
Geosci. Model Dev., 9, 823–839, 2016

www.geosci-model-dev.net/9/823/2016/

doi:10.5194/gmd-9-823-2016

© Author(s) 2016. CC Attribution 3.0 License.

CellLab-CTS 2015: continuous-time stochastic cellular automaton

modeling using Landlab

Gregory E. Tucker1,2, Daniel E. J. Hobley1,2, Eric Hutton3, Nicole M. Gasparini4, Erkan Istanbulluoglu5,

Jordan M. Adams4, and Sai Siddartha Nudurupati5

1Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, USA
2Department of Geological Sciences, University of Colorado, Boulder, USA
3Community Surface Dynamics Modeling System (CSDMS), University of Colorado, Boulder, USA
4Department of Earth and Environmental Sciences, Tulane University, New Orleans, USA
5Department of Civil and Environmental Engineering, University of Washington, Seattle, USA

Correspondence to: Gregory E. Tucker (gtucker@colorado.edu)

Received: 11 September 2015 – Published in Geosci. Model Dev. Discuss.: 2 November 2015

Revised: 31 January 2016 – Accepted: 10 February 2016 – Published: 29 February 2016

Abstract. CellLab-CTS 2015 is a Python-language soft-

ware library for creating two-dimensional, continuous-time

stochastic (CTS) cellular automaton models. The model do-

main consists of a set of grid nodes, with each node assigned

an integer state code that represents its condition or composi-

tion. Adjacent pairs of nodes may undergo transitions to dif-

ferent states, according to a user-defined average transition

rate. A model is created by writing a Python code that de-

fines the possible states, the transitions, and the rates of those

transitions. The code instantiates, initializes, and runs one of

four object classes that represent different types of CTS mod-

els. CellLab-CTS provides the option of using either square

or hexagonal grid cells. The software provides the ability to

treat particular grid-node states as moving particles, and to

track their position over time. Grid nodes may also be as-

signed user-defined properties, which the user can update af-

ter each transition through the use of a callback function. As

a component of the Landlab modeling framework, CellLab-

CTS models take advantage of a suite of Landlab’s tools and

capabilities, such as support for standardized input and out-

put.

1 Introduction

The discovery of cellular automata in the 1940s (Von Neu-

mann, 1951) laid the groundwork for a type of computa-

tional model that distinctly differs from numerical solutions

to partial-differential equations (PDEs). For certain types of

geoscientific problems, cellular automaton (CA) models and

their relatives offer several advantages over numerical so-

lutions to PDEs. In place of the continuum approximation,

CA models operate on a discrete lattice, which makes them

useful for natural systems that have an identifiable charac-

teristic spatial scale. Unlike a numerical approximation, the

solution to a deterministic CA is exact. In some cases, CA

models are quite computationally efficient. Partly for this

reason, cellular automaton techniques are sometimes used

to implement reduced complexity models, which deliberately

omit aspects of the physics of a system in an attempt to iden-

tify the essential underlying principles. Perhaps most impor-

tant for geoscience applications, CA models are well-suited

to systems with complex boundaries and interfaces that in-

volve contact between different types of media. These prop-

erties have made CA-based approaches attractive for mod-

eling a range of geophysical systems; some examples in-

clude the dynamics of the core-mantle boundary (Narteau

et al., 2001), eolian bedforms (Anderson, 1990; Anderson

and Bunas, 1993; Werner, 1995; Narteau et al., 2009; Zhang

et al., 2010, 2012), hillslope morphology and evolution (Jy-

otsna and Haff, 1997; Tucker and Bradley, 2010), river chan-

nels (Murray and Paola, 1994; Nicholas, 2005; Coulthard and

Van De Wiel, 2006; Jerolmack and Paola, 2007), coastlines

(Ashton et al., 2001; Dearing et al., 2006), drainage basins

and networks (Chase, 1992; Coulthard et al., 1996, 2002,

2007), ecohydrology (Zhou et al., 2013; Caracciolo et al.,

Published by Copernicus Publications on behalf of the European Geosciences Union.

824 G. E. Tucker et al.: Landlab cellular automata

2014), and permafrost features (Kessler et al., 2001; Plug and

Werner, 2002).

One interesting variant on CA is the continuous-time

stochastic CA, in which cell transitions occur at randomly

chosen time intervals rather than in discrete steps. These

models are especially attractive for geoscience applications

because their parameters represent rates that can be di-

rectly related to field and laboratory measurements, and be-

cause they avoid the need for a discrete-time approximation

(Narteau et al., 2001, 2009; Rozier and Narteau, 2014). For

example, once appropriate length and timescales have been

chosen, the cell-transition rules take on meaningful dimen-

sions and can be compared to an average propagation rate of

a reaction front, the average frequency and depth of soil dis-

turbance by burrowing organisms, or any other quantity of

interest that has a definable rate.

Here we describe a new modeling framework called

CellLab-CTS, which is written in Python and built on

the Landlab platform (Landlab Development Team, 2016).

CellLab-CTS allows one to quickly build and explore two-

dimensional, continuous-time stochastic CA models. A novel

feature is the option of using either square or hexagonal cells.

The aim of CellLab-CTS is to greatly simplify the process

of creating, configuring, and exploring 2-D CA models. We

provide a brief background on the theoretical framework, de-

scribe the algorithms and data structures used to implement

CellLab-CTS, and present several examples that illustrate its

versatility.

2 Background

Wolfram (1983) defines cellular automata as “simple math-

ematical idealizations of natural systems [that] consist of a

lattice of discrete identical sites, each site taking on a fi-

nite set of...values.” Like other types of mathematical model,

CA models describe natural systems in the form of symbolic

logic (Chopard and Droz, 1998). They are similar to partial

differential equations in the sense that both can be written

in compact form; in the case of a CA, however, the compact

form is a set of algorithms (rules) that evolve the numerical

value of cell states or change cell attributes based on interac-

tions among cells. In both cases, the compact form itself (the

equation or the algorithm) often reveals little about the dy-

namics of the system and its potential spatial outcomes and

self-organization. To discover and visualize the system’s be-

havior, one needs to perform numerical calculations. These

calculations are often more computationally efficient, involv-

ing fewer parameters or degrees of freedom, than in the case

of numerical solutions of comparable PDEs. The need for

numerical calculations applies especially for complex phys-

ical systems that are computationally irreducible, such that

the physical state of the system at a certain time can only be

predicted by simulating the evolution of states through time.

In a classical CA, the cell values evolve over a sequence

of discrete time steps on the basis of a set of deterministic

rules that describe the nature of the system (e.g., Chopard

and Droz, 1998). These rules describe sequential transitions

in the state of each cell as a function of the other cells in

its immediate neighborhood. Since cellular automata were

first invented in the late 1940s, many variations on this ba-

sic concept have been developed and explored. For example,

some use continuous (real) numbers instead of discrete lat-

tice states (as in the example of lattice Boltzmann models;

e.g., Chen and Doolen, 1998). The class of stochastic cellular

automata use random rather than deterministic rules for up-

dating, which allows one to explore ensembles of outcomes.

Of particular interest here are continuous-time stochas-

tic (CTS) cellular automaton models: those in which tran-

sitions between discrete cell states occur at random time in-

tervals. This technique was introduced into the geosciences

by Narteau et al. (2001) in an application to the dynamics

of the core-mantle boundary. The same approach was later

used (in 3-D instead of 2-D) to study the growth of instabil-

ities that leads to the formation of eolian bedforms (Narteau

et al., 2009). In the next section, we describe the theory be-

hind the CTS approach; the following sections describe how

the concept is implemented in CellLab-CTS.

3 Cellular automata with stochastic, pairwise

transitions

CellLab-CTS implements a two-dimensional, continuous-

time stochastic cellular automaton with pairwise transitions

(Narteau et al., 2001). As a simple example, consider a model

for the mixing of suspended-sediment particles in a turbulent

fluid with isotropic turbulence. As in a classical CA, the do-

main of interest is represented as a lattice of cells, each of

which belongs to one ofN discrete states. For suspended sed-

iment, we have two states: a cell may be occupied by fluid, or

by a sediment grain. The width of each cell is taken to be the

characteristic diameter of a sediment grain. The lattice repre-

sents a vertical cross section through the fluid. Such a model

might be initialized with a bed of sediment particles below a

body of (initially) still fluid (Fig. 1).

The essence of the procedure is that for each pair (or “dou-

blet”; Narteau et al., 2001) of adjacent cells, there is a cer-

tain probability that during a small interval of time dt , the

states of one or both cells will change. For example, in a

suspended-particle model, when a sediment cell lies adjacent

to a fluid cell, there is a certain probability that a turbulent

eddy will cause the grain to move into the fluid cell, while

its previous location is replaced by fluid. In other words, the

grain and fluid switch places. Using the Poisson process the-

ory, we can describe each pairwise transition with a time-

independent stationary Poisson process. The probability dis-

tribution of time to the next transition at a particular pair is

Geosci. Model Dev., 9, 823–839, 2016 www.geosci-model-dev.net/9/823/2016/

G. E. Tucker et al.: Landlab cellular automata 825

Cell States

Fluid Grain

Transitions representing motion

Up Down

Left

Right

Cell pairs without transition

2 seconds 200 seconds

Figure 1. CellLab-CTS model of grains suspended in a stirred (tur-

bulent) fluid. Left: illustration of cell states, cell-pair states, and

cell-pair transitions. Grains are assumed to be neutrally buoyant,

and turbulence is isotropic, so that there is an equal probability of

grain motion in each direction. Grain motion is modeled as a transi-

tion that switches the position of grain and fluid at a user-specified

rate. In this example, we assume that the grains are 1 mm diame-

ter tea leaves and the characteristic turbulent velocity fluctuation is

0.01 m s−1, so that cell size δ = 0.001 m and the mean transition

rate is 10 cells s−1.

p(τ) = RT exp(−RT τ) , (1)

where τ is the time between transitions at a particular pair,

andRT is the average transition rate for a particular transition

type (with dimensions of 1/T). The reciprocal of the tran-

sition rate, τ̄ = 1/RT , is the average waiting time between

transitions of that type. Once the cell size, δ, is specified, one

obtains a mean transition velocity: VT =δ/τ̄ .

The transition probability or rate depends on the states of

the two cells. We will refer to a particular pairing of cell

types as the pair state. The number of pair states depends

on the number of cell states, and on whether spatial orienta-

tion matters. For example, if our turbulence is isotropic and

the particles are neutrally buoyant, the transition probability

for a fluid-plus-particle pair would be independent of orien-

tation. In that case, there are N(N + 1)/2= 3 unique pair

states: fluid–fluid, fluid–grain, and grain–grain (Fig. 1). On

the other hand, if the particles are denser than the fluid, ori-

entation matters because the downward transition rate will

be greater than the upward or lateral rates (Fig. 2). When di-

rection matters, we have MN2 cell-pair states, where M is

the number of orientations: two for a raster grid (vertical and

horizontal), and three for a trigonal lattice with hexagonal

cells. In the suspended-sediment example, N = 2; a square

grid impliesM = 2, so that there are eight cell-pair states (the

six shown in Fig. 2 plus fluid-fluid and grain-grain pairs).

Note that it is possible, and often likely, to have a partic-

ular node (representing, say, a grain) scheduled to undergo

more than one transition. For example, consider a “grain”

node in the suspended-sediment model. That node belongs to

four different pairs. If the grain is surrounded by fluid nodes,

then each of those pairs will have the potential to undergo a

200 seconds
Horizontal motion

Rh = u'δ
= 10 cells/s

Downward motion

Rd = Rh + w/2δ
= 10.55 cells/s

Upward motion

Ru = Rh - w/2δ
= 9.45 cells/s

Figure 2. Turbulent suspension model with grains (1 mm tea leaves)

that are 0.2 % denser than the surrounding fluid. Left: illustration

of cell-pair transitions representing motion in the four directions.

Grain settling velocity of 0.0011 m s−1 imparts asymmetry to the

transition probabilities.

transition in which the grain and fluid switch places. When

such a transition occurs at one of the four pairs, it invalidates

the other three pair transitions. Below, we explain how this

common situation is handled.

The suspended-sediment model illustrates the advantage

of a stochastic as opposed to deterministic approach; we are

dealing with a system that is in fact inherently stochastic and

unpredictable, because the grain motions arise from turbu-

lent velocity fluctuations. It is of interest to know how the in-

herent variability leads to emergent pattern formation, such

as the diffusion-like time evolution of average concentration

(without settling) or the emergence of a Rouse-like concen-

tration profile (with settling).

The suspended-sediment examples also illustrate how it is

possible to scale a CTS model. Here, we have chosen the

cell size as the diameter of the particles (1 mm), and the

timescale as 1 s. For the neutrally buoyant case, the transi-

tion rate is set to equal a characteristic velocity perturbation

of 1 cm s−1 = 10 cells s−1. For the denser-than-fluid case, the

transition probabilities for upward and downward motion are

decreased or increased, respectively, by a factor of ε = w/2δ,

wherew = 0.0011 m s−1 is settling velocity and δ = 0.001 m

is cell width. Thus, the scales and transition rates are not

arbitrary but have a direct physical meaning. For more on

this point, see Narteau et al. (2009) and Rozier and Narteau

(2014).

4 Algorithms, implementation, and capabilities

CellLab-CTS is built on Landlab, a Python-language library

for constructing and exploring two-dimensional grid-based

models (Landlab Development Team, 2016), which imparts

several unique features and capabilities. Because of Land-

lab’s support for multiple grid types, models built in CellLab-

www.geosci-model-dev.net/9/823/2016/ Geosci. Model Dev., 9, 823–839, 2016

826 G. E. Tucker et al.: Landlab cellular automata

(a) Raster grid (b) Hex grid

CellNode Link

Figure 3. Schematic illustration of CellLab-CTS grid types and ge-

ometric primitives. (a) Regular (raster). (b) Trigonal lattice with

hexagonal cells. Note that standard link orientation is within the

x ≥ y half plane; in other words, the angle of a link, θ , with respect

to the positive x axis is always −45◦≤ θ ≤ 135◦.

CTS can use either of the two grid types that are commonly

used in cellular automata: a raster grid with square cells, or

a trigonal grid with hexagonal cells (Fig. 3). Landlab’s grid

design lends itself naturally to pairwise cellular automata be-

cause the data structures include links: directed line segments

that represent the connections between adjacent cell pairs.

4.1 Landlab’s grid design

One of Landlab’s unique features is the ability to create any

of a variety of grid types, including raster (square cells),

rectilinear (rectangular cells), trigonal (hexagonal cells),

Delaunay–Voronoi (Voronoi polygon cells), and radial (a

special class of Delaunay–Voronoi in which nodes are ar-

ranged in concentric circles). Each grid type uses the same

flat data structure, in which grid elements are listed se-

quentially in one-dimensional arrays. For CellLab-CTS, this

means that one can implement CA models using either a

raster or hexagonal grid.

To understand how CellLab-CTS works, it is helpful to

know a bit about Landlab’s grid composition and data struc-

tures. Each grid contains a set of nodes, which are points

in (x,y) space (Fig. 3). Each adjacent pair of nodes is con-

nected by a link, which is an oriented line segment. Every

link connects a tail node to a head node, with the implied di-

rection being from the tail to the head. Each node in the grid

interior – that is, every node except those along the perime-

ter of the grid – sits inside a polygon known as a cell. In the

case of CellLab-CTS, cells are either squares or hexagons.

Every cell face is crossed by a link. (Note that CellLab-CTS

actually operates on arrays of nodes rather than cells, so that

the outer perimeter of cell-less nodes may be included as a

boundary condition; for this reason, the internal documenta-

tion refers to nodes and node pairs rather than cells and cell

pairs.)

Cell

Node (core) FaceActive Link

Inactive LinkNode (open boundary)

Node (closed boundary)

Figure 4. Example of a simple Landlab raster grid, illustrating

open- and closed-boundary nodes, and active and inactive links.

To facilitate boundary-condition handling, nodes come in

two flavors: core nodes and boundary nodes (Fig. 4). Core

nodes are those that constitute the computational domain.

When a Landlab grid is created, the default configuration has

all interior nodes flagged as core nodes, and all perimeter

nodes flagged as boundary nodes. For modeling irregular do-

mains (such as a watershed within a rectangular DEM), one

can set up a grid to have boundary nodes in the interior as

well as along the perimeter.

In configuring a two-dimensional model, one often needs

to specify boundary conditions that are open to flow (such

as the downstream end of a stream channel), and those that

are closed to flow (such as the wall of a closed vessel). To

facilitate such boundary-condition handling, boundary nodes

in a Landlab grid are flagged as either open or closed (Fig. 4).

Once boundary types have been assigned, the grid’s links are

then flagged as active or inactive according to the following

criteria: (1) a link is active if it connects two core nodes, or if

it connects a core node and an open-boundary node; (2) a link

is inactive if either or both of its nodes is a closed boundary,

or if both are open boundaries (Fig. 4). This classification

allows a model developer to perform calculations only on

active links, thus effectively treating the inactive links (and

the corresponding cell faces) as walls across which there is

no flow of mass, momentum, or energy.

Geosci. Model Dev., 9, 823–839, 2016 www.geosci-model-dev.net/9/823/2016/

G. E. Tucker et al.: Landlab cellular automata 827

4.2 Node and node-pair (link) states

In order to implement a cellular automaton model, CellLab-

CTS assigns an integer node state to each node in the grid.

These values are encoded in a one-dimensional array of inte-

gers called the node-state grid. The number of possible node

states and their transition behaviors are determined by the

model developer, as explained below. For example, in the ex-

ample of turbulent suspension (Figs. 1 and 2), there are two

possible node states: 0 and 1, representing fluid and a solid

particle, respectively.

As discussed above, a CellLab-CTS model is based on

transitions from one pair of node states to another pair. Each

unique pair is referred to as a pair state or a link state. To im-

plement pairwise transitions, CellLab-CTS takes advantage

of the fact that a Landlab grid includes a set of links con-

necting pairs of neighboring nodes. We can exploit this fact

by creating a data structure in which each active link in the

grid is assigned a pair code. The pair code is a single integer

value that represents the states of the two adjacent nodes, and

possibly also the spatial orientation of the pair.

To understand how pair coding works, we need to look

more closely at orientation. In some applications, spatial ori-

entation does not matter. For example, in the isotropic sus-

pension model (Fig. 1), the transition rate for a solid-grain

pair is the same regardless of whether the pair in question is

horizontal (aligned with the x axis) or vertical (aligned with

the y axis). In other applications, orientation does matter. For

example, when gravitational settling is added to the turbulent

suspension model, the transition rates differ for horizontal

and vertical pairs (Fig. 2). Moreover, the transition rate for a

vertical pair also depends on whether the solid particle lies

above the fluid particle, or vice versa.

To accommodate these difference, CellLab-CTS allows

users to create either an oriented or a non-oriented model.

In a non-oriented model, the sequence of node-state codes

associated with the nodes of a given link, say 0 at the link’s

tail node and 1 at its head node, is treated the same regardless

of whether the link is vertical, horizontal, or (in the case of

a hex grid) at an angle of +30◦ or −30◦. For a non-oriented

model, whether raster or hex, there areN2 unique link states,

where N is the number of possible node states. For example,

the isotropic turbulent suspension model (Fig. 1), which is

an example of a non-oriented (raster) model, there are just

four link states: (1) two adjacent fluid cells, (2) fluid cell at

the link’s tail and a solid cell at the link’s head, (3) a solid

cell at the link’s tail and a fluid cell at its head, and (4) two

adjacent solid particles. Note that the order from tail node to

head node still matters; the pair 0→ 1 is different from the

pair 1→ 0.

By contrast, an oriented model treats cell pairs in differ-

ent orientations as different pair states. In a raster grid, there

are two possible orientations: horizontal and vertical. In a

hex grid, there are three. In our examples, these three hex-

grid orientations are vertical, angling up (+30◦), and angling

Raster grid
Vertical pair
Orientation code 0

Raster grid
Horizontal pair
Orientation code 1

Hex grid
Vertical pair
Orientation code 0

Hex grid
Angling-up pair
Orientation code 1

Hex grid
Angling-down pair
Orientation code 2

Figure 5. Illustration of cell-pair orientations and corresponding

orientation codes. Arrows represent links, each of which connects a

tail node to a head node.

down (−30◦) (Fig. 5; note that one can rotate this so that one

of the axes is horizontal rather than vertical, but in either case

there are still three orientations). Each of these is given a sep-

arate pair-state code, indicating that the transition type and

rate may be different depending on orientation. For exam-

ple, in an oriented raster, the pair 0→ 1 has different codes

for horizontal and vertical orientation. An oriented raster has

2N2 link states, whereas an oriented hex has 3N2 link states.

4.3 Transitions and the event queue

Unlike a traditional discrete-time CA, CellLab-CTS does not

use time steps. Instead, we iterate through a sequence of pair

transitions, or events. As noted earlier, each pairwise transi-

tion is associated with a time-independent stationary Poisson

process. Thus, the time intervals between successive transi-

tion events at a particular location are stochastic, with an ex-

ponential probability distribution (Eq. 1). At the start of a run,

every node pair (i.e., every link) is assigned a transition time.

These transition-event times are generated at random from

an exponential probability distribution, the mean of which

is τ̄i = 1/RT i , where i indicates the particular type of transi-

tion involved. If a particular node-pair is of a type that has

more than one possible transition, event times are generated

for each transition type, and the soonest is selected and as-

signed. If a given node pair is of a type that has no transitions

(such as the fluid-fluid and grain-grain pairs in Fig. 1), it is

assigned an arbitrarily large transition time that is longer than

the duration of the run.

www.geosci-model-dev.net/9/823/2016/ Geosci. Model Dev., 9, 823–839, 2016

828 G. E. Tucker et al.: Landlab cellular automata

Once the initial event times are assigned, we need to iterate

through them in chronological order. In order to place events

in the correct time sequence, we adopt an approach that is

commonly used in other types of discrete-event simulations

(e.g., Karimabadi et al., 2005; Omelchenko and Karimabadi,

2006, 2007), in which future events are recorded in a queue

that sorts them according to time of occurrence. When a new

event needs to be scheduled, we create an event object, which

stores the location of the transition, the time at which it is

scheduled to occur, and the new node states. This event ob-

ject is then placed in the event queue: a data structure that

contains all scheduled future transitions (Fig. 6). The event

queue is implemented as a heap, using the Python heapq

library. Events in the event queue are automatically and effi-

ciently sorted such that the event with the smallest value of

transition time – that is, the next one to occur – is always at

the top. At the same time, we also record the transition time

in a separate array that contains the transition times for every

link (Fig. 6). Recording the transition times in two differ-

ent locations allows us to handle the common case in which

a scheduled transition becomes invalid because the state of

one or both cells has changed. The easiest way to understand

how this works is to examine the algorithm for implementing

pair transitions, which we turn to next.

4.4 Algorithm for pair transitions

At the beginning of a CellLab-CTS simulation, we set up the

initial array of node states. We then loop over all active links,

assigning to each one the corresponding pair code. The pair

code,Li , for a given link i is calculated from the state of each

node and the link’s orientation:

Li =OiN
2
+ TiN +Hi, (2)

whereOi is the link’s orientation code (Fig. 5), Ti is the state

of the tail node, Hi state of the head node, and N is the num-

ber of potential node states in the model. Recall that a partic-

ular pair state may have zero, one, or more than one possible

transition. For those pair states that have only one possible

transition, the transition time is selected at random from an

exponential distribution with the appropriate rate parameter,

and an event object is created and pushed to the event queue.

When a given pair state is associated with two or more possi-

ble transitions, transition times drawn at random number for

each of the potential transitions. The soonest of these is then

entered into an event object and pushed to the event queue.

A scheduled event at one pair can become obsolete if one

or both nodes changes state as a result of a transition in an-

other pair to which the node is connected. For instance, con-

sider a particle (state 1) surrounded by four fluid nodes (state

0) in the suspended-sediment example. The particle belongs

to four different pairs: it is connected to the nodes above,

below, right, and left. Each of these pairs will have a tran-

sition scheduled in which the solid and fluid states switch

places, simulating motion of the grain. When a transition oc-

LINK ID 2

TRANS. TIME 0.5612

TRANS. TO 1

Event queue

Array of

transition

times

LINK ID 17

TRANS. TIME 0.6188

TRANS. TO 0

LINK ID 5

TRANS. TIME 1.1972

TRANS. TO 2

...

...

0 4.9462

1 7.3115

2 0.5612

Figure 6. Illustration of the event queue and the transition-time ar-

ray (next_update). Each event object contains the ID number

of the link, the time at which the next transition is scheduled to oc-

cur, and the link-state code for the transition (that is, the code for

the new cell pair after transition occurs). Left: events are stored in

a heap that is sorted by transition time, soonest on top. Right: the

transition-time array, which is simply an ordered array, indexed by

link ID, containing the time of the next scheduled transition at the

corresponding link. If the transition time for an event object does

not match the corresponding entry in the transition-time array, it

means that the originally scheduled transition has been nullified by

other transitions and is no longer valid (see text).

curs at one of the four pairs, the other three scheduled transi-

tions immediately become invalid, and their scheduled tran-

sitions should be ignored when they are popped from the

event queue. To handle this situation, whenever an event is

scheduled, its transition time is also recorded separately in

the transition-time array (as is done in the discrete-event al-

gorithms of Karimabadi et al., 2005 and Omelchenko and

Karimabadi, 2006, 2007). Then, each time an event is popped

from the event queue, it is executed only if its transition time

matches the entry in the transition-time array.

The event-loop algorithm is illustrated in Algorithm 1.

Note that each event object E includes a time of occurrence

(E.time), the ID number of the link at which the event occurs

(E.link), and the new link state to which the pair transitions

(E.xn_to).

The algorithm for a transition event is illustrated in Algo-

rithm 2. When a transition occurs, the state of one or both

nodes will change. This will invalidate any scheduled transi-

Geosci. Model Dev., 9, 823–839, 2016 www.geosci-model-dev.net/9/823/2016/

G. E. Tucker et al.: Landlab cellular automata 829

Algorithm 1 Event loop

Tr ← duration for run

t← 0

while t < Tr and event queue is not empty do

E← pop next event from event queue

if E.time matches the event time for this link recorded in the

transition-time array then

Process the transition event, schedule the next event, and

update surrounding pairs

end if

t← E.time

end while

tions at the affected node(s). Therefore, the pair-state codes

for each pair attached to the transitioning nodes must be up-

dated, and new events generated and scheduled.

Algorithm 2 Processing a transition event

Update the states of the two nodes attached to the link

Update the link’s pair code

Generate the next event for this link (if any) and push it to the

event queue

for N = each of the link’s two nodes (tail and head) do

if the state ofN has changed as a result of this transition then

for all other active links L connected to N do

Update the state-code for L

Generate the next event for L and push it to the event

queue

Update the entry for L in the transition-time array

end for

end if

end for

4.5 Class hierarchy and data structures

CellLab-CTS uses Python classes to implement four sub-

types of the CA model. The class inheritance structure is

quite simple (Fig. 7). The base class, CellLabCTSModel,

handles most of the primary data structures. The simulation

grid is represented using a Landlab ModelGrid object (either

a RasterModelGrid or HexModelGrid). The node_state

array contains the state-code for every node (recall that Land-

lab nodes represent cells in the model; Landlab reserves the

term cell for polygons that surround interior nodes).

Information about the relationship between link states and

node states is contained in the node_pair list. When a

transition occurs, this list is used to look up the new states

of the two nodes given the new state of the link. The list is

indexed by the pair-state codes, and each entry is a three-

element tuple: (T ,H,O), where T is the state of the tail

node,H is the state of the head node, andO is the orientation

of the link. For example, the configuration represented by

pair-state number three would be found at node_pair[3].

As discussed previously, transition events are recorded in

a heap known as the event queue. The time of transition for

each pair (link) is also recorded in the next_update array

(Fig. 6).

For models in which pair orientation matters, we need to

keep track of the orientation code for each pair. This is done

using link_orientation, an array of integer orientation

codes (as defined in Fig. 5), whose length is equal to the num-

ber of links in the grid. The state of each pair is encoded

in the link_state array. Finally, information about pair-

state transitions is encoded in three arrays. We encode the

number of potential transitions for each pair state in the array

n_xn. For every transition type, we need to record the new

pair state and the rate; these two pieces of information are

recorded in xn_to and xn_rate, respectively. Both are

two-dimensional arrays with dimensions equal to the number

of unique pair states and the maximum number of transitions

for any given pair state.

4.6 Tracking properties associated with moving

particles

The suspended-particle simulations (Figs. 1 and 2) are exam-

ples of models in which certain node states represent moving

particles. For such models, it is often desirable to keep track

of various properties associated with these particles. For ex-

ample, one might wish to keep track of the original position

of a particle, or calculate a position-dependent accumulation

or loss of a property such as cosmogenic nuclide concentra-

tion, luminescence, or chemical composition. CellLab-CTS

provides the ability to define and track user-defined data that

are associated with certain node states, which are treated as

mobile particles.

To implement property tracking, the user defines an ar-

ray or list of properties that are assigned to nodes in their

initial locations. The properties themselves may be of any

data type; for example, for a simple scalar property, one

might use floats, whereas for a collection of properties, user-

defined objects containing multiple data items could be as-

signed. CellLab-CTS then creates an array that contains, for

each node, the index in the user-defined property array/list

that corresponds to that node. To handle movement of par-

ticles, each transition includes a flag indicating whether the

transition in question involves an exchange of properties be-

tween the two nodes in the pair. For example, the transitions

in the turbulent suspension model (Figs. 1, 2) represent par-

ticle motion, and would therefore be flagged as involving an

exchange of properties between the node pairs.

For each transition involving such an exchange, the sim-

ulation keeps track of the location of the properties in ques-

tion, thereby allowing the positions of individual particles to

be tracked. Each node location is assigned a property ID that

points to the array element in which property data for that

particle are stored. This array element also corresponds to

the original starting location of the particle in question. For

www.geosci-model-dev.net/9/823/2016/ Geosci. Model Dev., 9, 823–839, 2016

830 G. E. Tucker et al.: Landlab cellular automata

Variable name

grid

current_time

node_state

node_pair

event_queue

next_update

link_orientation

link_state

n_xn

xn_to

xn_rate

Description

simulation grid
current simulation time
state of each node
(tail, head, orientation) for each pair state
transition events, soonest on top
time of next transition at each link
orientation code for each link
pair state of each link
number of transitions for each pair state
new pair state for each transition
rate parameter for each transition

Type and size

Landlab grid object
float
1xN array of int
list (xNL) of tuple
heap of Event objects
1xL array of float
1xL array of int
1xL array of int
1xNL array of int
NLxNT array of int
NLxNT array of float

CellLabCTSModel

RasterCTS OrientedRasterCTS OrientedHexCTSHexCTS

Figure 7. CellLab-CTS class hierarchy and main data structures. The base class, CellLabCTSModel, has four subclasses: RasterCTS, Ori-

entedRasterCTS, HexCTS, and OrientedHexCTS. A user selects one of these four subclasses based on whether the model to be built has a

hex or raster grid, and on whether pair orientation matters. N is number of grid nodes, L is number of grid links, NL is number of possible

link (node pair) states, and NT is maximum number of transitions for any link state.

example, suppose that property data for node 5 are stored at

array location 19. This would indicate that the particle repre-

sented by node 5 began at node 19 and subsequently moved

to node 5.

Updating of properties is handled by the CellLab-CTS

user, and it involves the use of a callback function. If a par-

ticular transition type involves particle motion, and one or

more user-defined properties of particles evolves in time, the

user would write a function to update these properties. The

function arguments are a CellLabCTSModel object (i.e., the

instance of one of the four subclasses listed in Fig. 7), the

IDs of the two nodes involved in the transition, and the time

at which the transition occurs. This function is then passed as

an optional argument when the transition in question is set up

at the beginning of a run. Then, whenever a transition of that

type takes place, CellLab-CTS automatically calls the user’s

function. This use of a callback function gives the user flexi-

bility to implement any kind of updating of properties during

each transition event.

As an example of user-defined property updating, imagine

a version of the suspended-sediment model (Fig. 2) in which

the grains are quartz sand (instead of tea leaves), and pos-

sess the property of luminescence. When quartz grains are

exposed to background ionizing radiation in the soil, elec-

trons gradually become displaced from their rest states, and

become trapped within defects in the crystal lattice. When

the grain is exposed to light, the trapped electrons are re-

leased, returning to their rest states and giving off a faint

glow in the process. This phenomenon, known as optically

stimulated luminescence (OSL), is commonly used in geo-

logic dating applications (Rhodes, 2011).

Imagine then that our grains begin with a certain lumines-

cence signal L, which we will assume is initially uniform for

all grains. Imagine also that a light is positioned above the

container, but that the fluid is partly opaque, so that the light

intensity attenuates with depth below the surface. For quartz

OSL, the rate of signal loss (bleaching) can be approximated

by

dL

dt
= −

L

T (z)
, (3)

where t is time and T (z) is an effective timescale for bleach-

ing that depends on the incoming photon flux and a material-

dependent bleachability parameter (both integrated over the

light spectrum). Because the photon flux attenuates with

depth in the fluid column, z, according to the Beer–Lambert

law, the bleaching timescale grows with depth below the fluid

surface:

T (z) = T0 exp(z/z∗) , (4)

where z∗ is the attenuation length scale, which depends on

the fluid opacity (note that we ignore scattering here). For our

example, we will use T0 = 2.42 s (Bailey and Arnold, 2006)

and z∗ = 0.025 m. The latter represents quite opaque fluid

(think tea with milk), and is used here simply to create a

strong (∼ 50×) variation in bleaching rate through the depth

of our 10 cm container. Grains that diffuse toward the top of

the container will therefore experience a much higher bleach-

ing rate than those that settle toward the bottom.

To implement a bleaching model, the user’s code would

define and initialize an array containing the luminescence

signal for each node. It would also define a simple callback

function. The callback function detects whether the state of

Geosci. Model Dev., 9, 823–839, 2016 www.geosci-model-dev.net/9/823/2016/

G. E. Tucker et al.: Landlab cellular automata 831

Fr
a
ct

io
n
 o

f
in

it
ia

l
lu

m
in

e
sc

e
n
ce

 s
ig

n
a
l

0

1

FLUID

GRAINS

Figure 8. Model of turbulent sediment suspension, showing the

computed luminescence signal after 20 s of stirring and bleaching.

The original luminescence signal is removed (bleached) by expo-

sure to light. Because light intensity declines exponentially from

top to bottom, grains near the bottom are less fully bleached than

those near the top. Turbulent mixing disperses the partially bleached

grains.

either or both nodes represents a particle. If so, the corre-

sponding entry in the user’s luminescence array is updated

by extrapolating Eqs. (3) and (4):

Li← Li exp

(
−
t − tl

T0ez/z∗

)
, (5)

where t is the current time and tl is the last time the lumi-

nescence at node i was updated (which the callback function

also tracks). The turbulent suspension model with bleaching

is illustrated in Fig. 8. As one might expect, the rapid attenua-

tion of light creates a strong vertical gradient in the degree of

bleaching, with some dispersion that reflects turbulent mix-

ing. Although this particular example is somewhat unrealistic

in that light attenuation is treated as independent of sediment

concentration (in other words, light passes equally through

fluid and grains), the example illustrates the ability to treat

certain cell states as moving particles, to track their move-

ment, and to associate each particle with one or more prop-

erties.

5 Other examples

Three additional examples serve to illustrate the diversity of

applications that can be written using CellLab-CTS. These

applications span the fields of geomorphology (chemical

weathering of crystalline rock), epidemiology (a susceptible–

infectious–recovered model of disease spread), and granular

mechanics (a lattice-grain model).

5.1 Weathering of fractured rocks

One of the current frontiers in geomorphology and soil sci-

ence lies in understanding the transformation of rock to soil.

One-dimensional reactive transport models have been used

to study the time evolution of a weathering front in homo-

geneous, unfractured rock (e.g., Lebedeva et al., 2007, 2010;

Maher, 2010). In crystalline rocks, however, it is often ob-

served that chemical alteration of the original rock takes

place primarily along fracture planes, which serve as con-

duits for water, oxygen, and reactive aqueous elements such

as hydrogen ions (Pandey and Rajaram, 2014). The model

shown in Fig. 9 implements a simple hypothesis for the trans-

formation of parent rock into saprolite (material that has been

chemically altered by not disaggregated). Nodes in the model

represent mineral grains; a typical diameter of such grains in

nature might be ∼ 3 mm. The model begins with a network

of fractures, each initially one grain wide. The rules repre-

senting hydrology and geochemistry are deliberately simpli-

fied for the sake of illustrating a single-transition CellLab-

CTS model: any rock–saprolite pair has a fixed probability

per unit time of transforming into a saprolite–saprolite pair.

This example uses the RasterCTS class.

The model domain forms a set of fracture-bounded blocks

of rock, which weather inward over time from their perime-

ters. The effective probability of weathering of a grain de-

pends on its local geometry: a grain exposed on only one side

has a lower probability of weathering within a given time pe-

riod than one exposed on all four sides, simply because of

the combined probabilities in the latter. This simple geomet-

ric principle leads to a gradual rounding of the blocks as they

weather.

The code to implement this model is very simple, with

only two transition rules: the pair saprolite (1)→rock (0)

transitions to saprolite (1)→saprolite (1), and the pair rock

(0)→saprolite (1) also transitions to saprolite (1)→saprolite

(1). These transitions represent isotropic transformation of

rock–saprolite pairs to saprolite–saprolite pairs (two transi-

tions are necessary because ordering matters: 0–1 is a differ-

ent pairing than 1–0, and so both must be included in order

to implement isotropic transitions). Although this example

uses a raster grid, one could instead use a hex grid (using the

class HexCTS), which might provide a more faithful repre-

sentation of the geometry of packed crystals. One could also,

of course, take a more sophisticated approach to the hydrol-

ogy and geochemistry, for example by introducing chemi-

www.geosci-model-dev.net/9/823/2016/ Geosci. Model Dev., 9, 823–839, 2016

832 G. E. Tucker et al.: Landlab cellular automata

Figure 9. Three time slices from a CellLab-CTS model of bedrock weathering along fracture planes. Light-colored cells are unweathered

mineral grains; dark-colored cells are grains that have been chemically altered to form saprolite (rock material that has been weathered but

not displaced). Left to right: time 0, time 10, and time 30. Here the time is normalized by initial fracture width and weathering rate; one time

unit represents the average time to weather fresh rock to a depth of one initial fracture width. For example, if fracture width (cell size) were

1 cm and weathering rate 10−5 m yr−1, then one time unit= 1000 years.

cally saturated and unsaturated fluid states (cf. Narteau et al.,

2001). An interesting future challenge would be to couple

a dissolution-crystallization model with a model of aqueous

flow in the fracture network.

5.2 Susceptible–infectious–recovered model

The susceptible–infectious–recovered (SIR) concept is a

classic mathematical model in epidemiology. The simplest

form of the SIR model represents a population as having

three compartments: those which are infected, those which

have not yet been infected and are therefore susceptible to

the disease, and those which have recovered and are now

immune (Hethcote, 2000). Figure 10 illustrates an imple-

mentation of the SIR model as a continuous-time stochastic

cellular automaton, using a hex grid. Each node has one of

three states: susceptible (gray), infectious (black), and recov-

ered (white). Infection and recovery are modeled as stochas-

tic processes. An infected node has a user-specified transi-

tion rate to recovery (probability per unit time of recovering),

which translates into an exponential probability distribution

of recovery times with mean τ̄r (Eq. 1). When a suscepti-

ble node lies adjacent to an infectious node, there is a speci-

fied infection rate (probability per unit time that the suscep-

tible node will become infected). Again, this translates into

an exponential probability distribution of time to infection,

with mean τ̄I . Thus, for any adjacent susceptible–infectious

pair, there is a race against time: will the infected node re-

cover before passing on the infection to its neighbor? The

outcome depends on the ratio of infection to recovery rates.

When the ratio is modest, an initial disease cluster spreads

relatively slowly, and is likely to die out before spreading

very far (Fig. 10, top row). When the ratio is higher, disease

is likely to spread throughout the population, leaving few in-

dividuals untouched (Fig. 10, bottom row).

Table 1. States in the CTS lattice gas and lattice-grain models.

State code Description

0 empty or fluid

1 moving upward

2 moving right and upward

3 moving right and downward

4 moving downward

5 moving left and downward

6 moving left and upward

7 resting

8 wall

5.3 Lattice-grain model

Granular-flow phenomena are ubiquitous in nature. Exam-

ples include landslides, debris flows, talus-pile formation,

and pyroclastic flows, among others. A variety of cellular

automaton approaches have been used to model granular

flows (Baxter and Behringer, 1990, 1991; Fitt and Wilmott,

1992; Osinov, 1994; Kozicki and Tejchman, 2005; Jasti and

Higgs, 2006; LaMarche et al., 2007; Jasti and Higgs III,

2010). Among these are a family of models known as lattice-

grain models (LGrM), which are based on the well-known

lattice-gas model in fluid dynamics but with additional rules

for gravity and friction (Gutt and Haff, 1990; Peng and

Herrmann, 1994; Alonso and Herrmann, 1996; Károlyi and

Kertész, 1998, 1999; Károlyi et al., 1998; Martinez and

Masson, 1998; Désérable, 2002; Cottenceau and Désérable,

2010; Désérable et al., 2011). Here we describe and illustrate

a continuous-time stochastic version of a lattice-grain model.

In the classic lattice-gas model, a fluid is represented as

a set of particles on a regular lattice (Frisch et al., 1986;

d’Humieres et al., 1986; Rothman and Zaleski, 2004). Each

particle is assumed to have unit mass and speed, and each

is assigned a direction of motion, which may be any of the

lattice’s cardinal directions. On a hexagonal lattice (the most

Geosci. Model Dev., 9, 823–839, 2016 www.geosci-model-dev.net/9/823/2016/

G. E. Tucker et al.: Landlab cellular automata 833

Initial infection

Infection rate = 8 x recovery rate

Time = 1 Time = 4

Infect ion rate = 3 x recovery rate

Figure 10. A susceptible–infectious–recovered (SIR) model built with CellLab-CTS. This example compares runs with two different infec-

tion rates (top and bottom rows, respectively). Gray is susceptible, black is infectious, and white is recovered. One time unit is one average

recovery time. This example model uses the HexCTS subclass (non-oriented model with hexagonal cells).

common for lattice-gas models), there are therefore six pos-

sible directions. In addition, some models also include sta-

tionary particles. Each iteration of a lattice-gas model has

two steps: a movement step, in which each particle moves

one unit in its given direction, and a collision step, in which

collisions between particles are resolved by changing parti-

cle directions (as a representation of collision and rebound

between perfectly elastic particles).

A typical lattice-grain model starts with these basic rules

but with modifications. Each cell may be occupied by only

one grain (as opposed to one for each possible direction in

lattice-gas models). Because grains are not perfectly elastic,

collisions may result in a loss of momentum, with a speci-

fied probability. Finally, gravity is represented by applying a

certain probability for a particle to alter its direction and/or

velocity (for those models that allow varying velocity among

particles).

The stochastic, pairwise transition model of CellLab-CTS

can be used to construct versions of both a lattice-gas and a

lattice-grain model; the latter is simply a version of the for-

mer that adds rules for gravity and friction. Here we present

examples of both types of models. The examples are imple-

mented on a hex grid with a vertical axis and two other axes

at 60◦ from vertical. There are nine possible node states, cor-

responding to the six directions of motion, an empty state, a

resting state, and a wall state (Table 1).

The motion and collision rules for a pairwise CTS lattice

gas model are illustrated in Fig. 11 and listed in Table 2. Be-

cause the model is stochastic, with binary transitions, the rule

set is somewhat different from that of a traditional determin-

istic lattice-gas model (e.g., Chopard and Droz, 1998). There

is no need to deal with three-way collisions, for example,

and we allow only one particle to occupy each node. Fur-

thermore, the stochastic nature of transitions means that par-

ticles effectively have varying velocity and momentum. This

in turn raises the possibility of collisions from the side or be-

hind (relative to a grain’s direction of motion), as one particle

overtakes another. Such collisions are not possible in a tradi-

tional lattice gas, in which particles have the same velocity

and cannot overtake one another. Motion is implemented as

a simple exchange of states (Fig. 11, top). In some cases, a

collision may produce any of two or three different outcomes,

as in the example of a head-on collision. In these cases, mul-

tiple transitions are encoded, each with a reduced transition

rate; this is equivalent to assigning a fractional probability

to each of the potential outcomes. Interestingly, indirect col-

lisions tend to be less common than head-on collisions, be-

cause they only occur if one of the two particles does not

move out of the way first.

The behavior of the CTS lattice-gas model is illustrated

in Fig. 12, which shows particles in closed vessel. The num-

ber of particles in each motion state remains roughly con-

stant over time, indicating that momentum is conserved. The

CTS lattice-gas model lacks the speed advantage of tradi-

tional lattice-gas models; we present it here because it forms

the basis for a cellular model of granular mechanics, which

we turn to next.

To construct a lattice-grain model, we modify the CTS

lattice-gas rules (Fig. 11) by adding transitions that imple-

ment gravity and frictional energy dissipation. To represent

the effects of friction, we add an extra set of transitions, so

that each collision now has the possibility of an inelastic

response, in which momentum is lost to friction. The fric-

tional transition rules are illustrated in Fig. 13. The transi-

tion rates for purely elastic collisions (Fig. 11, rules 2–11)

are reduced by multiplying each one by a user-specified re-

bound parameter, e; this parameter is effectively the motion-

transition rate (one cell per time unit) times a coefficient of

www.geosci-model-dev.net/9/823/2016/ Geosci. Model Dev., 9, 823–839, 2016

834 G. E. Tucker et al.: Landlab cellular automata

1. Motion

3. Oblique

2. Direct
 collision

1/3

1/3

1/3

1/3

1/3

1/3

1/4

1/4

4. Oblique
rear

5. Rear

6. Collision
 with rest

7. Wall
 rebound

8. Glancing

9. Converging

10. Glancing
 with rest

11. Glancing
 with wall

EMPTY CELL

MOVING PARTICLE
 (arrow = direction)

RESTING PARTICLE

WALL

Figure 11. Motion and collision rules for a pairwise CTS lattice gas model. For states that have multiple transitions, the transition rate for

each is reduced from unity to the fraction shown. Reduction to a one-fourth rate (instead of one-half) for rear collisions accounts for the

possibility that the lead particle is faster (so no collision occurs).

restitution. The corresponding frictional transitions are as-

signed a rate of f = 1− e (except for rule 8, in which each

of two frictional transitions is assigned a rate of f/2; Fig. 13,

upper right). This approach to inelastic collisions is similar,

for example, to that of Károlyi and Kertész (1998).

Gravity is implemented by assigning transitions that have

the effect of adding downward momentum (Fig. 14). Thus,

upward-moving particles transition to resting ones, while

resting ones transition to downward-moving particles, and so

on. Each of these transitions is assigned a user-specified rate

g. This parameter sets the timescale for the model; 1/g is

intended to represent the time required for an initially sta-

tionary grain to fall a distance of one cell. Because of the

limitations of the CTS approach, these rules provide only an

approximate representation of gravitational behavior. For ex-

ample, in the CTS framework, the average speed (and hence

momentum magnitude) of a particle reflects its average tran-

sition rate. Because the transition rate parameter is constant

for each transition type, it is not possible to represent accel-

eration (though this limitation could be overcome in a future

version by allowing a variable transition rate). For example,

we approximate the tendency for velocity vectors to orient

downward by applying the transitions shown in the third row

of Fig. 14, in which a particle moving both horizontally and

downward at a 30◦ angle for the horizontal transitions to a

state of moving purely downward. Obviously, this is some-

what unrealistic: in the real world (and in the absence of fluid

drag), such a particle would sustain its horizontal momentum

while accelerating downward. We also apply an “angle of re-

pose” rule (bottom column of Fig. 14), which allows particles

resting on a slope to undergo down-slope motion. This rule

has the effect of imparting a 30◦ angle of repose.

Despite its limitations, the CTS lattice-grain model ex-

hibits many characteristics of real granular flows, such as

the emptying of a funnel and the resulting formation of a

grain pile with angle-of-repose side slopes (Fig. 15). The

CTS lattice-grain approach appears to be promising for ge-

omorphic systems, in which the detailed physics of particle

acceleration and momentum exchange are likely to be less

important than the general characteristics of granular behav-

ior (e.g., Anderson and Bunas, 1993; Werner, 1995; Jyotsna

and Haff, 1997; Tucker and Bradley, 2010).

Geosci. Model Dev., 9, 823–839, 2016 www.geosci-model-dev.net/9/823/2016/

G. E. Tucker et al.: Landlab cellular automata 835

N
um

be
r o

f p
ar

tic
le

s
in

 s
ta

te

Time
0 200 400 600 800 1000

0

50

100

150

200

250

Moving up
Moving right and up
Moving right and down
Moving down
Moving left and down
Moving left and up
Rest

Figure 12. Example of a CTS lattice gas model. Left: particles undergoing random (brownian) motion in a vessel. Color codes: white

is empty, black is wall, and gray is resting; others moving in the directions indicated in inset legend. Right: number of particles in each

movement direction versus time, illustrating the conservation of average momentum.

f/2

f/2

Figure 13. Friction rules for lattice-grain model. Unless otherwise noted, each transition has a rate f , whereas the corresponding transition

rates for elastic behavior (Fig. 11) have rate e = 1− f .

6 Discussion

CellLab-CTS provides a simple, easy-to-use framework for

creating pairwise, continuous-time stochastic cellular au-

tomata of the form pioneered by Narteau et al. (2001).

As a modeling technique, the pairwise CTS method offers

several advantages, both in comparison to more traditional

differential-equation models, and in comparison to other

forms of cellular automaton. The granularity of the approach

can bring one closer to the relevant length scale of a particu-

lar system; rather than adopting continuum equations that are

assumed to capture the average behavior of a large ensem-

ble of particles (e.g., Furbish and Haff, 2010; Furbish et al.,

2012), one can instead directly address the statistics of inter-

actions among discrete entities. Starting from an elementary

length scale, this approach can shed light on collective be-

haviors that may be difficult to analyze using a continuum

approach.

Pairwise CTS models are not appropriate for every prob-

lem. Their limitations include the use of a single cell size,

which makes it difficult to address granular systems with a

large range of particle sizes (though it may be possible to rep-

resent effective aggregates of grains as the unit cell size). The

stochastic framework partly negates the speed advantage of

deterministic models such as lattice gas automata. Nonethe-

less, there remains a wide variety of problems that can use-

fully be addressed with a pairwise CTS approach.

As a software implementation of the pairwise CTS con-

cept, CellLab-CTS offers several practical capabilities. Its

overall design makes the process of building a CTS appli-

cation quite simple. A user needs only to write a relatively

short Python script that contains (1) a definition of cell states,

(2) definitions of the transitions involved, (3) a function that

initializes, runs, and plots (and/or saves) output from the re-

sulting model, and optionally (4) a callback function that up-

dates any user-defined data upon each transition. CellLab-

CTS users can choose between raster and hex grids, and

between oriented and non-oriented models. The ability to

switch between grid types makes it possible to test whether

the grid type has any influence on the solutions, and if so, to

www.geosci-model-dev.net/9/823/2016/ Geosci. Model Dev., 9, 823–839, 2016

836 G. E. Tucker et al.: Landlab cellular automata

Table 2. Transitions for orientation 1 in the CTS Lattice Gas model.

Node states are as defined in Table 1. First number of each pair is

lower-left and second is upper-right. Pairs with three possible transi-

tions have a rate of one-third each; pair with two possible transitions

has rate of one-quarter (representing rear collision).

Pair Transition Pair Transition Pair Transition

state to state to state to

0–0 3–0 6–0

0–1 3–1 6–1

0–2 3–2 6–2

0–3 3–3 6–3

0–4 3–4 4–3 6–4

0–5 5–0 3–5 5–3 6–5 5–6

0–6 3–6 4–1 6–6

0–7 3–7 7–2 6–7

0–8 3–8 4–8 6–8

1–0 4–0 7–0

1–1 4–1 7–1

1–2 4–2 7–2

1–3 4–3 7–3

1–4 6–3 4–4 7–4 5–7

1–5 5–1 4–5 5–4 7–5 4–7, 5–7, 6–7

1–6 6–1 4–6 7–6 5–7

1–7 7–2 4–7 7–7

1–8 6–8 4–8 7–8

2–0 0–2 5–0 8–0

2–1 1–2 5–1 8–1

2–2 1–3, 3–1 5–2 8–2

2–3 3–2 5–3 8–3

2–4 4–2 5–4 8–4 8–3

2–5 4–1, 5–2, 6–3 5–5 4–6, 6–4 8–5 8–1, 8–2, 8–3

2–6 6–2 5–6 8–6 8–1

2–7 7–1, 7–2, 7–3 5–7 8–7

2–8 4–8, 5–8, 6–8 5–8 8–8

correct for it. The fact that CellLab-CTS is built on Landlab

means that a user can take advantage of Landlab’s various

tools, such as reading of input parameters from a format-

ted text file using the ModelParameterDictionary tool, and

writing of output to standard file formats such as netCDF

and VTK. These capabilities speed the development pro-

cess, while also allowing users to take advantage of Python’s

extensive visualization and analysis libraries (such as mat-

plotlib, mayavi, pandas, and bokeh) as well as Landlab’s

more specialized visualization routines.

Another novel feature of CellLab-CTS is the ability to

assign properties (including continuum values) to the grid

nodes, and to update these properties dynamically using a

callback-function approach. The property-tracking capability

is complemented with the ability to treat certain node states

as moving particles and to track their trajectories. Any prop-

erties associated with such particles automatically move with

them. These capabilities are especially useful in modeling as-

semblages of grains: a common use for cellular automata in

geomorphology and granular mechanics (e.g., Furbish and

Haff, 2010).

(any) (any) (any) (any)

(any) (any) (any) (any)

(any) (any) (any) (any)

Figure 14. Gravity rules for lattice-grain model. Each transition has

a rate g. The bottom two transitions represent angle-of-repose be-

havior. This example uses the OrientedHexCTS subclass.

CellLab-CTS has some important limitations that could be

addressed in future versions. Unlike the ReSCAL software of

Rozier and Narteau (2014), the 2015 version of CellLab-CTS

is restricted to two-dimensional applications (this is actually

a limitation of the current version of Landlab; once Landlab

itself provides for 3-D grids, adaptation of CellLab-CTS to

3-D will be essentially automatic). CellLab-CTS 2015 was

written completely in Python, and lacks the speed advan-

tage of a compiled language. Although CellLab-CTS, like

Landlab, makes use of the NumPy library for speed and effi-

ciency, the nature of the discrete-event simulation algorithms

do not lend themselves to array operations; by definition, the

CTS concept is an event-by-event approach. The speed limi-

tation could be improved by translating CellLab-CTS’s core

routines into a compiled language such as Cython or C++,

while preserving the flexibility of Python interfaces and li-

braries.

One limitation of CellLab-CTS that applies to granular-

flow and sediment-transport problems is the present lack of

a binary transition rule, in which a particular transition has a

certain probability of not occurring at all, even if the states

of the neighboring cells remain unchanged. Imagine clos-

ing your eyes and placing a pebble on a steep hillslope. De-

pending on the microtopography, the pebble might end up in

a stable location, or it might end up rolling partway down

the hill. If placed in a stable location, the pebble will not

move until and unless something in its immediate neigh-

borhood changes. This type of either-or situation could be

implemented by modifying the transition rules to include a

conditional probability of occurrence. A particular transition

Geosci. Model Dev., 9, 823–839, 2016 www.geosci-model-dev.net/9/823/2016/

G. E. Tucker et al.: Landlab cellular automata 837

Time = 40 Time = 1000Time = 500

Figure 15. Three snapshots from a lattice-grain simulation showing the emptying of a silo. Color codes: white is empty, black is wall, light

gray is resting grain, and dark gray is moving grain.

would be scheduled only with probability pT . Such an ap-

proach would, for example, allow for a more realistic angle

of repose in the lattice-grain model.

7 Conclusions

CellLab-CTS 2015 is a Landlab module that implements

pairwise, continuous-time stochastic (CTS) cellular au-

tomata in two dimensions. CellLab-CTS enables researchers

to efficiently create and explore CTS models by writing a

short Python script that encodes the states, transition rules,

and rates. The choice of square or hexagonal cells gives

users control over grid symmetry. CellLab-CTS also pro-

vides the capability to represent moving particles, to assign

user-defined properties to these particles, and to update these

properties after each transition with a user-defined callback

function. Integration with Landlab means that CellLab-CTS

users can take advantage of a suite of capabilities, including

input and output in standardized formats, and coupling with

other Landlab components.

Code availability

CellLab-CTS 2015 is contained within Landlab version

0.1.28. The source code for version 0.1.28, which was re-

leased in September 2015, is provided in a git repository

hosted on GitHub at https://github.com/landlab/landlab/tree/

v0.1.28 (the latest development version of Landlab is always

available at http://github.com/landlab/landlab). Documenta-

tion and installation instructions for the most current release

version of Landlab (including CellLab-CTS) are provided at

http://landlab.github.io. Code for the examples presented in

this paper can be found at https://github.com/landlab/pub_

tucker_etal_gmd. Software dependencies are listed at https:

//landlab.github.io under Install. To the best of our knowl-

edge, Landlab and CellLab-CTS will operate on any system

that meets these software requirements; as of this writing,

Landlab is known to work on recent-generation Mac, Linux,

and Windows platforms. Landlab and its components, in-

cluding CellLab-CTS, are distributed under an MIT open-

source license.

Acknowledgements. This research was supported by the US

National Science Foundation (ACI-1147454, ACI-1450409).

Harrison Gray inspired the luminescence example. Clement

Narteau introduced the first author to the doublet technique during

a meeting on Earth Surface Process in Roscoff, France, in 2009.

We thank Clement Narteau and Tom Coulthard for helpful reviews.

Edited by: H. McMillan

References

Alonso, J. and Herrmann, H.: Shape of the tail of a

two-dimensional sandpile, Phys. Rev. Lett., 76, 4911,

doi:10.1103/PhysRevLett.76.4911, 1996.

Anderson, R. S.: Eolian ripples as examples of self-organization in

geomorphological systems, Earth-Sci. Rev., 29, 77–96, 1990.

Anderson, R. S. and Bunas, K. L.: Grain size segregation and

stratigraphy in aeolian ripples modelled with a cellular automa-

ton, Nature, 365, 740–743, 1993.

Ashton, A., Murray, A. B., and Arnoult, O.: Formation of coastline

features by large-scale instabilities induced by high-angle waves,

Nature, 414, 296–300, 2001.

Bailey, R. and Arnold, L.: Statistical modelling of single grain

quartz distributions and an assessment of procedures for estimat-

ing burial dose, Quaternary Sci. Rev., 25, 2475–2502, 2006.

Baxter, G. W. and Behringer, R.: Cellular automata

models of granular flow, Phys. Rev.w A, 42, 1017,

doi:10.1103/PhysRevA.42.1017, 1990.

Baxter, G. W. and Behringer, R.: Cellular automata models for the

flow of granular materials, Physica D, 51, 465–471, 1991.

Caracciolo, D., Noto, L. V., Istanbulluoglu, E., Fatichi, S., and

Zhou, X.: Climate change and Ecotone boundaries: Insights

from a cellular automata ecohydrology model in a Mediterranean

catchment with topography controlled vegetation patterns, Adv.

Water Resour., 73, 159–175, 2014.

Chase, C. G.: Fluvial landsculpting and the fractal dimension of

topography, Geomorphology, 5, 39–57, 1992.

Chen, S. and Doolen, G. D.: Lattice Boltzmann method for fluid

flows, Ann. Rev. Fluid Mech., 30, 329–364, 1998.

Chopard, B. and Droz, M.: Cellular automata, Springer, 1998.

Cottenceau, G. and Désérable, D.: Open environment for 2d lattice-

grain CA, in: Cellular Automata, Springer, 12–23, 2010.

Coulthard, T. and Van De Wiel, M.: A cellular model of river me-

andering, Earth Surf. Process. Landf., 31, 123–132, 2006.

www.geosci-model-dev.net/9/823/2016/ Geosci. Model Dev., 9, 823–839, 2016

https://github.com/landlab/landlab/tree/v0.1.28
https://github.com/landlab/landlab/tree/v0.1.28
http://github.com/landlab/landlab
http://landlab.github.io
https://github.com/landlab/pub_tucker_etal_gmd
https://github.com/landlab/pub_tucker_etal_gmd
https://landlab.github.io
https://landlab.github.io
http://dx.doi.org/10.1103/PhysRevLett.76.4911
http://dx.doi.org/10.1103/PhysRevA.42.1017

838 G. E. Tucker et al.: Landlab cellular automata

Coulthard, T., Kirkby, M., and Macklin, M.: A cellular automaton

landscape evolution model, in: Proceedings of the First Interna-

tional Conference on GeoComputation, vol. 1, 248–281, 1996.

Coulthard, T., Macklin, M., and Kirkby, M.: A cellular model of

Holocene upland river basin and alluvial fan evolution, Earth

Surf. Process. Landf., 27, 269–288, 2002.

Coulthard, T., Hicks, D., and Van De Wiel, M.: Cellular mod-

elling of river catchments and reaches: advantages, limitations

and prospects, Geomorphology, 90, 192–207, 2007.

Dearing, J., Richmond, N., Plater, A., Wolf, J., Prandle, D., and

Coulthard, T.: Modelling approaches for coastal simulation based

on cellular automata: the need and potential, Philosophical

Transactions of the Royal Society of London A: Mathematical,

Phys. Engineering. Sci., 364, 1051–1071, 2006.

Désérable, D.: A versatile two-dimensional cellular automata net-

work for granular flow, SIAM J. Appl. Math., 4, 1414–1436,

2002.

Désérable, D., Dupont, P., Hellou, M., and Kamali-Bernard, S.: Cel-

lular automata in complex matter, Complex Systems, 20, 67–91,

2011.

d’Humieres, D., Lallemand, P., and Frisch, U.: Lattice gas models

for 3D hydrodynamics, Europhys. Lett., 2, 291–297, 1986.

Fitt, A. and Wilmott, P.: Cellular-automaton model for segrega-

tion of a two-species granular flow, Phys. Rev. A, 45, 2383,

doi:10.1103/PhysRevA.45.2383, 1992.

Frisch, U., Hasslacher, B., and Pomeau, Y.: Lattice-gas automata

for the Navier-Stokes equation, Phys. Rev. Lett., 56, 1505–1508,

doi:10.1103/PhysRevLett.56.1505, 1986.

Furbish, D. and Haff, P.: From divots to swales: Hillslope sedi-

ment transport across divers length scales, J. Geophys. Res., 115,

F03001, doi:10.1029/2009JF001576, 2010.

Furbish, D. J., Haff, P. K., Roseberry, J. C., and Schmeeckle,

M. W.: A probabilistic description of the bed load sed-

iment flux: 1. Theory, J. Geophys. Res.-Earth, 117, F3,

doi:10.1029/2012JF002352, 2012.

Gutt, G. and Haff, P.: An automata model of granular materials, in:

Proceedings of the fifth distributed memory computing confer-

ence, edited by: Walker, D. W. and Stout, Q. F., 629 pp., ISBN

0-8186-2113-3, 1990. 522–529, IEEE Computer Society; Los

Alamitos, CA (United States), 1990 Society of Petroleum En-

gineers (SPE) California regional meeting, Ventura, CA (United

States), 4–6 April 1990; CONF-9004156–, IEEE Computer So-

ciety, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720,

United States, 1990.

Hethcote, H. W.: The mathematics of infectious diseases, SIAM Re-

view, 42, 599–653, 2000.

Jasti, V. K. and Higgs, C. F.: A lattice-based cellular automata mod-

eling approach for granular flow lubrication, J. Tribology, 128,

358–364, 2006.

Jasti, V. K. and Higgs III, C. F.: A fast first order model of a rough

annular shear cell using cellular automata, Granul. Matter, 12,

97–106, 2010.

Jerolmack, D. and Paola, C.: Complexity in a cellular model of river

avulsion, Geomorphology, 91, 259–270, 2007.

Jyotsna, R. and Haff, P.: Microtopography as an indicator of modern

hillslope diffusivity in arid terrain, Geology, 25, 695–698, 1997.

Karimabadi, H., Driscoll, J., Omelchenko, Y. A., and Omidi, N.: A

new asynchronous methodology for modeling of physical sys-

tems: breaking the curse of courant condition, J. Comput. Phys.,

205, 755–775, 2005.

Károlyi, A. and Kertész, J.: Lattice-gas model of avalanches

in a granular pile, Phys. Rev. E, 57, 852–856,

doi:10.1103/PhysRevE.57.852, 1998.

Károlyi, A. and Kertész, J.: Granular medium lattice gas model: the

algorithm, Comput. Phys. Commun., 121, 290–293, 1999.

Károlyi, A., Kertész, J., Havlin, S., Makse, H. A., and Stanley, H. E.:

Filling a silo with a mixture of grains: friction-induced segrega-

tion, Europhys. Lett., 44, 386–392, 1998.

Kessler, M., Murray, A., Werner, B., and Hallet, B.: A model for

sorted circles as self-organized patterns, J. Geophys. Res.-Sol

Ea., 106, 13287–13306, 2001.

Kozicki, J. and Tejchman, J.: Application of a cellular automaton to

simulations of granular flow in silos, Granul. Matter, 7, 45–54,

2005.

LaMarche, K. R., Conway, S. L., Glasser, B. J., and Shinbrot,

T.: Cellular automata model of gravity-driven granular flows,

Granul. Matter, 9, 219–229, 2007.

Landlab Development Team: Landlab Documentation, available at:

http://landlab.github.io, last access: 25 February 2016.

Lebedeva, M., Fletcher, R., Balashov, V., and Brantley, S.: A re-

active diffusion model describing transformation of bedrock to

saprolite, Chemical Geology, 244, 624–645, 2007.

Lebedeva, M., Fletcher, R., and Brantley, S.: A mathematical model

for steady-state regolith production at constant erosion rate, Earth

Surf. Process. Landf., 35, 508–524, 2010.

Maher, K.: The dependence of chemical weathering rates on fluid

residence time, Earth Planet. Sci. Lett., 294, 101–110, 2010.

Martinez, J. and Masson, S.: Lattice grain models, E & FN Spon,

556–563, 1998.

Murray, A. and Paola, C.: A cellular model of braided rivers, Nature,

371, 54–57, 1994.

Narteau, C., Le Mouël, J., Poirier, J., Sepúlveda, E., and Shnirman,

M.: On a small-scale roughness of the core–mantle boundary,

Earth Planet. Sci. Lett., 191, 49–60, 2001.

Narteau, C., Zhang, D., Rozier, O., and Claudin, P.: Setting the

length and time scales of a cellular automaton dune model from

the analysis of superimposed bed forms, J. Geophys. Res.-Earth,

114, F3, doi:10.1029/2008JF001127, 2009.

Nicholas, A. P.: Cellular modelling in fluvial geomorphology, Earth

Surf. Process. Landf., 30, 645–649, 2005.

Omelchenko, Y. and Karimabadi, H.: Self-adaptive time integration

of flux-conservative equations with sources, J. Comput. Phys.,

216, 179–194, 2006.

Omelchenko, Y. and Karimabadi, H.: A time-accurate explicit

multi-scale technique for gas dynamics, J. Computat. Phys., 226,

282–300, 2007.

Osinov, V.: A model of a discrete stochastic medium for the prob-

lems of loose material flow, Continuum Mech. Therm., 6, 51–60,

1994.

Pandey, S. and Rajaram, H.: Investigating the influence of subsur-

face heterogeneity on chemical weathering in the critical zone

using high resolution reactive transport models, in: AGU Fall

Meeting Abstracts, vol. 1, p. 3599, 2014.

Peng, G. and Herrmann, H. J.: Density waves of granular flow

in a pipe using lattice-gas automata, Phys. Rev. E, 49, R1796,

doi:10.1103/PhysRevE.49.R1796, 1994.

Geosci. Model Dev., 9, 823–839, 2016 www.geosci-model-dev.net/9/823/2016/

http://dx.doi.org/10.1103/PhysRevA.45.2383
http://dx.doi.org/10.1103/PhysRevLett.56.1505
http://dx.doi.org/10.1029/2009JF001576
http://dx.doi.org/10.1029/2012JF002352
http://dx.doi.org/10.1103/PhysRevE.57.852
http://landlab.github.io
http://dx.doi.org/10.1029/2008JF001127
http://dx.doi.org/10.1103/PhysRevE.49.R1796

G. E. Tucker et al.: Landlab cellular automata 839

Plug, L. J. and Werner, B.: Nonlinear dynamics of ice-wedge net-

works and resulting sensitivity to severe cooling events, Nature,

417, 929–933, 2002.

Rhodes, E. J.: Optically stimulated luminescence dating of sedi-

ments over the past 200,000 years, Ann. Rev. Earth Pl. Sc., 39,

461–488, 2011.

Rothman, D. H. and Zaleski, S.: Lattice-gas cellular automata: sim-

ple models of complex hydrodynamics, vol. 5, Cambridge Uni-

versity Press, 2004.

Rozier, O. and Narteau, C.: A real-space cellular automaton labora-

tory, Earth Surf. Process. Landf., 39, 98–109, 2014.

Tucker, G. and Bradley, D.: Trouble with diffusion: Reassessing

hillslope erosion laws with a particle-based model, J. Geophys.

Res, 115, F00A10, doi:10.1029/2009JF001264, 2010.

Von Neumann, J.: The general and logical theory of automata, Cere-

bral mechanisms in behavior, 1–41, 1951.

Werner, B.: Eolian dunes: computer simulations and attractor inter-

pretation, Geology, 23, 1107–1110, 1995.

Wolfram, S.: Cellular automata, Los Alamos Science, 9, 2–27,

1983.

Zhang, D., Narteau, C., and Rozier, O.: Morphodynamics

of barchan and transverse dunes using a cellular au-

tomaton model, J. Geophys. Res.-Earth, 115, F03041,

doi:10.1029/2009JF001620, 2010.

Zhang, D., Narteau, C., Rozier, O., and du Pont, S. C.: Morphol-

ogy and dynamics of star dunes from numerical modelling, Nat.

Geosci., 5, 463–467, 2012.

Zhou, X., Istanbulluoglu, E., and Vivoni, E. R.: Modeling the ecohy-

drological role of aspect-controlled radiation on tree-grass-shrub

coexistence in a semiarid climate, Water Resour. Res., 49, 2872–

2895, 2013.

www.geosci-model-dev.net/9/823/2016/ Geosci. Model Dev., 9, 823–839, 2016

http://dx.doi.org/10.1029/2009JF001264
http://dx.doi.org/10.1029/2009JF001620

	Abstract
	Introduction
	Background
	Cellular automata with stochastic, pairwise transitions
	Algorithms, implementation, and capabilities
	Landlab's grid design
	Node and node-pair (link) states
	Transitions and the event queue
	Algorithm for pair transitions
	Class hierarchy and data structures
	Tracking properties associated with moving particles

	Other examples
	Weathering of fractured rocks
	Susceptible--infectious--recovered model
	Lattice-grain model

	Discussion
	Conclusions
	Acknowledgements
	References

