stranded 

DNA sequence with a hairpin loop. The shRNA transcript then enters the cytoplasm 

of the cell, where it is processed by the endoribonuclease Dicer, and single-stranded 

mature shRNA is loaded into the RNA-induced silencing complex (RISC). The mature 

shRNA guides RISC to the complementary region of target mRNA, upon which the 

target mRNA is degraded (Figure 4.13). The properties of the promoter are important 

for efficient shRNA expression. In our screening procedures, an RNA polymerase III 

vector based on the mouse U6 promoter was used, as has been used previously by 

others (Yu et al., 2002). 

 
Figure 4.13. Small hairpin RNA-mediated gene silencing. 
The shRNA is expressed in the nucleus of the cell from a DNA-based vector. The shRNA 

transcript is then processed in the cytoplasm by the RNase III family member Dicer in concert 

with the double-stranded RNA-binding protein R2D2 into a siRNA duplex. The resulting 19-

21-nucleotide single-stranded mature shRNA is incorporated into the multi-subunit RNA-

induced silencing complex (RISC), and guides RISC to the complementary site in the target 

mRNA, which engages the endonucleocytic activity of RISC, resulting in mRNA cleavage. The 

shRNA-loaded RISC is recycled for several rounds of mRNA cleavage. Figure adapted from 

(Dominska and Dykxhoorn, 2010). 
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4.6.2.1 Method validation – silencing of CCR2 in THP-1 cells 

To confirm the validity of using shRNA-mediated gene silencing to screen CXCL14 

receptor candidates in THP-1 cells, I tested the technique by attempting to knock 

down expression of the known chemokine receptor CCR2. This receptor was chosen 

because it is expressed at high levels on the surface of THP-1 cells and mediates a 

robust migratory response to the ligand CCL2 (Figure 4.14a). Firstly, I needed to 

confirm that the THP-1 response to CCL2 was unaffected by treatment with PGE2, 

since for the candidate screening, the cells would need to be treated with PGE2 to 

induce responsiveness to CXCL14. Treatment with PGE2 did not affect surface 

expression of CCR2, while the migratory response to CCL2 was also unaffected 

(Figure 4.14b). Secondly, it was necessary to demonstrate that THP-1 cells were 

amenable to transduction with the lentiviral vector that would be used to deliver the 

shRNA to the cells. THP-1 cells were transduced with lentiviral particles without 

shRNAs, and as before, transduction efficiency was assessed by expression of eGFP. 

Increased transduction efficiency was observed with increasing quantity of virus, while 

the proportion of eGFP+ cells remained stable for as long as two weeks, indicating 

that transduction did not affect the survival or proliferation rate of the cells. 

Furthermore, induction of responsiveness to CXCL14 with PGE2 treatment remained 

intact in transduced cells (Figure 4.15).
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Figure 4.14. Surface expression of CCR2 and the chemotactic response to CCL2 in THP-
1 cells is unaffected by PGE2 treatment. 
THP-1 cells were cultured for 24 hours in (a) medium alone, or (b) medium supplemented with 

1 µM PGE2. Surface expression of CCR2 was determined by flow cytometry (left, blue filled 

histogram. Black empty histogram indicates staining with isotype-matched control antibody). 

Transwell chemotaxis assay was used to test migratory responses toward 0.1-100 nM CCL2 

(right). Data representative of two independent experiments is shown. 
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Figure 4.15. THP-1 cells are amenable to lentiviral transduction, and transduction does 
not affect induction of responsiveness toward CXCL14 with PGE2. 
(a) Schematic displaying the process of making lentiviral particles incorporating the shRNA 

insert, prior to infection of THP-1 cells and assessment of transduction efficiency (b) 

Successful transduction of THP-1 cells was assessed by eGFP expression, detected by 

fluorescence microscopy. (c) After the cells were washed to remove any remaining virus and 

placed back into culture, the transduction efficiency (% of eGFP+ cells) was confirmed by flow 

cytometry on day 6 post-transduction. (d) Migratory responses of the mixed population of 

eGFP+ (transduced) and eGFPneg (non-transduced) THP-1 cells toward 3 µM CXCL14 were 

tested using the transwell chemotaxis assay. Data shown are from a single experiment. 
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Three shRNAs, targeted against nucleotides 801-821, 392-412 and 600-620 of 

human CCR2, were selected from sequences published online by Sigma-Aldrich in 

their MISSION™ shRNA library. ShRNAs were delivered to THP-1 cells using the 

lentiviral system described. In addition, a fourth shRNA with no complementarity to 

any known human mRNA (non-silencing shRNA) was used as control. Following 

transduction, eGFP+ cells were sorted by FACS prior to assessment of CCR2 knock 

down. The three shRNAs designed to knock down human CCR2 expression are 

shown in Table 4.7, and they gave very different results. Two of the three shRNAs 

targeted against CCR2 (#1 and #3) failed to yield any knock down, as mRNA and 

surface protein expression were shown to be unaffected. Furthermore, migration 

toward CCL2 remained intact. In contrast, shRNA #2 yielded efficient knockdown of 

CCR2 expression, calculated as ~80-85% knock down at both the mRNA and protein 

level. CCR2 mRNA was found to be reduced by 81.35 ± 3.45% by qPCR (Table 4.7). 

Similarly, MFI of CCR2 expression for shRNA #2 was 1,946, compared to an average 

of 12,880 across the other three groups (non-silencing shRNA, CCR2 shRNA #1 and 

CCR2 shRNA #3). This equates to 84.9% knock down at the protein level. 

Interestingly, this degree of CCR2 knock down was sufficient to completely abolish 

the migratory response of THP-1 cells toward CCL2 (Figure 4.16). 

 

Table 4.7. Three shRNAs designed against human CCR2. 

shRNA Sequence Target 
nucleotides of 

CCR2 mRNA  
Ct value*                       

(% knockdown) 
1 GCTTCTGGACTCCCTATAATATCTCGAGATATTATAGGGAGTCCAGAAG 801-821 23.49 (0%) 
2 GGCTGTATCACATCGGTTATTCTCGAGAATAACCGATGTGATACAGCC 392-412 26.10 (81.35%) 
3 GTTATGTCTGTGGCCCTTATTTCTCGAGAAATAAGGGCCACAGACATAA 600-620 23.27 (0%) 

 

Red; ‘G’ nucleotide added at the start of the sequence. Blue; Sequence that is targeted to CCR2 mRNA. 

Underlined; shRNA hairpin sequence. *mRNA knockdown was assessed by qPCR and relative mRNA 

levels were calculated using the ΔΔCt method, normalised to expression of a housekeeping control (beta-

actin).
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Figure 4.16. ShRNA-mediated knockdown of CCR2 completely abolishes the migratory 
response of THP-1 cells toward CCL2. 
THP-1 cells were transduced with (a) non-silencing shRNA or (b-d) three shRNA directed 

against human CCR2. Surface expression of CCR2 was detected by flow cytometry (filled 

histograms; black empty histogram indicates staining with isotype-matched control antibody). 

Mean fluorescence intensity (MFI) values given are the geometric mean of CCR2 expression 

and are representative of two independent experiments. Migratory responses toward CCL2 

(bar charts) were assessed by transwell chemotaxis assay. Data shown is mean + s.e.m. of 

two independent experiments. 

 

 

The reason for the failure of two of the three shRNAs to give knockdown of CCR2 is 

not known for sure but may be explained by the addition of an artificial “G” nucleotide 

at the start of the sequence, as this is the first base required by the U6 promoter for 

the shRNA to be expressed. In contrast, shRNA #2, which did give knockdown, had 

a ‘natural’ G nucleotide at the start of its sequence. It was therefore decided that in 

future experiments, where possible, shRNAs would be designed with a natural G 

nucleotide at the start of the sequence. 
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Three shRNAs each were designed against two of the candidate orphan receptors 

(GPR68 and GPR84) and delivered to THP-1 cells by the lentivirus method described. 

However, stable knockdown was not achieved with any of them (assessed by qPCR; 

data not shown) for reasons that are not understood. Screening of candidates by 

shRNA was therefore postponed at this point, although work is ongoing to try and 

improve the robustness of this technique.
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4.7 Discussion 

The aim of this part of the project was to establish the identity of the receptor by which 

CXCL14 induces chemotactic responses in target cells, namely monocytes. A 

monocytic cell line (THP-1) and primary immune cells from peripheral blood (classical 

and non-classical monocytes, and B cells) were interrogated for their expression of 

GPCRs by RNA sequencing. This led to the generation of a list of ‘candidates’ for the 

CXCL14 receptor, formulated based on its predicted expression profile. Some of the 

candidates were ruled out based on their function already being well-characterised. 

The final candidate list consisted of five orphan receptors, which were subjected to 

thorough analysis of their amino acid sequence and phylogenetic relationship to 

known chemokine receptors, as well as assessment of their ability to mediate 

chemotactic responses toward CXCL14 by being stably expressed in the murine pre-

B cell line 300.19. 

It has been published previously by our group that PGE2 induces responsiveness to 

CXCL14 in THP-1 cells (and primary monocytes), in the form of migration and calcium 

mobilisation (Kurth et al., 2001). I was able to replicate the PGE2 effect in THP-1 cells 

and show that it is mediated primarily by the EP4 receptor (Figure 3.12). This is not 

surprising, as others have published that PGE2-mediated effects on immune cells 

(Kabashima et al., 2003, Stock et al., 2011), and in particular modulation of chemokine 

receptor expression on monocytes (Panzer and Uguccioni, 2004), is mediated by the 

EP4 receptor. The physiological effects of PGE2 on the immune response in human 

skin have also been extensively studied, and include pro-inflammatory and anti-

inflammatory functions (McCully et al., 2012, Nicolaou, 2013). It has been shown 

previously that epidermal keratinocytes and dermal fibroblasts are both sources of 

PGE2. In the context of traffic of immune cells to human skin, we have reported that 

PGE2 primes naïve T cells for responses toward the skin-expressed chemokine CCL1 

(McCully et al., 2015). These results show that PGE2 is a factor for induction of the 

skin-homing chemokine receptor CCR8 on human T cells. It could be postulated, 

therefore, that PGE2 may have a similar effect on monocytes, inducing expression of 

the skin-homing chemokine receptor for CXCL14. Our group has also published that 

PGE2 and the active vitamin D metabolite 1,25(OH)2D3 act in concert in the induction 

of CCR8 expression on naïve T cells (McCully et al., 2015). Interestingly, I observed 

that 1,25(OH)2D3 is also able to induce migratory responses to CXCL14 in THP-1 cells 

(data not shown), providing further evidence that peripheral tissue-specific factors 

may play an important role in induction of expression of the CXCL14 receptor on 
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monocytes. Therefore, it was with confidence that I decided to use the model of PGE2-

treated THP-1 cells for identification of candidates for the CXCL14 receptor. 

RNA sequencing provides only a snapshot of your cells of interest, telling you which 

genes are expressed and to what extent at only one particular moment in time. Gene 

expression may be switched on or off very rapidly, while mRNA can be silenced or 

degraded by endogenous cellular components such as microRNA in a matter of 

minutes. In addition, chemokine receptors translated from mRNA can be stable, 

remaining on the cell-surface for a number of days without the requirement for new 

protein being translated (Neel et al., 2005). All this means that it is very difficult to 

predict exactly when expression of an unknown gene will peak upon stimulation, and 

how exactly the presence of mRNA relates to protein expression and the functional 

response. THP-1 cells treated with PGE2 or PGE2 + sodium butyrate were collected 

at 24 hours post-stimulation. After 24 hours, THP-1 cells display a robust migration 

toward CXCL14, which was important for the study as I also wished to collect cells 

which had migrated toward CXCL14 for analysis. While being optimal for induction of 

the functional response to CXCL14, it is possible that mRNA expression may peak at 

an earlier time point. However, we have shown that while expression of CCR8 in naïve 

T cells peaked at 4 days post-stimulation with PGE2 before coming back down, the 

mRNA level continued to rise up to day 5 (McCully et al., 2015). Once the identity of 

the CXCL14 receptor has been confirmed, a time course experiment should be 

performed to see precisely when its expression peaks at the mRNA level in THP-1 

cells upon PGE2-treatment, so that this can be correlated with protein expression and 

functional responses to the chemokine. 

It has been shown that PGE2 enhances migratory responses of human T cells and 

DCs to CCL19 and CCL21 by inducing formation of CCR7 oligomers at the cell 

surface which couple to distinct signalling pathways (Hauser et al., 2016, Scandella 

et al., 2004). In this instance, the enhanced response was not accompanied by an 

increase in CCR7 expression, either at the mRNA or the protein level. In fact, 

formation of receptor oligomers has been recognised as an early event in the 

activation of several chemokine receptors (Thelen et al., 2010). However, where 

PGE2 does stimulate an increase in surface chemokine receptor expression, in the 

case of CCR8 on naïve T cells, this increase was shown to be accompanied by an 

increase at the mRNA level (McCully et al., 2015). I can only postulate, therefore, that 

induction of CXCL14 responsiveness in THP-1 cells is accompanied by an increase 

in expression of the CXCL14 receptor at both the mRNA and protein level, and that 
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the appearance of CXCL14 responses following PGE2-treatment is not due to events 

unrelated to expression such as receptor oligomerisation. Upon discovery of the 

CXCL14 receptor, it will be of utmost importance to investigate whether it forms 

oligomers at the cell surface. If this is found to be the case. It will be interesting to 

observe if there is a modulation of its activity in response to ligand binding in terms of 

coupling to intracellular signalling pathways and functional responses. 

In the second RNA-seq study, CD14++CD16- classical monocytes, CD14+CD16++ non-

classical monocytes and CD19+ B cells were sorted from three healthy human donors. 

Candidates were selected on the basis of expression in classical monocytes (cells 

which respond to CXCL14) and low or absent expression in non-classical monocytes 

and B cells (cells which do not respond). Expression of cell-specific markers such as 

immunoglobulins in B cells confirmed the reliability of the data. Of particular interest, 

however, was the relative expression levels of certain chemokine receptors, which 

may reveal new insights into the regulation of the CXCL14 receptor. CCR7 and 

CXCR5 are two chemokine receptors which are expressed on B cells but not 

monocytes. Although the level of receptor expression on the surface of B cells is 

comparable between the two (based on my flow cytometry observations), mRNA 

levels in B cells were wildly different, expression being 1.3 relative units (RPKM) for 

CXCR5 and 389 relative units for CCR7 (a 300-fold difference). This discrepancy may 

be explained by different rates of turnover of the two receptors. For the majority of 

chemokine receptors, ligand binding induces rapid internalisation of the ligand-

receptor complex. However, all chemokine receptors likely exhibit a basal level of 

turnover in the absence of their ligand, receptors being internalised into intracellular 

compartments for degradation while newly formed receptors are concomitantly 

trafficked to the cell surface. Little is known about this process of basal turnover, and 

the rates of replacement of protein may differ for different chemokine receptors. 

Obviously, making new receptor is dependent on the availability of mRNA for 

translation into protein. The difference in expression levels of CCR7 and CXCR5 may 

therefore be explained by CXCR5 having a longer half-life on the cell surface than 

CCR7, meaning that the rate of turnover is much slower and that there is much less 

dependence on mRNA for making new CXCR5 protein. CXCL13, the sole ligand for 

CXCR5, exhibits remarkable similarity to CXCL14 in terms of its potency, 

concentrations in the high nanomolar and micromolar range being necessary for both 

to stimulate migration of their respective target cells (Legler et al., 1998). It could 

therefore follow that the CXCL14 receptor exhibits a similarly low level of expression 
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as CXCR5, which is enough to maintain expression of the receptor on the surface of 

CD14+ monocytes due to a slow rate of turnover.  

At this point, the candidates identified from RNA sequencing are still under 

investigation in our lab, and the reasons for including them in the initial screening have 

been explained. However, it is likely that the list will be expanded to include more 

candidates. One such receptor which has not yet been investigated is GPR27. An 

orphan receptor, GPR27 is expressed at a similar level in CD14++CD16- monocytes 

as CXCR5 is in B cells (expression level of GPR27 in monocytes is 2.33), while it is 

lower in CD14+CD16++ non-classical monocytes (0.66) and completely absent in B 

cells. As non-classical monocytes likely differentiate from classical monocytes, it 

would not be surprising that non-classical monocytes would retain some low level 

expression of the CXCL14 receptor, even though they do not respond by migration. 

In fact, non-classical monocytes do exhibit a minor shift upon labelling with AF-

CXCL14 (Figure 3.4), which might be explained by having low level receptor 

expression which can be detected with the labelled chemokine, but which is 

insufficient to mediate chemotaxis. Indeed, as I demonstrated with shRNA-mediated 

knockdown of CCR2, the functional response to CCL2 was completely abrogated 

despite some receptors still being present on the cell surface (Figure 4.16). 

Furthermore, although no functional information is available on GPR27, it exhibits 

97% identity with the mouse ortholog. This is highly relevant as human and mouse 

CXCL14 exhibit a similar degree of homology. 

In addition to cloning of the GPCRs under investigation, it was our intention to use 

shRNA-mediated knockdown in THP-1 cells as a technique for screening candidates. 

I attempted to show the validity of using this technique by demonstrating that 

knockdown of CCR2 resulted in abrogation of the migratory response toward CCL2 

(Figure 4.16). Although this was achieved with one of three shRNAs directed against 

CCR2 that were tested, the other two did not give any knockdown whatsoever, for 

reasons that are not entirely clear. Furthermore, the one that was successful gave 

incomplete knockdown at both the mRNA and protein level, despite the functional 

response to CCL2 being completely lost. To be confident in ruling out candidates for 

the CXCL14 receptor based on shRNA-mediated knockdown, it is of critical 

importance that the technique is robust and reliable. Therefore, it was decided that I 

would not pursue the shRNA approach for screening of selected orphan receptors at 

this time, although we fully intend to revisit it in the future. 
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In conclusion, my search for the CXCL14 receptor gene has not yet yielded the 

identity of this elusive chemokine receptor. The transcriptome analyses, however, 

have convinced me that this approach is sound and will eventually lead us to the 

CXCL14 receptor. It needs to be emphasised at this stage that the screening of 

receptor candidates by functional studies with candidate receptor-transfected cell 

lines is time consuming. Finally, I would like to point out that the discovery of CXCL14-

responsive cells in human skin will provide a new opportunity for fine-tuning the 

current list of candidate receptors (this point, including interrogation of skin immune 

cells for expression of CXCL14 receptor(s), is discussed in much greater detail in the 

General Discussion). 
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Chapter 5   Synergistic Interaction between CXCL14 
and Other Chemokines 

5.1 Introduction 

The individual actions of most chemokines are now well characterised, including their 

patterns of expression, the receptor(s) that they activate and the cells which they 

target. What has become increasingly apparent in recent years, however, is that 

leukocytes must integrate messages provided by several chemokines that are 

concomitantly produced in vivo. In this regard, there are numerous publications 

describing functional cooperation or synergism in the chemokine system, occurring in 

both physiological and pathological situations. Chemokine synergy is considered to 

occur when a low concentration of a chemokine, inactive by itself, becomes active in 

inducing leukocyte activation and/or migration in the presence of another chemokine. 

Several mechanisms have been proposed to explain how the phenomenon of 

chemokine synergy may occur; these are reviewed in (Gouwy et al., 2012) and 

summarised in Figure 5.1. 

 

 

Figure 5.1. Modes of action in chemokine synergy. 
Several mechanisms have been proposed to explain the synergy between chemokines leading 

to enhanced leukocyte responses including chemotaxis, but also including adhesion, 

intracellular calcium release, MAPK phosphorylation and receptor internalisation. (1) Two 

chemokines form a heterocomplex, activating a single receptor. (2) Chemokine receptors 

heterodimerise, and are activated by their respective ligands simultaneously (or sequentially). 

(3) Two chemokine receptors which have been activated by their respective ligands synergise 

at the level of downstream signalling. This figure has been adapted from (Gouwy et al., 2012).
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Although there is evidence of certain chemokines functioning as monomers 

(Rajarathnam et al., 1994), it is assumed that many chemokines operate as dimers or 

even higher order oligomers. It has been shown that chemokine oligomer formation 

is facilitated in vivo by binding to GAGs (Proudfoot et al., 2003). Heterodimerisation 

of a number of chemokine pairs has been observed at high (micromolar) 

concentrations, a phenomenon first described for CXCL4 and CXCL8. Here, 

chemokine synergism was thought to occur due to stabilisation of tertiary motifs, 

favouring an improved interaction between the chemokines and their cognate 

receptor, CXCR2 (Nesmelova et al., 2005). This first account involved two 

chemokines which activate the same receptor. Soon after, however, chemokine 

synergism mediated by heterodimer formation was described for the CCR7 ligands 

CCL19 and CCL21, and unrelated, non-CCR7-activating chemokines e.g. CXCL13; 

the presence of which enabled CCR7 ligands to trigger receptor activation at a much 

lower concentration (Paoletti et al., 2005). Conversely, CCL19 and CCL21 were 

shown to enhance CCR2 ligand-induced responses on human monocytes, which do 

not express CCR7 (Kuscher et al., 2009). This phenomenon has also been described 

for CCL22, whose ability to stimulate chemotaxis of CCR4+ cells was strongly 

enhanced by the presence of CXCL10, an effect that was independent of binding to 

CXCR3 or GAGs (Sebastiani et al., 2005). Chemokine heterodimer formation was 

given in vivo relevance when it was demonstrated that CXCL9 and CXCL12 

heterocomplexes in the tumour vasculature of primary central nervous system 

lymphomas were responsible for enhanced recruitment of cytotoxic CD8+ T cells and 

malignant B cells, indicating that synergy between chemokines may influence tumour 

progression (Venetz et al., 2010). Finally, non-chemokines have been shown to 

enhance chemokine activity via complex formation, as was demonstrated for the 

inflammatory molecule high motility group box 1 (HMGB1) and CXCL12 (Schiraldi et 

al., 2012). 

Chemokine synergism has also been attributed to the activation of multiple signalling 

pathways in cells expressing more than one type of chemokine receptor, induced in 

response to simultaneous (or possibly sequential) binding of their respective agonists. 

For instance, it was reported that CXCL8 and CXCL12 significantly enhanced the 

migration of monocytes, which expressed the corresponding CXC chemokine 

receptors CXCR2 and CXCR4, toward suboptimal concentrations of the CCR2 

ligands CCL2 or CCL7 (Gouwy et al., 2008). In this study, CCL2-mediated MAP 

kinase phosphorylation and calcium mobilisation was significantly enhanced by 
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CXCL8 in monocytes, indicating cooperative downstream signalling pathways 

mediating enhanced chemotaxis. An earlier report detailed enhanced migration of 

pDC toward CXCL12 in the presence of the CXCR3 ligands CXCL9 and CXCL11. 

Despite high CXCR3 expression, pDC did not respond efficiently to CXCR3 ligands, 

indicating that the CXCR3 ligands instead had a sensitising effect that served to 

decrease the threshold of responsiveness to CXCL12 (Vanbervliet et al., 2003).  

Chemokine biology, including synergistic interactions, gets even more complex still. 

Although there are reports of certain GPCRs functioning in vitro as monomers (Ernst 

et al., 2007, Kuszak et al., 2009), it is assumed that most GPCRs, including 

chemokine receptors, exist in vivo as dimers and/or higher order oligomers (Thelen 

et al., 2010). Indeed, ectopically expressed chemokine receptors can form both 

homodimers and heterodimers, demonstrated using biophysical techniques such as 

bioluminescence resonance energy transfer (BRET) and fluorescence resonance 

energy transfer (FRET) that detect protein-protein interactions at the cell surface 

(Issafras et al., 2002), also reviewed in (Thelen et al., 2010). Although formation of 

endogenous receptor heterodimers has not conclusively shown, CCR5 and CXCR4 

clusters have been detected in primary human macrophages and T cells (Singer et 

al., 2001). On the Jurkat T cell line, endogenous CXCR4 and CCR5 can co-internalise 

following stimulation with the cognate ligand of either receptor, thus providing strong 

evidence for functional heterodimerisation of the two receptors (Contento et al., 2008). 

Furthermore, the closely related receptors CXCR1 and CXCR2 form homodimers 

and, when coexpressed, have been shown to heterodimerise (Martinez Munoz et al., 

2009, Wilson et al., 2005). The functional relevance of chemokine receptor 

heterodimerisation remains controversial. For instance, CCR2 and CCR5 have been 

shown to form both homodimers and heterodimers, however increased and 

decreased responses following chemokine stimulation have been reported for CCR2-

CCR5 heterodimers in comparison to homodimers (El-Asmar et al., 2005, Mellado et 

al., 2001b). It has been reported that chemokine receptors form heterodimers during 

synthesis, prior to trafficking to the cell surface and therefore independently of ligand 

stimulation (El-Asmar et al., 2005, Singer et al., 2001). In contrast, the simultaneous 

presence of CCL2 and CCL5 has been shown to trigger the formation of CCR2-CCR5 

heterodimers on PBMC (Mellado et al., 2001b), although it was later demonstrated 

that CCR2-CCR5 heterodimers are only capable of binding a single chemokine with 

high affinity (El-Asmar et al., 2005). Therefore, unlike ligand heterodimerisation, there 

is as yet no clear evidence that receptor heterodimerisation supports synergistic 

interaction between chemokines. 
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CXCL14 is found at many sites around the body, where it is co-expressed with other 

homeostatic chemokines which govern immune cell traffic during the steady-state, 

including CXCL12. It may also be expressed alongside inflammatory chemokines, 

expression of which is induced upon infection or injury at the sites where CXCL14 is 

present. Recently, it has been demonstrated that CXCL14 modulates the activity of 

the closely-related chemokine CXCL12, but in an inhibitory manner (Tanegashima et 

al., 2013a, Tanegashima et al., 2013b). The question of whether or not CXCL14 

synergises with other chemokines has not yet been addressed. 

 

5.2 Aims 

 To investigate the ability of CXCL14 to synergise with selected homeostatic 

and inflammatory chemokines in the induction of functional responses 

(chemotaxis) and activation of intracellular signalling events in human cells 

 
 Upon discovery of a synergistic interaction with other chemokine(s), to 

investigate the mechanism by which this interaction occurs 
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5.3 CXCL14 Synergises with other Homeostatic Chemokines 

5.3.1 CXCL14 synergises with CXCL12 in the induction of chemotactic 
responses on CXCR4-expressing cells 

PBMC were isolated from peripheral blood of healthy volunteers and tested for 

chemotactic responses toward CXCL12. The receptor for CXCL12, CXCR4, is 

expressed on virtually all immune cells. Lymphocytes (T, B and NK cells) displayed 

normal responses toward CXCL12, as demonstrated by their uniform expression of 

CXCR4 and robust migratory responses toward CXCL12, consistently displaying 

maximal responses toward 100 nM of the chemokine. In an unexpected finding, the 

combination of an inactive concentration (1 nM) of CXCL12 with CXCL14 resulted in 

strong migratory responses by all three lymphocyte subsets, the magnitude of the 

response equalling or, in the case of B cells, surpassing that obtained with 100 nM 

CXCL12 (Figure 5.2). As before, T, B and NK cells did not migrate toward up to 1 µM 

CXCL14 alone. Taking B cells as an example, 12.5 ± 1.5% B cells migrated toward 

100 nM CXCL12, compared to 0.78 ± 0.6% toward 1 nM CXCL12 (p=0.0004). The 

combination of 1 nM CXCL12 with 300 nM CXCL14 stimulated 19.4 ± 3.2% B cells to 

migrate (p=0.0027 compared to 1 nM CXCL12 alone). Interestingly, 300 nM CXCL14 

was by far the most effective CXCL14 concentration at enhancing the activity of 1 nM 

CXCL12, with neither 100 nM or 1000 nM having much effect. In primary human 

lymphocytes, therefore, the presence of CXCL14 appeared to decrease by up to 100-

fold the threshold of sensitivity to CXCL12 (Figure 5.2) 
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Figure 5.2. CXCL14 synergises with CXCL12 in the induction of chemotactic responses 
in PBMC. 
PBMC freshly isolated from peripheral blood taken from healthy human volunteers were 

stained for expression of CXCR4 (black histogram; grey filled histogram indicates staining with 

isotype-matched control antibody). PBMC were assessed for migratory responses toward 

CXCL12 (black) and 1 nM CXCL12 + CXCL14 (red) by transwell chemotaxis assay. Migrated 

and input cells were stained and counted by flow cytometry, with gating on CD3, CD19 and 

CD56 to distinguish T cells (top row), B cells (middle row) and NK cells (bottom row), 

respectively. Migration is expressed as the percentage of input cells of each cell type 

recovered from the lower chamber and is mean + s.e.m. of two independent experiments. *P 

<0.05, **P<0.01 and ***P<0.001 compared to all other groups using a one-way ANOVA.
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5.3.2 Synergy between CXCL14 and CXCL12 can be replicated in 300.19 
cells stably transfected with CXCR4 

300.19 is a mouse pre-B cell-line which has been routinely used by ourselves and 

others for stable transfection with both mouse and human chemokine receptors, 

enabling thorough characterisation of their function. 300.19 cells stably transfected 

with CXCR4 had been generated previously by my group, and I confirmed expression 

of CXCR4 on the cell surface by flow cytometry (Figure 5.3a). CXCR4 transfectants 

(300.19-CXCR4+) migrated well toward CXCL12 and, like the primary lymphocytes, 

consistently displayed maximal responses toward 100 nM CXCL12. In contrast, no 

migration was observed in response to 1 nM CXCL12, or toward 100-1000 nM 

CXCL14. However, when 1 nM CXCL12 was combined with CXCL14, migration of 

300.19-CXCR4+ cells was observed similar to that seen in primary lymphocytes, with 

1 nM CXCL12 + 300 nM CXCL14 again proving to be the most effective combination. 

Migratory responses of untransfected 300.19 cells are shown for comparison, where 

minimal responses are observed to human CXCL12, likely mediated by endogenous 

expression of murine CXCR4 by these cells (Figure 5.3b).
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Figure 5.3. CXCL14 synergises with CXCL12 in the induction of chemotaxis in 300.19 
cells stably transfected with CXCR4. 
(a) CXCR4 expression on 300.19 cells stably transfected with CXCR4 was confirmed by flow 

cytometry (black histogram). Grey filled histogram shows binding of anti-CXCR4 mAb to 

untransfected cells. (b) Migration of 300.19-CXCR4+ (top) and untransfected 300.19 cells 

(bottom) toward CXCL12, CXCL14 (both black bars) and 1 nM CXCL12 + CXCL14 (red bars). 

Migration is expressed as % of input cells and is mean + s.e.m. of 2-8 independent 

experiments. *P<0.05 and ***P<0.001 compared to 0 nM using a one-way ANOVA.
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On both primary lymphocytes and the 300.19-CXCR4+ cell-line, CXCL14 exhibited 

optimal synergistic activity with CXCL12 when used at a concentration of 300 nM. 

Therefore, a fixed concentration of 300 nM CXCL14 was combined with a range of 

CXCL12 concentrations (1-1000 nM), in order to observe the effect that CXCL14 has 

on the overall response of CXCR4-expressing cells toward CXCL12. All chemokines 

display an optimal concentration for induction of chemotaxis, with concentrations 

higher or lower than this inducing only a partial response (the “bell-shaped curve”). In 

chemotaxis assays using 300.19-CXCR4+ cells, a shift in the CXCL12 response curve 

to the left was observed upon addition of CXCL14 (Figure 5.4). Indeed, although low 

concentrations of CXCL12 (1 and 10 nM) showed enhanced activity in the presence 

of CXCL14, the response to 100 nM CXCL12 was reduced by 53% by the addition of 

CXCL14 (12.3 ± 3.6% of input cells migrated toward 100 nM CXCL12 in the absence 

of CXCL14, compared to 5.8 ± 0.4% in the presence of 300 nM CXCL14; P<0.05). 

Hence, the threshold of activation of CXCR4-expressing cells by CXCL12 is lowered 

by the presence of CXCL14. 

 

Figure 5.4. CXCL14 lowers the concentration of CXCL12 which is optimal for induction 
of chemotaxis. 
Migration of 300.19-CXCR4+ toward 1-1000 nM CXCL12 (filled circles) or 1-1000 nM CXCL12 

in combination with 300 nM CXCL14 (unfilled squares) was assessed by transwell chemotaxis 

assay. Migration is expressed as % of input cells and is mean ± s.e.m. of three independent 

experiments. *P<0.05, using a two-way ANOVA plus Bonferroni post-test.
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5.3.3 CXCL14 synergises with CXCL12 in the triggering of Ca2+ 
mobilisation from intracellular stores 

Chemotaxis is not the only response in cells elicited by chemokine receptor activation. 

Upon binding to their cognate receptor, chemokines induce intracellular signalling 

cascades involved in cell activation and motility, including release of calcium (Ca2+) 

ions from intracellular stores and phosphorylation of MAP kinases (Mellado et al., 

2001a). Upon addition of agonist, cytoplasmic [Ca2+] rises are very rapid, peaking 

within seconds before a more gradual return to basal levels. Ca2+ release in response 

to chemokine receptor activation exhibits a different profile to chemotaxis, as unlike 

in cell migration, the magnitude of Ca2+ release reaches a plateau i.e. increasing the 

amount of chemokine beyond the optimal concentration does not cause the response 

to diminish. Using 300.19-CXCR4+ as responder cells, CXCL12 dilutions ranging from 

0.5-100 nM were tested to establish optimal, sub-optimal and inactive concentrations 

for triggering calcium release. I observed that CXCL12 concentrations equal to or 

above 30 nM induced maximal rises in intracellular [Ca2+], while concentrations of 3 

nM or below failed to elicit a response. As expected from its inability to induce 

migratory responses in 300.19-CXCR4+ cells, CXCL14 (300 nM is shown, but up to 

600 nM CXCL14 was tested) did not induce a rise in intracellular [Ca2+]. However, the 

combination of 3 nM CXCL12 with 300 nM CXCL14 resulted in clear transient [Ca2+] 

spikes (Figure 5.5). The synergy between CXCL12 and CXCL14 is therefore not only 

limited to chemotaxis but extends to fast acting cellular responses.
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Figure 5.5. CXCL14 synergises with CXCL12 in the induction of rapid cellular 
responses. 
Changes in cytoplasmic free calcium (Ca2+) concentration in 300.19-CXCR4+ cells upon 

addition of chemokines was monitored by fluorescence microscopy. Cells were loaded with 1 

µM Fura-2-AM and stimulated with CXCL12, CXCL14 or the two combined. Chemokine was 

injected at 50 seconds and recording was stopped at 300 seconds. One representative set of 

measurements from three independent experiments is shown. 

 

5.3.4 CXCL14 also synergises with the CCR7 ligands CCL19 and CCL21, 
and the CXCR5 ligand CXCL13 

Next, I decided to see if the synergy observed between CXCL14 and CXCL12 

extended to other homeostatic chemokines. Naïve and central memory T (TCM) cells, 

which make up the majority of T cells in peripheral blood, use the chemokine receptor 

CCR7 to recirculate via secondary lymphoid organs. The remainder are effector 

memory T cells (TEM) which do not express CCR7 and do not recirculate. As expected, 

the majority of T cells in peripheral blood expressed CCR7 on their surface (Figure 
5.6a), although freshly isolated T cells did not display migratory responses toward 

CCL19 and CCL21 (data not shown). After resting the cells in culture overnight 

however, robust migration was observed. This can likely be explained by a 

desensitisation effect caused by constant exposure to CCR7 ligands in situ, which is 

removed upon ex vivo culture. Rested T cells displayed robust migratory responses 

toward CCR7 ligands at concentrations of ≥ 100 nM, while concentrations of below 

100 nM were inactive (Figure 5.6b). Rested T cells did not acquire responsiveness 

to CXCL14. In the presence of CXCL14 however, CCL19 and CCL21 were both active 
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at much lower concentrations (1 nM was tested). In similar fashion to CXCL12, the 

maximal synergistic effect was observed when 300 nM CXCL14 was used in 

combination with 1 nM CCL19 or CCL21. The majority of peripheral blood B cells also 

express CCR7, mediating their recirculation via lymphoid organs to facilitate 

interaction with T cells and the generation of humoral immunity. Similarly, CXCL14 

enhanced B cell migratory responses toward low concentrations of CCL19 and 

CCL21, as shown (Figure 5.7). 

 

Figure 5.6. CXCL14 also synergises with the CCR7 ligands CCL21 and CCL19 in the 
induction of chemotactic responses in primary human T cells. 
PBMC were isolated from peripheral blood and rested overnight in medium. The following day, 

staining was performed and migration toward chemokines was assessed by transwell 

chemotaxis assay. (a) Surface expression of CCR7 on T cells (black histogram), detected by 

flow cytometry. Grey filled histogram indicates staining with isotype-matched control antibody. 

(b) Migration of T cells toward CCL21 (top left), 1 nM CCL21 + CXCL14 (top right), CCL19 

(bottom left) or 1 nM CCL19 + CXCL14 (bottom right). Data is mean + s.e.m. of 2-3 

independent experiments. *P<0.05, **P<0.01 and ***P<0.001 compared to 0 nM using a one-

way ANOVA.
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Figure 5.7. CXCL14 synergises with the CCR7 ligands CCL21 and CCL19 in the 
induction of chemotactic responses in primary human B cells. 
PBMC were isolated from peripheral blood and rested overnight in medium. The following day, 

migration toward chemokines was assessed by transwell chemotaxis assay. Shown is B cell 

migration toward CCL21 (top left), 1 nM CCL21 + CXCL14 (top right), CCL19 (bottom left) or 

1 nM CCL19 + CXCL14 (bottom right). Data is mean + s.e.m. of 2-3 independent experiments. 

 

300.19 transfectants stably expressing CCR7 (300.19-CCR7+) were generated by our 

group previously, and surface CCR7 expression was confirmed by flow cytometry 

(Figure 5.8a). 300.19-CCR7+ cells showed a greater migratory response toward 

CCL21 (24.1 ± 3.2% of input cells migrated toward 100 nM CCL21) compared to 

CCL19 (6.2 ± 1.1% of input cells migrated toward 100 nM CCL19). As was observed 

with primary cells, both chemokines were inactive on 300.19-CCR7+ cells at 

concentrations below 100 nM. 300.19-CCR7+ cells did not migrate in response to 

CXCL14 (not shown). As for the primary cells, in the presence of CXCL14, low 

concentrations of CCL21 and CCL19 (1 nM) became active, confirming the synergy 

between the chemokines (Figure 5.8b). 
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Figure 5.8. CXCL14 synergises with CCL21 and CCL19 in the induction of chemotactic 
responses in 300.19 cells stably transfected with CCR7. 
(a) Surface receptor expression on 300.19 cells stably transfected with CCR7 was confirmed 

by flow cytometry (black histogram). Grey filled histogram shows binding of anti-CCR7 mAb 

to untransfected cells. (b) Migration of 300.19-CCR7+ cells toward CCL21 (top left), 1 nM 

CCL21 + CXCL14 (top right), CCL19 (bottom left) or 1 nM CCL19 + CXCL14 (bottom right). 

Data is mean + s.e.m. of 3-5 independent experiments, where **P<0.01 compared to 0 nM 

using a one-way ANOVA.
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CXCR5 is also a lymphoid tissue-homing chemokine with expression on B cells, 

however its expression on T cells is restricted to the minor subset of follicular helper 

T (TFH) cells, which account for around 5% of total blood T cells. B cells isolated from 

healthy volunteers displayed uniformly high expression of CXCR5. In agreement with 

earlier reports (Legler et al., 1998), migration of B cells toward CXCL13 was observed 

only at 1 µM of the chemokine, with lower concentrations being totally inactive. In the 

presence of CXCL14 however, 100 nM CXCL13 became active, inducing robust B 

cell migration (Figure 5.9a). This phenomenon was replicated in 300.19 cells stably 

transfected with CXCR5. Like the B cells, transfectants demonstrated migration 

toward 1 µM CXCL13 only, with no migration observed at lower concentrations. The 

magnitude of the response to CXCL13 was very low, with only 3.5 ± 0.5% 300.19-

CXCR5+ cells migrating toward 1 µM CXCL13, despite uniformly high surface 

expression of CXCR5 by transfectants (Figure 5.9b). I did not test higher 

concentrations of CXCL13. Of note, background migration of 300.19-CXCR5+ cells 

was extremely low, only 0.1% of cells migrating toward buffer alone. In the presence 

of CXCL14, as low as 10 nM CXCL13 became active in inducing migration, although 

the effect was more pronounced at 100 nM CXCL13 (Figure 5.9b).
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Figure 5.9. CXCL14 synergises with the CXCR5 ligand CXCL13 on primary B cells. 
(a) PBMC were isolated from peripheral blood and rested overnight. The following day, 

staining was performed and migration toward chemokines was assessed by transwell 

chemotaxis assay. Surface expression of CXCR5 on B cells, detected by flow cytometry (left). 

B cell migration toward CXCL13 (centre) and 100 nM CXCL13 + CXCL14 (right). Migration is 

displayed as % of input cells and is mean + s.e.m. of 2-3 independent experiments. ***P<0.001 

compared to 0 nM, using one-way ANOVA. (b) Top - CXCR5 expression on stable 300.19 

transfectants was confirmed by flow cytometry. Bottom – migration of 300.19-CXCR5+ cells 

toward CXCL13 (left), 10 nM CXCL13 + CXCL14 (centre) and 100 nM CXCL13 + CXCL14 

(right). Migration is mean + s.e.m. of 2-4 independent experiments. 



 
 

180 
 

5.4 CXCL14 Does Not Synergise with the Inflammatory 
Chemokines CCL2, CCL5 and CXCL10 

5.4.1 300.19 Transfectants 

CXCL14 has shown synergistic activity with all of the homeostatic chemokines tested, 

including the CXCR4 ligand CXCL12, the CCR7 ligands CCL21 and CCL19, and the 

CXCR5 ligand CXCL13. Many inflammatory chemokines are also expressed in 

peripheral tissues during infection or injury, and while CXCL14 expression is lost in 

some inflammatory settings, it may be up-regulated in others (Chen et al., 2010). I 

therefore investigated whether or not CXCL14 was able to synergise with selected 

inflammatory chemokines. Given, like CXCL14, their recognised roles in the 

chemoattraction of monocytes, the CCR2 ligand CCL2 (also known as monocyte 

chemoattractant protein-1; MCP-1) and the CCR5 ligand CCL5 (also known as 

Regulated on Activation, Normal T cell Expressed and Secreted chemokine; 

RANTES) were chosen. The CXCR3 ligand CXCL10 (also known as interferon-

inducible protein 10; IP-10) was also selected. 

Synergy between CXCL14 and inflammatory chemokines was first tested on stable 

300.19 transfectants. Expression of CCR2, CCR5 and CXCR3 on the cell surface was 

confirmed by flow cytometry (Figure 5.10). Each of their respective ligands induced 

robust and reproducible chemotactic responses. In contrast to the homeostatic 

chemokines, 1 nM inflammatory chemokine was sufficient to induce migration, while 

peak responses were observed at 10 nM. For all three, therefore, 0.1 nM was selected 

as an inactive concentration to use in testing for synergistic activity with CXCL14. In 

contrast to the homeostatic chemokines however, sub-optimal concentrations of 

CCL2, CCL5 and CXCL10 remained inactive in the presence of 100-1000 nM 

CXCL14 (Figure 5.10).
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Figure 5.10. CXCL14 does not synergise with the inflammatory chemokines CCL2, CCL5 
and CXCL10. 
(a) CCR2 expression on stable 300.19 transfectants was confirmed by flow cytometry (left). 

Migration of 300.19-CCR2+ cells toward CCL2 (0.1 – 1000 nM; centre) or 0.1 nM CCL2 + 

CXCL14 (right). (b) CCR5 expression on stable 300.19 transfectants was confirmed by flow 

cytometry (left). Migration of 300.19-CCR5+ cells toward CCL5 (0.1 – 1000 nM; centre) or 0.1 

nM CCL5 + CXCL14 (right). (c) CXCR3 expression on stable 300.19 transfectants was 

confirmed by flow cytometry (left). Migration of 300.19-CXCR3+ cells toward CXCL10 (0.1 – 

1000 nM; centre) or 0.1 nM CXCL10 + CXCL14 (right). In  staining plots, grey filled histogram 

indicates staining of untransfected cells. Migration is expressed as percentage of input and is 

mean + s.e.m. of 2-6 independent experiments. *P<0.05, ***P<0.001 compared to 0 nM using 

Kruskall-Wallis ANOVA.
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5.4.2 Primary human T cells 

In order to confirm the absence of any synergistic interaction between CXCL14 and 

the inflammatory chemokines tested, human T cell-lines expressing CCR2, CCR5 and 

CXCR3 were generated. Resting T cells freshly isolated from peripheral blood have 

only low level expression of inflammatory chemokine receptors. T cells up-regulate 

receptor expression upon activation however. T cell lines expressing high levels of 

CCR2, CCR5 and CXCR3 were established by 3-week expansion of primary human 

T cells in the presence of IL-2, as described in Materials and Methods and in previous 

work by our group (Qin et al., 1998, Loetscher et al., 1996). Surface receptor 

expression, in addition to migratory responses toward CCL2, CCL5 and CXCL10, 

were confirmed on day 21 of expansion. CD4+ and CD8+ T cells were distinguished 

in the analysis, however the chemokine receptor expression profiles and migratory 

responses of each were near identical. For this reason, only CD4+ T cells are shown 

(Figure 5.11). Expanded T cells were uniformly positive for expression of CCR2 and 

CXCR3, while CCR5 was present on around 50% of CD4+ T cells. Migratory 

responses toward their corresponding chemokines were similar to that seen in 

receptor transfectants, with peak responses observed at 10 nM for each. Again, 0.1 

nM was taken as a sub-optimal concentration. This was despite the fact that in all 

three cases, 0.1 nM did induce migration slightly above background. Upon 

combination of 0.1 nM CCL2, CCL5 or CXCL10 with CXCL14, similarly to the 300.19 

transfectants, no synergy was observed.
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Figure 5.11. CXCL14 does not synergise with inflammatory chemokines on primary 
human T cells. 
Total CD3+ T cells were purified from PBMC by negative selction and expanded in the 

presence of IL-2. On day 21 of expansion, T cells were assessed for chemotactic responses 

toward CCL2, CCL5 and CXCL10, while expression of the corresponding chemokine receptors 

(black histograms) was measured by flow cytometry. Grey filled histograms indicate staining 

with isotype controls. Shown is CD4+ T cells. (a) Expression of CCR2 (left). Migration toward 

CCL2 (centre) and 0.1 nM CCL2 + CXCL14 (right). (b) Expression of CCR5 (left). Migration 

toward CCL5 (centre) and 0.1 nM CCL5 + CXCL14 (right). (c) Expression of CXCR3 (left). 

Migration toward CXCL10 (centre) and 0.1 nM CXCL10 + CXCL14 (right). Migration is 

expressed as percentage of input and is mean + s.e.m. of a single experiment (CCL5) or of 

two independent experiments (CXCL10 and CCL2). *P<0.05 compared to 0 nM using a 

Kruskall-Wallis ANOVA.
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5.5 CXCL14 Synergises with CXCL12 via Interaction with 
CXCR4 

5.5.1 Blockade of CXCR4 abolishes the synergy between CXCL14 and 
CXCL12 on primary lymphocytes 

Binding of AF-CXCL14 to 300.19-CXCR4+ cells could not be demonstrated by flow 

cytometry (data not shown). This indicates that either these cells lack CXCL14 

receptors, or that CXCR4 binds CXCL14 with an affinity below the threshold of 

detection of this assay. Lack of binding is in agreement with the inability of CXCL14 

alone to induce chemotaxis of these cells. Although the identity of the CXCL14 

receptor remains unknown, I hypothesised that it likely does not play a role in the 

observed synergy between CXCL14 and CXCL12. Therefore, to confirm that the 

synergy between CXCL14 and CXCL12 is mediated by CXCR4, PBMC were treated 

with the CXCR4 antagonist AMD3100 (Plerixafor) for 30 minutes prior to use in 

chemotaxis assays. Migratory responses of T, B and NK cells toward 1 nM CXCL12 

+ 300 nM CXCL14 were completely abolished following treatment with ≥ 1 µM 

AMD3100 (Figure 5.12a). CXCR4 is expressed on most immune cells, including 

monocytes. Monocyte migratory responses to CXCL14 were unaffected by treatment 

with up to 10 µM AMD3100, confirming that CXCL14 recruits monocytes via binding 

to a receptor distinct from CXCR4 (Figure 5.12b).
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Figure 5.12. CXCR4 blockade completely abolishes the synergistic activity between 
CXCL14 and CXCL12 on primary human lymphocytes. 
PBMC were treated with 0.1-10 µM AMD3100 prior to use in transwell chemotaxis assays. 

Input and migrated cells were stained as previously described to distinguish cell subsets. (a) 
Migration of T, B and NK cells toward 1 nM CXCL12 + 300 nM CXCL14. (b) Migration of 

monocytes toward 1 µM CXCL14 following pre-treatment of PBMC with AMD3100. Migration 

is expressed as % of input and is mean + s.e.m. of two independent experiments. **P<0.01 

compared to no AMD3100 treatment. 

 

5.5.2 CXCL14 primes CXCR4+ cells for responses toward CXCL12 

The synergy between CXCL14 and CXCL12 could occur in a temporal (and possibly 

spatial) sequence, involving interaction of CXCL14 with CXCR4 prior to engagement 

of CXCL12 with target cells. This hypothesis was tested by addition of CXCL14 to the 

upper chamber (along with the cells) of transwell assays when testing migration of 

300.19-CXCR4+ cells toward CXCL12. Addition of 300 nM CXCL14 to the upper 

chamber led to a shift in the response curve toward 1-1000 nM CXCL12, so that 1 nM 

CXCL12 became active (Figure 5.13a). In fact, the shift was similar (although not 

identical) to that observed when 300 nM CXCL14 was combined with CXCL12 in the 

lower chamber (see Figure 5.4). The ability of CXCL14 to “prime” cells for responses 
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to CXCL12 was also observed in the measurement of rises in intracellular [Ca2+], 

where prior addition of CXCL14 enabled 300.19-CXCR4+ cells to give a robust 

response to a low concentration (3 nM) CXCL12 (Figure 5.13b). CXCL14 was not 

washed away prior to addition of CXCL12 however, meaning that simultaneous action 

of the two chemokines cannot be excluded. 

 

 

Figure 5.13. CXCL14 primes CXCR4+ cells for responses toward CXCL12. 
(a) Migration of 300.19-CXCR4+ cells toward CXCL12 in the absence (filled circles) or 

presence (unfilled squares) of 300 nM CXCL14 in the upper chamber. Migration is expressed 

as % of input and is mean ± s.e.m. of three independent experiments. **P<0.01 (two-way 

ANOVA). (b) Changes in cytoplasmic [Ca2+] in 300.19-CXCR4+ cells were monitored by 

fluorescence microscopy. Cells were loaded with 1 µM Fura-2-AM and stimulated with 300 nM 

CXCL14, 3 nM CXCL12 or a double injection of 300 nM CXCL14 followed by 3 nM CXCL12 

(the first injection was made at 50 seconds, the second at 100 seconds). Recording was 

stopped at 300 seconds. One representative set of measurements from two independent 

experiments is shown. 



 
 

187 
 

5.5.3 CXCL14 induces internalisation of CXCR4 

Receptor internalisation is also a common feature of chemokine receptor activation, 

endocytosis of receptor-ligand complexes occurring within a few minutes of agonist 

exposure (Luttrell and Lefkowitz, 2002). 300.19-CXCR4+ cells were incubated with 

chemokine for 1 hour at 37 °C, surface receptor expression subsequently being 

assessed by flow cytometry. As expected, an optimal concentration of CXCL12 (100 

nM) caused the majority of surface CXCR4 to be internalised, with a ~75% reduction 

in CXCR4 MFI. Interestingly, 300 nM CXCL14 alone induced approximately 50% 

decrease in MFI, and is further demonstration of direct binding of CXCL14 to CXCR4. 

Internalisation was also observed with a low concentration of CXCL12 (1 nM), which 

like CXCL14 alone, was unable to induce chemotaxis or a rise in intracellular Ca2+ 

(Figure 5.14) These data indicate that a threshold of receptor internalisation must be 

reached before the functional response (chemotaxis, Ca2+ release) is elicited, a theory 

supported by the degree of internalisation observed when CXCL12 and CXCL14 were 

combined. The combination of 1 nM CXCL12 with 300 nM CXCL14, which synergise 

with one-another in the induction of functional responses, induced >75% CXCR4 

internalisation; identical to that seen with the optimal concentration (100 nM) of 

CXCL12 alone. In the graph shown in Figure 5.14b, MFI of CXCR4 expression was 

normalised to cells incubated for 1 hour in medium alone (no chemokine).
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Figure 5.14. CXCL14 induces internalisation of CXCR4. 
300.19-CXCR4+ cells were stimulated with medium only (black), 100 nM CXCL12 (green), 1 

nM CXCL12 (orange), 300 nM CXCL14 (blue) or 1 nM CXCL12 + 300 nM CXCL14 (red) for 1 

hour at 37 °C. CXCR4 surface expression was subsequently detected by flow cytometry. (a) 
Staining plots from a representative experiment are shown, where MFI values (geometric 

mean) are indicated in brackets. CXCR4 expression by untransfected 300.19 cells (unfilled 

histogram) is also shown. (b) Cumulative data from CXCR4 internalisation experiments, where 

CXCR4 expression is normalised to medium only (given as 100%). Mean of two independent 

experiments. 

 

 

Next, it was decided to test if CXCL14 could mediate internalisation of a receptor 

where synergy was not observed with its cognate ligand. 300.19-CCR2+ cells were 

incubated with CCL2 (and/or CXCL14) for one hour at 37 °C, surface receptor 

expression subsequently being assessed by flow cytometry, as before. 10 nM CCL2, 

which elicited peak migratory responses, stimulated internalisation of the majority of 

CCR2 receptors, cells displaying a 74% reduction in MFI. In contrast to CXCR4 

internalisation however, a sub-optimal concentration of agonist (0.1 nM CCL2), as 

well as 300 nM CXCL14, triggered only minimal receptor internalisation (13% and 

12% reduction in CCR2 MFI, respectively) (Figure 5.15). Furthermore, the 

combination of 0.1 nM CCL2 with 300 nM CXCL14 triggered only 21% reduction in 

CCR2 MFI, considerably less than the 75% reduction in CXCR4 expression observed 

with a sub-optimal concentration of CXCL12 in the presence of CXCL14. These data 
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suggest that the lack of synergy observed between CXCL14 and CCL2 in the 

induction of functional responses (chemotaxis) is because, unlike in the case of 

CXCR4, the threshold of receptor internalisation is not reached. 

 

Figure 5.15. CXCL14 does not induce internalisation of CCR2. 
(a) 300.19-CCR2+ cells were stimulated with medium only (black), 10 nM CCL2 (green), 0.1 

nM CCL2 (orange), 300 nM CXCL14 (blue) or 0.1 nM CCL2 + 300 nM CXCL14 (red) for 1 hour 

at 37 °C. CCR2 surface expression was subsequently detected by flow cytometry. Staining 

plots are shown, where MFI values (geometric mean) are indicated in brackets. (b) Data from 

(a) represented graphically, where CCR2 expression is normalised to medium only (given as 

100%). Data are from a single experiment.
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5.5.4 CXCL14 triggers formation of CXCR4 multimers 

Recently, it has been reported by other groups that CXCL14 binds with high-affinity 

to CXCR4 (Tanegashima et al., 2013a, Tanegashima et al., 2013b). In a subsequent 

study, and in agreement with our findings, no functional response upon binding of 

CXCL14 to CXCR4 was observed (Otte et al., 2014). The formation of receptor 

multimers, where clustering of chemokine receptors occurs in response to agonist 

stimulation, has been discussed in detail as a possible mechanism behind chemokine 

synergy (Thelen et al., 2010). Förster (or fluorescence) resonance energy transfer 

(FRET) describes the transfer of energy between two light-sensitive molecules 

(chromophores). In its normal application, a donor fluorophore absorbs the energy 

due to excitation of incident light, and transfers the excitation energy to a nearby 

acceptor fluorophore. The efficiency of this energy transfer is inversely proportional to 

the distance between donor and acceptor. The technique of FRET, when applied to 

optical microscopy, therefore enables the determination of the distance between two 

molecules. This technique has been applied previously to the study of ligand-receptor 

interactions in the context of chemokine function, revealing the formation of complex 

multimeric structures composed of different chemokine receptors (Martinez et al., 

2009). 

In light of my findings that the synergy between CXCL14 and CXCL12 is mediated by 

CXCR4, our collaborators at the National Centre for Biotechnology in Madrid carried 

out a series of FRET studies looking at CXCR4 homodimer formation. Initially, FRET 

saturation curves were performed using HEK293T cells transiently co-transfected with 

constant amounts of CXCR4 fused to cyan fluorescent protein (CFP; donor 

molecules), and increasing amounts of CXCR4 fused to yellow fluorescent protein 

(YFP; acceptor molecules) (Figure 5.16a). This was done to determine the ratio of 

donor/acceptor that gives optimal FRET efficiency. To analyse the effect of CXCL14 

on receptor conformation, new FRET experiments were performed using HEK293T 

cells transiently cotransfected with a fixed ratio of CXCR4-CFP and CXCR4-YFP. 

Briefly, 9 x 106 HEK293 cells were plated with 9 µg CXCR4-CFP and 15 µg CXCR4-

YFP, with the fluorescence ratio (in arbitrary units; a.u.) being approximately 1. In 

agreement with the active concentration range for CXCL12 in chemotaxis and Ca2+ 

release assays, 100 nM CXCL12 triggered a significant increase in FRET efficiency 

(p<0.001 compared to vehicle control), while 1 nM CXCL12 had no effect. As 

expected based on the chemotaxis data, the combination of 1 nM CXCL12 with 300 

nM CXCL14 resulted in a significant increase in FRET efficiency. Most interesting of 
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all, however, was the observation that stimulation with 300 nM CXCL14 alone resulted 

in an identical FRET response to that observed with 1 nM CXCL12 + 300 nM CXCL14 

(Figure 5.16b). This provides further indication of a direct effect of CXCL14 on 

CXCR4. I hypothesise that CXCL14 induces a change in CXCR4, such as the 

formation of receptor complexes on the cell surface. While this effect of CXCL14 is 

not functional by itself, it makes the receptor more amenable to activation by its true 

agonist by serving to lower the threshold for activation by CXCL12.  

FRET studies were also performed to study CCR2 homodimer formation elicited by 

CXCL14, in the same manner as those performed for CXCR4 above. HEK293 cells 

were transiently cotransfected with 15 µg CCR2-CFP and 15 µg CCR2-YFP, with the 

subsequent ratio of fluorescence (a.u.) being approximately 1.5. In contrast to the 

CXCR4 findings, CXCL14, either alone or in combination with a suboptimal 

concentration of CCL2, did not trigger an increase in FRET efficiency in HEK293T 

cells transiently co-transfected with CCR2-CFP and CCR2-YFP. These findings 

support my hypothesis that CXCL14 interacts selectively with CXCR4 (thereby 

enhancing the activity of CXCL12), while CXCL14 does not interact with CCR2 

(Figure 5.16).
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Figure 5.16. CXCL14 induces formation of CXCR4 multimers. 
(a) FRET saturation curves were performed using HEK293T cells transiently co-transfected 

with constant amounts of CXCR4-CFP (FRET donor), and increasing amounts of CXCR4-YFP 

(FRET acceptor). This enabled identification of the donor/acceptor ratio which gives the 

maximum FRET efficiency. (b) HEK293T cells were cotransfected with CXCR4-CFP and 

CXCR4-YFP at a unique ratio that ensures maximum FRET efficiency (determined from the 

FRET saturation curve). The change in FRET efficiency upon stimulation with CXCL12, 

CXCL14 or the two combined is shown. An increase in FRET efficiency indicates clustering of 

receptors (formation of multimers). Data shown is mean + s.e.m. of three independent 

experiments, with several recordings made per experiment. *P<0.05 and ***P<0.001 using a 

Kruskall-Wallis ANOVA. ns = not significant.
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Figure 5.17. CXCL14 does not induce formation of CCR2 multimers. 
(a) FRET saturation curves were performed using HEK293T cells transiently co-transfected 

with constant amounts of CCR2-CFP (FRET donor), and increasing amounts of CCR2-YFP 

(FRET acceptor). This enabled identification of the donor/acceptor ratio which gives the 

maximum FRET efficiency. (b) HEK293T cells were cotransfected with CCR2-CFP and CCR2-

YFP at a unique ratio that ensures maximum FRET efficiency (determined from the FRET 

saturation curve). The change in FRET efficiency upon stimulation with CCL2, CXCL14 or the 

two combined is shown. An increase in FRET efficiency indicates clustering of receptors 

(formation of Multimers). Data shown is mean + s.e.m. of three independent experiments, with 

several recordings made per experiment. *P<0.05 and **P<0.01 using a Kruskall-Wallis 

ANOVA. ns = not significant.



 
 

194 
 

5.5.5 CXCL14 and CXCL12 do not form a heterodimer 

Thus far, I have shown that synergy between CXCL14 and CXCL12 is probably 

mediated by a single receptor, CXCR4. Although I have data to indicate that CXCL14 

interacts directly with CXCR4, I cannot rule out the possibility that CXCL14 and 

CXCL12 form a heterodimer. There are several instances where synergy between 

chemokines is mediated by the formation of chemokine heterodimer complexes. The 

ability of chemokine heterodimers to modulate cell migration responses in vitro as well 

as in vivo is reviewed in (Gouwy et al., 2012). By comparing 15N1H chemical shift 

correlation nuclear magnetic resonance spectra of 15N-labelled proteins before and 

after addition of a second protein, it is possible to detect protein-protein interactions, 

even between low-affinity binding partners. Furthermore, it is also possible to deduce 

which residues are involved in the observed interactions (Zuiderweg, 2002). This 

technique was first applied to the study of chemokine-chemokine interactions by 

Nesmelova and colleagues, who demonstrated that heterodimers were present in 

solutions containing a 1:1 mixture of CXCL4 and CXCL8 (Nesmelova et al., 2005). It 

was later applied to the demonstration that HMGB1 enhances the activity of CXCL12 

through formation of a heterodimer (Schiraldi et al., 2012). Our collaborators at the 

University of Grenoble failed to detect protein-protein interaction between CXCL14 

and CXCL12, even at extremely high concentrations (75 µM each) which by far 

exceeded the concentrations used in functional assays (Figure 5.18a). Another 

technique used to detect protein-protein interaction is surface plasmon resonance 

(SPR) spectroscopy, which enables the real-time monitoring of binding events of 

soluble proteins streamed over a sensor chip containing immobilised partner proteins 

(Khalifa et al., 2001). In support of the NMR data, SPR, again carried by our 

collaborators in Grenoble, did not reveal significant binding interactions between 

soluble CXCL14 and immobilised CXCL12, or vice versa (Figure 5.18b). When 

CXCL14 or CXCL12 was injected over a surface containing immobilised heparan 

sulphate (HS) however, a typical binding response was observed (Figure 5.18c). 

Interaction with GAGs is a common feature of many chemokines (Krohn et al., 2013, 

Lortat-Jacob, 2009). Furthermore, I have shown in my own experiments that addition 

of soluble GAG (heparan sulphate or chondroitin sulphate) interferes with the 

chemoattractant activity of CXCL14 in a dose-dependent manner, indicative of an 

interaction between CXCL14 and GAG (Figure 5.19). Detection of binding between 

CXCL14 and HS is assurance that the perceived lack of interaction between CXCL14 
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and CXCL12 is genuine. I can conclude, therefore, that CXCL14 and CXCL12 do not 

undergo heterocomplex formation. 

 

Figure 5.18. CXCL14 does not form a heterocomplex with CXCL12. 
(a) 15N-SOFAST-HMQC spectra were recorded at 850 MHz on 15N-labeled CXCL12 at 75 µM 

alone (red) and in combination with 75 µM CXCL14 (green). Only the two CXCL12 histidine 

residues have small chemical shift differences, likely due to a slight pH change around 

imidazole pKa (indicated by asterisks). (b) SPR sensograms display the binding in response 

units (RU) when CXCL12 (50 nM) was injected over a CXCL14 surface (red curve) or when 

CXCL14 (50 nM) was injected over a CXCL12 surface (blue curve). (c) SPR sensograms 

display the binding response in RU when CXCL14 (blue curve) and CXCL12 (red curve), both 

at 50 nM, were injected over a heparan sulphate-functionalised surface. (a-c) are 

representative of two independent experiments, with several recordings made per experiment. 
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Figure 5.19. The chemoattractant activity of CXCL14 is inhibited by addition of soluble 
glycosaminoglycan. 
Monocytes were purified from PBMC by negative selection and assessed for chemotactic 

responses toward 1 µM CXCL14 in the presence of 0.1-100 nM heparan sulphate (left) or 

chondroitin sulphate (right). GAG was added to the lower chamber of the transwell chemotaxis 

assay, along with the chemokine. Results are normalised to migration toward CXCL14 in the 

absence of GAG (0 nM; displayed as 100%). Data are mean + s.e.m. of two independent 

experiments. 
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5.6 Discussion 

Here, I have reported a strong synergistic effect between CXCL14 and CXCL12 in the 

control of chemotactic migration in CXCR4+ immune cells. CXCL12 is a homeostatic 

chemokine with expression in peripheral tissues during the steady-state, including at 

some of the locations where CXCL14 is found including the skin and mucosal surfaces 

of the intestine (Agace et al., 2000, Pablos et al., 1999). I have also shown that 

CXCL14 synergises with the lymphoid tissue-homing chemokines CCL19, CCL21 and 

CXCL13. Homeostatic processes under the control of these chemokines include the 

CCL19/21-mediated co-localisation of CCR7+ T cells and mature DCs, critical for the 

initiation of adaptive immune responses (Sallusto et al., 1999), as well as the 

CXCL13-mediated co-localisation of CXCR5+ B cells and TFH cells during humoral 

immune responses (Breitfeld et al., 2000, Schaerli et al., 2000). In contrast, CXCL14 

does not appear to synergize with inflammatory chemokines in the induction of 

chemotactic responses, which is consistent with the negative regulation of CXCL14 

expression by inflammatory stimuli (Maerki et al., 2009, Schaerli et al., 2005). The 

inflammatory chemokines CCL2, CCL5 and CXCL10, included in the present study, 

only represent a fraction of the chemokines that are routinely found to be expressed 

in inflammatory settings. Therefore, I cannot claim at present that the ability to 

synergise with CXCL14 is restricted to homeostatic chemokines only. 

There have been numerous reports in recent years describing functional synergism 

in the chemokine system, with several mechanisms being proposed to explain this 

phenomenon (reviewed in (Gouwy et al., 2012) and shown in Figure 5.1). 

Heterodimerisation of a number of chemokine pairs has been observed at micromolar 

concentrations in solution, a phenomenon first described using NMR in a pioneering 

study by Nesmelova et al. Here, formation of heterodimers by CXCL4 and CXCL8 

was proposed to stabilise the tertiary motifs of CXCL8 in a conformation which 

favoured interaction with its cognate receptor, CXCR2 (Nesmelova et al., 2005, 

Paoletti et al., 2005) Chemokine synergism has also been attributed to the activation 

of multiple signalling pathways in target cells expressing more than one type of 

receptor, induced in response to simultaneous (or sequential) binding of their 

respective chemokines (Gouwy et al., 2012, Gouwy et al., 2008). Chemokine 

receptors are constantly in motion on cell surfaces, resulting in frequent protein-

protein interactions which last for a long enough duration to be detected by FRET 

analysis (reviewed in (Thelen et al., 2010)). Complex multimeric structures containing 

different chemokine receptors were induced by synergizing chemokines, while 
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chemokine receptor multimers mediate enhanced cellular responses by coupling to 

distinct signalling pathways (Mellado et al., 2001b). Finally, in addition to their cognate 

receptors, chemokines also interact with GAGs present on extracellular matrices. 

Immobilisation of chemokines by interaction with GAG is a prerequisite for directional 

cell migration along chemokine gradients, reviewed in (Lortat-Jacob, 2009). GAGs 

are also present on the surface of immune cells, where they facilitate the retention of 

chemokines in close proximity to receptors on the surface of the same cell, assisting 

receptor activation (Proudfoot et al., 2003). There is evidence that binding to GAG 

facilitates the formation of chemokine heterodimers with increased biological activity 

(Proudfoot et al., 2003). However, considering the complexity and diversity of GAGs, 

in addition to their ability to selectively bind certain chemokines, their contribution to 

the synergy observed between chemokines has been difficult to ascertain.  

The findings we report here with CXCL14 cannot be readily explained by multiple 

receptors undergoing heterodimerization or cooperative receptor signalling, while our 

data also do not support heterodimerisation between CXCL14 and CXCL12 as a 

possible mechanism. Instead we propose a new model of chemokine synergy where 

the synergistic chemokines interact with a single receptor in a way that does not 

involve formation of a heterodimer. Instead, both chemokines interact with the same 

receptor by binding to non-overlapping sites. In this model, CXCL14 binds to 

alternative sites on CXCR4, resulting in “priming” of cells for subsequent responses 

to CXCL12. In doing so, CXCL14 lowers the threshold of activation, allowing a 

normally inactive concentration of CXCL12 to trigger activation of cellular responses. 

The CXCL14-mediated priming of CXCR4 does not involve the activation of traditional 

signalling pathways, as a rise in intracellular [Ca2+] was not induced in CXCR4+ cells 

by CXCL14 alone. Indeed, other prototypical signalling events following chemokine 

receptor activation including phosphorylation of MAP kinases, have been shown not 

to be elicited by CXCL14 binding to CXCR4 (Otte et al., 2014). Clarification of whether 

the observed chemokine synergy is dependent on the simultaneous presence of 

CXCL14 and CXCL12 is required. Finally, it will be important to investigate whether 

the proposed receptor priming model for synergy between CXCL14 and CXCL12 also 

applies to the synergy observed between CXCL14 and the other homeostatic 

chemokines (CXCL13 and CCL19/CCL21). See Figure 5.20 for an illustration of the 

proposed model to explain the chemokine synergy between CXCL14 and CXCL12. 
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Figure 5.20. A new model of chemokine synergy explains the cooperativity between 
CXCL12 and CXCL14. 
CXCL14 (red) binds to a resting CXCR4 molecule on the cell surface (black). While binding of 

CXCL14 to CXCR4 does not elicit a functional response, it induces an allosteric change which 

primes the receptor (blue) for activation by lower concentrations of CXCL12 (green). This 

priming may take the form of a conformational change in single receptor molecules (1), but 

more likely induces the formation of receptor homodimers (or higher order oligomers) that are 

more amenable to activation by CXCL12 (2). My data indicates that scenario (2) is responsible 

for the synergy observed here. Lack of a physical interaction between CXCL14 and CXCL12, 

even at high (micromolar) concentrations, indicate that the two chemokines are likely not 

acting at a single receptor. Furthermore, stimulation of an increase in FRET upon CXCR4 

strongly suggests that CXCL14 induces the formation of CXCR4 homodimers. Indeed, SPR 

has recently confirmed a binding interaction between CXCL14 and CXCR4. Despite this, 

failure to detect binding of AF-CXCL14 to CXCR4 transfectants by flow cytometry appears to 

indicate that the interaction is of low stability. 

 

Modulation of CXCL12 activity by CXCL14 has recently been reported by another 

research group, an effect which they also proposed was dependent on direct binding 

of CXCL14 to CXCR4 (Tanegashima et al., 2013a, Tanegashima et al., 2013b). Here, 

however, the authors proposed that CXCL14 inhibited CXCL12-mediated chemotaxis 

of human haematopoietic progenitor cells and THP-1 cells. Like Tanegashima and 

colleagues, I observed that upon combination of CXCL14 with a concentration of 

CXCL12 which is optimal for induction of chemotaxis alone, a reduction in activity is 

observed ((Tanegashima et al., 2013a) and Figure 5.4). However, experiments were 

not performed in these previous studies to test whether CXCL14 could enhance the 
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activity of low, normally inactive concentrations of CXCL12, as I have reported. 

Therefore, rather than contradicting, my findings are an extension of those previously 

reported.  

Synergistic interaction with CXCL14 was shown to be dependent on the presence of 

the cognate receptors (CXCR4, CXCR5 and CCR7) for the partner chemokines 

(CXCL12, CXCL13 and CCL19/CCL21) on responding cells. Synergy between 

CXCL12 and CXCL14 was selected as the model system upon which the mechanism 

underlying the synergistic interaction was investigated. Blockade of CXCR4 using the 

specific antagonist AMD3100 completely abrogated the synergistic induction of 

chemotactic responses in human lymphocytes. T cells, B cells and NK cells (in 

addition to a CXCR4-transfected mouse pre-B cell line) did not respond to CXCL14 

by itself, indicating that the observed synergy did not involve CXCL14 receptor(s). It 

is worth noting that migratory responses of human monocytes toward CXCL14 were 

unaffected by CXCR4 blockade with AMD3100, emphasising the fact that the putative 

CXCL14 receptor is distinct from CXCR4. Interaction between CXCL14 and CXCR4 

could not be demonstrated in binding studies using AF-CXCL14. This may be 

explained by the interaction being of low affinity and not sufficiently stable for the 

ligand to remain bound throughout the preparation of samples for acquisition on the 

flow cytometer. To this effect, our collaborators in Madrid (who performed the FRET 

experiments) are currently attempting to confirm a direct interaction between CXCL14 

and CXCR4 by SPR, with CXCR4 immobilised on a sensor chip by a method that has 

been shown to not interfere with its native conformation or binding activity (Rodriguez-

Frade et al., 2016). Preliminary data from these experiments suggest that CXCL14 

binds CXCR4 with an approximately 10-fold lower affinity than CXCL12, thus 

supporting our hypothesis. Further experiments still need to be performed to enable 

the calculation of reliable affinity constants for binding of CXCL12 and CXCL14 to 

CXCR4. 

Given the enormous complexity of the chemokine superfamily, in terms of the unique 

spatial and temporal patterns of expression exhibited by each member, it is currently 

impossible to unequivocally define the physiological relevance of chemokine synergy. 

There are, however, several reports describing a contribution of synergistic interaction 

between chemokines to leukocyte recruitment in various in vivo rodent models, 

including mouse models of monocyte recruitment to atherosclerotic lesions (Koenen 

et al., 2009), and neutrophil recruitment to the peritoneum (Struyf et al., 2005), as well 

as rat models of leukocyte recruitment to inflamed skin (Stanford and Issekutz, 2003). 
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Similarly HMGB1, a chromatin-binding protein released by dying cells, was 

demonstrated to dimerize with CXCL12 and to induce synergistic leukocyte 

recruitment in several mouse models of tissue necrosis (Schiraldi et al., 2012). Activin 

A, a member of the TGF-β family, was recently shown to induce migration of immature 

DCs in vitro, as well as in an ex vivo model of chemokine-mediated emigration of DCs 

from mouse ear tissue (Salogni et al., 2009). Activin A by itself had no chemoattractant 

activity, however it induced in immature DCs (iDC) the coordinate expression of 

CXCL14 and CXCL12 (but no other chemokine). Importantly, the iDC migration was 

dependent on CXCR4, as evidenced with blockade using AMD3100 and CXCR4-

specific antibodies. The findings of Salogni et al. support of our model of CXCL14-

mediated priming of CXCR4+ target cell responses toward CXCL12.  

To summarise, exceptional sequence conservation and ubiquitous (and in part 

overlapping) expression in healthy tissues suggest that CXCL14 and CXCL12 may 

synergize in the localization of immune surveillance cells (T cells, DCs, 

macrophages). This process may be most effective in the steady-state or at early 

stages of antigen exposure, before production of inflammatory mediators and 

subsequent downregulation of CXCL14 expression. The synergy may pertain not only 

to immune processes, but also to tissue cell localization (wound repair) and 

developmental processes (embryogenesis) since both chemokines are also 

abundantly expressed at discrete locations in the developing mouse embryos (Garcia-

Andres and Torres, 2010). As a further interpretation of the novel ability of CXCL14 

to synergise with other chemokines, this may also explain, in part, the substantial 

breeding defect seen in CXCL14-KO mouse colonies (Meuter et al., 2007). 
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Chapter 6  General Discussion 

6.1 Summary 

During the course of this project, I have sought to clarify the activity and target cells 

of one of the least understood members of the chemokine superfamily, CXCL14. In 

doing so, I have revealed unexpected and novel functions for CXCL14, most notably 

its ability to influence the activity of other chemokines. In addition, I have revealed 

new insights into the role of CXCL14 in the maintenance of tissue cells of the MPS. 

Previous studies into the function of CXCL14 have reported roles in diverse processes 

such as killing of microorganisms (Dai et al., 2015, Maerki et al., 2009) and tumour 

progression (Augsten et al., 2009, Ozawa et al., 2006, Shurin et al., 2005, Wente et 

al., 2008), as well as roles unrelated to immune function including regulation of body 

weight and glucose metabolism (Hara and Tanegashima, 2012, Tanegashima et al., 

2010a). Our research group has an invested interest in the immune surveillance of 

skin during the steady-state. Constitutively expressed in a number of peripheral 

tissues including skin, gut, kidney, brain and placenta (Cao et al., 2000, Frederick et 

al., 2000, Hromas et al., 1999, Kurth et al., 2001, Meuter and Moser, 2008), it has 

been postulated that CXCL14 has an important role in controlling immune surveillance 

in these tissues. However, the precise identity of CXCL14 target cells has, up to this 

point, not been well defined. Often contradictory reports have indicated that among 

the target cells of CXCL14 are monocytes, B cells, neutrophils, immature DCs, 

activated blood NK cells and uterine NK cells (Cao et al., 2000, Kurth et al., 2001, 

Mokhtar et al., 2010, Salogni et al., 2009, Shellenberger et al., 2004, Starnes et al., 

2006). With the aid of transwell chemotaxis assays to assess cell migration, as well 

as a novel reagent in the form of Alexa Fluor 647-conjugated CXCL14 for detecting 

expression of CXCL14 receptor(s), I have demonstrated that CD14+ monocytes 

represent the major targets of CXCL14 among peripheral blood mononuclear cells. 

Further to this, I have shown that certain myeloid populations which are resident in 

healthy human skin, most notably an apparent novel subset of skin-resident myeloid 

cells characterised by lack of CD45 expression, are also targets for CXCL14. Critical 

to definitively identifying the target cells of CXCL14, however, is the discovery of its 

cognate receptor. While I am unable to report the identity of the CXCL14 receptor at 

this time, its imminent discovery will facilitate a complete understanding of the role 

played by CXCL14 in the steady-state control of immune cell function and localisation 

in peripheral tissues 
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6.2 Tissue-resident Monocytes (MTR) 

The health and longevity of peripheral tissues depends on an effective local immune 

surveillance system, primed to respond to infections, injury and transformed cells 

rapidly and effectively (Schaerli et al., 2004). The importance of this system is 

underscored by the recurrent infections and increased susceptibility to cancers 

observed under conditions of immune suppression, for instance in organ transplant 

recipients. Undoubtedly, central to the local immune surveillance of virtually all tissues 

is the mononuclear phagocyte system. Tissue-resident phagocytes including 

macrophages and DCs form the first line of defence against invading microorganisms, 

while their antigen-presenting capacity and cytokine production influences the activity 

of other immune cells (Banchereau and Steinman, 1998, Davies et al., 2013a, Haniffa 

et al., 2015). The MPS is exceedingly complex however, as demonstrated by the 

functional diversity of macrophages at different locations which fulfil tissue-specific 

functions. Examples include clearance of surfactant by alveolar macrophages in the 

lung, synaptic pruning and immune surveillance in the brain by microglia and 

regulation of the host-microbe balance by intestinal macrophages (Davies et al., 

2013a, Hashimoto et al., 2011). Evidently, the immune surveillance system in healthy 

peripheral tissues is not dormant; on the contrary, considering the frequency of insults 

that tissues such as skin and gut have to deal with, it is highly active. 

Here, I have described a potential new addition to the MPS in the form of a novel 

subset of myeloid cells present in healthy human skin, which we hereby cautiously 

term “tissue-resident monocytes” or “MTR”. At this point, we know virtually nothing 

about the origin or function of these cells. MTR were identified by their expression of 

CXCL14 receptors (as indicated by binding of AF-CXCL14) in addition to displaying 

robust migratory responses toward CXCL14. They were further defined 

phenotypically by their co-expression of the myeloid markers CD1a and CD14, in 

addition to their startling lack of expression of the protein tyrosine phosphatase and 

pan-leukocyte marker, CD45. It may be postulated that their lack of CD45 expression 

points to a non-haematopoietic origin of these cells. Recently, microglia isolated from 

the brains of mice have been identified as CD45dim cells that represent an 

ontogenetically distinct population in the MPS, derived from macrophage progenitors 

of the yolk sac rather than bone marrow precursors (Ginhoux et al., 2010, Immig et 

al., 2015). Lack of CD45 expression may also explain why such a seemingly large 

cellular compartment in the skin has been overlooked by researchers up to this point. 

There are numerous examples of studies looking at immune cell subsets in human 
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skin where the researchers have excluded the CD45dim/neg cells from their analyses 

(Haniffa et al., 2009, McGovern et al., 2014). It is exciting to speculate that due to their 

shared ability to respond toward CXCL14, MTR are derived from CD14+ blood 

monocytes. As of yet, we do not have evidence to support this. Determining the origin 

of MTR (independent of the haematopoietic system or monocyte-derived?) will be of 

critical importance to understanding how they integrate with the existing components 

of the MPS. In this regard, I have recently discovered an equivalent population of 

CD45neg MTR among cells extracted from the healthy skin of wild-type C57/BL6 mice 

by enzymatic digestion. In staining of cells for flow cytometry, I have demonstrated 

that mouse MTR bind AF-CXCL14, in experiments which were performed using the 

human reagent applied to the detection of CXCL14 receptor(s) on human immune 

cells. Mouse and human CXCL14 differ by only two amino acid substitutions however, 

thus I am confident that this reagent can be reliably applied to studying the distribution 

of CXCL14 receptors on mouse cells. Mouse MTR were also defined phenotypically by 

expression of the typical murine macrophage cell-surface marker F4/80. As with their 

human counterparts, mouse MTR were found to be abundant in the skin accounting 

for as much as 20% of CD45neg cells, thus representing a significant compartment in 

healthy tissue. Upon initial investigations by our group, the CXCL14-KO mouse did 

not reveal an immune defect, with special attention paid to the sites where CXCL14 

is produced, including the skin (Meuter et al., 2007). However, it is likely that the MTR 

were overlooked due to their lack of CD45 expression. Therefore, we are in the 

process of re-establishing a colony of CXCL14-KO mice in our laboratory, with the 

intention of seeing if the novel cells are present. The absence of MTR would provide 

the first conclusive evidence for CXCL14 playing an essential role in the maintenance 

of immune cell populations in the skin during the steady-state, thus having profound 

implications for mucosal immunity in both mouse and man. 

In order for MTR to truly be considered a novel subset of the MPS, further phenotypic 

and functional characterisation is essential. Studies in human should consider their 

morphology, functional properties in vitro and their relationship to conventional 

(CD45+) subsets of the MPS. The study of surface marker expression on MTR will 

include those relevant for the CD45+ cells of the MPS, which include conventional 

macrophages, dermal CD1a+ and CD14+ DCs, epidermal LCs and peripheral blood 

monocytes (Haniffa et al., 2009, Ziegler-Heitbrock et al., 2010). Focus should be on 

particular markers related to migration (chemokine receptors and adhesion 

molecules), responding to pathogens (TLRs and other pattern-recognition receptors) 

and antigen presentation (MHC class II and co-stimulatory molecules e.g. CD40 and 
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CD80/86). Functional analyses, performed initially in vitro, should include assays that 

explore phagocytosis of fluorescent-labelled substrates as well as measurement of 

responses to pathogens, including the production of cytokines (IL-1β, TNFα, TGFβ 

etc.), chemokines (CXCL8, CXCL14, CCL1-5, etc.) and anti-microbial agents 

(defensins, NOS/ROS, etc.). One should also determine if, in similar fashion to LCs 

of the epidermis and microglia of the brain, MTR are radio-resistant. If they are 

susceptible to irradiation, it will be fascinating to observe the reconstitution kinetics of 

MTR in patients following total body irradiation prior to HSCT, in the same way as has 

been done previously for blood monocytes and dermal macrophages/DCs (Haniffa et 

al., 2009). Their reconstitution in peripheral tissues in relation to other cell types (blood 

monocytes in particular) may reveal crucial information regarding the origin of MTR. 

The very high sequence conservation between human and mouse CXCL14 suggests 

that cross-species functional conservation is likely (Wolf and Moser, 2012). 

Characterisation of MTR in mouse should therefore include the investigations listed 

above for human MTR, but be extended to their tissue distribution by searching for MTR 

at other sites where CXCL14 is expressed, including kidney, lung, intestine, placenta 

and brain (Meuter and Moser, 2008). The use of mouse models will also allow for the 

function of MTR in inflammatory settings to be assessed. Investigations should focus 

on their in situ phagocytic properties, while it will be important to see if MTR are 

mobilised (enhanced phagocytic activity and/or turn-over) in response to inflammatory 

stimuli, as previously done for conventional macrophages (Wang et al., 2006). Due to 

their possible role in immune surveillance, it may be postulated that recruited 

monocytes give rise to MTR during the resolution phase of the inflammatory response. 

This hypothesis may be tested by specific depletion of classical monocytes from wild-

type mice using an anti-CCR2 antibody as previously described (Schumak et al., 

2015), followed by adoptive transfer of GFP+ monocytes from CX3CR1creR26-GFP 

reporter mice (where all monocytes are labelled with GFP). Upon induction of skin 

inflammation, GFP+ tissue cells should be analysed at several time points in inflamed 

(and non-inflamed) skin. If MTR are found to be present at other sites, these studies 

may be extended to inflammation models involving other tissues, such as the 

inflammatory recruitment of monocytes to peritoneum following administration of 

zymosan or thioglycollate (Davies et al., 2013b). It should therefore be possible to 

determine whether the MTR pool in mouse tissues is contributed to by circulating 

precursors such as monocytes, and under what conditions (steady-state or 

inflammation) this is the case. 
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Gene expression analysis of human and mouse MTR should also be performed, akin 

to that described previously for the monocyte subsets (Wong et al., 2011). 

CD45negCD1a+AF-CXCL14+ human MTR and CD45negF4/80+AF-CXCL14+ mouse MTR, 

sorted by FACS, should be subjected to transcriptome analysis by RNA sequencing. 

Conventional dermal macrophages, dermal DCs and blood monocytes should also be 

taken for comparison, with special attention being paid to genes involved in pathways 

such as phagocytosis, pro-inflammatory cytokine release and antigen presentation. 

The overall aim of these studies should be to define the characteristics of human and 

mouse MTR, as well as their phenotypic and functional relatedness with conventional 

tissue macrophages/DCs and blood monocytes. 

6.3 The CXCL14 Receptor 

The discovery of MTR provides another source of CXCL14-responsive cells to 

interrogate for their expression of GPCRs, which should aid our efforts to identify the 

CXCL14 receptor. Transcriptome analysis of MTR by RNA-seq will provide a new data 

set of expressed GPCRs in cells which are targets for CXCL14, for comparison to 

CD14+ monocytes and PGE2-treated THP-1 cells. This will enable refinement of the 

current list of candidates for the CXCL14 receptor. RNA sequencing of mouse MTR 

will provide another additional data set to incorporate into our existing analyses, while 

cross-referencing the expressed GPCR lists from human and mouse should enable 

refinement of the candidate list even further. Given the pool of CXCL14 target cells in 

human and mouse now at our disposal, I am confident that it is only a matter of time 

until the identity of the CXCL14 receptor is revealed. 

I chose to go down the route of transcriptome analysis in my efforts to discover the 

CXCL14 receptor in this project for several reasons. Firstly, since all we could be sure 

of regarding the properties of the CXCL14 receptor is that it is almost certainly a Gαi-

coupled GPCR (due to its sensitivity to pertussis toxin treatment), RNA-seq 

represented the most unbiased approach to screening CXCL14-responsive cells for 

expression of GPCRs. Indeed, the GPCR that mediates the physiological effects of 

neuronostatin, a novel peptide encoded by the somatostatin gene, was found by a 

similar method (Yosten et al., 2012). Following identification of orphan GPCRs 

expressed in monocytes and PGE2-treated THP-1 cells, candidates were tested by 

stable expression in a cell-line, while screening by shRNA-mediated knockdown was 

also intended but was met with technical difficulties. Unfortunately, the testing of 

candidates proved unsuccessful and the identity of the CXCL14 receptor remains 

elusive. For the reasons outlined above, including new cell subsets to screen for 
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expression of GPCRs, I still consider transcriptome analysis to be the best approach 

for discovering the CXCL14 receptor. Alternatively, however, a proteomics-based 

approach could be taken. In this regard, a potential tactic would be to use the 

fluorochrome-labelled chemokine AF-CXCL14 to pull down the receptor, followed by 

purification of ligand-receptor complexes and analysis by mass spectrometry. 

Attempts to isolate the receptor by ligand-binding and subsequent pull-down would 

likely be more straightforward if one was able to use biotinylated CXCL14 (bio-

CXCL14), since following binding of bio-CXCL14 and solubilisation of the cells, 

receptor-ligand complexes could be pulled down easily using a streptavidin column. 

We have the bio-CXCL14 reagent in our lab, however it was found to be totally 

inactive up to 5 µM concentration in transwell chemotaxis assays (data not shown). 

Proteomics analysis may also be complicated by the fact that we do not know the 

nature of the interaction between CXCL14 and its receptor. There is evidence that 

many chemokines form dimers or higher-order multimers when interacting with their 

receptor (Proudfoot and Uguccioni, 2016). Whether CXCL14 binds to its receptor at 

a 1:1 ratio or not is yet to be elucidated. Finally, there are question marks over whether 

or not the interaction between CXCL14 and its receptor is sufficiently stable to enable 

this approach to work. Detection of AF-CXCL14 binding to monocytes by flow 

cytometry, in spite of several wash steps in between incubation of cells with the 

reagent and sample acquisition, indicates that the interaction is fairly stable and not 

subject to rapid dissociation. Binding is also performed at 4 °C, at which very little 

receptor internalisation should occur. In theory, therefore, binding of AF-CXCL14 may 

be stable enough to pull down the receptor for analysis by proteomics-based 

methodologies. If this were shown to be the case, the use of proteomics in parallel 

with transcriptome analysis will enhance our efforts to discover the CXCL14 receptor. 

6.4 Interaction with CXCR4 and Synergy with Other 
Chemokines 

Although the receptor via which CXCL14 induces migration of monocytic cells 

remains unknown, I have presented evidence to suggest that CXCL14 interacts with 

the chemokine receptor CXCR4, albeit in a non-signalling manner. By interacting with 

CXCR4, CXCL14 considerably modulates the activity of CXCL12. Based on the data 

obtained from NMR, SPR and FRET experiments, I hypothesise that CXCL14 binds 

to CXCR4 at a site distinct from where CXCL12 binds, and in doing so induces 

clustering of CXCR4 receptors on the cell-surface (which may or may not be 

accompanied by a conformational change to the receptor) which makes CXCR4 more 
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amenable to activation by low concentrations of CXCL12. Mechanisms of chemokine 

synergy described previously include 1) a chemokine heterodimer activating a single 

receptor, 2) two different receptors forming a heterodimer on the cell surface, with 

each member being activated simultaneously by their respective ligands, and 3) two 

receptors, separated on the cell surface, that are activated simultaneously and 

synergise at the level of downstream signalling ((Gouwy et al., 2012, Proudfoot and 

Uguccioni, 2016) and Figure 5.1). My model of cooperation between CXCL14 and 

CXCL12 therefore represents a novel mechanism of chemokine synergy, as I do not 

find evidence elsewhere in the literature of a chemokine enhancing the potency of 

another chemokine through binding to its receptor in a non-signalling manner. These 

findings also build on those reported recently by others, who have shown that CXCL14 

binds CXCR4 but does not trigger downstream signalling events (Otte et al., 2014, 

Tanegashima et al., 2013a, Tanegashima et al., 2013b). In revealing the cooperative 

nature of this interaction, my work provides a potential physiological relevance to 

these earlier findings. CXCL12, like CXCL14, is ubiquitously expressed in many 

healthy peripheral tissues including skin and gut (Agace et al., 2000, Pablos et al., 

1999). It can therefore be postulated that CXCL14 and CXCL12 synergise in vivo in 

the recruitment of immune cells from blood, during the steady-state. Synergy between 

chemoattractants in the recruitment of immune cells has been demonstrated in vivo 

previously using the air pouch model, in which sterile air is administered by 

subcutaneous injection into the back of a mouse. The pouch mimics the synovial 

cavity thus providing a localised environment, in the absence of any inflammation or 

infectious agent, in which to study cell trafficking (Sin et al., 1986). Synergistic 

interaction between CXCL12 and the chemoattractant HMGB1 in the recruitment of 

lymphocytes was confirmed to occur in vivo using the air pouch model (Schiraldi et 

al., 2012). This model of sterile immune cell traffic to a peripheral site should be 

applied in order to confirm that the synergistic interaction between CXCL14 and 

CXCL12 takes place in vivo. 

The physiological relevance of the observed synergistic interaction between CXCL14 

and the lymphoid tissue-homing chemokines CCL19, CCL21 and CXCL13 is 

somewhat less clear. Secondary lymphoid organs represent one of the few peripheral 

tissues where CXCL14 expression is low to non-detectable (Meuter and Moser, 

2008). Therefore, it seems unlikely that CXCL14 cooperates with the lymphoid tissue-

homing chemokines to control the steady-state recruitment of T cells, B cells and 

mature DCs to these sites. It has been recently proposed that despite its high 

expression in healthy tissues, CXCL14 may have a more prominent role in 
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inflammatory processes than initially thought (reviewed in (Lu et al., 2016)). Indeed, 

although CXCL14 expression is down-regulated in most inflammatory settings, there 

are examples of where its expression is up-regulated, for instance in the inflammatory 

lesion in the joint that is characteristic of the autoimmune disease rheumatoid arthritis 

(RA) (Chen et al., 2010). Such chronic inflammatory disorders are often characterised 

by the appearance of ectopic or tertiary lymphoid organs in the tissue, responsible for 

local activation of adaptive immune responses leading to release of pro-inflammatory 

cytokines, further influx of inflammatory cells and autoantibody production. Lymphoid 

tissue-associated chemokines including CXCL13, CCL19 and CCL21 (in addition to 

CXCL12) are all expressed in these ectopic lymphoid structures (Hjelmstrom et al., 

2000, Pitzalis et al., 2014), and it may be postulated that CXCL14 synergises with 

these chemokines to exacerbate the inflammatory cell recruitment. Indeed, CXCL14 

expression has been shown to be up-regulated in the joint in a murine model of 

collagen-induced arthritis, while transgenic mice that over-expressed CXCL14 

developed a more severe arthritis than wild type controls (Chen et al., 2010). 

Paradoxically therefore, CXCL14 may synergise with these other ‘homeostatic’ 

chemokines, but rather than doing so in the context of homeostatic cell recruitment, 

instead enhance the recruitment of immune effector cells to sites of inflammation. The 

air pouch model (described previously) could potentially be applied to determining 

whether CXCL14 is able to synergise with the lymphoid tissue-homing chemokines in 

the context of lymphocyte (and DC) recruitment in vivo. If this is shown to be the case, 

blockade of CXCL14 may represent a potential therapeutic intervention in the 

treatment of RA, and possibly other chronic inflammatory disorders characterised by 

the presence of ectopic lymphoid organs. 
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Figure 6.1. The role of CXCL14 in the control of leukocyte recruitment to peripheral sites during the 
steady-state (left) and inflammation (right). 
Here, the skin is used as an example, but this scenario may apply to other anatomical locations and disease 

situations. During the steady-state, CXCL14 is produced in large quantities by epidermal keratinocytes as well 

as by discrete cells within the dermis, including resident macrophages. CXCL12 is also produced in the skin, 

and these two chemokines cooperate to control the basal recruitment of long-lived memory T cells via their 

expression of CXCR4. In parallel, CXCL14 recruits classical monocytes which extravasate from the blood into 

the dermis, where they give rise to dermal macrophages and/or DCs. During inflammation of the skin, such as 

that associated with chronic inflammatory disorders including psoriasis, other chemokines including the CCR7 

ligands CCL21 and CCL19 are produced (in addition to a host of inflammatory chemokines and other 

inflammatory mediators, which are not shown). CCR7+ DCs traffic antigen to lymph nodes where they activate 

naïve T cells. CXCL14 synergises with the CCR7 ligands to recruit effector T cells to the inflammatory site. 

CXCL14 may also synergise with CXCL12 in the recruitment of other immune effector cells; an example being 

neutrophils, which likely express both CXCR4 and the CXCL14 receptor. Formation of ectopic lymphoid 

structures, a characteristic feature of many chronic inflammatory diseases, is driven by chemokines including 

CCL21, CCL19, CXCL12 and CXCL14. 
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6.5 Conclusion 

In the ever-expanding field of chemokine research, CXCL14 remains as one of the 

least understood members of this family of structurally- and functionally-related 

peptides. Since its discovery 17 years ago, our knowledge of the functions of CXCL14 

has increased incrementally. Its selectivity for monocytic cells is unique among the 

chemokine family, while its role in maintaining tissue phagocyte populations in 

addition to the relevance of its ability to influence the activity of other chemokines, will 

surely be revealed in the years to come. Indeed, the observation that CXCL14 

expression is lost in many cancers and chronic inflammatory diseases highlights its 

non-redundant role in regulating peripheral immunity. Finally, discovery of the cognate 

receptor of CXCL14 will facilitate a rapid escalation in the gathering of knowledge 

regarding its functions in immunity, made possible by the generation of CXCL14–

reporter mouse strains.  
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