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Summary 

Prolonged endocrine therapy is the mainstay of treatment for ER+ breast cancer patients. 

However, resistance develops in many patients which leads to more aggressive disease. 

Understanding the mechanisms of acquired resistance that emerge as a consequence of 

prolonged endocrine treatment remains critical. This study aimed to use gene expression 

profiling to discover induced mechanisms shared by a panel of MCF7-derived acquired resistant 

cells that underpin endocrine resistant growth. The in vitro panel represents resistance to 

oestrogen deprivation, tamoxifen or fulvestrant and includes long-term (3year) models to 

better-mimic clinical endocrine exposure. 

Affymetrix 1.0ST microarrays detected 572 genes induced in all resistant models versus MCF7. 

Over-represented ontologies, pathways and functional classification for these genes revealed 

induction of oxidative phosphorylation (OxPhos) and TCA cycle enzymes in the resistant models, 

a finding further confirmed by mass spectrometry. Increased oxygen consumption, NADH 

dehydrogenase and/or cytochrome C oxidase activity was detected in resistant cells, and 

targeting with OxPhos inhibitors Metformin or Antimycin A confirmed growth-dependency on 

OxPhos. Western blotting for AMPK (energy sensor) activity and its downstream anabolic targets 

(ACC, mTOR/P70S6K) showed Metformin reduced fatty acid and protein synthesis in growth-

sensitive endocrine resistant cells. In silico analysis inferred clinical relevance since many 

TCA/OxPhos genes associated with earlier relapse in ER+ and/or tamoxifen treated patients. 

Monitoring basal glycolysis (extracellular lactate) and growth impact of 2DG or glutamine 

restriction demonstrated glycolysis and glutaminolysis also contribute to endocrine resistance. 

The microarrays furthermore revealed that metabolic kinases PCK2, ALDH18A1 and PFKFB2, and 

components of cell response to Zn were commonly-induced which may additionally help 

endocrine resistant growth. 

This study has revealed increased OxPhos arises as a consequence of prolonged endocrine 

treatment and is a key bioenergetic pathway sustaining resistance. Since resistant growth is 

Metformin-sensitive, such targeting of this energy pathway (alongside further antihormones or 

glycolysis/glutaminolysis inhibitors) could help treat resistance. 
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MRPL 20           Mitochondrial Ribosomal Protein L20 

MRPL 21            Mitochondrial Ribosomal Protein L21 

MRPL 34            Mitochondrial Ribosomal Protein L34 

MRPL 37            Mitochondrial Ribosomal Protein L37 

MRPL 40            Mitochondrial Ribosomal Protein L40 

MRPL 47            Mitochondrial Ribosomal Protein L47 

MRPL15             Mitochondrial Ribosomal Protein L15 

MRPL17             Mitochondrial Ribosomal Protein L17 

MRPL2               Mitochondrial Ribosomal Protein L2 

MRPL21             Mitochondrial Ribosomal Protein L21 

MRPL34             Mitochondrial Ribosomal Protein L34 
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MRPL37             Mitochondrial Ribosomal Protein L37 

MRPL40             Mitochondrial Ribosomal Protein L40 

MRPL47             Mitochondrial Ribosomal Protein L47 

MRPS 15            Mitochondrial Ribosomal Protein S15 

MRPS 18A         Mitochondrial Ribosomal Protein S18A 

MRPS 18B         Mitochondrial Ribosomal Protein S18B 

MRPS 34           Mitochondrial Ribosomal Protein S34 

MRPS15            Mitochondrial Ribosomal Protein S15 

MRPS18A          Mitochondrial Ribosomal Protein S18A 

MRPS18B          Mitochondrial Ribosomal Protein S18B 

MRPS24            Mitochondrial Ribosomal Protein S24 

MRPS34            Mitochondrial Ribosomal Protein S34 

MRPS5              Mitochondrial Ribosomal Protein S5 

MRPS5              Mitochondrial Ribosomal Protein S5 

MT1E                Metallothionein 1E 

MT1F                Metallothionein 1F 

MT1G                Metallothionein 1G 

MT1H                Metallothionein 1H 

MT1X                Metallothionein 1X 

MT2A                Metallothionein 2A 

MT-ATP6          Mitochondrially Encoded ATP Synthase 6 

MT-CO3           Mitochondrially Encoded Cytochrome C Oxidase III 

MT-ND1           Mitochondrially Encoded NADH Dehydrogenase 1 

MT-ND2           Mitochondrially Encoded NADH Dehydrogenase 2 

MT-ND3           Mitochondrially Encoded NADH Dehydrogenase 3 

MT-ND4           Mitochondrially Encoded NADH Dehydrogenase 4 

MT-ND4L         Mitochondrially Encoded NADH Dehydrogenase 4L 

MT-ND5           Mitochondrially Encoded NADH Dehydrogenase 5 

MT-ND6           Mitochondrially Encoded NADH Dehydrogenase 6 

mTOR               mammalian Target Of Rapamycin 

NADH                Nicotinamide adenine dinucleotide 
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NADPH              Nicotinamide adenine dinucleotide phosphate 

NCOA3 (AIB1)  Nuclear Receptor Coactivator 3 

NCoR                 Nuclear Receptor Corepressor 

NCoR1               Nuclear Receptor Corepressor 1 

NCOR2 (SMRT) Nuclear Receptor Corepressor 2 

NCoR2               Nuclear Receptor Corepressor 2 

NDUB10            NADH Dehydrogenase (Ubiquinone) 1 Beta Subcomplex, 10 

NDUFA3            NADH Dehydrogenase (Ubiquinone) 1 Alpha Subcomplex, 3 

NDUFA7            NADH Dehydrogenase (Ubiquinone) 1 Alpha Subcomplex, 7 

NDUFA8            NADH Dehydrogenase (Ubiquinone) 1 Alpha Subcomplex, 8 

NDUFA9            NADH Dehydrogenase (Ubiquinone) 1 Alpha Subcomplex, 9 

NDUFAF2          NADH Dehydrogenase (Ubiquinone) Fe-S Protein 2 

NDUFAF4          NADH Dehydrogenase (Ubiquinone) Fe-S Protein 4 

NDUFB10          NADH Dehydrogenase (Ubiquinone) 1 Beta Subcomplex, 10 

NDUFB5            NADH Dehydrogenase (Ubiquinone) 1 Beta Subcomplex, 5 

NDUFB9            NADH Dehydrogenase (Ubiquinone) 1 Beta Subcomplex, 9 

NDUFS1            NADH Dehydrogenase (Ubiquinone) Fe-S Protein 1, 75kDa (NADH-Coenzyme Q 

Reductase) 

NDUFS2           NADH Dehydrogenase (Ubiquinone) Fe-S Protein 2, 49kDa (NADH-Coenzyme Q 

Reductase) 

NDUFS3           NADH Dehydrogenase (Ubiquinone) Fe-S Protein 3 

NDUFS7           NADH Dehydrogenase (Ubiquinone) Fe-S Protein 7, 20kDa (NADH-Coenzyme Q 

Reductase) 

NDUFS8           NADH Dehydrogenase (Ubiquinone) Fe-S Protein 8, 23kDa (NADH-Coenzyme Q 

Reductase) 

NDUFV1           NADH Dehydrogenase (Ubiquinone) Flavoprotein 1, 51kDa 

NDUFV2           NADH Dehydrogenase (Ubiquinone) Flavoprotein 2, 24kDa 

NEU1                Sialidase 1 

nM                    nanomolar 

NRP1                Neuropilin 1 

OAA                   Oxaloacetate 

OC                      oxygen consumption 

OCT                   Organic Cation Transporter 
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OGDHL             Oxoglutarate Dehydrogenase-Like  

OMIM               Online Mendelian Inheritance in Man 

ORA-O              Over Represented Analysis- Ontology 

ORA-P               Over Represented Analysis-Pathway 

OS                      overall survival 

OxPhos             Oxidative phosphorylation 

p53                   Tumor Protein P53 

P70S6K             Ribosomal Protein S6 Kinase, 70kDa, Polypeptide 1 

PBS                   phosphate buffer saline 

PC                     pyruvate carboxylase 

PCDH9             Protocadherin 9 

PCK2                Phosphoenolpyruvate Carboxykinase 2 

PDHA1               Pyruvate Dehydrogenase (Lipoamide) Alpha 1 

PDHB                 Pyruvate dehydrogenase B 

PDK1                  pyruvate dehydrogenase kinase  

PEP                     phosphoenolpyruvate 

PET                     positron emission tomography 

PFKFB2              6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 2 

PGM1                 Phosphoglucomutase 1 

PGS1                   Phosphatidylglycerophosphate Synthase 1 

PI3K                    Phosphatidylinositol 3-Kinase 

PIGO                   Phosphatidylinositol Glycan Anchor Biosynthesis, Class O 

PLEC                   Plectin 

PMAT                 plasma membrane monoamine transporters 

PNP                    Purine Nucleoside Phosphorylase 

POLR2C             Polymerase (RNA) II (DNA Directed) Polypeptide C 

POLR2H            Polymerase (RNA) II (DNA Directed) Polypeptide H 

POLR2I              Polymerase (RNA) II (DNA Directed) Polypeptide I 

POLR3D            Polymerase (RNA) III (DNA Directed) Polypeptide D 

PPA2                 Pyrophosphatase (Inorganic) 2 

PPP                   pentose phosphate pathway 
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PR                      progesterone receptor 

PRKAA1            Protein Kinase, AMP-Activated, Alpha 1 Catalytic Subunit 

PRKAA2            Protein Kinase, AMP-Activated, Alpha 2 Catalytic Subunit 

PRKAB1            Protein Kinase, AMP-Activated, Beta 1 Non-Catalytic Subunit 

PRKAB2            Protein Kinase, AMP-Activated, Beta 2 Non-Catalytic Subunit 

PRKAG1            Protein Kinase, AMP-Activated, Gamma 1 Non-Catalytic Subunit 

PRKAG2           Protein Kinase, AMP-Activated, Gamma 2 Non-Catalytic Subunit 

PRKAG3           Protein Kinase, AMP-Activated, Gamma 3 Non-Catalytic Subunit 

PRKD3              Protein Kinase D3 

PRPS1               Phosphoribosyl Pyrophosphate Synthetase 1 

PRSS3                 Phosphoribosyl Pyrophosphate Synthetase 3 

PSMA1               Proteasome Subunit Alpha 1 

PSMA6               Proteasome Subunit Alpha 6 

PSMB6               Proteasome Subunit Beta 6 

PSMC4               Proteasome 26S Subunit, ATPase 4 

PSMD2               Proteasome 26S Subunit, Non-ATPase 2 

PSMD8               Proteasome 26S Subunit, Non-ATPase 8 

PSME1               Proteasome Activator Subunit 1 

PSME3               Proteasome Activator Subunit 3 

PSPH                  Phosphoserine Phosphatase 

PTDSS1              Phosphatidylserine Synthase 1 

PTEN                  Phosphatase And Tensin Homolog 

Q                        ubiquinone 

Raptor               Regulatory Associated Protein of MTOR  

RFS                     relapse free survival 

RIOK1                RIO Kinase 1 

ROBO1              Roundabout Guidance Receptor 1 

RPMI                 Roswell Park Memorial Institute 

RUNX2              Runt related transcription factor  

SCX-HPLC         strong cation exchange chromatography  

SDHB                 Succinate dehydrogenase B 
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SDS-PAGE        Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

SEM                   standard error of the mean 

SEMA3A            Semaphorin 3A 

SEMA3C            Semaphorin 3C 

Ser                     Serine  

SERD                 selective oestrogen receptor down-regulators 

SERM                selective oestrogen receptor modulator 

SFCS                  Stripped Foetal Calf Serum 

SGPL1                Sphingosine-1-Phosphate Lyase 1 

SHMT2              Serine Hydroxymethyltransferase 2 

SLC1A5             Solute Carrier Family 1 (Neutral Amino Acid Transporter), Member 5 

SLC1A5             Solute Carrier Family 1 (Neutral Amino Acid Transporter), Member 5 

SLC22A1           Solute Carrier Family 22 (Organic Cation Transporter), Member 1 

SLC22A2           Solute Carrier Family 22 (Organic Cation Transporter), Member 2 

SLC22A3           Solute Carrier Family 22 (Organic Cation Transporter), Member 3 

SLC25A11         Solute Carrier Family 25 (Mitochondrial Carrier; Oxoglutarate Carrier), Member 

11 

SLC25A13         Solute Carrier Family 25 (Aspartate/Glutamate Carrier), Member 13 

SLC25A20         Solute Carrier Family 25 (Mitochondrial Carrier; Ornithine Transporter) Member 

2 

SLC25A3           Solute Carrier Family 25 (Mitochondrial Carrier; Phosphate Carrier), Member 3 

SLC25A31         Solute Carrier Family 25 (Mitochondrial Carrier; Adenine Nucleotide Translocator), 

Member 31 

SLC25A33         Solute Carrier Family 25 (Pyrimidine Nucleotide Carrier), Member 33 

SLC25A4            Solute Carrier Family 25 (Mitochondrial Carrier; Adenine Nucleotide Translocator), 

Member 4 

SLC25A5           Solute Carrier Family 25 (Mitochondrial Carrier; Adenine Nucleotide Translocator), 

Member 5 

SLC25A5           Solute Carrier Family 25 (Mitochondrial Carrier; Adenine Nucleotide Translocator), 

Member 5 

SLC25A6           Solute Carrier Family 25 (Mitochondrial Carrier; Adenine Nucleotide Translocator), 

Member 6 

SLC29A4            Solute Carrier Family 29 (Equilibrative Nucleoside Transporter), Member 4 

SLC2A1              Solute Carrier Family 2 (Facilitated Glucose Transporter), Member 1 
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SLC2A2              Solute Carrier Family 2 (Facilitated Glucose Transporter), Member 2 

SLC2A3              Solute Carrier Family 2 (Facilitated Glucose Transporter), Member 3 

SLC2A4              Solute Carrier Family 2 (Facilitated Glucose Transporter), Member 4 

SLC39A7            Solute Carrier Family 39 (Zinc Transporter), Member 7 

SLC47A1            Solute Carrier Family 47 (Multidrug And Toxin Extrusion), Member 1 

SLC47A2            Solute Carrier Family 47 (Multidrug And Toxin Extrusion), Member 2 

SLC7A5              Solute Carrier Family 7 (Amino Acid Transporter Light Chain, L System), Member 

5 

SLC7A6              Solute Carrier Family 7 (Amino Acid Transporter Light Chain, Y+L System), Member 

6 

SMPD1              Sphingomyelin Phosphodiesterase 1 

SP-1                    Specificity Protein 1 

SRC-1                 Steroid Receptor Coactivator-1 

SRC-2                 Steroid Receptor Coactivator-2 

SRC-3                 Steroid Receptor Coactivator-3 

STK11                Serine/Threonine Kinase 11 

STK35               Serine/Threonine Kinase 35 

STOML2            Stomatin (EPB72)-Like 2 

STR                    Short Tandem Repeat 

STRADA             STE20-Related Kinase Adaptor Alpha 

STRADB             STE20-Related Kinase Adaptor Beta 

STT3A                Subunit of the Oligosaccharyltransferase Complex 

TALDO1             Transaldolase 1 

TamR                 short-term tamoxifen resistant (18 mo) 

TamRLT             long-term tamoxifen resistant (36 mo) 

TBST                  Tris-buffered saline with Tween 20 

TCA                    tricarboxylic acid  

TdT                    terminal deoxynucleotidyl transferase 

TEK                    Tec Protein Tyrosine Kinase 

TEMED               Tetramethylethylenediamine 

TFF1                   Trefoil Factor 1 

Thr                     Threonine 
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TIMM                Translocase Inner Mitochondrial Membrane  

TIMM17A         Translocase Of Inner Mitochondrial Membrane 17 Homolog A 

TIMM44            Translocase Of Inner Mitochondrial Membrane 44 

TIMM8A            Translocase Of Inner Mitochondrial Membrane 8 Homolog A 

TIMM9               Translocase Of Inner Mitochondrial Membrane 9 

TiO2                    titanium dioxide 

TMT                    Tandem Mass Tag 

TOMM               Translocase Outer Mitochondrial Membrane  

TOMM20          Translocase Of Outer Mitochondrial Membrane 20 

TSC2                  Tuberous Sclerosis 2  

UDG                  uracil DNA glycosylase 

UniProt            Universal Protein Resource 

UQCRFS1          Ubiquinol-Cytochrome C Reductase, Rieske Iron-Sulfur Polypeptide 1 

UQH2                Ubiquinol 

UST                    Uronyl-2-Sulfotransferase 

VDAC                 voltage dependent anionic channels 

VRK3                  Vaccinia Related Kinase 3 

WARS                 Tryptophanyl-TRNA Synthetase 

XSFCS                charcoal stripped foetal calf serum 

XYLB                  Xylulokinase Homolog 

YARS                  Tyrosyl-TRNA Synthetase 

Zn                       Zinc 
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CHAPTER 1 

Introduction 

1.1 Breast cancer incidence 
Breast cancer is the most common cancer among women in the UK accounting for 30% of newly 

diagnosed cancer in women. Breast cancer incidence is higher in older women, where 80% of 

breast cancer cases were in the over 50s as reported from 2010 to 2012 in the UK. Age-specific 

incidence rises in women aged 34 to 69 and subsequently drops for women aged 70-74 (Office 

of National Statistics 2014).  

1.2 Breast cancer survival and mortality 
Statistical analysis in England and Wales has reported 96% survival for at least one year, 87% 

survival for five years or more and 78% survival for 10 years or more in women with breast 

cancer (Cancer research UK 2014). However, although many patients now survive their disease, 

breast cancer is the 3rd most common cause of cancer death (after lung cancer and colorectal 

cancer) and the 2nd cause of cancer death (after lung cancer) among women in the UK. Breast 

cancer mortality is associated with increasing age: 46% of breast cancer deaths in women aged 

≥75, and 76% of such deaths in women aged ≥60 was reported between 2010 and 2012 in the 

UK (Office of National Statistics 2014).  

1.3 The aetiology of breast cancer 
Breast cancer is the most common cancer in adult females and along with age, risk factors such 

as gender, genetics, diet and obesity all associate with breast cancer development (Aguas et al. 

2005). Endocrine factors such as exposure to exogenous oestrogen also increase the risk of 

breast cancer in women (Ali et al. 2002).  

1.3.1 Gender 
The female hormone oestrogen is strongly implicated in breast cancer development because 

less than 1% of breast cancer patients are males. Furthermore, oestrogen, progesterone and 

androgen receptors (ER, PR and AR respectively) are expressed in male breast tumours, and the 

main driver of male breast cancer is thought to be the local oestrogen secretion (Murphy et al. 

2006). The ER+ profile common in male breast cancer is similar to breast tumours in women that 

frequently express this receptor. 

1.3.2 Genetics 
A meta-analysis of 52 separate epidemiological studies has suggested that 12% of breast cancer 

patients have one family member with breast cancer. Also, the risk of breast cancer in women 

with one or more first degree relatives who are affected with breast cancer is higher than those 

who do not have a first degree relative with breast cancer (Dumitrescu and Cotarla. 2005). 
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Moreover, germline mutation of BRCA1, BRCA2, p53 and PTEN genes have been associated with 

5-10% of hereditary breast cancer cases (Dumitrescu and. Cotarla, 2005). However, the vast 

majority of breast cancers are sporadic.  

1.3.3 Alcohol consumption and diet 
The study by Dumitrescu and Cotarla. (2005) also showed an association between increased risk 

of breast cancer and alcohol intake in a dose dependent manner. Based on this study, 0.75-1 L 

alcohol consumption per day appeared to increase the risk by 9%. Moreover, high fat diets (40% 

fat in calories, and seen in western diets) enriched with cholesterol (a precursor for steroid 

hormones including oestrogen) can drive development of breast cancer (Aguas et al. 2005). 

Interestingly, high fibre diets (35-45g per day) have an inhibitory role on intestinal resorption of 

oestrogens and reducing breast cancer incidence in African, Asian and South American women 

(Aguas et al. 2005). 

1.3.4 Obesity 
Obesity in postmenopausal women has been associated with increased risk of breast cancer 

development. The excess fat increases aromatization of androstenedione to oestrone and thus 

increases the plasma level of oestrogen (android obesity) (Aguas et al. 2005). The study by 

Dumitrescu and Cotarla (2005) showed each 5 kg of weight gain increases risk of breast cancer 

by 8% in obese women, supporting the idea that increased fat (cholesterol) plays an important 

role in synthesis of oestrogen in adipose tissue, promoting breast cancer. 

1.3.5 Age and steroid hormones 
Breast cancer incidence is associated with age, and the disease is rare before age 20 but 

increases gradually according to age. This is believed to be due to oestrogen secretion from the 

ovaries during the female reproductive period. Furthermore, the age at menarche and 

menopause (i.e. exposure time to oestrogen) contributes to breast cancer pathogenesis 

(Abdulkareem et al. 2013). A longer exposure time to endogenous oestrogen (early menarche 

or delayed menopause) in combination with genetic and life style factors all serve to increase 

the risk of breast cancer in women (Aguas et al 2005).  

1.3.6 Exogenous oestrogen 
Hormone replacement therapy (HRT) in postmenopausal women for >5 years has also been 

associated with increased breast cancer incidence (Aguas et al 2005). The meta-analysis study 

by Dumitrescu and Cotarla (2005) showed long term HRT is correlated with excess breast 

tumours in women aged 50-70. A large meta-analysis study involving 150,000 women also 

showed a modest adverse effect of oral contraceptives (containing oestrogen) on breast cancer 

incidence for those who start taking contraception before age 20 (Aguas et al 2005). 
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1.4 Oestrogen and ER signalling 
Overall, many of the above risk factors evidence a central importance for the steroid hormone 

oestrogen in driving breast cancer development. In premenopausal women, ovaries are the 

main source for oestrogen secretion which circulates in the blood to act on distal target tissues 

(Simpson et al. 2003). Local oestrogen production also occurs in both pre and postmenopausal 

women in the breast fibroblasts (Miller et al. 1976), while in postmenopausal women oestrogens 

are derived predominantly in adipose tissue and muscle by aromatization of androgens 

(Johnston et al. 2003). A high proportion of breast cancers are positive for the expression of the 

oestrogen receptor (ER, found in approximately 70%), and consequently patients with such 

tumours often benefit from endocrine measures which target the ER. ER signalling, however, is 

complex, as are the myriad of treatments which seek to deprive tumour cells of oestrogen.  

1.4.1 Genomic ER signalling 
Oestrogen receptor alpha (ER) is a nuclear receptor coded by ESR1 and is the principle receptor 

for oestrogen in breast cancers. ER has two transactivation domains: one at the amino-terminal 

(activation function (AF)-1) and the other at the carboxy-terminal (AF2) (Kumar et al. 1987). 

Growth factors and their associated kinases regulate the AF1 domain (Kato et al. 1995), while 

oestrogen binding to the receptor activates the AF2 domain (Kumar et al. 1987). Synergistic 

activity of both domains is required for maximal ER transcriptional activity.  

In ER+ breast tumours, oestrogen from the plasma or from breast tissue (fibroblasts) diffuses 

into the cancer cells and physically binds to the ligand binding domain in its receptor protein. 

This causes a conformational change allowing the helix 12 region to retain the hormone in its ER 

binding pocket and the ER to dissociate from its protective heat shock proteins, dimerise and 

enter the nucleus. ER interactions can occur with coactivators (such as steroid receptor 

coactivators SRC-1, SRC-2, and SRC-3) or corepressor (such as nuclear receptor corepressor 

NCoR1 and NCoR2) proteins in a tissue specific pattern (Klinge et al. 2000), and when oestrogen 

is bound coactivator recruitment enhances ER transcriptional activity. The oestrogen-bound ER 

can also suppress gene expression but this involves corepressor recruitment. The E2/ER complex 

subsequently associates via the ER DNA binding domain with oestrogen response element (ERE) 

sequences within the promoter of genes to exert transcriptional control (Johnston et al. 2003). 

In parallel to its classical genomic mechanism, the E2/ ER complex can bind additionally to AP-

1/SP-1 sites in gene promoters via tethering to other transcription factors to influence 

transcriptional events (Heldring et al. 2007). Critically, gene transcription promoted by 

oestrogen involves the upregulation of cell survival proteins (such as cyclins, survivin, growth 
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factors and growth factor receptors) and the downregulation of apoptosis proteins (such as 

caspase9) (Frasor et al. 2003), thereby promoting breast cancer growth. 

Importantly, ERs are heavily phosphorylated and this often involves growth factors and their 

signalling kinases which phosphorylate ER at multiple sites to aid the transcription of ER 

regulated genes (Anbalagan and Rowan 2015). Phosphorylation sites in the AF1 domain (S102, 

S106, S118 and S167), DNA binding domain (S236) and ligand binding AF2 domain (S305, T311 

and Y537) of ER have been characterised (Williams et al. 2009). ER can be phosphorylated at 

S118 via MAPK, CDK7 and mTOR. Epidermal growth factor (EGF) mediated ER phosphorylation 

at S118 via the MAPK pathway (Chen et al. 2002) is associated with recruitment of coactivators 

to ER and thus transcription of ER regulated genes (Dutertre and Smith, 2003). In clinical studies, 

S118 ER activation has in some instances been associated with better prognosis and response 

to adjuvant tamoxifen treatment (Bergqvist et al. 2006, Jiang et al. 2007, Kok et al. 2009). ER 

phosphorylation at S167 is mediated via ERK1/2/MAPK, AKT, mTOR/P70S6K and P90RSK. 

Phosphorylation at S167 induces recruitment of coactivator SRC3 to the ER (in the presence of 

oestrogen) and thus increases transcription of ER regulated genes (Riggins et al. 2007). Although 

a study by Kirkegaard et al. (2005) showed AKT overexpression correlated with ER 

phosphorylation at S167 and reduced sensitivity to adjuvant tamoxifen treatment, ER 

phosphorylation at S167 has also been reported as a predictive marker of benefit from adjuvant 

treatment when accompanied by ER/PR positivity (Yamashati et al. 2005, 2008). Similarly, Jiang 

et al, (2007) showed an association between S167 phosphorylation of ER and tamoxifen 

response.  

1.4.2 Non-genomic ER signalling 
Interestingly, while genomic ER signalling is thought to initiate long term transcriptional events 

which mediate cell signalling over days and weeks, additional plasma membrane associated ER 

can produce rapid cytoplasmic signalling within seconds. In such circumstances, ER acts as a G 

protein –coupled receptor (Levin et al. 2009) to facilitate further crosstalk between ER and 

growth factor receptor signalling pathways. This coupling promotes cell survival and 

proliferation (Segars et al. 2002) and is convergent with the genomic ER mechanism since several 

downstream signalling elements of growth factors, as described above, can subsequently 

phosphorylate nuclear ERs to promote genomic ER signalling (Heldring et al. 2007).  

1.5 Molecular subtypes of breast tumours and ER 
Breast cancer is considered to be a highly heterogeneous disease and this is reflected in its 

diverse clinical presentation, behaviour and patient prognosis. Molecular analysis of breast 

cancer has revealed gene expression profiles which further evidence heterogeneity. A study by 
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Perou et al. (2000) which analysed gene expression (using cDNA microarrays) of normal and 

malignant breast tissues, including ductal carcinoma in situ, lobular carcinoma, infiltrating ductal 

carcinoma, fibroadenoma and normal breast tissue, employing a hierarchical clustering analysis 

of 1,753 genes has enabled the molecular subtyping of breast cancers. This study identified four 

molecularly-defined subgroups comprising luminal (ER+), basal, HER-2 positive and normal. 

Molecular classification based on expression of specific subsets of genes has revealed variation 

in signalling pathways, cellular composition and growth rate between such breast tumours. 

Similarly, Sorlie et al. (2001) using hierarchical clustering of 427 genes in malignant and non-

malignant breast samples have classified breast tumours into 4 main groups involving luminal 

(termed A, B and C; characterized by different expression of the ER and oestrogen-regulated 

genes), basal, HER-2 positive and normal. Furthermore, in this study survival analyses (overall 

survival (OS) and relapse free survival (RFS)) of breast tumours from 49 patients with locally-

advanced disease and with no distant metastases was determined vs. molecular subtype. Basal-

like and HER2+ tumours which were characterized with distinct gene expression from the 

luminal tumours were associated with the shortest OS and RFS (Sorlie et al. 2001). Building 

further on these expression studies, breast tumours have been classified as follows, with two of 

the subtypes (luminal A and B) hallmarked by ER expression: 

1.5.1 Luminal A tumours 
Luminal A breast cancer is characterised by ER, oestrogen regulated genes PR and Bcl-2, and 

cytokeratin CK8/18 expression, an absence of HER2 overexpression, and a low proliferation rate, 

as measured by Ki67 staining (Perou et al. 2000 and Sorlie et al. 2001). This subtype accounts for 

50-60% of breast tumours. Breast cancer patients with luminal A subtype disease have a better 

prognosis, with a 27.8% relapse rate and median 2.2 years survival from the time of relapse, as 

compared to other subtypes (Kennecke et al. 2010). Bone metastases incidence (18.7%) is higher 

in luminal A subtype patients, as compared to central nervous system, lung and liver metastases 

which account for 10%. Many Luminal A tumours show growth dependency on oestrogen/ER 

signalling since they commonly respond to endocrine treatment such as tamoxifen and 

aromatase inhibitors (AIs) (Guarneri et al. 2009).  

1.5.2 Luminal B tumours 
The Luminal B subtype is again characterised by ER expression but has a more aggressive 

phenotype, higher proliferative index and worse clinical outcome as compared to luminal A 

tumours. It accounts for 10-20% of breast tumours. Luminal B tumours are associated with 30% 

bone metastases and 13.8% recurrence in other organs such as liver. A median 1.6 year survival 

has been estimated for breast cancer patients with luminal B tumours (Kennecke et al. 2010). 
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Luminal B tumours are more likely to be ER+/HER-2+ and thus can be treated with endocrine 

agents targeting oestrogen/ER signalling (Guarneri et al. 2009) alongside HER2-targeted agents. 

However, these tumours are less responsive to endocrine treatment (Paik et al. 2004) compared 

with their luminal A counterparts and thus may benefit from chemotherapy alongside endocrine 

agents (Parker et al. 2009). 

1.5.3 HER-2 enriched tumours  
HER-2+ tumours show an amplification of the HER-2 gene and typically have a highly invasive 

phenotype and a relatively poor clinical outcome, as compared to the luminal subtypes 

described above. They account for 15-20% of breast tumours. Such tumours are often highly 

sensitive to anti-HER-2 targeted signalling agents, including trastuzumab (Herceptin®; 

monoclonal antibody against HER2), Pertuzumab (Perjeta® a HER2 and HER3 dimerisation 

inhibitor) and Lapatinib (Tykerb®; tyrosine kinase inhibitor). In this context, Trastuzumab 

treatment has been shown to improve survival in both early stage and advanced HER2+ 

metastatic breast cancer (Bartsch et al. 2007). Many HER-2+ tumours are ER negative and so 

independent of oestrogen/ER signalling. However, since almost half of HER-2 positive tumours 

are ER+/PR+, endocrine therapy is often given alongside anti-HER-2 targeted therapy for 

ER+/HER2+ patients (see 1.4.2). 

1.5.4 Basal-like tumours  
Basal-like tumours are characterised by the expression of cytokeratins CK5/CK17, P-cadherin, 

caveolin 1/2, nestin, CD44 and EGFR (Epidermal Growth Factor Receptor) genes. These tumours 

are often referred to as triple negative tumours because of their absence of ER, PR and HER2 

expression and this tumour subtype accounts for 10–20% of breast tumours. Triple negative 

tumours have higher relapse incidence as compared to the luminal subtype in the first 3 years 

(Dent et al. 2007). Basal tumours are more likely to be associated with central nervous system, 

lung and lymph node metastases (Smid et al. 2008 and Kennecke et al. 2010). Lacking ER, they 

are inappropriate for endocrine therapy. Furthermore, although patients with these tumours 

can show responsiveness to adjuvant chemotherapy, they often have a poor prognosis relative 

to the other subtypes (Rouzier et al. 2005). Interestingly, recent studies by Barton et al. (2015a, 

b) suggested a role for androgen receptor (AR) signalling in the development of triple negative 

tumours and thus the targeting of ARs may benefit such patients.  

In general, such molecular classification of breast tumours aims to also predict prognosis and to 

aid making decisions for type of treatment. However, hierarchical cluster analysis of breast 

tumours to define tumour subtypes is not statistically robust and shows only modest inter 

observer reproducibility. Genomic, transcriptomic and proteomic data with global functional 
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analysis from genome-wide RNA interference screens will be required for more accurate breast 

tumour taxonomy (Mackay et al. 2011). In addition to these molecular subtype studies, 

some successful molecular prognosis tools have been developed from gene expression 

signatures to predict recurrence risk (for 10 years) in cancer patients. Oncotype DX (Genomic 

Health) and Prosigna (NanoString Technologies) can help screen ER+ tumours for additional 

chemotherapy in patients treated with endocrine agents. Mammaprint (Agendia) predicts risk 

of distant recurrence and again screens patients for chemotherapy. These tools can help predict 

if a patient would get benefit from chemotherapy. However, in the clinic the most useful 

selection criteria for further breast cancer patient treatments remains those based only on ER 

status, together with PR and HER2. ER+ (as well as PR+) predicts increased likelihood of response 

to endocrine therapy, HER2+ predicts increased likelihood of response to HER-2 targeted 

therapy (e.g. trastuzumab) and a triple negative tumour status predicts possible response to 

chemotherapy (Clarke et al. 2015). 

1.6 Types of endocrine therapies available to treat ER+ breast cancer patients 
In 1896 George Beatson showed oophorectomy in an advanced breast cancer patient was able 

to reduce the size of her metastatic tumour and thus established, for the first time, a link 

between ovarian secretions (subsequently shown to be oestrogens) and breast cancer 

progression. Since that time, multiple endocrine therapies have been developed to either inhibit 

oestrogen synthesis within the body or block its capacity to activate oestrogen signalling within 

breast cancer cells (Miller et al. 2007). Characteristically, all such endocrine agents exert a 

cytostatic effect on tumours by causing a cell cycle arrest at G1/S phase (Doisneau-Sixou et al. 

2003) to reduce their rate of proliferation (Dowsett et al. 2005). ER+ tumours (i.e. luminal A and 

B subtypes) comprise the target patient group. The management of such tumours can include 

targeting ER activity/expression (antioestrogens: tamoxifen/fulvestrant) or inhibiting oestrogen 

production (with zoladex in premenopausal women and AIs in postmenopausal women). 75% of 

both ER+/PR+, and 50% of ER+ tumours, respond to one or more endocrine agents. 

1.6.1 Oestrogen receptor blockers: Antioestrogens 
The non-steroidal drug Tamoxifen was found to competitively bind to ER and to cause 

conformational changes involving a shift of helix 12 into the AF2 site (Wakeling et al. 2000). This 

blocks coactivator binding and reduces the transcription of oestrogen regulated genes (Wakeling 

et al. 2000 and Dowsett et al. 2006). Significantly, tamoxifen only blocks ER signalling through 

the AF2 site, while the AF1 site remains active to exert variable partial oestrogen (agonist) 

activity (Wakeling et al. 2000) in a tissue and species manner (Jordan et al. 1987). Because of 

this property, tamoxifen is categorised as a selective oestrogen receptor modulator (SERM). 
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While it is growth-inhibitory in breast cancer, in the endometrium tamoxifen exerts a high level 

of agonist activity and this modestly increases the incidence of endometrial cancer in breast 

cancer patients who are treated with this drug (Hu et al. 2015). 

In contrast to tamoxifen, a newer class of steroidal anti-oestrogens, called selective oestrogen 

receptor down-regulators (SERDs), have been developed which lack oestrogen like activity 

(Thompson et al. 1989). Such drugs, including the pure anti-oestrogen fulvestrant (fulvestrant), 

while binding to the ER receptor, not only inactivate both activation function domains (AF1 and 

AF2) of the receptor by inhibiting recruitment of coactivators to EREs (Wakeling et al. 2000) but 

also cause rapid ER degradation via the ubiquitin-proteasome pathway to generate much lower 

levels of ER within breast cancer cells (Klinge et al. 2001).  

Tamoxifen is effective in pre- and post-menopausal women with ER+ breast cancer, although in 

premenopausal women, it can be combined with ovarian ablation (surgical or medical oestrogen 

deprivation with zoladex) to reduce circulating oestrogen levels (Bartsch et al. 2012). The first 

Oxford EBCTCG meta-analysis of adjuvant tamoxifen treatment in 30,000 breast cancer patients 

(from 28 trials) for 5 years showed reduced mortality by 20% during the first 5 years of treatment 

and also reduced death in women at least 50 years of age (Early Breast Cancer Trialists’ 

Collaborative Group, 1988). The most recent meta-analysis (13 years follow-up) showed 

tamoxifen treatment (for 5 years) in ER+ breast cancer patients reduced yearly mortality by a 

third and a 39% reduced recurrence rate was also reported (Early Breast Cancer Trialists’ 

Collaborative Group, 2011). 

Fulvestrant can be used during the management of ER+ breast cancer in postmenopausal 

women following prior endocrine agent failure. The recent phase III dose Comparison of 

Fulvestrant in Recurrent or Metastatic Breast Cancer (CONFIRM) trial (250mg every 28 days vs. 

500mg every 28 days plus an additional 500mg on day 14 of the first month only) significantly 

increased progression-free survival (PFS) without increased toxicity in postmenopausal women 

with locally advanced or metastatic ER+ breast cancer who had previously relapsed on endocrine 

therapy. In this study, 500mg fulvestrant is associated with reduced mortality by 19% and 

improved overall survival by 4.1 months as compared to 250mg fulvestrant treatment (Di Leo et 

al. 2014). 

1.6.2 Aromatase inhibitors 
Gold standard endocrine therapies currently available for ER+ postmenopausal women 

comprise the third generation of aromatase inhibitors (AIs) which target the aromatase enzyme 

which is key to the synthesis of oestrogens within the body, as well as within breast tumours 
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(Howell et al, 2004). Such drugs which cause severe oestrogen deprivation can be subdivided 

into two categories: Reversible (competitive) non-steroidal inhibitors (anastrazole and letrozole) 

and irreversible steroidal inhibitors (e.g. exemestane) (Johnston et al. 2003). In each instance, 

these drugs have proved highly effective at delaying the recurrence of primary breast cancer 

and promoting tumour remissions in women with recurrent disease (Doughty et al. 2011). 

Indeed, when used as a neoadjuvant endocrine treatment they are able to shrink the size of 

tumours in postmenopausal women with large and inoperable cancers (Larionov et al. 2009).  

1.7 Resistance to endocrine treatment 
Endocrine therapy is an effective treatment in ER+ breast cancer patients. However, resistance 

can be present de novo, which involves lack of response to first line endocrine therapy, and can 

also occur as acquired resistance after initial response to the treatment via tumour recurrence. 

Inherent resistance in the neoadjuvant setting can be observed in 30-50% of patients (Colleoni 

et al. 2012). In the adjuvant setting, approximately 40-50% of initial responders eventually 

relapse during or after completion of adjuvant treatment with acquired resistance (Ma et al. 

2009). Clinical studies showed 10-15% of early stage breast cancer relapse within 5 years 

(Dowsett et al. 2010) and 30% recurrence was observed by 15 years (Early Breast Cancer Trialists' 

Collaborative Group: EBCTCG, 2005). In addition, virtually all advanced disease patients 

ultimately progress on endocrine therapy with acquired resistance. 

In vitro mechanistic studies of acquired resistance to endocrine treatment have involved ER+ 

breast cancer cells continuously treated with anti-oestrogens (tamoxifen or fulvestrant), or by 

oestrogen depleting culture media, for various time points from 6-18months to investigate 

molecular changes in response to endocrine treatment and on acquisition of resistance 

(Knowlden et al. 2003, Staka et al. 2005, Nicholson et al. 2007). Moreover, breast cancer cells 

transfected with aromatase genes (CYP19) have aimed to model tumour response to AIs in 

postmenopausal women (Masri et al. 2008) and in vivo study of xenograft models by Brodie et 

al. (2010) has investigated the mechanism of acquired resistance to AIs.  

Clinical studies to investigate response and resistance mechanisms can involve study of tumour 

samples taken from either the neoadjuvant or adjuvant setting. In the neoadjuvant setting, the 

tumour remains in place during the treatment course and thus mammography or 3D ultrasound 

(measuring tumour size) can be used to determine clinical tumour response to the neoadjuvant 

endocrine treatment. Sequential biopsies can thus be used to investigate molecular changes 

(both gene expression and protein expression) in responsive and inherently resistant tumours 

during treatment (Miller et al. 2007 and 2009). The effect of endocrine treatment in the adjuvant 

setting can be monitored when the primary tumour has been surgically removed, by analysing 
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patient survival and recurrence over long term follow up. Samples can be taken at surgery for 

mechanistic study and this can be related to subsequent time to recurrence. Two issues are 

associated with this type of study in relation to recurrence in the adjuvant setting: first, patient 

sample group size should be large enough for statistical analysis of recurrence rate after 

endocrine treatment (Larinov et al. 2009) and the second is related to tumour assessment to 

determine if the recurrence has been acquired during the course of endocrine treatment (rather 

than due to inherent tumour aggressiveness) (Dixon et al. 2014). Furthermore, it is usually not 

possible to study mechanisms within clinical acquired endocrine resistant samples because 

relapsed, metastatic tissue remains scarce as it often occurs in life-threatening, inaccessible 

sites. Consequently, cell models have proved an important research tool in understanding 

mechanisms underpinning acquired endocrine resistance in breast cancer. 

1.8 Previously-studied resistant mechanisms to endocrine treatment 

1.8.1 ER status 
ER negative breast cancers are de novo resistant to endocrine treatment and Brouckaert et al. 

(2013) showed tumours with low ER expression also can respond poorly to endocrine therapy 

but may benefit from adjuvant chemotherapy. Approximately 40-60% of tumours with enriched 

ER expression respond to endocrine treatment. The response rate and clinical benefit is up to 

75% in tumours when ER expression is accompanied with PR expression (Brouckaert et al. 2013). 

PR expression (an oestrogen regulated gene) can indicate ER activity in tumour cells, and in 

addition a recent study showed PR can also dictate ER chromatin binding events and thus 

regulates gene expression profile associated with better clinical outcome (Mohammed et al. 

2015). Most tumours which recur on endocrine treatment with acquired resistance remain ER+ 

and thus ER signalling is the main driver of proliferation. Therefore, such tumours can be treated 

with sequential endocrine therapy (Carlson and Henderson, 2003). Up to 20% ER loss has been 

reported by some researchers (Drury et al., 2011), although a study by Ellis et al. (2008) showed 

less than 10% of tumours lose ER+ and become ER-. Epigenetic events (e.g. methylation of the 

ER promoter and chromatin remodelling), ER proteolysis, and also growth factor pathway 

hyperactivity have all been implicated in driving loss of ER (Brinkman and El-Ashry, 2009). During 

the course of adjuvant therapy, a further hypothesis is that ER loss occurs in heterogeneous 

tumours (with both ER+ and ER- cell populations) that have small numbers of ER+ clones, and 

thus continued treatment eliminates these remaining ER+ cells and leads to tumour recurrence 

when the ER- clones dominate over ER+ clones.  
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1.8.2 Coregulators 
ER associated coregulator proteins including coactivators (AIB1) and corepressors (NCoR and 

SMRT) increase and decrease transcription of ER regulated genes respectively. A study by 

Osborne et al. (2003) revealed an association between induced coactivator expression and 

increased agonist activity of tamoxifen which contributes to endocrine resistance. Another study 

showed an association between reduced corepressor expression and resistance to tamoxifen 

treatment in xenograft models (Lavinsky et al. 1998). Based on these studies the 

coactivator/corepressor ratio appears to play an important role for response or resistance to 

endocrine treatment (Osborne et al. 2003). A study by Naughton et al. (2007) suggested a 

progressive loss of coregulator recruitment (NCoR and SMRT) from responsive cells through to 

tamoxifen resistant cells which contributes to cell proliferation and survival.  

1.8.3 ER mutation 
ER mutation (codons 537 and 538) within the ligand binding domain of ER has been implicated 

in acquired endocrine resistance clinically, particularly with AIs. It has been exclusively reported 

in at least 12% of ER+ metastatic lesions, while ER mutation was not detected in primary tumours 

(Jeselsohn et al. 2014). In tumours, hypersensitivity of the mutated ER to oestrogen and the 

presence of constitutively active mutant ER protein may explain resistance to endocrine 

treatment in some patients (Fuqua et al. 2014).  

1.8.4 Pharmacokinetics and pharmacodynamics of tamoxifen 
Tamoxifen metabolism involves production of both antioestrogenic and oestrogenic metabolites 

(Clarke et al. 2001). Different forms of CYP2D6 gene (P450 cytochrome) were detected in the 

liver and breast tissue which metabolize tamoxifen to endoxifen, 4-OH tamoxifen and N-

desmethyltamoxifen (Coller et al. 2002). Endoxifen is the main metabolite and the two other 

metabolites are present at relatively higher concentrations in the serum as compared to the 

tumour tissue (Clarke et al. 2001). CYP2D6 alleles can be inactivated in breast cancer.  In patients 

with functional CYP2D6 the serum concentration of endoxifen is 10 times higher than 4-OH 

tamoxifen. A relatively higher intratumour concentration of 4-OH tamoxifen is detected which 

can compete with oestrogen for binding to the ER (Clarke et al. 2001). Based on CYP2D6 

genotype, breast cancer patients have been divided into three groups; extensive metabolizer, 

intermediate metabolizer and poor metabolizer in response to tamoxifen treatment, and some 

reports have indicated patients with the poor metabolizer genotype may get less benefit from 

adjuvant tamoxifen treatment. An ongoing study by International Tamoxifen Pharmacogenetics 

is examining the effect of CYP2D6 genotype on tamoxifen responsiveness. A study by Province 

et al. (2014) suggested a possible link between tamoxifen metabolism and response to adjuvant 

endocrine treatment. However, this remains a controversial area. 
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1.8.5 Growth factor signalling and ER activation 
Development of resistance can be associated with changes in ER function and growth factor 

pathways which drive cell survival and proliferation (Clarke et al. 2015). ER phosphorylation can 

be mediated in a ligand dependent manner (via oestrogen at AF2) or ligand independent manner 

(via growth factors at AF1 sites). Ligand independent ER activity involves growth factors and 

their receptor kinases which phosphorylate ER at multiple AF-1 sites and thus mediate 

transcription of ER regulated genes (Anbalagan and Rowan 2015). Increased growth factor 

receptor signalling and its cross talk with ER phosphorylation (Britton et al.2006), as well as 

further growth factor cross-talk to enhance the non-genomic ER mechanism (Massarweh and 

Schiff 2006), have been heavily-implicated by several laboratories in endocrine resistant cell 

models grown in vitro or as xenografts. Interestingly, EGFR and HER2 show evidence of being 

oestrogen-repressed in ER+ endocrine responsive cell lines, and so increases in these receptors 

occur following initial antihormone treatment providing a compensatory growth and cell 

survival mechanism that culminates in development of resistance (Gee et al. 2003). Such 

signalling appears able to enhance the agonistic qualities of tamoxifen driving resistance, or to 

promote hypersensitivity to residual oestrogens affording resistance to oestrogen deprivation. 

As examples of this considerable field, “compensatory” adaptive increases in expression and 

activity of the ERBB receptors EGFR and HER2 (Knowlden et al. 2003) with subsequent, 

phosphorylation of downstream kinases PI3K/AKT and mTOR (Jordan et al. 2014) and MAPK 

(Britton et al. 2006), and interplay with further receptors including IGF-1R which cross-talks with 

EGFR via activation of Src kinase (Knowlden et al. 2005), have all been implicated in driving 

acquired tamoxifen resistance experimentally in an MCF7-derived cell line TamR. In this model, 

the deregulated growth factor pathway signalling ultimately cross-talks with ER through AF-1 

phosphorylation which re-activates this receptor and thereby cell growth. EGFR signalling was 

shown to increase MAPK- promoted Ser118 phosphorylation of ER, production of ER-regulated 

growth factor ligands (e.g. amphiregulin) and thereby promotion of an EGFR/ER autocrine 

growth signalling loop (Britton et al. 2006). The most well characterized of such signalling 

involves a crosstalk between EGFR/HER2 and ER and in clinical studies, association between 

HER2 overexpression and recurrence on endocrine treatment (either tamoxifen or AIs) has been 

documented in some instances (Mehta et al. 2014) while further studies have demonstrated 

changes in downstream kinases and ER activity in clinical resistance samples (Gutierrez et al. 

2005). Moreover, further mechanisms such as cyclin D1 and its cyclin dependent kinases (CDKs) 

that contribute to cell cycle (Jirstrom et al. 2005), and histone deacetylases (HDACs) that can 

repress ER (Brinkman and El Ashry 2009), can also promote emergence of growth that is 

resistant to endocrine treatment.  
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1.9 Cotargeting ER and growth factor signalling in pre-clinical models 
Based on the considerable evidence that induced growth factor signalling after endocrine 

therapy leads to acquired endocrine resistance in breast cancer cells in the laboratory, 

cotargeting with signal transduction inhibitors against growth factor receptor and their 

signalling molecules has been substantially studied in pre-clinical models. For example, 

Knowlden et al. (2003) showed, elevation of EGFR/HER2 phosphorylation in the tamoxifen 

resistant compared to responsive MCF7 control cells. Targeting such molecules with gefitinib 

(EGFR inhibitor), trastuzumab (HER-2 inhibitor), and their downstream signalling with PD098059 

(MAPK inhibitor) reduced ERK1/2 activity, ER phosphorylation and ER-regulated genes including 

decreasing amphiregulin, and inhibited growth in the TamR cells. Another study by Gee et al 

(2003) revealed cotargeting MCF7 cells by tamoxifen and gefitinib reduced cell growth by 

inhibiting downstream MAPK and AKT phosphorylation. Also, such treatment cotargeting 

delayed acquired resistance in MCF7 cells by 5 weeks compared to tamoxifen treatment alone. 

An in vivo study of stably transfected HER2-positive MCF-7 xenografts similarly showed 

cotargeting gefitinib with tamoxifen delayed tumour growth and overcame tamoxifen agonist 

activity in vivo (Shou et al. 2004). There are also examples of targeting further growth factor 

receptors and kinases alongside antihormonal agents in pre-clinical studies. For example, 

cotargeting insulin-like growth factor I receptor (IGF1R) with ER signalling via IGF1R antagonists 

(a-IR3, AG1024) and antihormone (tamoxifen or fulvestrant) drastically inhibited growth in 

MCF7 and BT474 as compared to the single agents (Chakraborty et al. 2010). A study by Larsen 

et al. 2015 showed increased Src kinase in both tamoxifen and fulvestrant resistant models 

compared to responsive T47D control cells. In this study combined treatment with dasatinib and 

fulvestrant effectively reduced growth in the tamoxifen resistant T47D cells compared to 

dasatinib alone, although combined dasatinib with tamoxifen did not show additional effects 

compared to single agent treatment in the fulvestrant resistant cells. Finally, cotargeting of 

either tamoxifen resistant cells (TamR) or oestrogen deprived resistant cells (MCF7(X)) with an 

mTOR inhibitor (AZD8055) and fulvestrant provided superior growth inhibition as compared to 

either agent alone (Jordan et al. 2014). 

1.10 Cotargeting ER and growth factor signalling in clinical breast cancer 
The considerable successes in the laboratory for co-targeting growth factor pathways alongside 

ER have provided strong support for evaluation of cotargeting strategies with antihormones and 

various anti-growth factors to overcome resistance in breast cancer patients (Fig 1.1). Successful 

clinical cotargeting of ER and growth factor receptor signalling could potentially delay 

progression in advanced disease and perhaps reduce the risk of recurrence to adjuvant 
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endocrine treatment. The following provide details of some of the clinical trials examining such 

strategies:  

 

 

 

 

1.10.1 Cotargeting ER and EGFR 
Targeting EGFR activity via small molecule inhibitors (gefitinib) in combination with endocrine 

therapy has been studied in two randomized phase II trials that showed modestly-improved 

outcome with the gefitinib/antihormone co-treatment in ER+ patients:  

1. The effect of gefitinib in combination with anastrazole vs. anastrazole in postmenopausal 

metastatic breast cancer was studied by Cristofanilli et al. (2010). Median free survival was 

14.7 months for the gefitinib co-treated patients vs. 8.4 months for the anastrazole plus 

placebo arm. 

2. The gefitinib effect in combination with tamoxifen was studied by Osborne et al. (2011) 

in ER+ metastatic breast cancer (regardless of HER-2 status). Median progression free 

Fig 1.1. Targeting both ER signalling and growth factor signalling in breast cancer cells. 
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survival (PFS) was 10.9 months for the gefitinib co-treated patients vs. 8.8 months for the 

tamoxifen plus placebo group of patients.  

However, these successes remain controversial, since no clear benefit was apparent in further 

clinical co-treatment studies including those from Carlson et al. (2012). 

1.10.2 Cotargeting ER and HER-2 

Trastuzumab (Herceptin®) a recombinant humanized monoclonal antibody against HER-2 is 

used in breast cancer patients with HER2 positive (HER2 overexpressing) tumours. Clinical trials 

(phase III) have studied combination treatment of trastuzumab alongside AIs and some 

successes have been seen in the ER+/HER2+ patient cohort, for example: 

1. A clinical study in breast cancer patients with HER2+ locally advanced tumours or 

metastatic disease (TAnDEM trial) showed trastuzumab in combination with anastrazole 

improved PFS to 4.8 months as compared to 2.4 months in the anastrazole alone arm 

(Kaufman et al. 2009). 

2. The eLEcTRA trial recruited patients with HER2+ locally advanced tumours or metastatic 

disease to receive letrozole plus trastuzumab or letrozole alone. Patients in the letrozole 

arm had more previous treatment with tamoxifen as compared to the combination arm 

and the combination arm had more patients with liver metastases, so the two studied 

arms were not well matched. Nevertheless, time to progression (TTP) of disease was 

14.1 months in the combination arm vs. 3.3 months in the letrozole alone arm. In this 

study TTP did not reach significance due to the small number of patients (Huober et al. 

2012). 

1.10.3 Cotargeting ER, EGFR and HER-2 
A dual tyrosine kinase inhibitor against EGFR and HER2 activity (lapatinib) was used in 

combination with letrozole in a phase III clinical trial. Postmenopausal women with ER+/PR+ 

tumours were recruited for this trial. 17% of patients in either the combination arm or letrozole 

arm were HER2+. Median PFS for the combination arm in the intention to treat ER+ cohort was 

11.9 months vs. 10.8 months for the letrozole arm. However, median PFS in patients with HER2+ 

tumour was 8.2 months in the combination treatment arm vs. 3 months in letrozole alone 

(Johnston et al. 2009), showing benefit in ER+/HER2+ disease as seen with trastuzumab (1.10.2). 

These co-treatment findings are promising, as are the findings with trastuzumab described 

above, but it is apparent that resistant disease still emerges using strategies for HER2 blockade. 

Various resistance mechanisms have been proposed for resistance to agents such as lapatinib, 

herceptin and also gefitinib, including compensatory increases in alternative receptor activity 
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(e.g. further ERBB receptors or IGF1R, Hutcheson et al. 2006).  Moreover, such co-treatment 

(aiming to target any antihormone-promoted HER2) appears largely ineffective for most HER2- 

tumours which comprise the majority of ER+ disease (Johnston 2015).  

1.10.4 Cotargeting ER and PI3K 
Buparlisib (BKM120) is a pan-PI3K inhibitor which targets all isoforms of this protein including 

catalytic subunit p110α (encoded by the PIK3CA gene). A phase I clinical trial of this drug in 

combination with letrozole was evaluated. 30% clinical benefit rate (CBR) was observed in 

patients regardless of treatment schedule. Tumour evaluation revealed 50% of patients who did 

not have disease progression for 12 months had PIK3CA mutation. In such tumours, changes in 

PI3K pathway may be associated with response to buparlisib treatment. However, downstream 

signalling of PI3K such as mTOR does not respond to this treatment and thus may contribute 

subsequently to disease progression (Mayor et al. 2014).  

1.10.5 Cotargeting ER and mTOR 
Two mTOR inhibitors, everolimus and temsirolimus (which bind and inhibit mTORC1 in the 

mTOR complex) were evaluated in clinical trials in combination with endocrine treatment:  

1. A Phase III clinical trial (BOLERO-2) recruited postmenopausal women with advanced HER-

2 negative tumours who had recurred on either letrozole or anastrazole for everolimus in 

combination with exemestane vs. exemestane alone. Median PFS for the combination arm 

was 6.9 months vs. 2.8 months in placebo arm (Baselga et al. 2012).  

2. A Phase II clinical trial (TAMRAD) studied the impact of everolimus in combination with 

tamoxifen as compared to tamoxifen alone in ER+/HER2 negative metastatic breast cancers 

previously treated with AIs. CBR for duration of 6 months was 61% for the combination arm 

vs. 42% for tamoxifen treated arm (Bachelot et al. 2012). 

3. A Phase III clinical trial (HORIZON) studied the combination of temsirolimus plus letrozole 

vs. letrozole alone on ER+ locally advanced or metastatic breast cancer with no prior 

endocrine treatment. 23% and 18% HER2+ patients in the combination arm and letrozole 

arm were recruited respectively. PFS was 8.9 months for combination arm vs. 9 months for 

letrozole alone (Wolff et al. 2013), suggesting that most benefit is derived in endocrine 

resistant patients (as in BOLERO-2 and TAMRAD) rather than in endocrine naive disease. 

The BOLERO-2 and TAMRAD trials are promising for such cotreatment in controlling endocrine 

resistant disease, but again it is notable from such trials that patients soon progress and there 

is little further survival benefit compared with antihormone alone, while further patients are 

insensitive to such mTOR inhibitor/antihormone cotreatment. Feedback signalling loops 
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following mTOR blockade have been reported, including those that maintain AKT activity which 

may contribute to emergence of everolimus resistance (Jordan et al., 2014). 

1.10.6 Cotargeting ER and IGF-1R 
A human monoclonal antibody against IGF-1R (ganitumab) blocks binding of IGF-1 and IGF-2 to 

the receptor. A phase II clinical trial evaluated treatment of ganitumab in combination with 

either fulvestrant or exemestane vs. endocrine agent alone in ER+ postmenopausal patients with 

locally advanced or metastatic breast cancer. Disappointingly, median PFS was only 3.9 months 

for combination treatment vs. 5.7 months for the placebo arm (Robertson et al. 2013).  

1.10.7 Cotargeting ER and Src 
Dasatinib is an oral Bcr-Abl tyrosine kinase inhibitor and Src family kinase inhibitor. A phase II 

clinical trial of dasatinib plus letrozole was studied on ER+/HER2 negative metastatic breast 

cancer. PFS was 20.1 months in the combination arm vs. 9.9 months in letrozole alone. However, 

CBR was not different between the two arms (71% for combination arm vs. 66% for letrozole 

arm). Additional studies with dasatinib and another Src inhibitor, saracatinib, are ongoing. 

However, a further phase II clinical trial evaluated efficiency of dual Src/Abl inhibitor (bosutinib) 

in combination with either letrozole or exemestane in ER+/HER2 negative locally advanced or 

metastatic breast cancer. This trial was terminated due to high toxicity and poor clinical benefits 

(Moy et al. 2014 a and b).  

1.10.8 Cotargeting ER and CDKs 
CDK4/6 inhibitor (Palbociclib) is a cytostatic agent which causes cell cycle arrest at G1. Clinical 

trials have evaluated efficacy of Palbociclib in combination with endocrine treatment: 

1. A phase II clinical trial (PALOMA-1/TRIO-18) studied the combination effect of 

palbociclib plus letrozole vs. letrozole alone in ER+/HER2 negative postmenopausal 

women with advanced breast cancer. Median PFS was 20.2 months for the combination 

arm vs. 10.2 months for letrozole alone (Finn et al. 2015).  

2. Based on these interesting data, an ongoing phase III trial (PALOMA-2) is comparing the 

combination of letrozole plus palbociclib vs. letrozole plus placebo in ER+/HER2 negative 

pre or perimenopausal patients (who are taking zoladex) with metastatic breast cancer 

who have not been previously treated with endocrine agents (Finn et al. 2013), and 

further co-treatment trials are also ongoing with palbociclib including examining 

whether it is valuable in endocrine resistant patients.  



37 

 

 

1.10.9 Cotargeting ER and HDAC 
Both histone acetyltransferases (HATs) and histone deacetylases (HDACs) affect histone 

acetylation. HATs regulate gene transcription while HDAC mediate gene silencing, and have 

been implicated in epigenetic loss of ER expression (Brinkman and El Ashry 2009). HDAC 

inhibitors such as vorinostat and entinostat are in clinical trials alongside endocrine treatment 

in ER+ breast cancer patients. 

1. A phase II trial studied the combination of vorinostat and tamoxifen in ER+/PR+ pre 

and postmenopausal women with metastatic cancer who recurred on endocrine 

therapy. CBR was 40% and median response duration was 10.3 months in patients 

who received combination treatment (Munster et al. 2011). 

2. A phase II clinical trial examined the effect of entinostat in combination with 

exemestane vs. exemestane alone in either ER+ postmenopausal women who 

relapsed after 12 months on nonsterodial AIs or postmenopausal women with 

metastatic disease who relapsed on nonsterodial AIs after 3 months. Median PFS 

was 4.3 months for combination arm vs. 2.3 months for exemestane alone (Yardley 

et al. 2013). Further studies are underway. 

In summary, although endocrine therapy is the mainstay of treatment for ER+ breast cancer 

patients, both de novo and acquired resistance remain a clinical challenge. Most clinical trials 

cotargeting ER and growth factor signalling aim to delay or treat resistance. Although there have 

been some positive studies, in further instances targeting growth factor signalling has proved 

quite disappointing in the clinic (particularly for growth factor receptors), with non-responders 

and also responses of limited duration. This contrasts the considerable promise of co-treatments 

seen pre-clinically. One contributory mechanism appears to be that targeting of growth factor 

signalling can promote other compensatory mechanisms to drive proliferation in cancer cells, 

which in turn limits co-treatment impact. Targeting downstream mTOR, CDK4/6-driven 

proliferation or epigenetic mechanisms have promise, but further clinical studies are needed 

and it seems probable that responses with these approaches will again be of finite duration. 

Gutierrez et al. (2005) have also reported that HER2 overexpression or amplification emerges 

on tamoxifen relapse in only ~11% of HER2-negative tumours, which infers the existence of as 

yet unknown mechanisms underpinning antihormone relapse. Hence, further resistance 

research remains needed to discover new drug targets better able to control endocrine 

resistance. 
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1.11 New cell model panel to represent clinical antihormone relapse 
In vitro study of endocrine resistance that develops during treatment of ER+ breast cancer cells 

(MCF7, T47D, BT-474 and ZR-75-1) can help to mimic ER+ subgroups of breast tumours which 

develop resistance in patients. Most laboratories have used MCF7, which is an ER+/HER2- 

(luminal A) breast cancer cell model (Neve et al., 2006), to study acquired resistance to 

antioestrogen therapy. Initially, the MCF7 cell line was derived from the pleural effusion of a 69-

year-old breast cancer patient who was diagnosed with adenocarcinoma (Soule et al. 1973). 

MCF7 cells have been shown to form xenograft tumours in response to oestrogen administration 

in vivo (Soule and McGrath 1980). MCF7 is ER+ and thus proliferates in the presence of 

oestradiol. Moreover, tamoxifen competitively binds to ER and inhibits DNA synthesis in MCF7 

(Levenson and Jordan, 1997) while further antihormonal measures, such as using oestrogen 

depleted media conditions or fulvestrant treatment, are also initially growth inhibitory in such 

cells (Gee et al. 2003).  

Continuous antihormone treatment can be used to generate in vitro and in vivo models from 

MCF7 cells for acquired resistance. There are many examples of researchers using this strategy 

to provide acquired resistant models for study, which are cultured for 6-18months in the 

presence of antihormone and so represent relatively short-term resistance. Previous studies on 

such endocrine resistance models by our group have revealed evidence for crosstalk between 

ER and growth factor signalling pathways in cell proliferation and survival in the model systems 

although the nature of this cross talk differs; for example, hyperactivation of EGFR/HER2 

signalling and AF-1 ER activation was detected in the tamoxifen resistance model (TamR) 

(Knowlden et al. 2003). In a fulvestrant resistant FasR model an importance for EGFR was also 

detected (McClelland et al. 2001, Nicholson et al. 2007), and PI3K/AKT signalling crosstalk with 

ER was found to be a significant mechanism of resistance to acquired oestrogen deprivation in 

the MCF7(X) model (Staka et al. 2005). Clarke’s laboratory generated an MCF7:LCC1 subclone 

by inoculating MCF7 into ovariectomized athymic mice to generate an oestrogen independent 

model. MCF7:LCC2 was then generated by culturing MCF7:LCC1 in the presence of tamoxifen 

until resistance to tamoxifen developed. This model is ER+ and thus responds to fulvestrant 

treatment; however, a further model MCF7:LCC9 was generated in vitro from MCF7:LCC1 which 

is resistant to both tamoxifen and fulvestrant (Clarke et al. 1989, Brunner et al. 1993a and b, 

1997). Santen’s laboratory generated an oestrogen deprivation resistant (oestrogen 

hypersensitive) model by culturing MCF7 in oestrogen deprived media conditions for 1-6 months 

(Song et al. 2001).  

However, longer term oestrogen deprived resistant MCF7 (MCF7: LTED) cells were also 

generated by Santen’s group by continuous culturing of these oestrogen deprived cells. 
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Interestingly, this model was growth inhibited in the presence of oestradiol (Song et al. 2001) 

suggesting there may be further changes in resistance mechanisms that develop during more 

prolonged endocrine exposure. MCF7 derived acquired tamoxifen resistant models serially re-

transplanted long-term in vivo have also been described by the Jordan group that are sensitive 

to oestrogen-induced apoptosis (Osipo et al. 2003), providing further proof of principle that 

mechanistic pathways can indeed be further altered in long-term resistance. Since pathway 

targeting of EGFR/HER2 receptors, implicated from shorter term models, has proved inadequate 

for many patients in the clinic, it is possible that including models to also consider more 

prolonged duration of endocrine exposure in vitro may better reflect resistance mechanisms 

emerging during adjuvant treatment timeframes in the clinic.  

For this purpose, our Breast Cancer Molecular Pharmacology group has developed a small panel 

of acquired resistant models which encompasses shorter and longer-term continuous endocrine 

treatment in vitro. Various strategies were taken to develop multiple endocrine resistant models 

in the research group. ER + breast cancer cells (MCF7) were exposed to endocrine agents for up 

to 3 years aiming to more fully mimic clinical acquired endocrine resistance in breast cancer 

patients. Two resistant models were developed for each major endocrine strategy that differed 

from each other with regards to duration of resistance (shorter and also longer- term), 

comprising acquired tamoxifen resistance models (TamR/TamRLT), fulvestrant resistance 

models (FasR/FasRLT) and oestrogen deprived resistant models (MCF7(X)/MCF7(X)LT). The 

earlier resistant models TamR, FasR and MCF7(X) represented 18 months-2 years exposure to 

endocrine agents (Knowlden et al. 2003, Staka et al. 2005, Nicholson et al., 2007), whereas the 

longer term resistant models (TamRLT, FasRLT and MCF7(X)LT) were developed by maintaining 

these shorter term resistant models for up to 36 months with endocrine agent (Gee et al. 2011).  

Using the panel of acquired endocrine resistance breast cancer models for this thesis gives an 

opportunity to study whether there are resistance mechanisms that span multiple endocrine 

agents and earlier/later resistance. As potentially key resistance mechanisms, their targeting 

might provide new ways to control antihormone resistance 

1.12 Large scale genomic/bioinformatics approach to investigate mechanisms of 

endocrine resistance in the new endocrine resistant breast cancer cell panel 

Screening large numbers of genes for biomarker discovery and determination of induced cellular 

pathways in breast cancer samples can be achieved through gene microarray studies for 

expression profiling (Perou et al. 2000 and Sorlie et al. 2001) and can also be applied to cell 

model studies in some instances yielding relevant pathways. Bioinformatics tools for gene 

analysis can provide users with gene profiles, ontological data and functional clustering for 
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uploaded genes that (based on statistical approaches) can determine the enriched association 

of expressed genes with significant cellular pathways. Gene microarray analysis using 

Affymetrix’s GeneChipTM Human Gene 1.0 ST platform and subsequent bioinformatics 

approaches have been applied in the current study to search for mechanisms of endocrine 

resistance shared across the MCF7 derived, acquired resistant breast cancer cell model panel.  

1.13 Aims and objectives 

ER+ breast cancer accounts for approximately 70% of breast tumours and blockade of 

oestrogen/ER signalling through endocrine therapy is the mainstay of treatment in ER+ disease. 

Despite initial response to endocrine treatment, many patients eventually relapse having 

acquired resistance which represents a significant clinical issue in breast cancer management 

urgently requiring mechanistic study. The hypothesis of this thesis is that interrogation of the 

unique panel of MCF7 derived acquired resistant breast cancer cells will yield new mechanisms 

of resistance. This project aims to use gene microarray expression profiling to specifically focus 

on discovering from the models if there are shared mechanisms of resistance to endocrine 

treatment. Since the model panel encompasses breast cancer cells treated with different 

endocrine agents and at different time points, it is envisaged that subsequent targeting of the 

shared mechanism may be important in helping to overcome resistance in breast cancer cells. 

To investigate this hypothesis, the following principle objectives were set: 

 To determine significantly deregulated genes in potentially proliferative pathways that 

are shared across all the endocrine resistant models vs. endocrine responsive MCF7 

cells. 

Gene microarray analysis in the models will extend to the “whole genome” 

accompanied by statistical approaches, focussing on identifying robustly-induced 

elements. For whole genome analysis, genes with similar functional annotation will be 

clustered to assist in identifying deregulated pathways from the gene lists. Ontological 

information and pathway elements will be further interrogated to evaluate the 

biological and functional role of deregulated genes and gauge whether they may 

contribute to resistant cell growth. Promising deregulated genes will be examined in 

relation to time to relapse using publically-available ER+ and tamoxifen treated breast 

cancer expression databases so that any potential adverse function in promoting clinical 

resistance can be determined, and further MCF7 arrays will be interrogated to 

determine the resistant gene profiles in relation to initial antihormone treatment.  
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 To pharmacologically target the shared resistant model pathway with the most 

significant associations from the whole genome analysis. This will further verify if the 

pathway is functional and contributes to growth and proliferation in endocrine resistant 

breast cancer models versus responsive models. Activity of the pathway before and 

after application of inhibitor needs to be determined across the panel to help evaluate 

mechanism. Pharmacological manipulation will also provide an indication of whether 

such targeting might have future value in controlling endocrine resistance.  

 To investigate if further shared genes with kinase activity (or their potential regulators) 

can be identified from the endocrine resistant models vs. MCF7. The gene microarray 

analysis will extend to the ‘’whole kinome’’and ontological study and expression 

evaluation in the clinical datasets will again be used to interrogate the kinases to 

determine those with potential impact on resistant growth. This will provide further 

mechanistic insight into endocrine resistance, and may yield additional therapeutic 

approaches. 
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Chapter 2 

Materials and Methods 

2.1 Cell culture 

2.1.1 Routine cell maintenance 

The parental MCF-7 cell line (a gift from AstraZeneca, Cheshire, UK) was routinely maintained in 

phenol red-containing RPMI-1640 medium ((+) L-glutamine, Life Technologies, UK) 

supplemented with 5% FCS (foetal calf serum), penicillin-streptomycin (10iU/ml-100μg/ml) and 

fungizone (2.5 μg/ml). MCF-7 derived acquired tamoxifen resistant (TamR/TamRLT) and 

Fulvestrant resistant (FasR/FasRLT) cells were routinely grown in phenol red-free RPMI-1640 

medium ((-) L-glutamine, Life Technologies, UK) supplemented with 5% charcoal stripped (i.e. 

steroid-depleted) foetal calf serum (SFCS), penicillin-streptomycin (10iU/ml-100μg/ml), 

fungizone (2.5 μg/ml) and glutamine (4mM), together with either 4-OH-Tamoxifen at 10-7 M 

(Sigma-Aldrich, UK) or Fulvestrant at 10-7 M (a gift from AstraZeneca, Cheshire, UK) respectively. 

MCF-7 derived cells with acquired resistance to oestrogen deprivation (MCF7(X)/MCF7(X)LT) 

were routinely grown in phenol-red free RPMI-1640 medium containing 5% heat-inactivated 

(65°C, 40 min) charcoal stripped foetal calf serum (XSFCS), penicillin-streptomycin (10iU/ml-

100μg/ml), fungizone (2.5 μg/ml) and glutamine (4mM). All the antihormone resistant cell lines 

comprising the model panel used in this thesis were developed prior to this project by the Breast 

Cancer Molecular Pharmacology (BCMP) group by continuous culture of MCF-7 cells in the 

presence of 4-OH tamoxifen (10-7M), fulvestrant (10-7M) or severe oestrogen deprivation (XSFCS 

medium). Authenticity of the cell lines was verified by STR profiling through collaboration with 

Dr Walther Parson (University of Innsbruck). The resistant TAMR (Knowlden et al. 2003), 

MCF7(X) (Staka et al. 2005) and FASR lines (Nicholson et al. 2005) were studied after 18, 25 and 

27 months culture respectively, and maintained in antihormone up to 3 years to generate the 

longer-term TamRLT, FasRLT and MCF7(X)LT acquired resistant lines. All cells were cultured 

under sterile conditions at 37 ̊C in a humidified incubator (Sanyo MCO-17AIC, Sanyo Gallenkamp, 

Loughborough, UK) supplied with 5% CO2. The media was changed every 3 days and cells were 

passaged during log-phase on day 7 with a seeding ratio of 1:10 for MCF-7, TamR, FasR, MCF7(X) 

and MCF7(X)LT, and at 1:20 for FasRLT and 1:40 for TamRLT cells. For passaging, 70% confluent 

monolayers of each model were disrupted by addition of 3ml trypsin/EDTA (0.05%/0.02%w/v) 

for 3 minutes, followed by addition of an equal volume of the respective routine media and 

centrifugation (Mistral 3000i centrifuge Sanyo Gallenkamp, Loughborough, UK) at 1000rpm for 

5 minutes. The supernatant was discarded and cell pellets was suspended in 5-10ml of fresh 
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routine medium. Cells were seeded in a flask and the media was replaced every 3 days until 

further passaging was required. All cell culture reagents and FCS were purchased from Life 

Technologies (Paisley, UK). Cell culture plasticware was purchased from Nunc (Roskilde, 

Denmark), supplied by Fisher Scientific (Loughborough, UK). 

2.1.2 Experimental cell culture 

For microarray and basal growth studies, experimental medium for all breast cancer models was 

the same as their respective routine culture medium, except for MCF-7 cells which were grown 

for 7 days in experimental media comprising phenol-red free RPMI 1640 ((-) L-glutamine) 

supplemented with 5% SFCS, penicillin-streptomycin (10iU/ml-100μg/ml), fungizone (2.5 μg/ml) 

and glutamine (4mM). Further experiments were performed using MCF7 cells grown for 10 days 

using the alternative 5% heat-inactivated SFCS to match the oestrogen deprivation strategy used 

for the oestrogen deprived resistant models. Endocrine response microarray studies also utilised 

MCF7 cells grown for 10 days in the presence of 4-OH-Tamoxifen or Fulvestrant (10-7M), or with 

17- oestradiol supplementation (10-9M). 

2.1.3 Growth assays 

Monolayers of cells were trypsinized and resuspended in fresh medium. Cells were seeded 

overnight at 20,000 cells/well (using 48 well plates) in their respective medium as described for 

routine cell culture. After 24 hours, the media was replaced by fresh medium which contained 

experimental treatment (e.g. TAMR/TAMRLT in experimental medium plus 4-OH Tamoxifen 10-

7M, FASR/FASRLT in experimental medium plus Fulvestrant 10-7M, antimycin A (5-100nM, 

Sigma-Aldrich, UK), metformin (0.5-7mM, Sigma-Aldrich, UK), +/- glutamine (4mM or 10mM, 

Life Technologies, UK), or with oestrogen deprivation (MCF7(X)/(X)LT in XSFSC media). The 

experimental medium was replaced every 4 days. Cell growth was evaluated at day 3, 5 and 7 

by trypsin dispersion followed by cell number counting using a Coulter™ Multisizer II (Beckman 

Coulter UK Ltd, High Wycombe, UK). Mean number of cells/well (from triplicate wells) were 

determined. All experiments were performed in three independent experiments and every cell 

line was used within a window of 20 passages. Basal growth and treatment data were used to 

plot growth curves, to evaluate growth at day 7 in relation to control, and to calculate EC50 values 

for treatments. To calculate mean of half-maximum response (EC50), cell number for each 

treatment (including untreated control) were normalized against number of cells for maximum 

response (highest dose). Percentage of maximum response for each dose was uploaded on 

GraphPad Prism 5 (range between 0-100) and then log transformed for further analysis. Non-

linear regression followed by dose response inhibition equation (log (agonist) versus normalized 

response-variable slope) and sigmoidal dose response curve were determined using GraphPad 

Prism 5 software. 
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2.2 Gene microarray study 

Prior to the thesis, mRNA samples of each breast cancer cell model (MCF-7, TamR, TamRLT, FasR, 

FasRLT, MCF7(X) and MCF7(X)LT) were isolated in experimental triplicate by the BCMP group 

and used to generate gene microarrays for the subsequent expression studies that have been 

performed in this thesis, as follows: 

2.2.1 Cell lysis 

All breast cancer cell models (MCF7 and the 6 derived resistant lines) were seeded at 3,000,000 

cells per 150mm diameter dishes in triplicate. For basal profiling, cell lysis was performed at day 

7 (within log-phase of growth) at room temperature in a fume cupboard. Medium was poured 

off from dishes and drained briefly. 10ml tissue culture grade Dulbecco's phosphate buffer saline 

1X (PBS) was added onto each dish and dishes were left for 10 seconds before pouring off the 

buffer followed by further draining of the dishes for 5 seconds. This was repeated for 3 times 

before addition of 1.5ml Tri-Reagent (T9424, Sigma Aldrich, UK) onto the surface of each dish. 

Dishes were covered with a lid and gently rocked for 1 minute to ensure full coverage of cells 

with the lysis solution. Each cell lysate was collected by using a sterile disposable cell scraper 

and half of the lysate was transferred to each of two 1.5ml micro-centrifuge tubes (i.e. 

>750μl/tube). The lids were closed and tubes containing the lysate were inverted twice before 

being placed into dry ice.  

2.2.2 Total RNA isolation from Tri-Reagent-lysed samples 

Sample volume was adjusted to 1ml by addition of Tri-reagent and mixed thoroughly by 

inversion. 200μl chloroform was added to each tube and rapidly vortexed for 20 seconds. This 

was repeated 3 times and tubes were left at room temperature for 10 minutes. Tubes were then 

spun in a pre-cooled centrifuge (4 ̊C, Labofuge 400R, Heraeus, Germany) at 13000rpm (16000g) 

for 10 minutes. At this point samples separated into 3 phases; the upper aqueous phase which 

contained the RNA, the middle phase (clear and less obvious layer) containing DNA and the 

lower phenolic phase containing protein. The upper phase was carefully removed and 

transferred to a clean micro-centrifuge tube. 500μl of isopropanol (propan-2-ol) was added to 

the supernatant to precipitate the RNA. Samples were vortexed briefly and left to stand at room 

temperature for 10 minutes. Samples were then spun again in the pre-cooled centrifuge at 

13000rpm for 10 minutes. The supernatant was discarded and the RNA was left as a white pellet 

at or near the base of tube. 1ml 70% ethanol was added to wash the RNA before spinning in the 

pre-cooled centrifuge at 13000rpm for a further 10 minutes. The ethanol was discarded and 

tubes were inverted on clean tissue paper. The RNA pellet was then air dried for 10 minutes 

before resuspending in 25μl RNase-free water. The RNA concentration and purity was 

determined by using a Biomate3S UV-visible spectrophotometer (Fisher Scientific, 
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Loughborough, UK) at 260/280 nm and RNA integrity was evaluated via gel electrophoresis (2% 

agarose gel, BioLine, UK) followed by detection of 18s and 28s ribosomal RNA in all triplicate 

samples. All RNA samples were stored at -80 ̊ C for further analysis. 

2.2.3 DNase treatment of isolated RNA 

RNase-free DNase reagents from RNeasy Micro kit (Qiagen, UK) were used for this procedure to 

remove any trace of DNA contamination. In the sterile micro-centrifuge tube, 45µg RNA (<87.5µl 

of the stock RNA) from each sample was mixed with 10µl of kit buffer (“RDD”) and 25µl of DNase 

I solution, and the volume was adjusted to 100µl by addition of RNase free water (Sigma-Aldrich, 

UK). The mixture was left at room temperature for 10 minutes before proceeding to the RNA 

clean-up step. 

2.2.4 RNase treatment of isolated RNA 

RNeasy Micro kit (Qiagen, UK) reagents were also used for this protocol. 350µl of kit “RLT” buffer 

supplemented with 6µl β-mercaptoethanol was mixed thoroughly with each of the 100µl RNA 

samples to inactivate RNases and other proteins which may degrade RNA. 250µl 100% ethanol 

was added to each tube and mixed well. An RNeasy MinElute spin column (Qiagen, UK) was 

inserted into a 2ml kit collection tube and the entire content of each RNA sample tube (700µl) 

was transferred into the spin column followed by centrifugation at 13000rpm (10000g) for 15 

seconds in a benchtop microcentrifuge (Biofuge, Heraeus, Germany). The through-flow was 

discarded and 700µl of kit “RW1” buffer was added to each column and spun again for 15 

seconds at 13000rpm.The through-flow and collection tube were discarded and the column was 

inserted into a new 2ml collection tube. 500µl kit “RPE” buffer was added to each tube and spun 

for 15 seconds at 13000rpm. Again through-flow was discarded and 500µl of 80% ethanol was 

added to each column. The columns were spun for 15 seconds at 13000rpm followed by 

discarding through-flow and collection tubes. The columns were inserted into new 2ml 

collection tubes and left open and spun for 4 minutes at 13000rpm to dry the columns 

thoroughly. Columns were then inserted into sterile 1.5ml Eppendorf-type microcentrifuge 

tubes and 14µl of RNase-free sterile water was added to the centre of each column membrane. 

The column lids were closed and the columns were spun for 1 minute at 13000rpm to elute the 

RNA. Columns were discarded and microcentrifuge tubes containing 12µl eluted RNA were 

placed on ice. RNA concentration and integrity of each sample was again determined by 

spectrophotometry and gel electrophoresis respectively. RNA samples were aliquoted (1µg 

RNA/7µl H2O) before storage at -80°C. 
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2.2.5 Affymetrix genechip human WT 1.0ST array study 

All three independent RNA samples from each cell model were sent by the BCMP group to 

Cardiff University Centre of Biotechnology Services (CBS) Affymetrix GeneChip® profiling service 

to perform microarraying using an Affymetrix-recommended procedure and associated kits. All 

samples passed an initial quality control assessment by CBS using an Agilent analyser to check 

for any RNA degradation and DNA contamination. In brief, for the subsequent arraying 100ng 

RNA of each sample was subjected to a ribosomal RNA (rRNA) reduction procedure where the 

28S and 18S rRNA was depleted from the total RNA samples to minimize background and 

enhance sensitivity of detection of gene expression. Double stranded cDNA was then 

synthesized with random hexamer tagged with a T7 promoter sequence and it was used as a 

template for synthesis of cRNA via T7 RNA polymerase. In the second cycle, single stranded DNA 

in the sense orientation was synthesized from cRNA and dUTP was incorporated into DNA during 

first-strand reverse transcription reaction. A combination of uracil DNA glycosylase (UDG) and 

apurinic/apyrimidinic endonuclease 1(APE 1) was added to single stranded DNA to detect 

unusual dUTP residues and break the DNA strand. DNA was then labelled by terminal 

deoxynucleotidyl transferase (TdT) which is covalently linked to biotin (Affymetrix GeneChip WT 

terminal labelling kit). By this procedure, sufficient target was generated to hybridize to a single 

Affymetrix array GeneChip (WT human 1.0ST microarray, Table 2.1) for every sample analysed. 

Arrays were incubated at 45°C for 17 hours followed by washing and staining for detection, prior 

to CBS scanning the chip using an Affymetrix GeneChip Scanner for the expression of exons for 

all genes in the samples. CBS subsequently performed pre-processing of the Gene Chip scan data 

which included background correction, data normalisation, and summarisation of gene 

expression level using RMA. These gene expression data in triplicate for the breast cancer 

models were provided to the BCMP group as CHP files and displayed following file upload into 

Genesifter for further investigation.  
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2.2.6 Genesifter analysis for microarray data 

All Gene expression data for three independent samples for each breast cancer model were 

uploaded into the Genesifter online bioinformatics analysis tool (www.genesifter.net), where 

expression of all the gene probes was log transformed before detailed profile analysis. 

Expression level of each probe was then displayed either by (i) heatmap (with the parental MCF7 

cells set as control) or (ii) using log2 intensity plots. Fold change comparison was tabulated for 

each resistant model in relation to control MCF7 cells using the software.  

Given this array platform does not provide an presence/absence expression “call”, a cut-point 

for detectable expression was estimated based on the log2 intensity detected for a known ER- 

model in the panel (FASR cells; ESR1 gene log2 intensity=8) and also according to the array’s 

standard negative control probes. This was considered to be a mean value of approximately 8 

on the log2 intensity plot. An initial evaluation of profiling of basic expression features across the 

models e.g. for ESR1 (ER) gene, ER-regulated gene TFF1 (pS2), and HER2 (ERBB2) from the array 

data was then performed that also served to verify microarray performance, since the 

expression profile of ER in TAMR, FASR and MCF7(X) cells is already known (Knowlden et al. 

2003, Staka et al. 2005).  

Subsequently a total of 11 “projects” using the 1.0ST arrays were created in Genesifter to 

determine genes with down/upregulated expression changes that were greater than ≥ 1.2 fold 

versus MCF7 (To allow enough genes for further analysis). These projects were (i) for each of 

Table 2.1. Transcript coverage and gene count from RefSeq on the 

Affymetrix Human gene 1.0ST microarray platform. 

 

http://www.genesifter.net/
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the six endocrine resistant breast cancer model as compared to the parental MCF-7 line, (ii) in 

relation to duration of resistance by considering the earlier resistant lines (TAMR, FASR and 

MCF7(X)) or the later resistant lines (TAMRLT, FASRLT and MCF7(X)LT) versus MCF7 and (iii) 

according to antihormone resistant type by considering tamoxifen resistant (TamR and TamRLT), 

fulvestrant resistant (FasR and FasRLT) or oestrogen deprived resistant cells (MCF7(X) and 

MCF7(X)LT) versus MCF7. Generation of these gene lists was followed by statistical analysis for 

each project using ANOVA statistical testing with Benjamini Hochberg correction in order to 

determine “shared” genes that were induced or suppressed in all the resistant models in the 

panel versus MCF7. The resultant Affymetrix probe IDs for all shared deregulated genes from 

each analysis were extracted for further cluster, ontological and pathway investigation.  

In addition to the resistance arrays, further microarray data (median normalised, log2 

transformed from three independent experiments) previously accumulated by the BCMP group 

from commercially-analysed HGU133A chips were made available for Genesifter interrogation 

of the resistance genes of interest in relation to initial treatment with oestrogen or anti-

hormones. This “endocrine response” analysis project comprised gene microarray data from 

hormone responsive MCF7 cells treated for 10 days with 10-9 M 17- oestradiol, oestrogen 

deprivation (using 2 strategies i.e. 5% SFCS or heat inactivated SFCS to parallel the MCF7(X)/(X)LT 

resistant model treatment), fulvestrant or 4-OH tamoxifen (10-7 M). The array data for the 

antihormone treatments were then analysed in Genesifter to construct gene lists with ≥1.2 fold 

change, in this instance compared to the MCF7+E2-treated cells. 

2.2.7 ID conversion and cluster analysis of microarray data 

Gene IDs from Genesifter projects were uploaded into DAVID bioinformatic online software 

(www.DAVID.abcc.ncif.crf.gov). These IDs were converted in DAVID to ENSEMBL gene IDs to 

permit subsequent pathway analysis using Innatedb data base. In addition, for genes implicated 

in metabolic pathways resultant from such pathway analysis, ontological clustering of those 

upregulated >1.2 fold in the endocrine resistant models was performed within DAVID using a 

functional classification tool to see if there was enrichment of particular metabolic pathways 

(using kappa calculation in the software for enrichment score (www. 

david.ncifcrf.gov/helps/functional classification). Such clusters were again displayed using 

heatmaps, noting those clusters with the highest enrichment score.  
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2.2.8 Ontology and pathway analysis of microarray data 

Extracted ENSEMBL IDs from DAVID for the shared deregulated genes identified from projects 

were uploaded into Innatedb online (www.Innatedb.ca) to perform ontology and pathway 

analysis using associated databases. ENSEMBL IDs from each project were run through the gene 

ontology (Go terms) analysis tool (“Gene Ontology” database) in Innatedb followed by the 

software applying a hypergeometric algorithm with Benjamini and Hochberg correction (i.e. 

overrepresented gene ontology analysis or “ORA-O” in relation to associated biological process, 

molecular function and cellular compartment) to display significant enriched ontologies for the 

uploaded genes (p value <0.05). The same uploaded ENSEMBL IDs were then used by Innatedb 

to perform an overrepresented pathway analysis (“ORA-P”) using the affiliated KEGG pathway 

database, again applying a hypergeometric algorithm with Benjamini and Hochberg correction 

(p value <0.05). Innatedb ORA-O and ORA-P analysis was also applied to the “endocrine 

response” HGU133A-derived gene lists to identify over-represented ontologies and pathways 

during initial endocrine treatment of MCF7 cells. In addition, a list of significantly upregulated 

kinases shared by all endocrine resistant models was extracted from the resistance arrays 

(comparing list of shared upregulated genes with list of Human Kinome using www.Human 

Kinome - Kinase.com) and ontological interrogation of the resultant induced kinase list was again 

performed using Innatedb. This was used (together with clinical profile: see Methods section 

2.9) to prioritise 3 resistance kinases for further study in the thesis.  

Further ontological investigation was made for genes/enzymes in the most significant pathways 

using either KEGG (www.KEGG.jp) or Genecards (www.genecards.org) resources, as well as 

using Pubmed for the genes of interest in relation to function and any association with breast 

cancer or therapeutic resistance. 

2.3 RT-PCR profile verification  

RT-PCR was performed to verify the microarray gene expression profiles of ER, pS2 and ERBB2, 

three promising deregulated kinases from pathway analysis, and two induced zinc related genes 

SLC39A7 and MT2A in the model panel. Experimental triplicate RNA samples for each of the 

breast cancer models (prepared as in section 2.2.2) were reverse transcribed and subjected to 

RT-PCR to detect expression of the genes of interest across the cell model panel (compared with 

the parental MCF7 line) as follows: 

 

 

 

 

http://www.innatedb.c/
http://www.kegg.jp/
http://www.genecards.org/
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2.3.1 Reverse transcription  

The triplicate RNA samples were subjected to reverse transcription to generate complementary 

DNA molecules (cDNA) prior to performing PCR. The RT reaction master mix was composed of 

5µl deoxy nucleotide tri-phosphates (dNTP, 2.5mM, Invitrogen, UK), 2µl PCR 10X buffer (10mM 

tris-HCl, pH.8.3, 50mM NH4, 0.001% w/v gelatin, BIOLINE, UK), 2µl DTT (0.1M, Invitrogen, UK), 

2µl random hexamers (RH, 100µM, BIOLINE, UK) and 0.5µl MgCl2 (50mM, BIOLINE, UK) which 

was added to each 1µg RNA sample (in a total 7µl RNAse-free Water (Sigma-Aldrich, UK)). The 

resulting 11.5µl RT-reaction solution for each model was denatured at 95°C for 5 minutes in a 

PTC-100TM programmable thermocycler machine (MJ Research Inc, USA) followed by rapid 

cooling on ice for 5 minutes. The RT-solutions were pulse spun in a microfuge (Biofuge, Heraeus, 

Germany) and placed on ice. 1µl MMLV (200U/µl, Invitrogen, UK) and 0.5µl ribonuclease 

inhibitor (RNAse inhibitor, Promega, UK) were added to each sample, adjusting the final volume 

to 20µl prior to reverse transcription. Samples were placed in the PTC-100TMprogrammable 

thermocycler machine and then reverse transcribed under the following conditions: 

Annealing at 22°C for 10 minutes,  

RT extension at 42°C for 40 minutes  

Denaturing at 95°C for 5 minutes  

The resulting cDNA samples were collected and stored at -20°C until needed for PCR. 

2.3.2 Polymerase chain reaction (PCR) 

PCR was performed to amplify cDNA using specific primers for the genes of interest. In summary, 

cDNA molecules were denatured and polymerization was initiated via DNA polymerase which 

adds deoxy ribonucleotides to the 3’-OH group of complementary oligonucleotide sequences 

(forward/reverse primers). The reaction was repeated several times to yield copy numbers 

desirable for optimal detection for the genes of interest: 

2.3.3 Primer design 

To verify the mRNA expression profiles of genes of interest from the microarray data (e.g. ER, 

pS2, ERBB2; also 3 resistance-associated kinases (PCK2, ALDH18A1, PFKFB2), SLC39A7 and 

MT2A, and also -actin for normalisation purposes), primers were designed to detect similar 

sequences to those recognized by the microarray gene probes. To do this, multiple isoforms of 

the genes of interest were identified using the PubMed Gene database 

(www.ncbi.nlm.nih.gov/gene) and compared with available exons for the gene on the Affymetrix 

GeneChip 1.0ST array. Nucleotide sequences of multiple isoforms were aligned on the NCBCI 

nucleotide blast online tool (www.ncbi.nlm.nih.gov/Blast) and sequences with high alignment 

scores were selected for designing primers. The highly matched sequences were uploaded on 

the online primer design tool (www.ncbi.nlm.nih.gov/tools/primer-blast) and the following 

http://www.ncbi.nlm.nih.gov/gene
http://www.ncbi.nlm.nih.gov/Blast
http://www.ncbi.nlm.nih.gov/tools/primer-blast
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parameters were selected to design optimum primers for genes of interest: PCR product size 

100-500bp, Homo sapiens organism, primer size 15-25 -mers and primer GC content between 

40%-60%. Final primer sequences were checked using the primer-blast online tool to check 

specificity of designed primers only for the gene of interest. The primers utilised in the thesis 

are detailed in Table 2.2. 

 

 

 

 

 

2.3.4 PCR procedure 

The PCR reaction mixture was composed of 37.25µl sterile RNA/DNAse free water (Sigma-

aldrich, UK), 5µl 10X PCR buffer, 4µl dNTPs, 1.25µl forward/reverse primers (20µM, Invitrogen, 

UK), 0.2µl TAQ DNA polymerase (5 units/µl, BIOLINE, UK) for each cDNA sample. 0.5µl of cDNA 

was added to this PCR reaction mixture followed by pulse spinning and addition of 2 drops 

mineral oil (Sigma-aldrich, UK) on top of each PCR tube to avoid evaporation of the reaction 

mixture. PCR samples were then placed in a PCT-100 programmable thermal cycler and the 

following conditions were used to amplify the gene of interest. For the first cycle, cDNA samples 

were denatured at 95°C for 2 minutes followed by cooling at 55°C for 1 minute to allow primers 

to anneal to cDNA and TAQ enzyme to initiate polymerization. In the last step, samples were 

heated at 72°C for 5 minutes to extend primer polymerization and PCR product formation. 

Table 2.2. Primer sequences (forward and reverse) and cycle numbers used in the RT-PCR verification 

experiments, together with the predicted product size. β-actin was co-amplified in each RT-PCR 

experiments as a loading control for the normalization. 
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Between the first and last cycle, further cycles were repeated between 20-40 cycles. Cycle 

numbers were optimized for each gene of interest (Table 2) For these repeated cycles, samples 

were heated to 94°C for 30 seconds, followed by cooling to 55°C for 1 minute, and then they 

were heated to 72°C for 1 minute, with a final cycle carried out by heating samples to 94°C for 

1 minute, cooling them to 55°C for 1 minute and then heating them to 60°C for 10 minutes. 

2.3.5 Visualizing PCR products via agarose gel electrophoresis 

2% molecular biology grade agarose (BIOLINE, UK) was added in 100ml tris acetate buffer 1X 

(TAE, pH 8.3) and microwaved for 2 min until dissolved. The agarose solution was cooled and 

1µl ethidium bromide (EtBr, 5mg/ml (Sigma Aldrich, UK)) was added prior to pouring the solution 

into a wide mini-sub cell GT apparatus (Biorad, UK) with a comb used to create wells, and this 

was left for 20 minutes at room temperature to solidify. 10µl of each PCR product per sample 

was mixed with Crystal DNA loading buffer 5X (BIOLINE, UK) and loaded into the wells on the 

gel. 5µl hyperladder 100bp marker (BIOLINE, UK) was also loaded into the first well and an 

electric field was applied at 70V for 45 minutes to separate the DNA molecules by their size. The 

gel was visualized and photographed using a ChemiDoc™ XRS system (Biorad, UK). Associated 

Image Lab™ software was used to determine density of the specific band on the gel for each 

sample, which related to the amount of expressed RNA. All PCR reactions were coamplified with 

β-actin and the final PCR results for expression of the test genes were normalized against β-actin 

expression for each sample, displaying mean normalized volume across the three independent 

experiments for each model in the cell panel (+/- SEM). 

2.4 LC-MS/MS 

To further verify key findings from the microarrays, a proteomic approach based on Liquid 

chromatography tandem mass spectrometry (LC-MS/MS) was used to identify and quantify 

proteins (considering both total and phosphorylated peptides) in an antihormone resistant 

model versus MCF7 cells. This was achieved by accessing a proteomic dataset previously 

generated by Dr. David Britton and his further collaborators at Proteome Sciences (Kings College, 

London) on these cells. 

To initially generate the protein samples for analysis, TamR and MCF7 cells were seeded 

(500,000 cells/dish) in 2x75mm diameter dishes (three independent experiments) and grown in 

their respective experimental media until 70% confluency (7 days). The media was removed and 

cells were washed with 1X phosphate buffered saline (PBS) twice. Lysis buffer containing a 

protease inhibitor cocktail (inhibits protein degradation and dephosphorylation, (Sigma Aldrich, 

UK)) was added and cells were scraped and collected into Eppendorf tubes which were kept on 

ice for 5 minutes. Samples were then centrifuged at 12,000rpm in 4°C for 15 minutes and 
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supernatants before shipping on dry ice for LC-MS/MS at Proteome Sciences. At the Proteome 

Sciences Lab, protein samples were trypsin digested and resulting peptides were labelled with 

isobaric Tandem Mass Tag® eight-plex reagents (TMT8). Samples were split into three aliquots 

and separated by strong cation exchange chromatography (SCX-HPLC).  

Each chromatography run resulted in 12 fractions to maximize phosphorylation site coverage 

and to provide unmodified peptides for total protein quantification. Three arms including non-

enriched, TiO2 and IMAC phosphopeptide enrichment were added and thus 12 crude SCX 

fractions plus 12 x TiO2 and 12 x IMAC enriched phosphopeptide fractions were analyzed each 

three times by LC-MS/MS. Spectra were collected in data dependent mode with a top 10 HCD 

method (LTQ-Orbitrap Velos, Thermo Scientific, Germany) in the first and second runs. A time 

dependent rejection list for all peptide precursor ions identified in the first and second runs were 

used with top 10 HCD for the third run.  

Dr Britton subsequently used SEQUEST and MASCOT tools (and Phospho-RS for phospho-sites) 

via Proteome Discoverer to search the mass spectrometry data against the human UniProtKB 

database, including both total and non-phosphorylated peptides. The TMT reporter intensity 

which correlates with peptide abundance was assessed to quantify proteins in the samples. All 

identified peptides were filtered for ≤5% false discovery rate (FDR) and ≥75% phosphorylation 

site confidence for further analysis (Britton et al. 2014). The data were passed through Proteome 

Sciences bioinformatics pipeline to generate a list of peptides significantly changed in TamR 

versus MCF7 cells, considering the 3 replicates per cell line. Significant change was indicated by 

a log2 change ≥0.7 (1.63 fold change) and p≤0.05 significance. The significantly-induced protein 

list was then provided for analysis in this thesis. This involved ontology and pathway 

interrogation using Innatedb data base (p≤0.05) including examining if there was any evidence 

for metabolic pathway change. 

2.5 Immunocytochemistry 

This method was used to assess expression and localization in the model panel of TOMM20 

protein using a specific antibody, and also to monitor proliferation by immunostaining for Ki67. 

In brief, for these studies the models were grown in their routine experimental culture medium 

until cells were in log phase (7 days). For TOMM20, models were grown in experimental 

triplicate prior to pelleting, paraffin embedding and immunostaining for the protein of interest. 

For Ki67, cells were grown on coverslips in experimental triplicate under basal conditions or in 

the presence of metformin and subsequently fixed prior to assay.   
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2.5.1 Cell pelleting for TOMM20 immunostaining 

All breast cancer models in the panel were grown in 150mm dishes in their experimental media 

until log phase prior to cell pelleting. Spent media was removed from the dishes and 10ml fresh 

RPMI 1640 was added to each dish followed by scraping the cells and collecting them into Falcon 

tubes. The cells were centrifuged (Juan C312 centrifuge, UK) at 1000rpm for 5 minutes to pellet. 

The medium was removed and the cell pellets fixed in 15ml 3.7% formaldehyde (made by 

dilution of 37-40% formaldehyde, Fisher, UK) in Dulbecco’s phosphate buffer saline ((-) MgCl2, (-

) CaCl2; Lifescience, UK) at 40°C for 70 minutes. The fixative was removed and fixed cells 

(approximately 1ml) were transferred to a graduated Eppendorf followed by incubation at 40°C 

for 50 minutes with same the fixative. Residual fixative was removed and an equal volume of 

nobel agar (12%, dissolved in distilled water, Sigma-Aldrich, UK) was mixed with the cells. The 

mixture of nobel agar and fixed cells was immediately transferred to a 1ml syringe with a cut 

end (BD Plastipak, Spain) and left in an upright position for 30 minutes to settle. Syringes were 

kept in a fridge at 4C overnight. The Agar embedded fixed cells were then sliced into 3-4mm 

discs and placed in plastic embedding cassettes which were transferred into further fixative 

(again 3.7% formaldehyde in PBS) in a glass jar for 2 hours at room temperature. The agar-

embedded cells were then gradually dehydrated through graded ethanol (10%-60%) for 45 

minutes and left in 70% ethanol overnight. The following day, the cells were continued their 

dehydration in graded ethanol up to 100% ethanol for 45 minutes. The cells were then 

transferred into 100% xylene in a glass jar, replacing the xylene every 30 minutes for three times 

prior to a 1 hour soak in a final xylene bath. Paraplast Plus (M.P 56°C, Sigma-aldrich) paraffin 

wax was melted in a wax dispenser apparatus and poured in three jars into embedding chambers 

(Hearson, UK). The cells were transferred into these embedding chambers and incubated in the 

paraplast in each at 56°C for 30 minutes. Embedding moulds were then half filled with paraplast. 

The cell discs were removed from the embedding cassettes and placed in these moulds which 

were covered by plastic embedding cassettes and left to solidify.  

The embedded cells were subsequently sectioned (4µm thick) using a microtome (Spencers 

microtome). Cell sections were flattened by floating in a 37C water bath (Thermo scientific, UK) 

and placed on X-tra™ adhesive coated glass slides (Leica, UK). Slides were then dried overnight 

at 40°C in an incubator (Heraeus, Germany) ready for TOMM20 immunocytochemistry on the 

sections.  

2.5.2 Dewaxing and Rehydration of cell pellet sections  

The slides containing the paraffin-embedded cell pellet sections were dewaxed in two xylene 

baths each for 5 minutes followed by rehydration through graded ethanol (100%, 90% and 70% 

each twice for 2 minutes) and transfer to distilled water for 5 minutes.  
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2.5.3 Blocking endogenous peroxidase activity 

Use of horseradish peroxidase (HRP)-conjugated antibodies in immunocyochemistry may be 

associated with non-specific background staining due to any endogenous peroxidase activity 

present in cells. Therefore, 3% aqueous hydrogen peroxide solution (Fisher, UK) was initially 

applied on each section for 5 minutes in order to quench this unwanted activity, and sections 

were then rinsed with distilled water for 5 minutes.  

2.5.4 Heat-induced epitope retrieval (HIER) for TOMM20 

Heat-mediated antigen retrieval has previously been recommended for use with the TOMM20 

antibody (Sotgio et al. 2012b) 2 litres of 0.01M pH 6 sodium citrate tribasic dihydrate buffer 

(5.88g sodium citrate in 2L distilled water, Sigma-aldrich) was prepared and subsequently used 

for pressure cooker antigen retrieval of the sections. Slides were placed in the sodium citrate 

buffer and full pressure applied in the pressure cooker for 2 minutes, followed by 10 minutes 

cooling of the slides under running tap water.  

2.5.5 Blocking background staining 

Blocking sections with serum is essential to avoid background staining due to either non-specific 

antibody binding to endogenous Fc receptors or due to unwanted ionic and hydrophobic 

interactions. To achieve this, 20% Normal Human Serum (NHS, Golden West Biologicals Inc, US) 

was applied to each section for 10 minutes. Excess blocking agent was then removed prior to 

incubating sections with the primary antibody. 

2.5.6 Immunostaining of cell pellets from the model panel for TOMM20 

PBS/Tween buffer (pH 7.2, Sigma-Aldrich, UK) was applied to each section prior to incubation 

with TOMM20 primary antibody for 5 minutes. Mouse anti-human TOMM20 antibody (Santa 

Cruz Biotechnology, US) at 1:500 dilution (prepared in PBS buffer) was applied to the cell pellet 

sections for all models and incubated overnight at 4⁰C in a humidity chamber. The next day all 

slides were washed with PBS and were incubated with the secondary mouse EnVision+ HRP 

labelled polymer system (DAKO, UK) for 1 hour at 25⁰C. Following buffer washing, 

immunoreactivity was revealed using 3 3’-diaminobenzidine solution (DAB, DAKO, UK; 

comprising 10μl chromogen mixed thoroughly with 500μl substrate). The sections were then 

counterstained with methyl green (Sigma-Aldrich, UK) for 15 minutes, washed in water, and air-

dried before slide mounting using DPX mountant (a mixture of Distyrene, a plasticizer, and 

xylene, Sigma-Aldrich, UK). Cytoplasmic staining was evaluated for each slide by light microscopy 

from three fields by viewing at 40X magnification using H-Scoring, considering both percentage 

positivity and staining Intensity (negative staining cells=0, weak staining cells= 1+, moderate 

staining cells=2+ and high staining cells =3+). H-Score was calculated on a 0-300 scale as: (% of 
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1+)x1 + (% of 2)x2 + (% of 3+)x3. H-Score was presented as a mean for each of the cell models 

for statistical analysis.  

2.5.7 Immunostaining of breast cancer cells for Ki-67  

The cell lines were seeded onto sterile 3-aminopropyltriethoxysilane (TESPA) coated glass 

coverslips (100,000 cells/coverslip) in 35mm diameter dishes for 24hrs prior to metformin 

administration (0.5-2mM) for 7 days in their respective experimental media. Basal coverslips 

were also prepared for analysis of Ki67 by growing the models to day 7 in log phase. Fresh media 

was replaced after 4 days culture. To fix the cells before immunostaining, coverslips were 

immersed in 3.7% formal saline for 10 minutes at room temperature. The coverslips were then 

immersed in 70% ethanol for 5 minutes followed by two times PBS wash (each for 10 minutes). 

Coverslips were kept in sucrose storage media (42.8g sucrose, 0.33g magnesium chloride, 250ml 

glycerol and 250ml PBS) at -20°C. On the day of Ki-67 assay, the storage media was discarded 

and fixed cells on cells on the coverslips were washed with PBS (3 times). Coverslips were then 

washed with PBS/Tween for 30 seconds prior to incubation with Ki67 primary antibody (Dako 

Ltd Species: mouse anti human, 1:150 in PBS) in a humidity chamber for an hour at room 

temperature. This antibody dilution had previously been optimised for coverslip work in the 

BCMP group. Coverslips were then washed with PBS (3 minutes) followed by PBS/Tween 

incubation (0.02%) for 2x5 minutes. Coverslips were then incubated with the secondary 

detection system (Dako Envision+ system-HRP labelled polymer antimouse, Dako, K4001) in a 

humidity chamber for 75 minutes at room temperature. After incubation, the coverslips were 

washed with PBS (3 minutes) followed by PBS/Tween incubation (0.02%) for 2x5 minutes. The 

coverslips then were each incubated with 50μl of Dako’s diaminobenzidine (DAB)/substrate 

chromagen system solution (Dako Ltd, K3468) for 10 minutes and rinsed with distilled water. 

Cells were then counterstained with 0.05% Methyl green for 1 minute and washed with distilled 

water before mounting onto microscope slides (FB58628, Fisher Scientific, UK) by applying DPX 

mountant. The percentage of cells with nuclear staining positivity for Ki-67 was evaluated by 

light microscopy (obtaining an average from 3 fields/coverslip by viewing at 40X magnification, 

and also involving 3 independent experiments), for each cell model and after metformin 

treatment. 
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2.6 Enzyme histochemistry to evaluate electron transport chain (ETC) component 

activity 

Enzyme histochemical staining serves as a link between biochemistry and morphology and is 

based on the metabolization of a substrate provided to a tissue enzyme in its orthotopic 

localization. The end product for enzyme activity is detectable as an insoluble dye. This method 

is quite sensitive and has been shown to detect minor metabolic defects in pathological 

conditions (Meier-Ruge et al. 2007).  

2.6.1 NADH dehydrogenase enzyme cytochemistry 

Activity of the NADH dehydrogenase enzyme (complex I of ETC) is detectable in living cells 

because the enzyme transfers hydrogen from nicotinamide dinucleotide (NADH) to the 

nitrotetrazolium blue chloride stain (Sigma-Aldrich). The final product of this reaction is a water-

insoluble formazan blue pigment which marks the site of enzyme activity. Cells from the model 

panel were seeded at 100,000 cells per coverslips (TESPA-coated) and grown in their respective 

basal experimental medium with/without the NADH dehydrogenase inhibitor (complex I 

inhibitor) metformin (0.5-2mM) for 24hrs. The NADH staining solution consisted of 6mg NADH, 

38mM CoCl2, and 1.2mg Nitrotetrazolium blue in 3ml Tris-buffer (50mM, pH.7.6). The cell 

coverslips were washed with Tris-buffer for 5 minutes and incubated with this NADH solution 

for 2hours at 37⁰C., and then visualised for cytoplasmic staining and photographed under a light 

microscope at 40X magnification. Magnitude of metformin impact on staining was subsequently 

assessed (in 3 independent experiments) as a weak (+), moderate (++), high (+++) or very high 

reduction in the staining signal (++++). 

2.6.2 Cytochrome c oxidase enzyme cytochemistry 

Activity of cytochrome oxidase (COX, complex IV) was evaluated using a technique that centres 

on the ability of this enzyme in living cells to transfer electrons to cytochrome c from an electron 

donor substrate such as DAB, generating a brown formazan pigment marking the site of enzyme 

activity. Cells from the model panel were seeded at 100,000 cells per coverslip and grown on 

TESPA-coated coverslips in both their respective basal experimental medium and in the 

presence of the NADH dehydrogenase inhibitor (metformin; 0.5-2mM) for 24hrs. Briefly, 

coverslips were washed with PBS and incubated in pre-incubation media consisting of 50mM 

Tris-HCl (pH.7.6), 10g sucrose and 28mg cobalt chloride for 15 minutes at 25⁰C. Coverslips were 

then washed with 0.1M sodium phosphate buffer (pH.7.6) and incubated with COX activity-

detecting solution for 3.30 hours at 37oC. This was composed of 10mg cytochrome c (Sigma-
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aldrich), 10mg DAB (Sigma-aldrich) and 2mg catalase (Sigma-aldrich) in 10ml sodium phosphate 

buffer. Coverslips were counterstained with methyl green and then visualised for cytoplasmic 

staining and photographed under a light microscope at 40X magnification. Magnitude of 

metformin impact on staining was again assessed (in 3 independent experiments) as a weak (+), 

moderate (++), high (+++) or very high reduction in the staining signal (++++). 

2.7 SDS-PAGE and Western Blotting 

Immunoblotting with chemiluminescence detection was used to monitor several signalling 

elements in cell lysates from each model in the presence and absence of metformin treatment. 

AMPK phosphorylation (Thr172), ACC phosphorylation (Ser79), and phosphorylation of mTORC1 

(Ser2448) and Ribosomal Protein S6 Kinase (P70S6K, Thr389) were all examined by Western 

blotting. In addition, Western blotting was used to monitor expression profile of the zinc 

transporter SLC39A7 across the panel at log phase. To achieve this, the proteins in the cell lysates 

were first separated via SDS-polyacrylamide gel electrophoresis and immobilized onto a 

nitrocellulose membrane: 

2.7.1. Cell lysis for protein extraction  

Cells were seeded in 35mm diameter dishes (500,000 cells/dish) where they allowed to grow for 

72hrs prior to ± metformin treatment (0.5-2mM) for 2, 12 and 24 hrs in their respective 

experimental media before cell lysis. Further cells were grown to day 7 in the experimental 

media for SLC39A7 profiling. Three independent experiments were performed in all instances. 

The media was removed and cells were washed with ice cold PBS (twice) prior to lysis buffer 

addition (pH 7.6, 50mM trizma base, 150mM NaCl, 5mM EGTA, 1% Triton-X-100, Sigma-Aldrich, 

UK) containing protease inhibitors (Sigma-Aldrich, UK). Cells were scraped from the dishes, 

collected into an Eppendorf for each model, and placed on ice for 5 minutes. Cell lysates then 

were centrifuged at 12,000rpm for 15 minutes at 4°C. Subsequently, the supernatant from cells 

(containing protein) was used for further analysis. 

2.7.2 Protein quantitation 

The BioRad protein assay (Bradford et al. 1976) was used to determine concentration of 

solubilized protein in the lysates via addition of acidic dye to protein solution and measurement 

at 595nm with a spectrophotometer.  

Six dilutions of a protein standard (BSA, Sigma-Aldrich, UK) were prepared (0, 5, 10, 15, 20 and 

25 μl/ml). Test samples were then prepared (in duplicate) at 1:200 dilution for each lysate. To 
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both the protein standards and lysate samples, 200 μl BioRad dye (BioRad, UK) was added and 

incubated for 5 minutes before measure the absorbance at 595nm. Protein standards were 

measured and a standard curve was created which was used to estimate protein concentration 

of the lysate samples.  

2.7.3 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

An appropriate amount (for 40ug protein) of each lysate was mixed with Laemmli sample loading 

buffer (BioRad, UK, Laemmli et al. 1970) and 24mg/ml DTT followed by protein denaturing at 

90°C for 5 minutes. DTT addition denatures tertiary structure of the proteins by breaking 

disulphide bridges in the protein structure.  

SDS-polyacrylamide gels were prepared using gel stacking apparatus (Mini Protean 3, BioRad, 

UK). A 1.5mm glass plate was used to cast a resolving polyacrylamide gel (8%) using reagents as 

detailed in Table 3. A 5% stacking gel (Table 2.3) was then poured on top of the resolving gel and 

a 15 wells comb was inserted. After setting, the gel was transferred to an electrophoresis 

running tank (BioRad, UK) containing running buffer (comprising 192mM glycine, 25mM Tris, 

0.1% w/v SDS, Sima-Aldrich, UK). An equal amount of sample protein (40 μg) and Precision Plus 

Protein All Blue marker (BioRad) were then loaded for each model and treatment into the wells 

of the SDS-PAGE gel. A voltage of 120V was applied for 90 minutes to separate the proteins by 

electrophoresis. 

 

. . All reagents were sourced from>  

 

Table 2.3. SDS polyacrylamide gel constituents for 

resolving and stacking gels. All reagents used in the gels 

were sourced from Sigma-Aldrich, UK. 
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Separated proteins on the gel were then transferred to a nitrocellulose membrane (GE 

Healthcare, UK) in the presence of transfer buffer (0.25M TRIS base, 1.92M Glycine (Sigma-

Aldrich, UK), and 20 % methanol (Fisher Scientific, UK)) by applying a voltage of 120V for 60 

minutes. The membrane was stained with Ponceau-S (Sigma-Aldrich, UK) to visualize the 

proteins and thus ensure adequate transfer efficiency before Western blotting. The membrane 

was then blocked with 5% non-fat milk (Marvel, Premier International Foods, UK) prepared in 

TBS Tween-20 (0.05%) (TBST) for 1 hour at room temperature. The membrane was then washed 

with TBST three times (each time for 10 minutes) prior to incubation with primary antibody 

(Table 4) at 4°C overnight (on a roller bed) with a further 1 hour incubation at room temperature 

the following morning. The membrane was then washed with TBST (three times) and incubated 

with an appropriate Horseradish peroxidise (HRP)-conjugated secondary antibody (Table 2.4) 

for 1 hour at room temperature. Membranes were then washed with TBST prior to 

chemiliminescent detection. 

 

 

 

 

 

Table 2.4. List of primary antibodies used for Western blotting analysis with their corresponding 

dilution, molecular weight (MW) (kDa) and source of purchase.  
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2.7.4 Chemiluminescence detection 

To visualize proteins after immunoblotting, a chemiluminescence detection system was applied. 

The HRP enzyme in the HRP-conjugated antibody catalyses a reaction where the 

chemiluminescence substrate (containing luminol) produces a light signal which is detectable 

with a charge-coupled device (CCD) imager such as the ChemiDoc™ XRS+ system (BioRad, UK). 

This system enables blot exposure for imaging for an optimal time (5 seconds to 5 minutes) since 

the system is able to determine when signals are overexposed. For signal visualization and 

automated image analysis, each blot was first photographed using ChemiDoc™ automated image 

capture and the associated Image Lab™ software was used to perform volume of the protein 

signals on the blot. All protein activity/expression were subsequently normalised to the loading 

protein control (β-actin). Data were used to calculate mean volume score from three 

independent Western blotting experiments and were presented as % of the relevant control for 

each model (+/- SEM). 

2.7.5 Stripping and reprobing membranes 

For some of the signalling elements examined, membranes were re-probed with a further 

primary antibody to detect other proteins in the same lysate. To achieve this, membranes were 

soaked in Restore™ Plus Western Blot Stripping Buffer (Fisher, UK) for 15 minutes at room 

temperature to remove any bound primary and secondary antibodies. The blot was then washed 

with TBST (three times) prior to blocking (with 5% non-fat milk for an hour) and re-probing with 

a further primary antibody. 

2.8 Oxygen consumption/glycolysis dual assay 

A Cayman’s oxygen consumption/glycolysis dual kit (Cayman, US) assay was used to measure 

both cellular oxygen consumption (OC) and glycolysis (extracellular acidification; ECA) in live 

cells representing the model panel.  

A phosphorescent oxygen probe, MitoXpress®-Xtra, was used to analyse oxygen consumption 

in the breast cancer cell lines as an indication of oxidative phosphorylation. This probe is a 

porphryin based water soluble (cell impermeable) which is quenched by oxygen, and thus the 

phosphorescent signal measured is inversely proportional to the extracellular oxygen level. Cell 

respiration depletes oxygen in the media (extracellular environment) which is seen as an 

increase in phosphorescent signal. The assay is non-chemical and reversible and gas exchange 

with the surrounding environment is avoided by addition of mineral oil. Therefore, the 

phosphorescent signal is proportional to the intracellular oxygen consumption during oxidative 
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phosphorylation. The probe is excitable between 360-400nM and emits at 360-680nM. A BMG 

LABTECH CLARIOstar plate reader (BMG LABTECH, UK) was adjusted to 380nM (maximum 

excitation peak)/ 650nM (maximum emission peak) to optimally detect the phosphorescent 

signal.  

The extracellular lactate level is proportionally correlated with intracellular glycolysis, and the 

lactate released from cells into their cell culture media can be measured by addition of lactate 

dehydrogenase which converts the extracellular lactate to pyruvate. In this reaction, the formed 

NADH reduces a tetrazolium substrate to give a highly coloured formazan which can be detected 

(absorbed) at 490-520nM. 

For these assays, cells for each model were seeded at 80,000 cells/ well in their respective basal 

experimental medium for 24hrs prior to addition of the inhibitors 2-deoxy glucose (glycolysis 

inhibitor 0.5mM-5mM), metformin (complex I inhibitor 0.5-2mM) and antimycin A (complex III 

inhibitor 5nM and 10 nM). OC and ECA was measured 24hrs after administration of inhibitors, 

as well as under untreated conditions to evaluate basal oxygen consumption and glycolysis 

respectively. Three independent experiments were performed for all measurements to calculate 

mean OC and ECA, and data were then presented as % of respective control (+/-SEM). 

2.9 Analysis of genes of interest in publically-available clinical breast cancer 

transcriptome datasets using KMplotter 

Clinical datasets from antihormone relapse material are not publically available to examine 

clinical prevalence of genes of interest in acquired resistance. However, it is possible to use 

publically-available transcriptome datasets to explore relation between the intrinsic expression 

of a gene at diagnosis and subsequent outcome in ER+ breast cancer patients. To achieve this, 

the online tool KMplotter can be used. This tool is furthermore able to interrogate the publically 

available Affymetrix microarray gene expression datasets (www.kmplot.com) to determine 

associations of the gene of interest with endocrine outcome in such breast cancer patients. The 

datasets interrogated in this thesis include mRNA expression data from ER+ breast cancer 

patients prior to subsequent tamoxifen treatment to analyse relation to relapse free survival 

(RFS). Kaplan Meier Survival plots are generated by the tool that splits patients into two groups 

according to expression level of the particular gene (i.e. higher or lower expression; with the 

software optimising this cutpoint). This gauges how gene expression links to clinical outcome in 

the breast cancer patients (Györffy et al., 2010). For the Kaplan-Meier survival analysis in this 

thesis, the optimal Jetset gene probe was used (Li et al. 2011). Hazard ratio (HR) and log rank 

value (p<0.05) for each analysis was automatically calculated using the tool. Such gene 

http://www.kmplot.com/
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expression analysis was performed in two subsets of breast cancer patients: ER+ (unselected 

ER+ patient cohort, comprising 1802 patients, for 16.5 years followup) and ER+ tamoxifen 

treated comprising 712 patients, with 20 years followup to gauge any adverse relation to 

shortened response duration in patients with increased gene expression. 

2.10 Statistical analysis 

Graph pad prism 5 was used for the statistical analysis of data. One-way analysis of variance 

tests (ANOVA) with posthoc test was used for multiple comparisons (to compare the means of 

more than two groups of data). Significance was determined as p≤ 0.05. Error bars were 

expressed as mean ± SEM. 
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CHAPTER 3 

Microarray gene expression profiling of endocrine resistant breast 

cancer cells 

3.1 Introduction 

Gene microarray analysis monitors transcriptional activity of genes and for the human can track 

20,000-25,000 protein coding genes (International Human Genome Sequencing Consortium, 

Lander et al. 2001). Gene expression profiling via gene microarray studies has revealed breast 

cancer is a complex disease with multiple subtypes. This approach was first described for 

molecular taxonomy of breast cancer by Sorlie et al. (2001), classifying the disease into 4 

subtypes, with more recent expression studies further expanding on subtype number. Since that 

time, gene microarrays have been widely used for discovery of reliable prognostic biomarker 

signatures that can assist stratification of breast cancer patients who may or may not require 

more stringent adjuvant treatment. Clinical microarray-based gene expression profiling 

signatures, such as MammaPrint® (70 genes signature), have been developed (van de Vijver et 

al 2002) to estimate risk of recurrence in early stage breast cancer patients. Mammaprint and 

also PCR-based expression signatures such as the 21-gene Oncotype DX test (Sparano et al. 

2015) can help to determine whether a patient is at high risk of recurrence necessitating 

chemotherapy alongside adjuvant endocrine treatment. 

Efficacy of individual breast cancer biomarkers in predicting ER+ response or failure with 

treatment has been limited. At the mRNA level, it has become clear that use of large scale gene 

expression profiling to discover predictive multi-gene signatures may perform better than single 

biomarker discovery (Hartwell et al. 2006). Multiple-gene signature analysis and network 

interaction studies were postulated by several researchers to have potential to predict clinical 

outcome in breast cancer patients (van de Vijver et al. 2002 and Pawitan et al. 2005). In this 

regard, there is some evidence for potential of such microarray analysis in the context of 

predicting response to endocrine treatment. For example, Jansen et al (2005) used gene 

expression profiling (81 discriminatory genes) to categorise oestrogen receptor positive (ER+) 

breast cancer tumours based on sensitivity/resistance to tamoxifen treatment. A similar 

approach has been applied by Miller et al. (2007) to determine a gene signature (143 genes) of 

response to Letrozole treatment. Both studies revealed involvement of deregulated genes in 

diverse molecular pathways in response to endocrine treatments. 



65 

 

Gene signatures derived from large scale genomic analysis can thus be used to stratify breast 

cancer subtypes and prognosis and are of emerging value in predicting adjuvant treatment 

outcome. However, the majority of them are not based around genes within specific biological 

pathways whose molecular function might feasibly contribute to acquisition of endocrine 

resistance and relapse. One important factor contributory towards this limitation is that 

pathways ultimately relevant following acquisition of resistance at relapse may not be 

adequately represented in samples prior to treatment. Such predictive signatures therefore 

have not generally yielded targets in the context of endocrine resistance. 

To achieve such target discovery, high-throughput gene analysis must first determine 

differential expression between appropriate biological sample sets (such as from patients during 

treatment through to relapse, or from cell models reflecting endocrine response versus acquired 

resistance). Robust computational and statistical analysis of over-represented genes is then 

required to cluster genes based on biological association with cellular pathways and subcellular 

compartments. Many annotation analysis tools for exploring genes in cancer research have been 

launched (such as InnateDB, DAVID bioinformatics and GO). InnateDB uses gene ontology (GO) 

terms for ontological analysis and is supplemented with multiple cellular pathway databases 

(such as KEGG, REACTOME, BIOCARTA and NETPATH) for pathway analysis. This database is 

suitable for large gene expression analysis to determine associated interaction networks (with 

more than 98,760 interaction databases) and pathways (from 2500 pathways) within the list of 

uploaded genes. The over-representation tool associated using this database is able to identify 

particular pathway or ontology terms that are enriched in uploaded data sets and is 

strengthened by a hypergeometrical distribution test (with Benjamini and Hochberg post hoc 

correction) for the false discovery rate. Additionally, the Database for Annotation, Visualization 

and Integrated discovery (DAVID) bioinformatics tool includes a biological analysis tool to 

condense gene data sets (no more than 400 genes) into functional clusters (Jiao et al. 2012). 

This Chapter aimed to use GeneChip® gene 1.0ST microarrays to discover deregulated gene 

expression and perform such pathway analysis using a panel of acquired endocrine resistant 

models as compared to their ER+/HER2-, endocrine responsive parental line MCF7. The model 

panel not only reflects acquired resistance to multiple types of antihormones but also shorter 

and longer-term (~3 yr) endocrine treatment in vitro. This potentially allows discrimination of 

key pathways that are deregulated and may drive acquired resistance irrespective of treatment 

duration or type. Such study could potentially provide novel targets amenable to diverse 

endocrine resistant states. In this project an initial basic growth characterisation of the models 
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was performed to evaluate resistance to the respective endocrine treatment along with 

establishing key gene profiles (ER, HER2 and an oestrogen/ER-regulated gene TFF1 (pS2)) and 

verifying these by RT-PCR to ensure adequate microarray performance for subsequent 

exploratory profiling. Subsequently, microarray analysis was performed in independent 

experiments and the expression of either significantly induced genes (≥1.2 fold changes) or 

reduced genes (≥1.2 fold changes) was assessed. The fold change 1.2 was chosen to allow 

enough genes for entry into the pathway analysis. Over-represented ontologies, over-

represented pathways and functional classification of deregulated genes in the endocrine 

resistant models were obtained using InnateDB database and DAVID bioinformatics 

respectively, allowing pathway prioritisation for further study in the thesis. 

3.2 Results 

3.2.1 Basic characterisation of endocrine resistant cell lines 

3.2.1.1 Growth analysis of endocrine resistant cells 

For growth curve analysis, cells were seeded at 20,000 cells/well, maintaining the respective 

antihormone for each resistant line. Cell number for each model was then determined after day 

3, 5 and 7 via Coulter counting. A line graph was drawn (Fig.3.1A) and statistical analysis (ANOVA 

with Dunnett post hoc correction) (p≤0.05) was then carried out to compare growth of resistant 

models vs. MCF7 (Fig 3.1B) at day 7. All models grew well despite the presence of antihormone 

over the 7 day period, compared with growth of the MCF7 in the basal media. Analysis revealed 

modest (2.28-3.79 fold changes) increases in TamR, FasR and MCF7(X) versus MCF7 (Fig 3.1B). 

The growth was further significantly induced in TamRLT (p<0.0001), FasRLT (p<0.001) and 

MCF7(X) LT (p<0.001), cells (all longer-term endocrine resistant models), by 7.85, 5.81 and 5 fold 

changes respectively, as compared to MCF7 (Table 3.1). Thus, acquired resistant cells were 

clearly capable of growing in presence of AHs, with the highest growth rate in long-term 

resistant cells.  
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Fig 3.1. (A) Growth curve represents mean number of cells for 

endocrine resistant models in comparison with MCF7 up to 7 days for 

three independent experiments ± SEM (B) Growth of endocrine 

resistant models vs. MCF7 compared at day 7. Statistical analysis 

(ANOVA with Dunnett post hoc correction) was done using GraphPad 

Prism 5 (** p<0.01, *** p<0.001). 

Table 3.1. Fold changes for growth of endocrine resistant models 

vs. MCF7 at day 7 
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3.2.1.2 Proliferative capacity of endocrine resistant cells 

Ki-67 immunohistochemical analysis using MIB1 antibody, a routinely used biomarker to 

evaluate tumour proliferative activity in clinical samples (Yerushalmi et al. 2010), was performed 

in the model panel at 7 days to compare resistant lines versus baseline (stripped serum) MCF7 

control (Fig 3.2). Percentage of positively stained nuclei for Ki-67 expression was calculated over 

n=3 fields for each model in three independent experiments (Table 3.2). Proliferation was high 

in the MCF7 under baseline conditions and in all the resistant lines, with Ki67 staining seen 

irrespective of type of antihormone treatment (Fig 3.2). Ki-67 expression was significantly 

(p≤0.05) increased in long-term tamoxifen and fulvestrant resistant models (TamRLT and 

FasRLT) with over 90% positivity while only modestly increased in TamR and FasR with 80% 

positivity versus MCF7 cells (Fig 3.3). 

 

 

 

Fig 3.2. Immunocytochemistry for proliferative 

marker (Ki-67) expression across the model panel 

after 7 days growth. Original magnification was 40X. 
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3.2.1.3 mRNA expression of ER, HER2 and pS2 

To establish any changes in basic features of resistant models with respect to oestrogen receptor 

(ER) signalling and Human Epidermal Growth Factor Receptor 2 (HER2) status versus the 

ER+/HER2- parental MCF7 cell line in baseline media, Affymetrix 1.0ST arrays were used to 

determine mRNA expression of HER2 (erbB2 gene), ER (ESR1 gene) and the oestrogen-regulated 

gene Trefoil Factor 1 (pS2 or TFF1 gene) in the panel of MCF7 derived endocrine resistant models 

(three experimental replicates, Fig 3.4). The Genesifter analysis tool was used to generate 

heatmaps, log2 intensity plots fold changes and to perform statistical testing (one-way ANOVA 

with Tukey post hoc correction, p≤0.05 for gene expression in each resistant model versus 

MCF7). RT-PCR was then used to verify mRNA expression profile obtained using the microarrays 

for HER2, ER and pS2 in the panel of MCF7 derived endocrine resistant models. The Primer blast 

tool on NCBI data base was used to design forward and reverse primers for the gene of interest 

for the PCR studies (Chapter 2, Table 2.2). The RT-PCR results were normalized against β-actin 

expression as an internal control (Fig 3.5). GraphPad Prism 5 was then used to generate graphs 

and perform statistical tests (one-way ANOVA with Dunnett post hoc correction, p≤0.05) for 

three independent experiments (N=3) to compare expression of genes in resistant models 

versus MCF7 cells. 

 

 

Fig 3.3. Graph represents percentage of positive Ki-67 staining in 

endocrine resistant models vs. MCF7 for three independent 

samples per cell line (N=3). Statistical analysis (ANOVA with 

Dunnett post hoc correction) was carried out (* p≤0.05, ** 

p≤0.01).  
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3.2.1.3.1 HER2 

In keeping with reported modest expression but lack of HER2 gene amplification (HER2 negative) 

in the parental line (MCF7) (Soule et al. 1973), HER2 (erbB2) was moderately expressed in the 

parental line and across the resistant model panel (log2 >8) (Fig 3.4). Changes in expression were 

small in the resistant lines, but HER2 expression was significantly reduced in TamRLT, FasR and 

FasRLT by more than 1.2 fold and it was induced in MCF7(X) by 1.36 fold as compared to MCF7 

(control) (Fig 3.4). RT-PCR broadly verified this HER2 expression profile, again with a slight fall in 

expression in FASR and FASRLT and slight increase in MCF7(X), but no significant differential 

change was detected across the panel (Fig 3.5). 

3.2.1.3.2 ER 

MCF7 cells are oestrogen receptor positive (ER+) and ESR1 gene expression was detected in this 

model using microarray analysis (log2 ≥8) (Fig 3.4). While ER expression was significantly reduced 

in TamR (2.7 fold change), it reduced prominently in TamRLT, FasR and FasRLT cells by 4.5, 5.3 

and 7.8 fold changes versus control (Fig 3.4), with levels in the latter line almost at the limit of 

detection. Thus the greatest falls in ER were seen for acquired antioestrogen resistance. In 

contrast, its expression was maintained in the oestrogen deprivation resistant MCF7(X) cells and 

modestly induced in MCF7(X) LT by 1.3 fold changes versus MCF7 (Fig 3.4). RT-PCR broadly 

verified the ER expression profile across the panel (Fig 3.5). Similar to the array data, ER 

expression was reduced in the antioestrogen resistant lines TamRLT, FasR and FasRLT, in this 

instance by 1.2, 2.5 and 2.9 fold changes respectively versus control (Fig 3.5). The fall was 

significant in the fulvestrant resistant lines. In contrast, ER expression was retained in the 

oestrogen deprivation resistant models by RT-PCR.  

3.2.1.3.3 pS2 

pS2 (an oestrogen (E2)/ER regulated gene; TFF1 gene) was also expressed on the microarrays 

across the model panel (log2 >8) (Fig 3.4). However, its expression was significantly reduced in 

the antioestrogen resistant models with reduced ER expression i.e. in TamR and particularly 

TamRLT, FasR and FasRLT by 1.8, 9.7, 5.6 and 8 fold changes respectively as compared to MCF7 

(Fig 3.4). In contrast, pS2 expression was retained in both oestrogen deprivation resistant lines 

with a modest induction in MCF7(X) by 1.2 fold change versus control (Fig 3.4). RT-PCR again 

broadly verified the pS2 expression profile across the panel (Fig 3.5). Similar to the array data, 

pS2 expression was most reduced in TamRLT, FasR and FasRLT by 1.37, 1.39 and 2 fold changes 

respectively as compared to MCF7 (Fig 3.5) while being retained in the oestrogen deprivation 

resistant lines. 



71 

 

 

 

 

 

 

 

Fig 3.4. Log 2 intensity plots generated using Genesifter displaying mean (+/-SEM) of three 

independent microarray experiments (N=3) for HER2, ER and pS2 mRNA expression in the 

model panel. Statistical analysis (ANOVA with Tukey post hoc correction) was performed to 

compare gene expression in each resistant model vs. MCF7 (*p<0.05, ** p<0.01 & *** 

p<0.001). Heatmaps represent gene expression in resistant models vs. MCF7 (Green: 

reduced gene expression, Red: induced gene expression and Black: no changes in gene 

expression as compared to MCF7). Fold changes for gene expression in resistant models vs. 

MCF7 are also tabulated. 
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Fig 3.5. Representative gels following RT-PCR and graphs display normalized mean volume of HER2, 

ER and pS2 expression signals across the model panel (Mean of three independent experiments, +/-

SEM for each cell line). Statistical analysis (ANOVA with Dunnett post hoc correction) was performed 

to compare gene expression in each model vs. MCF7 (*** p<0.001). Fold changes for gene 

expression in resistant models vs. MCF7 are tabulated. 
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3.2.2 Using the Gene 1.0ST microarrays to identify deregulated genes in the panel of 

endocrine resistant models 

A key project goal was to determine those gene probes whose upregulation or downregulation 

was common to all resistant models and thus may include genes within regulatory pathways 

shared by multiple forms of resistance irrespective of treatment type or duration. To achieve 

this, the pattern navigation tool on the Genesifter web page was enabled to compare the 

expression patterns of gene probes in the endocrine resistant models versus the responsive 

MCF7 model in baseline media. Two strategies were used to initially determine deregulated 

gene probes across the model panel; first, determining upregulated gene probes by using a cut-

point of ≥1.2 fold expression increase and second, determining downregulated gene probes 

again using ≥1.2 fold expression fall in each endocrine resistant model versus the responsive 

model. Control probes (background probes, Affymetrix array controls, intron-exon controls as 

well as unmapped human mRNAs) were excluded from both the upregulated and 

downregulated gene analysis for each model. The resultant deregulated gene probes were 

statistically tested (using ANOVA with Benjamini and Hochberg post hoc correction (p≤0.05) 

across the model panel). Subsequent bioinformatics analysis of the significant downregulated 

gene probe lists is shown in Table 3.2-3.8 (Appendix 1-6) and for upregulated gene probes in 

Tables 3.9-3.15 (Appendix 7-18) as detailed below. 

Using this approach to discriminate significant deregulated gene probes, 6 lists for 

downregulated gene probes (based on type and duration of antihormone treatment, Table 3.2) 

and 12 lists for upregulated gene probes (comparing each resistant models versus MCF7 and 

also comparing type and duration of antihormone treatment versus MCF7, Table 3.9) were 

generated in total for the TAMR, TAMRLT, FASR, FASRLT, MCF7(X) and MCF7(X)LT models. When 

considering individual resistant models, the highest number of upregulated probes was seen 

with the fulvestrant resistant lines, particularly for the long term FASRLT model. Lists of 

upregulated gene probes were then compared with each other to extract those “shared” gene 

probes that were upregulated in the resistant models either for a particular type or according to 

duration of antihormone. These were subsequently used to extract gene probes shared by all 

types of resistant models versus control. The same strategy was used to generate a further list 

for all “shared” downregulated gene probes in the resistant models versus the responsive model 

so as to potentially enrich for common mechanisms in antihormone resistance. This resulted in 

N=407 downregulated gene probes and N=572 upregulated gene probes that were shared by all 

resistant models (Table 3.2 and 3.9; see Appendix 6 and 18 for detailed lists). It was noted that 

more downregulated gene probes were shared by the tamoxifen resistant (TamR and TamRLT) 
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or the oestrogen deprived resistant models (MCF7(X) and MCF7(X)LT) (Table 3.2). In contrast, 

more upregulated gene probes were shared by the fulvestrant resistant models (FasR and 

FasRLT) and again by the oestrogen deprived resistant models (MCF7(X) and MCF7(X)LT) (Table 

3.9). It was also noted that there was a slightly larger number of down- or upregulated gene 

probes shared by all longer-term resistant models (TamRLT, FasRLT and MCF7(X)LT) compared 

with their shorter- term resistant counterparts (Tables 3.2 and 3.9).  

Heatmaps for both the downregulated (Fig 3.6A-3.6D) and upregulated (Fig 3.7A-3.7F) shared 

gene probes across the model panel were then generated by Genesifter with corresponding 

gene ID to confirm shared profile. In this instance, red on the heatmap indicates upregulated 

expression and green shows downregulated expression of shared genes versus the parental 

endocrine responsive MCF7 line (black). While magnitude of expression change could clearly 

vary substantially according to the particular resistant model, nevertheless the heatmaps 

confirmed a shared downregulated or upregulated profile for the 407 and 572 probes 

respectively.  

3.2.2.1 Ontology analysis of shared down-regulated genes in endocrine resistant 

models 

Following brief checking of the heatmap profiles of the significantly reduced gene probes (≥1.2 

fold decrease versus MCF7) (Fig 3.6A-3.6D), probe IDs for the significantly reduced genes in the 

endocrine resistant models were converted to ENSEMBL gene IDs via the ID conversion tool on 

the DAVID bioinformatics site (www.david.abcc.ncifcrf.gov) (Table 3.2). ENSEMBL gene IDs were 

then uploaded on to the Innatedb ontology analysis tool (www.Innatedb.com) (Breuer et al. 

2013). 

This mining tool is based on Gene Ontology Consortium (GO: WWW. Gneontology.org) and 

provides information about associations of genes and their encoded proteins with cellular 

component (localisation), biological process and molecular function in the cell. Ontological 

analysis was performed by monitoring over represented gene ontology (ORA-O) via the Innatedb 

hypergeometric algorithm with Benjamini and Hochberg post hoc correction (p≤0.05) to 

robustly-determine significant occurrence of more prevalent GO annotations. The final gene list 

utilised for this GO annotation analysis represented significant reduced genes shared between 

all resistant lines versus MCF7. Accordingly, ENSEMBL gene IDs for the 407 shared reduced genes 

(n= 559 Table 3.2) from the model panel were uploaded into the Innatedb tool to discover 53 

significantly over represented ontology terms (Table 3.2) versus cellular component, molecular 

function and biological process (Tables 3.3-3.5). In total, 559 ENSEMBL gene IDs were detected 

http://www.david.abcc.ncifcrf.gov/
http://www.innatedb.com/
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for 407 probe IDs using ID conversion tool on DAVID bioinformatics since there was more than 

one ENSEMBL gene IDs detected for some gene probe IDs. GO terms identified from ORA-O 

analysis associated with extracellular vesicular exosome (such as ITGB1, ITGB4, ITGB6, PLEC, 

DSC2 and DSG2; p=4.89E-07), with the molecular function calcium ion binding (such as CDH3, 

CDH18, DSC2, DSG2 and PCDH9; p=2.51E-05) and with the biological process cell junction 

assembly (such as CDH3, CDH18, ITGB1, ITGB4 and PLEC; p=0.000868) were the most 

significantly enriched GO terms for reduced genes shared across the resistant model panel 

(Tables 3-5). Further significant GO terms including plasma membrane and desmosome for 

cellular components, the biological processes of cell adhesion, cell-cell junction organization and 

also signal transduction (including receptor complexes such as IGF1R) and negative regulation 

of multicellular organism growth were reduced across the resistant models versus MCF7 (Table 

3.3 and 3.5). Therefore, reduction in cell adhesion and decreases in pathways negatively 

regulating growth contribute to the aggressive phenotypes of resistant models versus MCF7.  

Tamoxifen resistant models with 1504 significantly reduced probe IDs (3465 ENSEMBL IDs) were 

involved in Go terms associated with protein binding and the transcription DNA-binding 

template in the nucleus. Fulvestrant resistant models with 462 significantly reduced probe IDs 

(560 ENSEMBL IDs) were related to GO terms associated with calcium ion binding, cell junction 

assembly and extracellular vesicular exosome. Oestrogen deprived resistant models with 1626 

significantly reduced probe IDs (4820 ENSEMBL IDs) were involved in Go terms associated with 

protein binding, axon guidance and again extracellular vesicular exosome. Shorter-term 

resistant models with 592 significantly reduced probe IDs (746 ENSEMBL IDs) were related to Go 

terms associated with calcium ion binding, signal transduction and extracellular vesicular 

exosome, while longer-term resistant models with 640 significantly reduced probe IDs (3529 

ENSEMBL IDs) were involved in calcium ion binding but also genes linked to homophilic cell 

adhesion and cell-cell adherens junction. Finally, 407 significantly shared reduced probe IDs (559 

ENSEMBL IDs) were related to GO terms associated with calcium ion binding, cell junction 

assembly and extracellular vesicular exosome (Table 3.2 and 3.6).  

3.2.2.2 Pathway analysis of shared reduced genes in endocrine resistant models 

Following the gene ontology analysis, ENSEMBL gene IDs for significantly reduced genes 

(Appendix 6) in the endocrine resistant models were also uploaded into the Innatedb online tool 

to determine the biological pathways (ORA-P analysis) which were significantly over represented 

in the resistant models. Associations of the uploaded genes with biological pathways from KEGG 

databases (www.genome.jp/kegg) were determined via ORA-P and enrichment of genes in the 

most significant pathways was revealed via Innatedb’s hypergeometric algorithm with Benjamini 
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and Hochberg post hoc correction (p≤0.05) (Table 3.7). Based on this analysis, axon guidance 

(including the downregulated genes EFNA4, EFNA5, EFNB2, ITGB1, NRP1, SEMA3A, SEMA3C & 

ROBO1) was the most significant (p =0.00199) reduced shared pathway across the model panel 

(Table 3.7).  

Axon guidance had also proved significant on the GO analysis of biological process for shared 

reduced genes (Table 3.5), and appeared a particularly prominent biological process for 

downregulated genes in oestrogen deprivation resistant cells (Table 3.6). A summary of the ORA-

P pathways obtained for reduced genes based on type/duration of endocrine resistance is also 

illustrated on Table 3.8. This again indicates the most significant pathway for down regulated 

genes is axon guidance in all types of antihormone resistance, and is also most significant for 

longer-term resistant models. 

 

 

 

Table 3.2. Number of significantly reduced gene probe IDs from the microarrays, 

corresponding ENSEMBL gene IDs after conversion in DAVID bioinformatics, ORA 

ontology terms and ORA pathways obtained using Innatedb for all cell model 

comparisons.  
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Fig 3.6. (A) Heatmap displays first 100 shared downregulated gene probes listed according to 

gene (≥1.2 fold changes) identified by comparing microarrays from endocrine resistant and the 

endocrine responsive models. Expression of these genes in the resistant models vs. MCF7 was 

statistically tested (ANOVA with Benjamini and Hochberg post hoc correction) and all were 

p≤0.05. 
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Fig 3.6. (B) Heatmap displays second 100 shared downregulated gene probes listed according 

to gene (≥1.2 fold changes) identified by comparing microarrays from endocrine resistant and 

the endocrine responsive models. Expression of these genes in the resistant models vs. MCF7 

was statistically tested (ANOVA with Benjamini and Hochberg post hoc correction) and all were 

p≤0.05. 
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Fig 3.6. (C) Heatmap displays third 100 shared downregulated gene probes listed according to 

gene (≥1.2 fold changes) identified by comparing microarrays from endocrine resistant and the 

endocrine responsive models. Expression of these genes in the resistant models vs. MCF7 was 

statistically tested (ANOVA with Benjamini and Hochberg post hoc correction) and all were 

p≤0.05. 
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Fig 3.6. (D) Heatmap displays last 107 shared downregulated gene probes listed according to 

gene (≥1.2 fold changes) identified by comparing microarrays from endocrine resistant and the 

endocrine responsive models. Expression of these genes in the resistant models vs. MCF7 was 

statistically tested (ANOVA with Benjamini and Hochberg post hoc correction) and all were 

p≤0.05. 
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Table 3.3. Table displays significant ORA-O GO terms for the shared genes (after ENSEMBL ID 

conversion) that were decreased in all resistant models vs. MCF7 (≥1.2 fold changes & p≤0.05), 

based on cellular compartment ontologies. Significance of the Go term after Innatedb analysis 

(Hypergeometric algorithm with Benjamini & Hochberg post hoc correction) and associated gene 

IDs for each GO term are provided. 
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Table 3.4. Table displays significant ORA-O GO terms for the shared genes (after ENSEMBL ID 

conversion) that were decreased in all resistant models vs. MCF7 (≥1.2 fold changes & p≤0.05), 

based on molecular function ontologies. Significance of the Go term after Innatedb analysis 

(Hypergeometric algorithm with Benjamini & Hochberg post hoc correction) and associated gene 

IDs for each GO term are provided. 



83 

 

 

 

Table 3.5 continue… 
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Table 3.5. Table displays significant ORA-O GO terms for the shared genes (after ENSEMBL ID 

conversion) that were decreased in all resistant models vs. MCF7 (≥1.2 fold changes & p≤0.05), 

based on biological process ontologies. Significance of the Go term after Innatedb analysis 

(Hypergeometric algorithm with Benjamini & Hochberg post hoc correction) and associated gene 

IDs for each GO term are provided. 
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Table 3.6. Summary of most significant ORA-O GO terms from Innatedb for reduced genes (≥1.2 

fold changes & p≤0.05) based on type/duration of endocrine resistance across resistant models. 

Table 3.7. ORP-P pathways for genes reduced in all the resistant models (≥1.2 fold changes & 

p≤0.05) identified as significant using Innatedb analysis. Significance of the pathway after 

Innatedb analysis (Hypergeometric algorithm with Benjamini & Hochberg post hoc correction) and 

associated gene IDs for each pathway are provided. 
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3.2.2.3 Ontology analysis of shared induced genes in endocrine resistant models 

ENSEMBL gene IDs for the 572 shared induced gene probes (n=636 ENSEMBLE gene IDs Table 

3.9, see full list in Appendix 18) (Fig 3.7A-3.7F, Table 3.9) were uploaded on Innatedb data base 

to discover 123 significantly over represented ontology terms versus cellular component, 

molecular function and biological process using ORA-O analysis (Table 3.9). According to this 

analysis, genes that were associated with the following cellular components were the most 

frequently occurring induced genes shared in all resistant models (Table 3.10): 

1) Mitochondrion (p=1.53E-23) including genes for pyruvate metabolism (PDHA1), TCA 

cycle (ACO2, IDH3B, SDHB, FH and MDH2), oxidative phosphorylation (NDUFA3/8, 

NDUFAF2/4, NDUFB5/9/10, NDUFS3, SDHB, UQCRFS1, COX7B, PPA2 and MT-ATP6) and 

mitochondrial ribosomal subunits (MRPL15, MRPL17, MRPL2, MRPL21, MRPL34, 

MRPL37, MRPL40, MRPL47, MRPS15, MRPS18A, MRPS18B, MRPS24, MRPS34 and 

MRPS5).  

2) Mitochondrial inner membrane (p=2.3E-14) including genes which were associated with 

regulation of mitochondrial biogenesis (STOML2; plays a role in cell proliferation and 

migration), oxidative phosphorylation (NDUFA3, NDUFA7, NDUFA8, NDUFA9, NDUFB10, 

NDUFB5, NDUFB9, NDUFS3, SDHB & UQCRFS1), pyruvate carrier (BRP44), pyrimidine 

transporter (SLC25A33), ADP/ATP carrier (SLC25A5) and translocase inner mitochondrial 

membrane (TIMM44, TIMM8A & TIMM9).  

3) Mitochondrial matrix (p=2.7E-8) including genes in TCA cycle (ACO2 and IDH3B), β-

oxidation of fatty acids (HADH), ketogenesis (HMGCS2), integrity of mitochondrial 

genome (LONP1), glutamate and α-ketoglutarate metabolism (GOT1 & GOT2), butrate 

Table 3.8. Summary of ORA-P pathways identified as significant using Innatedb analysis for genes 

reduced (≥1.2 fold changes & p≤0.05) according to type/duration of endocrine resistance and 

shared across resistant models is represented. 
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metabolism (ACSM3), heme biosynthesis (FECH), repair and assembly of iron-sulphur 

cluster (FXN) and biosynthesis of amino acids (SHMT2).  

For molecular function, aminoacyl-tRNA ligase activity (such as CARS, HARS, IARS, LARS, MARS, 

WARS and YARS; p=7.2E-5) was the most frequently occurring induced genes shared in all 

resistant models (Table 3.11).  

For biological process, small molecule metabolic process (p=1.8E-14) which generate low 

molecular weight, monomeric, non-encoded metabolites via amino acid synthesis (ACAT1, 

ALDH9A1, APIP, ASNS, ASS1, GOT1, GOT2, KMO and PSPH), acetyl CoA synthesis (ACSS2 and 

COASY), lipid biosynthesis (AGPAT6, CHPT7, EPT1 and PTDSS1), glycosamino glycan biosynthesis 

(B4GALT7 and EXT2), fatty acid elongation process (ELOVL1 and ELOVL4), phosphate pentose 

pathway (G6PD), glutathine metabolism (GSS, GSTA4, GSTO1 and MGST1), β-oxidation of fatty 

acids (HADH), ketogenesis (HMGCS2), nucleotide sugar/amino sugar metabolism (PFKFB2), 

glycolysis (PGM1), purine metabolism (PNP), proteasome (PSMA1, PSMA6, PSMB6, PSMC4, 

PSMD2, PSMD8, PSME1, PSME3 and PSME3), pyruvate metabolism (PDHA1), TCA cycle (ACO2, 

IDH1, IDH3B, SDHB, FH and MDH2) and oxidative phosphorylation (NDUFA3, NDUFA7, NDUFA8, 

NDUFA9, NDUFB5, NDUFB9, NDUFB10, NDUFS3, COX7B and UQCRFS1) were the most 

frequently occurring induced genes shared in all resistant models (Tables 3.12). Moreover, genes 

that were associated to cellular response to zinc ion (MT1E, MT1F, MT1G, MT1H, MT1X and 

MT2A; p=1.6E-06) for biological process were also shared in all resistant models (which is further 

studied in Chapter 5). 

The same approach was used to compare endocrine resistant models based on type/duration 

of endocrine resistance for significantly induced GO terms (Table 3.13). In total, 636 ENSEMBL 

gene IDs were detected for 572 probe IDs using the ID conversion tool in the DAVID 

bioinformatics resource, since there was more than one ENSEMBL gene ID detected for some 

gene probe IDs. According to ENSEMBL gene IDs, more upregulated genes were shared by the 

fulvestrant resistant models (FasR and FasRLT) and by the oestrogen deprived resistant models 

(MCF7(X) and MCF7(X)LT) (Table 3.9). Also, more upregulated genes were shared by long-term 

resistant models (TamRLT, FasRLT and MCF7(X)LT) as compared with shorter-term resistant 

counterparts (Table 3.9).  

Tamoxifen resistant models had 1835 significantly induced probe IDs (2419 ENSEMBL IDs) that 

were involved in Go terms associated with electron carrier activity, small molecule metabolic 

process and mitochondrion. Fulvestrant resistant models had 2897 significantly induced probe 

IDs (3107 ENSEMBL IDs) that were related to GO terms associated with poly (A) RNA binding, 
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and again small molecule metabolic process and mitochondrion. Oestrogen deprived models 

had 2312 significantly induced probe IDs (4430 ENSEMBL IDs) that were involved in Go terms 

associated with aminoacyl tRNA ligase activity, gene expression and similarly mitochondrion. 

The shorter-term resistant models had 877 significantly induced probe IDs (1079 ENSEMBL IDs) 

related to Go terms associated with aminoacyl tRNA ligase activity, and also small molecule 

metabolic process and mitochondrion. Long-term resistant models had957 significantly induced 

probe IDs (1079 ENSEMBL IDs) that were involved in aminoacyl tRNA ligase activity, gene 

expression and mitochondrion. Finally, there were 572 significantly shared induced probe IDs 

(636 ENSEMBL IDs) and these were related to GO terms associated with aminoacyl tRNA ligase 

activity, small molecule metabolic process and mitochondrion (Table 3.9 and 3.13).  

3.2.2.4 Pathway analysis of shared induced genes in endocrine resistant models 

The same list of shared induced genes (N=572) (Appendix 18) was used to analyse ORA-P 

pathways shared across resistant models. ENSEMBL gene IDs for the shared significantly induced 

genes in endocrine resistant models were uploaded into the Innatedb online tool to determine 

biological pathways (ORA-P) which are significantly over represented in the resistant models. 

(Table 3.15, Appendix 18). Of the 28 resultant significant pathways, the most significant over 

represented pathway for the genes induced across all the endocrine resistant models was 

defined as “metabolic pathways” (p=4.16E-16) (Table 3.15). This comprised 89 genes 

deregulated in all endocrine resistant lines which participate in particular metabolic pathways 

including TCA cycle, glutathione metabolism, oxidative phosphorylation (OxPhos), arginine & 

proline metabolism, pyruvate metabolism, one carbon pool by folate, butanoate metabolism, 

alanine/aspartate and glutamate metabolism, amino sugar/nucleotide sugar metabolism, 

valine/leucine and isoleucine metabolism, cysteine and methionine metabolism, tryptophan 

metabolism, phenylalanine, tyrosine & tryptophan biosynthesis, pyrimidine metabolism, 

terpenoid backbone biosynthesis, glycolysis/gluconeogenesis, glycine/serine and threonine 

metabolism and glyoxylate/decarcoxylate metabolism were also represented in the list (Table 

3.15). These metabolic pathways were also implicated from the ORP-O analysis for biological 

process (Table 3.12).  

Aminoacyl tRNA biosynthesis was the second most prominent pathway whose induction was 

shared by the resistant lines (p=3.5E-05) and this had again been implicated from molecular 

function analysis (Table 3.11). The same approach was used to compare endocrine resistant 

models based on type/duration of endocrine resistance for the most significant induced 

pathway (Table 3.14, Appendix 7-17), again indicating that enrichment of “metabolic pathways” 
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was significant and the most prominent pathway in the gene lists from the resistant models 

irrespective of endocrine strategy.  

 

 

 

Table 3.9. Number of significantly induced gene probe IDs from the microarrays, corresponding 

ENSEMBL gene IDs after conversion in DAVID bioinformatics, ORA ontology terms and ORA 

pathways obtained using Innatedb for all cell model comparisons.  
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Fig 3.7. (A) Heatmap displays first 100 shared upregulated gene probes listed according to gene 

(≥1.2 fold changes) identified by comparing microarrays from endocrine resistant and the 

endocrine responsive models. Expression of these genes in the resistant models vs. MCF7 was 

statistically tested (ANOVA with Benjamini and Hochberg post hoc correction) and all were 

p≤0.05. 
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Fig 3.7. (B) Heatmap displays second 100 shared upregulated gene probes listed according to 

gene (≥1.2 fold changes) identified by comparing microarrays from endocrine resistant and the 

endocrine responsive models. Expression of these genes in the resistant models vs. MCF7 was 

statistically tested (ANOVA with Benjamini and Hochberg post hoc correction) and all were 

p≤0.05. 
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Fig 3.7. (C) Heatmap displays third 100 shared upregulated gene probes listed according to gene 

(≥1.2 fold changes) identified by comparing microarrays from endocrine resistant and the 

endocrine responsive models. Expression of these genes in the resistant models vs. MCF7 was 

statistically tested (ANOVA with Benjamini and Hochberg post hoc correction) and all were 

p≤0.05. 
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Fig 3.7. (D) Heatmap displays fourth 100 shared upregulated gene probes listed according to 

gene (≥1.2 fold changes) identified by comparing microarrays from endocrine resistant and 

the endocrine responsive models. Expression of these genes in the resistant models vs. MCF7 

was statistically tested (ANOVA with Benjamini and Hochberg post hoc correction) and all 

were p≤0.05. 
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Fig 3.7. (E) Heatmap displays fifth 100 shared upregulated gene probes listed according to gene 

(≥1.2 fold changes) identified by comparing microarrays from endocrine resistant and the 

endocrine responsive models. Expression of these genes in the resistant models vs. MCF7 was 

statistically tested (ANOVA with Benjamini and Hochberg post hoc correction) and all were 

p≤0.05. 
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Fig 3.7. (F) Heatmap displays last 72 shared upregulated gene probes listed according to gene 

(≥1.2 fold changes) identified by comparing microarrays from endocrine resistant and the 

endocrine responsive models. Expression of these genes in the resistant models vs. MCF7 was 

statistically tested (ANOVA with Benjamini and Hochberg post hoc correction) and all were 

p≤0.05. 
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Table 3.10 continue… 
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Table 3.10. Table displays significant ORA-O GO terms for the shared genes (after ENSEMBL ID 

conversion) that were increased in all resistant models vs. MCF7 (≥1.2 fold changes & p≤0.05), 

based on cellular compartment ontologies. Significance of the Go term after Innatedb analysis 

(Hypergeometric algorithm with Benjamini & Hochberg post hoc correction) and associated gene 

IDs for each GO term are provided. 
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Table 3.11. Table displays significant ORA-O GO terms for the shared genes (after ENSEMBL ID 

conversion) that were increased in all resistant models vs. MCF7 (≥1.2 fold changes & p≤0.05), 

based on molecular function ontologies. Significance of the Go term after Innatedb analysis 

(Hypergeometric algorithm with Benjamini & Hochberg post hoc correction) and associated gene 

IDs for each GO term are provided. 
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Table 3.12 continue… 
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Table 3.12 continue… 
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Table 3.12 continue… 
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Table 3.12. Table displays significant ORA-O GO terms for the shared genes (after ENSEMBL ID 

conversion) that were increased in all resistant models vs. MCF7 (≥1.2 fold changes & p≤0.05), 

based on biological process ontologies. Significance of the Go term after Innatedb analysis 

(Hypergeometric algorithm with Benjamini & Hochberg post hoc correction) and associated gene 

IDs for each GO term are provided. 



103 

 

 

 

 

 

Table 3.13. Summary of most significant ORA-O GO terms from Innatedb for induced genes (≥1.2 

fold changes & p≤0.05) based on type/duration of endocrine resistance across resistant models. 

Table 3.14. Summary of ORA-P pathways identified as significant using 

Innatedb analysis for genes induced (≥1.2 fold changes & p≤0.05) according 

to type/duration of endocrine resistance and shared across resistant models 

is represented. 
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Table 3.15 continue… 
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3.2.2.5 Functional classification of the shared induced metabolic genes (N=89) derived 

from the model panel indicates mitochondrial TCA and oxidiative phosphorylation 

pathway enrichment in resistance  

Since it may have a bearing on proliferation of the resistant models, the most significant 

pathway comprising shared induced genes, metabolic pathways, was further investigated for 

detailed biological functions using the functional classification tool in DAVID bioinformatics. 

ENSEMBL gene IDs for the 89 induced metabolic probe IDs (gene set from metabolic pathway, 

Table 3.15) shared by all resistant lines were subsequently uploaded into the DAVID functional 

classification tool to categorize functionally-similar genes in the same cluster. This generated 

an enrichment score for each cluster in order to begin to better- define if there was 

enrichment of particular metabolic pathways. For this approach, a medium stringency 

classification was applied in the tool to allow enough genes to pass the functional classification 

Table 3.15. ORP-P pathways for genes induced in all the resistant models (≥1.2 fold changes & 

p≤0.05) identified as significant using Innatedb analysis. Significance of the pathway after Innatedb 

analysis (Hypergeometric algorithm with Benjamini & Hochberg post hoc correction) and 

associated gene IDs for each pathway are provided. 
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algorithm. The clustering algorithm was based on kappa calculation 

www.david.ncifcrf.gov/helps/functional_classification). Similarity term overlap which shows 

the minimum number of annotation overlaps between two genes was adjusted in the tool to 4 

in order to qualify for the kappa calculation. Similarity threshold value, which determines the 

minimum kappa value with significant biological function, was set in the tool to 0.35 and multi-

linkage threshold was considered as 50% so as to control how groups merge each other (higher 

percentage gives sharper separation between genes in each group OR it results in more tightly 

associated genes in each group).  

Six gene clusters (“gene groups”) were thus generated from the induced metabolic gene list 

(Table 3.15). Heatmaps for all six functional clusters were then generated within DAVID 

(Fig.3.8A-F). In this instance, green on the heatmap indicated a positive association of gene term 

with the reported biological function, whereas black indicated there was as yet no available data 

for association between a gene and a particular functional annotation (GO term).  

The first gene cluster which had the highest enrichment score (7.8) contained N=11 ENSEMBL 

gene IDs coding for NADH dehydrogenase (NDUFA3, NDUFA8, NDUFA9, NDUFB5, NDUFB9, 

NDUFB10 and NDUFS3), ubiquinol-cytochrome c reductase (UQCRFS1), cytochrome c oxidase 

(MT-CO3 and COX7B) and ATP synthase subunits (MT-ATP6). Scanning the GO ontologies used 

to cluster these genes (Fig 3.8A) revealed such genes are associated with electron transport 

chain and oxidative phosphorylation in the mitochondrial inner membrane which are key for 

ATP synthesis (Fig 3.8A, Table 3.16). Deregulation of genes in oxidative phosphorylation were 

also associated with Alzheimer’s, Parkinson’s and Huntington diseases. 

The second cluster with a 6.5 enrichment score contained N=4 ENSEMBL gene IDs coding for 

TCA cycle enzymes (ACO2, IDH3B, MDH2 and FH) which cumulatively are associated with 

generation of precursor metabolites and energy, acetyl CoA catabolic process, TCA cycle in the 

mitochondrial matrix (Fig 3.8B, Table 3.16).  

The third cluster had a much smaller 2.2 enrichment score and contained N=4 ENSEMBL gene 

IDs coding for choline phosphotransferase 1 (CHPT1), 1-acylglycerol-3-phosphate O-

acyltransferase 6(AGPAT6), selenoprotein 1 (EPT1; SELI) and phosphatidyl serine synthase 1 

(PTDSS1) which cumulatively are associated with the lipid/phospholipid biosynthesis process 

and the organophosphate metabolic process for membrane biosynthesis (Fig 3.8C, Table 3.16).  

The fourth cluster was also more minor, with a 1.7 enrichment score, again contained N=4 

ENSEMBL gene IDs coding for phosphatidylinositol glycan anchor biosynthesis class O (PIGO), 

STT3 subunit of oligosaccharyl transferase complex (STT3A), exostoses (EXT2) and asparagine-
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linked glycosylation 3 (ALG3) which are associated with glycan biosynthesis on the smooth 

endoplasmic reticulum and glycoprotein synthesis for the membrane (Fig 3.8D, Table 3.16).  

The fifth cluster with a modest 1.6 enrichment score contained N=4 ENSEMBL gene IDs coding 

for RNA polymerase polypeptides (POLR2C, POLR3D, POLR2H and POLR2I). RNA polymerase is 

associated with RNA polymerization in the nucleus (Fig 3.8E, Table 3.16). The last cluster with a 

lower 1.5 enrichment score contained N=4 ENSEMBL gene IDs coding for GalNAc-T6/12/14 and 

galactosyltransferase 1 (GALNT6, GALNT12, GALNT14 & B4GALT7) which are associated with 

cation/ion binding, glycan biosynthesis and carbohydrate binding in the Golgi apparatus for 

membrane biosynthesis (Fig 3.8F, Table.3.16). 

The functional clustering results (Table 3.16) and superior enrichment scores for the induced 

genes as well as the ORA-O (small molecule metabolic process for biological process (Table 3.12) 

and mitochondrion for cellular components (Table 3.10)) and ORA-P pathway (Table 3.15) data 

described above show oxidative phosphorylation and also TCA cycle as being particularly 

prominent metabolic pathways induced in all endocrine resistant models and so worthy of 

further study in the thesis. 
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Table 3.16. Functional classification and associated enrichment scores were generated using the 

functional classification tool within the DAVID bioinformatics resource for shared induced metabolic 

genes in resistant models.  
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Fig 3.8. (A) Heatmap representing cluster 1 following functional classification analysis using DAVID 

bioinformatics tool. The cluster had an enrichment score of 7.8 and includes genes associated with 

electron transport chain and oxidative phosphorylation in the mitochondria as indicated by the gene 

ontology (GO) terms. 
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Fig 3.8. (B) Heatmap representing cluster 2 following functional classification analysis using DAVID 

bioinformatics tool. The cluster had an enrichment score of 6.5 and includes genes associated 

with TCA cycle, acetyl CoA catabolic process, generation of precursor metabolites and energy in 

the mitochondria as indicated by the GO terms. 
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Fig 3.8. (C) Heatmap representing cluster 3 following functional classification analysis using 

DAVID bioinformatics tool. The cluster had an enrichment score of 2.2 and includes genes 

associated with lipid/phospholipid biosynthesis process and organophosphate metabolic process 

integral to the membrane as indicated by the GO terms. 

 

 



112 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.8. (D) Heatmap representing cluster 4 following functional classification analysis using 

DAVID bioinformatics tool. The cluster had an enrichment score of 1.7 and includes genes 

associated with glycan biosynthesis and glycoprotein synthesis on the endoplasmic reticulum 

membrane as indicated by the GO terms 
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Fig 3.8. (E) Heatmap representing cluster 5 following functional classification analysis using 

DAVID bioinformatics tool. The cluster had an enrichment score of 1.6 and includes genes 

associated with RNA biosynthesis and transcription process in the nucleus as indicated by the 

GO terms 
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Fig 3.8. (F) Heatmap representing cluster 6 following functional classification analysis using 

DAVID bioinformatics tool. The cluster had an enrichment score of 1.5 and includes genes 

associated with glycan biosynthesis and carbohydrate binding in the Golgi apparatus as 

indicated by the GO terms 
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3.2.3 Ontology and pathway analysis of induced genes following initial endocrine 

treatment compared with resistance using U133A arrays 

A series of Affymetrix U133A gene arrays was subsequently examined to address whether early 

endocrine treatment of MCF7 cells induced gene changes that are then retained in the AH 

resistant panel, with a particular focus being the candidate resistance pathways TCA/OxPhos, or 

whether such induced gene events are only found once acquired resistance developed in the 

model panel. This was achieved by (i) cataloguing the over-represented ontologies and pathways 

during initial endocrine treatment of MCF7 cells; (ii) comprehensively-detailing whether cellular 

metabolic pathways with induced genes, including TCA and OxPhos, are different in the resistant 

lines compared with those induced by initial endocrine treatment of MCF7 cells. 

For these studies, the control for the endocrine treated panel comprised MCF7 cells grown in 

phenol red-free RPMI1640 supplemented with 4mM glutamine, 5% charcoal-stripped foetal calf 

serum (SFCS) and 10-9M oestradiol (E2) treatment. Endocrine treatments which are growth 

inhibitory in responsive MCF7 cells then comprised (i) removal of E2 using SFCS or using heat 

deactivated SFCS (HSFCS, the condition used to deprive E2 for the MCF7(X) and MCF7(X)LT lines), 

(ii) treating with either tamoxifen (10-7M) or (iii) treating with fulvestrant (10-7M). All cells were 

grown for 10 days in treatment prior to mRNA extraction for microarray analysis. This response 

array data were then subjected to transcriptional analysis (using Genesifter) to identify 

significantly induced genes (≥1.2 fold change) as compared to the control cells (MCF7+E2).  

3.2.3.1 Over-represented ontologies and pathways during initial endocrine treatment 

In total 551 shared genes were significantly induced across the four endocrine treatments as 

compared to the control cells. “Lysosome pathway” was the only significantly induced pathway 

(p=0.031) shared by the endocrine-treated cells (Table 3.17). Based on ontology analysis of the 

shared induced genes, extracellular vesicular exosome (for cellular component ontology), 

aldehyde dehydrogenase (NAD) activity (for molecular function ontology) and small molecule 

metabolic process (for biological process ontology) were significantly induced across the panel 

(Table 3.18-3.20). Small molecule metabolic process (for biological process ontology) for the 

endocrine treated panel were associated with lipid metabolism (ACAA1, ACACB, CERK, NEU1, 

SGPL1, SMPD1, ACHE, CDS2, PGS1, ALDH7A1 and ALDH9A1), amino acid metabolism (ALDH4A1, 

ALDH6A1, ALDH7A1, ALDH9A1, ALDH1A3, AOX1, BCKDHB, AASS, GCDH, ARG2 and COMT), 

phosphate pentose pathway (PRPS1 and PRSS3) and inositolphosphate metabolism (INPP4A and 

INPP5A) (Table 3.19). However, the induced small molecule metabolic process in the resistant 

panel was broadly associated with mitochondrial metabolic processes including pyruvate 
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metabolism (PDHA1), TCA cycle (ACO2, IDH1, IDH3B, SDHB, FH and MDH2) and oxidative 

phosphorylation (NDUFA3, NDUFA7, NDUFA8, NDUFA9, NDUFB5, NDUFB9, NDUFB10, NDUFS3, 

COX7B and UQCRFS1) (Table 3.12). For biological processes in the endocrine treated panel, 

positive regulation of intrinsic apoptotic signalling pathway was also significant (p=0.038), which 

may be associated with the initial growth inhibitory effect of endocrine treatment in ER+ cells 

such as MCF7. In conclusion, induced mitochondrial pathways (TCA cycle and OxPhos) did not 

appear to be implicated during endocrine response from ORP-O ontology and pathway analysis. 

 

 

 

 

 

Table 3.17. Over-represented pathway analysis for shared induced genes (≥1.2 fold 

changes) across the MCF7 panel treated with endocrine agents for 10 days. Lysosome 

pathway was the only significantly induced pathway in the endocrine treated cells as 

compared to oestradiol treated control (Innatedb/KEGG). 

 

Table 3.18. Over represented ontology analysis for shared induced genes (≥1.2 fold changes) across 

the MCF7 panel treated with endocrine agents. GO term associated with aldehyde dehydrogenase 

(NAD) activity was the most significantly induced molecular function in endocrine responsive cells as 

compared to oestradiol treated control (Innatedb).  
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Table 3.19. Over represented ontology analysis for shared induced genes (≥1.2 fold changes) across 

the MCF7 panel treated with endocrine agents. GO term associated with extracellular vesicular 

exosome was the most significantly induced cellular component in endocrine responsive cells as 

compared to oestradiol treated control (Innatedb). 
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Table 3.20. Over represented ontology analysis for shared induced genes (≥1.2 fold changes) across 

the MCF7 panel treated with endocrine agents. GO term associated with small molecule metabolic 

process was the most significantly induced biological process in endocrine responsive cells as 

compared to oestradiol treated control (Innatedb). 
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3.2.3.2 Cellular metabolic pathways with induced genes in resistance compared with initial 

endocrine treatment 

The project then focussed on more specifically-evaluating whether any shared induced 

metabolic genes in endocrine resistance were also commonly-induced by initial endocrine 

treatment. Those genes that were induced on the arrays by all the 10 day endocrine treatments 

in MCF7 which encode genes in metabolic pathways were identified using Innatedb database. 

These were compared to shared induced metabolic genes identified from the resistant panel 

(Table 3.15). For this detailed study, metabolic pathways were broadly subdivided to 

carbohydrate metabolism, energy metabolism, lipid metabolism, nucleotide metabolism, amino 

acid metabolism, glycan metabolism, cofactors and vitamin metabolism, xenobiotic metabolism 

and terpenoids/polyketides metabolism pathways to enable the comparison. Induced metabolic 

genes shared by all resistant cell lines and during endocrine treatment were ALDH9A1 

(implicated in carbohydrate, lipid and amino acid metabolism indicated in red, Tables 3.21B, 

3.23B, 3.25B and 3.26), B4GALT7, UST and GALNT12 (implicated in glycan biosynthesis indicated 

in red, Table 3.27B). Although further genes in some metabolic pathways were also induced in 

the AH treated panel they were not significant (Appendix 19). Furthermore, there was evidence 

that the various metabolic pathways that contained induced genes differed between the 

endocrine resistant and responding panel (Table 3.21-3.30). Various carbohydrate metabolic 

pathways were examined in resistant and AH treated panels. TCA cycle, butanoate metabolism, 

glyoxylate and dicarboxylate metabolism were only induced across the resistant panel but not 

in the AH treated panel (Table 3.21A versus Table 3.21B). 
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Table 3.21A. Shared induced genes in the resistant panel which take part in carbohydrate 

metabolism pathways. 
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While some components of oxidative phosphorylation for energy metabolism were induced in 

the AH treated and resistant panels, the gene identities were always non-overlapping. Of note, 

only 2 OxPhos genes were induced in AH treated cells compared to 13 in resistant lines (Table. 

3.22).  

Several genes which were related to ether lipid metabolism, arachidonic acid metabolism, 

synthesis and degradation of ketone bodies, fatty acid degradation and fatty acid elongation in 

metabolism of fatty acids were only induced across the resistant panel but not the AH treated 

panel (Table. 3.23A), with fewer overall changes in such pathways during initial treatment (Table 

3.23B). Some components of nucleotide metabolism including purine/pyrimidine metabolism 

were induced in both responsive and AH treated panels but again the gene identities were not 

overlapped and there were fewer changes in the endocrine treated MCF7 cells (Table 3.24). 

Table 3.21B. Shared induced genes in endocrine treated MCF7 cells 

which take part in particular carbohydrate metabolism pathways. 

ALDH9A1 (highlighted in red) induced in this category that overlaps 

with resistance (see Table 3.21A). Of note there was no evidence 

of TCA cycle gene induction in the endocrine treated cells.  
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Table 3.22. Shared induced genes in the resistant lines (left 

table) compared with those shared in endocrine treated 

MCF7 cells (right table) which take part in mitochondrial 

energy metabolism. Note: NDUFA3 and ATP5J2 are 

manually curated shared induced genes in all resistant 

cells. 

Table 3.23A. Shared induced genes in the resistant panel which take part in lipid metabolism.  

Table 3.23B. Shared induced genes in endocrine 

treated MCF7 cells which take part in lipid metabolism. 

ALDH9A1 (highlighted in red) is induced in this category 

and overlaps with resistance (see Table 3.23A) 
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Expression of different genes involved in amino acid metabolism was also induced in both the 

resistant and AH treated cells. Thus, genes in tryptophan metabolism, cysteine and methionine 

metabolism, alanine, aspartate and glutamate metabolism, and phenylalanine metabolism were 

only induced across the resistant panel (Table 3.25A) compared with responding cells (Table 

3.25B). Expression of different genes for valine, leucine and isoleucine degradation, arginine and 

proline metabolism, lysine degradation, tyrosine metabolism, glycine, serine and threonine 

metabolism were induced in resistant and AH treated models (Fig 3.25A-3.25B), with only 

ALDH9A1 implicated as a shared gene in many of these metabolic pathways. Moreover, gene 

expression for metabolism of other amino acids including beta-alanine metabolism (which again 

included ALDH9A1) were induced in both resistant and AH treated panels but induced 

glutathione metabolism genes were only detected in the resistant lines (Table 3.26). 

 

Table 3.24. Shared induced genes in the resistant lines (left table) 

compared with those shared in endocrine treated MCF7 cells (right 

table) which take part in nucleotide metabolism.  
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Table 3.25A. Shared induced genes in the resistant panel which take part in amino acid metabolism.  

Table 3.25B. Shared induced genes in the endocrine treated MCF7 panel which take part in 

amino acid metabolism. ALDH9A1 (highlighted in red) induced in this category that overlaps 

with resistance (see Table 23A). 
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Components of glycan biosynthesis and metabolism including mucin type O-glycan biosynthesis, 

glycosaminoglycan biosynthesis and other glycan degradation were induced in both resistant 

and AH treated models but in general had differing identities (Table 3.27A and 3.27B). However, 

the expression of B4GALT7, UST and GALNT12 within such pathways was induced in both 

resistant and AH treated panels (Table. 3.27A and 3.27B). Genes which participate in 

glycosaminoglycan degradation and N-glycan biosynthesis were only induced in the resistant 

panel (Table 3.27A). The expression of different genes for metabolism of cofactors and vitamins 

including porphyrin metabolism were induced in both resistant and AH treated panels (Table. 

3.28). Moreover the expression of some genes in one carbon pool by folate metabolism was 

only induced in the resistant panel (Table 3.28). Some components of drug/ xenobiotic 

metabolism (CYT P450) within xenobiotic biodegradation and metabolism pathway were 

induced in both resistant and AH treated panels (Table 3.29). The induction of differing genes 

for metabolism of terpenoids and polyketides was only seen in the resistant panel (Table 3.30).  

 

Table 3.26. Shared induced genes in the 

resistant (left table) compared with those 

shared in endocrine treated MCF7 cells 

(right table) which take part in metabolism 

of other amino acids.  
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Table 3.27A. Shared induced genes in the resistant panel which take part in glycan synthesis 

and metabolism.  

Table 3.27B. Shared induced genes in the endocrine 

responding MCF7 cells which take part in glycan 

synthesis and metabolism. Genes in red also induced 

in resistance. 

Table 3.28. Shared induced genes in the resistant lines 

(left table) compared with those shared in endocrine 

treated MCF7 cells (right table) which take part in 

metabolism of cofactors and vitamins.  
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3.2.3.3 Profiling of the induced genes in TCA cycle and OxPhos pathways in endocrine 

resistance models and comparison with initial endocrine treatment of MCF7 cells 

It was apparent that TCA cycle and oxidative phosphorylation were deregulated in all the 

acquired endocrine resistant models. In contrast, there was no evidence for induction of these 

pathways as a common event shared by all initial endocrine treatments in MCF7 cells. Expression 

of each shared induced gene (n=20) from the resistant panel involved in the TCA cycle (PDHA1, 

ACO2, IDH1, IDH3B, SDHB, FH, MDH2 and PCK2) and OxPhos pathways (NDUFA3, NDUFA7, 

NDUFA8, NDUFA9, NDUFB5, NDUFB9, NDUFB10, NDUFS3, COX7B, UQCRFS1, ATP5J2 and PPA2) 

(Fig 3.9-3.10, Table 3.31-3.32), was therefore detailed in the resistant lines using heatmap 

profiles and examining fold change. Comparison was also made for these gene profiles with 

endocrine-treated MCF7 cells (Fig 3.9-3.10, Table 3.32).  

Table 3.29. Shared induced genes in the resistant lines (left table) compared 

with those shared in endocrine treated MCF7 cells (right table) which take 

part in xenobiotic biodegradation and metabolism.  

Table 3.30. Shared induced 

genes in the resistant panel 

which take part in 

metabolism of terpenoids 

and polyketides. 
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Fig 3.9. The 8 shared induced genes for the TCA cycle profiled by heatmaps in 

endocrine treated MCF7 (-E2 or oestrogen deprivation in HSFCS; 10-7M Tamoxifen or 

Fulvestrant for 10 d) (left panel) and endocrine resistant cells (right panel). On the 

heatmap, red, green & black indicate induced, reduced & no change in gene 

expression respectively as compared to the E2-treated MCF7 for the AH treatment 

panel and control MCF7 cells for the resistant panel. 

Fig 3.10. The 11 shared induced genes for the OxPhos pathway profiled by heatmaps in endocrine 

treated MCF7 (-E2 or oestrogen deprivation in HSFCS; 10-7M Tamoxifen or Fulvestrant for 10 d) 

(left panel) and endocrine resistant cells (right panel). On the heatmap, red, green & black indicate 

induced, reduced & no change in gene expression respectively as compared to the E2-treated for 

the AH treatment panel and MCF7 cells for the resistant panel. Probe IDs for NDUFB9 & NDUFB10 

were not found on the U133A array for the AH treated panel. Note: NDUFA3 and ATP5J2 are 

manually curated shared induced genes in all resistant cells. 
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Table 3.31. Fold changes for the shared induced TCA cycle and OxPhos resistant 

model genes with the panel of endocrine treatments in MCF7 vs. MCF7+E2. 

Reduced fold changes (≤1.2) are indicated in green and induced fold changes 

(≥1.2) are indicated in red. Probe IDs for NDUFS3, NDUFB9 & NDUFB10 were 

not found on U133A microarrays. 

Table 3.32. Fold changes for the shared induced TCA cycle and OxPhos genes 

with in resistant models vs. MCF7. Induced fold changes (≥1.2) are indicated in 

red. Note: NDUFA3 and ATP5J2 are manually curated shared induced genes in 

all resistant cells. 
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Table 3.31 confirms that there were very few induced (≥1.2fold) changes in expression of the 

TCA and OxPhos genes (n=19) during initial treatment of MCF7 cells that were shared by the 

multiple endocrine approaches. Only IDH1 (involved in the TCA cycle) expression appeared to 

be induced with all initial endocrine treatments, although increased expression of this gene did 

not reach significance (Table 3.31). Expression of genes in TCA cycle (PDHA1, ACO2, IDH1, IDH3B, 

SDHB, FH, MDH2 and PCK2) and OxPhos (NDUFA3, NDUFA7, NDUFA8, NDUFA9, NDUFB5, 

NDUFS3, COX7B, UQCRFS1 and ATP5J2) were induced (by ≥1.2 fold changes) with the E2-

deprivation approaches (SFCS or HSFCS medium) as compared to E2 treated control MCF7 cells 

(Fig 3.9-3.10, Table 3.31). There were few changes in the panel that occurred with either 

tamoxifen (IDH1, NDUFB5 and COX7B) or fulvestrant treatment (IDH1 and MDH2) as compared 

to E2 treated control MCF7 cells (Fig 3.9-3.10, Table 3.31). Thus, many TCA cycle and OxPhos 

genes had some evidence for being oestrogen-suppressed genes (Fig 3.9-3.10, Table 3.31), and 

this induction was further increased on resistance development to oestrogen deprivation, since 

the MCF7 experimental control for the resistance panel was also maintained in charcoal stripped 

SFCS (Fig 3.10). Significant induction with tamoxifen and fulvestrant appeared to only occur in 

acquired resistance for the vast majority of TCA cycle and OxPhos pathway genes. A final further 

interesting observation from the U133A arrays was that the TCA cycle gene PCK2 was induced 

in all forms of resistance but was a suppressed gene in E2 deprived (-E2), tamoxifen and 

fulvestrant treated MCF7 compared with the E2-treated control (Fig 3.10, Table 3.31), indicating 

this gene is positively E2-regulated.  

Induced genes (≥1.2 fold change) in the TCA cycle (PDHA1, ACO2, IDH1, IDH3B, SDHB, FH, MDH2 

and PCK2) and OxPhos pathway (NDUFA3, NDUFA7, NDUFA8, NDUFA9, NDUFB5, NDUFS3, 

COX7B, UQCRFS1 and ATP5J2) were common mechanism in all resistant models, but further 

increased fold changes were observed in fulvestrant resistant models as compared to tamoxifen 

and oestrogen deprived models. Also, induced TCA cycle and OxPhos genes with higher fold 

changes were observed in long-term resistant models as compared to short term resistant 

models in each AH resistant pairs (Fig 3.9-3.10, Table 3.32). 
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3.3 Discussion 

Targeting oestrogen/ER signalling is an effective strategy to inhibit growth of ER+ breast cancer 

cells, and is particularly beneficial in ER+/HER2- (luminal A) disease (Howell et al. 2008). This can 

be achieved by either competitively inhibiting oestrogen-promoted ER activity (tamoxifen/ 

fulvestrant treatment) or by suppressing oestrogen production in the body so reduced ligand is 

available (aromatase Inhibitor or zoladex treatment). Unfortunately, many ER+ patients who are 

treated with such antihormonal strategies eventually relapse at some point during or 

subsequent to the treatment, having acquired resistance. This can lead to more aggressive 

disease behaviour. Therefore, resistance to endocrine treatment remains a clinical problem 

(Johnston et al.2015). It is important that underlying resistance mechanisms are uncovered as 

this may lead to new targets for therapeutic strategies to control resistance. This chapter has 

described use of high throughput 1.0ST gene microarrays to discover deregulated gene 

expression and thereby associated pathways whose induction or suppression is shared 

irrespective of endocrine treatment type or duration of treatment. This has been achieved using 

a panel of acquired endocrine resistant models versus responsive control cells (MCF7, an 

established model for ER+, HER2- breast cancer). It is feasible that the identified shared 

pathways may comprise key resistance mechanisms.  

Analysis of Coulter counting and proliferation (Ki-67) data revealed significant growth of TAMR, 

TAMRLT, FASR, FASRLT, MCF7(X) and MCF7(X)XLT cells despite being maintained under 

antihormone-treated conditions, indicating resistance had been acquired. Indeed, such studies 

revealed growth of all the resistant models was induced as compared to the MCF7 baseline 

control. Moreover, growth and proliferative capacity (Ki-67 expression) of the longer term 

resistant models (TamRLT and FasRLT) was further induced. Both these data indicate alternative 

mechanisms must have been acquired to substantially drive growth of resistant models as 

compared to MCF7.  

Analysis of deregulated gene expression (both down/upregulated) was performed via 1.0ST 

gene array analysis after first testing the array performance with RT-PCR verification for HER2, 

ER and oestrogen/ER regulated pS2 gene expression. This profiling also served to characterise 

the baseline expression of key elements reflective of the luminal A (ER+/HER2-) phenotype and 

to gauge any marked change in ER or HER2 signalling at the mRNA level. In general, RT-PCR 

profiles for HER2, ER and pS2 broadly followed microarray and thus verified their 

appropriateness for further exploratory gene analysis. There was no substantial HER2 expression 

observed in the resistant models, although modest HER2 expression was detected in MCF7(X) 
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versus MCF7 which is compatible with a study by Martin et al. (2011) showing some induced 

expression of HER2 protein in long term oestrogen deprived breast cancer cells (LTED). Indeed, 

HER2 reduction was detected in some of the long term resistant models (TamRLT, FasRLT and 

MCF7(X)LT). Similarly, HER2 overexpression is not common in breast cancer patients who recur 

on endocrine treatment (Drury et al. 2011). These data imply relevance of the model panel for 

understanding mechanisms of acquired resistance from ER+/HER2- disease in this thesis. The 

pattern of ER expression in the models also reflects the breadth of acquired resistance clinically, 

since some patients retain ER, while a small proportion lose ER at relapse (Drury et al. 2011), 

further indicating the model panel is appropriate to define unifying novel mechanisms in 

acquired resistance using the 1.0ST arrays. Interestingly, ER loss appears more prevalent in the 

models treated with antioestrogens, particularly for fulvestrant resistance. It is feasible that the 

ER mRNA may perhaps be lost particularly effectively as the fulvestrant mechanism is primarily 

to deplete ER protein level (Osborne et al. 2004). Also, ER loss appears to be more substantial 

with more prolonged antioestrogen treatment (TAMRLT versus TAMR) (Bensmail et al. 2008). 

Of note, however, ER is retained in short-term oestrogen deprived resistance (MCF7(X) (Staka 

et al. 2005) and increased in the long-term oestrogen deprived model (MCF7(X)LT), which is 

compatible with a study by Chan et al. (2002) in LTED cells. It does seem likely from these profiles 

that some role for ER interacting with further contributory resistance pathways will be retained 

where there is also some ER expression MCF7(X) (Staka et al. 2005), while in other forms of 

resistance where there is profound ER loss there will be a complete shift to alternative signalling 

mechanisms (FasR and FasRLT). pS2 profile broadly follows that of ER expression, in that it 

declines in all the antioestrogen resistant models, most particularly those with ER loss, which is 

in accordance with its reported E2/ER regulation (Osborne et al. 2004). In turn, it remains 

significantly expressed in the highly ER+ oestrogen deprived resistant model (Staka et al. 2005).  

Having established the appropriateness of the models and the microarrays to study contributory 

pathways in acquired resistance, lists of statistically significant shared down/upregulated genes 

(by ≥1.2 fold changes, Appendix 6 and 18) obtained by the microarray analysis were used for 

ontology and pathway analysis. In total, 407 downregulated gene probes and 572 upregulated 

gene probes were shared by all resistant models (Table 3.2 and 3.9, Appendix 6 and 18). More 

downregulated gene probes were shared by tamoxifen and oestrogen deprived resistant 

models. In contrast, more upregulated gene probes were shared by fulvestrant and oestrogen 

deprived resistant models. This suggests that while there may be universal shared induced or 

suppressed mechanisms across all resistant models, there are also likely to be further genes 

whose changes may also be contributory according to particular antihormone type. Moreover, 
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there was a slightly larger number of down or upregulated gene probes shared by long-term 

resistant models as compared to short-term resistant models suggesting further gene changes 

may accumulate as the disease progresses (Table 3.2 and 3.9). Ontological analysis (ORA-O) of 

the shared downregulated genes revealed significant reduction of genes whose encoded 

proteins are associated with cell junction assembly such as cadherins (CDH3 and CDH18), 

integrins (ITGB1 and ITGB4) and plectin (PLEC) (Table 3.7). Cell junctions mediate passage of 

small molecules such as Ca2+, cyclic nucleotides and inositol phosphates through cells (Donahue 

et al. 2003). On the arrays, expression of several cell junction-related genes which encode 

proteins binding to calcium ions including cadherins (CDH3 and CDH18), desmosome 

glycoprotein (DSC2), desmoglein (DSG2) and protocadherin (PCDH9) were significantly reduced 

across the resistant models (Table 3.6). Loss of cell junctions and cell-cell adhesion is also 

associated with breast cancer progression (Locke et al. 1998). Moreover, loss of cell adhesion 

has previously been reported for the TAMR cell line along with gained migratory and invasive 

capacity compared with the parental MCF7 model (Hiscox et al. 2006a), while the FASR line is 

also highly aggressive (Hiscox et al. 2006b). Reduction in expression of cell junction assembly 

genes may thus be an important underlying event contributing towards progression associated 

with endocrine resistance. According to further ontology of the shared downregulated genes, 

genes encoding extracellular vesicular exosome-related proteins, including integrins 

(ITGB1/4/6), plectin (PLEC) desmosome glycoprotein (DSC2) and desmoglein (DSG2), were also 

significantly reduced in the resistant models (Table 3.3). Extracellular exosome vesicles are lipid 

bilayer structures containing mRNAs, microRNAs, non-coding RNAs, proteins and bioactive lipids 

(Sato-Kuwabara et al. 2015, Valadi et al 2007 and Kim et al. 2002). Interestingly, proteomic 

analysis of colorectal cancer cells has recently revealed their exosomal vesicles are enriched with 

cell adhesion molecules, suggesting a role for reduction in exosomal vesicles in facilitating 

metastasis of cancer cells (Choi et al.2012). Based on the downregulated gene ontology, such 

events may also be important during progression in endocrine resistance. Loss of extracellular 

vesicular exosome related genes was more prominent in earlier resistant models, and loss of 

cell-cell adherens junction genes was more prominent in longer term models suggesting there 

may be temporal pattern of changes in genes and their associated mechanisms during 

progression. Also signal transduction was enriched for downregulated genes in the short term 

models, while cell adhesion was the most enriched downregulated category for the longer-term 

models: this further backs up concept of aggressive disease progression over time in endocrine 

resistance. Moreover, further ontologies associated with the shared downregualted genes could 

be relevant to resistance such as loss of certain receptor complexes (loss of IGF1R: an ER 

regulated gene that is an important pathway interactive with ER signalling to drive endocrine 
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responsive cells such as MCF7 (Dupont et al. 2001) and loss of negative regulators of growth 

may all reflect preferential gain of alternative signalling in resistance and mechanisms to 

promote resistant cell growth. Subsequent over-represented pathway analysis (ORA-P) of the 

shared reduced genes revealed decline in axon guidance pathway elements, including ephrins 

(EFNA4/5 and EFNB2), integrin (ITGB1), neuropilin (NRP1), semaphorins (SEMA3A and SEMA3C) 

and slit receptor (ROBO1), could also in some way comprise an important mechanism in resistant 

models (Table 3.7). This pathway was overrepresented for decreased genes for all antihormone 

resistance types, and also particularly in longer term resistant lines. Axon guidance molecules 

(AGMs) have been reported to not only maintain proliferation but also adhesion of cells during 

mammary gland development (Strickland et al. 2006), and so again loss of molecules such as 

EFNB2, NRP1, SEMA3A, SEMA3C and ROBO1 may contribute to loss of adhesion and thereby 

progression in resistance.  

In contrast, over-represented ontological analysis of shared induced genes (and indeed in all 

resistant models) revealed genes associated with the mitochondrion including TCA cycle 

enzymes (ACO2, IDH3B, SDHB, FH and MDH2), components of oxidative phosphorylation 

(NDUFA3/8, NDUFAF2/4, NDUFB5/9/10, NDUFS3, SDHB, UQCRFS1, COX7B, PPA2 and MT-ATP6), 

translocase inner mitochondrial membrane (TIMM8A, TIMM9, TIMM17A and TIMM44), 

mitochondrial ribosomal subunits (MRPL15, MRPL17, MRPL2, MRPL21, MRPL34, MRPL37, 

MRPL40, MRPL47, MRPS15, MRPS18A, MRPS18B, MRPS24, MRPS34 and MRPS5) and 

mitochondrial ADP/ATP carriers (SLC25A5) were induced in resistant models versus MCF7 (Table 

3.10). Mitochondrion play a critical role in biogenesis via TCA cycle and bioenergetics via 

oxidative phosphorylation in proliferative cells (Ahn and Metalo, 2015). Elevated mitochondrial 

biogenesis, translation and translocase machinery have also been reported in epithelial breast 

cancer cells as compared to the adjacent glycolytic fibroblast compartment in clinical tumours 

(Sotgia et al. 2012). In the panel of endocrine resistant models, the GO term associated with 

aminoacyl-tRNA ligase activity (CARS, HARS, FARS2, IARS, LARS, MARS, WARS and YARS) was also 

significantly enriched for the induced genes (Table 3.11). Aminoacyl tRNA synthases (ARSs) 

mediate ligation of amino acids to their corresponding tRNA for synthesis of polypeptides, thus 

deregulated ARS function may have a potential effect on protein synthesis machinery which may 

contribute to proliferation of the resistant cells. ARS expression was correlated with proliferative 

and mesenchymal prognostic signatures in glioblastoma patients (Kim et al. 2012). Moreover, 

association of elevated tRNA expression was reported in breast cancer cells and tumours versus 

normal cells (Pavon-Ethernod et al. 2009). The Go term associated with small molecule 

metabolic process was also enriched in all endocrine resistant models (Table 3.12). This Go term 
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encompasses genes which encode enzymes for amino acid synthesis (ACAT1, ALDH9A1, APIP, 

ASNS, ASS1, GOT1, GOT2, KMO and PSPH), acetyl CoA synthesis (ACSS2 and COASY), lipid 

biosynthesis (AGPAT6, CHPT7, EPT1 and PTDSS1), glycosaminoglycan biosynthesis (B4GALT7 and 

EXT2), fatty acid elongation process (ELOVL1 and ELOVL4), phosphate pentose pathway (G6PD), 

glutathione metabolism (GSS, GSTA4, GSTO1 and MGST1), β-oxidation of fatty acids (HADH), 

ketogenesis (HMGCS2), nucleotide sugar/amino sugar metabolism (PFKFB2), glycolysis (PGM1), 

purine metabolism (PNP), proteasome (PSMA1, PSMA6, PSMB6, PSMC4, PSMD2, PSMD8, 

PSME1, PSME3 and PSME3), pyruvate metabolism (PDHA1), TCA cycle (ACO2, IDH1, IDH3B, 

SDHB, FH and MDH2) and oxidative phosphorylation (NDUFA3, NDUFA7, NDUFA8, NDUFA9, 

NDUFB5, NDUFB9, NDUFB10, NDUFS3, COX7B and UQCRFS1). It has been reported that 

approximately 500-2000 mitochondrion per cell are in charge of converting available nutrients 

into fundamental building blocks including fatty acids and amino acids for growth and 

proliferation of rapidly dividing cells (Ralph et al. 2009). Moreover, mitochondria oxidise 

intermediates of the TCA cycle to generate high energy compounds in the form of ATP molecules 

which are consumed during energy demanding processes such as protein synthesis, nucleotide 

synthesis and Na+/Ca2+ ATPase (Wieser et al. 2001). Based on the GO term enrichment, it 

appears that such mitochondrial metabolic processes are enhanced in endocrine resistant cells, 

potentially driving their growth. This appeared particularly prominent in models resistant to 

tamoxifen, fulvestrant resistance, and in shorter term-resistant models as compared to long-

term resistant cells (Table 3.13). 

Two anaplerotic processes, glycolysis and glutaminolysis are known to feed carbon into the TCA 

cycle. Pyruvate dehydrogenase (PDHA1/ PDHB) converts the end product of glycolysis (pyruvate) 

to acetyl CoA which is a precursor in the TCA cycle. Acetyl CoA condenses with oxaloacetate 

(OAA) via citrate synthase (CS) to form citrate which either converts to isocitrate in the TCA cycle 

(via ACO2) or diffuses into the cytosol to restore oxaloacetate (OAA) and acetyl CoA via ATP 

citrate lyase (ACLY). Furthermore, acetyl CoA serves as a precursor for de novo fatty acid 

synthesis and OAA converts to malate via malate dehydrogenase (MDH) where malic enzyme 

(ME) converts malate into pyruvate (Icard et al 2012). Glutamine enters into the TCA cycle by 

converting into glutamate via glutaminase (GLS/GLS2) and then glutamate is converted to the 

TCA precursor α-ketoglutarate (α-KG) via glutamate dehydrogenase (GLUD1/GLUD2). α-KG also 

plays a role in amino acid metabolism by accepting the amino group of α-amino acids to form α-

keto acids which further act as precursors for synthesis of amino acids such as proline, threonine 

and lysine. Also, α-KG participates in ammonia metabolism through transformation of 

nicotinamide adenine dinucleotide (phosphate) (NAD(P)+) and reduced nicotinamide adenine 
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dinucleotide (phosphate) (NAD(P)H) molecules (Icard et al 2012). In resistant models, expression 

of ACO2 (converts citrate to isocitrate), IDH3B (converts isocitrate to α-KG), SDHB (converts 

succinate to fumarate), FH (converts fumarate to malate) and MDH2 (converts malate to OAA) 

were induced and thus may contribute in enhanced anaplerotic processes via converting 

precursors of the TCA cycle. 

The TCA cycle harvests energy from carbon sources (TCA cycle precursors) to generate high 

energy compounds in the form of NADH (from isocitrate, α-KG and malate) and FADH2 (from 

succinate). Finally, oxidation of NADH and FADH2 in complex I and complex II of the electron 

transport chain respectively causes transfer of electrons from these compounds through the 

chain while hydrogen is pumped into the intracellular membrane space and the proton gradient 

flows through ATP synthase to generate ATP molecules (Berg et al. 2002). Induced activity of 

electron transport chain complexes such as NADH dehydrogenase (complex I), succinate 

dehydrogenase (complex II) and cytochrome C oxidase (complex IV) have been reported in 

epithelial breast cancer cells as compared to fibroblast compartments (Whitaker-Menezes et al. 

2011). In the endocrine resistant models, expression of subunits for complex I (NADH 

dehydrogenase: NDUFA3, NDUFA7, NDUFA8, NDUFA9, NDUFB5, NDUFB9, NDUFB10, NDUFS3), 

complex II (succinate dehydrogenase: SDHB), complex III (cytochrome c reductase: UQCRFS1), 

complex IV (cytochrome c oxidase: COX7B) and ATP synthase (ATP5J2) were induced and thus 

may contribute towards enhanced ATP synthesis via oxidative phosphorylation in these resistant 

cells. 

In addition to ORP-O ontology of shared induced genes, ORP-P pathway analysis revealed 

“metabolic pathways” (N=89 genes) as a potential shared induced mechanism in resistance, with 

this being the most significantly enriched pathway (and that also occurred irrespective of 

endocrine strategy) in the resistant models (Table 3.14). Functional classification of the 89 

shared induced genes in metabolic pathways using DAVID bioinformatics revealed two clusters 

of oxidative phosphorylation (OxPhos) and TCA cycle enzymes as the most enriched shared 

genes across the resistant models (Fig. 3.8A-3.8B, Table 3.16). As mentioned earlier these two 

pathways (OxPhos and TCA cycle) play an important role for energy generation and synthesis of 

building blocks in the cell. Based on ontology and pathway analysis it can be concluded that 

proliferative endocrine resistant breast cancer cells are most prominently enriched with 

expression of mitochondrial biogenesis (TCA cycle, ribosomal sub units and TIMMs) and 

bioenergetics (OxPhos sub units) genes which may permit their resistant proliferation and 

growth. Although induced TCA cycle and OxPhos genes occurred in all resistant models and thus 
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likely to contribute in all endocrine resistant states, it was notable that the increased fold 

changes were particularly marked in in long-term resistant as compared to short term resistant 

models. This expression profile cumulatively re-enforces the concept that these metabolic gene 

changes are likely to be important in aiding disease progression during endocrine treatment. 

Furthermore, the observation that their increases are also more prominent in ER- fulvestrant 

resistant models as compared to ER+ tamoxifen or oestrogen deprived models is in keeping with 

a contribution to aggressive tumour growth, since ER negative tumours have a particularly poor 

prognosis in the clinic (Putti et al. 2004).  

Further investigation was subsequently carried out to determine whether the expression of 

genes in the TCA cycle and OxPhos pathway were enhanced during initial AH treatment or 

gained only during acquisition of resistance. Study of AH treated MCF7 cells revealed that the 

induced gene cohort (n=551) shared by all AH treatments (10 days) had a significantly 

overrepresented lysosome pathway (Table 3.17). Induction of some genes (n=72) which were 

associated with small molecule metabolic process were discovered in ORP-O ontology analysis 

of these AH-treated MCF7 cells (Table 3.20), but they appeared to participate in lipid 

metabolism, amino acid metabolism, phosphate pentose pathway and inositolphosphate 

metabolism. This clearly differed from the enrichment of induced metabolic genes involved in 

TCA cycle and OxPhos seen in the resistant models. Indeed, only 2 OxPhos pathway genes 

(NDUFB2 and COX7C) were induced in AH treated cells. Further assessment confirmed there 

were virtually no TCA and OxPhos genes induced by initial treatment with all AHs , although  

expression of many TCA cycle (PDHA1, ACO2, IDH1, IDH3B, SDHB, FH, MDH2 and PCK2) and 

OxPhos genes (NDUFA3, NDUFA7, NDUFA8, NDUFA9, NDUFB5, NDUFB9, NDUFB10, NDUFS3, 

UQCRFS1, COX7B, ATP5J2 and PPA2) were induced in E2-deprived MCF7 cells after 10 days 

treatment (-E2/ HSFCS), with further induction of such genes after acquisition of resistance to 

oestrogen deprivation emerged. This indicates such OxPhos/TCA genes are commonly E2-

suppressed, a regulation that has been described for further gene species including growth 

factor receptors previously implicated in endocrine resistance (Gee et al. 2011). In summary, 

based on ontology and pathway analysis it can be concluded that proliferative endocrine 

resistant breast cancer cells are most prominently enriched with expression of mitochondrion 

biogenesis (TCA cycle, ribosomal sub units and TIMMs) and bioenergetics (OxPhos sub units) 

genes which may permit their resistant proliferation and growth. Thus, the mechanism of TCA 

cycle and OxPhos pathways comprised a key focus of this project, and further investigations into 

the role of induced TCA cycle and OxPhos genes in endocrine resistant cells are carried out in 

Chapter 4. Finally, a Go term associated with biological process for cellular response to zinc ion 
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(MT1E, MT1F, MT1G, MT1H, MT1X and MT2A) was overrepresented in all resistant cells which 

suggest an evidence for zinc deregulation in such cells. Metallothionein (MTs) expression was 

reported in proliferative epithelial cells of breast tumours (Cherian et al. 2003) and induced 

expression of a zinc influx transporter (SLC39A7) has been previously detected in tamoxifen 

resistance cells (TamR) (Taylor et al. 2008). Thus, further investigation for induced expression of 

genes related to response to zinc was carried out in Chapter 5. 
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CHAPTER 4 

Contribution of energy metabolism pathways to the panel of endocrine resistant 

breast cancer cells 

4.1 Introduction 

Two energy producing mechanisms operate to fuel normal and proliferative cancer cells in the 

form of high energy ATP molecules: glycolysis that occurs in the cytoplasm and oxidative 

phosphorylation (OxPhos) which takes place in the mitochondria. Based on the transcriptional 

profile analysis in Chapter 3, components of mitochondrial biogenesis and bioenergetics are 

commonly enriched in endocrine resistant breast cancer models versus their endocrine 

responsive control cells. The glycolysis pathway in the cytosol includes conversion of one 

molecule of glucose to two pyruvate molecules. While the first part of glycolysis involves 

consuming two ATP molecules to phosphorylate glucose and fructose-6-phosphate generating 

glucose-6-phosphate and fructose-1, 6-biphosphate respectively, the second part of glycolysis 

includes energy-producing reactions. These comprise conversion of 1, 3-bisphosphoglycerate 

(1,3-BPG) to 3-phosphoglycerate (producing 2 ATP molecules) and phosphoenolpyruvate (PEP) 

to pyruvate (producing 2 ATP molecules). Therefore, the net energy yield in conversion of 

glucose into pyruvate is 2 ATP molecules (Appendix, Fig A).  

Pyruvate dehydrogenase in the mitochondrial matrix can oxidize such pyruvate to acetyl CoA 

which enters the TCA (citric acid) cycle by donating its acetyl group to oxaloacetate (OAA). The 

TCA cycle in turn provides substrates for the further energy-producing mechanism via OxPhos. 

The TCA cycle is a general pathway for oxidation not only of carbohydrates but also fatty acids 

and amino acids in the cell. Fatty acid oxidation (β-oxidation) involves successive removal of two 

carbon units from the carboxyl end of fatty acids generating nicotinamide adenine dinucleotide 

(NADH) and flavin adenine dinucleotide (FADH2) (substrates for OxPhos) via β-hydroxyacyl-CoA 

dehydrogenase and acyl-CoA dehydrogenase respectively and acetyl CoA to replenish the TCA 

cycle. Amino acids also can be used as fuel in energy metabolism through transamination and 

deamination reactions. Transamination involves conversion of amino acids to their respective 

α-ketoacids via aminotransferase and deamination includes removal of amino group from amino 

acids in the form of ammonia. Amino acid degradation replenishes the TCA cycle intermediates 

such as acetyl CoA (leucine, isoleucine and tryptophan degradation), α-ketoglutarate (arginine, 

proline, histidine, glutamine and glutamate degradation), succinyl CoA (isoleucine, methionine, 

threonine and valine degradation), fumarate (asparate, phenylalanine and tyrosine degradation) 

and oxaloacetate (aspartate and asparagine). Induced glutaminolysis (glutamine addiction) in 

proliferative cancer cells efficiently replenish the TCA cycle as it involves transamination of 
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glutamine to glutamate (via GLS and GLS2 enzymes) and deamination of glutamate to α-

ketoglutarate (α-KG) (via GLUD1 and GLUD2 enzymes). Hence, glutamine degradation provides 

ATP (Fan et al. 2013), anapleurotic carbon (Yin et al. 2015) and nitrogen (Meng et al. 2010) for 

macromolecule biosynthesis in proliferative cancer cells. 

The end product of glucose, fatty acid and some of amino acid catabolism is that acetyl CoA is 

oxidized to CO2 in the TCA cycle. The first reaction of the TCA cycle involves condensation of two 

carbon acetyl groups of acetyl CoA with four carbons of oxaloacetate to form six carbon citrate. 

The TCA cycle then involves several oxidation reactions (isocitrate to oxalosuccinate, α-

ketoglutarate to succinyl CoA, succinate to fumarate and malate to oxaloacetate) which 

regenerate oxaloacetate and also conserve energy by generating NADH and FADH2. Succinate 

dehydrogenase (by reducing FAD to FADH2), isocitrate dehydrogenase, glutarate 

dehydrogenase and malate dehydrogenase (by reducing NAD+ to NADH) are involved in these 

oxidation-reduction reactions of the TCA cycle (Appendix, Fig B).  

OxPhos involves oxidation of high energy compounds such as NADH and FADH2 formed during 

glycolysis, TCA cycle and β-oxidation of fatty acids. This is accompanied by transfer of electrons 

through the electron transport chain which comprises protein complexes called NADH 

dehydrogenase (complex I), cytochrome c oxidoreductase (complex III) and cytochrome c 

oxidase (complex IV) plus two mobile electron carriers (ubiquinone and cytochrome C) between 

protein complexes to reduce O2 to H2O. The electron carrier in this process, which is located in 

the inner mitochondrial membrane, contains Flavin, iron-sulfur, copper and heme to 

accept/donate electrons pump (complex I, III and IV) protons (H+) from the mitochondrial matrix 

to the mitochondrial inner membrane. The proton electrochemical gradient (i.e. the pH 

differential between membranes plus membrane potential) drives an ATP synthase complex to 

phosphorylate ADP to ATP.  

At complex II of the electron transport chain, succinate dehydrogenase (from the TCA cycle), 

acyl CoA dehydrogenase (from β-oxidation of fatty acids) and also glycerol 3-phosphate 

dehydrogenase (from the glycerol phosphate shuttle; see below) reduce FAD to FADH2 and 

transfer electrons via complex III and IV to O2. 

NADH oxidation in the cell involves two catalytic redox carriers which are integral proteins of 

the inner mitochondrial membrane: The Malate-Asparate shuttle and the glycerol phosphate 

shuttle. The primary source of NADH is the glycolysis pathway. Reduction of OAA to malate by 

cytoplasmic malate dehydrogenase (MDH) is accompanied by oxidation of this NADH to NAD+ 

and malate then enters the mitochondria where mitochondrial MDH (from the TCA cycle) 
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reverses the reaction to re-generate OAA and NADH. The NADH dehydrogenase (complex I) 

oxidises NADH to NAD+ and thus transfers electrons to generate 3ATP molecules. Mitochondrial 

transaminase transfers the amino group from glutamate to convert impermeable OAA to 

aspartate and α-KG both of which products leave the mitochondria into the cytoplasm. As stated 

above, the glycerol phosphate shuttle is linked to complex II of the electron transport chain and 

involves cytosolic and mitochondrial glycerol 3-phosphate dehydrogenase, GPD1 (which has 

NADH as its substrate) and GPD2 (which has FAD+ as it substrate) respectively. In this shuttle, 

oxidation of cytosolic NADH to NAD+ is accompanied by reduction of mitochondrial FAD to 

FADH2 where 2ATP molecules will be generated. In general, for 1 mole of cytosolic NADH, 3ATP 

molecules and 2ATP molecules will generated via the Malate-Aspartate and glycerol phosphate 

shuttles respectively.  

Given the promising transcriptional data showing TCA cycle and OxPhos enzymes as enriched 

shared genes across resistant models, the current Chapter focuses on further establishing the 

biological role of the induced TCA cycle/ OxPhos enzymes in endocrine resistant versus 

responsive cells using the model panel, and also explores the clinical impact of their increased 

expression on relapse free survival of ER+/tamoxifen treated breast cancer patients using 

publically-available gene expression datasets. During these studies, pharmacological targeting 

of substrate/energy metabolism and its impact on extracellular oxygen 

consumption/extracellular acidification, cell signalling pathways and growth has been 

evaluated.  

4.2 Results 

4.2.1 Analysis of induced proteome in TamR versus MCF7 using SysQuant mass 

spectrometry for evidence of deregulated TCA cycle and OxPhos pathway  

Through collaboration with Dr D Britton at Proteome Sciences (Kings College, London), a large-

scale proteomics dataset (comprising total and phosphorylated proteins) was investigated 

during this project for TamR versus MCF7 control cells. This allowed comparison of profile with 

gene microarray analysis, focussing on TCA cycle and OxPhos pathway elements, to investigate 

to what extent genomic changes have a proteomic output and therefore potentially the ability 

to influence resistant cell proliferation. To quantify total and phosphorylated proteins 

comprising the proteome of TamR and MCF7, the cells had initially been grown (three 

independent experiments N=3) to 70% confluency prior to protein extraction by the BCMP 

group. These samples had then been shipped to Proteome Sciences for trypsin digestion and 
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labelling with isobaric Tandom Mass Tag® eight-plex reagents (TMT8) followed by strong cation 

exchange chromatography prior to mass spectrometry. Three methodological approaches were 

taken i.e. non-enriched (total and phospho-peptides), TiO2 and IMAC (phospho-peptides), to 

maximally-detect peptides in each sample. Spectra from each arm was searched using SEQUEST, 

MASCOT and Phospho-RS for phosphorylation sites and passed through SysQuant 

bioinformatics pipeline for expression analysis in TAMR versus MCF7 samples by Dr Britton. All 

identified peptides were then filtered for ≤5% false discovery rate (FDR) and ≥75% 

phosphorylation site confidence for further analysis. In total 74% of the phospho-peptides were 

detected by TiO2 and 24% using IMAC. The TMT reporter intensity which correlates with peptide 

abundance in the sample was assessed to quantify proteins in the compared samples. Using this 

method, 2,106 (382 phospho-peptides plus 1,724 non-phospho-peptides) significantly induced 

UniProt IDs (using Proteome Sciences-recommended log2 ≥0.7: 1.62 fold change and P≤0.05 

significance filtering conditions) were detected in TamR versus MCF7.  

In this project, pathway analysis for the induced phospho and non-phospho peptides was then 

carried out in Innatedb where ORP-P-significant pathways were determined (Table 4.1). While 

the most significant induced pathway encompassing both phospho and non-phospho peptides 

was the ribosome pathway (P=1.26E-25, Table 4.1, Appendix 20), protein processing in 

endoplasmic reticulum, TCA cycle, pyruvate metabolism, OxPhos, glutathione metabolism and 

amino sugar/nucleotide sugar metabolism were also found to be significantly induced in TamR 

cells versus MCF7 (Table 4.1), a finding compatible with the shared induced pathways revealed 

in resistant models from the microarray data (Appendix 18) (including pathway analysis data at 

a transcriptional level specifically in TamR cells, Appendix 7). Also, the induced peptide profile 

was examined for overlap with induced genes in metabolic pathways including carbohydrate 

metabolism, energy metabolism, lipid metabolism and amino acid metabolism in TamR versus 

MCF7 cells. Induced genes in TamR cells at both the gene/peptide level in each metabolic 

pathway were identified (indicated in blue in Table 4.2-4.5), and it was found that components 

of the TCA cycle, OxPhos and also pyruvate metabolism, aminosugar/ nucleotidesugar 

metabolism and glutathione metabolism were significantly induced at both transcriptional and 

translational level (Table 4.2-4.5). Furthermore, significant ORP of pathways such as aminoacyl-

tRNA biosynthesis, Parkinson’s disease, glyoxylate and dicarboxylate metabolism, Huntington’s 

disease and also alanine, aspartate and glutamate metabolism in TamR versus MCF7 at 

translational level were overlapped with shared pathways in all resistant models versus MCF7 

at the transcriptional level (Appendix 18). 
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Continue Table 4.1… 
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Table 4.1. ORP-P pathway analysis for all induced peptides/ phospho-peptides (≥1.6 fold changes) in 

TamR vs. MCF7 cells performed using Innatedb. “Ribosome pathway” was the most significantly 

induced pathway in TamR vs. MCF7. Metabolic pathways including TCA cycle, pyruvate metabolism, 

OxPhos, glutathione metabolism & aminosugar/nucleotide sugar metabolism pathways were also 

significantly induced. Additionally, other pathways such as aminoacyl-tRNA biosynthesis, glyoxylate 

& decarboxylate metabolism and alanine, aspartate & glutamate metabolism were also significantly 

induced in TamR vs. MCF7. 
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Table 4.2. Induced peptides (≥1.6 fold changes) representing various carbohydrate 

metabolism pathways in TamR vs. MCF7. Blue indicates peptides whose corresponding gene 

was also induced at a transcriptional level in TamR vs. MCF7 cells. Black indicates peptides 

which their increased expression has only been detected at translational level. 
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Table 4.3. Induced peptides (≥1.6 

fold changes) representing the 

OxPhos energy metabolism 

pathway in TamR vs. MCF7 cells. 

Blue indicates peptides whose 

corresponding gene was also 

induced at transcriptional level in 

TamR vs. MCF7 cells. 

Table 4.4. Induced peptides (≥1.6 

fold changes) representing lipid 

metabolism in TamR vs. MCF7 

cells. Blue indicates peptides 

whose corresponding gene was 

also induced at transcriptional 

level in TamR vs. MCF7 cells. 
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4.2.2 Ontology studies of the induced TCA cycle and OxPhos genes and their 

expression analysis versus outcome of tamoxifen treated breast cancer patients using 

publically-available datasets  

Ontological data for the n=20 TCA cycle/OxPhos genes induced in resistance were obtained 

using Genecard, KEGG (Kyoto Encyclopedia of Genes and Genomes) and OMIM (Online 

Mendelian Inheritance in Man), as well as from a laser-capture micro-dissected breast cancer 

dataset (Bonuccelli et al. 2010) and cancer EST (expressed sequences tags) libraries (Poliakov et 

al.2014). To determine if intrinsic increased gene expression at diagnosis was related to 

subsequent ER+ patient outcome, relapse free survival analysis was analysed in relation to 

expression of the candidate TCA/OxPhos genes using two publically-available Affymetrix 

microarray transcriptome clinical datasets. These comprise all ER+ breast cancer patients (250 

months follow up available, N=1802) and tamoxifen treated ER+ breast cancer patient cohorts 

(200 months follow up available, N=712), with analysis performed using the online tool 

KMplotter.  

 

Table 4.5. Induced peptides (≥1.6 fold changes) 

representing amino acids metabolism pathways in 

TamR vs. MCF7 cells. Blue indicates peptides whose 

corresponding gene was also induced at transcriptional 

level in TamR vs. MCF7 cells. 



148 

 

ACO2 (aconitase 2) 

ACO2 is encoded by the nuclear genome and functions in the mitochondria. This enzyme 

catalyses overall conversion of citrate to isocitrate in the second TCA cycle reaction. ACO2 

homozygous mutation has been associated with infantile cerebellar-retinal degeneration, with 

induced glutaminolysis by 63% reported in these patients. However, their lactate production 

and OxPhos rate did not change as compared to normal individuals (Spiegel et al. 2012). Study 

of breast tumours has revealed ACO2 expression is induced in epithelial cancer cells as 

compared to adjacent stromal cells (cancer associated fibroblasts: CAFs) (Bonuccelli et al. 2010). 

While not reaching significance in ER+ breast cancer patients, survival analysis in KMplotter 

revealed higher ACO2 mRNA expression was significantly associated with a shortened relapse 

free survival (RFS) and increased risk of relapse in tamoxifen treated ER+ patients (HR=1.64, 

P=0.0014; Fig 4.1, Table 4.6). 

 citrate → isocitrate (overall reaction); 

(1a) citrate → cis-aconitate + H2O;  

(1b) cis-aconitate + H2O → isocitrate 

 

 

 

 

Table 4.6. Summary of RFS analysis using KMplotter for the 

induced pyruvate metabolism and TCA cycle genes in tamoxifen 

treated ER+ and all ER+ breast cancer patient cohorts. Hazard 

ratio (HR) >1 is associated with increased risk of relapse & log 

rank P≤0.05 was considered to be significant. 
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FH (fumarate hydratase) 

Nuclear encoded FH catalyses conversion of fumarate to malate in the TCA cycle. Two FH 

enzymes have been described: a cytosolic isoform and an N-terminal extended mitochondrial 

isoform. Fumarate accumulation in FH deficient cells in patients with leiomyomas and renal cell 

cancer has been reported to stabilize HIF1α and lead to tumour progression in pseudohypoxic 

condition (Pollard et al. 2005). Moreover, heterozygous germline mutation of FH was reported 

to be increased in cancer patients (Lehtonen et al. 2006). However, increased expression of FH 

was discovered in epithelial cancer cells as compared to CAFs in breast tumours (Bonuccelli et 

al. 2010). Also, using the cancer EST libraries (Brentani et al. 2003) induced FH expression was 

detected across multiple tumour cells as compared to normal tissues (Poliakov et al. 2014). 

Higher expression of FH was associated with shortened relapse free survival and increased risk 

of relapse in both tamoxifen treated ER+ (HR=1.69, P=0.012) and all ER+ (HR=1.36, P=0.00065) 

breast cancer patient cohorts (Fig 4.2, Table 4.6). 

malate → fumarate + H2O 

 

Fig 4.1. Kaplan Meier survival curves using KM plotter showing higher ACO2 mRNA expression 

(in red) was significantly associated with shortened relapse free survival in tamoxifen treated 

ER+ patients (left graph) but not in all ER+ patients (right graph). 
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IDH1 (isocitrate dehydrogenase 1 (NADP+)) 

Five isocitrate dehydrogenases have been discovered: three mitochondrial NAD+ dependent, 

one mitochondrial NADP+ dependent and one cytosolic NADP+ dependent form. The IDH1 

encoded enzyme catalyses oxidative carboxylation of isocitrate to 2-αKG in the TCA cycle (NADP+ 

dependent: mitochondrial). IDH1 mutation was detected in advanced ER+ breast 

adenocarcinomas (Fathi et al. 2014). However, induced IDH1 transcription was also detected in 

breast cancer cells as compared to CAFs (Bonuccelli et al 2010). RFS analysis in relation to IDH1 

mRNA expression did not reach significance in both tamoxifen treated ER+ (HR=0.8, P=0.21) and 

all ER+ (HR=1.09, P=0.37) breast cancer patient cohorts (Fig 4.3, Table 4.6).  

isocitrate + NADP+ → 2-αKG + CO2 + NADPH + H+ (overall reaction)  

(1a) isocitrate + NADP+ → oxalosuccinate + NADPH + H+  

(1b) oxalosuccinate → 2-αKG + CO2 

 

Fig 4.2. Kaplan Meier survival curves using KM plotter showing higher FH mRNA expression 

was significantly associated with shortened relapse free survival in ER+ patients (right graph) 

and tamoxifen treated ER+ patients (left graph). 
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IDH3B (isocitrate dehydrogenase 3 β (NAD+)) 

This is an NAD+-dependent isocitrate dehydrogenase that catalyses the allosterically regulated 

rate-limiting reaction of the TCA cycle to convert isocitrate to 2-αKG. IDH3B homozygous 

mutation was described in retinitis pigmentosa by Hartong et al. (2008) where the enzyme 

expression is reduced in the retina of patients but remains unchanged in other tissues. Reduced 

IDH3B expression has been reported in metastatic nasopharyngeal cancer as compared to non-

metastatic carcinoma (Liu et al. 2012). However, induced expression of this gene was reported 

by Bonuccelli et al. (2010) in epithelial breast cancer cells as compared to CAFs. Higher 

expression of this gene was significantly associated with shortened relapse free survival and 

increased risk of relapse in ER+ breast cancer patients (HR=1.3, P=0.0065) (Fig 4.4, Table 4.6), 

with a comparable but non-significant trend in tamoxifen treated ER+ patients (HR=1.35, 

P=0.056). 

isocitrate + NAD+ → 2- αKG + CO2 + NADH 

 

Fig 4.3. Kaplan Meier survival curves using KM plotter showing no significant association 

between IDH1 expression and RFS in either tamoxifen treated ER+ patients (left graph) or in 

all ER+ patients (right graph). 
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MDH2 (malate dehydrogenase (NAD+)) 

MDH2 catalyses malate to oxaloacetate (OAA) (using NAD+) in the final reaction of the TCA cycle. 

This enzyme is encoded by the nuclear genome and functions in the mitochondrial matrix. 

Cytosolic malate dehydrogenase and mitochondrial MDH2 regulate Malate-Asparate shuttle to 

supply the mitochondria with NADH. Association of MDH2 mutation (low expression) with HIF1α 

stabilization (pseudohypoxia) was reported in paraganglioma tumours (Jochmanova et al. 2015 

and Cascon et al. 2015). However, induced MDH2 expression was discovered in epithelial breast 

cancer cells as compared to CAFs (Bonuccelli et al .2010). Also, MDH2 overexpression (using EST 

libraries) was reported in tumour cells as compared to normal tissues (Poliakov et al .2014). 

Higher expression of this gene was associated with shortened relapse free survival and increased 

risk of relapse in tamoxifen treated ER+ breast cancer patients (HR=1.52, P=0.0057) but there 

was only a trend in the all ER+ patient cohort (HR=1.17, P=0.078) (Fig 4.5, Table 4.6). 

Malate + NAD+ → oxaloacetate + NADH + H+ 

Fig 4.4. Kaplan Meier survival curves using KM plotter showing higher IDH3B mRNA 

expression was significantly associated with shortened relapse free survival in ER+ patients 

(right graph) and there was a also a non-significant trend in tamoxifen treated ER+ patients 

(left graph). 
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PCK2 (Phosphoenolpyruvate Carboxykinase 2) PCK2 is encoded by the nuclear genome and 

functions in mitochondrion. This enzyme catalyses the conversion of OAA to phosphoenol 

pyruvate (PEP) using GTP. The cytosolic form of this enzyme catalyses the rate limiting step of 

gluconeogenesis in the liver by converting OAA (TCA cycle intermediate) to PEP 

(glycolysis/gluconeogenesis intermediate). Induced PCK2 expression was reported in lung 

cancer cell lines and non-small lung tumours (Leithner et al. 2015). Moreover, induced 

expression of PCK2 was detected in epithelial breast cancer cells versus CAFs by Bonuccelli et al. 

(2010). Higher expression of PCK2 was associated with shortened relapse free survival and 

increased risk of relapse in both tamoxifen treated ER+ (HR=1.59, P=0.007) and all ER+ (HR=1.46, 

P=2.5E-05) breast cancer patient cohorts (Fig 4.6, Table 4.6). 

GTP + oxaloacetate → GDP + phosphoenolpyruvate + CO2 

 

 

Fig 4.5. Kaplan Meier survival curves using KM plotter showing higher MDH2 mRNA 

expression was significantly associated with shortened relapse free survival in tamoxifen 

ER+ treated patients (left graph) and there was also a trend in the all ER+ patient cohort 

(right graph). 

 

Fig 4.6. Kaplan Meier survival curves using KM plotter showing higher PCK2 mRNA expression 

was significantly associated with shortened relapse free survival in both tamoxifen treated 

ER+ (left graph) and all ER+ patient cohorts (right graph). 
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PDHA1 (Pyruvate Dehydrogenase (Lipoamide) Alpha 1) 

Pyruvate dehydrogenase is a multienzyme complex which catalyses the overall conversion of 

pyruvate to acetyl CoA. This complex is composed of pyruvate dehydrogenase (PDHA/B), 

dihydrolipoamide acetyltransferase (DLAT) and lipoamide dehydrogenase (DLD). PDHA1 is a 

nuclear encoded subunit and the active site of pyruvate dehydrogenase. It converts pyruvate to 

acetyl CoA and thus drive the TCA cycle. In melanoma cell lines, induced PDH activity was 

reported in response to BRAF mediated suppression of pyruvate dehydrogenase kinase (PDK1) 

which induced OxPhos, redox stress and senescence in cells (Kaplon et al. 2013). In MCF7 

reduced expression of Runt related transcription factor RUNX2 has been associated with PDK1 

repression and activation of PDHA1 which induces OxPhos in cells (Choe et al. 2015). Moreover, 

induced PDHA1 expression was reported in epithelial breast cancer cells as compared to CAFs 

(Bonuccelli et al. 2010). Further interrogation of the gene microarrays revealed PDHB expression 

was induced in the fulvestrant resistant and oestrogen deprived resistant models (Fig 4.7A, Table 

4.7). RUNX2 expression was reduced in fulvestrant resistant (FasR and FasRLT) and oestrogen 

deprived (MCF7(X) and MCF7(X)LT) models (Fig 4.7A, Table 4.7) and PDK1 expression was 

significantly reduced in TamRLT, FasR, FasRLT, MCF7(X) and MCF7(X)LT models (Fig 4.7A, Table 

4.7). PDHA2 was not expressed in the model panel (Fig 4.7A, Table 4.7). Therefore, reduced 

RUNX2/PDK1 expression in fulvestrant resistant and oestrogen deprived models appears 

associated with induced PDHA1/PDHB expression in these lines (in accordance with association 

findings from Choe et al., 2015). Higher expression of PDHA1 was significantly associated with 

shortened relapse free survival and increased risk of relapse in the all ER+ (HR=1.5, P=4.2E-06) 

breast cancer patient cohort but its association in tamoxifen treated ER+ patients did not reach 

significance (HR=1.28, P=0.13) (Fig 4.7B, Table 4.6). 

pyruvate + [dihydrolipoyllysine-residue acetyltransferase] lipoyllysine → [dihydrolipoyllysine-

residue acetyltransferase] S-acetyldihydrolipoyllysine + CO2 
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Fig 4.7A. mRNA expression of PDHA1, PDHA2, PDHB, 

RUNX2 & PDK1 across the panel of resistant models from 

the gene microarrays. On the heatmap, red, green & 

black indicate induced, reduced & no change in gene 

expression respectively as compared to the control MCF7 

cells. 

Fig 4.7B. Kaplan Meier survival curves using KM plotter showing higher PDHA1 mRNA 

expression was significantly associated with shorter relapse free survival in all ER+ patients 

(right graph) but no significant association was found in the tamoxifen treated ER+ patient 

cohort (left graph). 

 

Table 4.7. Fold changes for RUNX2, PDK1, PDHA1 & PDHB mRNA expression in 

endocrine resistant models vs. MCF7 control. Fold changes (≤1.2) for reduction of 

expression are indicated blue and fold changes for induction (≥1.2) are indicated red. 

PDHA2 was not expressed across the resistant panel despite a weakly-induced 

heatmap profile in some of the resistant lines. 



156 

 

SDHB (succinate dehydrogenase B) 

SDHB is encoded by the nuclear genome and catalyses the conversion of succinate to fumarate 

in the TCA cycle. It also participates in complex II of OxPhos where it oxidates succinate and 

transfers electrons from FADH2 to ubiquinone. Accumulation of succinate and HIF1α 

stabilization (pseudohypoxia) was again detected in paragangliomas due to SDHB mutation 

(Pollard et al. 2005). However, in breast cancer tumours SDHB expression was associated with 

higher grade tumours and its expression was not associated with either nuclear or cytoplasmic 

HIF1α expression (Kim et al. 2013). Also, induced SDHB expression was detected in epithelial 

breast cancer cells as compared to CAFs (Bonuccelli et al 2010). Higher expression of SDHB was 

significantly associated with shortened relapse free survival and increased risk of relapse in the 

all ER+ (HR=1.28, P=0.005) breast cancer patient cohort but its association in tamoxifen treated 

ER+ patients did not reach significance (HR=1.23, P=0.19) (Fig 4.8, Table 4.6). 

Succinate + a quinone → fumarate + a quinol 

 

 

 

 

 

 

 

 

 

 

Fig 4.8. Kaplan Meier survival curves using KM plotter showing higher SDHB mRNA 

expression was significantly associated with shorter relapse free survival in all ER+ patients 

(right graph) but no significant association was found in the tamoxifen treated ER+ patient 

cohort (left graph). 
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ATP5J2 (ATP Synthase, H+ Transporting, Mitochondrial Fo Complex, Subunit F2) 

Mitochondrial ATP synthase uses the proton electrochemical gradient across the inner 

mitochondrial membrane to catalyse ATP synthesis and thus involves in OxPhos. It consists of 

two multi subunit complexes. The membrane spanning complex (F0: proton channel) has nine 

subunits (a, b, c, d, e, f, g, F6 and F8) and the catalytic core (F1) has nine subunits (3α, 3β, 1γ, 1δ 

and 1ε). ATP5J2 encodes subunit f from the F0 complex. Induced ATP5J2 expression was 

detected in uterine leiomyomas as compared to myometrium (Tuncal et al. 2014). Also, induced 

expression of this gene was reported by Bonuccelli et al. (2010) in epithelial breast cancer cells 

as compared to CAFs. Higher ATP5J2 expression was associated with shorter relapse free survival 

and increased risk of relapse in both tamoxifen treated ER+ (HR=1.74, P=0.0022) and all ER+ 

(HR=1.36, P=0.0011) breast cancer patients (Fig 4.11, Table 4.22). 

 

 

 

 

 

Table 4.8. Summary of RFS analysis using KM 

plotter for the induced OxPhos genes in tamoxifen 

treated ER+ and all ER+ breast cancer patient 

cohorts. HR>1 is associated with increased risk of 

relapse & logrank P≤0.05 was considered to be 

significant. 
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COX7B (Cytochrome C Oxidase Subunit VIIb) 

The fourth complex of OxPhos consists of core catalytic subunits (cytochrome c oxidase: COX 1, 

COX2 and COX3) which catalyse the electron transfer from reduced cytochrome c to O2. COX7B 

is a nuclear coded gene and regulatory subunit of complex IV. Induced COX7B expression was 

reported in advanced chemotherapy resistant ovarian cancer (L’Esperance et al. 2006). 

Moreover, induced expression of this gene was detected in epithelial breast cancer cells as 

compared to CAFs (Bonuccelli et al 2010). Association between relapse free survival and COX7B 

expression did not reach significance in tamoxifen treated ER+ patients (HR=1.21, P=0.24) but 

increased expression was significantly associated with shorter relapse free survival and 

increased risk of relapse in ER+ patients (HR=1.29, P=0.012) (Fig 4.10, Table 4.8). 

 

 

 

 

Fig 4.9. Kaplan Meier survival curves using KM plotter showing higher ATP5J2 mRNA 

expression was significantly associated with shorter relapse free survival in both 

tamoxifen treated ER+ (left graph) and all ER+ patients (right graph). 

Fig 4.10. Kaplan Meier survival curves using KM plotter showing higher COX7B mRNA 

expression was significantly associated with shorter relapse free survival in ER+ patients (right 

graph) but did not reach significant in tamoxifen treated ER+ patients (left graph). 
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NDUFA3 (NADH Dehydrogenase (Ubiquinone) 1 Alpha Subcomplex, 3) 

Eukaryotic complex I of OxPhos is composed of 45 subunits. This complex has 7 catalytic subunits 

(ND1, ND2, ND3, ND4, ND4L, ND5 and ND6) with NADH dehydrogenase and oxidoreductase 

activities to transfer electrons from NADH to ubiquinone. This nuclear coded gene (NDUFA3) is 

an accessory subunit of complex I which is not involved in catalysis. Induced expression of 

NDUFA3 was reported in epithelial breast cancer cells as compared to CAFs (Bonuccelli et al 

2010). Increased expression of this gene was significantly associated with shorter relapse free 

survival and increased risk of relapse in both tamoxifen treated ER+ (HR=1.54, P=0.011) and all 

ER+ breast cancer patients (HR=1.27, P=0.0061) (Fig 4.11, Table 4.8). 

 

 

 

NDUFA7 (NADH Dehydrogenase (Ubiquinone) 1 Alpha Subcomplex, 7) 

This nuclear encoded gene is an accessory subunit of complex I which is not involved in the 

catalysis. Induced expression of this gene was detected in breast cancer epithelial cells as 

compared to CAFs (Bonuccelli et al 2010). Moreover, using EST libraries NDUFA7 overexpression 

was detected in tumours as compared to normal tissues (Poliakov et al 2014). Increased 

expression of this gene was significantly associated with shorter relapse free survival and 

increased risk of relapse in both tamoxifen treated ER+ (HR=1.51, P=0.0098) and ER+ breast 

cancer patients (HR=1.4, P=0.00012) (Fig 4.12, Table 4.8). 

 

Fig 4.11. Kaplan Meier survival curves using KM plotter showing higher NDUFA3 expression 

was significantly associated with shorter relapse free survival in both tamoxifen treated ER+ 

(left graph) and ER+ patients (right graph). 
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NDUFA8 (NADH Dehydrogenase (Ubiquinone) 1 Alpha Subcomplex, 8) 

This nuclear encoded gene is an accessory subunit of complex I which is not involved in the 

catalysis. A transition mutation (325G-A) of NDUFA8 was determined in patients with neonatal 

dismorphic features, epilepsy, high plasma lactate and decreased complex I activity in skeletal 

muscles (Bugiani et al. 2004). Induced expression of this gene was reported in the breast cancer 

epithelial cells as compared to CAFs (Bonuccelli et al. 2010). Increased expression of NDUFA8 

was significantly associated with shorter relapse free survival and increased risk of relapse in 

both tamoxifen treated ER+ (HR=1.98, P=1.7E-05) and all ER+ breast cancer patients (HR=1.59, 

P=2.2E-07) (Fig 4.13, Table 4.8). 

 

 

 

 

Fig 4.12. Kaplan Meier survival curves using KM plotter showing higher NDUFA7 expression 

was significantly associated with shorter relapse free survival in both tamoxifen treated ER+ 

(left graph) and all ER+ patients (right graph). 

Fig 4.13. Kaplan Meier survival curves using KM plotter showing higher NDUFA8 mRNA 

expression was significantly associated with shorter relapse free survival in both tamoxifen 

treated ER+ (left graph) and ER+ patients (right graph). 
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NDUFA9 (NADH Dehydrogenase (Ubiquinone) 1 Alpha Subcomplex, 9)  

This nuclear encoded gene is an accessory subunit of complex I which is not involved in the 

catalysis. The role for NDUFA9 in complex I stability was determined by van den Bosche et al. 

(2012) where the homozygous mutation of NDUFA9 caused neonatal Leigh syndrome due to 

complex I deficiency in muscle and fibroblasts of patients. Induced NDUFA9 expression was 

reported in breast cancer epithelial cells as compared to adjacent CAFs (Bonuccelli et al. 2010). 

Increased expression of NDUFA9 was significantly associated with shorter relapse free survival 

and increased risk of relapse in both tamoxifen treated ER+ (HR=1.82, P=8.8E-05) and ER+ breast 

cancer patients (HR=1.5, P=1.2E-05) (Fig 4.14, Table 4.8). 

 

 

 

 

NDUFB5 (NADH Dehydrogenase (Ubiquinone) 1 Beta Subcomplex, 5) 

This nuclear encoded gene is an accessory subunit of complex I which is not involved in the 

catalysis. Reduced NDUFB5 expression was detected in chemotherapy resistant versus 

responsive breast cancer tumours (Millour et al.2006). However, induced expression of this gene 

was determined in epithelial breast cancer cells as compared to CAFs (Bonuccelli et al. 2010). 

Using cancer EST libraries overexpression of NDUFB5 was revealed in tumours as compared to 

normal tissues (Poliakov et al 2014). Increased expression of NDUFB5 was significantly 

associated with shorter relapse free survival and increased risk of relapse in both tamoxifen 

treated ER+ (HR=1.42, P=0.019) and all ER+ breast cancer patients (HR=1.42, P=7.2E-05) (Fig 

4.15, Table 4.8). 

 

Fig 4.14. Kaplan Meier survival curves using KM plotter showing higher NDUFA9 mRNA 

expression was significantly associated with shorter relapse free survival in both tamoxifen 

treated ER+ (left graph) and all ER+ patients (right graph). 
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NDUFB9 (NADH Dehydrogenase (Ubiquinone) 1 Beta Subcomplex, 9) 

This nuclear encoded gene is an accessory subunit of complex I which is not involved in the 

catalysis. Homozygous mutation and low expression of NDUFB9 was discovered in patients with 

complex I deficiency. NADH dehydrogenase activity in fibroblasts of such patients was reduced 

by 61% compared to normal cells (Hack et al. 2012). Increased NDUFB9 expression was detected 

in oesophageal tumours with lymph node metastasis compared to normal tissues (Uchikado et 

al. 2006). Moreover, overexpression of NDUFB9 was detected in the cancer EST libraries of 

tumours as compared to normal tissues (Poliakov et al. 2014). Since KMplotter relied on probe 

IDs from Affymetrix U133A arrays, there was unfortunately no available data for expression of 

this gene in either tamoxifen treated or ER+ breast cancer patients. 

NDUFB10 (NADH Dehydrogenase (Ubiquinone) 1 Beta Subcomplex, 10) 

This nuclear encoded gene is an accessory subunit of complex I which is not involved in the 

catalysis. There was again no data available on KMplotter for RFS analysis of NDUFB10 in the 

clinical breast cancer cohorts. 

NDUFS3 (NADH Dehydrogenase (Ubiquinone) Fe-S Protein 3) 

This nuclear encoded gene expresses one of the iron-sulfur core subunits of complex I which is 

essential for minimal assembly and catalytic activity of complex I. Mutation in NDUFS3 was 

associated with complex I deficiency in patients with Leigh syndrome (Benit et al. 2004). Induced 

expression of this gene was reported in epithelial breast cancer cells as compared to CAFs 

(Bonuccelli et al 2010). Increased expression of NDUFS3 was significantly associated with shorter 

Fig 4.15. Kaplan Meier survival curves using KM plotter showing higher NDUFB5 mRNA 

expression was significantly associated with shorter relapse free survival in both tamoxifen 

treated ER+ (left graph) and all ER+ patients (right graph). 
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relapse free survival and increased risk of relapse in both tamoxifen treated ER+ (HR=1.73, 

P=0.00058) and all ER+ breast cancer patients (HR=1.42, P=9.5E-05) (Fig 4.16, Table 4.8). 

 

 

 

 

PPA2 (Pyrophosphatase (Inorganic) 2) 

This nuclear coded gene plays an important role in phosphate metabolism by catalysing the 

hydrolysis of pyrophosphate to inorganic phosphate for the ATP synthesis in the OxPhos. There 

was a trend for increased expression of PPA2 to be associated with shorter relapse free survival 

and increased risk of relapse in both tamoxifen treated ER+ (HR=1.34, P=0.057) and all ER+ 

(HR=1.17, P=0.079) patients (Fig 4.17, Table 4.8). 

Diphosphate + H2O → 2 phosphate 

 

 

 

Fig 4.16. Kaplan Meier survival curves using KM plotter showing higher NDUFS3 expression 

was significantly associated with shorter relapse free survival in both tamoxifen treated ER+ 

(left graph) and all ER+ patients (right graph). 

Fig 4.17. Kaplan Meier survival curves using KM plotter showing a trend for higher PPA2 

mRNA expression to be associated with shorter relapse free survival in both tamoxifen 

treated ER+ (left graph) and all ER+ patients (right graph). 
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UQCRFS1 (Ubiquinol-Cytochrome C Reductase, Rieske Iron-Sulfur Polypeptide 1) 

This nuclear encoded gene expresses the Rieske protein (11th subunit) of cytochrome b-c1 

(complex III). Amplification of this gene was reported in ovarian cancer (Kaneko et al. 2002) and 

in primary breast cancer (Ohashi et al. 2004). Increased expression of this gene was significantly 

associated with shorter relapse free survival and increased risk of relapse n both tamoxifen 

treated ER+ (HR=1.42, P=0.021) and ER+ breast cancer patients (HR=1.31, P=0.0019) (Fig 4.18, 

Table 4.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.18. Kaplan Meier survival curves using KM plotter showing higher UQCRFS1 mRNA 

associates with shorter relapse free survival in both tamoxifen treated ER+ (left graph) and 

ER+ patients (right graph). 
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4.2.3 Interrogating the carbon source fuelling proliferation of breast cancer cells 

Proliferation of cancer cells depends on availability of oxygen and also a carbon source for ATP 

generation, balance of intracellular redox status, and as building blocks of protein synthesis, 

fatty acid synthesis and carbohydrate biosynthesis. Carbohydrates and amino acids can be used 

as the carbon source in the cell. Glycolysis and glutaminolysis are two pathways that utilize a 

carbon source (glucose/glutamine). Glycolysis is an energy pathway that can also potentially 

feed the TCA cycle, and thereby OxPhos, after pyruvate conversion to Acetyl CoA, while 

glutaminolysis fuels TCA directly via -KG, and so both act to maintain growth of proliferative 

cells. In this project endocrine resistant breast cancer cells were maintained in culture media 

which includes 11.11mM glucose, 4mM glutamine and non-dialyzed serum which contains 

further carbon sources (again glucose and glutamine). To study the importance of these carbon 

sources in resistant cell proliferation (potentially by fuelling the TCA/OxPhos pathway), 

glycolysis and glutaminolysis were manipulated across the resistant panel. 

4.2.3.1 Role for glycolysis: impact of 2-deoxy glucose (glucose analogue) on glycolysis 

rate in endocrine resistant breast cancer cells 

Aerobic glycolysis is well established as a hallmark of advanced cancers (Hanahan et al. 2011). 

Therefore, targeting the glycolysis pathway is a potential strategy to inhibit growth of tumour 

cells. 2-deoxyglucose (2DG) is a monosaccharide compound (glucose analogue) which inhibits 

glycolysis and ATP production. Hexokinase (HK) catalyses phosphorylation of 2DG to 2DG-P, 

which is trapped in the cell reducing glycolysis and ATP production (Pelicano et al.2006). To 

gauge the impact of 2DG on glycolysis in the resistant cells in the current study, a surrogate 

marker of glycolysis (extracellular lactate) was quantified after 24hrs 2DG treatment (0.5, 1, 3 

and 5mM) of the panel of resistant models. Pyruvate is the end product of glycolysis which 

converts to lactate and releases into the extracellular environment via monocarboxylic 

transporters (MCT1-4) and thus is proportional to intracellular glycolysis (Griffin et al. 2004). L-

lactate concentration can be experimentally-determined via monitoring basal extracellular 

acidification (ECA) through addition of lactate dehydrogenase enzyme (LDH) to catalyse the 

oxidation of extracellular lactate to pyruvate where NADH product reduces a tetrazolium 

substrate to a highly coloured formazan which is detectable at 490-520nm. Prior to monitoring 

2DG impact, the basal extracellular L-lactate level was determined by monitoring ECA in this 

study across the model panel (Fig 4.19A). The ECA, and thus extracellular L-lactate level was 

induced in tamoxifen resistant and oestrogen deprived models (≥1.4 fold changes), reaching 

significance in TAMRLT cells, but in contrast remained unchanged in fulvestrant resistant models 
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as compared to MCF7 control cells (Fig 19A). Interestingly, this L-lactate profile also mirrored 

the expression of endogenous lactate dehydrogenase B (LDHB) in the resistant panel which was 

induced (≥1.5 fold changes) in tamoxifen resistant and oestrogen deprived models (Fig 4.19B, 

Table 4.9) but again remained unchanged in fulvestrant resistant models compared to MCF7 (Fig 

4.19B, Table 4.9). These basal ECA and expression profile findings suggest increased glycolysis 

fuels tamoxifen resistant (particularly the TAMRLT cells) and oestrogen deprived resistant 

models in relation to the endocrine responsive cells. 

L-lactate + NAD+ → pyruvate + NADH + H+ 

 

 

 

 

 

 

 

 

 

 

Fig 4.19A. Basal extracellular acidification (ECA) was 

determined via lactate measurement in the resistant 

breast cancer cell panel vs. their antihormone responsive 

(AH) parental cell control MCF7 (grown in SFCS). Data were 

represented as mean of 3 independent experiments (N=3). 

The error bar indicates SEM &* (P<0.05) following ANOVA 

with Dunnett post hoc correction.  

Fig 4.19B. Gene microarray expression of LDHB 

across the resistant panel. On the heatmap, red 

& black indicate induced & no change in gene 

expression respectively as compared to the 

control MCF7 cells. 

 



167 

 

 

 

 

 

To further explore contribution of glycolysis to the resistant cells, the L-lactate level was 

determined after 24hrs of 2DG (0.5, 1, 3 and 5mM) treatment to inhibit glycolysis across the 

panel of resistant models and the parental MCF7 line (Fig 4.20A-D and 4.21A-C). In MCF7, the 

impact of 2DG was modest, with ECA significantly reduced by 43% after 5mM 2DG treatment 

(P<0.05) as compared to untreated control (Fig 4.20A). ECA was more significantly reduced by 

2DG in TamR by 30%, 44%, 50% and 70% after 0.5mM (P<0.05), 1mM (P<0.01), 3mM (P<0.001) 

and 5mM (P<0.001) 2DG treatment respectively as compared to untreated control (Fig 4.20B). 

Moreover, ECA was significantly further reduced by 5mM treatment as compared to 0.5mM 

(P<0.01) and 1mM (P<0.05) treatment in such cells (Fig 4.20B). TamRLT showed substantial 2DG 

sensitivity in a dose dependent manner. ECA was reduced by 50%, 60% and 70% after 0.5mM, 

1mM, 3mM 2DG treatment (Fig 4.20C) and thereafter was significantly reduced by 75% after 

5mM (P<0.05) 2DG treatment respectively as compared to untreated control (Fig 4.20C). Also, 

in this model 2DG significantly reduced ECA by 5mM (P<0.05) as compared to 0.5mM treatment 

(Fig 4.20C). In FasR, while not reaching significance at 0.5mM, ECA was significantly reduced in 

a dose dependent manner thereafter by 40%, 50% and 60% after 1mM (P<0.05), 3mM (P<0.05) 

and 5mM (P<0.01) 2DG treatment respectively as compared to untreated control (Fig 4.20D). 

Similarly, the ECA was significantly reduced in FasRLT by 30%, 40% and 60% after 1mM (P<0.05), 

3mM (P<0.001) and 5mM (P<0.001) 2DG treatment respectively as compared to untreated 

control (Fig 4.21A). Also, in this model 2DG significantly reduced ECA by 3mM (P<0.05) and 5mM 

(P<0.001) treatment as compared to 0.5mM treatment and by 5mM (P<0.01) as compared to 

1mM 2DG treatment (Fig 4.21A). In the MCF7(X) resistant line, ECA was again significantly 

reduced by 25%, 35%, 40% and 60% after 0.5mM (P<0.05) 1mM (P<0.01), 3mM (P<0.001) and 

5mM (P<0.001) 2DG treatment respectively as compared to untreated control (Fig 4.21B). Also, 

ECA was significantly reduced by 5mM as compared to 0.5mM (P<0.01) and 1mM (P<0.05) 2DG 

treatment (Fig 4.21B). While not reaching significance at 0.5mM, ECA was also significantly 

reduced in MCF7(X)LT by 35%, 40% and 50% after 1mM (P<0.05) 3mM (P<0.01) and 5mM 

Table 4.9. Fold change comparison of LDHB expression in 

resistant models vs. MCF7.  
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(P<0.001) 2DG treatment as compared to untreated control (Fig 4.21C). Again ECAR was 

significantly reduced (P<0.01) by 5mM as compared to 0.5mM treatment (Fig 4.21C).  

In summary, 24hrs 2DG treatment reduced ECA (quantified by L-lactate production) in a dose 

dependent manner in the model panel, with apparent increased sensitivity in the resistant lines 

versus the parental MCF7 control. Of note, TamRLT was the most sensitive resistant model with 

50% L-lactate reduction after treatment with the lowest 2DG dose (0.5mM) and at least 70% 

inhibition from 3mM (Fig 4.20A), with the MCF7 control being the least sensitive model with 

45% L-lactate reduction in the highest dose of 2DG treatment (5mM) (Fig 4.20A). These ECA 

profiles with 2DG again suggest there is an increased importance for glycolysis in driving 

resistant cells, particularly TAMRLT, in relation to endocrine responsive cells.  

 

 
Fig 4.20A-D. ECAR quantification after 24hrs 2DG treatment in MCF7, TamR, TamRLT & FasR. 

Data were represented as mean of 3 independent experiments (N=3). The error bar indicates 

SEM. * (P<0.05), ** (P<0.01) & *** (P<0.001) following ANOVA with Bonferroni post hoc 

correction.  
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Fig 4.21B. ECAR quantification after 24hrs 2DG treatment in FasRLT, MCF7(X) & MCF7(X)LT. Data 

were represented as mean of 3 independent experiments (N=3). The error bar indicates SEM. * 

(P<0.05), ** (P<0.01) & *** (P<0.001) following ANOVA with Bonferroni post hoc correction.  
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4.2.3.2 Role for glycolysis: impact of 2-deoxy glucose on growth rate in endocrine 

resistant breast cancer cells 

The growth inhibitory effect of 2DG treatment was determined in culture over day 3, 5 and 7 in 

the panel of resistant models (Fig 4.22-4.28) using Coulter counting. Cells were seeded at 20,000 

cells/well for 24hrs prior to 2DG administration, and the corresponding EC50 for growth 

inhibitory effect of the drug on day 7 was calculated for each model as summarised in Table 4.10 

(Appendix 21).  

Monitoring of the growth curves generated for MCF7 showed that by day 7 growth rate was 

reduced by 50% after treatment with 5mM 2DG treatment as compared to untreated control 

(Fig 4.22A-B). Cell numbers fell below the seeding density at 5mM treatment on day 7 (Fig 

4.22A). In general, growth of MCF7 was reduced in a 2DG-dose dependent manner but this did 

not reach significance in this model compared with untreated control (Figure 4.22B). Mean of 

half-maximum response (EC50) for 2DG treatment in MCF7 was 1mM (Table 4.10). In TamR, 

growth was reduced in a dose dependent manner compared with untreated control, and 

reduced by more than 50% after 3mM and 5mM treatment by day 7 (Fig 4.23A-B). However, the 

reduction of growth was not significant (Fig. 4.23B). Mean of half-maximum response (EC50) for 

2DG treatment in TamR was 1mM (Table 4.10). In TamRLT, growth rate was significantly and 

substantially reduced in a dose dependent manner by 60%, 87% and 90% after 1mM (P<0.001), 

3mM (P<0.001) and 5mM (P<0.001) 2DG treatment by day 7 as compared to untreated control 

(Fig 4.24A-B). Moreover, the growth was significantly further reduced after 1mM (P<0.01), 3mM 

(P<0.001) and 5mM (P<0.001) treatment as compared to 0.5mM treatment and after 5mM 

treatment as compared to 1mM (P<0.05) and 3mM (P<0.05) treatment (Fig 4.24B). Mean of half-

maximum response (EC50) for 2DG treatment in TamRLT was 0.8mM (Table 4.10). The growth 

rate in FasR was reduced in a dose dependent manner with this inhibition significant and more 

than 60% after 3mM (P<0.05) and 5mM (P<0.01) 2DG treatment by day 7 as compared to 

untreated control (Fig 4.25A-B). Mean of EC50 for 2DG treatment in FasR was 0.39mM (Table 

4.10). In FasRLT, the growth impact was again dose dependent and significantly reduced by >60% 

after 1mM (P<0.05), 3mM (P<0.05) and 5mM (P<0.01) treatment as compared to untreated 

control (Fig 4.26A-B). Mean of EC50 for 2DG treatment in FasRLT was 0.43mM (Table 4.10). In 

MCF7(X), the growth rate was reduced in a dose dependent manner, up to 50% with 3mM and 

65% after 5mM 2DG treatment by day 7 as compared to untreated control (Fig 4.27A-B). 

However, this growth rate reduction did not reach significance after 2DG treatment as compared 

to untreated control (Fig 4.27B). Mean of EC50 after 2DG treatment in MCF7(X) was 1mM (Table 

4.10). The growth rate of MCF7(X)LT was also similarly reduced in a dose dependent manner (Fig 



171 

 

4.28A-B), with significant growth reduction by 50% observed after 5mM 2DG treatment as 

compared to untreated control by day 7 (Fig 4.28B). Mean of EC50 for 2DG treatment in 

MCF7(X)LT was 0.9mM (Table 4.10).  

 

 

 

 

Fig 4.22. MCF7 were seeded at 20,000 cells/well and 

the growth rate was determined by Coulter 

counting after 0.5-5mM 2DG treatment on day 3, 5 

& 7. (A) Shows growth curve profiles and (B) % of 

untreated control growth at day 7 (Data were 

represented as mean of 3 independent experiments 

(N=3)). The error bar indicates SEM.  
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Fig 4.23. TamR were seeded at 20,000 cells/well and 

the growth rate was determined by Coulter counting 

after 0.5-5mM 2DG treatment on day 3, 5 & 7. (A) 

Shows growth curve profiles and (B) % of untreated 

control growth at day 7 (Data were represented as 

mean of 3 independent experiments (N=3)). The 

error bar indicates SEM. 
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Fig 4.24. TamRLT were seeded at 20,000 

cells/well and the growth rate was determined by 

Coulter counting after 0.5-5mM 2DG treatment 

on day 3, 5 & 7. (A) Shows growth curve profiles 

and (B) % of untreated control growth at day 7 

(Data were represented as mean of 3 

independent experiments (N=3)). The error bar 

indicates SEM. *(P<0.05), ** (P<0.01) & *** 

(P<0.001) following ANOVA with Bonferroni post 

hoc correction. 



174 

 

 

 

 

 

 

 

 

Fig 4.25. FasR were seeded at 20,000 cells/well 

and the growth rate was determined by Coulter 

counting after 0.5-5mM 2DG treatment on day 3, 

5 & 7. (A) Shows growth curve profiles and (B) % 

of untreated control growth at day 7 (Data were 

represented as mean of 3 independent 

experiments (N=3)). The error bar indicates SEM. 

*(P<0.05) & ** (P<0.01) following ANOVA with 

Bonferroni post hoc correction. 
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Fig 4.26. FasRLT were seeded at 20,000 cells/well and 

the growth rate was determined by Coulter counting 

after 0.5-5mM 2DG treatment on day 3, 5 & 7. (A) 

Shows growth curve profiles and (B) % of untreated 

control growth at day 7 (Data were represented as 

mean of 3 independent experiments (N=3)). The error 

bar indicates SEM. *(P<0.05) & ** (P<0.01) following 

ANOVA with Bonferroni post hoc correction. 
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Fig 4.27. MCF7(X) were seeded at 20,000 cells/well 

and the growth rate was determined by Coulter 

counting after 0.5-5mM 2DG treatment on day 3, 5 

& 7. (A) Shows growth curve profiles and (B) % of 

untreated control growth at day 7 (Data were 

represented as mean of 3 independent experiments 

(N=3)). The error bar indicates SEM.  
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Fig 4.28. MCF7(X)LT were seeded at 20,000 

cells/well and the growth rate was determined by 

Coulter counting after 0.5-5mM 2DG treatment on 

day 3, 5 & 7. (A) Shows growth curve profiles and 

(B) % of untreated control growth at day 7 (Data 

were represented as mean of 3 independent 

experiments (N=3)). The error bar indicates SEM.  
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In conclusion, MCF7, TamR, MCF7(X) and MCF7(X)LT were the least sensitive models to 2DG 

treatment if considering EC50, which approximated 1mM (Table 4.10). Fulvestrant resistant cells 

were the most sensitive models to 2DG treatment according to EC50, which approximated 

0.4mM (Table 4.10). 

To help interpret sensitivity to growth inhibition by 2DG, the project also interrogated glucose 

transporter and hexokinase (HK) expression in the model panel. Using the 1.0ST gene 

microarray, expression of various glucose transporters (SLC2A1-4) and HKs (1-3) were studied in 

the resistant panel (Fig 4.29-4.30). SLC2A2, SLC2A4 and HK3 were not expressed across the panel 

(log2 intensity values were all ≤8). The expression of SLC2A1 was reduced by ≥1.3 fold in TamRLT, 

FasR and FasRLT as compared to MCF7 (Fig 4.29, Table 4.11). Interestingly, the expression of 

SLC2A3 was markedly induced by >7 fold in fulvestrant resistant models versus MCF7. Moreover, 

HK1 and HK2 expression were induced (>1.2 fold changes) in FasR and FasRLT as compared to 

MCF7 (Fig 4.30, Table 4.12). Therefore, when interpreting the significant growth sensitivity to 

2DG treatment in the fulvestrant resistant models one must also take into account that there 

may be a contribution for induced 2DG uptake by SLC2A3 and induced 2DG phosphorylation by 

HK. Similarly, expression of the further glucose transporter SLC2A1 was reduced by 1.5 fold in 

TamRLT (Fig 4.29, Table 4.11) and while HK1 was unchanged, HK2 was also reduced in tamoxifen 

resistant models by up to 1.8 fold as compared to MCF7(Fig 4.30, Table 4.12). There was also 

modest induction of 1.42 fold SLC2A1 in MCF7(X) (Fig 4.29, Table 4.11). These further 

Table 4.10. EC50 calculated based on Coulter 

counter growth data on day 7 for the model 

panel. EC50 data are represented here as mean 

of 3 independent experiments (N=3) ± SD. 
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observations may contribute towards the apparent lower growth sensitivity according to EC50 in 

tamoxifen and oestrogen deprived resistant models versus their fulvestrant resistant 

counterparts.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.29. Microarray expression of glucose transporters 

across the panel of resistant models. SLC2A3 was 

induced by >7 fold in fulvestrant resistant models. 

SLC2A2 & SLC2A4 were not reliably-expressed across the 

panel (log2intensity <7). On the heatmap, red, green & 

black indicate induced, reduced & no change in gene 

expression respectively as compared to the control 

MCF7 cells. 

Table 4.11. Fold changes for microarray expression of glucose transporters in 

endocrine resistant models vs. MCF7. Reduced fold changes (≤1.2) are indicated in 

green and induced fold changes (≥1.2) are indicated in red.  

Fig 4.30. Microarray expression of hexokinases across 

the panel of resistant models. HK3 was not expressed 

across the panel. HK2 was induced in FasR & HK1 was 

induced in FasRLT. On the heatmap, red, green & black 

indicate induced, reduced & no change in gene 

expression respectively as compared to the control cell. 
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Higher growth sensitivity of fulvestrant resistant models to 2DG treatment implies an increased 

glucose consumption (glycolysis) as a main carbon source in these models. In contrast, other 

mechanisms such as amino acid degradation (lysine, valine, leucine and isoleucine) and 

glutaminolysis may replenish the TCA cycle by acetyl CoA, succinyl CoA and α-KG to drive growth 

in tamoxifen resistant and oestrogen deprived models after 2DG treatment. Increased 

expression of genes for lysine, valine, leucine and isoleucine degradation in tamoxifen resistant 

and oestrogen deprived models was compared (Table 4.13). Increased expression of Acetyl-CoA 

Acyltransferase 2 (ACAA2, in tamoxifen resistant and oestrogen deprived models) and 

Oxoglutarate Dehydrogenase-Like (OGDHL, in tamoxifen resistant and long term oestrogen 

deprived model) drive acetyl CoA synthesis (Table 4.13). Increased expression of Aldehyde 

Dehydrogenase 3 Family, Member A2 (ALDH3A2, in tamoxifen resistant and short term 

oestrogen deprived model) and Dihydrolipoamide S-Succinyltransferase (DLST, in TamR and 

MCF7(X)) drive succinyl CoA synthesis and thus feed into the TCA cycle (Table 4.13). The effect 

of glutamine consumption as an alternative carbon source on growth of resistant models and 

sensitivity to glutamine deprivation is investigated in section 4.2.4.3. Interestingly, basal ECA 

was higher in TamRLT as compared to other resistant models and MCF7 control (Fig 4.19A). This 

suggests an additional pathway is operating to maintain the glycolysis intermediate in TamRLT. 

Study of pentose phosphate pathway (PPP) suggest a possible role for Transaldolase 1 (TALDO1) 

enzyme in this model. TALDO1 plays a role in the non-oxidative pentose phosphate pathway to 

balance the metabolite in the PPP and thus regulates glycolysis intermediates such as fructose 

6-phosphate and glyceraldehyde 3-phosphate.  

Sedoheptulose 7-phosphate + D-glyceraldehyde 3-phosphate → D-erythrose 4-phosphate + D-

fructose 6-phosphate 

Glucose 6-phosphate is a precursor for PPP and 2DG treatment inhibits phosphorylation of 

glucose to glucose 6-phosphate (via inhibition of HK/ ADP-dependent glucokinase). Therefore, 

2DG treatment can potentially disrupt the PPP and interrupt regulatory mechanism of glycolysis 

Table 4.12. Fold changes for microarray expression of hexokinases in endocrine 

resistant models vs. MCF7. HK3 was not expressed (log2 intensity <7). Reduced fold 

changes (≥1.2) are indicated in green & induced fold changes (≥1.2) indicated in red.  
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intermediates via TALDO1. This may explain a sudden ECA fall after 1mM 2DG treatment (for 

24hrs) in TamRLT (Fig 4.20C). Although, other compensatory mechanisms such as glutaminolysis 

and amino acid degradation somehow masked the growth inhibitory effect of 0.5mM 2DG 

treatment in this model (Fig 4.23), despite a substantial growth inhibitory effect was observed 

after 1mM 2DG treatment in TamRLT (Fig 4.24). 

 

 

 

 

 

 

Table 4.13. Induced probe IDs (≥1.2 fold changes) representing 

either valine, leucin & isoleucin degradation or lysine degradation 

in TamR, TamRLT, MCF7(X) & MCF7(X)LT vs. MCF7. Red indicates 

probe IDs whose activity is associated with acetyl CoA (ACAA2 & 

OGDHL) and succinyl CoA (ALDH3A2 & DLST) generation in these 

models. 
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4.2.4. Role for glutaminolysis: impact of exogenous glutamine and glutamine 

deprivation on growth of endocrine resistant breast cancer cells 

Although glucose is the main fuel source for energy pathways in many proliferative tumours, it 

accounts for insufficient energy production through glycolysis (2ATP molecules). Instead, 

glutamine catabolism (glutaminolysis) is the more efficient pathway to replenish the TCA cycle 

intermediates (anaplerosis) and so produce ATP via oxidative phosphorylation (Fan et al. 2013). 

Glutaminolysis is mediated by two mitochondrial enzymes (glutaminases; GLS and GLS2) to 

generate glutamate which participates in synthesis of glutathione and a key TCA pathway 

substrate, α-KG, via transaminases (GLUD1 and GLUD2).  

There is evidence that glutaminolysis can be important to fuel cancer cell proliferation. In some 

cancer cells including HeLa and MCF7, it has been reported that exchange of glutamine with 

essential amino acids activates serine/threonine kinase mTOR and thus regulates cell 

proliferation (Nicklin et al.2009). Moreover, monitoring glutaminolysis provides a diagnostic and 

prognostic tool to trace glutamine consumption in proliferative tumour cells. On this basis 18F-

(2S,4R)4-fluoroglutamine PET imaging is able to detect proliferating tumours which had induced 

glutaminolysis (Leiberman et al.2011). Glutamine dependency for growth (glutamine addiction) 

is variable among tumour cells, evidenced by a study of lung cancer cells which displayed 

variable growth-dependency to glutamine deprivation. In this regard, lung cancer cells with a 

higher glutaminolysis rate were more dependent on glutamine consumption for proliferation 

(van den Heuvel et al.2012). Interestingly, study of breast cancer subtypes has also revealed 

higher sensitivity to glutamine deprivation in basal as compared to luminal subtypes. De novo 

glutamine synthesis via glutamine synthetase (GS: encoded by the GLUL gene) occurred in the 

basal subtype to sustain the growth and proliferation of such breast cancer cells (Kung et al. 

2011). However, the importance of glutamine in fuelling endocrine resistant cells has not been 

addressed.  

To achieve this, therefore, glutamine dependency was assessed in two extreme glutamine 

conditions in the project, exploring impact of exogenous L-glutamine (10mM versus basal 

concentration in the model maintenance media of 4mM) and glutamine deprivation across the 

panel of endocrine resistant models versus the parental MCF7 line. Impact on growth rate was 

determined after 7 days treatment versus basal growth conditions (containing 4mM glutamine) 

for each model (Fig 4.31A-B).  
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These experiments showed that the growth of MCF7 was only very slightly increased (by 9.6%) 

by 10mM exogenous glutamine and also remained unchanged in glutamine deprived conditions 

as compared to basal growth conditions (4mM glutamine supplementation) for MCF7 (Fig 4.31A) 

implying limited contribution for glutaminolysis and minimal glutamine dependency in this 

endocrine responsive model. Similarly, a study by Kung et al. (2001) revealed glucose depletion 

had more effect on MCF7 growth compared to glutamine deprivation in such cells. TamR cell 

growth was also only slightly increased (by 10.8%) under excess glutamine conditions as 

compared to basal growth (Fig 4.31B). However, the growth of TamR cells in glutamine deprived 

conditions was significantly reduced as compared to basal growth by 46.2% (P <0.01) and it also 

reduced as compared to excess glutamine conditions by 57% (Fig 4.31B). The growth of TamRLT 

was again only slightly increased by 10.4% in excess glutamine conditions as compared to the 

basal growth (Fig 4.31C). However, growth of this model was significantly and substantially 

reduced after glutamine deprivation by 67.6% (P <0.001) as compared to basal growth and it 

also reduced by 78% in glutamine deprived condition as compared to excess glutamine 

conditions (Fig 4.31C). The growth of FasR was also only slightly increased by 13% in excess 

glutamine conditions as compared to basal growth conditions (Fig 4.31D). However, FasR growth 

was modestly reduced by 22.3% (P <0.05) in glutamine deprived conditions as compared to basal 

growth and it further reduced by 35.3% as compared to excess glutamine conditions (Fig 4.31D). 

The growth of FasRLT was again only slightly increased by 12.4% in excess glutamine conditions 

as compared to basal growth conditions (Fig 4.32A). However, the growth of FasRLT was 

significantly reduced (P<0.01) by 36.6% in glutamine deprived condition as compared to basal 

growth conditions and further reduction was observed by 49% in glutamine deprived conditions 

as compared to excess glutamine conditions (Fig 4.32A). The growth of MCF7(X) was slightly 

induced by 24% in excess glutamine conditions as compared to basal growth (Fig 4.32B). 

However, the growth of MCF7(X) was significantly reduced by 23.5% in glutamine deprived 

conditions as compared to basal growth condition and further growth reduction (47.5%) was 

detected in glutamine deprived conditions as compared to excess glutamine conditions (Fig 

4.32B). The growth of MCF7(X)LT was similarly slightly increased in excess glutamine conditions 

as compared to basal growth by 9.4% (Fig 4.32C). However, the growth of this model was 

significantly reduced by 36.9% (P<0.01) in glutamine deprived condition as compared to basal 

growth and further reduction was observed by 46.3% in glutamine deprived condition as 

compared to excess glutamine conditions (Fig 4.32C). 
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Fig 4.31A-D. Growth rate of MCF7, TamR, TamRLT & FasR after 7d treatment with excess 

glutamine (10mM), basal glutamine (4mM) & glutamine deprived conditions. Data were 

represented as mean of 3 independent experiments (N=3). The error bar indicates SEM. * 

(P<0.05), ** (P<0.01) & *** (P<0.001) following ANOVA with Dunnett’s post hoc correction.  
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Fig 4.32A-C. Growth rate of FasRLT, MCF7(X) & MCF7(X)LT after 7d treatment with excess glutamine 

(10mM), basal glutamine (4mM) & glutamine deprived conditions. Data were represented as mean 

of 3 independent experiments (N=3). The error bar indicates SEM. ** (P<0.01) following ANOVA with 

Dunnett’s post hoc correction.  
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In general, excess exogenous glutamine appeared to have little impact but all resistant lines 

showed some sensitivity to glutamine deprivation and thus evidence of significant growth 

dependency on glutaminolysis. However, tamoxifen resistant models were the most sensitive of 

the resistant models cells to glutamine deprivation (>40% growth reduction), contrasting with 

the largely-refractory MCF7 model (Fig 4.31A-C). To further help interpret these findings, 

expression of various glutamine transporters, glutaminolysis and de novo glutamine synthesis 

enzymes were profiled using the 1.0ST gene microarray in the model panel (Fig 4.33).  

The expression of SLC1A5 (a glutamine influx transporter) and SLC7A5 (a glutamine efflux 

transporter) was induced across the whole resistant panel as compared to MCF7 (Fig 4.33, Table 

4.14). Expression of SLC7A6 (a further glutamine influx transporter) was also induced in 

fulvestrant resistant models, oestrogen deprived models and TamR as compared to MCF7 (Fig 

4.33, Table 4.14). Such expression changes must in total ensure efficient delivery of glutamine 

for glutaminolysis in the resistant models, and perhaps explain why there was little further 

growth impact of exposing the cells to excess exogenous glutamine at 10mM.  

Glutaminases GLS and GLS2 are involved during glutaminolysis to generate glutamate as follows: 

GLS/GLS2: L-glutamine + H2O → L-glutamate + NH3. The expression of GLS and GLS2 was reduced 

in oestrogen deprived and fulvestrant resistant models as compared to MCF7 (Fig 4.33, Table 

4.14). This reduced expression may have dampened the ability of these models to use 

glutaminolysis compared with the more highly glutamine deprivation-sensitive tamoxifen 

resistant lines. Indeed, fulvestrant sensitivity to glycolysis inhibitor (2DG; EC50: 0.4mM) is 

supportive of the concept that they may use glucose as the main carbon source for growth and 

proliferation. 

While the transaminase GLUD2 was not expressed across the resistant panel (log2 <8) (Fig 4.33, 

Table 4.14), GLUD1, a further glutaminolysis enzyme involved in synthesis of glutathione and α-

KG, was induced in the oestrogen deprived resistant cells and also FasRLT as compared to MCF7 

(Fig 4.33, Table 4.14).  

GLUD1: L-glutamate + H2O + NAD(P)+ = 2-oxoglutarate (α-KG) + NH3 + NAD(P)H + H+ 

This enzyme enables use of L-glutamic acid in the growth media (0.13mM in RPMI1640) as an 

alternative carbon source to generate α-KG and ultimately promote some growth despite 

glutamine deprivation in these models. 

Growth sensitivity to glutamine deprivation has been reported to be associated with de novo 

glutamine synthesis via GLUL expression in luminal breast cancer cells (Kung et al. 2011) or with 
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use of alternative anaplerotic pathways via pyruvate carboxylase (PC; converts pyruvate to OAA) 

as seen in glioblastoma cells (Cheng et al. 2011): PC: ATP + pyruvate + HCO3
- → ADP + phosphate 

+ oxaloacetate (OAA). However, there was no convincing evidence for the GLUL or PC 

mechanism in the panel of resistant models, since (i) although GLUL expression was induced in 

MCF7(X) cells, it was reduced in glutamine deprivation-sensitive tamoxifen and fulvestrant 

resistant models (Fig 4.33, Table 4.14) and (ii) PC expression was reduced in several of the 

glutamine deprivation-sensitive resistant models versus MCF7 (Fig 4.33, Table 4.14).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.33. Microarray expression of glutamine 

transporters and pyruvate carboxylase across 

the panel of resistant models. On the heatmap, 

red, green & black indicate induced, reduced & 

no change in gene expression respectively as 

compared to the control MCF7 cells. 

Table 4.14. Fold changes for glutamine transporters and pyruvate carboxylase in 

endocrine resistant models vs. MCF7. Reduced expression with fold changes ≥1.2 is 

indicated in green & induced expression with fold changes ≥1.2 are indicated in red.  
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Fig 4.34. Microarray expression of glutaminase (GLS 

& GLS2), glutamate dehydrogenase (GLUD1 & 

GLUD2) and glutamine synthase (GLUL) across the 

panel of resistant models. On the heatmap, red, 

green & black indicate induced, reduced & no 

change in gene expression respectively as 

compared to the control MCF7 cells. 

Table 4.15. Fold changes for GLS, GLS2, GLUD1, GLUD2 & GLUL in endocrine resistant 

models vs. MCF7. GLUD2 was not expressed (log2 intensity< 7). Reduced expression 

with fold changes ≥1.2 are indicated in green & induced expression with fold changes 

≥1.2 are indicated in red.  
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4.2.5 The contribution of mitochondrial bioenergetics (OxPhos) in endocrine resistant 

breast cancer cells 

There is considerable evidence supportive of deregulation of the energy-associated oxidative 

phosphorylation pathway in cancer epithelial cells. Thus, induced expression of OxPhos 

components was reported by Bonuccelli et al. (2010) in breast cancer epithelial cells as 

compared to adjacent cancer-associated fibroblasts (CAFs). Furthermore, increased activity of 

OXPhos components including NADH dehydrogenase, SDH and cytochrome c oxidase was also 

detected in breast cancer epithelial cells from >2000 patients as compared to CAFs (Whitaker-

Menezes et al. 2011). Induced mitochondrial fatty acids oxidation and therefore induced OxPhos 

activity has similarly been reported in ovarian cancer cells (Nieman et al. 2011). In situ metabolic 

control analysis of locally-advanced breast tumours (from women aged 50-71) has confirmed 

upregulation of mitochondrial respiration in breast cancer cells as compared to matched normal 

tissue, with induced activity of the OxPhos components such as complex I, II, III, IV, ATP synthase, 

ATP/ ADP carrier and Pi carrier (Kaambre et al. 2013). Based on induced respiration in some 

cancer cells, therapeutic strategies focused on targeting OxPhos components to reduce growth 

of tumour cells. In the current study induced expression of several OxPhos components was 

detected in endocrine resistant models as compared to MCF7 (Fig 4.10, Table 4.32). Based on 

functional annotation analysis (Chapter 3, Fig 3.8A, Table 3.16), components of complex I 

(NDUFA3, NDUFA8, NDUFA9, NDUFB5, NDUFB9, NDUFB10 and NDUFS3) and complex III 

(UQCRFS1) got the highest enrichment score for the shared induced metabolic genes in resistant 

models versus MCF7. Thus metformin and antimycin A were used to pharmacologically-inhibit 

complex I and III of OxPhos respectively to gauge whether OxPhos has an enhanced role in 

resistant cells. Oxygen consumption (a surrogate marker of OxPhos) and growth were 

determined after each treatment in the resistant panel. 
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4.2.5.1 The inhibitory effect of antimycin A on oxygen consumption rate in endocrine 

resistant breast cancer cells 

Complex III (ubiquinol:cytochrome c oxidoreductase) of the electron transport chain catalyses 

reversible transfer of two electrons from UQH2 to cytochrome c and generates a proton gradient 

across the inner mitochondrial membrane. This complex contains three redox subunits 

comprising cytochrome b, cytochrome c1, and the iron-sulfur protein (ISP), which contain two 

hemes B (BH and BL), heme C and a Rieske iron-sulfur protein [2Fe-2S] respectively. 

Hydroquinone oxidation which occurs via the Q cycle involves bifurcation of electrons at the Q0 

position of the cytochrome b so one electron transfers to ISP, cytochrome c1 and then on to 

cytochrome c (the mobile carrier). The other electron transfers to the heme bL and then on to 

the heme bH near the quinone reduction site of cytochrome b (Qi). During the Q cycle two 

protons are consumed from the matrix and four protons are pumped into the intermembrane 

space (Iwata et al. 1998). Antimycin A (AA) is an antibiotic which is produced by Streptomyces 

Kitazawensis (Nakayama et al. 1956). AA is the most potent inhibitor of OxPhos and so comprises 

a useful tool to help determine OxPhos contribution in the resistant models. Its mechanism of 

action is to bind to the quinone reduction site (Qi) of cytochrome b and thus disrupts the Q cycle. 

AA inhibits reoxidation of cytochrome b and partially blocks reduction of cytochrome c via 

cytochrome bc1 of complex III (Muller 2002).  

In the current study, a surrogate marker of OxPhos activity (oxygen consumption) was 

determined across the panel of endocrine resistant models under basal growth conditions and 

after 24hrs AA treatment (Fig 4.35-4.37). MitoXpress® Xtra probe (a cell impermeable oxygen 

sensing fluorophore) was used to measure extracellular oxygen consumption (OC) across the 

resistant panel. This probe is quenched by O2 and thus, the fluorescence signal is inversely 

correlated with the extracellular O2. While the fluorescence signal is proportional to OC or 

OxPhos in the cell. Cells were seeded (80,000 cells/well) to measure OC under basal condition 

and after 24hrs AA treatment (at 5nM and 10nM).  

Under basal conditions, OC was significantly increased in TamRLT (P<0.05), FasR (P<0.01), FasRLT 

(P<0.001), MCF7(X) (P<0.001) and MCF7(X)LT models (P<0.001) as compared to MCF7 cells (Fig 

4.35), providing evidence for increased OxPhos in most endocrine resistant states. While more 

modestly-increased in tamoxifen resistance, OC increased by ≥2 fold in fulvestrant resistant and 

oestrogen deprived resistant models as compared to MCF7 (Fig 4.35).  
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In MCF7, the OC was significantly reduced by 40% and 67% after 5nM (P<0.001) and 10nM 

(P<0.001) AA treatment respectively as compared to untreated control (Fig 4.36A). The OC was 

also significantly reduced in TamR cells by 51% and 69% after 5nM (P<0.01) and 10nM (P<0.001) 

AA treatment respectively as compared to untreated control (Fig 4.36B). In TamRLT, the OC was 

more substantially reduced by 77% and 83% after 5nM (P<0.001) and 10nM (P<0.001) AA 

treatment respectively (Fig 4.36C). The OC in FasR was significantly reduced by 60% and 69% 

after 5nM (P<0.001) and 10nM (P<0.001) AA treatment respectively as compared to untreated 

control (Fig 4.36D). Comparable reduction was seen in FasRLT, with the OC significantly reduced 

by 61% and 69% after 5nM (P<0.01) and 10nM (P<0.01) AA treatment respectively as compared 

to untreated control (Fig 4.37A). In MCF7(X), the OC was more reduced by 36% and 52% after 

5nM (P<0.01) and 10nM (P<0.01) AA treatment respectively as compared to untreated control 

(Fig 4.37B) while in MCF7(X)LT, OC was reduced by 53% and 59% after 5nM (P<0.05) and 10nM 

(P<0.01) AA treatment as compared to untreated control (Fig 4.37C).  

In summary, the OC was reduced by ≥60% in the most AA-sensitive models (TamRLT, FasR and 

FasRLT) and by ≤50% in the least sensitive models examined (MCF7, TamR, MCF7(X) and 

MCF7(X)LT) after 5nM AA treatment for 24hrs (Fig 4.36-4.37). All resistant lines (except MCF7(X)) 

appeared to show somewhat increased sensitivity of their OC to AA compared with the 

endocrine responsive MCF7 cells at the 5nM concentration. These findings are in keeping with 

Fig 4.35. Basal oxygen consumption (OC) was 

determined in endocrine resistant cells vs. MCF7 

control. Data are represented as mean of 3 

independent experiments (N=3). The error bar 

indicates SEM. * (P<0.05), ** (P<0.01) & *** 

(P<0.05) following ANOVA with Dunnett’s post 

hoc correction. 
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increased importance for Complex III-driven OxPhos in resistance, most prominently for TAMRLT 

cells.  

 

 

 

Fig 4.36A-D. OC quantified in MCF7, TamR, TamRLT & FasR cells after 24hrs antimycin A (AA) 

treatment. Data are expressed as % of untreated control and comprise a mean of 3 independent 

experiments (N=3). The error bar indicates SEM. ** (P<0.01) & *** (P<0.001) following ANOVA 

with Bonferroni post hoc correction. 
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Fig 4.37A-C. OC quantified in FasRLT, MCF7(X) & MCF7(X)LT cells after 24hrs antimycin A (AA) 

treatment. Data are expressed as % of untreated control and comprise a mean of 3 independent 

experiments (N=3). The error bar indicates SEM. * (P<0.05) & ** (P<0.01) following ANOVA with 

Bonferroni post hoc correction. 
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4.2.5.2 The inhibitory effect of antimycin A on growth of endocrine resistant breast 

cancer cells 

To study the inhibitory effect of AA treatment on growth and so further gauge importance of 

OxPhos in resistance, the breast cancer models were seeded (at 20,000 cells/well) for 24hrs prior 

to AA administration over 5, 10, 20, 30, 40, 50 and 100nM concentration range. Cell growth was 

then determined by Coulter counting on day 3, 5 and 7 for the panel of endocrine resistant 

models (Fig 4.38-4.43). Mean of half-maximum response (EC50) for AA treatment was calculated 

based on growth on day 7 for individual models (Table 4.16, Appendix 21).  

 

 

 

The growth of the endocrine responsive MCF7 cells was significantly reduced, by approximately 

40% versus untreated control at 7 days, with either 40nM (P<0.05), 50nM (P<0.05) or 100nM 

(P<0.01) AA treatment (Fig 4.38B). Indeed, the cell number had also dropped below the initial 

seeding density (20,000 cells/well) after 30-100nM AA treatment by day 7 (Fig 4.38A). The mean 

half-maximum response (EC50) for AA treatment in MCF7 was 10.5nM (Table 4.16). TamR growth 

was significantly reduced by ≥65% after 10nM (P<0.01), 20nM (P<0.01), 30nM (P<0.01), 40nM 

(P<0.01), 50nM (P<0.001) and 100nM (P<0.001) AA treatment as compared to untreated control 

(Fig 4.39B). The cell number dropped below the seeding density after 40-100nM AA treatment 

on day 7 (Fig 4.39A). The mean EC50 for AA treatment in TamR was 3.4nM (Table 4.16). TamRLT 

growth was particularly sensitive to AA, significantly reducing (P<0.0001) by ≥80% from 5nM 

through to 100nM AA treatment (Fig 4.40B). The cell number dropped below the seeding density 

by 100nM AA treatment on day 7 (Fig 4.40A). The mean EC50 for such treatment in TamRLT was 

Table 4.16. EC50 calculated based on 

Coulter counter growth data on day 7 

for the model panel. EC50 data are 

represented here as mean of 3 

independent experiments (N=3) ± SD. 
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0.7nM (Table 4.16). Fulvestrant resistant cells also showed increased sensitivity to AA compared 

with the MCF7 model. The growth of FasR was significantly reduced by ≥44% after 5nM (P<0.01), 

10nM (P<0.001), 20nM (P<0.001), 30nM (P<0.0001), 40nM (P<0.0001), 50nM (P<0.0001) and 

100nM (P<0.0001) AA treatment as compared to untreated control (Fig 4.41A-B). The mean EC50 

for AA treatment in FasR was 3.8nM (Table 4.16). Although some variation was seen so 

significance was not reached, mean FasRLT growth was reduced by ≥57% after 10nM (Fig 4.42A-

B) while the mean EC50 for AA treatment was 1.3nM (Table 4.16). Oestrogen deprivation 

resistant cells also showed significant growth-sensitivity to AA. The growth of MCF7(X) was 

significantly reduced by ≥55% after 5nM (P<0.05), 10nM (P<0.01), 20nM (P<0.01), 30nM 

(P<0.001), 40nM (P<0.001), 50nM (P<0.001) and 100nM (P<0.001) AA treatment as compared 

to untreated control (Fig 4.43A-B). The mean EC50 for AA treatment in MCF7(X) was 4nM (Table 

4.16). The growth of MCF7(X)LT was also significantly reduced by ≥62% after 10nM (P<0.01), 

20nM (P<0.01), 30nM (P<0.001), 40nM (P<0.001), 50nM (P<0.001) and 100nM (P<0.001) AA 

treatment (Fig 44A-B), with a mean EC50 of 4.6nM (Table 4.16). 

In summary, all the resistant models showed increased sensitivity to AA treatment compared 

with MCF7 cells suggesting increased growth dependency on complex III in OxPhos in resistant 

cells. Based on EC50 data, TamRLT and FasRLT were the most sensitive models to AA treatment 

(Table 16), although the FasRLT findings remain equivocal due to lack of significance.  
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Fig 4.38. MCF7 cells were seeded at 20,000 cells/well and the growth 

was determined by Coulter counting after 5-100nM antimycin A (AA) 

treatment on day 3, 5 & 7. (A) Shows growth curve profiles and (B) % 

untreated control growth at day 7. Data were represented as mean of 

3 independent experiments (N=3). The error bar indicates SEM. 

*(P<0.05) & ** (P<0.01) following ANOVA with Bonferroni post hoc 

correction. 
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Fig 4.39. TamR cells were seeded at 20,000 cells/well and the growth 

was determined by Coulter counting after 5-100nM antimycin A (AA) 

treatment on day 3, 5 & 7. (A) Shows growth curve profiles and (B) % 

untreated control growth at day 7. Data were represented as mean of 3 

independent experiments (N=3). The error bar indicates SEM. ** 

(P<0.01) & *** (P<0.001) following ANOVA with Bonferroni post hoc 

correction. 
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Fig 4.40. TamRLT cells were seeded at 20,000 cells/well and the 

growth was determined by Coulter counting after 5-100nM antimycin 

A (AA) treatment on day 3, 5 & 7. (A) Shows growth curve profiles and 

(B) % untreated control growth at day 7. Data were represented as 

mean of 3 independent experiments (N=3). The error bar indicates 

SEM. **** (P<0.0001) following ANOVA with Bonferroni post hoc 

correction. 
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Fig 4.41. FasR cells were seeded at 20,000 cells/well and the growth 

was determined by Coulter counting after 5-100nM antimycin A (AA) 

treatment on day 3, 5 & 7. (A) Shows growth curve profiles and (B) % 

untreated control growth at day 7. Data were represented as mean of 

3 independent experiments (N=3). The error bar indicates SEM. ** 

(P<0.01), *** (P<0.001) & **** (P<0.0001) following ANOVA with 

Bonferroni post hoc correction. 

 



200 

 

 

 
Fig 4.43. FasRLT cells were seeded at 20,000 cells/well and the growth 

was determined by Coulter counting after 5-100nM antimycin A (AA) 

treatment on day 3, 5 & 7. (A) Shows growth curve profiles and (B) % 

untreated control growth at day 7. Data were represented as mean of 

3 independent experiments (N=3). The error bar indicates SEM.  
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Fig 4.42. MCF7(X) cells were seeded at 20,000 cells/well and the 

growth was determined by Coulter counting after 5-100nM antimycin 

A (AA) treatment on day 3, 5 & 7. (A) Shows growth curve profiles and 

(B) % untreated control growth at day 7. Data were represented as 

mean of 3 independent experiments (N=3). The error bar indicates 

SEM. * (P<0.05), ** (P<0.01) & *** (P<0.001) following ANOVA with 

Bonferroni post hoc correction. 
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Fig 4.43. MCF7(X)LT cells were seeded at 20,000 cells/well and the 

growth was determined by Coulter counting after 5-100nM antimycin 

A (AA) treatment on day 3, 5 & 7. (A) Shows growth curve profiles and 

(B) % untreated control growth at day 7. Data were represented as 

mean of 3 independent experiments (N=3). The error bar indicates 

SEM. ** (P<0.01) & *** (P<0.001) following ANOVA with Bonferroni 

post hoc correction. 
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4.2.5.3. The inhibitory effect of metformin treatment on NADH dehydrogenase and 

cytochrome c oxidase activity in endocrine resistant cells 

Based on the functional classification of the shared induced metabolic genes (Chapter 3, 3.2.2.5, 

Table 3.16), the highest enrichment score (7.8) belongs to subunits of complex I, III and IV 

associated with OxPhos, and according to gene ontology, 8 components of complex I (NADH 

dehydrogenase) were significantly induced in all resistant models (Chapter 3, Fig 3.10). NADH 

dehydrogenase is an enzyme complex located within the inner mitochondrial membrane, and 

transfers electrons from NADH to ubiquinone (Q). To further explore the contribution of OxPhos 

(in particular complex I activity) to the models, the current study investigated the impact of 

targeting complex I activity on NADH dehydrogenase activity, cytochrome c oxidase which lies 

downstream in the electron transport chain, OC as a surrogate for OxPhos activity in cells, key 

cell signalling pathways potentially influenced by OxPhos and also cell growth in the panel of 

resistant models.  

The agent chosen to inhibit complex I in this study was metformin, which is also of emerging 

clinical interest in breast cancer (Goodwin et al. 2008 and Hadad et al. 2015). Biguanides such 

as phenformin and metformin are capable of exerting anti-tumour effects through inhibition of 

mitochondrial complex I activity (Birsoy et al. 2014). This alters cellular ATP balance, which in 

turn is reported to activate AMPK, inhibit mTOR signalling, and inhibit growth (Dowling et al. 

2007). This is the direct cellular mechanism for metformin, but an additional indirect systemic 

mechanism has also been defined (Viollet et al. 2012). Clinically, metformin hydrochloride (N, 

N-dimethylimidodicarbonimidic diamide hydrochloride) is used for type II diabetic patients and 

reduces glucose production by suppressing gluconeogenesis in the liver while increasing glucose 

uptake in peripheral tissues (Viollet et al. 2012). Also, metformin reduces level of circulating 

insulin and insulin-like growth factor 1 (IGF-1). Both Insulin and IGF-1 play a role in insulin 

receptor and IGF receptor signalling pathways respectively and thus elimination of those factors 

via metformin treatment exert anticancer effect on tumour growth (Pollak et al. 2010). 

In the current study, the ability of metformin treatment (0.5-2mM) to target complex I activity 

was firstly assessed on NADH dehydrogenase activity after 24hrs incubation time. The 

metformin concentration used is in a range utilized in diabetes studies to test the effect of the 

drug on hepatocytes (Stephenne et al. 2011: ex vivo). A mM concentration range has also been 

explored in further breast cancer cell line growth studies (Hadad et al. 2014). To determine 

NADH dehydrogenase activity before and after metformin treatment, an enzyme histochemistry 

approach was used across the panel of endocrine resistant models. This technique is based on 
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metabolizing a substrate by tissue enzyme in its orthotopic localization to generate an insoluble 

dye product which provides insights into pathobiological condition and vitality of cells. For NADH 

dehydrogenase assay, the enzyme substrate β-nicotinamide adenine dinucelotide is oxidized 

and a colour indicator (nitrotetrazolium blue chloride) is reduced to blue formazan. The 

formazan binds to local proteins and so reveals localization of NADH dehydrogenase enzyme in 

a particular cell compartment when viewed by light microscopy (Balan et al. 2010 and Whitaker-

Menezes et al. 2011). This technique is semiquantitative, since it lacks reliable quantification of 

the enzyme activity.  

In oncology, dehydrogenase activity of a tumour reveals vitality of cells and efficiency of 

cytostatic treatment (Meier-Ruge et al. 2007). Under untreated conditions, the NADH 

dehydrogenase enzyme activity was detected in the cytoplasm in all cell models, reflecting 

where mitochondria are located (Fig 4.44). NADH dehydrogenase activity was only slightly 

induced in TamR, TamRLT and FasR when compared to MCF7 under untreated conditions, but 

this enzyme activity was induced more substantially in FasRLT, MCF7(X) and MCF7(X)LT cells (Fig 

4.44) suggesting prominent Complex I activity in these particular resistant models. Any reduced 

enzyme activity after metformin treatment was subsequently assessed as a weak (+), moderate 

(++), high (+++) or very high reduction (++++) in the staining signal (Table 4.17). 

  

 

 

 

Table 4.17. The effect of metformin after 24hrs treatment on 

staining for NADH dehydrogenase activity in the panel of resistant 

models. Metformin impact is indicated by + weak, ++ moderate, 

+++ high or ++++ very high reductions in staining, as compared to 

untreated control. No impact is indicated by ----. 
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In MCF7, the enzyme activity was not robustly changed by 0.5mM metformin treatment, but it 

was reduced in a dose dependent manner after 1, 1.5 and 2mM metformin treatment as 

compared to the untreated control (Fig 4.45, Table 4.17). In TamR, the enzyme activity was 

diminished by 0.5 and 1mM metformin treatment but it was reduced more substantially after 

1.5 and 2mM treatment as compared to untreated control (Fig 4.46, Table 4.17). In TamRLT, 

NADH dehydrogenase activity was not markedly changed after 0.5mM treatment, but it was 

reduced in a dose dependent manner by 1, 1.5 and 2mM metformin (Fig 4.47, Table 4.17). The 

enzyme activity was not robustly changed in FasR and FasRLT after 0.5mM metformin treatment 

but was reduced in a dose dependent manner after 1, 1.5 and 2mM metformin treatment as 

compared to untreated control (Fig 4.48-4.49, Table 4.17). Enzyme activity was reduced in a 

Fig 4.44. Staining for basal NADH 

dehydrogenase activity across the panel of 

resistant models & MCF7 cells. Original 

magnification 40X. 
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dose dependent manner from 0.5mM to 2mM metformin treatment in MCF7(X) and MCF7(X)LT 

as compared to untreated control for each model (Fig 4.50-4.51, Table 4.17).  

In summary, high specificity of the drug to target complex I of OxPhos was indicated by its ability 

to abolish NADH dehydrogenase activity (in a dose dependent manner) across the panel of 

endocrine resistant models and the MCF7 cells (Fig 4.45-4.51). 

 

 

 

 

 

 

 

Fig 4.45. Staining for NADH dehydrogenase 

activity after 24hrs metformin treatment 

(0.5mM-2mM) in MCF7 cells. Original 

magnification 40X.  
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Fig 4.46. Staining for NADH dehydrogenase 

activity after 24hrs metformin treatment 

(0.5mM-2mM) in TamR cells. Original 

magnification 40X.  
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Fig 4.47. Staining for NADH dehydrogenase 

activity after 24hrs metformin treatment 

(0.5mM-2mM) in TamRLT cells. Original 

magnification 40X.  
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Fig 4.48. Staining for NADH dehydrogenase 

activity after 24hrs metformin treatment 

(0.5mM-2mM) in FasR cells. Original 

magnification 40X.  
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Fig 4.49. Staining for NADH dehydrogenase 

activity after 24hrs metformin treatment 

(0.5mM-2mM) in FasRLT cells. Original 

magnification 40X.  
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Fig 4.50. Staining for NADH dehydrogenase 

activity after 24hrs metformin treatment 

(0.5mM-2mM) in MCF7(X) cells. Original 

magnification 40X.  
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The inhibitory effect of metformin on electron transfer from complex I to the rest of the electron 

transport chain complexes was assessed by staining the models for cytochrome c oxidase (COX) 

activity. Cytochrome C oxidase (a Warburg respiratory enzyme) is the last enzyme complex 

(complex IV) in the electron transport chain and catalyses the transfer of reducing equivalents 

from cytochrome c to molecular oxygen. On the microarrays, expression of COX7B (Structural 

subunit of complex IV) was increased in all resistant models as compared to MCF7 control 

(Chapter 3, 3.2.2.5, Table 3.16) but no probe IDs were available to assess expression of catalytic 

subunits (mitochondrial encoded subunits: MT-CO1, MT-CO2 and MT-CO3) of cytochrome c 

oxidase in resistant models. The enzyme histochemistry method chosen in this study to visualize 

COX activity in the models was based on using diaminobenzidine (DAB) as the electron donor 

for cytochrome c (Seligman et al. 1968). The end product of the reaction after DAB oxidation is 

Fig 4.51. Staining for NADH dehydrogenase 

activity after 24hrs metformin treatment 

(0.5mM-2mM) in MCF7(X)LT cells. Original 

magnification 40X.  
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brown cytoplasmic staining which also equates with mitochondrion distribution in the cells or 

tissue. Darker staining indicates more abundant mitochondria content in a tissue or cells, 

although (as for NADH dehydrogenase activity) the approach can only be semi-quantitative.  

Cytoplasmic staining for cytochrome c oxidase activity was generally higher in tamoxifen 

resistant (TamR and TamRLT) and fulvestrant resistant (FasR and FasRLT) cells (suggestive of 

higher complex IV activity in all these antioestrogen resistant states), but in contrast was lower 

in the oestrogen deprived resistant models (MCF7(X) and MCF7(X)LT), as compared to MCF7 

under untreated basal growth conditions (Fig 4.52, Table 4.18). 

In MCF7, COX enzyme activity was reduced in a dose-dependent manner after metformin 

treatment (0.5-2mM) as compared to untreated control (Fig 4.53, Table 4.18). In TamR cells, 

while COX activity was only partially-reduced after 0.5 and 1mM metformin (Fig 4.54, Table 

4.18), a larger fall in enzyme activity was observed after 1.5mM and 2mM treatment as 

compared to untreated control (Fig 4.54, Table 4.18). The enzyme activity in TamRLT was 

unchanged after 0.5mM treatment but reduced after 1, 1.5 and 2mM metformin (Fig 4.55, Table 

4.18). The enzyme activity in FasR and FasRLT was not changed after 0.5mM and 1mM 

metformin, but slightly reduced after 1.5 and 2mM treatment as compared to the untreated 

control (Fig 4.56-4.57, Table 4.18). In MCF7(X), the low basal level of COX activity was further 

reduced in a dose dependent manner with metformin as compared to untreated control (Fig 

4.58, Table 4.18). In MCF7(X)LT, the limited enzyme activity was unchanged after 0.5mM and 

1mM metformin but slightly reduced after 1.5 and 2mM treatment (Fig 4.59, Table 4.18).  

In summary, metformin treatment appeared able to reduce COX activity in all the models in the 

panel and indeed the reduction in cytochrome c oxidase invariably followed a similar pattern to 

that for reduced NADH dehydrogenase activity after metformin treatment (Table 4.17-4.18), 

with evidence of dose dependency. This suggests that metformin treatment reduced electron 

transfer from complex I to the rest of the complexes in the electron transport chain, which 

consequently reduced COX activity across the panel.  
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Table 4.18. The effect of metformin treatment after 24hrs treatment on 

staining for cytochrome c oxidase (COX) activity in the panel of resistant 

models. Metformin impact on enzyme activity is indicated by; + weak 

++moderate, +++ high or ++++ very high reductions in staining, as 

compared to untreated control. No impact is indicated by ----. 
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Fig 4.52. Staining for basal cytochrome c 

oxidase activity across the panel of resistant 

models and MCF7 cells. Original magnification 

40X.  
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Fig 4.53. Staining for cytochrome c oxidase 

activity after 24hrs metformin treatment 

(0.5mM-2mM) in MCF7 cells. Original 

magnification 40X.  
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Fig 4.54. Staining for cytochrome c oxidase 

activity after 24hrs metformin treatment 

(0.5mM-2mM) in TamR cells. Original 

magnification 40X.  
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Fig 4.55. Staining for cytochrome c oxidase 

activity after 24hrs metformin treatment 

(0.5mM-2mM) in TamRLT cells. Original 

magnification 40X.  
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Fig 4.56. Staining for cytochrome c oxidase 

activity after 24hrs metformin treatment 

(0.5mM-2mM) in FasR cells. Original 

magnification 40X.  



220 

 

 

 

 

 

Fig 4.57. Staining for cytochrome c oxidase 

activity after 24hrs metformin treatment 

(0.5mM-2mM) in FasRLT cells. Original 

magnification 40X.  
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Fig 4.58. Staining for cytochrome c oxidase 

activity after 24hrs metformin treatment 

(0.5mM-2mM) in MCF7(X) cells. Original 

magnification 40X.  
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Fig 4.59. Staining for cytochrome c oxidase 

activity after 24hrs metformin treatment 

(0.5mM-2mM) in MCF7(X)LT cells. Original 

magnification 40X.  
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4.2.5.4 The inhibitory effect of metformin on oxygen consumption in endocrine 

resistant breast cancer cells 

Oxidative phosphorylation in the mitochondria involves ATP generation by transferring 

electrons from TCA cycle-derived substrates to molecular oxygen. Metformin acts to inhibit 

electron transfer from complex I to the rest of electron transport chain (Wheaton et al. 2014) 

and in Section 4.2.5.3 above we have demonstrated the drug impacts on activity of Complex I 

through to Complex IV in the model panel. Therefore, we hypothesized that metformin 

treatment would also reduce oxygen consumption (as a surrogate for overall OxPhos activity) in 

breast cancer cells. OC was determined in breast cancer cells after metformin treatment for 

24hrs (MitoXpress® Xtra probe; as described in section 4.2.4.1). Cells were seeded (80,000 

cells/well) for 24hrs prior to metformin treatment (0.5mM-2mM) and the OC was then 

determined 24hrs after metformin administration.  

In MCF7 cells, the OC was reduced by metformin treatment in a dose dependent manner (Fig 

4.60A). Thus, OC was significantly reduced by 30% through to 65% after 1mM (P<0.05), 1.5mM 

(P<0.001) and 2mM (P<0.001) metformin as compared to untreated control (Fig 4.60A), with 

significant further reduction by 2mM compared to either 0.5mM (P<0.001) or 1mM (P<0.01) 

treatment (Fig 4.60A). In TamR cells, OC was again reduced in a dose dependent manner by 

metformin (from 23%-60% over 0.5mM-2mM) (Fig 4.60B). OC was significantly reduced by 1mM 

(P<0.01), 1.5mM (P<0.01) and 2mM (P<0.001) treatment versus untreated control, and further 

reduced by 2mM compared to 0.5mM (P<0.01) and 1mM (P<0.05) drug (Fig 4.60B). There was 

also evidence of a dose dependent impact in TamRLT cells (with OC reduced by 20%-55% over 

0.5mM-2mM metformin) (Fig 4.60C). In these tamoxifen resistant cells, OC was significantly 

reduced by 1.5mM (P<0.01) and 2mM (P<0.001) metformin versus untreated control, and 

further reduced by 2mM compared to 0.5mM (P<0.01) and 1mM drug (P<0.05) (Fig 4.60C). In 

FasR, OC was also reduced in a dose dependent manner by 35% through to 70% with metformin 

treatment (0.5mM-2mM) (Fig 4.60D). OC was significantly reduced after 0.5mM (P<0.001), 1mM 

(P<0.001), 1.5mM (P<0.001) and 2mM (P<0.001) metformin compared with untreated control, 

and further reduced after 1.5mM (P<0.05) and 2mM (P<0.01) versus 0.5mM treatment (Fig 

4.60D). Dose dependent reduction was also seen in FasRLT cells ( 30%-60% for 0.5mM-2mM 

metformin), with significant reductions for 1mM (P<0.01), 1.5mM (P<0.01) and 2mM (P<0.001) 

metformin versus untreated control (Fig 4.61A). Finally, in MCF7(X), OC was reduced in a dose 

dependent manner by 25%-60% with metformin (0.5mM-2mM) (Fig 4.61B), with the decline 

significant for 0.5mM (P<0.05), 1mM (P<0.01), 1.5mM (P<0.001) and 2mM (P<0.001) metformin 

compared to untreated control and further reduction by 2mM versus 0.5mM (P<0.01) and 1mM 
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(P<0.05) treatment (Fig 4.61B). OC was also reduced in MCF7(X)LT cells in a dose dependent 

manner (25%-75% over 0.5mM-2mM) (Fig 4.61C), with significant reduction by 1mM (P<0.05), 

1.5mM (P<0.001) and 2mM (P<0.001) drug versus untreated control and further significant 

reduction by 2mM compared to 0.5mM (P<0.01) and 1mM (P<0.05) drug (Fig 4.61 C). In 

summary, therefore, all resistant models and also MCF7 cells showed evidence that metformin 

could reduce OC, reflecting the ability of metformin to impact on OxPhos and furthermore the 

importance of Complex I to this process in all models. Dose dependency was shown for 

metformin in all models; however, it was noted that ≥50% OC reduction was observed with 

1.5mM metformin treatment in fulvestrant resistant and oestrogen deprived models (Fig 4.60-

4.61), while such reduction required 2mM treatment in tamoxifen resistant models (Figs 4.60). 

This tentatively suggested somewhat higher importance for Complex I-driven OxPhos in 

fulvestrant or oestrogen deprivation resistant models. 
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Fig 4.60 A-D. OC quantified in MCF7, TamR, TamRLT & FasR cells after 24hrs metformin 

treatment. Data are expressed as % of untreated control and comprise a mean of 3 independent 

experiments (N=3). The error bar indicates SEM. * (P<0.05), ** (P<0.01) & *** (P<0.001) following 

ANOVA with Bonferroni post hoc correction. 
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Fig 4.61 A-C. OC quantified in FasRLT, MCF7(X) & MCF7(X)LT cells after 24hrs metformin treatment. 

Data are expressed as % of untreated control and comprise a mean of 3 independent experiments 

(N=3). The error bar indicates SEM. * (P<0.05), ** (P<0.01) & *** (P<0.001) following ANOVA with 

Bonferroni post hoc correction. 
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4.2.5.5 The inhibitory effect of metformin on cell signalling pathways in endocrine 

resistant breast cancer cells 

To explain growth inhibitory effects of metformin in cancer, two major hypotheses have been 

described:  

- Systemic mechanism: Metformin reduces tumour growth via reducing plasma insulin/insulin 

like growth factor 1 (IGF1), thereby reducing tumour mitogenic IGF-1R signalling (Pollak et al. 

2010). 

- Direct mechanism: By impacting on OxPhos, metformin mediates a cytostatic effect by altering 

cellular ATP balance, activating the energy sensor adenosine monophosphate activated protein 

kinase (AMPK) which switches off anabolic processes such as lipid, ribosomal RNA and protein 

synthesis (Hardie et al. 2012).  

In the present study, the focus for signalling studies with metformin was the direct mechanism. 

In detail, metformin inhibits the electron transport chain in OxPhos and is reported to increase 

ADP: ATP and AMP: ATP ratios (Hawley et al. 2010). AMP or ADP binding to AMPK causes 

conformational changes and promotes AMPK phosphorylation at Thr172 by upstream liver 

kinase B1 (LKB1, encoded by STK11) (Hawley et al. 2003). AMPK is a multi-subunit enzyme 

comprising α1 (PRKAA1), α2 (PRKAA2), β1 (PRKAB1), β2 (PRKAB2), γ1 (PRKAG1), γ2 (PRKAG2) 

and γ3 (PRKAG3) proteins (Hardie et al. 2015). There are three binding sites for AMP, ADP and 

ATP binding on the γ subunit of AMPK, where ADP and ATP compete with AMP for binding to 

AMPK. Activation of AMPK by AMP binding leads to a conformational change allowing increased 

AMPK phosphorylation at the active site (Thr172) in the subunit by LKB1, inhibition of 

dephosphorylation at the same site by phosphatases, and also allosteric activation of AMPK by 

more than 10 fold (Gowans et al. 2013). AMPK activation subsequently inhibits anabolic 

processes and promotes catabolic processes to overcome energy stress. LKB1, together with 

two accessory subunits STRAD (STRADA/B) and MO25 (CAB 39), is an immediate upstream 

kinase that phosphorylates AMPK (Hawley et al. 2003). Heterozygous mutation of LKB1 (STK11) 

is associated with cancer susceptibility (Peutz–Jeghers syndrome) (Jenne et al. 1998). Therefore, 

LKB1 is known as a tumour suppressor which links AMPK phosphorylation with reduced tumour 

growth. Downstream mechanisms of AMPK include phosphorylation of acetyl co A carboxylase 

(ACC1 and ACC2) inhibiting fatty acid synthesis and promoting fatty acid oxidation in 

mitochondria (Steinberg et al. 2009). This inhibition of lipid synthesis is associated with reduced 

cell proliferation (Hadad et al. 2011). AMPK activation also inhibits the mammalian target of 

rapamycin (mTOR) pathway by phosphorylating both Tuberous Sclerosis 2 (TSC2) (Inoki et al. 
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2003) and Regulatory Associated Protein of MTOR (Raptor), reducing protein synthesis and thus 

inhibiting tumour growth (Gwinn et al. 2008). Interestingly, tumour cells with a downregulated 

LKB1-AMPK pathway are more sensitive to the decreased ATP levels mediated by metformin, 

confirming the pathway’s critical role in energy homeostasis (Algire et al. 2011). 

Having established the drug impacts on components of OxPhos, in this project the key signalling 

events associated with metformin’s direct mechanism were studied in model panel. The impact 

of metformin on AMPK phosphorylation (Thr172) and on downstream pathways regulating fatty 

acid synthesis (gauged by monitoring ACC phosphorylation (Ser79)) and protein synthesis (by 

monitoring phosphorylation of mTORC1 (Ser2448) and Ribosomal Protein S6 Kinase (P70S6K, 

Thr389)) was examined by Western blotting after 2, 12 and 24 hrs metformin treatment 

(0.5mM-2mM) (Fig 4.62-4.83, Table 4.19) in each model.  

Endocrine responsive MCF7 cells 

After 2hrs metformin treatment in MCF7, while there was no change or even a decline up to 

1.5mM, p-AMPK was significantly induced by 2mM metformin compared to the untreated 

control (P<0.05) and versus lower drug doses (1mM and 1.5mM, P<0.001) (Fig 4.62-4.63). 

Thereafter, all p-AMPK blots generally showed higher signal than at 2 hrs. While there was a 

transient induction of p-AMPK at 12 hrs by 0.5mM drug compared to the untreated control 

(P<0.05), the induction with 2mM metformin was lost (Fig 4.62-4.63). At 2 hrs, p-ACC was not 

significantly induced in MCF7 cells by metformin (Fig 4.62-4.63). At 12 and 24 hrs, some blots 

showed p-ACC induction with metformin treatment compared with untreated control (for 

example with 0.5mM and 1.5mM treatment by 24hrs, Fig. 4.62-4.63), but this did not prove 

significant across replicates (Fig.4.63). At 2 hrs, p-mTOR appeared slightly reduced on the blots 

after 1mM treatment compared to untreated control (p<0.05) (Fig 4.62 and 4.64). p-mTOR was 

unchanged at 12 hrs (Fig 4.62 and 4.64), while the reduction noted on the blots at 24 hrs by 

2mM treatment versus untreated control (p<0.05) (Fig 4.62 and 4.64). However, significant 

changes in activity of the further mTOR signalling element, P70S6K, were observed with 

metformin (Fig 4.62 and 4.64). From 2 hrs, significant reduction of p-P70S6K was observed with 

1 or 1.5 mM metformin as compared to both untreated control and 0.5mM (P<0.001). There 

was a dose dependent in p-P70S6 decline at 12 hrs versus untreated control (1, 1.5 and 2mM 

(P<0.001) and for 1mM (P<0.01), 1.5mM (P<0.001) and 2mM (P<0.001) treatment compared to 

0.5mM metformin at this time point). At 24 hrs, p-P70S6K was again significantly reduced in a 

dose-dependent manner (1.5mM (P<0.05) and 2mM (P<0.001) compared to untreated control 

cells. (Fig 4.62 and 4.64).  
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In summary from 12hrs treatment, there was some evidence that metformin could reduce 

protein synthesis-regulating mTOR signalling (monitored using p-p70S6K) independent of any 

robust change in AMPK activity in MCF7 cells, and contrasting the lack of evidence for impact on 

fatty-acid synthesis regulation.  

 

 

 

Fig 4.62. Western blots monitoring the effect of 2, 12 & 24hrs metformin 

treatment (0.5mM-2mM) on p-AMPK (Thr172), p-ACC (Ser79), p-mTOR 

(Ser2448) & p-P70S6K (Thr389) phosphorylation in MCF7 cells, using β-actin as 

a loading control. 
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Fig 4.63. Data from scanned blots after actin normalisation showing the effect of 2, 12 & 24hrs 

metformin treatment (0.5mM-2mM) on p-AMPK & p-ACC phosphorylation by Western blotting in 

MCF7 cells. Data are represented as percentage of untreated control, and comprise the mean of 

three independent experiments (N=3). The error bar indicates SEM. * (P<0.05), ** (P<0.01) & *** 

(P<0.001) followed by ANOVA with Bonferroni post hoc correction. 
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Fig 4.64. Data from scanned blots after actin normalisation showing the effect of 2, 12 & 24hrs 

metformin treatment (0.5mM-2mM) on p-mTOR & p-P70S6K phosphorylation by Western 

blotting in MCF7 cells. Data are represented as percentage of untreated control, and comprise 

the mean of three independent experiments (N=3). The error bar indicates SEM. * (P<0.05), ** 

(P<0.01) & *** (P<0.001) followed by ANOVA with Bonferroni post hoc correction. 
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Tamoxifen resistant cells: TamR 

After 2hrs treatment in the TamR model, there was evidence for p-AMPK induction by 

metformin reaching significance with 1mM treatment compared to untreated control (P<0.05) 

(Fig 4.65 and 4.66). After 12hrs metformin, although changes were not detected at lower doses, 

p-AMPK was significantly induced by both 1.5mM and 2mM metformin (P<0.001) compared to 

the untreated control, 0.5mM (P<0.001) or 1mM treatment (P<0.001) (Fig 4.65 and 4.66). 

However, after 24hrs metformin treatment (where some increase in basal pAMPK was noted), 

p-AMPK signal was equivalent to the untreated control (Fig 4.65 and 4.66). 

p-ACC level was largely unchanged by 2 hrs metformin treatment (Fig 4.65 and 4.66). However, 

by 12 hrs there was significant p-ACC induction with 1.5mM metformin as compared to 

untreated control (P<0.001) and versus lower doses of the drug (0.5mM P<0.001 and 1mM 

P<0.001) (Fig 4.65 and 4.66). p-ACC was also significantly induced by 2mM as compared to 1mM 

treatment at this time point (P<0.001). At 24 hrs there was some further evidence for p-ACC 

induction by metformin, reaching significance for 1mM treatment (P<0.05) (Fig 4.65 and 4.66).  

At all time points, p-mTOR level remained largely unchanged with metformin treatment 

compared to untreated control (Fig 4.65 and 4.67). In contrast, by 2 hrs p-P70S6K was reduced 

by 2mM metformin, an effect also seen as a trend from some of the blots after 12 hrs treatment 

with 1mM or 2mM metformin (Fig 4.65 and 4.67). At 24 hrs, p-P70S6K was significantly reduced 

by 1.5mM (P<0.01) and 2mM (P<0.01) treatment as compared to untreated control and versus 

0.5mM treatment (P<0.05 for both; Fig 4.65 and 4.67).  

In summary, by 24hrs treatment, there was evidence that metformin could potentially inhibit 

protein synthesis in TamR cells since it reduced activity of the mTOR signalling element p-

P70S6K, although this occurred independent of any parallel change in p-AMPK. Robust p-AMPK 

induction by the drug occurred at a somewhat earlier time point (12hrs) and this event was also 

associated with some reduction in the fatty acid regulatory pathway in the resistant model by 

12hrs. 
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Fig 4.65. Western blots monitoring the effect of 2, 12 & 24hrs metformin 

treatment (0.5mM-2mM) on p-AMPK (Thr172), p-ACC (Ser79), p-mTOR 

(Ser2448) & p-P70S6K (Thr389) phosphorylation in TamR cells, using β-actin as 

a loading control. 
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Fig 4.66. Data from scanned blots after actin normalisation showing the effect of 2, 12 & 24hrs 

metformin treatment (0.5mM-2mM) on p-AMPK & p-ACC phosphorylation by Western blotting in 

TamR cells. Data are represented as percentage of untreated control, and comprise the mean of 

three independent experiments (N=3). The error bar indicates SEM. * (P<0.05), ** (P<0.01) & *** 

(P<0.001) followed by ANOVA with Bonferroni post hoc correction. 
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Fig 4.67. Data from scanned blots after actin normalisation showing the effect of 2, 12 & 24hrs 

metformin treatment (0.5mM-2mM) on p-mTOR & p-P70S6K phosphorylation by Western 

blotting in TamR cells. Data are represented as percentage of untreated control, and comprise the 

mean of three independent experiments (N=3). The error bar indicates SEM. * (P<0.05) & *** 

(P<0.001) followed by ANOVA with Bonferroni post hoc correction. 
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Tamoxifen resistant cells: TamRLT 

After 2hrs treatment of TamRLT cells, p-AMPK was induced in a metformin dose dependent 

manner, reaching significance for 1.5mM (P<0.05) and 2mM (P<0.01) treatment versus 

untreated control (Fig 4.68 and 4.69). At 12hrs, there was evidence that p-AMPK remained 

elevated with 2mM metformin since it was significantly induced (P<0.05) versus 0.5mM 

treatment (Fig 4.68 and 4.69). pAMPK was also significantly induced by this metformin 

concentration at 24 hrs (P<0.05) as compared to 1.5mM treatment (Fig 4.68 and 4.69). 

At 2 hrs, p-ACC was significantly induced in a dose dependent manner by 1mM (P<0.05), 1.5mM 

(P<0.01) and 2mM (P<0.01) metformin compared to untreated control (Fig 4.68 and 4.69). At 12 

hrs, p-ACC remained significantly induced (P<0.05) for 2mM treatment only and the same effects 

was observed at 1.5mM (P<0.05) and 2mM (P<0.05) treatment as compared to untreated 

control by24 hrs (Fig 4.68 and 4.69). 

Over the time course, p-mTOR levels remained largely unchanged with metformin compared to 

untreated control (Fig 4.68 and 4.70). In contrast, there was a modest decline in p-P70S6K with 

metformin in TamRLT cells. At all time points, p-P70S6K was significantly reduced by 2mM as 

compared to untreated control (Fig 4.69-4.70; all P<0.05).  

Therefore, from 2 hrs onwards there was evidence in TAMRLT cells that metformin promoted 

AMPK activity, with an early impact on regulation of fatty acid synthesis, as well as a modest 

inhibitory effect over the full time course on mTOR signalling (based on the p-P70S6K findings) 

that can regulate protein synthesis.  

 
Fig 4.68. Western blots monitoring the effect of 2, 12 & 24hrs metformin 

treatment (0.5mM-2mM) on p-AMPK (Thr172), p-ACC (Ser79), p-mTOR (Ser2448) 

& p-P70S6K (Thr389) phosphorylation in TamRLT cells, using β-actin as a loading 

control. 
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Fig 4.69. Data from scanned blots after actin normalisation showing the effect of 2, 12 & 24hrs 

metformin treatment (0.5mM-2mM) on p-AMPK & p-ACC phosphorylation by Western blotting in 

TamRLT cells. Data are represented as percentage of untreated control, and comprise the mean of 

three independent experiments (N=3). The error bar indicates SEM. * (P<0.05) & ** (P<0.01) 

followed by ANOVA with Bonferroni post hoc correction. 
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Fig 4.70. Data from scanned blots after actin normalisation showing the effect of 2, 12 & 24hrs 

metformin treatment (0.5mM-2mM) on p-mTOR & p-P70S6K phosphorylation by Western blotting 

in TamRLT cells. Data are represented as percentage of untreated control, and comprise the mean 

of three independent experiments (N=3). The error bar indicates SEM. * (P<0.05) followed by 

ANOVA with Bonferroni post hoc correction. 
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Fulvestrant resistant cells: FasR 

After 2hrs treatment in FasR cells, p-AMPK was significantly induced by 1mM metformin 

(P<0.05) as compared to the untreated control (Fig 4.71 and 4.72). By 12 hrs, p-AMPK had been 

robustly induced by 1mM (P<0.05), 1.5mM (P<0.01) and 2mM (P<0.05) metformin versus the 

untreated control and versus 0.5mM drug (P<0.05, P<0.001, P<0.01 respectively (Fig 4.71 and 

4.72). However, at 24hrs metformin treatment, p-AMPK was unchanged versus untreated 

control (although the basal pAMPK level was somewhat increased at this time point).  

While not robustly changed at 2 hrs, by 12 hrs p-ACC was significantly induced by 1.5mM 

(P<0.01) and 2mM (P<0.01) metformin compared to untreated control and also versus 0.5mM 

and 1mM drug (Fig 4.71 and 4.72). There was also evidence for p-ACC induction following 24 hrs 

metformin, detected significantly for 0.5mM (P<0.01) and 1.5mM (P<0.01) treatment (Fig 4.71 

and 4.72). 

Surprisingly, p-mTOR was significantly induced by 1mM (P<0.01) and 1.5mM metformin at 2 hrs 

(P<0.001) and by 0.5mM (P<0.05) treatment at 12 hrs in this model compared to untreated 

control (Fig 4.72 and 4.73). At 24 hrs, p-mTOR was again slightly induced by 0.5mM treatment 

versus the control, and also significantly increased versus higher metformin doses (Fig 4.93 and 

4.95).  

Similarly, at 2 hrs, p-P70S6K was significantly induced (P<0.05) by 1.5mM treatment as 

compared to untreated control (Fig 74.2 and 4.73). Although basal level was somewhat elevated 

at 12 hrs, nevertheless, p-P70S6 level declined with metformin at this time point, reaching 

significance at 2mM (P<0.05). Some dose dependent decline was also detected after 24 hrs 

metformin, with the p-P70S6K fall reaching significance for 2mM treatment (P<0.05) (Fig 4.72 

and 4.73).  

Therefore, by 12 hrs metformin promoted AMPK activity in FasR cells. There was evidence for 

metformin impact on regulation of fatty acid synthesis at this and the subsequent 24hr time 

points. There was also some evidence from p-P70S6K for some inhibitory impact on mTOR 

signalling (and thereby protein synthesis) from 12 hrs in this model. However, at the longest 

time point the protein and fatty acid pathway events were not paralleled by p-AMPK induction. 
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Fig 4.71. Western blots monitoring the effect of 2, 12 & 24hrs metformin 

treatment (0.5mM-2mM) on p-AMPK (Thr172), p-ACC (Ser79), p-mTOR 

(Ser2448) & p-P70S6K (Thr389) phosphorylation in FasR cells, using β-actin as a 

loading control. 
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Fig 4.72. Data from scanned blots after actin normalisation showing the effect of 2, 12 & 24hrs 

metformin treatment (0.5mM-2mM) on p-AMPK & p-ACC phosphorylation by Western blotting in 

FasR cells. Data are represented as percentage of untreated control, and comprise the mean of 

three independent experiments (N=3). The error bar indicates SEM. * (P<0.05), ** (P<0.01) & *** 

(P<0.001) followed by ANOVA with Bonferroni post hoc correction. 
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Fig 4.73. Data from scanned blots after actin normalisation showing the effect of 2, 12 & 24hrs 

metformin treatment (0.5mM-2mM) on p-mTOR & p-P70S6K phosphorylation by Western blotting 

in FasR cells. Data are represented as percentage of untreated control, and comprise the mean of 

three independent experiments (N=3). The error bar indicates SEM. * (P<0.05), ** (P<0.01) & *** 

(P<0.001) followed by ANOVA with Bonferroni post hoc correction. 

 



243 

 

Fulvestrant resistant cells: FasRLT 

After 2hrs treatment of FasRLT cells, p-AMPK was significantly induced by 1.5mM (P<0.05) and 

2mM metformin (P<0.01) compared to untreated control (Fig 4.74 and 4.75). Significant 

induction was also observed for 1mM-2mM drug (all P<0.01) compared to 0.5mM treatment at 

this time point. After 12hrs, p-AMPK was significantly induced by 1mM (P<0.05) and 1.5mM 

metformin (P<0.001) versus untreated control (Fig 4.74 and 4.75), and for the latter dose versus 

0.5mM treatment (P<0.05; Fig 4.96 and 4.97). By 24hrs, p-AMPK induction was significance for 

0.5mM (P<0.05), 1mM (P<0.01), 1.5mM (P<0.001) and 2mM (P<0.001) metformin versus 

untreated control (Fig 4.74 and 4.75). 

While p-ACC was not significantly changed at the earliest time point, by 12 hrs it was induced 

with 1.5mM (P<0.05) and at 24hrs significantly with 1mM (P<0.001), 1.5mM (P<0.01) and 2mM 

(P<0.01) metformin versus untreated control (Fig 4.74 and 4.75). 

At 2 hrs, p-mTOR was somewhat reduced after 0.5mM and 1.5mM treatment, and at 12 hours 

by most doses of metformin and changes reached significant by 1mM metformin (P<0.05) as 

compared to untreated control (Fig 4.74 and 4.76). By 24 hrs, these decreases reached 

significance for 2mM treatment (P<0.05) as compared to untreated control (Fig 4.74 and 4.76).  

p-P70S6K was significantly reduced after 2mM treatment with metformin for 2 hrs (P<0.01) 

compared to untreated control, also versus 0.5mM (P<0.05) and 1mM (P<0.05) treatment (Fig 

4.74 and 4.76). By 12 hrs, it was significantly reduced by both 1mM (P<0.01) and 2mM 

metformin (P<0.001) (Fig 4.74 and 4.76), the latter also versus 0.5mM drug (P<0.01). Reduction 

persisted to 24 hrs, with significant decline in p-70S6K for 1.5mM (P<0.01) and 2mM (P<0.01) 

metformin versus untreated control, for the latter dosage also versus 0.5mM drug (P<0.05) (Fig 

4.74 and 4.76). 

Therefore, for 2-12 hrs, metformin induced significant AMPK activity which potentially impacted 

on protein synthesis by reducing activity of the mTOR signalling element p-P70S6. At the later 

time points, metformin influenced regulators of both fatty acid and protein synthesis in FasRLT 

cells (Fig 4.74-4.76).but this was not paralleled by p-AMPK change at 24hrs 
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4.Fig 74. Western blots monitoring the effect of 2, 12 & 24hrs metformin 

treatment (0.5mM-2mM) on p-AMPK (Thr172), p-ACC (Ser79), p-mTOR 

(Ser2448) & p-P70S6K (Thr389) phosphorylation in FasRLT cells, using β-actin as 

a loading control. 
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Fig 4.75. Data from scanned blots after actin normalisation showing the effect of 2, 12 & 24hrs 

metformin treatment (0.5mM-2mM) on p-AMPK & p-ACC phosphorylation by Western blotting in 

FasRLT cells. Data are represented as percentage of untreated control, and comprise the mean of 

three independent experiments (N=3). The error bar indicates SEM. * (P<0.05), ** (P<0.01) & *** 

(P<0.001) followed by ANOVA with Bonferroni post hoc correction. 
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Fig 4.76. Data from scanned blots after actin normalisation showing the effect of 2, 12 & 24hrs 

metformin treatment (0.5mM-2mM) on p-mTOR & p-P70S6K phosphorylation by Western blotting 

in FasRT cells. Data are represented as percentage of untreated control, and comprise the mean of 

three independent experiments (N=3). The error bar indicates SEM. * (P<0.05), ** (P<0.01) & *** 

(P<0.001) followed by ANOVA with Bonferroni post hoc correction. 
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Oestrogen deprivation resistant cells: MCF7(X) 

After 2hrs treatment of MCF7(X) cells, p-AMPK was significantly reduced by 0.5mM (P<0.05) and 

1.5mM (P<0.05) metformin as compared to untreated control (Fig 4.77 and 4.78). By 12hrs 

treatment p-AMPK was significantly induced by 1.5mM drug only (P<0.05), as compared to 

untreated control and versus 0.5mM (P<0.01) and 1mM (P<0.01) treatment (Fig 4.77 and 4.78). 

After 24hrs metformin, p-AMPK was significantly induced by 1-2mM treatments (all P<0.001) 

compared to the untreated control and versus 0.5mM drug (for 1mM P<0.05; 1.5mM P<0.001; 

2mM P≤0.001) (Fig 4.77 and 4.78). 

p-ACC was significantly induced by treating MCF7(X) cells for 2 hrs with 2mM metformin, as 

compared to untreated control or versus 0.5-1.5mM drug (all P<0.001) (Fig 4.77 and 4.78). 

Significant p-ACC induction was also seen at 12 hrs for 1mM (P<0.05), 1.5mM (P<0.01) and 2mM 

(P<0.01) metformin versus untreated control or versus 0.5mM drug (for 1mM P<0.05; 1.5mM 

P<0.01 and 2mM (P<0.01) respectively) (Fig 4.77 and 4.78). p-ACC induction persisted at 24 hrs 

with 1.5mM (P<0.05) and 2mM (P<0.001) treatment versus the untreated control, and for the 

latter dosage versus 0.5mM (P<0.01), 1mM (P<0.001) and 1.5mM (P<0.05) treatment (Fig 4.77 

and 4.78). 

p-mTOR remained largely unchanged after 2 hrs treatment with metformin versus untreated 

control (Fig 4.77 and 4.79), and at 12 hrs there was a surprising increase with 1.5mM (P<0.01) 

and 2mM (P<0.001) treatment as compared to untreated control and also for the highest dose 

versus lower drug dosages (0.5mM P<0.01, 1mM P<0.05) (Fig 4.77 and 4.79). By 24 hrs, the 

induction was lost and p-mTOR was reduced significantly by 1.5-2mM (P<0.05) treatment (Fig 

4.77 and 4.79) There was no marked change in p-P70S6K with 2 hrs metformin treatment, and 

by 12 hrs p-P70S6K was significantly reduced only by 0.5mM treatment (P<0.05) (Fig 4.77 and 

4.79). However, by 24 hrs p-P70S6K was significantly reduced by 1mM (P<0.01), 1.5mM 

(P<0.001) and 2mM (P<0.001) metformin versus higher basal levels in the untreated control and 

also versus. 0.5mM treatment (1.5mM P<0.001; 2mM P<0.001) (Fig 4.77 and 4.79). 

Therefore, along with some induction of p-AMPK from 12hrs metformin treatment potentially 

reduced fatty acid synthesis as it also increased p-ACC activity. After 24hrs metformin treatment, 

impact on regulatory mechanisms both for fatty acid and protein synthesis was observed in an 

AMPK-dependent manner in MCF7(X) cells (Fig 4.77-4.79).  
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Fig 4.77. Western blots monitoring the effect of 2, 12 & 24hrs metformin 

treatment (0.5mM-2mM) on p-AMPK (Thr172), p-ACC (Ser79), p-mTOR 

(Ser2448) & p-P70S6K (Thr389) phosphorylation in MCF7(X) cells, using β-actin 

as a loading control. 
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Fig 4.78. Data from scanned blots after actin normalisation showing the effect of 2, 12 & 24hrs 

metformin treatment (0.5mM-2mM) on p-AMPK & p-ACC phosphorylation by Western blotting in 

MCF7(X) cells. Data are represented as percentage of untreated control, and comprise the mean 

of three independent experiments (N=3). The error bar indicates SEM. * (P<0.05), ** (P<0.01) & 

*** (P<0.001) followed by ANOVA with Bonferroni post hoc correction. 
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Fig 4.79. Data from scanned blots after actin normalisation showing the effect of 2, 12 & 24hrs 

metformin treatment (0.5mM-2mM) on p-mTOR & p-P70S6K phosphorylation by Western blotting 

in MCF7(X) cells. Data are represented as percentage of untreated control, and comprise the mean 

of three independent experiments (N=3). The error bar indicates SEM. * (P<0.05), ** (P<0.01) & 

*** (P<0.001) followed by ANOVA with Bonferroni post hoc correction. 
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Oestrogen deprivation resistant cells: MCF7(X)LT 

After 2hrs treatment of MCF7(X)LT, p-AMPK was significantly induced by 0.5mM metformin 

(P<0.05) (Fig 4.80 and 4.81) versus very low basal activity. At 12hrs, p-AMPK induction was 

significant for 1mM (P<0.05) and 1.5mM (P<0.01) metformin compared to untreated control 

and versus 0.5mM treatment (P<0.01). Induction was also detected at 24hrs, reaching 

significance for 1mM metformin (P<0.05) (Fig 4.80 and 4.81). 

While p-ACC levels at 2 hrs significantly induced by 1mM (P<0.05) and 2mM (P<0.05) as 

compared to untreated control (Fig 4.80 and 4.81), at 12 hrs p-ACC was significantly induced by 

1.5mM and 2mM metformin versus untreated control (P<0.01) and versus 0.5mM drug (P<0.01) 

(Fig 4.80 and 4.81). p-ACC was significantly induced by all 0.5- 2mM dosages at 24 hrs treatment 

(P<0.001) (Fig 4.80 and 4.81). 

There was also evidence for reduction of p-mTOR by metformin in this model. Thus at 2hrs p-

mTOR fell significantly with 1.5mM (P<0.05) or 2mM (P<0.01) treatment as compared to 

untreated control and also versus 0.5mM treatment (P<0.05 and P<0.01 respectively) (Fig 4.80 

and 4.82). Some reduction was also detected at 12 hrs for 2mM metformin (P<0.05), and at 24 

hrs for both 1mM (P<0.05) and 2mM treatment (P<0.01) compared to untreated control and for 

2mM versus 0.5mM drug (Fig 4.80 and 4.82). 

Similarly, p-P70S6K fell with metformin treatment in MCF7(X)LT cells. At 2 hrs p-P70S6K was 

significantly reduced by 1.5mM and 2mM metformin versus untreated control or versus 0.5mM 

or 1mM drug (all P<0.001) (Fig 4.80 and 4.82). Furthermore, at 12 hrs p-P70S6K levels fell with 

0.5mM (P<0.01), 1mM (P<0.01) or 2mM (P<0.001) treatment, while at 24 hrs there was a dose 

dependent decline in p-P70S6K with 1mM (P<0.01), 1.5mM (P<0.001) and 2mM (P<0.001) 

metformin compared to untreated control. This was also apparent for 1.5mM (P<0.01) and 2mM 

treatment (P<0.001) versus 0.5mM drug at this time point (Fig 4.80 and 4.82). 

Therefore, from 2 hrs there was evidence that metformin reduced mTOR signalling in a sustained 

manner, which could potentially impact on protein synthesis in MCF7(X)LT. Induction of activity 

for the fatty acid synthesis pathway regulator ACC emerged after longer treatment times in this 

model. While p-AMPK was also metformin-induced by 12 hours, earlier or later profile changes 

for the protein and fatty acid regulatory elements were not always paralleled by p-AMPK 

change.  
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Fig 4.80. Western blots monitoring the effect of 2, 12 & 24hrs metformin 

treatment (0.5mM-2mM) on p-AMPK (Thr172), p-ACC (Ser79), p-mTOR 

(Ser2448) & p-P70S6K (Thr389) phosphorylation in MCF7(X)LT cells, using β-actin 

as a loading control. 
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Fig 4.81. Data from scanned blots after actin normalisation showing the effect of 2, 12 & 24hrs 

metformin treatment (0.5mM-2mM) on p-AMPK & p-ACC phosphorylation by Western blotting in 

MCF7(X)LT cells. Data are represented as percentage of untreated control, and comprise the mean 

of three independent experiments (N=3). The error bar indicates SEM. * (P<0.05), ** (P<0.01) & *** 

(P<0.001) followed by ANOVA with Bonferroni post hoc correction. 
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Fig 4.82. Data from scanned blots after actin normalisation showing the effect of 2, 12 & 24hrs 

metformin treatment (0.5mM-2mM) on p-mTOR & p-P70S6K phosphorylation by Western blotting 

in MCF7(X)LT cells. Data are represented as percentage of untreated control, and comprise the mean 

of three independent experiments (N=3). The error bar indicates SEM. * (P<0.05), ** (P<0.01) & *** 

(P<0.001) followed by ANOVA with Bonferroni post hoc correction. 
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In overall summary, the effect of metformin treatment (0.5-2mM) on either fatty acid or protein 

synthesis regulatory elements varied across the resistant panel with regards to dosage and time 

frame (Table 4.19). Variation between the onset of any fatty acid and protein synthesis reduction 

might potentially be associated with slower accumulation of metformin in some of the breast 

cancer cells. Nevertheless, most resistant models showed evidence for some impact of 

metformin on these pathways at some point during the time course. This contrasts the 

endocrine responsive MCF7 cells, where impact on mTOR signalling only was noted.  

Similarly, all resistant models showed some evidence of induction of p-AMPK by metformin 

during the time course, contrasting MCF7. There is thus evidence for metformin’s direct 

signalling mechanism on AMPK activation and also on anabolic pathway regulators in the 

resistant cells, but this mechanism is less convincing in the endocrine responsive MCF7 cells. 

Furthermore, in some cases it was seen that the profile for the anabolic-related processes could 

occur independently of changes in AMPK activity, again most notably for MCF7 cells, suggesting 

further mechanisms also contribute to regulating these downstream events which are 

additionally targeted by metformin.  

 

 

 

 

Table 4.19. The effect of metformin treatment (0.5mM-2mM) on induction of p-AMPK and 

inhibition of fatty acid/protein synthesis after 2, 12 & 24hrs treatment across the panel of 

resistant models. N: no induction, Y: AMPK induction,   reduced phosphorylation &    indicates 

induced phosphorylation. 
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4.2.5.6 The inhibitory effect of metformin on cell growth of the model panel  

To further explore the contribution of OxPhos (in particular complex I activity) to the models, 

the impact of metformin treatment (0.5mM-2mM) on growth of the endocrine resistant and 

responsive breast cancer cells was monitored for 7 days. Cells were seeded at 20,000 cells/well 

for 24hrs prior to metformin administration and growth was then determined by Coulter 

counting after day 3, 5 and 7. Growth curves were plotted and the mean of half-maximum 

response (EC50) was calculated based on growth on day 7 for each model in the panel, as 

summarised in Table 4.20 (Appendix 21).  

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.20. EC50 calculated based on 

Coulter counter growth data on day 7 

for the model panel. EC50 data are 

represented here as mean of 3 

independent experiments (N=3). ± SD. 
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Growth curves revealed a dose dependent growth inhibitory effect of metformin in MCF7. By 

day 7 growth was significantly reduced after treating with 1.5mM (P<0.05) and 2mM (P<0.01) 

metformin compared to untreated control (Fig 4.83A-B). The mean of EC50 for metformin 

treatment in MCF7 was 0.81mM (Table 4.20). TamR cells were also inhibited by metformin in a 

dose-dependent manner, with growth significantly reduced at day 7 by more than 50% after 

1.5mM (P<0.05) and substantially by approximately 75% for 2mM (P<0.01) treatment as 

compared to untreated control. Indeed, growth was also significantly reduced by 2mM (P<0.05) 

as compared to 0.5mM treatment (Fig 4.84A-B). The mean of EC50 for metformin treatment in 

TamR cells was 0.92mM (Table 4.20). Growth of the further tamoxifen resistant model TamRLT 

cells was also significantly reduced by day 7 treatment with metformin, but inhibitory effects 

were more modest in this tamoxifen resistant model, with 30% inhibition for 1.5mM (P<0.05) 

and 50% for 2mM (P<0.001) metformin compared to untreated control. Again, growth was 

significantly reduced versus 0.5mM drug for 2mM treatment (P<0.05) (Fig 4.85 A-B). The mean 

EC50 for metformin treatment in TamRLT was 1.41mM (Table 4.20). Growth of the FasR model 

was significantly reduced by day 7 treatment with metformin, by 50% after 1.5mM (P<0.05) and 

60% for 2mM (P<0.05) treatment compared to untreated control (Fig 4.86 A-B). The mean of 

EC50 for metformin treatment in this model was 0.62mM (Table 20). Metformin impact in the 

further fulvestrant model FasRLT was comparable to FasR cells, with growth significantly 

reduced by 50% after 1.5mM (P<0.05) and by 55% for 2mM (P<0.001) treatment as compared 

to untreated control (Fig 4.87 A-B). The mean of EC50 for metformin treatment was also largely 

comparable, at 0.73mM (Table 4.20). In MCF7(X) cells, growth was significantly reduced by >50% 

after 1mM (P<0.05) and 1.5mM drug (P<0.05), reaching 70% inhibition for 2mM (P<0.01) 

metformin treatment compared to untreated control (Fig 4.88A-B). Mean of EC50 for metformin 

treatment in MCF7(X) was 0.45mM (Table 4.20). In MCF7(X)LT, growth was significantly reduced 

by over 70% after either 1mM (P<0.05), 1.5mM (P<0.05) or 2mM (P<0.05) metformin treatment 

compared to untreated control (Fig 4.89A-B). The EC50 for metformin treatment in MCF7(X)LT 

was comparable with the MCF7(X) model at 0.41mM (Table 4.20). 

In conclusion, metformin growth inhibitory effects were observed in all the models, reflecting 

the importance of OxPhos in driving breast cancer cell growth. However, based on EC50 the 

oestrogen deprived resistant models (followed by FasR cells) were the most metformin-sensitive 

models, with lower EC50s when compared with the further resistant models or the endocrine 

responsive MCF7 cells, suggesting increased importance for Complex I-driven OxPhos in 

oestrogen deprived resistant cells. Tamoxifen resistant models were the least sensitive models 

in the panel with metformin treatment (Table 4.20).  
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Fig 4.83. MCF7 were seeded at 20,000 cells/well and the 

growth rate was determined by Coulter counting after 0.5-

2mM metformin treatment on day 3, 5 & 7. (A) Shows 

growth curve profiles and (B) % untreated control growth at 

day 7. Data are represented as mean of 3 independent 

experiments (N=3). The error bar indicates SEM. * (P<0.05) 

& ** (P<0.01) following ANOVA with Bonferroni post hoc 

correction. 
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Fig 4.84. TamR were seeded at 20,000 cells/well and the 

growth rate was determined by Coulter counting after 0.5-

2mM metformin treatment on day 3, 5 & 7. (A) Shows growth 

curve profiles and (B) % untreated control growth at day 7. 

Data are represented as mean of 3 independent experiments 

(N=3). The error bar indicates SEM. * (P<0.05) & ** (P<0.01) 

following ANOVA with Bonferroni post hoc correction. 
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Fig 4.85. TamRLT were seeded at 20,000 cells/well and the 

growth rate was determined by Coulter counting after 0.5-

2mM metformin treatment on day 3, 5 & 7. (A) Shows 

growth curve profiles and (B) % untreated control growth at 

day 7. Data are represented as mean of 3 independent 

experiments (N=3). The error bar indicates SEM. * (P<0.05) 

& *** (P<0.001) following ANOVA with Bonferroni post hoc 

correction. 
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Fig 4.86. FasR were seeded at 20,000 cells/well and the growth 

rate was determined by Coulter counting after 0.5-2mM 

metformin treatment on day 3, 5 & 7. (A) Shows growth curve 

profiles and (B) % untreated control growth at day 7. Data are 

represented as mean of 3 independent experiments (N=3). The 

error bar indicates SEM. * (P<0.05) following ANOVA with 

Bonferroni post hoc correction. 
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Fig 4.87. FasRLT were seeded at 20,000 cells/well and the 

growth rate was determined by Coulter counting after 0.5-

2mM metformin treatment on day 3, 5 & 7. (A) Shows growth 

curve profiles and (B) % untreated control growth at day 7. 

Data are represented as mean of 3 independent experiments 

(N=3). The error bar indicates SEM. * (P<0.05) & *** (P<0.001) 

following ANOVA with Bonferroni post hoc correction. 
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Fig 4.88. MCF7(X) were seeded at 20,000 cells/well and the 

growth rate was determined by Coulter counting after 0.5-

2mM metformin treatment on day 3, 5 & 7. (A) Shows growth 

curve profiles and (B) % untreated control growth at day 7. 

Data are represented as mean of 3 independent experiments 

(N=3). The error bar indicates SEM. * (P<0.05) & ** (P<0.01) 

following ANOVA with Bonferroni post hoc correction. 
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Fig 4.89. MCF7(X)LT were seeded at 20,000 cells/well and the 

growth rate was determined by Coulter counting after 0.5-

2mM metformin treatment on day 3, 5 & 7. (A) Shows growth 

curve profiles and (B) % untreated control growth at day 7. 

Data are represented as mean of 3 independent experiments 

(N=3). The error bar indicates SEM. * (P<0.05) following 

ANOVA with Bonferroni post hoc correction. 
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Expression of LKB1-AMPK pathway components in the model panel and sensitivity to 

metformin treatment: 

Induced energy stress (i.e. increased AMP: ATP ratio) by metformin treatment can be 

compensated by LKB1-AMPK activation in an attempt to minimize the energy consuming process 

by suppressing anabolic processes in the cell (Hardie et al. 2015). The ultimate impact on tumour 

growth by metformin would thus be envisaged to depend on the magnitude of this 

compensatory AMPK activation, and indeed enhanced anti-tumour sensitivity to metformin 

treatment has been associated with loss of LKB1 expression (Algire et al. 2011). To help interpret 

metformin growth studies in the model panel, the expression profiles for key LKB1-AMPK 

components was examined using the 1.0ST gene microarrays to identify significant expression 

changes (>1.2 fold) in the panel. LKB1 forms a heterotrimeric complex with STE20-related 

adaptor (STRADA/B) and Calcium binding protein 39 (CAB 39) (Boudeau et al. 2003). CAB39 

stabilizes STRAD-LKB1 interaction and thus activates LKB1 when it is localised from the nucleus 

to the cytoplasm.  

STK11 (LKB1) expression was reduced in the FasR and oestrogen deprived resistant models 

compared to MCF7 on the arrays (Fig.4.90, Table 4.21). While expression of STRADA was induced 

in FasR, FasRLT and MCF7(X) cells and STRADB expression was increased in all resistant models, 

CAB39 expression was reduced across most resistant models (Fig.4.90, Table 4.21) where CAB39 

decline might serve to reduce stability of STRAD-LKB1 interaction and thus further modify LKB1-

AMPK activation. Basal p-AMPK profiling of all the models by Western blotting revealed the 

reduced STK11 expression in FasR and oestrogen deprived models was associated with reduced 

basal AMPK activity in these models as compared to MCF7 (Fig.4.91). The reduced STK11 and 

associated diminished AMPK activity in FasR and oestrogen deprived models might potentially 

enhance growth sensitivity of these models to metformin treatment. In contrast, induced STK11 

expression was seen in TAMRLT cells (Fig. 4.90, Table 4.21). This observation, coupled with 

unchanged STK11 expression in TamR and FasRLT cells, may account for the higher basal p-AMPK 

in tamoxifen resistant models and FasRLT cells relative to their oestrogen deprived resistant 

counterparts (Fig 4.91) and might potentially adversely influence metformin sensitivity profile 

in tamoxifen resistant and FASRLT cells.  
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Table 4.21. Fold changes for STRADA/B, CAB39 & STK11 mRNA expression from gene 

microarray studies in endocrine resistant models vs. MCF7 cells. Reductions with 

significant fold changes (≥1.2) are indicated green & induced events (≥1.2) are 

indicated red.  

Fig 4.90. Gene expression of LKB1-AMPK pathway 

components STRADA/B, CAB39 & STK11 across the 

panel of resistant models. On the heatmap, red, 

green & black indicate increased, decreased or 

unchanged in gene expression respectively as 

compared to the endocrine responsive control line 

MCF7. 
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Fig 4.91. Basal AMPK activity in the model panel. 

Representative blot & graph determined by Western blotting 

after actin normalisation are presented as percentage of 

expression in antihormone (AH) responsive parental MCF7 

cells. Data are represented as the mean of 3 independent 

experiments (N=3). The error bar indicates SEM. 
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4.2.5.7 The effect of metformin treatment on a proliferation marker (Ki-67) in the 

model panel 

Ki-67 (a nuclear protein) is associated with cell proliferation and is expressed during the active 

phase of the cell cycle including interphase and mitosis, but is absent in quiescent cells in G0 

(Gerdes et al. 1984). Moreover, lower Ki-67 expression was detected during the G1 and S phases 

and higher expression was detected in early mitosis followed by sharp decrease in late mitosis 

(Lopez et al. 1991). Ki-67 expression is thus commonly used as a marker (by staining using MIB1 

antibody) to detect growth fraction, discriminating between proliferative and non-proliferative 

cells. Ki-67 staining which tend to show proliferative cells may be faint or undetectable at the 

onset of DNA synthesis but it generally accepted that Ki-67 is expressed during active phase of 

the cell cycle. However, cells with disrupted growth kinetics (e.g. due to drug administration) 

may remain Ki-67 positive if a drug acts to arrest in a particular active phase of the cell cycle if 

they pass G1/S or G2/M phases (Scholzen et al. 2000). Decreases in Ki-67 staining between pre-

treatment biopsy and post-treatment surgical specimens are also emerging as a promising 

predictive marker of clinical response to neoadjuvant treatment in breast cancer patients 

(Yerushalmi et al. 2010), most recently demonstrated in the IMPACT study for anti-hormones in 

breast cancer (Dowsett et al. 2005). 

In the current study, the effect of metformin treatment (0.5-2mM) on proliferation (Ki67) of the 

models was determined after 7 days to further gauge importance of Complex I-driven OxPhos 

to the panel. Cells were seeded at 100,000 cells/coverslip for 24hrs prior to metformin 

administration (0.5mM-2mM). To determine Ki-67 expression, cells were harvested and fixed at 

day 7 and immunostained with MIB1 antibody. The percentage of nuclear Ki67 (MIB1) positive 

cells for each metformin dose was determined by counting over 6 fields at 40X magnification, 

and data were represented as means of 3 independent experiments.  

Under basal growth conditions, MCF7 cells were 81% positive for Ki-67 staining. Ki-67 staining 

was modestly reduced by 10% and 20% after 0.5mM and 1mM metformin treatment and more 

significantly by 40% with 1.5mM treatment (P<0.05). The highest dose of metformin treatment 

(2mM) gave only a 25% Ki-67 reduction (Fig 4.92). TamR was 87% positive for Ki-67 expression 

under basal conditions. While Ki-67 expression was modestly reduced by 30% after 1mM 

treatment (P<0.05) compared to untreated control, all other doses had little impact on Ki67 

staining (10%-15% reduction) in TamR cells (Fig 4.93). TamRLT cells were 93% Ki-67 posiitive 

under basal conditions. Reduction of Ki-67 with metformin was statistically significant but 

modest in this model, 17% at 1mM (P<0.01), 15% at 1.5mM (P<0.05) and at the highest dose 
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(12%) versus untreated control (Fig 4.94). FasR cells was 89% positive for Ki-67 under basal 

conditions, with a modest 30% reduction in staining after 2mM treatment (P<0.01) versus 

untreated control (Fig 4.95). FasRLT were 91% positive and the marker was again only modestly 

reduced by 15-20% after either 1mM or 1.5mM (P<0.05 for both) or 2mM metformin treatment 

(Fig 4.96). MCF7(X) cells were 76% Ki67 positive under basal conditions, with a modest 35% 

reduction in Ki-67 staining after 2mM metformin treatment compared to untreated control and 

versus the 0.5mM dose (P<0.01) (Fig 4.97). MCF7(X)LT had comparable Ki67 positivity (78%) and 

there was a modest but significant reduction by 22%, 24% and 35% after 1mM (P<0.05), 1.5mM 

(P<0.05) and 2mM (P<0.001) metformin treatment respectively (Fig 4.98).  

In summary, metformin inhibitory impact on Ki67 proliferation staining was relatively modest in 

MCF7 and all the resistant models, with many cells remaining Ki67 positive despite treatment. 

By 2mM metformin the least impact on Ki67 proliferation staining was noted in MCF7, the 

tamoxifen resistant and FASRLT cell lines.  
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Fig 4.92. MCF7 cells were seeded at 100,000 

cells/coverslip and Ki-67 staining was performed 

after fixation, staining assessment determined 

percentage Ki67 positivity after metformin 

treatment for 7d. Ki67 positivity data are presented 

here as % of untreated control, and represent the 

mean of 3 independent experiments (N=3). The 

error bar indicates SEM. * (P<0.05) following 

ANOVA with Bonferroni post hoc correction. 

Original magnification was 40X. 
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Fig 4.93. TamR cells were seeded at 100,000 

cells/coverslip and Ki-67 staining was performed 

after fixation, staining assessment determined 

percentage Ki67 positivity after metformin 

treatment for 7d. Ki67 positivity data are 

presented here as % of untreated control, and 

represent the mean of 3 independent experiments 

(N=3). The error bar indicates SEM. * (P<0.05) 

following ANOVA with Bonferroni post hoc 

correction. Original magnification was 40X. 
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Fig 4.94. TamRLT cells were seeded at 100,000 

cells/coverslip and Ki-67 staining was performed 

after fixation, staining assessment determined 

percentage Ki67 positivity after metformin 

treatment for 7d. Ki67 positivity data are 

presented here as % of untreated control, and 

represent the mean of 3 independent 

experiments (N=3). The error bar indicates SEM. 

* (P<0.05) & ** (P<0.01) following ANOVA with 

Bonferroni post hoc correction. Original 

magnification was 40X. 
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Fig 4.95. FasR cells were seeded at 100,000 

cells/coverslip and Ki-67 staining was performed 

after fixation, staining assessment determined 

percentage Ki67 positivity after metformin 

treatment for 7d. Ki67 positivity data are 

presented here as % of untreated control, and 

represent the mean of 3 independent 

experiments (N=3). The error bar indicates SEM. 

* (P<0.05) & ** (P<0.01) following ANOVA with 

Bonferroni post hoc correction. Original 

magnification was 40X. 
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Fig 4.96. FasRLT cells were seeded at 100,000 

cells/coverslip and Ki-67 staining was performed 

after fixation, staining assessment determined 

percentage Ki67 positivity after metformin 

treatment for 7d. Ki67 positivity data are 

presented here as % of untreated control, and 

represent the mean of 3 independent 

experiments (N=3). The error bar indicates SEM. 

* (P<0.05) following ANOVA with Bonferroni post 

hoc correction. Original magnification was 40X. 
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Fig 4.97. MCF7(X) cells were seeded at 100,000 

cells/coverslip and Ki-67 staining was performed 

after fixation, staining assessment determined 

percentage Ki67 positivity after metformin 

treatment for 7d. Ki67 positivity data are 

presented here as % of untreated control, and 

represent the mean of 3 independent 

experiments (N=3). The error bar indicates SEM. 

** (P<0.01) following ANOVA with Bonferroni 

post hoc correction. Original magnification was 

40X. 
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Fig 4.98. MCF7(X)LT cells were seeded at 100,000 

cells/coverslip and Ki-67 staining was performed 

after fixation, staining assessment determined 

percentage Ki67 positivity after metformin 

treatment for 7d. Ki67 positivity data are 

presented here as % of untreated control, and 

represent the mean of 3 independent 

experiments (N=3). The error bar indicates SEM. 

* (P<0.05) & *** (P<0.001) following ANOVA 

with Bonferroni post hoc correction. Original 

magnification was 40X. 
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4.2.5.6 Expression evidence for hyperactive mitochondria that may impact on OxPhos 

or sensitivity to metformin in the model panel 

Expression of Plasma membrane metformin transporters in endocrine resistant breast cancer 

cells using 1.0ST gene microarrays: 

The NADH substrate derived from glycolysis (via Malate-Aspartate shuttle), β-oxidation of fatty 

acids and from the TCA cycle is oxidized by NADH dehydrogenase of complex I during OxPhos. 

Two electrons from this NADH oxidation reduce ubiquinone to ubiquinol, and so complex I 

supplies electrons through to complex III and IV to reduce O2 to H2O. The released energy from 

the reaction at complex I drives ATP synthesis by ATP synthase. The primary effect of metformin 

treatment in its direct mechanism is inhibition of complex I, which induces energy stress by 

reducing ATP synthesis. Metformin influx into the cell is facilitated by several organic cation 

transporters (OCTs: OCT1-3) (Pernikova et al. 2014) and also by plasma membrane monoamine 

transporters (PMAT) (Zhou et al. 2007). The positive charge on metformin then assists its 

reversible accumulation into the mitochondrial matrix in response to mitochondrial membrane 

potential (Bridges et al. 2014), while the hydrocarbon side chain of the drug aids binding into 

the complexes within the mitochondrial membranes. Metformin requires several hours to 

accumulate in the mitochondria (Bridges et al. 2014) and bind to the core subunits of complex I 

where it exerts its inhibitory effect (Hirst et al. 2013). Indeed, Bridges et al. (2014) reported 

reversibility of metformin accumulation after 6hrs in hepatocellular carcinoma.  

To further evaluate whether such metformin delivery may impact on the growth sensitivity 

profile in the model panel, expression of metformin influx transporters (e.g. OCTs, PMAT) and 

also relevant drug efflux transporters (multidrug and toxin extrusion proteins, MATEs) were 

studied using 1.0ST gene microarray (Fig 4.99). While some of the metformin transporters across 

the plasma membrane OCT1-3 (SLC22A1-3) were not expressed in the model panel (log2<7) (Fig 

4.99, Table 4.22), PMAT (SLC29A4) was detected on the arrays. Its expression was reduced (>1.5 

fold changes) in FasR, FasRLT, MCF7(X) and MCF7(X)LT cells as compared to MCF7 (Fig 4.99, 

Table 4.22), suggesting capacity for metformin influx may be reduced in fulvestrant resistant and 

oestrogen deprivation resistant models. However, the potential metformin efflux transporters 

MATE1 and MATE 2 (encoded by SLC47A1 and SLC47A2 genes respectively; Emami Riedmaier et 

al., 2013) were also determined across the model panel and while SLC47A2 were in general not 

expressed across the panel (favouring metformin accumulation in most models), SLC47A1 was 

expressed and increased in tamoxifen resistant models as compared to MCF7 but not expressed 
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in the rest of models (Fig 4.99, Table 4.22). Therefore, the reduced metformin growth sensitivity 

observed in tamoxifen resistant models might be associated with increased drug efflux. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.99. Microarray expression of metformin influx and 

efflux transporters across the panel of resistant models. 

On the heatmap, green, black & red indicate decreased, 

no change & increase in gene expression respectively as 

compared to MCF7 control. 

Table 4.22. Fold changes for microarray expression of metformin transporters in 

endocrine resistant models vs. MCF7. Fold decreases (≥1.2) are indicated in green and 

fold increases (≥1.2) indicated in red.  
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Mitochondrial Shuttles:  

Efficiency of substrate transport across the mitochondrial membrane may also potentially 

influence metformin sensitivity, and so mitochondrial shuttle expression was also monitored on 

the arrays. Mitochondrial shuttles consist of enzymes and transporters to convert metabolites 

and deliver them from the cytoplasm into the mitochondrial matrix or vice versa. NADH which 

is synthesized in the cytoplasm cannot cross the mitochondrial membrane and thus the 

Glycerophosphate shuttle, Malate-Aspartate shuttle and Citrate-Pyruvate shuttle all aid the 

process.  

For the glycerophosphate shuttle, glycerol-3- phosphate dehydrogenase 1 (GPD1, cytosolic) 

converts a glycolytic intermediate (dihydroxyacetone phosphate) into glycerol-3-phosphate by 

converting NADH to NAD+. In the mitochondria, the enzyme flavoprotein dehydrogenase (which 

converts FADH2 to FAD) then assists conversion of this glycerol-3-phosphate to 

dihydroxyacetone phosphate via GPD2 (mitochondrial). The flavoprotein dehydrogenase thus 

can transfer electrons to reduce ubiquinone to ubiquinol (similar to the complex II activity, 

without pumping protons to mitochondrial inner membrane space (Fig 4.101). As the 

Glycerophosphate shuttle is an irreversible reaction, it is used only under essential conditions 

and the electron transport from this shuttle generates 2ATP molecules as compared to 3ATP 

molecules derived from NADH. Array profiling revealed that while the mitochondrial shuttle 

GPD1 was only expressed in fulvestrant resistant models (Fig 4.100, Table 4.23), GPD2 

expression was induced in TamR, TamRLT and FasR while it reduced in MCF7(X) as compared to 

MCF7 cells (Fig 4.100, Table 4.23). Since high basal GPD2 expression may feasibly assist bypass 

mechanism of electron transport through to ubiquinone, this may contribute to the reduced 

growth-sensitivity of the fulvestrant resistant models to the complex I inhibitor metformin 

(Table 4.23). The induced GPD expression and thus increased electron transfer to the OxPhos 

complexes may also account for the modest reduced COX activity after metformin treatment 

(0.5mM-2mM) observed in fulvestrant resistant models (Fig 56-57).  

 

 

 

 

Fig 4.100. Microarray expression of glycerol-3- 

phosphate dehydrogenase (GPD1 & GPD2) for the 

panel of resistant models. On the heatmap, red, green 

& black indicate increased, decreased and no change in 

gene expression respectively as compared to MCF7 

cells. 
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The malate-aspartate shuttle may also be of relevance. Oxaloactate (OAA) cannot pass through 

the mitochondrial membrane and thus cytoplasmic malate dehydrogenase converts OAA into 

malate by oxidizing NADH to NAD+. Transfer of malate to the mitochondrial matrix is then 

facilitated via the malate/α-KG anti-porter (SLC25A11). For this, the mitochondrial malate 

dehydrogenase oxidizes malate to OAA via converting NAD+ to NADH in the mitochondrial 

matrix. The NADH can then enter the OxPhos pathway to generate 3ATP molecules, while the 

OAA recycles to the cytoplasm via a mechanism which involves an aspartate/glutamate anti-

porter (SLC25A13). In this process nitrogen in OAA and α-KG is a keto acid counterpart of 

aspartate and glutamate, respectively (Fig 4.101). Thus, metabolite exchange between 

cytoplasm and mitochondrial matrix via the Malate-Aspartate shuttle can supply electrons in the 

form of the substrate NADH to the OXPhos pathway. On the arrays, expression of the malate/α-

KG transporter SLC25A11 was induced in FasRLT as compared to MCF7 (Fig 4.102, Table 4.24) 

and the anti-porter aspartate/glutamate transporter SLC25A13 was induced by >3 fold in FasR 

and FasRLT (and by >1.2 fold in TamR and MCF7(X) cells) as compared to MCF7 (Fig 4.102, Table 

4.24). Therefore, an apparently efficient Malate-Aspartate shuttle may provide fulvestrant 

resistant models with high NADH substrate. High NADH supply may perhaps in turn contribute 

towards the higher basal NADH dehydrogenase activity detected in these models (Fig 4.44), the 

diminished effect of the lowest dose (0.5mM) of metformin on NADH dehydrogenase activity 

(Fig 4.48-4.49, Table 4.17) and the lack of impact of metformin treatment (up to 1mM) on COX 

activity in these cells (Fig 4.56-4.57, Table. 4.18).  

 

 

 

Table 4.23. Fold changes for microarray expression GPD1 & GPD2 in endocrine 

resistant models vs. MCF7. Fold decreases (≥1.2) are indicated in green and fold 

increases (≥1.2) indicated in red.  

Fig 4.102. Microarray expression of malate-aspartate 

shuttle components SLC25A11 and SLC25A13 for the 

panel of resistant models. On the heatmap, red & black 

indicate increased and no change in gene expression 

respectively as compared to MCF7 cells. 
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The Citrate-Pyruvate shuttle transfers pyruvate (a substrate for TCA and thereby driver of 

OxPhos) to the mitochondrial matrix. In this, ATP-citrate lyase (ACLY) uses ATP to convert citrate 

to OAA. Malate dehydrogenase (MDH1) then oxidizes NADH to convert OAA to malate, and the 

malic enzyme (ME1) reduces NADP to generate pyruvate which returns via a mitochondrial 

pyruvate carrier (BRP44L or MPC) to the mitochondrial matrix to complete the TCA cycle (Fig 

4.101). On the microarrays, ACLY expression was induced in tamoxifen resistant models, 

oestrogen deprived models and FasRLT, while MDH1 expression was only induced in TamR as 

compared to MCF7 (Fig 4.103, Table 4.25). ME1 expression was also induced in tamoxifen 

resistant and oestrogen deprived models (Fig 4.103, Table 4.25) and BRP44L induced in the 

fulvestrant resistant and oestrogen deprived models as compared to MCF7 (Fig 4.103, Table 

4.25). However, BRP44L was decreased in tamoxifen resistant cells. Therefore, increased 

expression of Citrate-Pyruvate shuttle components and the mitochondrial pyruvate carrier could 

increase pyruvate flux in fulvestrant resistant and oestrogen deprived resistant models (Fig 

4.103, Table 4.25). Induced pyruvate entry into the TCA cycle could serve to induce OxPhos and 

basal OC (Fig 35) in fulvestrant resistant and oestrogen deprived models. 

 

 

 

 

Table 4.24. Fold changes for microarray expression of SLC25A11 & SLC25A13 in 

endocrine resistant models vs. MCF7. Fold increases (≥1.2) indicated are red.  

Fig 4.103. Microarray expression of citrate-pyruvate 

shuttle components ME1, MDH1, ACLY & BRP44L for 

the panel of resistant models. On the heatmap, red, 

green & black indicate induced, reduced & no change 

in gene expression respectively as compared to MCF7 

cells. 
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Substrate provision for TCA/OxPhos 

Mitochondrial β-oxidation of fatty acids, which ultimately produces substrates for TCA cycle and 

OxPhos, is additionally worthy of consideration. This process involves successive removal of two-

carbon units in the form of acetyl-CoA from the carboxyl end of fatty acyl chains. In the first 

reaction, acyl-CoA dehydrogenase (comprising ACADS, ACADM, ACADL and ACADVL) oxidizes 

the fatty acyl-CoA by reducing FAD to FADH2, and the FADH2 donates an electron to an electron-

transferring flavoprotein (ETFP) of the inner mitochondrial membrane. Then, reduced 

ubiquinone transfers a pair of electrons to form O2 and generates 2ATP molecules (Fig 4.101). In 

the second reaction, enoyl-CoA hydratase (ECHS1) catalyses formation of β-hydroxyacyl-CoA. In 

the third reaction, β-hydroxyacyl-CoA dehydrogenase (HADH, HADHA and HADHB) reduces 

NAD+ to convert β-hydroxyacyl-CoA into β-ketoacyl-CoA. The NADH formed by this reaction 

donates electrons to complex I of OxPhos and generates 3ATP molecules. In the fourth reaction, 

acyl-CoA acetyltransferase (ACAT1 and ACAT2) catalyses conversion of β-ketoacyl-CoA to acetyl 

CoA which further oxidizes in the TCA cycle. As a result 5ATP molecules are generated for each 

acetyl-CoA in successive oxidation of fatty acids. Transfer of the fatty acyl chain from cytosol to 

mitochondrial inner membrane during the process is mediated via the Carnitine/Acylcarnitine 

Translocase (SLC25A20) transporter (Fig 4.101).  

Expression of the genes associated with fatty acid translocation and β-oxidation in the 

mitochondria was examined for the panel of resistant models using the 1.0ST gene microarrays 

(Fig 4.104, Table 4.26). Expression of SLC25A20 was induced in fulvestrant resistant and 

oestrogen deprived models as compared to MCF7. For the first reaction in β-oxidation of fatty 

acid involving acyl-CoA dehydrogenase, ACADS expression was induced in TamRLT and FasRLT 

cells and ACADM expression was induced across all resistant models (except TamR) compared 

to MCF7 (ACADL was not expressed and ACADVL expression unchanged across the panel). For 

the second reaction, ECHS1 expression was induced in fulvestrant resistant models but reduced 

in MCF7(X) as compared to MCF7 cells. For the third reaction involving β-hydroxyacyl-CoA 

Table 4.25. Fold changes for microarray expression of ME1, MDH1, ACLY & BRP44L in 

endocrine resistant models vs. MCF7. Fold decreases (≥1.2) are indicated in green & 

increased fold changes (≥1.2) are indicated in red. 
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dehydrogenase, HADH expression was induced in all the resistant models and HADHA induced 

in FasRLT, although HADHB expression was reduced in TamR and MCF7(X) as compared to MCF7 

cells. For the fourth reaction involving acyl-CoA acetyltransferase, ACAT1 was induced in all 

resistant models and ACAT2 induced in oestrogen deprived resistant models (but reduced in 

TamRLT) as compared to MCF7. Based on these various deregulated expression profiles, fatty 

acid flux to mitochondrial inner membrane was potentially induced in fulvestrant resistant and 

oestrogen deprived models while β -oxidation of fatty acids to increase supply of FADH2 and/or 

NADH was also potentially raised in all the antihormone resistant models. This could account for 

higher OxPhos in the resistant models versus MCF7, although further investigation would be 

required to gauge impact of fatty acid oxidation on metformin sensitivity in the panel. 

 

 

 

 

 

 

 

Fig 4.104. Microarray expression of genes for fatty 

acid translocation and β-oxidation in the 

mitochondria for the panel of resistant models. On 

the heatmap, red, green & black indicate induced, 

reduced & no change in gene expression 

respectively as compared to MCF7 cells. 

Table 4.26. Fold changes for microarray expression of fatty acid transporter and β-

oxidation in the mitochondria in endocrine resistant models vs. MCF7. Fold decreases 

(≥1.2) are indicated in green & increased fold changes (≥1.2) are indicated in red  
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OxPhos complex I subunit expression  

In this project, NADH dehydrogenase activity was found to be increased across the resistant 

panel as compared to MCF7 (Fig 4.44). The highest enzyme activity was detected in oestrogen 

deprived resistant models, and in keeping with this were the most growth-sensitive to 

metformin treatment (Table 4.20). Expression of core subunits for NADH dehydrogenase were 

assessed using 1.0ST gene microarray (Fig 4.105, Table 4.27). Core subunits of NADH 

dehydrogenase is composed of catalytic subunits (mitochondrial encoded genes: ND1, ND2, 

ND3, ND4, ND4L, ND5 and ND6) and subunits responsible for minimal assembly and catalysis 

(nuclear encoded genes; NDUFS1, NDUFS2, NDUFS3, NDUFS7, NDUFS8, NDUFV1 and NDUFV2). 

ND6 expression was induced in TamR and FasR as compared to MCF7 (Fig 4.105, Table 4.27), 

although ND4L and ND5 expression were unchanged (while further mitochondrial-encoded 

subunits were not represented on the 1.0ST gene microarray platform). For the nuclear encoded 

genes, NDUFS3, NDUFS1, NDUFS7 and NDUFV1 expression were induced in all the resistant 

panel (except TamRLT for NDUFS1, MCF7XLT for NDUFS7 and TamR for NDUFV1) as compared 

to MCF7. NDUFS2 expression was induced in TamRLT and NDUFS8 induced in FasRLT as 

compared to MCF7 cells. Expression of NDUFV2 alone was reduced and only in oestrogen 

deprived resistant models. Therefore, it seems likely that the induced expression of core 

subunits contribute in some way towards induced NADH dehydrogenase activity and impact on 

metformin sensitivity in resistant models. 

 

 

 

 

Fig 4.105. Microarray expression of NADH 

dehydrogenase core subunits for the panel of 

resistant models. On the heatmap, red, green & 

black indicate induced, reduced & no change in 

gene expression respectively as compared to 

MCF7 cells. 
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Regulators of expression and localisation of key TCA/OxPhos components  

TCA cycle enzyme isoforms and OxPhos component subunits in the mitochondria are encoded 

both by the nucleus and by the mitochondria itself. Transport of the nuclear-encoded TCA cycle 

enzyme isoforms and OxPhos subunits into the mitochondria is facilitated via translocase 

inner/outer mitochondrial membrane proteins (TIMMs/TOMMs). The mitochondrial ribosome 

machinery (including small and large ribosomal subunits) translates mitochondrial-encoded TCA 

cycle enzyme isoforms and OxPhos subunits (detailed in Table 4.28-4.29). Interestingly, induced 

expression of mitochondrial translation and biogenesis genes (including mitochondrial ribosome 

subunits and translocases) has been demonstrated in breast cancer compared to adjacent 

stromal tissue (Sotgio et al. 2012a). 

Since they impact on the TCA and OxPhos machinery and mitochondrial biogenesis expression 

of the mitochondrial translation machinery genes (small and large mitochondrial ribosome 

subunits) and also the mitochondrial inner translocases were therefore assessed using the 1.0ST 

gene microarrays (Fig 4.106). Furthermore, ORA-O GO terms for induced genes were 

interrogated using the Innatedb database to determine if there was any enrichment of such 

mitochondrial translation and translocation genes in the resistant cells (Table 4.30). Heatmap 

profiling revealed expression of large ribosomal subunits (MRPL 2/15/17/20/21/34/37/ 40 and 

47), small ribosomal subunits (MRPS5/15/18A/18B and 34) and translocase inner mitochondrial 

subunits (TIMM8A/9/17A and 44) were commonly induced (≥1.2 fold changes) in the resistant 

panel compared to MCF7 cells (Fig 4.106).  

 

Table 4.27. Fold changes for microarray expression of core subunits of NADH 

dehydrogenase in endocrine resistant models vs. MCF7. Fold decreases (≥1.2) are 

indicated in green & increased fold changes (≥1.2) are indicated in red. 
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Table 4.28. Nuclear and mitochondrial encoded isoforms for key TCA cycle enzymes. 

Table 4.29. Nuclear and mitochondrial encoded subunits of key OxPhos complex I-IV components. 
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Fig 4.106. Microarray expression of 

small/large subunits of mitochondrial 

ribosomes and also Translocase Inner 

Mitochondrial Membrane (TIMMs) whose 

induction is shared across the resistant panel. 

Red indicates induced expression (≥1.2 fold 

change) as compared to MCF7 cells. 

Table 4.30. Significantly enriched ORA-O GO terms for small/large subunits of mitochondrial 

ribosome and Translocase Inner Mitochondrial Membrane (TIMMs) in the resistant models vs. 

MCF7 cells.  
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For the translocase outer mitochondrial membrane proteins (TOMM20) expression was of 

particular interest as it has been reported specifically as a marker of mitochondrial mass and 

biogenesis in lymph node positive breast cancer (Sotgio et al. 2012b). TOMM20 was evaluated 

across the resistant panel using the 1.0ST gene microarrays, and was induced by ≥1.2 fold 

changes in TamR, TamRLT and MCF7(X) cells versus MCF7 (Fig 4.107, Table 4.31). Further study 

using paraffin-embedded pellets of the resistant model panel and MCF7 cells immuno-stained 

for TOMM20 expression detected punctuated cytoplasmic staining in accordance with 

mitochondrial localisation. H-scoring of the staining determined TOMM20 protein expression 

was induced in TamR, TamRLT, FasRLT, MCF7(X) and MCF7(X)LT cells by 1.7, 1.4, 1.2, 1.5 and 1.3 

fold changes as compared to MCF7 (Fig 4.108-4.109). This finding suggests more prominent 

mitochondria in these resistant states that may also contribute to increasing OxPhos capacity in 

antihromone resistant models. 

 

 

 

 

 

 

Fig 4.107. Microarray expression of TOMM20 in the 

panel of resistant models. On the heatmap, red & 

black indicate induced or no change in gene 

expression respectively as compared to MCF7 cells. 

Table 4.31. Fold changes for microarray expression of TOMM20 in 

endocrine resistant models vs. MCF7. Fold increases (≥1.2) are 

indicated in red. 
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Fig 4.108. Paraffin-embedded section of endocrine resistant and 

responsive breast cancer cell pellets immuno-stained with 

TOMM20 antibody (1:500) and counterstained with methyl green. 

Original magnification was 40X. 
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Phosphate and ADP/ATP carriers  

Glycolysis, acetyl CoA formation and TCA cycle store energy in the form of FADH2 and NADH that 

are subsequently oxidized in the electron transport chain. The energy of electron transfer 

generates a proton gradient which drives ATP synthase to form ATP molecules in the 

mitochondria. However, for OxPhos to be productive towards growth (most anabolic process), 

ATP needs to transport out to the cytoplasm via a phosphate carrier, since this is where most 

ATP-dependent processes occur. ADP/ATP carriers in turn are required to facilitate ADP/ATP 

transport in the opposite direction (Fig 4.101). Induced expression of the phosphate carrier and 

ADP/ATP carriers have been reported, alongside increased OxPhos, in breast cancer as 

compared to adjacent stroma, highlighting their importance (Sotgio et al. 2012a). Expression of 

the phosphate carrier SLC25A3 and also several ADP/ATP carriers (SLC25A4, SLC25A5, SLC25A6 

and SLC25A31) were therefore assessed across the panel of resistant models using 1.0ST gene 

microarray (Fig 4.109, Table 4.32). While expressed in all models, the phosphate carrier SLC25A3 

expression was only induced in FasR compared to MCF7 cells. For the ADP/ATP carriers, SLC25A5 

expression was increased in all resistant cells, with SLC25A4 expression induced in fulvestrant 

Fig 4.109. H-score for the TOMM20 staining in the panel. Data 

are represented as mean of 3 independent experiments (N=3). 

The error bar indicates SEM. ** (P<0.01) following ANOVA 

with Dunnett’s post hoc correction. Fold changes for TOMM20 

protein expression in endocrine resistant models vs. MCF7 is 

represented. Induced fold changes (>1.2) are indicated in red. 
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resistant models and MCF7(X) cells compared with MCF7 cells. SLC25A6 expression was 

unchanged and SLC25A31 not expressed in this panel. Therefore, increased expression of 

ADP/ATP transporter (SLC25A5) is accompanied with increased OxPhos in the resistant models 

compared to MCF7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.109. Microarray expression of the phosphate 

carrier SLC25A3 and several ADP/ATP transporters 

across the panel of resistant models. On the heatmap, 

red and black indicate induced or no change in gene 

expression respectively, as compared to the control 

MCF7 cells. 

Table 4.32. Fold changes for the phosphate carrier and various ADP/ATP transporters 

in endocrine resistant models vs. MCF7. Induced fold changes (≥1.2) are indicated in 

red.  
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4.3 Discussion 

Carbon metabolism and associated metabolic pathways, notably glycolysis, pyruvate 

metabolism and the TCA cycle, together with OxPhos that uses the resultant NADH and FADH2 

substrates to efficiently-generate ATP in the cell, have gained attention in cancer research since 

tumour cells require high levels of nutrients and energy for their uncontrolled growth. Indeed, 

reprograming of energy metabolism is a hallmark of cancer (Hanahan et al. 2011). Increased 

glycolysis (in the presence of O2) and diminished oxidative phosphorylation were initially 

described as features of cancer by Warburg et al. (1956), and increased glycolysis has been 

reported as the main energy pathway in mammary adenocarcinoma (Eskey et al. 1993) and is 

prominent within breast cancer cells (Mazurek et al. 1997). One explanation for the elevated 

glycolysis in cancer was proposed by Pedersen et al. (2008), who noted that interaction between 

hexokinase-2 (HK2) and voltage dependent anionic channels (VDACs) within the outer 

mitochondrial membrane enabled the HK enzyme to efficiently-utilise mitochondrial ATP to 

convert glucose to glucose-6-phosphate. Therefore, it focused on intact mitochondrial function 

in the presence of induced glycolysis. On this basis, the glucose analog 2-(18F)-fluoro-2-deoxy-

d-glucose (FDG) can be used clinically in positron emission tomography (PET) to detect tumour 

cells with induced glucose consumption in the clinic. Furthermore, in most hypoxic tumours with 

increased glycolysis O2 concentration is about 8-57µM (Vaupel et al 1989). The Km value for 

cytochrome C oxidase in both normal and tumour cells is 0.1–0.8 μM (Mason et al.2006) and 

saturating concentration is 1-8 μM. Therefore, O2 concentration in hypoxic areas of tumours 

cannot limit the enzyme activity and oxidative phosphorylation (Rodriguez-Enriquez et al. 2010). 

However, reduced gene expression of isoforms of NADH dehydrogenase, cytochrome C oxidase, 

ATP synthase and glutaminase occurs in cancer cells after prolonged hypoxia (Ebert et al. 1996; 

Kobayashi et al.2001). Moreover, hypoxia-inducible factor-1 (HIF-1) activation increases glucose 

transporter and glycolytic enzymes to induce metabolite flux into hypoxic regions of the tumour 

favouring glycolysis in tumours (Marin-Hernandez et al.2009). Furthermore, HIF-1α can inhibit 

pyruvate dehydrogenase activity via regulating pyruvate dehydrogenase kinase (PDK1), 

preventing pyruvate from fuelling the TCA cycle and thereby limiting substrates required for 

efficient OxPhos (Papandreou et al.2006).  
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Role for glycolysis in the model panel: 

In this chapter, dependency of the endocrine resistant breast cancer cells (and of their parental 

endocrine responsive MCF7 line) on glycolysis and also glutaminolysis for their carbon source 

(glucose and glutamine) was demonstrated via challenge with 2DG and glutamine deprivation 

respectively. Successful ECA measurement in the models provided evidence for use of glycolysis 

in all the endocrine resistant and responsive cells in the panel, in keeping with the central role 

for this metabolic pathway in cancer (Hanahan et al. 2011). However, an increased basal 

glycolytic (measured using ECA which relates to lactate production as the endpoint of glycolysis) 

was detected in tamoxifen resistant (particularly TamRLT) and to some extent oestrogen 

deprived resistant models as compared to MCF7 cells, which was paralleled by induced LDHB 

expression in these models. Moreover, there was an increased sensitivity with regards to ECA 

reduction by 2DG in all endocrine resistant lines compared with the MCF7 cells, with TamRLT 

again the most sensitive model (requiring 0.5mM in TamRLT versus 5mM 2DG treatment in 

MCF7 cells for 24hrs to give 50% reduction). This in total suggests that all the endocrine resistant 

cells in the model panel are more dependent on glycolysis to supply carbon fuel and ATP versus 

their endocrine responsive counterpart. While glycolysis is reported to be reduced during 

response to tamoxifen in MCF7 for in vitro and in vivo models (Rivenzon-Segal et al., 2003), 

increased glycolysis has also been reported in an additional MCF7-derived tamoxifen resistant 

cell line which had increased LDH levels and increased glucose uptake (Farabegoli et al., 2012).  

All the resistant and responsive models in the panel were growth inhibited by 2DG treatment. 

These observations confirm that all endocrine resistant cells are dependent to some degree on 

glycolysis to drive their growth which could potentially have therapeutic interest given that 2DG 

has also been studied in advanced clinical cancer trials. Efficacy of docetaxel in combination with 

2DG was studied in locally-advanced or metastatic solid tumours, where 2DG was administered 

orally once daily for 7 days every other week starting at a dose of 2 mg/kg and docetaxel was 

administered intravenously at 30 mg/m2 for 3 of every 4 weeks. The study found 2DG at 63 

mg/kg in combination with weekly docetaxel was well-tolerated and the most common side 

effects were sweating, fatigue and dizziness which mimic hypoglycemic symptoms, with stable 

disease in 32% of patients (Raez et al. 2013). Based on the findings here, 2DG anti-tumour impact 

might be worthy of exploration in breast cancers including endocrine resistant disease. 

 

Interestingly, while the tamoxifen resistant, oestrogen deprived resistant models, and MCF7 

cells were all growth inhibited by 2DG (with up to 90% inhibition achieved for higher doses in 
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TamRLT cells), EC50 studies indicated that it was the fulvestrant resistant models that were the 

most sensitive cells (EC50: 0.4mM) for growth inhibition by 2DG treatment (after 7 days), as 

compared to MCF7 and the further resistant models (EC50 ~1mM).However, gene microarray 

interrogation suggested this high growth-sensitivity of fulvestrant resistant models to the 

growth inhibitory effect of 2DG may have been explained by their induced glucose transporter 

SLC2A3, which would act to increase 2DG flux into the cell and also by their increased HK (HK1 

and HK2) which would potentially accelerate glycolytic inhibition by 2DG (via efficient 

conversion to 2DG phosphate). In contrast, lysine, valine, leucine and isoleucine degradation 

(associated with increased ACAA2, OGDHL, ALDH3A2 and DLST expression) replenishes the TCA 

cycle with acetyl CoA and succinyl CoA in tamoxifen resistant and oestrogen deprived and thus 

accounts for reduced sensitivity of these models to growth inhibition of 2-DG treatment.  

It has also been shown in MCF7 cells that 2DG reduces ATP levels and activates AMPK, which 

further phosphorylates cAMP response element-binding protein (CREB) and activates 

oestrogen-related receptor α protein (ERR) leading to induced mitochondrial biogenesis and β-

oxidation of fatty acids (Wu et al. 2015). Hence, prevalence of “compensatory metabolic 

mechanisms” recruited during 2DG treatment might also contribute towards the growth profile 

with 2DG in the panel and explain discordance for the growth versus ECA findings. Nevertheless, 

the reduced growth inhibitory effect of 2DG in tamoxifen resistant models may also reflect that 

alternative carbon sources alongside their prominent glycolysis contribute to generate building 

blocks, ATP and thereby growth of these models, while fulvestrant resistant cells are highly 

growth-dependent on their more modest glycolytic activity.  

Role for glutaminolysis in the model panel: 

In this chapter sensitivity of the breast cancer models to glutamine deprivation was monitored 

after day 7. All the endocrine resistant models showed increased sensitivity to such deprivation 

compared with the endocrine responsive MCF7 cells, but of these the tamoxifen resistant 

models were the most sensitive. These differential effects are compatible with further studies, 

in lung cancer, showing glutamine dependency (“glutamine addiction”) can vary among tumour 

cells (van den Heuvel et al,. 2012), while study of breast cancer has also revealed differential 

sensitivity to glutamine deprivation according to tumour subtype (Kung et al., 2011). Cancer cells 

more dependent on glutamine availability for their proliferation are also reported to have a 

higher glutaminolysis rate (van den Heuvel et al.2012). In total, the glutamine deprivation 

findings suggest an increased dependency in the endocrine resistant cells, but particularly those 

resistant to tamoxifen, on increased glutaminolysis as a further source of fuel. The lower impact 

of glutamine deprivation in fulvestrant versus tamoxifen resistant cells is in keeping with the 
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2DG findings above that imply enhanced growth dependency on glycolysis in the fulvestrant 

resistant cells for their fuel supply. The observation of apparent increased dependency on 

available glutamine in tamoxifen resistance, coupled with the 2DG growth findings in such cells, 

also seem compatible with the “third wave” of metabolic change reported during malignant 

transformation which results in prominent glutaminolysis to support the substantial metabolism 

of highly-proliferative tumours (Smolkova et al. 2010). The induced expression profile of 

transporters SLC1A5 and SLC7A6 suggests an increased capacity for glutamine influx into the 

endocrine resistant models, in keeping with findings from Nicklin et al. (2009) that glutamine 

influx and exchange with essential amino acids is important in regulating cell proliferation. 

However, this profile cannot easily explain the increased sensitivity of the resistant models to 

glutamine deprivation versus MCF7. Interestingly, the reduced sensitivity to glutamine 

deprivation for fulvestrant and oestrogen deprived resistance compared with tamoxifen 

resistant models was paralleled by reduced glutaminase (GLS and GLS2) enzyme expression, 

implying somewhat diminished capacity for glutaminolysis in these models versus tamoxifen 

resistance which may underpin the growth profile with glutamine deprivation in the panel. 

Nevertheless, it should be remembered that the induced transaminase enzyme (GLUD1) 

detected in FasRLT and oestrogen deprived models may also allow their use of L-glutamic acid 

in the growth media (0.13mM in RPMI1640) as an alternative carbon source to generate α-KG 

and ultimately promote some growth despite glutamine deprivation in these models. As GLUL 

was also induced in MCF7(X) cells, de novo glutamine synthesis may provide an additional 

explanation for the reduced sensitivity of this model to glutamine deprivation versus tamoxifen 

resistant cells. While this observation in ER+ MCF7(X) cells is not in accordance with Kung et al. 

(2011) findings for glutamine synthase (GS: encoded by the GLUL gene), which primarily 

sustained the growth and proliferation of the basal subtype rather than luminal breast cancer 

cells, such GLUL induction in MCF7(X) cells may reflect further deregulation of this pathway in 

acquired endocrine resistance emerging from ER+ cells. 

Interestingly, glutamine restriction is perceived to be a potentially-attractive means of inhibiting 

growth of tumours. γ-L-glutamyl p-nitroanilide (GPNA) is an inhibitor of a glutamine transporter 

(SLC1A5), and this reduces growth of lung cancer cells via impacting on downstream mTOR 

signalling (Hassanein et al. 2013). A further agent, Compound 968, is able to inhibit GLS activity 

and this blocks downstream Rho GTPases to inhibit the growth of breast cancer cells, B 

lymphoma and fibroblasts (Wang et al. 2010). The findings in this Chapter imply that 

pharmacological restriction of glutamine might also be worthy of further exploration in the 

context of endocrine resistance, particularly tamoxifen resistant states. 
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Role for TCA cycle and OxPhos in the model panel: 

Along with evidence supportive of increased glycolysis and glutaminolysis contributing towards 

fuel and ATP production and thereby acquired endocrine resistant cell growth, microarray 

profiling in chapter 3 had revealed a shift in gene expression towards induced pyruvate 

metabolism, TCA cycle and OxPhos pathways in the endocrine resistant models. Further 

expression studies here also suggest prominent mitochondrial transport of nuclear-encoded 

TCA/OxPhos elements via several increased translocase inner mitochondrial membrane proteins 

(TIMM8A/9/17A and 44), enhanced translation of mitochondrial-encoded TCA/OxPhos 

elements by increases in 14 mitochondrial ribosome machinery subunits, and also increased 

TOMM20, in total suggesting increases in TCA/OxPhos machinery and mitochondrial biogenesis 

in resistant versus MCF7 cells. Comparison of the TamR and MCF7 cells by mass spectrometry 

analysis of both phospho- and non-phosphorylated peptides also confirmed that induced 

expression of TCA/OxPhos enzymes persists at the protein level in endocrine resistant cell 

models.  

Further exploring OxPhos (ETC) components in this chapter by staining for basal NADH 

dehydrogenase activity revealed Complex I was induced in the FasRLT, MCF7(X) and MCF7(X)LT 

cells, while basal complex IV activity (COX) was elevated in tamoxifen and fulvestrant resistant 

lines. In keeping with these various findings, evaluation of oxygen consumption by the models 

further re-enforced that OxPhos was commonly increased in the endocrine resistant models 

compared with MCF7 cells, particularly for fulvestrant and oestrogen deprived resistant cells. 

While studies have to date been confined to tamoxifen resistance, there is a little supportive 

literature for the concept of increased OxPhos in endocrine resistance from reactive oxygen 

species studies in two MCF7-derived TAM resistant lines TAMC3 and TAMR3 (Leung et al. 2014) 

and from RNA-seq observations of increased NADH dehydrogenase subunits and cytochrome 

oxidases in a further MCF7 derived tamoxifen resistant line, MTR-3 (Huber-Keener et al. 2012). 

Induced respiration and upregulation of OxPhos components has also been reported in several 

further types of cancer cells (Moreno-Sanchez et al. 2007; Jose et al. 2011).  

Clinical breast cancer survival analysis performed using publically-available mRNA array datasets 

in this chapter through the KMPlotter tool also identified that the induced genes associated with 

pyruvate metabolism (PCK2), TCA cycle (FH) and OxPhos pathways (NDUFA3, NDUFA7, NDUFA8, 

NDUFA9, NDUFB5, NDUFS3, UQCRFS1, and ATP5J2) are all associated with earlier relapse in ER+ 

and tamoxifen-treated breast cancer patients, implying there may also be an increased OxPhos 

contribution towards endocrine resistance in vivo. Such a concept of altered energy metabolic 

pathways during progression seems in keeping with in situ metabolic and flux analysis clinical 
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studies from Kaambre et al. (2012) that have revealed induced respiration and higher sensitivity 

to OxPhos inhibitors in advanced breast tumours as compared to normal tissues. In the Kaambre 

study, complex IV, ATP synthase and ADP/ATP transporters were recognized as particular 

deregulated components in the breast cancer models. 

A hypothesis reconciling the apparent increase in OxPhos in cancer and glycolysis in fibroblast 

associated cancer in vivo has been recently proposed by the Lisanti group, termed the “Reverse 

Warburg” effect. In this mechanism, tumour epithelial cells promote loss of caveolin (CAV1) 

from the associated stroma (Witkiewicz et al. 2009). This results in tumour-associated fibroblasts 

undergoing extensive aerobic glycolysis, oxidative stress and autophagy (Pavlides et al., 2010), 

with the lactate and ketones in turn “feeding” TCA and thereby OxPhos within the cancer 

epithelial cells (Whitaker-Menezes et al. 2011). In accordance with this concept, Bonuccelli et al. 

(2010) reported that induced gene expression of oxidative energy metabolism occurs in breast 

tumour epithelial cells as compared to the adjacent stroma following laser-captured micro-

dissection in >2000 breast cancer patients, while Sotgio et al. (2012a) have reported increases 

in mitochondrial biogenesis genes in breast cancer relative to adjacent stromal tissue. 

Interestingly, co-culture of MCF7 with fibroblasts or provision of potential fuels (lactate or 

ketone bodies or glutamine) can also promote mitochondrial OxPhos and endocrine insensitivity 

in such cells, and this can be overcome with inhibitors of OxPhos, metformin or arsenic trioxide 

(Ko et al. 2011, Martinez-Outschoorn et al. 2011). This in total suggests that the “Reverse 

Warburg” effect, mediated by stroma and tumour epithelial interplay, can contribute to 

endocrine resistance in vivo. However, the mRNA and protein expression (including multiple 

deregulated complex I and III elements), NADH dehydrogenase activity, COX activity, and oxygen 

consumption observations made in this chapter are novel in that they reveal that intrinsic 

capacity for OxPhos is commonly increased in breast cancer cells when they acquire endocrine 

resistance.  

Building on these considerable mRNA and protein expression, enzyme activity, and oxygen 

consumption findings for the model panel that all implicate deregulation of OxPhos in endocrine 

resistance, dependency of such cells on OxPhos as an alternative energy pathway to generate 

ATP was further evaluated in this chapter. To achieve this, the effects of antimycin A (AA) and 

metformin as complex III and I inhibitors respectively were studied in the panel of resistant 

models.  

Impact of Antimycin A (AA) in the model panel: 
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AA binds to the Qi site of cytochrome b in complex III and it partially reduces oxidation of 

cytochrome b and thus reduction of cytochrome c, so disrupting Q cycle function of Complex III 

(Muller et al. 2002). The oxygen consumption of all resistant models (except MCF7(X) cells) 

showed increased sensitivity to AA (at 24 hrs) compared with MCF7 cells, where the most 

sensitive models were TamRLT followed by FasR and FasRLT cells. Similarly, all resistant models 

were more growth-sensitive to AA (7 days treatment), with TamRLT (EC50: 0.72nM) and (to a 

lesser extent) FasRLT (EC50: 1.3nM) again being the most sensitive to this inhibitor compared 

with MCF7 cells (EC50: 10.5nM). These findings strongly suggest an increased role for Complex 

III-driven OxPhos in endocrine resistant models, particularly TamRLT and fulvestrant resistance. 

It is also known that in the presence of AA at the Qi site, 4 mechanisms can potentially bypass 

AA inhibition and thus minimize sensitivity to such treatment; a) transfer of two sequential 

electrons from UQH2 oxidation at Q0 site to ISP releases 2 protons into the inner membrane 

space. b) semiquinone oxidizes bL which reduces quinone to UBQH2. c) semiquinone directly 

reduces cytochrome c. d) semiquinone directly reduces a molecule of O2 and forms superoxide 

(Muller et al. 2002). Therefore, one or a combination of bypass mechanisms can explain reduced 

sensitivity of endocrine resistant breast cancer cells to AA treatment which needs further 

investigation. In contrast, stigmatellin and myxothiazol which bind to the Q0 site of cytochrome 

b in complex III are more potent to inhibit cytochrome b oxidation and proton pump into the 

inner membrane space. 

Impact of metformin in the model panel: 

Metformin reduced NADH dehydrogenase activity in the model panel, confirming the ability of 

this drug to inhibit complex I activity of the ETC (Wheaton et al. 2014) in endocrine resistant and 

responsive breast cancer cells. Such metformin impact was particularly striking in oestrogen-

deprived resistant and FasRLT cells. The drug also substantially reduced cytochrome c oxidase 

activity, in keeping with the inhibitor also affecting subsequent electron transfer from complex 

I through to complex IV (Whitaker-Menezes et al. 2011), although effects were less marked in 

the fulvestrant resistant lines. Moreover, oxygen consumption was reduced in all models by 

metformin confirming this drug is able to inhibit OxPhos (Wheaton et al. 2014), with fulvestrant 

and oestrogen deprived resistant cells again proving the most sensitive and tamoxifen resistant 

and MCF7 cells the least sensitive. On balance, these findings suggest somewhat increased 

importance for Complex I-driven OxPhos in fulvestrant and oestrogen deprived resistant cells.  

In keeping with this concept, these models that were most metformin-sensitive also had the 

highest basal NADH dehydrogenase (complex I) activity and basal oxygen consumption in the 

panel. Gene expression interrogation suggested that enhanced NADH supply via increased fatty 
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acid flux through SLC25A20 to the mitochondrial inner member (coupled with increases in 

further components for β-oxidation of fatty acids apparent for all resistant lines) may occur in 

oestrogen deprived and fulvestrant resistant models, while further substrate may be derived 

from the Malate-Aspartate shuttle via increased transporter expression in the latter. This could 

potentially fuel more prominent basal NADH dehydrogenase activity in such models that in turn 

may equate with their increased OxPhos sensitivity (oxygen consumption) to complex I blockade 

with metformin. Increased expression of the mitochondrial pyruvate carrier BRP44L which feeds 

pyruvate into the TCA cycle (schell et al. 2014) and thereby further substrates for OxPhos may 

also contribute. 

However, it is important to note that other than NADH dehydrogenase activity there may be 

additional contributory factors towards the profile of metformin impact on oxygen consumption 

in the model panel. Wheaton et al. (2014) reported significant reduction of OCR with a low 

metformin concentration (0.25-1mM) in saponin-permeabilized cells as compared to intact cells, 

inferring the plasma membrane acts as a barrier to metformin action on complex I. Influx and 

efflux transporters for this drug have also been described (Pernicova et al. 2014). While 

magnitude of metformin treatment impact in the model panel was not correlated with 

expression profile on the microarrays for organic cation transporters OCT1-3 or the plasma 

membrane monoamine transporter responsible for metformin influx (Pernikova et al. 2014), 

interestingly the metformin efflux transporter MATE1 (SLC47A1) was induced in tamoxifen 

resistant models which may contribute to their somewhat lower sensitivity to metformin impact 

on oxygen consumption. Furthermore, it is known that metformin slowly permeates across the 

mitochondrial inner membrane where it inhibits complex I activity and its positive charge assists 

reversible accumulation of the drug into the mitochondrial matrix in response to mitochondrial 

membrane potential (MMP) (Bridges et al. 2014). A study by Appleby et al. (1999) suggested 

ATP synthase could function in reverse in response to any inhibition of electron transfer, 

pumping protons across the mitochondrial membrane to maintain MMP and Wheaton et al. 

(2014) have shown reverse ATP synthesis occurs after metformin treatment to maintain MMP 

in colon cancer cells. In the same study association of MMP with magnitude of metformin-

dependent inhibition of complex I was demonstrated. Therefore, sensitivity to metformin 

treatment across the resistant panel might also be associated with differential MMP in these 

cells. 

Metformin exerted a growth inhibitory effect in all the endocrine resistant and responsive 

models, reflecting the important contribution of OxPhos as a driver for breast cancer cell growth 

(Zakikhani et al. 2006). Higher growth sensitivity to metformin (as measured by EC50 at 7days) 
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compared to MCF7 cells was seen in the oestrogen deprived resistant models (with the lowest 

sensitivity for the panel exhibited by tamoxifen resistant cells). The cell model findings are 

compatible with their NADH dehydrogenase activity and oxygen consumption sensitivity to such 

treatment. Interestingly, the oestrogen deprived resistant models also had reduced LKB1 

expression and reduced basal AMPK activity, while higher levels were detected in TamRLT cells 

which were less growth-sensitive to metformin. The oestrogen-deprived resistant models thus 

may have decreased capacity to compensate for the energy crisis promoted by metformin, and 

interestingly in clinical breast cancer reduced AMPK phosphorylation has also been reported in 

biopsies from breast tumours with evidence of disease progression (i.e. high histological grade 

and associated axillary node metastasis) as compared to normal tissue (Hadad et al. 2009).The 

findings are complemented by studies from Algire et al. (2011) who reported higher sensitivity 

in colon cancer cells to metformin as a consequence of a downregulated LKB1-AMPK pathway. 

Signalling studies in this chapter revealed that complex I blockade with metformin was able to 

promote AMPK activity in the oestrogen deprived resistant models, and after 12hrs such 

treatment had reduced their protein and fatty acid anabolic regulatory pathways, as monitored 

by p-p70S6K in the mTOR pathway and p-ACC respectively. Inhibition of such pathways has been 

implicated as an important contributor to the anti-tumour effects of metformin (Hadad et al. 

2008). Fulvestrant resistant models were the next most sensitive to the growth inhibitory effect 

of metformin, and in these models AMPK activation as well as inhibition of the pathways 

underpinning fatty acid and protein synthesis again occurred with such treatment (from 12 hrs). 

Microarrays revealed there was increased expression of elements in the glycerophosphate 

shuttle in the fulvestrant resistant cells, where this shuttle may feed OxPhos via complex II and 

so help bypass the metformin inhibitory mechanism (potentially evidenced by their reduced COX 

sensitivity to metformin). Such expression may perhaps account for their slightly reduced 

growth-sensitivity to metformin treatment as compared to the oestrogen deprived resistant 

models. The growth studies with this inhibitor in total re-enforce the concept that complex I-

driven OxPhos is of particular importance to oestrogen deprived and fulvestrant resistant cells, 

and although the signalling studies revealed a substantial inhibitory impact on anabolic 

pathways in such models it seems probable that these events were unable to overcome the 

energy crisis instigated following targeting of critical complex I-driven OxPhos by metformin, so 

adversely impacting on growth (Zakikhani et al. 2006). 

Tamoxifen resistant cells were the least growth-sensitive of the endocrine resistant models to 

metformin, as was their NADH dehydrogenase activity and oxygen consumption, inferring some 

diminished dependency on complex I-driven OxPhos as compared with other resistant lines in 
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the panel. TamRLT also only showed a 15% reduction in Ki67 proliferative capacity after 

metformin. Berstein et al. 2010 have similarly shown that a further tamoxifen resistant cell line 

was less sensitive to the growth inhibitory effect of metformin treatment compared with a long-

term oestrogen deprived model (LTED). In TamR and TamRLT cells, AMPK activation occurred 

with such treatment (after 12hrs and 2 hrs respectively) and there was also reduction in p-70S6K 

by 24 hrs. However, no sustained impact on fatty acid regulation was observed by this time, 

contrasting the fulvestrant and oestrogen deprived resistant lines. This implies that there may 

be less of an adverse impact of complex I-driven OxPhos blockade on energy balance in 

tamoxifen resistant cells. In this regard, increased basal ECA and its reduction by 2-DG treatment 

in TamRLT, as well as some 2-DG growth impact in this model, evidences glycolysis can provide 

an alternative source of ATP in this model. The somewhat reduced sensitivity of MCF7 to the 

growth inhibitory effects of metformin suggested that complex I-driven OxPhos may not be as 

critical to energy supply in these endocrine sensitive cells as compared with oestrogen deprived 

and fulvestrant resistant lines, This was further re-enforced by an absence of p-AMPK induction 

with metformin, at least over the examined dose range and time course, and its apparent lack 

of inhibitory impact on one of the anabolic pathways (fatty acid synthesis). While, glycolysis 

might remain the main energy producing pathway during metformin treatment to maintain 

growth of MCF7 cells. Furthermore, the apparent decrease in protein synthesis (implied by 

reduced p-P70S6K) after 12hrs metformin treatment seemed independent of an obvious AMPK 

impact, implying mechanisms other than those mediated by complex I can be targeted by 

metformin upstream of, or within, the mTOR signalling pathway to influence growth. 

“Uncoupling” of the inhibitory impact on anabolic pathways and p-AMPK induction that was also 

apparent at some time points in the resistant lines perhaps further evidenced alternative 

metformin mechanisms. A study by Hadada et al. (2014), increased AMPK and reduced fatty acid 

synthesis was reported in MCF7 cells after 2hrs metformin treatment. However, DMEM was 

used as the basal growth media in this study (normoglycemic condition). In contrast, 

hyperglycemic condition (RPMI 1640) which used in this thesis might be the reason for lack of 

AMPK induction in MCF7. Moreover, alternative compensatory mechanism such as glycolysis 

acts to maintain some cell growth after exposure to metformin treatment for 7days in both 

MCF7 cells and the tamoxifen resistant lines (Zhuang et al. 2014).  

As described above from the gene expression profiles, there may be further contributory 

mechanisms underpinning metformin’s differential growth inhibitory impact across the panel, 

for example involving drug transporters (e.g. increased metformin efflux via MATE1 in tamoxifen 

resistant models (Pernicova et al. 2014), the effect of MMP on metformin accumulation and 
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thereby reversible inhibition of complex I activity (Bridges et al. 2014; Wheaton et al., 2014), 

alternative shuttles (e.g. induced electron entry at complex II via the glycerophosphate shuttle 

in fulvestrant resistant and alternative substrate provision (e.g. from β-oxidation of fatty acids) 

could all feasibly play a part. Furthermore, it is apparent that the metformin concentration range 

used for such in vitro cancer studies is somewhat higher than used for in vivo studies (max 

2000mg/day). Increased metformin may be required in vitro because of the high glucose level 

invariably found in cell culture media (in this instance, glucose in RPMI 1640 media was 

11.11mM, with extra glucose from added serum). Menendez et al. (2012) showed that increased 

breast cancer cell death could be achieved by metformin treatment under conditions of glucose 

deprivation. In turn, study on colon cancer cells by Wheaton et al (2014) suggested reduced cell 

growth after metformin treatment in the presence of a high glucose concentration in culture 

media, but cell death under glucose-deprived conditions. Zhuang et al. (2014) also revealed 

improved sensitivity to metformin treatment by lowering the glucose level to physiological 

concentrations (5-7mM), with reduced 4EBP1 and mTOR phosphorylation observed after 

metformin treatment independent of AMPK activation under low glucose conditions. Therefore, 

supraphysiological glucose concentration may also account for inconsistency of signalling events 

across the resistant panel after metformin treatment. This may also explain why anti-

proliferative effects at 7 days in the model panel measured by Ki-67 staining were in general 

only minor. It is interesting that efficacy of metformin treatment on breast cancer proliferation 

(Ki-67 staining) has been successfully studied in non-diabetic women with operable invasive 

breast cancer. Patients received metformin prior to surgery (500-2000mg/d) and such treatment 

reduced Ki-67 in the post-treatment surgical specimen (Hadad et al. 2011). Furthermore, the 

effect of metformin as a neoadjuvant treatment (window of opportunity; 500-1500mg/d) was 

studied by Niraula et al. (2012) in newly diagnosed, untreated, early stage breast cancer patients 

where patients with fasting glucose ≥7 mmol/L were ineligible for this study. Significant 

reduction of Ki-67 was observed in tumours after metformin treatment.  

Anti-proliferative activity of metformin (850-1700mg/d) was also examined in a window-of-

opportunity study in non-diabetic breast cancer patients. Ki-67 was not significantly changed 

overall in tumour samples as compared to matched untreated controls; however, differential 

effects on Ki67 were observed based on insulin resistance status (HOMA index) in the post-

surgical specimens. It was reduced non-significantly in the insulin resistant patient cohort 

(HOMA>2.8) and increased non-significantly in patients with HOMA<2.8 (Bonanni 2012). A 

further window of opportunity trial studied non-diabetic patients who received pre-surgical 

metformin (850mg/d) and these again showed no significant changes in tumour proliferation. 



304 

 

However, differential effect on Ki-67 expression was observed based on insulin resistance status 

(HOMA index) in post-surgical specimen. Reduced Ki-67 was observed in the insulin resistant, 

overweight patients (HOMA>2.8, BMI≥27kg/m-2) whereas increased Ki-67 was detected in 

patients with HOMA<2.8, BMI≤27kg/m-2 (Cazzaniga 2013). Metformin (850-1700mg/d) in non-

diabetic breast cancer patients has also been examined in a phase II placebo-controlled trial by 

DeCensi et al. (2014). Compared to placebo, metformin reduced Ki-67 in insulin resistant (HOMA 

index>2.8) or HER2+ tumours. Moreover, association of higher serum drug level with reduced 

Ki-67 was observed in women with HOMA index>2.8 (insulin resistant) but no effect was 

determined in women with HOMA<2.8.  

In conclusion, the induced mitochondrial biogenesis and bioenergetics detected in these 

acquired endocrine resistant models build further on studies from the Lisanti’s group (including 

studies by Bonuccelli et al. (2010) and Whitaker-Menezes et al. (2011) in clinical breast cancer 

epithelium), since the models have revealed there is an intrinsic capacity for all endocrine 

treatments to ultimately promote increased OxPhos in breast cancer cells. The chapter has 

shown endocrine resistant breast cancer cells use two carbon sources (glucose and glutamine) 

towards this increased oxidative respiration, with evidence suggesting enhanced glycolytic and 

glutaminolytic activity in endocrine resistant versus responsive cells. Targeting OxPhos via AA 

and metformin respectively demonstrates differential dependency of the resistant breast cancer 

cells on complex I (oestrogen deprived models), complex III (tamoxifen resistant models) or both 

complexes (fulvestrant resistant models) for their increased respiration. AA was also more 

potent in acquired resistant cells with evidence of ER loss (i.e. TamRLT, FasR and FasRLT). 

However, as there was a more prominent direct mechanism for metformin (i.e. AMPK activation 

and inhibition of multiple anabolic pathways) in ER+ oestrogen deprived and ER- fulvestrant 

resistant models, metformin appeared effective in endocrine resistant cells regardless of ER 

status. This observation is compatible with results from a study by Zhuang et al. (2008) 

examining effect of metformin treatment in further breast cancer cells.  

Importantly, therefore, clinic trials are examining metformin in early breast cancer, including 

alongside endocrine agents (for example, the METEOR trial in the neoadjuvant setting with the 

aromatase inhibitor letrozole (Kim et al. 2014)). Others are exploring whether metformin can 

modulate hormonal response in advanced disease. Indeed, there may also be unperceived 

benefits to such metformin use: for example, Brown et al. (2010) have revealed inhibitory effects 

of this treatment on aromatase enzyme expression in breast stromal adipose cells (via AMPK 

activation). Encouragingly, exemestane (25mg/d) in combination with metformin (2000mg/d) in 

non-diabetic obese postmenopausal women who had previously had chemotherapy and 
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endocrine therapy appeared well tolerated (Esteva et al. 2013). The NCIC CTG MA.32 clinical trial 

enrolled 3582 breast cancer patients to examine metformin efficacy (for 5years) after complete 

resection in addition to standard chemotherapy/radiotherapy completion and endocrine 

treatment. This trial suggests metformin (1700mg/d) as compared to placebo improves survival 

in endocrine-treated breast cancer patients (Goodwin et al. 2011). Kim et al. have also recently 

reported that metformin improves survival of diabetic breast cancer patients when used 

alongside chemotherapy and endocrine treatment (Kim et al., 2015). Therefore, repurposing 

metformin has potential to improve survival in breast cancer, particularly under conditions 

where there are gains in the mitochondrial energy pathway promoted in endocrine resistance.  
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Chapter 5 

Identification of deregulated kinases and associated genes in  

endocrine resistant breast cancer cells 

5.1 Introduction 

Protein kinases mediate many important cellular processes including cell cycle and proliferation, 

gene transcription, metabolism, cell survival and apoptosis, and differentiation (Bononi et al. 

2011). Furthermore, deregulated kinases play an important role in cancer progression (Blume-

Jensen & Hunter, 2001) and thus many drugs have been developed to inhibit the activity of 

protein kinases in cancer cells (Cohen et al. 2002). The human kinome comprises 518 genes and 

includes enzymes that drive protein phosphorylation and diverse signal transduction pathways 

(Manning et al. 2002). Protein kinases can be divided into two categories: receptor protein 

kinases and non-receptor protein kinases. Receptor kinases are transmembrane proteins with a 

cytoplasmic catalytic domain and an extracellular ligand binding domain. Non-receptor protein 

kinases are soluble proteins in the cytoplasm. Protein kinases can be further classified based on 

their phosphorylating their target proteins at either the serine/threonine residue 

(serine/threonine kinases) or tyrosine residue (tyrosine kinases) (Manning et al. 2002).  

Protein kinases have attracted considerable attention as therapeutic targets to inhibit growth of 

breast cancer cells. In ER+ breast tumours, increased expression of the membrane receptor 

kinases EGFR and HER2 has been associated with development of resistance to endocrine 

treatment (Meha et al. 2014). Targeting EGFR (e.g. via gefitinib) and HER2 (e.g. via trastuzumab) 

or inhibiting downstream kinase cascades (including PI3K/AKT/mTOR) alongside endocrine 

therapy has improved progression free survival in some clinical trials (Osborne et al. 2011, 

Kaufman et al. 2009 and Baselga et al. 2012) Unfortunately, however, resistance again develops 

(Ferrer-Soler et al. 2007, Yardley et al. 2013), and so continued discovery of new, improved 

targets remains essential to better treat endocrine resistance and improve overall survival.  

In this regard, identification of new kinases potentially relevant to multiple endocrine resistant 

states comprises an important goal. This chapter aims to exploit the gene microarray resource 

prepared for the panel of endocrine resistant cells (versus MCF7) as a new tool to discover 

shared induced kinases. Since resistance can involve activation of several signalling pathways 

(Viedma-Rodriguez et al. 2014). The Chapter will interrogate the genes in publically-available 

clinical breast cancer resources (using KMplotter; in ER+ disease and tamoxifen treated 

patients) and will investigate their associated ontological information using the DAVID 

bioinformatics and Innatedb online databases. Attempts will also be made to verify the 
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expression profile of promising identified elements via RT-PCR. This in total will ascertain 

whether the identified genes contribute to multiple endocrine resistant states, and so might 

ultimately yield new therapeutic approaches for resistance.  

5.2 Results 

5.2.1 Identification of shared induced kinases in the endocrine resistant cells 

A list of shared induced genes across the resistant models versus MCF7 (n=572) was interrogated 

for protein kinases by comparison with the Human kinome list (518 genes: Manning et al. 2002; 

www.kinase.com/human/kinome). While there was some differential expression in individual 

lines, 14 kinases (PCK2, MARK1, PRKAA2, XYLB, ALDH18A1, PFKFB2, ICK, PRKD3, ADCK3, VRK3, 

COASY, RIOK1, STK35 and TEC) were significantly induced (≥1.2 fold changes, p≤0.05) in all 

endocrine resistant models versus MCF7 cells (Fig 5.1, Table 5.1).  

 

 
Fig 5.1. Heatmap displays 14 shared and 

significantly induced kinase genes (≥1.2 

fold changes) in endocrine resistant 

models. Expression of these genes in 

resistant models vs. MCF7 was statistically 

tested using ANOVA with Benjamini and 

Hochberg post hoc correction (p≤0.05). 
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5.2.2 Ontology analysis of shared induced kinases (n=14) identified from the endocrine 

resistant breast cancer cells 

Gene microarray probe IDs of induced kinase genes were converted to ENSEMBL gene IDs and 

then analysed for ontology in the Innatedb database. Not surprisingly given that kinases had 

been specifically selected for in the project, the most significant known molecular function for 

the induced kinases was ATP binding (p=5.62E-11) followed by transferring phosphorus 

containing groups for 9 of the kinases (ADCK3, ICK, MARK1, PRKAA2, PRKD3, RIOK1, STK35, TEC 

and VRK3, p=4.19E-09), and then protein kinase activity for 8 (ICK, MARK1, PRKAA2, PRKD3, 

RIOK1, STK35, TEC and VRK3, p=7.30E-08) (Table 5.2). This analysis also revealed that 6 had 

known serine/threonine kinase activity, while 6 had tyrosine kinase activity (with some 

overlapping: ICK, MARK1, PRKAA2 and STK35). The most significant biological process for the 

induced shared kinases was protein phosphorylation (ADCK3, ICK, MARK1, PRKAA2, PRKD3, 

RIOK1, STK35, TEC and VRK3, p=9.5E-09), followed by phosphorylation (ALDH18A1, COASY, PCK2 

and XYLB, p=1.29E-04) and also carbohydrate phosphorylation (PFKFB2 & XYLB, p=0.002671) 

(Table 5.3). Several of the kinases were also implicated in signal transduction (e.g. ICK, MARK1, 

PRKD3 and TEC; Table 5.3). 

Table 5.1. Fold changes of the shared induced kinases in resistant 

models vs. MCF7 (all ≥1.2 fold). 
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Table 5.2. Molecular function of shared induced kinases across the resistant models obtained using 

Innatedb database interrogation (the p value was generated after hypergeometric statistical analysis for 

significant molecular function). 
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Table 5.3 Continue … 
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5.2.3 Relation to outcome of ER+ and tamoxifen treated breast cancer patients in 

publicly-available datasets and ontology studies of the induced kinases  

The induced kinases from the resistant models were studied for their mRNA expression 

association with relapse free survival (RFS) in both the tamoxifen treated and all ER+ breast 

cancer patient cohorts using KMPlotter (Table 5.4). Since the probe ID for some kinases was only 

available on the HGU133 plus 2.0 array platform, patient number could differ (tamoxifen 

treated: 111 and ER+: 695 patients) compared with the remainder of the induced kinases that 

were represented on the HGU133A platform in KMplotter (tamoxifen treated: 712 and ER+: 

1802 patients). Associations of the induced kinases with cellular pathways and also identification 

of possible substrates for their enzyme activity were then determined using the KEGG database 

(Table 5.4), although some kinases such as ADCK3, VRK3, MARK1, STK35 and ICK were not 

indicated as participating in any particular pathway.  

Table 5.3 Biological processes for the shared induced kinases across the resistant models obtained using 

the Innatedb database (p value was generated after hypergeometric statistical analysis for significant 

biological processes). 
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Unfortunately, several of the kinases failed to show a significant relation with adverse clinical 

outcome in the breast cancer datasets examined, although some had interesting ontology 

implying they may feasibly contribute to regulation of growth and aggressiveness of the 

resistant models in vitro. For example, MARK1 (MAP/microtubule affinity-regulating kinase 1) is 

reported to be a serine/threonine-protein kinase implicated in neural migration that can 

regulate cell polarity and microtubule dynamics. There was also expression deregulation of 

PRKAA2 in the models, which encodes one of several subunits of AMPK and is involved in 

pathways including AMPK-mTOR (Table 5.4). Two kinases showed significant adverse 

associations with outcome in the clinical breast cancer datasets (Table 5.4): STK35 in the ER+ 

(p=0.00042) and tamoxifen treated cohorts (p=0.014), and COASY in ER+ patients only (p=0.042). 

While STK35 (serine/threonine kinase 35) is as yet only a very poorly-described kinase, COASY 

(Coenzyme A synthase) is reported to catalyse the two last steps of CoA synthesis from its 

substrate pantothenic acid (vitamin B5; Table 5.4) by dephospho-CoA kinase activity and so may 

contribute to fatty acid biosynthesis and further metabolic pathways.  

5.2.3.1 Shared induced metabolic pathway kinases 

Based on this ontological analysis, three further kinases PCK2, ALDH18A1 and PFKFB2 were 

associated with metabolic pathways. PCK2 (phosphoenolpyruvate carboxykinase 2) catalyses 

conversion of substrates oxaloacetate with GTP (Table 5.4) to phosphoenolpyruvate. As detailed 

in Chapter 4 (4.2.2). Its mRNA expression significantly related to shortened RFS in ER+ clinical 

disease and tamoxifen treated patients (Table 5.4).  

ALDH18A1 (Aldehyde Dehydrogenase 18 Family, Member A1) gene encodes a mitochondrial 

enzyme catalyses reduction of its substrate glutamate to delta1-pyrroline-5-carboxylate as a key 

step during de novo biosynthesis of amino acids proline, ornithine and arginine (Table 5.4).  

ATP + L-glutamate → ADP + L-glutamate 5-phosphate 

It seems likely that induced glutamine uptake in resistant models (via SLC1A5 and SLC7A5, 

Chapter 4) will supply the substrate for ALDH18A1 activity. Higher expression of ALDH18A1 was 

significantly associated with shortened relapse free survival and increased risk of relapse in the 

tamoxifen treated ER+ cohort (n=111 patients, HR=4.58, P=0.0017). There was also significance 

in all ER+ (n=695 patients, HR=1.53, P=0.016) breast cancer patients, although this adverse 

association seemed only apparent over the first 120 months when examining the associated 

Kaplan Meier survival curves (Table 5.4; Figure 5.2).  

Finally, the PFKFB2 (6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 2) gene encodes a 

cytosolic protein which is involved in both the synthesis and degradation of its substrate 
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fructose-2,6-bisphosphate (Table 5.4). PFKFB2 has 6-phosphofructo-2-kinase activity that 

catalyses the synthesis of fructose-2,6-bisphosphate, and also fructose-2,6-biphosphatase 

activity that catalyses the degradation of fructose-2,6-bisphosphate. Therefore, it regulates 

levels of fructose-2,6-bisphosphate in the cell.  

ATP + beta-D-fructose 6-phosphate → ADP + beta-D-fructose 2,6-bisphosphate 

This generates fructose which contributes to amino sugar and nucleotide sugar metabolism. In 

turn, the reverse reaction of PFKFB2 can generate fructose-6-phosphate which is involved in the 

glycolysis pathway. Therefore, induced expression of this enzyme might again be able to 

contribute to growth of the endocrine resistant cancer cells, regulating their elevated glycolytic 

capacity or amino sugar and nucleotide sugar metabolism (Chapter 4). Although hazard ratios 

were >1 suggesting an adverse association, this gene was not significantly related to RFS in either 

clinical sample cohort in KMPlotter (Table 5.4, Figure 5.2). Hence, PFKFB2 deregulation may be 

specific to acquired rather than intrinsic endocrine resistance. 
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Table 5.4. Summary of Relapse Free Survival (RFS) analysis using KMplotter for the induced kinase genes 

in tamoxifen treated ER+ and all ER+ breast cancer patient cohorts. A Hazard ratio (HR) >1 is associated 

with increased risk of relapse & logrank P ≤0.05 was considered to be significant. Any associated pathways 

and substrates for the induced kinases were also discovered using the KEGG database. 
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Fig 5.2. Kaplan Meier survival curves generated using KM plotter showing higher 

ALDH18A1 mRNA expression was significantly associated with relapse free survival in 

both tamoxifen treated ER+ (left graph) and all ER+ patient cohorts (right graph). No 

significant associations were obtained for the further kinase gene PFKFB2.  
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5.2.4 mRNA expression of shared induced genes PCK2, ALDH18A1 and PFKFB2 in the 

panel of endocrine resistant models using RT-PCR 

Based on their shared induced profile, metabolic pathway kinase ontology and in some 

instances association of higher levels of the kinases with shortened RFS using the virtual 

clinical datasets, mRNA expression of ALDH18A1, PCK2 and PFKFB2 were prioritised for 

verification across the model panel via RT-PCR.  

PCK2 expression was significantly increased in TamRLT (p<0.05), FasRLT (p<0.001), MCF7(X) 

(p<0.001) and MCF7(X)LT (p<0.001) cells by 1.70, 1.97, 2.17 and 2.24 fold as compared to MCF7 

respectively, PCK2 expression was also modestly induced in FasR by 1.4 fold as compared to 

MCF7 cells (Fig 5.3). It was maintained at the MCF7 expression level in TamR cells (which also 

showed the lowest expression change on the microarrays for this gene, Fig 5.1, Table 5.1) 

ALDH18A1 expression was significantly induced in FasR (p<0.05), FasRLT (p<0.001) and MCF7(X) 

(p<0.05) by 1.35, 1.54 and 1.32 fold as compared to MCF7 cells. The expression of this gene was 

also modestly increased in TamR, TamRLT and MCF7(X)LT by 1.2 fold as compared to MCF7 cells 

but these increases did not reach significance (Fig 5.3). Lower fold changes were also recorded 

in these three models on the arrays (Fig 5.1, Table 5.1) 

PFKFB2 expression was significantly induced in TamR (p<0.01), TamRLT (p<0.001), FasRLT 

(p<0.001), MCF7(X) (p<0.01) and MCF7(X)LT cells (p<0.05) by 1.87, 2.20, 2, 1.78, 1.65 fold as 

compared to MCF7 respectively. Expression of this gene was modestly increased by 1.25 fold in 

FasR as compared to MCF7 cells but this did not reach significance (Fig 5.3). Expression increases 

were also seen on the arrays in all models (Fig 5.1, Table 5.1). 

In general, the RT-PCR profile verified the microarray expression profile of the kinases (PCK2, 

ALDH18A1 and PFKFB2) across the panel (Fig 5.3), with some increased expression detected in 

most resistant models. 
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Fig 5.3. Representative gels following RT-PCR and graphs display actin-normalized mean volume 

of PCK2, ALDH18A1 and PFKFB2 for the model panel (comprising the mean of three independent 

experiments, +/-SEM for each cell line). Statistical analysis (using ANOVA with Dunnett post hoc 

correction) was performed to compare gene expression in each model vs. MCF7 (* p<0.05, ** 

p<0.01 &*** p<0.001). Mean fold change in gene expression for each resistant model vs. MCF7 

cells is also tabulated. 
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5.2.5 Shared induced SLC39A transporter and metallothionein genes in resistant 

models 

Zinc (Zn) acts as an antioxidant and protects cells from mechanisms which are involved in 

oxidative stress, and so the antioxidant activity of Zn can maintain genomic stability by reducing 

reactive oxygen species (ROS) in the cell (Eide et al. 2011). Zn flux is controlled by two Zn 

transporter families. The SLC30 family transport Zn either out of the cytosol or into the cellular 

organelles. In contrast the SLC39 family transport Zn either into the cytosol or out of the cellular 

organelles (Lichten and Cousins 2009). Induced metallothioneins (MTs) expression in response 

to Zn administration was reported in astrocytes to protect cells against cytotoxicity (Aschner et 

al. 1998). MTs expression was detected in proliferative epithelial cells of breast tumours 

(Cherian et al. 2003).  

There is emerging evidence for deregulation of Zn in breast cancer. A study by Tinoco-Veras et 

al. (2011) showed there is a lower Zn level in erythrocytes of breast cancer patients as compared 

to healthy premenopausal women, with no significant difference observed in plasma Zn level in 

both groups. However, a study by Cui et al. (2007) found an association between high Zn levels 

within benign breast tissue and modest increase in risk of subsequent breast cancer (with Zn 

measured using X-ray fluorescence spectroscopy). MT expression has also been detected in 

proliferative epithelial cells of breast tumours (Cherian et al. 2003). Furthermore, Zn has 

previously been shown to activate the receptor tyrosine kinases EGFR and IGF-1R in the TamR 

cell line that has been used in this thesis. The mechanism was dependent in the TamR model on 

increased levels of a Zn influx transporter, SLC39A7 (Taylor et al 2008).  

To begin to shed light on this, the microarray profile of this influx transporter was studied, 

alongside expression of Zn-regulated MTs, using the gene microarrays.  

The expression of the SLC39A7 Zn influx transporter was significantly induced (≥1.2 fold) in the 

TamR model and furthermore in all endocrine resistant models in the panel versus MCF7 (Fig 

5.4, Table 5.5). Expression of 6 metallothioneins MT1E, MT1F, MT1G, MT1H, MT1X and MT2A 

were also significantly induced in all resistant models versus MCF7 (Fig 5.4, Table 5.5). The Zn 

influx transporter and MT2A, MT1G, MT1H and MT1E expression were induced with somewhat 

higher fold change in the ER+ TamR cells and oestrogen deprived resistant models. MT1F and 

MT1X were higher particularly in fulvestrant and oestrogen deprived resistance (Fig 5.4, Table 

5.5). 
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Fig 5.4. Heatmap displays SLC39A7 and 

several metallothionein genes (≥1.2 fold 

change) were increased in expression in all 

endocrine resistant models vs. MCF7 cells.  

 

Table 5.5. Fold changes for SLC39A7 and MTs that are increased in 

all resistant models vs. MCF7. 
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5.2.6 Ontology analysis for SLC39A7 and the induced MTs and expression interrogation 

versus outcome of breast cancer patients using publicly-available datasets 

The SLC39A7 gene encodes a protein which transports Zn from the endoplasmic reticulum and 

Golgi apparatus to the cytoplasm. Expression of this transporter has been associated with 

tyrosine kinase activation and tamoxifen resistant cells in vitro (Taylor et al. 2008). Using 

KMplotter, higher expression of SLC39A7 was significantly associated with shortened relapse 

free survival and increased risk of relapse in the tamoxifen treated ER+ (n=712 patients, 

HR=1.59, P=0.0023) and the all ER+ (n=1802 patients, HR=1.36, P=0.0013) breast cancer patient 

cohorts (Fig 5.5A, Table 5.6). 

MT genes including MT1E, MT1F, MT1G, MT1H, MT1X and MT2A encode cysteine-rich proteins 

which bind heavy metals (Zn and Cu). Expression of these proteins has been reported to be 

regulated by heavy metals and also by glucocorticoids (Martinho et al. 2013) High expression of 

MT1E, MT1F, MT1G, MT1H and MT2A was significantly associated with shortened relapse free 

survival and increased risk of relapse in tamoxifen treated ER+ (n=712) and all ER+ (n=1802) 

breast cancer patients, while MT1X significantly associated with shortened RFS in the tamoxifen 

treated ER+ cohort only (Fig 5.5A-5.5C, Table 5.6). 
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Fig 5.5A. Kaplan Meier survival curves generated using KM plotter showing higher mRNA 

expression of SLC39A7 & MT1F was significantly associated with shortened relapse free 

survival in both the tamoxifen treated ER+ (left graph) and the all ER+ breast cancer 

patient cohorts (right graph). Higher expression of MT1X expression was only significantly 

related to shortened RFS in tamoxifen treated ER+ breast cancer patients. 
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Fig 5.5B. Kaplan Meier survival curves generated using KM plotter showing higher mRNA 

expression of MT1G, MT1H & MT1E was significantly associated with shortened relapse free 

survival in both the tamoxifen treated ER+ (left graph) and the all ER+ breast cancer patient 

cohorts (right graph).  
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Fig 5.5C. Kaplan Meier survival curves generated using KM plotter showing higher mRNA 

expression of MT2A was significantly associated with shortened relapse free survival in both 

the tamoxifen treated ER+ (left graph) and the all ER+ breast cancer patient cohorts (right 

graph).  

Table 5.6. Summary of RFS analysis using KMplotter for 

SLC39A7 and MTs genes in the tamoxifen treated ER+ and 

the all ER+ breast cancer patient cohorts. Hazard ratio (HR) 

>1 indicates higher expression is associated with increased 

risk of relapse & logrank P ≤0.05 was considered to be 

significant.  
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5.2.7 mRNA expression of shared induced genes SLC39A7 and MT2A in the panel of 

endocrine resistant models using RT-PCR 

SLC39A7 expression was most significantly increased in TamR (p<0.001), FasRLT (p<0.05), 

MCF7(X) and MCF7(X)LT cells (p<0.001) by 1.79, 1.42, 1.81 and 1.68 fold as compared to MCF7 

cells (Fig 5.6). The expression was more modestly increased in TamRLT and FasR by 1.2 and 1.3 

fold changes respectively as compared to MCF7 cells (Fig 5.6).  

As an example of the MTs increased in all resistant cells on the arrays, PCR profiling of MT2A 

revealed expression in all the models. MT2A was significantly increased in the ER+ TamR 

(p<0.01), MCF7(X) (p<0.001) and MCF7(X)LT cells (p<0.01) by 2.29, 2.61 and 2.34 fold changes 

as compared to MCF7 (Fig 5.6). Expression of this gene was more modestly increased in TamRLT, 

FasR and FasRLT by 1.5-1.8 fold as compared to MCF7 (Fig 5.6). In general, therefore, RT-PCR 

broadly verified the array profile of expression for both SLC39A7 and MT2A across the resistant 

panel (Fig 5.4, Table 5.5) 

 

 

 

Fig 5.6. Representative gels following RT-PCR and graphs display actin normalized mean volume of 

SLC39A7 & MT2A signal for the model panel (comprising the mean of three independent 

experiments, +/-SEM for each cell line). Statistical analysis (using ANOVA with Dunnett post hoc 

correction) was performed to compare gene expression in each model vs. MCF7 (* p<0.05, ** 

p<0.01 &*** p<0.001). Mean fold change in gene expression for each resistant model vs. MCF7 

cells is also tabulated. 
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5.2.8 Protein expression of shared induced gene SLC39A7 in the panel of endocrine 

resistant models using Western blotting 

Building on the promising mRNA profile findings that increases occurred for SLC39A7 

expression in multiple endocrine resistant models, further profile verification at a protein level 

was performed by Western blotting. Protein expression of SLC39A7 was most significantly 

induced in TamR (p<0.05), MCF7(X) (p<0.01) and MCF7(X)LT cells (p<0.05) by 2.5, 2.6 and 2.5 

fold respectively, as compared to MCF7 (Fig 5.7). Expression of this protein was also increased 

in TamRLT, FasR and FasRLT cells, as compared to MCF7, but these increases were more 

modest (1.5, 1.3 and 1.7 fold respectively) (Fig 5.7). In general, the SLC39A7 protein expression 

profile verified the mRNA profile (Fig 5.4 and 5.6), in that some expression increase occurred in 

all resistant models, but particularly in those retaining ER. 

 

 

 

 

 

 

 

 

 

 

Fig 5.7. Representative blot following protein detection and graph displaying actin-normalized 

mean volume of SLC39A7 signal for the model panel (comprising the mean of three independent 

experiments, +/-SEM for each cell line). Statistical analysis (using ANOVA with Dunnett post hoc 

correction) was performed to compare protein expression in each model vs. MCF7 (* p<0.05 & 

** p<0.01). Mean fold change in gene expression for each resistant model vs. MCF7 is also 

tabulated. 
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5.3 Discussion 

The human protein kinome comprises the largest protein family which is highly interactive with 

diverse, complex cellular signalling networks (Verkhivker et al. 2015). As a consequence 

deregulated kinases are prominent in cancer and can play an important role in its progression 

(Tsai et al. 2013). Protein kinases are the most tractable target for cancer therapy and over 130 

kinase inhibitors are being evaluated in clinical trials (Walker and Newell 2009). Candidate 

targets including receptor tyrosine kinases (e.g. EGFR, HER2, IGF-1R) and, most recently, 

downstream kinases mTOR (targeted by everolimus), AKT, and CDK4/6 (targeted by palbociclib) 

has studied in endocrine-treated breast cancer (Cristofanilli et al. 2010, Huober et al. 2011, 

Robertson et al. 2013, Bachelot et al. 2012 and Finn et al. 2015) 

Pharmacological targeting of kinases is challenging since the kinase networks are complex and 

interrelated. Development of resistance to kinase targeted therapies is common due to bypass 

mechanisms and activation of other kinases (Bagrodia et al. 2012). To uncover new kinases in 

endocrine resistance in this chapter, microarrays from the endocrine resistant models were 

compared to endocrine responsive MCF7 cells to discriminate kinase genes commonly increased 

in resistance. In total, 14 shared induced kinases were identified in resistant models (Fig 5.1, 

Table 5.1). Most of these kinases (ADCK3, ICK, MARK1, PRKAA2, PRKD3, RIOK1, STK35, TEC and 

VRK3) participate in protein phosphorylation via ATP molecules, but two (PFKFB2 and XYLB) are 

involved in carbohydrate phosphorylation. 

Ontology analysis and exploration of their associated cellular pathways revealed the shared 

induced kinases included several metabolic genes (e.g. PCK2, XYLB, ALDH18A1, PFKFB2 and 

COASY). The mRNA expression of some of these also related to shortened RFS in breast cancer 

patients (ER+ and tamoxifen treated cohorts: PCK2 and ALDH18A1). Induced PCK2 expression 

may serve to provide resistant cells with higher levels of precursor (phosphoenol pyruvate: PEP) 

for gluconeogenesis or pyruvate metabolism (Leithner et al. 2015). Induced ALDH18A1 alongside 

enhanced glutamine uptake might also contribute to de novo synthesis of proline and arginine 

and enhanced growth of the resistant models. Finally, induced PFKFB2 may supply precursors 

for either amino sugar/nucleotide sugar metabolism or glycolysis (Ros and Schulze 2013). PCR 

was able to verify the expression increase of these metabolic genes in all the resistant models. 

In total, these findings are supportive of a contribution for these metabolic kinases and their 

associated pathways to sustain endocrine resistant growth, irrespective of endocrine treatment 

type or duration. They serve to re-enforce observations in Chapter 4 that deregulation of 

metabolic pathways hallmarks endocrine resistance and could potentially yield new therapeutic 

avenues to overcome this state.  
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In this Chapter the Zn transporter SLC39A7 and several MTs (MT1E, MT1F, MT1G, MT1H, MT1X 

and MT2A) were also found to be elevated on the microarrays from all acquired endocrine 

resistant models (particularly in those models retaining ER). Induced expression of SLC39A7 at 

both the transcriptional and translational level was verified in resistant models using RT-PCR and 

protein blotting respectively. Furthermore, the transporter and MTs appear to have clinical 

relevance since increased expression of SLC39A7 and various MTs (MT1E, MT1F, MT1G, MT1H 

and MT2A) was associated with shortened RFS in both the tamoxifen treated ER+ and all ER+ 

cohorts. The latter findings are compatible with the observation of induced MT expression and 

association with shortened overall survival in tamoxifen treated breast cancer patients made by 

Surowiak et al. (2005).  

Elevated SLC39A7 has previously been implicated in a non-genomic mechanism whereby this 

transporter releases Zn from the endoplasmic reticulum to trigger activation of several receptor 

tyrosine kinases in TamR cells (Taylor et al 2008). The induction of SLC39A7 expression seen 

across all endocrine resistant models here suggests SLC39A7 may have a dominant role in 

increasing their cellular Zn (also suggested by the common increases in MTs), which again may 

perhaps activate multiple signalling pathways to drive resistant growth and progression. The 

clinical profiling is further supportive of the transporter having relevance to endocrine 

resistance. Additionally, the antioxidant activity of such Zn signalling may be of importance in 

protecting these resistant cells against free-radicals (ROS) that are likely to arise from the 

increased mitochondrial respiration identified in Chapter 4. Transfer of electrons from complex 

I and II to a molecule of O2 can allow electrons to escape and participate in single-electron 

reduction of oxygen to generate superoxide as a progenitor of ROS (Starkov et al. 2008). Induced 

MT expression has previously been reported in response to mitochondrial-derived ROS (Kadota 

et al. 2010), in keeping with the observations of increased MTs in all the endocrine resistant 

models which have elevated OxPhos. Therefore, induced Zn transporter and MTs may also be 

predictive markers of resistance to endocrine treatment in breast cancer patients as a response 

to ROS generated from their hyperactive mitochondria.  
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Chapter 6 

General discussion 

Endocrine therapy is beneficial in luminal breast cancer and can be achieved by either 

competitively inhibiting ER activity (with tamoxifen/fulvestrant treatment) or by suppressing 

oestrogen production (by aromatase inhibitor or zoladex treatment). However, many ER+ 

patients eventually relapse on endocrine treatment which can result in more aggressive disease 

and poorer prognosis. For many patients, the value of targeting particular growth factor 

signalling pathways to hinder endocrine resistance can be limited. Therefore, continued 

deciphering of resistance to antihormone therapy remains critical in breast cancer to reveal new 

therapeutic strategies (Johnston et al. 2015).  

The work presented in this thesis focused on discovery of key shared mechanisms of resistance 

to endocrine treatment, using whole genome microarray profiling of MCF7 derived acquired 

resistant breast cancer models. This new panel encompassed breast cancer cells treated with 

either antioestrogens or oestrogen deprivation for up to 3 years to try to better-mimic 

prolonged clinical antihormone exposure, and so has potential to reveal important mechanisms 

of resistance. A particular importance was placed on identifying shared induced events likely to 

contribute to resistant growth, since these may be targetable to inhibit resistance. Initial basal 

characterization in the thesis revealed significant growth and proliferative capacity gained in the 

antihormone resistant cells compared to the endocrine responsive MCF7 control cells, 

confirming alternative mechanisms had been acquired in such models that were able to drive 

growth under antihormone-treated conditions. The gene microarray expression profiling 

successfully-revealed that 572 gene probes were upregulated in all resistant models versus 

MCF7 cells.  

The thesis met its first objective since through ontological analysis, pathway analysis and 

functional classification of these upregulated gene probes, it discovered that enrichment of 

many TCA cycle and oxidative phosphorylation enzymes occurred in all resistant models. There 

was furthermore common induction of additional mitochondrial elements including translocase 

inner mitochondrial membrane proteins (TIMMs), mitochondrial ribosomal machinery subunits 

and mitochondrial ADP/ATP carriers that may support increased mitochondrial biogenesis and 

bioenergetics in the resistant cells. Mass spectrometry further confirmed that TCA/OxPhos 

enzymes were also elevated at the protein level in resistant models (exemplified by TamR cells). 
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Gains in such mechanisms are reported to convert mitochondria into a biosynthetic and 

bioenergetics factory able to support rapidly dividing cancer cells (Ahn and Metalo, 2015), in this 

instance endocrine resistant models. This clearly contrasted enrichment of lysosome pathway, 

lipid and amino acid biosynthesis gene expression in MCF7 cells during the early endocrine 

responsive phase. The regulatory mechanisms resulting in the increased expression of TCA cycle 

and OxPhos enzymes in the resistant models have not been examined in detail in this thesis, but 

many of the genes were oestrogen-suppressed elements since they were partially-induced in 

microarrays from oestrogen-deprived MCF7 cells. This finding adds further to the concept that 

antihormone induction of oestrogen-suppressed elements is likely to contribute to resistance, 

as previously reported for EGFR and HER2 (Gee et al. 2011). An increase in the total upregulated 

probe number occurred for fulvestrant resistant and oestrogen deprived resistant models, 

which may be because such antihormonal approaches lack the partial-oestrogenicity exhibited 

by tamoxifen (Ariazi et al. 2006). However, the observations that the metabolic genes were not 

induced by initial antioestrogen treatment in MCF7 cells, and were only maximised for 

oestrogen deprivation in the MCF7(X) and MCF(X)LT resistant models, implies there may also be 

further mechanisms underpinning the OxPhos and TCA gene expression increases in resistance. 

Considerable further supportive evidence was accumulated in the thesis for the concept that 

OxPhos was more prominent in acquired endocrine resistant cells. There was elevated oxygen 

consumption (an indicator of OxPhos function) by the resistant lines compared with MCF7 cells, 

particularly in fulvestrant (FasRLT) and oestrogen deprived resistant models that also showed 

increased staining for NADH dehydrogenase activity (complex I). Further microarray 

interrogation suggested increased NADH supply via enhanced pyruvate carrier and fatty acid 

carrier expression may underpin the particular prominence of complex I-driven OxPhos in the 

fulvestrant and oestrogen deprived resistant cells. Staining for cytochrome C oxidase activity 

(complex IV) was also increased in the tamoxifen and fulvestrant resistant cells compared with 

MCF7. Glycolytic adjacent stromal cells are reported to comprise a major driver for the increased 

OxPhos detected in breast tumour epithelium in vivo (Whitaker-Menezes et al. 2011). However, 

the observations made here for the first time in acquired endocrine resistance show that 

elevated OxPhos can also arise as a consequence of prolonged antihormone treatment.  

The thesis also met a further objective in that it was able to use pharmacological intervention 

with ETC inhibitors to reveal substantial growth dependency in all the resistant cells on their 

increased OxPhos, providing new potential therapeutic avenues for endocrine resistance. Thus, 

the complex III inhibitor antimycin A suppressed the oxygen consumption and growth of most 

resistant models more substantially versus MCF7, particularly for the fulvestrant resistant and 
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TAMRLT cells. In turn, the complex I inhibitor metformin decreased NADH dehydrogenase 

activity and oxygen consumption in all models, particularly in oestrogen deprived and 

fulvestrant resistant cells, as well as inhibiting complex IV activity. Again, metformin inhibited 

growth of all the models confirming their dependence on OxPhos, in this instance with the 

highest impact in the oestrogen deprived resistant cells and moderate sensitivity in fulvestrant 

resistance, but with lower sensitivity in tamoxifen resistant cells. Gene profiling and Western 

blotting suggested factors likely to underpin this differential metformin profile in the resistant 

model panel including (i) a downregulated basal LKB1/AMPK, and/or metformin-induced AMPK 

activity with substantial depletion of anabolic processes (protein, fatty acid synthesis) in the 

more growth-sensitive models and (ii) a lack of AMPK induction by metformin and no apparent 

impact on fatty acid synthesis, increased expression of a metformin efflux transporter (MATE1), 

and increased glycerophosphate shuttle components (a potential complex II bypass mechanism) 

in the less-sensitive tamoxifen resistant cells.  

A third objective of the thesis was met in that the use of publicly-available clinical expression 

databases revealed TCA/OxPhos gene increases also had a potential adverse function in 

promoting clinical relapse. Several of the genes associated with earlier relapse in ER+ and/or 

tamoxifen treated breast cancer patients when explored using KMplotter. Coupled with the 

observation that increased OxPhos comprises an important growth-promoting mechanism in 

many resistant models irrespective of type or duration of endocrine treatment, these clinical 

profiles are supportive of targeting OxPhos to control antihormone resistance. In this regard, 

the thesis findings indicate that the OxPhos inhibitor metformin could exert superior activity in 

acquired endocrine resistant patients, particularly for oestrogen deprivation and fulvestrant 

resistant disease 

Excitingly, therefore, clinical trials are ongoing for “re-purposing” of metformin in breast cancer, 

currently with some focus on obesity and diabetic versus non-diabetic patient cohorts since this 

agent is also used as an anti-diabetic agent in type 2 disease, is weight-reducing, and has been 

reported to reduce cancer risk (Leon et al. 2014). Host metabolism is known to play an important 

role in the development and prognosis of breast cancer (Goodwin et al 2008), with a link 

between breast cancer risk and metabolic syndrome including high blood pressure (Largent et 

al. 2006), obesity (Harvie et al. 2003), high blood glucose (Michels et al. 2003) and type 2 

diabetes (16% increased risk after adjustment for the BMI; Boyle et al. (2012)). Obesity is 

furthermore associated with poorer prognosis in ER+ breast cancer patients (Barnett et al. 

2008). Encouragingly, several Window of Opportunity (WOP) studies of metformin have shown 

the drug can impact on proliferation in early stage breast cancer in non-diabetic patients (Hadad 
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et al. 2015, Dowling et al. 2015), where some trials have also detected complex I inhibition, 

hallmarked by increased pAMPK with metformin (Hadad et al. 2015). Although there are as yet 

little data on metformin in clinical endocrine resistant disease, a further study in non-diabetic 

patients reported Ki67 changes after neoadjuvant metformin in luminal B patients (Bonanni et 

al 2012), a patient cohort more likely to show poor endocrine responses. In vivo it is notable that 

there are also significant indirect effects of metformin on host metabolism that are likely to 

contribute towards the drug’s anti-tumour impact, via changes in pathways such as mTOR, 

PI3K/AKT and ERK1/2 MAPK. Thus, metformin as a monotherapy in early stage breast cancer 

(1500mg/d for 6 months) improved insulin sensitivity and reduced fasting insulin in non-diabetic 

patients (Goodwin et al. 2008), which may decrease mitogenic input to breast tumours via the 

insulin receptor. Neoadjuvant metformin can also reduce PDE3B expression, TNFR and the 

mTOR pathway (Hadad et al. 2011), as well as reducing insulin receptor, phosphorylation of Akt 

and ERK1/2 MAPK (Dowling et al. 2015). Many of these signalling elements contribute in 

endocrine resistance (Jordan et al. 2014) and so, along with direct tumour complex 1 inhibition, 

their blockade with metformin could be of further value. However, impact of metfomin 

monotherapy on proliferation remains controversial and complex in clinical breast cancer, and 

this thesis also showed only very limited impact of metformin on Ki-67 in the endocrine resistant 

models. A study reported no effect on Ki-67 in non-diabetic patients after WOP metformin 

(850mg twice per day) compared to the control arm. However, there were trends according to 

insulin resistance with reductions in Ki-67 staining only in those patients with HOMA>2.8 

(Bonanni et al 2012). Similarly, reduced Ki-67 after metformin has been reported in HER2+ DCIS 

in women who had abdominal obesity and were insulin resistant (HOMA>2.8).  

The mixed results regarding Ki-67 impact after metformin beg the question whether this drug 

would prove more effective if used alongside other treatments, including antihormones, a 

concept that needs to be addressed in the future in the endocrine resistant models that retain 

ER. Indeed, metformin in combination with fulvestrant was able to stimulate Cyclin G2 

expression and growth arrest in MCF7-derived tumours (Horne et al. 2015). Interestingly, 

therefore, prospective clinical trials have been designed to test metformin efficacy in 

combination with endocrine agents in breast cancer patients and promising findings are 

emerging. A phase I combination study of metformin (doses up to 2000mg/day) with 

exemestane recruited 20 ER+ postmenopausal women with metastatic breast cancer who had 

received prior endocrine treatment. In this study, 30% stable disease was reported for the 

combination arm (Esteva et al. 2013). A summary of some of the ongoing endocrine combination 

trials with metformin is provided in Table 6.1. These focus on oestrogen deprivation, a direction 
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which is supported by the observations here of particular metformin sensitivity in oestrogen 

deprivation resistant models. 

 

 

However, the reduced metformin sensitivity noted in this thesis in tamoxifen resistant models 

suggests an alternative energy mechanism also contributes to antihormone resistant breast 

cancer cells. Monitoring of extracellular lactate and sensitivity to the inhibitor 2DG revealed 

that, in addition to OxPhos, all the endocrine resistant models were dependent on glycolysis. 

Fulvestrant resistant cells were the most growth-sensitive to 2DG, utilising glycolysis alongside 

prominent OxPhos. Thus, co-targeting of energy metabolism using glycolysis and OxPhos 

inhibitors may prove a more effective therapeutic option to overcome fulvestrant resistance. 

Encouragingly, 2DG is well-tolerated in cancer patients (Raez et al. 2013) and pre-clinically co-

targeting of OxPhos and glycolysis using metformin and 2DG respectively was achievable in 

MCF7 cells and able to improve efficacy of radioiodine treatment (De et al. 2015). In this thesis, 

basal glycolysis was found to be highest in the tamoxifen resistant cells. Surprisingly, however, 

these cells were less sensitive to 2DG, which may have been related to their increased 

dependency on glutaminolysis as an alternative energy fuel source. Pharmacological glutamine 

restriction might therefore be an alternative means to inhibit growth in such endocrine resistant 

breast cancer, using an antimetabolite to mediate cell death via nutrient deprivation. Inhibitors 

of glutaminase (e.g. compound-968) have been developed that may have potential (Shajahan-

Haq et al. 2014). 

The final thesis objective was to investigate from the arrays if further shared induced genes with 

kinase activity, or their potential regulators, could be identified in the endocrine resistant 

models. This revealed increased mRNA expression of several metabolic kinases (PCK2, 

Table 6.1. Ongoing clinical trials using metformin in combination with endocrine treatment in ER+ 

postmenopausal breast cancer patients. 
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ALDH18A1 and PFKFB2) in resistant models compared to MCF7. Such kinases (which were PCR 

verified) have been implicated in gluconeogenesis or pyruvate metabolisn (PCK2), de novo 

biosynthesis of proline and arginine (ALDH18A1) and glycolysis or aminosugar/nucleotide sugar 

metabolism (PFKFB2), and so may be growth contributory in resistance. However, it remains to 

be explored whether their genetic or pharmacological targeting alongside further antihormone 

treatment can reduce growth in endocrine resistant breast cancer cells, suggesting further 

therapeutic avenues. Similarly, the increased expression of metallothioneins alongside Zn 

transporter SCL39A7 in all endocrine resistant cells (again associated with adverse clinical 

outcome) may protect against ROS generated during increased OxPhos in such cells.  

6.1 Study limitations and future work 

Although this thesis has provided evidence for hyperactivation of mitochondria with enhanced 

energy pathways in endocrine resistant cells, additional studies are required in the future to 

address some limitations of the current study.  

Firstly, further detail is needed regarding the metabolic pathways that can confer resistance in 

breast cancer cells. Metabolite profiling could be used to monitor more than 30 different 

metabolites in resistant cells compared to MCF7 through analytical techniques such as nuclear 

magnetic resonance (NMR) spectroscopy and mass spectrometry (MS).For example, the detail 

underpinning an increased glycine biosynthetic pathway (Jain et al. 2012), induced fatty acid 

synthesis, glycolysis and TCA cycle has been successfully determined in breast cancer cells via 

13C NMR spectroscopy and GC–MS techniques (Yang et al. 2007). Furthermore, intracellular 

metabolite flux analysis (metabolite amount converted/cell/time) using heavy isotope (13C) 

labelled nutrients (e.g. glucose/glutamine) can help track flow of carbon through metabolic 

pathways, and thus potentially determine the interplay between glycolysis and OxPhos and 

monitor any metabolic plasticity following OxPhos blockade with metformin in resistant cells. 

Bioenergetic pathway dependency and capacity of resistant cells to oxidize the three key 

mitochondrial fuels (glucose, glutamine and fatty acids) can also be determined using the XF 

Seahorse Analyser. This technique can be used to explore whether resistant cells can use 

alternative fuel for mitochondrial respiration in the presence and absence of inhibitors and 

hence flexibility of such cells to overcome energy crisis, for example following metformin 

treatment. Furthermore, the Seahorse XF Cell Mito Stress test enables measurement of basal 

respiration, ATP-linked respiration, proton leak, maximal respiration, spare respiratory capacity, 

and non-mitochondrial respiration after metformin treatment which may better explain the 

growth sensitivity profile to such treatment in the model panel. Energy phenotyping via 

measuring glycolysis and mitochondrial respiration using the XF analyser under basal conditions 
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and after an energy crisis (stressed phenotype) can also further help categorize breast cancer 

cells as quiescent, energetic, aerobic or glycolytic to better-understand the role of energy 

metabolism in such cells and thus sensitivity to glycolysis and OxPhos inhibitors.  

Secondly, the thesis has focussed primarily on studying an acquired endocrine resistant model 

panel derived from luminal A MCF7 cells in vitro to obtain promising data supportive of targeting 

bioenergetic pathways in endocrine resistance. However, there remains a need to profile 

dependency on OxPhos and glycolysis, and critically metformin and 2DG sensitivity, in further 

acquired endocrine resistant models since a single model panel is unlikely to represent the full 

spectrum of luminal A (and luminal B) derived antihormone resistance. This should be possible 

in the future since the BCMP group have very recently developed further long-term acquired 

antihormone resistant cell models from the additional luminal A line T47D as well as from 

luminal B BT474 and MDA-MB-361 cells.  

Finally, although KMplotter encouragingly suggested that the induced genes also relate to 

poorer outcome in breast cancer patients, this in silico clinical dataset does not include tumour 

samples taken at the time of relapse to be able to profile expression in clinical acquired 

resistance. Such study remains a challenging future goal, since relapse samples can be 

inaccessible to biopsy. Furthermore, given the findings from the Lisanti group showing stromal 

cells can influence bioenergetic pathways in tumour epithelium (Whitaker-Menezes et al. 2011, 

Martinez-Outschoorn et al. 2011), it also remains important to use orthotopic xenografts of the 

acquired endocrine resistant lines, or co-culture with stromal fibroblasts, to gauge how the 

microenvironment further influences the intrinsic gain of OxPhos in acquired endocrine 

resistance and impacts on the apparent metformin sensitivity of this state. Embracing such 

approaches in the future should further help interpret the emerging clinical trials with this agent 

alongside endocrine treatment in breast cancer.  
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Appendices 

Fig A Glycolysis 
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Fig B Citric acid cycle  
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Appendix 1-19 involves following information: 

Sheet 1 

Significantly deregulated probe IDs, gene symbol, gene title and corresponding P value after 

ANOVA with Benjamini and Hochberg post hoc correction in resistant model(s) compared to 

MCF7. 

Sheet 2  

ID conversion from probe IDs to ENSEMBL IDs using DAVID bioinformatics database 

Sheet3 

Over-represented ontology (molecular function, biological process and cellular component) of 

deregulated genes after hypergeometric algorithm with Benjamini and Hochberg correction 

were investigated using Innatedb database. Bold GO terms and gene symbols were significantly 

(p≤0.05) over-represented in resistant model(s) compared to MCF7. Number of uploaded genes 

and total number of genes for each GO term was indicated. 

Sheet 4 

Over-represented pathways of deregulated genes after hypergeometric algorithm with 

Benjamini and Hochberg correction were investigated using Innatedb database. Bold Pathway 

names and gene symbols were significantly (p≤0.05) over-represented in resistant model(s) 

compared to MCF7). Number of uploaded genes and total number of genes for each pathway 

was indicated. 

Appendix 1  

Downregulated probe IDs in tamoxifen resistant models (TamR and TamRLT) compared to MCF7. 

Appendix 2  

Downregulated probe IDs in fulvestrant resistant models (FasR and FasRLT) compared to MCF7. 

Appendix 3  

Downregulated probe IDs in oestrogen-deprived resistant models (MCF7(X) and MCF7(X)LT) 

compared to MCF7. 

Appendix 4  

Downregulated probe IDs in short-term resistant models (TamR, FasR and MCF7(X)) compared 

to MCF7. 
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Appendix 5  

Downregulated probe IDs in long-term resistant models (TamRLT, FasRLT and MCF7(X)LT) 

compared to MCF7. 

Appendix 6  

Downregulated probe IDs in all resistant models (TamR, TamRLT, FasR, FasRLT, MCF7(X) and 

MCF7(X)LT) compared to MCF7. 

Appendix 7  

Upregulated probe IDs in tamoxifen resistant model (TamR) compared to MCF7. 

Appendix 8  

Upregulated probe IDs in tamoxifen resistant model (TamRLT) compared to MCF7. 

Appendix 9  

Upregulated probe IDs in fulvestrant resistant model (FasR) compared to MCF7. 

Appendix 10  

Upregulated probe IDs in fulvestrant resistant model (FasRLT) compared to MCF7. 

Appendix 11  

Upregulated probe IDs in oestrogen-deprived resistant model (MCF7(X)) compared to MCF7. 

Appendix 12  

Upregulated probe IDs in oestrogen-deprived resistant model (MCF7(X)LT) compared to MCF7. 

Appendix 13  

Upregulated probe IDs in tamoxifen resistant models (TamR and TamRLT) compared to MCF7. 

Appendix 14  

Upregulated probe IDs in fulvestrant resistant models (FasR and FasRLT) compared to MCF7. 

Appendix 15  

Upregulated probe IDs in oestrogen-deprived resistant models (MCF7(X) and MCF7(X)LT) 

compared to MCF7. 

Appendix 16  

Upregulated probe IDs in short-term resistant models (TamR, FasR and MCF7(X)) compared to 

MCF7. 
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Appendix 17  

Upregulated probe IDs in long-term resistant models (TamRLT, FasRLT and MCF7(X)LT) 

compared to MCF7. 

Appendix 18  

Upregulated probe IDs in all resistant models (TamR, TamRLT, FasR, FasRLT, MCF7(X) and 

MCF7(X)LT) compared to MCF7. 

Appendix 19  

Upregulated probe IDs in AH treated cells (MCF7[-E2], MCF7[HSFCS], MCF7[+tamoxifen] and 

MCF7[+fulvestrant]) compared to oestradiol treated control. 

Appendix 20  

Sheet 1 

Significantly upregulated Uniprot IDs, protein name, phosphorylation status and corresponding 

P value in TamR compared to MCF7. 

Sheet 2  

ID conversion from Uniprot IDs to ENSEMBL IDs using DAVID bioinformatics database 

Sheet3 

Over-represented ontology (molecular function, biological process and cellular component) of 

upregulated genes (corresponding proteins) after hypergeometric algorithm with Benjamini and 

Hochberg correction were investigated using Innatedb database. Bold GO terms and gene 

symbols were significantly (p≤0.05) over-represented in TamR compared to MCF7. Number of 

uploaded genes and total number of genes for each GO term was indicated. 

Sheet 4 

Over-represented pathways of upregulated genes (proteins) after hypergeometric algorithm 

with Benjamini and Hochberg correction were investigated using Innatedb database. Bold 

Pathway names and gene symbols (corresponding genes) were significantly (p≤0.05) over-

represented in TamR compared to MCF7). Number of uploaded genes and total number of genes 

for each pathway was indicated. 
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Appendix 21  

Sigmoid curve, log transformed EC50 graphs after 2DG, antimycin A and metformin treatment 

for 7 days was demonstrated in all breast cancer models including MCF7, TamR, TamRLT, FasR, 

FasRLT, MCF7(X) and MCF7(X)LT (three independent experiments for each model). 

 

 

 

 

 

 

 

 

 

 

 

 


