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Abstract: A bottom up approach is employed in the design of novel materials: first,  

gas-phase ―double bubble‖ clusters are constructed from high symmetry, Th, 24 and  

96 atom, single bubbles of ZnO and GaN. These are used to construct bulk frameworks. 

Upon geometry optimization—minimisation of energies and forces computed using density 

functional theory—the symmetry of the double bubble clusters is reduced to either C1 or 

C2, and the average bond lengths for the outer bubbles are 1.9 Å, whereas the average 

bonds for the inner bubble are larger for ZnO than for GaN; 2.0 Å and 1.9 Å, respectively. 

A careful analysis of the bond distributions reveals that the inter-bubble bonds are  

bi-modal, and that there is a greater distortion for ZnO. Similar bond distributions  

are found for the corresponding frameworks. The distortion of the ZnO double bubble is 

found to be related to the increased flexibility of the outer bubble when composed of  

ZnO rather than GaN, which is reflected in their bulk moduli. The energetics suggest  

that (ZnO)12@(GaN)48 is more stable both in gas phase and bulk frameworks than 

(ZnO)12@(ZnO)48 and (GaN)12@(GaN)48. Formation enthalpies are similar to those found 

for carbon fullerenes. 
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1. Introduction 

A new class of materials is sought that will support the separation of electrons and holes typically 

generated during photo-excitation by solar radiation. In this context, heterostructures of ZnO/GaN 

attract particular interest, as such materials have great potential in a wide range of applications from 

semiconductor optoelectronics to photo-catalysis [1–5]. 

Previous computational simulations [6–8] have predicted that both ZnO and GaN, at the nanoscale, 

form clusters with a bubble architecture that are dramatically different from models cut from their 

wurtzite bulk structures. Using ZnO and SiC as two simple examples, we have shown [9,10] how 

individual bubbles can combine to form extended framework materials; alternative constructions and 

the viability (or stability) of similar frameworks using bubbles as building blocks have also been 

reported [6,9–11]. For framework structures, an increase in density is typically correlated with an 

enhanced stability, which can be achieved by connecting appropriate building units. In our approach to 

framework construction, we choose a new type of unit, the so-called ―double bubble‖, that are themselves 

denser than single-shell bubbles and which are a preferred motif for larger sized clusters [12]. 

For binary oxide and semiconductor II-VI and III-V materials with a 1-1 stoichiometry, fullerene 

type structures have been the focus of materials modelling at the nanoscale in the last decade. This 

interest has partly been spurred by reports of synthesis of (MX)n clusters of these materials, where M 

denotes metals, or cations, and X represents anions, with the mass spectra of such systems showing 

unexpected preference for certain sizes n. The preferred values of n are widely known as ―magic 

numbers‖ [8]. The stability of such clusters has been explained on thermodynamic grounds:  

the binding energy per formula unit as a function of size having a minimum (i.e., the energy released 

on cluster formation has a maximum). Alternative explanations have been proposed using: (i) a kinetic 

argument based on whether the cluster growth or shrinkage is an energetically favourable process;  

and (ii) a statistical argument: a particular cluster size may be realized in a greater number of  

atomic configurations compared to others, and therefore is favoured entropically. For any particular 

experiment, one or a combination of these factors may in fact be relevant. 

Considering the atomic structure of stable clusters as a function of increasing size, we recognise  

an evolution of basic structural units with increasing dimensionality: from 1D—sticks; to 2D—rings 

and patchworks of rings; and then to 3D units that are initially composed of one layer—a tube or 

bubble—and then multiple layers, and finally bulk like phases (those that could be stable or metastable 

on the macroscopic scale). The bubble structures are also denoted in the literature as cages, spheroids, 

or fullerenes. The above classification is also based on the atomic connectivity or bonding, which 

increases with increased dimensionality. Using additional definitions given in reference [13], perfect 

closed bubbles are an important subclass of single walled fullerene-like clusters, in which each  

atom has three nearest neighbours, and the surface of such fullerenes is composed of a patchwork of 

hexagonal faces that is wrapped in three dimensions by the introduction of six ―defects‖, or tetragonal 

faces. The existence and stability of the fullerene-like inorganic structures have been known from  

both theory and experiment for BN, ZnO, and MoS2 [14–16]. Perfect bubbles can also include larger 
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patches with an even number of sides complemented by an appropriate number of tetragonal faces.  

In contrast to carbon fullerenes, pentagonal faces are not realised for the heterogeneous semiconductor 

class of compound, as they would require formation of M–M and/or X–X bonds that are electrostatically 

unfavourable. Due to the ionic nature of bonding in these materials, the charge disproportionation is 

not compatible with electron localisation, required for metal-metal bond formation, or hole 

localisation, which stabilises di-oxygen or di-nitrogen species. 

On further size increase (cluster growth), the appearance of layered structures becomes a possibility, 

in which a smaller sized cluster unit is contained within a larger bubble structure. Indeed, such 

structures have been discovered in molecular dynamical studies of ZnS, where the smallest is found for 

n = 60: an n = 48 bubble forms a concentric shell around an n = 12 sodalite cage [12]. Although  

both single bubbles have the same high symmetry Th point group, the double bubble can relax into  

a lower symmetry form depending on the composition. The Th symmetry unit, however, can be 

stabilised when this unit is used in frameworks that were constructed previously from the individual 

single layered components. 

In this paper, we investigate the different possible atomic structural relaxations of the double bubble 

and the effect of mixing components of different compositions, for both the individual clusters and the 

constructed frameworks. 

2. Construction of Double Bubbles 

High Symmetry Double Bubble Clusters as Secondary Building Units 

We consider the 1-1 compounds that are predicted to have stable (lowest energy for a particular 

size) and metastable bubble, or fullerene like, structures. Perfect versions of these structures are 

composed of only three-coordinated atoms, sets of which create rings with an even number of sides 

that can be visualised as one of the faces of the bubble; an odd number of sides is unlikely as this 

would require at least one neighbouring pair of vertices of only cations or anions. Except for  

the smallest sized clusters, in which the curvature of the layer is important, cluster configurations 

containing one- or two-coordinated atoms are less stable than the perfect bubbles. Another characteristic 

of the stable bubbles is that, typically, the number of tetragonal rings is minimised (and, to a lesser 

extent, the distance between these should be maximised), while the number of hexagonal rings is 

maximised. A layer consisting of only hexagonal rings has no curvature, and therefore a perfect bubble 

of hexagons would require an infinite number of atoms (i.e., a 2D infinite hexagonal sheet). To obtain 

a perfect bubble with a finite number of atoms, the sheet requires the introduction of six tetragonal 

rings (Euler’s rule) as each tetragonal ring increases the curvature of the sheet. Increasing the number 

of tetragonal rings results in open (as opposed to closed) perfect bubbles, which contain much larger 

rings, e.g., octagonal, assuming the chemistry of the compound does not favour the bonding and 

coordination required for the formation of cuboids, i.e., cuts from rock salt. 

The higher symmetry configurations of the perfect bubbles are typically found to be more stable.  

As high symmetry cluster structures are only possible for certain sizes, they are not only the stable 

state for their particular size, but usually have a greater stability than clusters of neighbouring sizes.  

In our previous studies [6,9,10] we have, therefore, focused our attention on families of high symmetry 
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structures, and, in particular, those with symmetry Th, Td and T. These (MX)n structures are found if  

n = 4 (Td), 12 (Th), 16 (Td), 28 (T), 36 (Td), 48 (Th), 64 (Td), … Larger Th and Td clusters include  

n = 108 and 192 and n =100, 144 and 196, respectively; examples are shown in Figure 1. These 

clusters can be visualised as truncated octahedra, where there is one tetragonal ring of the bubble at 

each of the six truncated corners, and the hexagonal patchworks form the octahedron’s faces. In this 

morphology, the distance between all tetragonal rings is maximised for a given size n, and the 

separation increases monotonically with n. 

Figure 1. Models of high symmetry (MX)n bubbles with: (a) n = 12 with symmetry Th;  

(b) n = 48 with symmetry Th; (c) n = 28, 36 and 48 with octahedra superimposed. 

 

Smaller bubble clusters can be readily generated using an appropriate global optimiser (e.g., one 

based on Monte Carlo basin hopping [17] or genetic algorithm [18] routines), and once one has 

determined the relationship between them, the larger bubble clusters can be constructed by simply 

increasing the number of rows of hexagonal rings in each face or edge of the octahedron. For example, 

each octahedron’s edge of a Td bubble links a side of two tetragonal rings via a ―ladder‖ of m 

hexagonal rings (one hexagon wide)—see the highlighted ladder in Figure 2a—with the remaining 

hexagonal rings completing the faces of the octahedron. Note that the line of the octahedron edge 

bisects the rings of this ladder and that the tetragonal ring is out of phase with the tetragonal face 

created by truncating the octahedron. Constructions with m = 0, 1, 2, 3, 4 and 5 corresponds to perfect 

bubbles at n = 4, 16, 36, 64, 100, 144 and 196, respectively. In contrast, each octahedron edge in a Th 

bubble links the corner of two tetragonal rings via m + 1 M–X sticks that are separated by m hexagonal 

rings, forming an alternating linear pattern. Each stick is actually a shared side of two hexagonal rings, 

with each ring part of a hexagonal patchwork that covers a face of the octahedron. These sticks form a 

line segment of the octahedron edge (see highlighting in Figure 2b), and this line bisects opposite 

angles of the hexagonal rings, rather than opposite sides, and the tetragonal rings are in-phase with the 

tetragonal face created by truncating the octahedron. The smallest Th bubble, m = 0, or n = 12, has just 

one stick between two neighbouring tetragonal rings. The next smallest size Th bubble, m = 1, or  

n = 48, is constructed using two sticks and one hexagonal ring; then, for m = 2, or n = 108, there are 

three sticks and two hexagonal rings. Comparing the growth of the octahedron edges, it is evident why 

there are more bubbles with Td rather than Th symmetry. 
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Figure 2. Models of high symmetry (MX)n bubbles with: (a) n = 64, symmetry Td and  

the ladder of hexagonal rings, highlighted in yellow, that corresponds to one of the  

twelve edges of an octahedron; (b) n = 48, symmetry Th with a fragment that corresponds 

to one of twelve edges highlighted in yellow; (c) n = 48, symmetry Th with one of  

twelve patchworks that correspond to the octahedron side highlighted in purple. 

 

As discussed in the Introduction, framework structures with an increased density are typically more 

stable [19,20]. We therefore choose to investigate double bubbles that are composed of high symmetry 

perfect bubbles as these are more dense. Two bubbles are combined by inserting the smaller bubble 

inside the larger; aligned with the same centre of mass and identical direction of orthogonal axes, with 

each axis passing through the centre of mass and the centre of opposite truncated corners, or tetragonal 

faces. The rotation of these tetragonal faces about the octahedral axes is dependent upon the symmetry 

of the cluster. When clusters have Th and Td symmetry this rotation is 45° out-of-phase, and, if one of 

the bubbles has T symmetry, between 0° and 45°. For stability, the best match is obtained when the 

inner and outer bubbles are taken from the set of Th bubbles and the highest density obtained by 

combining the smallest two of these: n = 12 (a sodalite cage) and n = 48 [10]. 

In the MX bulk phase considered here, the atoms are four-coordinated tetrahedra, so the stability of 

the double bubbles will improve if M–X linkages between layers are found. These linkages can be 

expected to be located between aligned pairs of hexagonal patchworks that form the faces of the 

octahedra rather than between the truncated corners. For the n = 60 double bubble, the inner n = 12 

bubble has one hexagonal ring on each face, whereas the outer n = 48 bubble is composed of a 

patchwork of five and a half hexagonal rings; a central hexagonal ring that is linked via one hexagonal 

ring to each of three nearest tetragonal rings and three hexagonal rings that are shared with 

neighbouring faces of the octahedron (see Figure 2c). Importantly, the central hexagonal ring can bond 

with the hexagonal ring of the inner bubble; see Figure 3. Analogous to our structures, experimentally 

observed cages of boron nitride (BN), [15,16] and molybdenum sulphide (MoS2) [21,22] have been 

reported to be constructed from four and six (hexagonal) membered ring building units. CdSe cage 

structures have been experimentally observed to be stable and formed from truncated-octahedra [23]. 

DFT calculations on cage structures of CdSe that are similar to our structures have also been  

reported [24]. 
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Figure 3. Models of the n = 60 Th double bubble, with inter-layer links between the inner  

n = 12 sodalite cage and the eight hexagonal rings that are in the centres of the  

octahedron faces of the outer n = 48 bubble, highlighted using ball-and-sticks rather than 

line representation for: (a) no bridging links; (b) four bridging links; and (c) all eight 

bridging links. 

 

The first framework is constructed from Th bubble (sodalite cage) secondary building units (SBUs) 

of (ZnO)12 and (GaN)12, see Figure 1a. As the typical Zn–O and Ga–N bond lengths are similar  

(1.98 Å and 1.95 Å in their ground state wurtzite form), their respective SBUs are also similar in size. 

Consider each SBU as an octahedron. By corner sharing the octahedra, and assuming an equal number 

of SBUs for each compound, we construct an fcc, rock-salt like lattice, as shown in Figure 4c. The 

second framework is constructed from the n = 60 Th double bubbles; see Figures 1c and 4b. Again, 

imagining each SBU as an octahedron, but rather than corner sharing they are now stacked so that they 

share edges, each double bubble is surrounded by twelve others (see Figure 4d), and each edge of the 

outer bubble is one bond length from an edge of a neighbouring bubble forming an n = 6 double ring  

(a drum) and two n = 2 rings. Each tetragonal ring of an outer n = 48 bubble combines with five others 

to form an n = 12 Th bubble, i.e., the void is a sodalite cage. The inner sodalite cage of each double 

bubble is formed from (i) the same compound and (ii) two compounds, which we alternate. 

We start the double bubble construction from two relaxed single bubbles. If the distance between 

each inner hexagonal ring and its corresponding central hexagonal ring of the outer bubble is 

approximately a typical M–X bond length, then we shall refer to this as an ideal match, and the relaxed 

double bubble is expected to maintain Th symmetry. Whether there is an ideal match depends on the 

composition: if the two layers are of the same composition and there is not an ideal match then the 

inner bubble is too small. The outer eight planes of hexagonal patchworks, or octahedron faces, have 

more flexibility than the corners. During a geometry relaxation of the double bubble, the central 

hexagonal ring of each outer patchwork can move inward, maintaining the Th symmetry or, due to the 

repulsion between neighbouring patchworks, only the central hexagons from alternate patchworks, i.e., 

four of the eight, move inwards reducing the symmetry to T; see Figure 3. 

For all ZnO/GaN compositions investigated here, n = 60 double bubble structures of high symmetry 

(Th and T) were constructed and then geometry optimised. Low symmetry structural distortions were 

allowed in the optimisation process in order to find the lowest energy double bubble configuration. 
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Figure 4. Ball and stick models of two framework structures. (a) Constructed from Th 

bubbles of (GaN)12 and (ZnO)12; (b) Constructed from Th double bubbles of (ZnO)48 and 

(GaN)12; (c) the same structure as (a) but with each (GaN)12 coloured red and each (ZnO)12 

coloured blue (lighter/darker shades used in the front/back row); (d) the same structure as 

(b) but with each (GaN)12 hidden and each (ZnO)48 uniquely coloured. 

 

3. Results and Discussion 

3.1. Double Bubble Clusters 

With each layer (single bubble) composed of either ZnO or GaN, there are four possible n = 60 

double bubble structures that can be constructed using the procedure discussed in Section 2.  

The cluster structures are relaxed so as to minimise the energy, which is initially defined using a  

semi-empirical potentials and then, during a final refinement stage, using density functional theory 

(DFT); see Sections 4.1 and 4.2 for details. The four double bubble clusters consist of: (a) only zinc 

oxide, denoted (ZnO)12@(ZnO)48; (b) only gallium nitride, denoted (GaN)12@(GaN)48; (c) a gallium 

nitride sodalite cage inside a zinc oxide bubble, denoted (GaN)12@(ZnO)48; and the inverse (d) a zinc 

oxide sodalite cage inside a gallium nitride bubble, denoted (ZnO)12@(GaN)48. During geometry 

optimization, although the high Th and T symmetry that is maintained when semi-empirical 

calculations are employed, there is a reduction of symmetry for all four systems to Cn, where n = 1 or 

2. As reported in Table 1, double bubble clusters with internal (ZnO)12 sodalite cages adopt C2 

symmetry, whereas those that had gallium nitride sodalite cages adopt C1 symmetry—i.e., there is no 

symmetry in those structures. The average relaxed bond lengths, separated into inner-bubble bonds, 

outer-bubble bonds, and inter-layer bubble bonds (M–X bonds connecting the inner to the outer 

bubbles) are also reported in Table 1. The average bond lengths of zinc oxide and gallium nitride are 
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similar; although the average bond length for zinc oxide inner bubbles are slightly greater than the 

average bond lengths of gallium nitride inner bubbles. 

Now, consider the distribution of bond lengths, G(x), using a Gaussian broadening function for  

each bond length, which is normalised to the number of linkages between the inner and outer bubble 

(N = 48 for our n = 60 double bubbles): 

        exp           

 

   

 (1) 

C is a normalising constant, bi is the length of bond i, and σ is the dispersion (width) of the Gaussian 

function. This function is plotted in Figure 5 for two values of σ: 0.02 Å (red line) and  

0.10 Å (blue line). The greater value of σ allows the resolution of two distinct peaks for the systems of 

interest. These two peaks are reported in Table 1, labelled as A and B inter-bubble bond distances. 

Table 1. Structural parameters of double bubble clusters, where Douter is the mean distance 

between M–X atoms in the outer bubble, Dinner is the mean distance between M–X atoms in 

the inner bubble, and Dinter is the distance between the inner and outer bubbles. (Number in 

parentheses indicates standard error.) 

System Symmetry Douter (Å) Dinner (Å) 
Dinter (Å) 

A B 

(GaN)12@(ZnO)48 C1 1.92 1.93 2.05 (0.1) 3.08 (0.1) 

(ZnO)12@(GaN)48 C2 1.89 1.96 2.13 (0.1) 2.94 (0.1) 

(ZnO)12@(ZnO)48 C2 1.93 1.95 2.10 (0.0) 2.94 (0.2) 

(GaN)12@(GaN)48 C1 1.93 1.92 2.10 (0.1) 2.94 (0.1) 

Figure 5. Bond distribution plots for the double bubble cluster systems. Red line: 

Dispersion of Gaussian = 0.02, Blue line: Dispersion of Gaussian = 0.1. 
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We observe that the pure double-bubble clusters have similar bond distributions, and notice only a 

difference of a small peak at 2 Å for the pure GaN system, which appears as a shoulder on the 2.3 Å 

peak in the pure ZnO system. We mark this shoulder (at approximately 2.25 Å) as the split of the 

distribution into bonded and non-bonded linkages. The number of bonded linkages, in fact, is constant 

for all the systems except for (ZnO)12@(GaN)48 and has a value of twenty-four, which is related to the 

ideal T symmetry octahedral shape. In this type of linking, two extremes can be possible: four of the 

eight hexagonal rings form drums with the outer bubble, or only half of the possible bonds are formed 

in such drums—see Figure 3b. The (ZnO)12@(GaN)48 double bubble, in contrast, has only twenty-two 

bonded linkages, which is not due to an inner bubble displacement from the centre of the outer bubble 

but is caused by a distortion in the outer bubble. To relate these observations to macroscopic properties 

of the systems, we considered the deformation as seen from the displacement of the centre of mass 

(COM) of the inner bubbles with respect to the outer bubbles, and their normalized second moments of 

atom distribution, as given in Table 2. 

Table 2. Centre of mass (COM) differences and normalised second moments of atom 

distributions for the double bubble clusters (x, y, z coordinates). 

System 
COM difference 

(COMOuter–COMInner) 

Normalised second moments of atom distribution  

Inner Outer 

(GaN)12@(ZnO)48 0.00, 0.11, 0.05 1.05, 1.01, 0.94  1.05, 1.01, 0.94 

(ZnO)12@(GaN)48 0.00, 0.00, 0.01 1.02, 1.00, 0.98 1.01, 1.00, 0.99 

(ZnO)12@(ZnO)48 0.00, 0.00, 0.04 1.09, 1.00, 0.91  1.05, 1.00, 0.95 

(GaN)12@(GaN)48 0.00, 0.01, −0.06 1.04, 1.01, 0.96  1.04, 1.01, 0.95 

The largest COM displacement is seen in the (GaN)12@(ZnO)48 system and smallest in the inverse 

(ZnO)12@(GaN)48 system. The deformation is also lowest in the latter system, but has the largest 

values in pure ZnO. We explain this behaviour by considering the relative sizes of the inner and outer 

bubbles: the larger ZnO inner bubble fills in the space offered by the smaller GaN outer bubble better 

than the GaN counterpart. An additional point to take into account is the greater flexibility of the  

ZnO bubbles as compared with GaN: the size mismatch between the inner and outer bubble is 

accommodated easier by ZnO, the bubbles of which show the greater deformations. This flexibility is 

also seen in the bulk framework systems as discussed in Section 3.2 below. We show in Table 3 the 

energy of association, EAssoc, calculated as the difference in total energy of the double bubble cluster 

from their moieties, i.e., the n1 = 12 and n2 = 48 bubbles, and formation enthalpy, Hf,: 

    
                   

     
   (2) 

where EDB is the total energy of the double bubble cluster, Ea and Eb are the total energies of the pure 

bulk wurtzite structures, where a and b can be ZnO or GaN. We find that the formation of the double 

bubble systems is most favourable for the (GaN)12@(ZnO)48 system and least favourable for the 

inverse system, and that the pure double bubbles have equal formation energies. 
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Table 3. Energy of association, EAssoc of single-shell cages and enthalpy of formation,  

Hf per atom for double bubble clusters as defined in Equation (2). 

System EAssoc (kJ/mol) Hf (kJ/mol) 

(GaN)12@(ZnO)48 −11.27 78.32 

(ZnO)12@(GaN)48 −8.17 104.55 

(ZnO)12@(ZnO)48 −9.38 68.50 

(GaN)12@(GaN)48 −9.16 116.18 

We find that the formation of the homogeneous (ZnO)12@(ZnO)48 system is the most favourable 

closely followed by the heterogeneous (GaN)12@(ZnO)48 system compared to the homogeneous bulk 

wurtzite phases. Systems that have an outer-bubble of GaN are less likely to form when compared with 

bulk (at zero temperature). If we consider the mixing energies per atom: 

      
                     

   
  (3) 

where Ea and Eb are the energies of the pure double bubbles that make up the mixed system, we find 

that the energy of mixing for (GaN)12@(ZnO)48 and (ZnO)12@(GaN)48 are 0.07 kJ/mol and −0.96 

kJ/mol respectively.  

3.2. Double Bubble Frameworks 

We took the double bubble frameworks that were constructed using the procedure discussed in 

Section 2, and also corresponding systems of pure ZnO and GaN, and optimised their geometry (see 

Section 4.2 for details). The structural analysis performed in Section 3.1 was repeated for these 

frameworks. The calculated average bond lengths are presented in Table 4, again separated into  

inner-bubble bonds, outer-bubble bonds and, inter-layer bubble bonds (bonds connecting the inner to 

the outer bubbles). The graphs of the corresponding bond-length distribution analysis can be seen in 

Figure 6. Table 4 also has two additional pieces of information—the lattice parameter and the bulk 

modulus, which are available for these extended crystalline frameworks. Similar to the double bubble 

clusters, we find that the bonds in the ZnO inner bubble are slightly larger than the equivalent GaN 

bonds. In the framework systems this has a noticeable effect on the bond distribution: when the inner 

bubble is composed of ZnO, the bond length distribution is no longer bi-modal but has a single peak at 

2.3 Å (Figure 6), which, similar to the double bubble clusters, is due to the larger ZnO bubble 

occupying the space inside the outer bubble. In this case, however, as the outer bubble is in a 

framework, it is unable to deform to the same degree as the gas-phase cluster, and only a single peak 

forms in the bond length distribution. 

We also see that the lattice parameters for the double bubble frameworks are, as expected, related to 

the composition of the outer bubble, and that when the outer bubble is composed of ZnO the lattice 

parameters are larger. Comparing the bulk moduli of the systems, we find that the pure GaN system is 

the least compressible, whereas the pure ZnO system is the most. This agrees with the double bubble 

cluster findings, where the ZnO systems exhibit the greatest deformations. Table 5 shows the 

corresponding structural parameters for the wurtzite systems used in the framework analysis, and the 

bulk modulus of the GaN system is much larger than that of the ZnO. 
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Table 4. Structural parameters of double bubble frameworks. (Number in parentheses 

indicates standard error). 

System 
Lattice 

parameter (Å) 

Bulk modulus 

(GPa) 
Douter (Å) Dinner (Å) 

Dinter (Å) 

A B 

(GaN)12@(ZnO)48 19.26 78.84 1.96 1.94 2.08 (0.1)  2.96 (0.2) 

(ZnO)12@(GaN)48 18.84 77.88 1.90 2.01 2.27 (0.1) - 

(ZnO)12@(ZnO)48 19.26 69.78 1.94 2.00 2.26 (0.0) - 

(GaN)12@(GaN)48 18.94 101.92 1.93 1.94 2.18 (0.2) 3.04 (0.1) 

Figure 6. Bond distribution plots for the double bubble frameworks. Red line: Dispersion 

of Gaussian = 0.02, Blue line: Dispersion of Gaussian = 0.1. 

 

Table 5. Structural parameters of wurtzite phases. 

System Lattice parameter, a (Å) Lattice parameter, c (Å) Bulk modulus (GPa) u 

ZnO 3.251 5.204 146.136 0.382 

GaN 3.187 2.760 188.367 0.378 

We observe that the framework system of (GaN)12@(ZnO)48 has a similar inter-bond length 

distribution to that found in the double bubble systems which is again due to the fact that the smaller 

GaN cage has more freedom to move inside the larger ZnO bubble. The (GaN)12@(ZnO)48 system has 

a more clearly defined bi-modal distribution for the framework systems than observed for the double 

bubble cluster systems, and is likely due to reduced degrees of structural freedom with the extended 

bulk framework. Table 6 gives the formation enthalpies for the framework systems, and although these 

energies are positive i.e., unfavourable with respect to the pure bulk wurtzite phases, they are small 

enough to be accessible at experimental temperatures, and are comparable to the formation of fullerene 

(C60) with respect to bulk carbon (ca. 40 kJ/mol) [25,26]. The pure GaN double bubble framework was 

found to be the least likely to form, whereas the (GaN)12@(ZnO)48 framework was found to be most 

favourable—again agreeing with the formation energy double bubble cluster findings. 



Inorganics 2014, 2 259 

 

 

Table 6. Enthalpy of formation per atom of double bubble frameworks as defined in 

Equation (2). 

System HF/atom (kJ/mol) 

(GaN)12@(ZnO)48 13.17 

(ZnO)12@(GaN)48 21.46 

(ZnO)12@(ZnO)48 18.54 

(GaN)12@(GaN)48 27.71 

When we compare the energies of mixing (using Equation (3)) we find that the energies per atom 

for (GaN)12@(ZnO)48 and (ZnO)12@(GaN)48 are 1.98 kJ/mol and −2.61 kJ/mol, respectively.  

4. Computational Detail 

4.1. Interatomic Potentials Calculations 

We have used the semi-classical GULP code [27] to construct and optimise ZnO structures prior to 

refining them with DFT. We employed polarisable shell inter-atomic potentials parameterised for bulk 

ZnO [7,28] in the double bubble cluster and framework calculations. The resulting atomic structures 

were used not only for ZnO, but also GaN and mixed ZnO/GaN structures; note that the bond lengths 

in GaN are very similar those in ZnO (see Tables 1–3 in Section 3), and we only required approximate 

initial atomic coordinates for input into the DFT calculations, as outlined below. 

4.2. Density Functional Theory Calculations 

In all of the ab initio calculations, we have used the solids-corrected Perdew-Burke-Ernzerhof 

(PBEsol) GGA exchange-correlation functional [29,30], and all structural optimisations were deemed 

converged when the atomic forces were less than 0.01 eV/Å. 

A natural choice for the calculations on the double bubble clusters, due to its computational 

efficiency, is the DFT code FHI-aims [31] as it uses numeric atom-centred basis sets. These 

calculations were performed with the species defaults for the ―tight‖ basis sets for accuracy (energies 

converged to 1 meV/atom) and with scalar ZORA relativistic treatment [32]. We have used the  

plane-wave DFT code VASP [33–36] to determined the equilibrium structures of the double bubble 

based framework (extended crystal systems—see Section 2), and, for comparison, wurtzite bulk ZnO 

and GaN. Within VASP, we employed the projector augmented wave (PAW) method [37] to describe 

the interactions between the cores (Zn:[Ar], Ga:[Ar], O:[He] and N:[He]) and the valence electrons. 

To determine the equilibrium bulk structures avoiding the problem of Pulay stress, we have 

optimised the atomic coordinates at a series of different volumes, and fitted the resulting energy versus 

volume data to the Murnaghan equation of state. 

We have found that for the framework systems, an energy cut-off of 500 eV, and Monkhorst-Pack 

k-point meshes of 8 × 8 × 6 and 1 × 1 × 1 for, respectively, the pure bulk wurtzite systems, and  

the (A)12@(B)48 systems, where A and B stand for either ZnO or GaN, provide convergence in  

total energy up to 10
−5

 eV for the framework systems, which is comparable with our double bubble 

cluster calculations. 
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5. Conclusions 

We have constructed double-bubble clusters and frameworks of ZnO and GaN from a bottom up 

approach from cage structures analogous to fullerenes formed from hexagonal building units [15,16,22]. 

The four systems we have considered, (GaN)12@(ZnO)48, (ZnO)12@(GaN)48, (ZnO)12@(ZnO)48 and 

(GaN)12@(GaN)48, were first geometry optimized using a semi-empirical potential within the GULP 

code and then refined using FHI-aims (for the double bubble clusters) or VASP (for the frameworks) 

at the DFT level of theory using the PBEsol exchange-correlation functional. We found that although 

the average bond lengths of both ZnO and GaN are similar, the average bond lengths for ZnO inner 

bubbles were larger than the GaN inner bubbles of both the double bubble cluster systems and the 

frameworks. This relative size difference, we believe, means that the larger ZnO inner bubble fills in 

the space offered by the smaller GaN outer bubble better than the GaN counterpart. In addition, we 

found that the greater flexibility of the ZnO bubbles from calculations of bulk moduli, as compared 

with that of GaN bubbles, means that the size mismatch between the inner bubble and outer bubble is 

more readily accommodated by ZnO. Furthermore, the structural analysis of the pure ZnO double 

bubbles also showed the greater deformations. The average M-X inter-bubble bonds were found to 

exhibit a bi-modal distribution for both clusters and frameworks, except for the pure ZnO and 

(ZnO)12@(GaN)48 framework systems. These single-peak distributions were due to the larger ZnO 

inner bubble that has less freedom to move than in the inverse systems. The association energies of the 

double bubble clusters show that the systems investigated here are favourable when compared to 

individual bubbles, although when compared to bulk wurtzite phases, the clusters are less favourable. 

The standard formation enthalpies for the framework systems are lower than those of carbon 

fullerenes. Therefore, we suggest that these double bubble systems should be thermodynamically 

accessible and could provide valuable material properties in the future. 
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