
  

Smart Management of the 

Charging of Electric Vehicles 
 

 

 

THESIS SUBMITTED FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

 

 

EROTOKRITOS XYDAS 

 

 

 

INSTITUTE OF ENERGY 

SCHOOL OF ENGINEERING 

CARDIFF UNIVERSITY 

 

 

CARDIFF, 2016 

  



ii 

 

ABSTRACT 

The objective of this thesis was to investigate the management of electric 

vehicles (EVs) battery charging in distribution networks.  

Real EVs charging event data were used to investigate their charging 

demand profiles in a geographical area. A model was developed to analyse 

their charging demand characteristics and calculate their potential medium 

term operating risk level for the distribution network of the corresponding 

geographical area. A case study with real charging and weather data from 

three counties in UK was presented to demonstrate the modelling framework. 

The effectiveness of a charging control algorithm is dependent on the early 

knowledge of future EVs charging demand and local generation. To this end, 

two models were developed to provide this knowledge. The first model 

utilised data mining principles to forecast the day ahead EVs charging 

demand based on historical charging event data. The performance of four data 

mining methods in forecasting the charging demand of an EVs fleet was 

evaluated using real charging data from USA and France. The second model 

utilised a data fitting approach to produce stochastic generation forecast 

scenarios based only on the historical data. A case study was presented to 

evaluate the performance of the model based on real data from wind 

generators in UK. 

An agent-based control algorithm was developed to manage the EVs 

battery charging, according to the vehicles’ owner preferences, distribution 

network technical constraints and local distributed generation. Three agent 

classes were considered, a EVs/DG aggregator and “Responsive” or 

“Unresponsive” EVs. The real-time operation of the control system was 

experimentally demonstrated at the Electric Energy Systems Laboratory 

hosted at the National Technical University of Athens. A series of 

experiments demonstrated the adaptive behaviour of “Responsive” EVs 

agents and proved their ability to charge preferentially from renewable energy 

sources.  
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CHAPTER 1  

INTRODUCTION 

1.1 ELECTRIC VEHICLES DEFINITIONS 

Electric Vehicles (EVs) are automobiles which their motion is supported 

by an electric engine. EVs are classified in three categories: i) Fuel Cell 

Electric Vehicles (FCEVs), ii) Battery Electric Vehicles (BEVs) and iii) 

Hybrid Electric Vehicles (HEVs). In this classification, vehicles with a 

permanent cabled connection to the grid such as trams are excluded. 

Each type of EVs absorbs the necessary energy for its driving needs from 

a different power source. Fuel cells supply energy to FCEVs while batteries 

provide power to BEVs. HEVs are composed of an Internal Combustion 

Engine (ICE) and an electric engine and thus the power source of the 

corresponding engines are fossil fuels and batteries. In addition, HEVs with 

the capability to recharge their battery from the electricity grid are referred to 

as Plug-in Hybrid Electric Vehicles (PHEVs). 

This thesis considers only BEVs and PHEVs which electricity supplied by 

the electric power system is used to recharge their batteries.  If not mentioned 

otherwise, in this thesis the term EVs will refer to these two types of battery 

EVs. 

1.2 IMPACTS OF EVS CHARGING ON DISTRIBUTION 

NETWORKS 

Road transport is a significant contributor to greenhouse gas emissions 

(GHG) and reductions are required for moving United Kingdom (UK) to a 

low carbon future in order to meet the Climate Change Act targets, based on 

UK Department for Transport (DfT) [1]. The electrification of transport offers 



2 

 

a good opportunity to decrease carbon dioxide emissions (CO2) and increase 

the national energy security.  

Governments and local authorities provide incentives to EVs owners 

aiming to boost EVs adoption by decreasing the total cost of ownership of 

EVs compared to conventional ICE vehicles. The financial incentives, in 

combination with a potential increase in the oil prices, lead customers to 

consider EVs as a reliable and economical solution for transportation.  

The development of an EVs market is strongly dependent on the parallel 

development of the recharging infrastructure which will result in a spatially 

uneven increase in the electricity demand. The UK government supports the 

penetration of ultra-low emission vehicles by announcing recently a £37 

million funding package for providing 75% of the cost of installing new 

charging points in order to motivate the EVs drivers to reduce their range 

anxiety. 

EVs are a mobile source of demand, charged for relatively long periods of 

time and as a result of this, EVs could place significant coincident demand on 

the system. The uncontrolled charging of EVs might increase the system’s 

peak demand, exceeding voltage limits and/or overloading lines and 

transformers [2], [3]. When higher level of EVs penetration is considered, 

such phenomena are more often and intense [4]. If all the registered vehicles 

in United States had to charge 5-10kWh on a daily basis, this would lead to 

an increase of 12-23% at the electricity generation requirement [5]. In UK, an 

uncontrolled EVs charging regime increases the British winter day peak 

demand by 3.2 GW (3.1%) for a low EVs uptake case (7%) and the British 

winter day peak demand by 37GW (59.6%) for a high EVs uptake case 

(48.5%), for the year 2030 [6], [7]. 

In order to maintain the normal operation of the power grid, the generation 

capacity must be increased to meet this new additional demand of EVs 

charging. Equipment, especially in the existing distribution and transmission 

networks, will be overloaded and this may affect the stability and reliability 

of the power system. It is anticipated that the system may face voltage-drops, 

power losses increase and overloading of distribution transformers [7]. The 
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impact of EVs charging is significant for the Distribution Network Operators 

(DNOs) as there is a need to manage the line congestion and voltage drops 

[6]. The future electricity networks will also have to integrate distributed 

generators, as well as energy storage and adapt to new types of demand in 

addition to the need to power EVs [8]. Network reinforcement is one solution 

to cope with the large deployment of EVs, however this solution is expensive. 

An alternative way is to integrate smart grid control techniques which avoid 

large investments on the electricity grid. 

1.3 THESIS OBJECTIVES  

The key question that this thesis aims to address is how electric vehicle 

battery charging can be managed to be integrated in distribution networks. 

To answer this question, the following objectives were set: 

i. Design and develop a risk assessment framework for identifying 

the risk level of EVs charging demand in a geographical area.  

ii. Design and develop forecasting techniques which can be used in 

the smart management of EVs charging.  

iii. Design and develop a scheduling algorithm for the coordination of 

EVs battery charging. 

iv. Demonstrate experimentally the performance of the charging 

control algorithm in a micro-grid laboratory. 

1.4 THESIS CONTRIBUTIONS 

The main contributions of this thesis regarding the smart management of the 

charging of EVs are summarised below: 

i. A complete data analysis framework for handling real EVs 

charging data was proposed. This analysis determines the relative 

risk of EVs charging demand among different geographical areas 

and defines the necessity for a charging control algorithm.  

ii. Two forecasting methods were developed to be used in the smart 

management of EVs charging. These methods aim to forecast the 

day-ahead EVs charging demand and the day-ahead local 
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distributed generation (DG). Their outputs improve the 

performance of a charging control model.  

iii. A control algorithm to manage EVs charging demand was 

developed utilising the future knowledge of EVs battery charging 

and local DG.  

iv. The performance of the charging control algorithm was 

demonstrated through simulation and experimental case studies. 

1.5 LIST OF PUBLICATIONS 

The research work described in this thesis has been accepted for 

publication or published in the following peer-review journals and conference 

papers: 

Journal Papers 

i. Xydas, E., Marmaras, C., Cipcigan, L. M., Jenkins, N., Carroll, S., 

& Barker, M. (2016). A data-driven approach for characterising 

the charging demand of electric vehicles: A UK case study. 

Applied Energy, 162, 763-771.  

 

ii. Xydas, E., Marmaras, C., & Cipcigan, L. M. (2016). A multi-agent 

based scheduling algorithm for adaptive electric vehicles 

charging. Applied Energy, 177, 354-365.  

 

iii. Xydas, E., Qadrdan, M., Marmaras, C., Cipcigan, L. M., Jenkins, 

(2016),  Probabilistic Wind Power Forecasting and its Application 

in the Scheduling of Gas-fired Generators. Accepted at Applied 

Energy. 

 

Book Chapters 

iv. Xydas, E., Marmaras, C., Cipcigan, L. M., & Jenkins, N. (2015). 

Smart management of PEV charging enhanced by PEV load 
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Forecasting. In Plug In Electric Vehicles in Smart Grids (pp. 139-

168). Springer Singapore.  

 

Conference Papers 

v. Xydas, E. S., Marmaras, C. E., Cipcigan, L. M., Hassan, A. S., & 

Jenkins, N. (2013, September). Forecasting electric vehicle 

charging demand using support vector machines. In Power 

Engineering Conference (UPEC), 2013 48th International 

Universities' (pp. 1-6). IEEE.  

 

vi. Xydas, E. S., Marmaras, C. E., Cipcigan, L. M., Hassan, A. S., & 

Jenkins, N. (2013, November). Electric vehicle load forecasting 

using data mining methods. In Hybrid and Electric Vehicles 

Conference 2013 (HEVC 2013), IET (pp. 1-6). IET. 

1.6 THESIS STRUCTURE 

This thesis is structured as follows: 

Chapter 2:  The relevant literature used in the thesis is presented. An 

overview is given with regards to: a) the smart management of the charging 

of EVs, b) charging control architecture types, c) charging control strategies, 

d) charging control techniques.  

Chapter 3: A characterisation framework for EVs charging demand is 

presented. A data analysis methodology is used to extract information hidden 

behind charging events in order to identify the characteristics of the EVs 

charging load. This information is then used by a fuzzy based characterisation 

model to estimate the underlying relative risks for the distribution networks 

among different geographical areas independently to their actual 

corresponding distribution networks. The framework is applied on a dataset 

of real charging events from three counties in UK and their “risk level” index 

is calculated. 
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Chapter 4: Two forecasting models which can be used for the smart 

management of EVs charging are presented. The first model utilises data 

mining principles in order to forecast the day-ahead charging demand of EVs. 

The performance of four data mining methods in forecasting the charging 

demand of an EVs fleet is evaluated using real EVs charging event data. The 

second model is used to produce day-ahead stochastic forecast scenarios for 

the local DG in a geographical area. The impact of frequent updating of the 

forecasts is investigated using a rolling forecasting approach. A case study is 

presented to evaluate the performance of the forecasting model using times 

series of real wind power data from wind generators in UK. 

Chapter 5: A decentralised algorithm to manage the EVs charging 

schedules, enhanced by EVs load forecast is presented. The aim of the control 

algorithm is to achieve a valley-filling effect on the demand curve, avoiding 

a potential increase of the peak demand. In this control algorithm, a realistic 

scenario for the future composition of the EVs is considered. EVs are 

separated in “Responsive” and “Unresponsive” to control signals coming 

from an aggregator. The importance of forecasting the charging demand of 

EVs to the control algorithm is illustrated through simulation case studies. 

Chapter 6: An improved version of the decentralised scheduling 

algorithm for EVs charging presented in Chapter 5 is described in Chapter 6. 

Their main difference is the additional capability of the advanced model to 

coordinate EVs charging in order to maximise the use of the local DG for the 

EVs charging. The performance of the advanced control algorithm is 

experimentally demonstrated at the Electric Energy Systems (EES) 

Laboratory hosted at the National Technical University of Athens (NTUA). 

The results showed the adaptive behaviour of “Responsive” EVs agents and 

proved their ability to charge preferentially from Renewable Energy Sources 

(RES). 

Chapter 7: The main conclusions of this thesis are summarised. 

Suggestions for further work are also given. 
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CHAPTER 2  

LITERATURE REVIEW  

2.1 INTRODUCTION 

Due to environmental concerns and energy security issues, the EVs car 

sales is anticipated to increase in the following years. A large deployment of 

EVs will lead to lower GHG, fuel efficiency, oil independency and increased 

penetration of renewable energy. Road transport today is dominated by oil-

delivered fuels and ICE vehicles and such a high level of dependence on one 

single source of primary energy carries strategic, climatic and economic risks.  

Electric mobility offers an opportunity for diversification of the primary 

energy sources used in transport, but also brings new risks, technological 

challenges and commercial imperatives. Depending on the location and the 

times the EVs are plugged in, they could cause local constraints on the grid. 

For the extreme scenario of the penetration of EVs in Great Britain in 2030, 

it is estimated that the electricity demand will increase by 59.6 percent [7]. 

The integration of EVs is considered as a promising alternative to reduce 

transportation related emissions and improve energy consumption efficiency. 

However, EVs may not reduce GHG emissions unless the carbon intensity of 

electricity sector is improved [9]. Charging EVs from RES (e.g. solar, wind) 

may contribute to achieve environmental benefits.  

Changes in the electricity demand will occur as a result of the EVs uptake. 

Due to the temporal and spatial variability of EVs charging energy patterns, 

the load demand at the national level is expected to increase. The impacts of 

EVs charging in distribution networks create higher power peaks, overload 

power transformers, causing voltage drops and line over-loading [10]–[12]. 
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Demand Side Management (DSM) is seen as an effective solution to 

address these challenges in the existing distribution networks. EVs offer 

opportunities for effective DSM, utilising their flexibility with regards to the 

time of charging. Therefore, EVs charging management is a potential solution 

to shift charging demand based on the renewable energy production or to shift 

charging to off peak hours, decreasing voltage fluctuation and transformer 

loading.  

The philosophy of adapting power demand to power generation is applied 

to maintain the normal operation of the electricity grid. Coordinating EVs 

charging is an effective and low cost solution to reduce the impacts of this 

additional electricity demand on the electric power systems. The majority of 

EVs owners are expected to plug in their vehicles in the evening hours when 

they return home after work. They would like to have their vehicles fully 

charged the next day in the morning when they go to work. Considering the 

fact that no less than 90% of the cars are parked during the day, there is 

opportunity to shift the electricity consumption from EVs charging to times 

with lower demand [7]. Smart charging control algorithms make use of this 

flexibility in order to reduce peak loads or charge EVs preferentially from 

RES. These algorithms define the charging schedules of EVs based on their 

objective (e.g. valley-fill, peak shaving, and frequency regulation).  

Due to the EVs impact on distribution networks, EVs charging control 

models have attracted substantial research attention. Each charging control 

model is slightly different in terms of specific attributes and geographical area 

applications. The main differences are related to the (i) decision level of 

charging, (ii) existence of forecasting actions, (iii) implementation techniques 

used for solving the charging scheduling problem, (iv) strategy goal, (v) type 

of constraints, and (vi) option of utilising EVs battery as a storage unit via 

(Vehicle-To-Grid) V2G operation. 

2.2 CHARGING CONTROL MODEL ENTITIES 

EVs management schemes consist mainly of two type of entities, the EVs 

aggregator and the individual EV. The EVs aggregator represents an energy 
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market entity which can manage the EVs charging demand directly or 

indirectly. In some cases, the EVs aggregator can also manage small scale 

renewable energy generation in a geographical area, and utilises the flexibility 

from EVs to consume this generation locally. The EVs are entities 

representing the EVs owner’s preferences and their rational behaviour. There 

are two types of EVs aggregators: 

i. Commercial aggregator: The objective of the aggregator is to 

minimise the cost of charging. 

ii. Technical aggregator: The objective of the aggregator is to 

optimise the operation of the grid. 

In [13] and [14], a technical aggregator was used to manage the EVs 

charging for technical objectives and in particular to: 

i. Minimise system losses  

ii. Peak shaving  

iii. Line Congestion management and voltage regulation  

iv. Maximise power delivered within defined time intervals  

For the technical aggregator, information regarding the network topology 

including the location of generators, non-EVs loads and EVs are assumed to 

be known in advance. 

In [15] and [16] commercial aggregator was used to manage the EVs 

charging for commercial objectives and in particular to: 

i. Minimise the EVs charging cost 

ii. Enabling market participation 

For a commercial aggregator, information regarding electricity wholesale 

prices, electricity tariff zones and other service revenues agreements are 

assumed to be known on a day-ahead basis. 

2.3 CHARGING CONTROL ARCHITECTURE 

The charging control models are classified in centralised and decentralised 

based on the decision making entity which controls the charging schedules.    
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2.3.1 Centralised Charging Control 

A centralised control approach is applied to a system when the intelligence 

is gathered in one central unit and this unit controls the actions of all the other 

components of the system. The central control unit is responsible to manage 

the EVs charging demand, controlling directly the charging process of each 

EVs. The EVs aggregator sends control signals to every EV individually, 

containing information for its own charging schedule. EVs obey at the control 

signal and charge based on the generated charging schedules. The EVs 

aggregator calculates the EVs charging schedules, based on its control 

strategy and objectives. This is achieved by calculating the impact of a 

charging schedule on the aggregated charging demand. The main 

assumptions used for the centralised management of the EVs charging are: 

i. The EVs aggregator defines the individual charging schedules of 

each EV and then EVs charge based on the control signals 

broadcasted by the EVs aggregator. 

ii. The EVs aggregator has knowledge about the EVs owner 

preferences regarding desired SOC when plug out, charger power 

ratings as well as the arrival and departure time. 

iii. The daily profiles for the non-EVs load demand and generation are 

known. These are reported as the outputs of forecasting models. 

A main drawback of centralised control, is that the computational 

complexity, information exchanges and required communications links are 

increasing with large populations of EVs. The centralised control strategy 

requires high computational power and communication links as the number 

of EVs is increasing, making this strategy inappropriate for large population 

of EVs. Centralised control approaches are found to perform well for a limited 

number of EVs. While the number of EVs is increasing, the interactions 

between EVs and the central aggregator become more complicated. This bi-

directional communication requires a large amount of data to be acquired and 

processed from a central unit, increasing the minimum requirements of the 

computational resources [17]. Figure 2.1 shows the architecture of centralised 

charging control approach. 
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Figure 2.1: Architecture of a Centralised Charging Control 

2.3.2 Decentralised Charging Control 

In a decentralised control approach, the intelligence is distributed among 

the components of the system. In a decentralised charging control approach, 

decision making processes are done both from the EVs aggregator and EVs. 

Based on the level of the decentralisation, a decentralised charging control 

model can be further classified as fully decentralised and hierarchical 

decentralised. 

In a fully decentralised charging control approach, EVs define their own 

charging schedules dependent on the signals received from the EVs 

aggregator. In a hierarchical decentralised charging control approach, 

intermediate aggregation layers exist between the EVs aggregator and the 

EVs. Similar to the fully decentralised approach, EVs define their own 

charging schedules based on signals received from the EVs aggregator 

located at the above aggregation layer. 

In decentralised charging control algorithms, the charging decisions are 

taken by EVs, by having knowledge of the local condition of the distribution 

network and involves less communications. 

The main assumptions used for the decentralised management of the 

charging of EVs are: 
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i. The EVs aggregator broadcasts control signals based on its 

objectives.  Each EV is defining its individual charging schedule 

aiming to fulfil its own goals. This results indirectly in achieving 

the global objectives of the charging management system. 

ii. The EVs aggregator does not have knowledge about the EVs owner 

preferences. 

iii. When considered, the daily profiles for the non-EVs load demand 

and generation are known. These are reported as the outputs of 

forecasting models. 

In contrast, the effectiveness of the distributed control techniques is 

independent to the number of EVs, as each EVs solves the scheduling 

problem individually. Figure 2.2 shows the architecture of decentralised 

charging control approach. 

 

Figure 2.2: Architecture of a Decentralised Charging Control 

2.4 CHARGING CONTROL STRATEGIES 

The charging control strategy defines the objectives of a charging control 

algorithm. The main objectives aim to ensure the normal operation of a 

distribution network satisfying the charging requests of the EVs owners.  

A popular approach for allocating EVs charging at the off-peak hours is 

the valley filling and peak shaving strategies. In this strategy, EVs are 
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coordinated to charge when the load demand is low. Scheduling EVs demand 

to fill the overnight non-EVs demand “valley” minimises the electricity 

generation costs [17] and thus the cost of EVs charging.  

In [18], a valley filling and peak shaving charging control strategies was 

followed. The EVs’ batteries were used as distributed energy storage systems 

to maintain the node voltage within the prescribed technical limits. This was 

achieved using fuzzy logic controllers to stabilise the grid. In [19] a 

decentralised charging control algorithm  was developed, following a valley 

filling strategy. Each EV defines its own charging rate iteratively based on 

control signals broadcasted by a utility company. These signals reflect the 

valley level of the load demand curve. Using these signals the utility guided 

the EVs charging decisions. The coordination of EVs charging resulted in 

minimising the power losses using high uptake of EVs without network 

constraints violation.  

In [20], a decentralised algorithm was developed to optimally schedule the 

EVs charging. The elasticity of electric vehicle loads was used to achieve a 

valley filling effect. The EVs charging scheduling strategy was formulated as 

an optimisation problem, aiming to flatten the demand curve. An iteratively 

process was used to coordinate EVs to charge according to control signals 

from a utility company. After each iteration, the utility was modifying 

dynamically the control signals based on the aggregated demand from the 

defined EVs charging schedules. The optimal charging profiles resulted in a 

valley filling effect on the non-EVs electricity demand curve. 

In addition, many control strategies aim at minimising the power losses 

and improving the voltage profiles. A smart load management control 

strategy is developed in [14], for coordinating EVs charging resulting in 

shaving peak demand, improving voltage profile and minimising the power 

losses. In [21], a real-time EVs charging scheduling algorithm was developed 

to manage the EVs charging to minimise system losses and to keep voltage 

between statutory limits.  

High penetration levels of RES can affect the generation mixture of each 

country. At those high uptakes, the distributed generators will cause voltage 
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rises during times of low demand at the low voltage (LV) feeders. Managing 

the EVs charging can effectively utilise the intermittent and dispersed 

generation capability which is highly depended on the local weather.  

In [22], a centralised smart EVs charging control algorithm for smart 

homes/buildings with a Photovoltaic (PV) system is presented. The optimal 

EVs charging schedules are determined based on the predicted PV output and 

electricity consumption. The EVs charging scheduling problem was 

formulated as an optimisation problem subject to (i) EV charging level, (ii) 

battery capacity, (iii) charging rate, and (iv) user preferences. The accuracy 

of the PV forecast model influences the performance of the model indicating 

the importance of a real time management of the charging of EVs. In [23], a 

distributed EVs charging strategy is presented, coordinating EVs charging 

schedules based on real-time energy market price signals. Each EV modifies 

the charging rate providing voltage support when necessary. This 

management of the EVs charging allows higher penetrations of distributed 

PV solar arrays, as EVs could charge when PV generation is high. In [23] 

V2G was not considered in the charging management scheme due to potential 

adverse impacts on the battery life.  

Managing the charging of EV battery, requires the participation in the 

control scheme. However, a successful control scheme must consider the EV 

owner preferences trying to maximise the satisfaction of the EVs owners.  

In [24] a centralised charging control algorithm was designed giving 

priority to the customer’s satisfaction. The controller’s goals are to minimise 

the total charging cost of customers and to maximise the revenues of the 

aggregator while satisfying the customer preferences regarding starting time, 

finishing time and desired SOC at the departure time.  Constrains regarding 

the maximum power delivery capacity were considered to ensure the normal 

operation of the distribution network. Static and dynamic charging scenarios 

were considered.  In the static charging scenario, linear programming (LP) 

based optimal schemes were used, considering effective heuristic algorithms 

for the dynamic problems. In the static scenario the customers’ charging 

preferences are provided in advance to the aggregator and in the dynamic 
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charging scenario, the EVs aggregator does not have knowledge when EVs 

may come and leave. It was demonstrated that the dynamic charging 

scheduling schemes provide near optimal solutions. 

A decentralised EVs charging control algorithm is developed in [25], 

aiming to maximise the power delivered to EVs batteries subject to the 

technical grid constraints. Each EV defines the maximum charging rate of its 

own charging connection point while maintaining the voltage and cables 

loading within acceptable limits. 

In addition, a decentralised control algorithm for EVs charging is 

presented in [26], aiming to maximise the levels of the user convenience. The 

charging coordination problem was formulated as an optimisation problem. 

The output of the optimisation problem defines the binary charging decisions 

(charged or not charged) of each individual EV. This charging control 

algorithm follows an on-off strategy to satisfy the EVs charging requirements 

while meeting circuit-level demand limits. The decentralised formulation of 

the charging coordination does not require the disclosure of private user state 

information, eliminating privacy issues which may emerge from a centralised 

control approach. In addition, it was stated that this decentralised control 

algorithm requires low-speed communication capability, addressing its 

suitability for a real-time application.  

Finally, as the most expensive part of an EV is its battery, an interesting 

approach considering the battery state of health (SOH) was proposed in [27]. 

The four main factors that affect the battery life are temperature, SOC, 

charging current and depth of discharge (DOD). The battery degradation can 

be postponed when the battery is charged at low temperature, low SOC, low 

charging current and low DOD [28]. In [27] a novel decentralised EV 

charging control model is proposed in which a fuzzy logic controller 

determines the suitable charging current based on information given from the 

smart charger, EVs Battery Management System (BMS) and user. The 

capability of the control model to provide grid voltage support, extend battery 

life and satisfy the user’s charging requirement was experimentally 

demonstrated through case studies. 
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2.5 CHARGING CONTROL TECHNIQUES 

The main techniques used for the implementation of a charging control 

strategy include Time-of-Use (ToU) pricing policies, optimisation 

approaches, game theory principles, heuristic search approaches, Multi 

Agents Systems (MAS). Finally, additional charging control models exist 

utilising forecasting processes and V2G for the EVs charging management.  

ToU prices are used for the management of EVs charging in [29]. ToU 

tariffs are financial incentives for EVs users to charge their vehicles during 

periods where the network is less loaded and thus the electricity rates are low. 

The charging coordination is formulated as an optimisation problem aiming 

to minimise the charging cost of EVs. The acceptable charging power of EVs 

battery for a specific battery SOC was considered in the charging 

coordination, solved by a heuristic approach designed to solve this problem. 

The results demonstrated the performance of the model cost, showing a 

reduction and flattening of the load curve. 

EVs charging scheduling is by nature a multi-objective optimisation 

problem dealing with the trade-off between network operations and the 

customer’s satisfaction.  In [30] a EVs charging management was achieved 

by controlling the rate at which EVs charge. A LP technique was used to 

determine the optimal charging rate for each individual EV, aiming at 

maximising the power delivered to EVs while maintaining the normal 

operation of the distribution network. This control approach is maximising 

the utilisation of the available network delivery capacity by avoiding 

excessive voltage drop and systems’ components overloading.  

In [31]–[33] game theory principles are used to optimise the charging 

scheduling demand by formulating the charging problem as cooperative or 

non-cooperative game and trying to reach the Nash equilibrium.  

A decentralised MAS management system for the charging of EVs is 

presented in [17]. The charging control model aims to satisfies the energy 

requirements of a large number of EVs based on the EVs owner’s preferences 

and normal operating limits of the corresponding distribution network. The 
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charging coordination problem was described as a cooperating game among 

EVs for achieving a valley filling on the total demand curve. The valley filling 

capability of EVs demonstrated that this behaviour leads to maximisation of 

load factor and minimisation of energy losses. 

 Distribution transformer and voltage constraints are considered for the 

charging management of a fleet of EVs  [34]. The objective is to maximise a 

utility function in a distributed way, allocating most charging power to the 

EVs with the highest need for energy. The advantage of this algorithm is the 

low requirements for iterative exchange of messages among EVs agents, as 

only one message is required for charging coordination. 

Heuristic approaches for the charging coordination were used in [35], [36]. 

A heuristic algorithm is developed in [35], to manage the EVs charging in  

commercial building microgrids. The charging control strategy aims to 

increase the utilisation of the PV energy mitigating the charging impact on 

the distribution network. Considering the SOC of EVs batteries and variation 

of PV output, the charging rate of EVs is dynamically adjusted. It was stated 

that the strategy is designed to operate without forecasting the PV output or 

EVs charging demand, resulting in lower cost of computation resources.  

In [36], both centralised and decentralised control approaches were 

proposed. Firstly, the EVs charging management was formulated as a 

centralised finite-horizon optimisation problem, aiming to maximise the total 

utility of charging service providers. Then the initial model was decomposed 

into several sub-problems which can be solved iteratively, locally and in 

parallel using updated broadcasted control signals from the EVs aggregator. 

A heuristic approach was used to efficiently accelerate the convergence of the 

charging scheduling problem. 

A smart load management strategy for the coordination of EVs charging 

is proposed in [37]. This strategy aims to minimise the total charging cost and 

the energy losses. Time-varying market energy prices defined the EVs owner 

priority charging time zones, while ensuring the normal operation of the 

distribution network (such as losses, generation limits, and voltage profile). 
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A noticeable category of EVs charging control models utilise forecasting 

processes in order to enhance their performance. EVs charging load is a 

specific type of demand associated with the travel patterns of the EVs owners. 

Their daily trips determine their energy requirements for recharging the EVs 

batteries as well as the times they connect and disconnect their vehicles to the 

charging stations. The information of where and when the EVs owners will 

recharge their vehicles will lead to a more effective algorithm for 

coordinating the EVs charging schedules. In the future smart grids there will 

be a bi-directional flow of information allowing the network operators to 

collect data of the charging events within a geographical area.  

Forecasting processes as part of the EVs charging management are also 

included in [38] and [39]. Statistical models and Markov-processes are used 

to deal with the uncertainties related to the EVs travel patterns and renewable 

generation output. The performance of a control model is mentioned to be 

dependent on the accuracy of the predictions of a forecasting model used in 

the charging management.   

In [38], a real-time centralised charging control algorithm was developed 

to manage the EVs charging  in a grid-connected park of an 

industrial/commercial workplace. Diversity considering different sizes and 

battery capacities of EVs as well as a PV profile was applied. Probabilistic 

scenarios were developed using statistical models to describe the 

uncertainties regarding (i) the PV power, (ii) the PHEVs arrival time, and (iii) 

the energy available in their batteries upon their arrival. Based on these 

uncertainties, the charging control model manages the EVs charging aiming 

to reduce their overall daily charging cost, mitigating the impact of the 

charging park on the main grid, and contributing to shaving the peak of the 

load curve. This charging control model manages the aggregated EVs 

charging demand, considering it as a bulk of power connected to the grid. 

This is achieved by using a fuzzy controller for the charging management, 

allowing Vehicle-to-Vehicle (V2V) and V2G services between the charging 

park and the main alternating current (ac) grid.  
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In addition, a scheduling algorithm for EVs charging at a charging station 

with multiple charging points is developed in [39]. Renewable energy 

generation devices were available for the EVs charging in addition to the 

power from the grid. Independent Markov processes were used to model the 

uncertainties regarding the arrival of EVs, the intermittence of the renewable 

energy, and the variation of the grid power price. The objective of the control 

model is to minimise the mean waiting time for the charging of EVs subject 

to cost constraints. This is achieved by converting the EVs queue to the 

charging demand queue. It was proved that minimising the charging demand 

queue is equivalent to minimising the EVs waiting time. 

Finally, charging control algorithms, where V2G and V2V power 

transactions functionalities are supported during the charging process, 

become more popular. Such algorithms are described in [40] and [41]. These 

functionalities were required for the intelligent workplace parking garage for 

PHEVs described in [40]. The components of the charging management 

system include a smart power charging controller, a 75-kW PV panel, a direct 

current (dc) distribution bus, and an ac utility grid. In this work, the future 

charging demand of PHEVs and the output power of the PV panels were 

reported as output of a forecasting model. A fuzzy logic power-flow 

controller was used to determine the EVs charging rates aiming at minimising 

the impact of the PHEVs’ charging on the utility ac grid. Five different classes 

of PHEVs were considered based on their battery state of charge (SOC) and 

thus their charging needs. The fuzzy logic power-flow controller assigns 

different charging rates, prioritising the higher charging rates PHEVs with 

higher energy needs. The output of the PV forecasting model, the aggregated 

power demand of the PHEVs, and the electricity daily cost profile are 

affecting the charging rates. During the charging process, V2G and V2V 

power transactions are also assumed. 

V2G services were also used in the charging control model described in 

[41]. The flexibility of EVs with V2G capability were utilised to absorb 

energy from wind power generators when is available, otherwise from the 

distribution grid. EVs charging and discharging is dynamically scheduled 
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with the aim to minimise the charging cost subject to constraints related to 

satisfying the grid’s normal operation and EVs charging energy requirements. 

This dynamic regulation of the EVs charging and discharging contributes to 

the stabilisation of the system’s frequency and voltage.  
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CHAPTER 3  

A DATA-DRIVEN APPROACH FOR 

CHARACTERISING THE CHARGING 

DEMAND OF ELECTRIC VEHICLES 

3.1 INTRODUCTION 

As the number of EVs increases, the impacts of their charging on 

distribution networks are being investigated using different load profiles. Due 

to the lack of real charging data, the majority of these load impact studies are 

making assumptions for the electric vehicle charging demand profiles. In this 

chapter a two-step modelling framework was developed to extract the useful 

information hidden in real EVs charging event data. Real EVs charging 

demand data were obtained from Plugged-in Midlands (PiM) project, one of 

the eight ‘Plugged-in Places’ projects supported by the UK Office for Low 

Emission Vehicles (OLEV). A data mining model was developed to 

investigate the characteristics of electric vehicle charging demand in a 

geographical area. A Fuzzy-Based model aggregates these characteristics and 

estimates the potential risk level of EVs charging demand for the 

corresponding distribution network. A case study with real charging and 

weather data from three counties in UK is presented to demonstrate the 

modelling framework. 

EVs offer reduced transportation related emissions, reduce the energy cost 

of driving and in some cases eliminate the use of fossil fuels. The total 

electricity demand is expected to grow as the number of EVs increases [42]. 

The impact of EVs charging on distribution networks has been investigated 

in the literature. The majority of these studies use synthetic data to assess the 
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impact of the EVs charging load due to limited access to real EVs charging 

data. In [43], [44] data from travel surveys are used to create EVs charging 

load profiles, assuming that EVs are travelling like conventional ICE 

vehicles. 

Although EVs adoption is at an early stage, some utilities and aggregators 

are already collecting information from charging stations. A limited number 

of EVs pilots exist around the world, allowing some preliminary studies on 

charging demand profiles. In [45], statistical analysis of 4,933 charge events 

in the Victorian EVs Trial in Australia was performed. Statistical models for 

charge duration, daily charge frequency, energy consumed, start time of 

charge event, and time to next charge event were estimated to express the 

uncertainty of usage patterns due to different user behaviours. Data from the 

Western Australian Electric Vehicle Trial (2010–2012) were analysed in [46] 

and [47], investigating the drivers’ recharging behaviours and patterns. In 

[48], 7,704 electric vehicle recharging event data from the SwitchEV trials in 

the north east of England were used to analyse the recharging patterns of 65 

EVs. The results showed that minimal recharging occurred during off peak 

times. In [49] data from the same project were combined with LV smart meter 

data from Customer Led Network Revolution (CLNR) project and the impact 

of the combined demand profile was assessed on three different distribution 

networks. The results showed that the spatial and temporal diversity of EVs 

charging demand reduce its impact on those distribution networks. Finally, 

data from over 580,000 charging sessions and  from 2,000 non-residential 

Electric Vehicle Supply Equipment’s (EVSE) located in Northern California 

were analysed in [50]. The scope of this analysis was to investigate the 

potential benefits of smart charging utilising the extracted information 

regarding the actual trips and customer characteristics.     

Monitoring the charging events will inevitably create large volumes of 

data. These data require effective data mining methods for their analysis in 

order to extract useful information. In [51]–[53] various data mining 

techniques were utilised to address challenges in the energy sector, such as 

load forecasting and profiling. In  [54]–[56]  data mining modelling 
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frameworks were applied to electricity consumption data to support the 

characterisation of end-user demand profiles. 

The rest of the chapter is organised as follows: Section 3.2 describes the 

real EVs charging data analysed. In Section 3.3 the proposed methodology to 

characterise the EVs charging demand is illustrated. A case study is presented 

in Section 3.4, applying the model on real EVs charging events from UK to 

study the charging demand characteristics, and assess their potential impact. 

Finally, a summary is given in Section 3.5. 

3.2 DATA DESCRIPTION 

EVs charging demand data were obtained from the PiM project 

(http://www.pluggedinmidlands.co.uk/). The PiM project, managed by 

Cenex, is one of the eight ‘Plugged-in Places’ projects supported by OLEV, 

the Office for Low Emission Vehicles in the UK. Two datasets were provided 

by Cenex, with information regarding the charging events and charging 

stations respectively. The charging events dataset consists of 21,918 charging 

events from 255 different charging stations and 587 unique EVs drivers. The 

charging event dataset includes information about the 

connection/disconnection times and the energy of each charging event for the 

period of 2012-2013 with event-occurrence granularity. The charging station 

dataset contains time-independent information regarding the location and 

technical specifications of all charging points (e.g. the charging power rate). 

The contents of the two datasets are listed in Table 3-1 and Table 3-2. 

Table 3-1: Charging Event Data 

Attribute Name Attribute Description 

Connection Time 
Start time of charging event in dd/mm/yyyy 

hh:mm format 

Disconnection Time 
End time of charging event in dd/mm/yyyy 

hh:mm format 

Energy Drawn Energy demand of charging event in kWh  

User Unique ID for every EVs, e.g. EV1, EV2 etc. 

Charging Station Unique ID for every charging station 
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Table 3-2: Charging Station Data 

An additional dataset was acquired from the UK Met Office, with 

information regarding the weather in the Midlands, the geographical area 

under study. This dataset includes the values of various weather information 

(e.g. air temperature) with daily granularity for the period of 2012-2013. The 

weather attributes are listed in Table 3-3. 

 

 

 

 

 

Attribute Name Attribute Description 

Charging Station Unique ID for every charging station 

Latitude Latitude of charging station’s location 

Longitude Longitude of charging station’s location 

Road The road name of charging station’s location 

Post Code The post code of charging station’s location 

County The county name of charging station’s location 

Location Category e.g. Private Parking, Public Parking etc. 

Location Subcategory e.g. Public Car Park, Public On-street etc. 

Ownership e.g. Dealership, Hotel, Train Station 

Host Name of the charging station host 

NCR 
Whether or not the charging station is registered 

on the National Charging Registry (NCR) of UK 

Manufacturer The charging station manufacturer 

Supplier The operator of charging station 

Charger Type Power rate of charging station in kW 

Connector1 Socket Pin Type e.g. 3 Pin, 5 Pin etc. 

Connector2 If exists, the second Socket Pin Type  

Mounting Type e.g. Ground, Wall, Wall (tethered) 
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Table 3-3: Weather Data 

3.3 METHODOLOGY 

The characterisation framework consists of three models: (i) Data Pre-

processing Model, (ii) Data Mining Model and (iii) Fuzzy Based 

Characterisation Model. The Data Pre-processing Model provides data 

merging, cleaning and formatting to prepare the data for the Data Mining 

model. The Data Mining Model consists of three modules namely Clustering 

Module, Correlation Module and Regression Module. These modules were 

used to investigate the shape of the typical daily profile, the predictability 

with respect to weather and the trend of EVs charging demand respectively. 

The Fuzzy Based Characterisation Model aggregates the outputs of the Data 

Mining model into a “risk level” index of EVs charging demand in a 

geographical area using fuzzy logic. The characterisation framework is 

illustrated with Figure 3.1. 

Attribute Name Attribute Description 

Max Air Temperature Daily maximum air temperature (˚C) 

Min Air Temperature Daily minimum air temperature (˚C) 

Mean Air Temperature Daily average air temperature (˚C) 

Mean Wind Speed Daily average wind speed (knots) 

Max Gust  Daily maximum wind speed (knots) 

Rainfall Daily precipitation (mm) 

Daily Global Radiation 
Daily amount of solar energy falling on a 

horizontal surface (kJ/m2) 

Daily Sunny Hours Daily sunshine duration (hours) 
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Figure 3.1: Characterisation framework 

3.3.1 Data Pre-processing Model 

Data of the Connection Time, Disconnection Time, Energy Drawn, 

Charging Station ID, Charger Type and County were selected and merged 

into one dataset (EV dataset). The EV dataset and the weather dataset were 

cleaned, removing missing and incorrect values. In the EV dataset, charging 

events with zero/negative energy were removed from the dataset. Charging 

events with average charging power higher than the nominal charger rate 

were corrected by calculating the actual charging duration using the nominal 

charger power rate. This consideration is based on the assumption that some 

EVs may be connected (parked) in a charging station but they are not 

charging. Therefore, the duration of EVs being connected to a charging 

station can be different to their actual charging duration. Duplicate data 

entries were also discovered and removed from both datasets.  

Data regarding a charging event is recorded from the charging station and 

then forwarded to one or more data collection centres. This process involves 

a number of components and communication links increasing the risk of a 

potential failure in this chain. Corrupted or missing data are not a rare 

phenomenon in such complex communication networks. However, a careful 

analysis at this stage is also beneficial to find the location or the station’s ID 
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from where the corrupted data are recorded, an indication of an abnormal 

operation. 

The next stage of the Data Pre-processing is the Data Formatting stage. 

The EV dataset was formatted using a MATLAB script into three-time series; 

an hourly power time series, a daily peak power time series and a monthly 

energy time series. The hourly power time series was transformed into daily 

vectors (each of 24 values) and forwarded to the Clustering Module, whereas 

the monthly energy time series was forwarded to the Regression Module. All 

the data attributes of the Weather dataset were formatted into daily time series 

and merged with the daily peak power time series. The resulting (combined) 

time series was forwarded to the Correlation Module. The data pre-processing 

procedure is presented in Figure 3.2. 

 

Figure 3.2: Data Pre-processing Model 

3.3.2 Data Mining Model 

The Data Mining Model consists of a Clustering Module, Correlation 

Module and Regression Module. These modules were used to investigate the 
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shape of the typical daily EVs charging demand profile, the predictability 

with respect to weather and the trend of EVs charging demand respectively. 

3.3.2.1 Clustering Module 

The clustering module creates typical daily EVs charging demand profiles 

of a geographical area, based on the load demand of the corresponding 

charging stations. These profiles are related to the aggregated daily pattern of 

the EVs charging demand of a specific geographical area.  

The k-means clustering method described in [57], [58],  was used in this 

module. Initially, this algorithm selects k random daily vectors (Input from 

Data Pre-processing Model) as the initial cluster centroids and calculates the 

distance from each daily vector to the cluster centroids. Each daily vector is 

assigned to a cluster/group based on its distance with the nearest cluster 

centroid. Then, the new cluster centroids are obtained from the average of the 

daily vectors for the corresponding cluster. This process is repeated until the 

distances between the daily vectors and the corresponding cluster centroids 

are minimised. This is explained mathematically by Eq. (3.1): 

where ci is the set of daily vectors that belong to ith cluster, x expresses the 

corresponding daily vector in ci and μi is the position of the ith cluster centroid. 

The method requires the number k of clusters to be defined a priori. The 

Davies-Bouldin evaluation criterion was used to calculate the number k of 

clusters [59], [60]. This criterion is based on a ratio of within-cluster and 

between-cluster distances and is defined by Eq. (3.2): 

where 
id  is the average distance between each point in ith cluster and the 

centroid of ith cluster. jd  is the average distance between each point in ith 

cluster and the centroid of jth cluster. ijd  is the distance between the 
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centroids of ith and jth clusters. The maximum value of this ratio represents 

the worst-case within-to-between cluster ratio for ith cluster. The “best” 

clustering solution has the smallest Davies-Bouldin index value. Therefore, 

an additional step exists to evaluate the centroid selection for the dataset. A 

range of 1-20 clusters was considered, where 20 was found to be a reasonable 

maximum value [61], and the best number of clusters within this interval was 

calculated using an iterative process. By applying the k-means clustering 

method to the dataset, the k cluster centroids ci are obtained, along with the 

number of vectors wi assigned to each cluster. The followed steps of the 

Clustering Module are presented in Figure 3.3. 

 

Figure 3.3: Clustering Module flowchart 

The most representative cluster centroid (highest value of wi) was used to 

create the typical daily EVs charging demand profile of an area. Having the 

daily EVs charging demand profile of an area, an index λ was defined to 

express the proportion of EVs charging demand during peak hours (17:00 – 

20:00) [62]. The index λ was calculated using Eq. (3.3): 

where Epeak is the charging load during the peak hours and Etotal is the total 

daily charging load. A sample of the MATLAB code used in this module is 

presented in Appendix A.  

%100
total

peak

E

E


 

(3.3) 
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3.3.2.2 Correlation Module 

Weather is an influential factor for the road traffic congestion and the 

driving behaviour of car owners  [63]. In [64] the factors which affect the fuel 

consumption of EVs were analysed. Cold weather decreases the efficiency of 

the batteries performance. Additionally, heating the interior of EVs drains 

significantly the battery. the impact of cold ambient temperatures on running 

fuel use was investigated. Considering EVs on the roads, the weather will also 

affect their energy consumption and thus their charging demand. Identifying 

hidden strong relationships between weather attributes and load demand 

improves the forecasting accuracy of a prediction method [65].  

The Pearson’s Correlation Coefficient (r) was used in this module to 

measure the correlation between the weather attribute values and the daily 

peak power of EVs charging demand in a geographical area. The maximum 

absolute correlation coefficient value of all peak power-weather pairs 

identifies the most influential weather attribute. 

3.3.2.3 Regression Module 

The scope of this module is to investigate the monthly change of the EVs 

charging demand. A Growth Ratio (GR) index was defined as the ratio 

between the growth rate of EVs charging demand and the average monthly 

EVs charging demand. Linear regression analysis was applied on the EVs 

charging demand time series, in order to calculate the mathematical formula 

describing the relationship between monthly EVs charging demand (Y in 

kWh) and time (X in months). The formula is described with Eq. (3.4): 

where β0 and β1 are the constant regression coefficients and ε is the random 

disturbance (error).  

The slope β1 expresses the monthly growth rate of EVs charging demand 

(in kWh/month). The constant regression coefficients were calculated using 

the Least Squares Method described in [66]. Having β1, the GR index is 

calculated with Eq. (3.5).  

  XY 10  
(3.4) 
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where 
monthE  is the average monthly EVs charging demand. 

3.3.3 Fuzzy Based Characterisation Model 

The goal of this model was to characterise the EVs charging demand of a 

geographical area according to the information about the shape of the typical 

daily profile (λ index), the predictability with respect to weather (r) and the 

trend of EVs charging demand (GR index). To this end, a “risk level” index 

was defined to aggregate the potential underlying risks from these 

characteristics. A fuzzy-logic model was developed to capture the fuzziness 

of these risks and calculate the “risk level” index. Fuzzy Logic Models are 

useful for risk assessment purposes under such conditions [67]. The Fuzzy 

Based Characterisation Model is illustrated with Figure 3.4.  

 

Figure 3.4: Fuzzy Based Characterisation Model 

The validity of the risk characterisation model is based on the following 

considerations/assumptions:  

i. The magnitude and duration of the peak of the typical EVs 

charging demand profile (captured by λ index) are underlying risk 

factors for the distribution network, as they affect the 

transformer/circuit loading and the voltage profile.  

%1001 
monthE

GR
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ii. The change over time of EVs charging demand (described with GR 

index) affects the long term decision regarding the planning of the 

network reinforcement. The aggressiveness of EVs charging 

demand change over time in a geographical area is also a potential 

risk for the network’s operation.  

iii. The predictability of EVs charging demand with respect to weather 

in a geographical area (captured by r), affects the accuracy of a 

forecasting method. Decisions taken based on a forecast are subject 

to the forecasting accuracy, indicating a risk for the decision 

maker.  

iv. Analysing the EVs charging demand characteristics in a 

geographical area results in assessing the risks and uncertainties 

which will affect the mid-term normal operation of the distribution 

network of the corresponding geographical area.  

v. As an electric power network was not used to analyse the related 

actual charging demand characteristics, this study quantifies only 

the relative risk between different geographical areas. The “risk 

level index” is not defined in absolute terms and thus it is used to 

classify relatively the level of these risks (due to EVs charging) 

among different geographical areas independently to their actual 

corresponding distribution networks. 

The linguistic values used to express the input variables are Low (L), 

Medium (M) and High (H). Triangular membership functions are used to 

calculate the Degree-Of-Membership (DOM) for each of them, as shown in    

Figure 3.5 - Figure 3.7. In contrast to other kind of membership functions 

(e.g. Trapezoids), triangular membership functions are very sensitive to 

changes of the variables and thus this increase the accuracy. 
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Figure 3.5: Fuzzy membership function of λ index 

 

Figure 3.6: Fuzzy membership function of Correlation Coefficient 

 

Figure 3.7: Fuzzy membership function of EVs Demand Growth Ratio 

The output is fuzzified into nine fuzzy regions represented by linguistic 

variables; very very high (VVH), very high (VH), high (H), medium high 

(MH), medium (M), medium low (ML), low (L), very low (VL) and very very 

low (VVL), as shown in Figure 3.8. The rule table is given in Table 3-4. 
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Figure 3.8: Fuzzy membership function of “Risk Level” Factor 

Table 3-4: Rule Table 

The design of the rule table is based on the assumption that each of the 

input indicators affect equally the “risk level” index. In literature, there is no 

research work that quantifies the level of influence of the related indicators 

(λ, r and GR) to the operation of an electricity distribution network. A further 

investigation is necessary to understand the relative impacts of these variables 

on the normal operation of an electricity distribution network, but this is out 

of the scope of this research work.  

The Mamdani type inference was used (also known as the max-min 

inference method), which utilises the minimum function for the implication 

of the rules. Defuzzification was performed using the Centre of Gravity 

(CoG) method [68]. This method finds the centre of the area encompassed by 
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all the rules, and thus the risk level index u is mathematically described by 

Eq. (3.6): 

where x is the value of the “risk level” index, xmin and xmax represent the range 

of the “risk level” index and g(x) is the degree of membership value at x. 

3.4 CASE STUDY 

The characterisation framework was applied on EVs charging data from 

three different geographical areas of the dataset. Charging events and weather 

data from the counties of Nottinghamshire, Leicestershire and West Midlands 

were analysed based on the proposed modelling framework. Figure 3.9 shows 

the locations of the charging stations for the corresponding geographical 

areas. 

 

Figure 3.9: Location from the analysed charging stations 
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Table 3-5 shows the detailed characteristics for the analysed charging 

stations. For each county, information is given about the breakdown of the 

charging stations based on their nominal power rate and the location where 

they installed.  

Table 3-5: Charging Station Details 

County  Type of Charger 
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Leicestershire 

3 kw/7 kw double outlet - 3 - 4 7 

3.7 kw double outlet - 1 - - 1 

3.7 kw single outlet - 2 - - 2 

7 kw double outlet - 3 - 4 7 

20 kw double outlet - 4 - 2 6 

50 kw double outlet, ac /dc - - - 2 2 

50 kw single outlet, dc - 1 - - 1 

Total - 14 - 12 26 

Nottinghamshire 

3 kw/7 kw double outlet - 3 - - 3 

3.7 kw single outlet - 1 - - 1 

7 kw double outlet - 5 - 2 7 

20 kw double outlet - 1 - - 1 

50 kw double outlet, ac/dc - 1 - 1 2 

50 kw single outlet, dc - 1 1 - 2 

Total - 12 1 3 16 

West Midlands 

3 kw/7 kw double outlet - 1 4 - 5 

3.7 kw double outlet - - - 1 1 

7 kw double outlet 2 6 1 16 25 

7 kw single outlet - - 1 - 1 

20 kw double outlet - 3 - 7 1- 

43 kw/44 kw double outlet, ac/dc - - - 1 1 

50 kw single outlet, dc - 6 - - 6 

Total 2 16 6 25 49 

Grand Total 2 42 7  40 91 

 

The nominal power rate of these charging stations ranges between 3kW 

and 50kW. When the charging stations have double outlet (two connectors), 
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two EVs can be charged simultaneously. For higher charging power rates, dc 

charging is utilised while ac is used for lower charging rates.  

In addition, each charging station is assigned to a location category. The 

analysed charging stations were installed in one of the following location 

categories; “Private car park”, “Private parking”, “Private workplace 

parking” and “Public parking”. “Private car park” and “Private parking” 

possibly refer to charging stations installed at private car parks or at a 

company’s car park which is free for its customers (e.g. supermarket, etc.). 

Charging stations installed in “Private workplace parking” refer to charging 

stations installed at a company’s car park which is free for its employees. 

Finally, street charging stations are assigned to the “Public parking” location 

category. 

3.4.1 Typical EVs charging demand profiles 

The k-means clustering algorithm was applied and the cluster centroids 

were obtained, along with their level of representation. Using the Davies-

Bouldin criterion, the optimal number of clusters for Leicestershire was 5, for 

Nottinghamshire was 6 and for West Midlands was 3. The results are shown 

in Figure 3.10 - Figure 3.12.  

 

Figure 3.10: Cluster centroids for Leicestershire 
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Figure 3.11: Cluster Centroids for Nottinghamshire 

 

Figure 3.12: Cluster Centroids for West Midlands 

 

Figure 3.13: Typical Profiles for all counties 

The typical daily EVs charging demand profiles for each area are presented 

in Figure 3.13. As seen from Figure 3.13, the three typical EVs charging 

profiles differ in terms of peak magnitude, timing and duration.  

West Midlands shows the highest peak, however for a very short period 

(between 10:00 and 12:00), and no charging events during night. In this 

county, most of the analysed charging stations are streets charging stations. 
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EVs owners possibly visited the city centres during midday and used these 

charging stations for their charging requirements. 

On the other hand, the typical EVs charging demand profiles of 

Nottinghamshire and Leicestershire have slightly lower peaks, but the 

charging activity takes place throughout the whole day. In these counties, the 

location of the analysed charging stations has a higher proportion of charging 

stations installed at private car parks. Due to the lack of additional 

information regarding these car parks, the charging profiles imply that EVs 

owners use these charging during the whole day (malls, supermarkets, etc.).  

The EVs charging load during the peak hours, the total daily charging load 

and their ratio λ are summarised in  Table 3-6. The two last columns of  Table 

3-6 contain information about the total number of charging events and unique 

EVs drivers for the corresponding geographical areas. 

Table 3-6: Clustering Module Results 

As seen from Table 3-6, the proportion of the required energy during peak 

hours is relatively low for all counties. Based on Table 3-5, the location 

category breakdown of the charging stations indicated that the majority of the 

charging events are occurred mainly in commercial/public charging stations. 

In contrast to residential charging stations, in these type of charging stations, 

the EVs owner charge their vehicles for a limited period of time. Public 

charging stations are expected to be used for recharging when EVs owners 

are at their work or when they do shopping or other activities. Considering 

the fact that the office hours are mostly between 09:00 and 17:00, it is inferred 

that most EVs owners return home after their work. Thus, this can be a 

possible justification why the energy requirements are low during peak times.  

County 
Epeak 

(kWh) 

Etotal 

(kWh) 
λ (%) 

Number 

of EVs 

Number of 

Charging Events 

Leicestershire 1.789 14.542 12.301 138 1944 

Nottinghamshire 1.504 12.392 12.136 72 998 

West Midlands 0.390 9.456 4.122 113 2013 
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3.4.2 Influence of weather factors  

Table 3-7 shows the absolute correlation coefficient (r) values between the 

weather attributes and the daily peak power of EVs charging demand. The 

most influential factor for all areas was temperature, with the Mean Air 

Temperature having the highest absolute correlation indices. Leicestershire’s 

EVs charging demand shows a medium linear correlation, whereas in 

Nottinghamshire and West Midlands the EVs charging demand has a weaker 

relationship with weather. 

Table 3-7: Correlation Results 

As the above results show a dependency between EVs charging and Mean 

Air Temperature, it is useful to investigate the reasons for this relation. In a 

northern country like UK the climate is considered cold and thus heating the 

interior of an electric vehicle will result in an increase of the energy 

requirements.  

3.4.3 Trend of EVs charging demand  

The linear regression module described in Section 3.3.2.3 was applied on 

the EVs charging demand time series of the three counties to calculate its 

growth rate. Figure 3.14 - Figure 3.16 present the daily EVs charging demand 

of each county for the period 2012-2013. Noticeable gaps exist in the data, 

Weather Attribute 
Leicestershire 

(%) 

Nottinghamshire 

(%) 

West 

Midlands 

(%) 

Max Air Temperature 26.18 14.66 15.58 

Min Air Temperature 26.40 14.78 17.77 

Mean Air Temperature 27.06 15.24 18.78 

Mean Wind Speed 22.16 10.31 7.75 

Max Gust Knots 12.83 5.57 10.88 

Rainfall 7.54 1.80 0.20 

Daily Global Radiation 11.00 1.91 5.63 

Daily Sunny Hours 16.86 1.87 6.02 



41 

 

especially for Leicestershire and West Midlands. The total monthly EVs 

charging demand is illustrated in Figure 3.17, along with the corresponding 

trend line for each county. Using Eqs. (3.4) and (3.5), the regression 

coefficients of the trend line were calculated along with the GR index for each 

county. The results are summarised in Table 3-8. As seen from the results, 

Leicestershire shows the highest EVs charging demand growth rate. On the 

contrary, the EVs charging demand in West Midlands reduces slightly over 

the two-year period. 

 

Figure 3.14: Daily EVs charging demand for Leicestershire 

 

Figure 3.15: Daily EVs charging demand for Nottinghamshire 
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Figure 3.16: Daily EVs charging demand for West Midlands 

 

Figure 3.17: Monthly EVs charging demand trend for all counties 

Table 3-8: Regression Results 

As seen in Table 3-8, the trend of the EVs charging demand in West 

Midlands is negative, indicating that utilisation of these charging station 

decreases. While this occurs for West Midlands, the trend of EVs charging 

demand for the other two counties increases, indicating the popularity of these 

stations for recharging purposes. Although no additional information is given, 

I can assume that a potential reason may be the actual location of the charging 
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Leicestershire 79.726 - 496.75 15.95 

Nottinghamshire 38.018 - 166.94 12.33 

West Midlands - 6.149 304.69 - 2.69 
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stations. If the charging stations in West Midlands were installed at places, 

where are not convenient for EVs owners to visit, this may explain the 

decreasing trend. Therefore, for the installation of the future charging 

infrastructure, careful studies and plans must be carried out to ensure the 

optimal utilisation of the charging stations. 

3.4.4  “Risk Level” Calculation 

Once the Data Mining process is completed, the Fuzzy Based 

Characterisation Model uses the outputs of the Clustering, Correlation and 

Regression modules to calculate the “risk level” index of EVs charging 

demand for each geographical area. Table 3-9 summarises the input values 

for the characterisation model. 

Table 3-9: Fuzzy Model Inputs 

Input A is the λ index of each county’s typical EVs charging demand 

profile, as calculated from the Clustering module. Input B is the absolute 

correlation coefficient (r) value of the EVs charging demand and Mean Air 

Temperature (the most influential weather factor), whereas Input C is the GR 

index of the EVs charging demand (monthly basis). The latter’s membership 

function was assumed to accept values only in the range of [0%, 50%]; 

negative GR indices were assumed as 0% increase. The outputs of the Fuzzy 

Based Characterisation Model for the three counties are presented in Table 

3-10. 

Table 3-10: Fuzzy Model Outputs 

County Input A (%) Input B (%) Input C (%) 

Leicestershire 12.301 27.06 15.95 

Nottinghamshire 12.136 15.24 12.33 

West Midlands 4.122 18.78 - 2.69 

County Risk index (%) 

Leicestershire 34.1 

Nottinghamshire 34.8 

West Midlands 23.5 
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As seen from Table 3-10, the EVs charging demand in West Midlands has 

the lowest value for “risk level” index. Looking at the corresponding input 

values, such a result is expected as the EVs charging demand has a descending 

trend (GR index) and low energy requirements during peak hours (λ index). 

Leicestershire and Nottinghamshire on the other hand are characterised with 

higher values of the risk level index by the model. Similar output values for 

these areas are not unexpected as Leicestershire has slightly higher growth 

ratio and energy requirements, however the EVs charging demand in 

Nottinghamshire is more unpredictable (lower correlation coefficient).  

3.5 SUMMARY 

A characterisation framework for EVs charging demand was developed. 

This framework utilises data analysis methods to extract information hidden 

behind charging events in order to identify the characteristics of the EVs 

charging load. This information was then used by a fuzzy based 

characterisation algorithm to estimate the underlying relative risks for the 

distribution networks among different geographical areas independently to 

their actual corresponding distribution networks. The framework was applied 

on a dataset of real charging events from three counties in UK and their “risk 

level” index was calculated.  

The risk level index gives a spatial indication of the potential impact of the 

EVs charging demand on a distribution network in the nearby (mid-term) 

future. Areas with high “risk level” factor are candidates for further 

investigation. However, the interpretation of this index is highly influenced 

by the network characteristics. Other operational metrics (e.g. maximum load 

capacity) of the corresponding network should also be considered to plan 

possible network reinforcements. Charging strategies or other DSM 

applications can be designed for an area based on its specific EVs charging 

load characteristics. For example, areas where the EVs charging demand is 

high during peak times, a valley filling strategy might be useful, whereas 

areas with random EVs charging events might need to invest on a different 

DSM solution.  
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CHAPTER 4  

FORECASTING MODELS FOR THE EVS 

AGGREGATOR 

4.1 INTRODUCTION 

As mentioned in Section 2.2, the EVs aggregator represents an energy 

market entity which can manage the EVs charging demand directly or 

indirectly. In some cases, the EVs aggregator can also manage small scale 

renewable energy generation in a geographical area utilising the flexibility 

from EVs to consume this generation locally.   

However, EV aggregators have to deal with various uncertainties which 

affect the performance of the EVs charging management. These uncertainties 

are associated with the random charging patterns of individual EVs owners 

and the volatility in the energy market prices. The energy market prices 

volatilities are caused by large penetrations of variable RES and random load 

demand. In particular, uncertainties on power generation increases with 

higher share of intermittent RES in the generation mix such as wind power.  

These uncertainties could pose technical and financial risks to EV 

aggregators’ operation. Therefore, the EVs aggregators must develop the 

appropriate methods to forecast the future EVs charging demand as well as 

the available renewable generation in order to effectively coordinate EVs 

charging.  

The rest of the chapter is organised as follows: Section 4.2 describes the 

development of a generic framework for the EVs load forecast methodology 

based on the data mining principles. Also, two case studies based on real 

charging event data are presented. In Section 4.3, a stochastic renewable 

energy generation forecasting model is described. The performance of this 
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model is evaluated using real wind power data.  Finally, a summary is given 

in Section 4.4. 

4.2 A FORECASTING MODEL FOR EVS CHARGING 

DEMAND 

As the penetration of EVs grows, the number of recharging stations where 

EVs can replenish their energy needs is increasing. These charging stations 

are divided in three main categories based on their location and technical 

specifications: private residential, private non-residential and public charging 

stations [69]. The private residential charging stations are installed mainly at 

home and have a slow charging rate. Private non-residential chargers are 

usually installed in the parking lot of a company, accommodating the EVs 

energy needs of its employees. Local authorities install publicly available 

recharging infrastructure on the streets, mainly located at the city centres. The 

majority of the charging stations have data collection capabilities, keeping 

records of the EVs charging events.  

With the number of EVs and charging stations gradually rising, charging 

events are going to occur in various locations and times. This creates a large 

volume of data, recorded and stored by the individual charging stations or 

back up offices [70]. Collecting and managing the dispersed data in a central 

point is impractical [71]. Therefore, distributed data collection centres are 

proposed to manage the data from a group of charging stations. The main role 

of these centres is to aggregate the data from many charging stations offering 

data reduction services. 

The databases contain information related to the time and place of each 

charging event, the amount of requested energy and in some cases the ID of 

the EVs and/or the charging station. This information is used for 

understanding the charging and travel patterns of the EVs owners, as well as 

the activity of each charging station.  

The value of the collected data is useful in many different fields. Various 

actors can use this information according to their targets. For example, a 

Distribution System Operator (DSO) uses the temporal and spatial 
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information of the charging events to plan future investments in network 

upgrades. In addition, these data can also be used to determine the EVs 

charging load profiles [72]. The flexibility of EVs charging load will allow 

new market entities like EVs aggregators to develop the suitable business 

models for DSM in order to provide ancillary services to grid operators [73], 

[74]. EVs are entities that are part of both electricity and transport networks. 

Charging EVs in public or street locations requires at least a parking space 

per charging point. Due to the finite number of parking spaces in a city, 

especially in the city centre, the number of EVs that are charging at the same 

time is limited. This will affect the road transport networks particularly the 

daily travel patterns and the congestion parameters [75]. Authorities should 

take into consideration this effect and utilise proper mechanisms and parking 

schemes for the EVs deployment.  

Different data collected from a typical charging event are used for different 

applications. More specifically, the analysis of real charging data assists in 

creating typical EVs charging profiles, information which is important to the 

planning of the future EVs charging infrastructure. The appropriate number 

and the charging rate of the public charging stations of an area are defined by 

understanding the trend of the charging data. Moreover, the extracted 

charging load patterns are used to explore opportunities for possible ancillary 

services to the grid operators (load management, frequency response). Using 

these real data is also important to develop appropriate business models to 

promote the mass deployment of EVs. Finally, EVs charging is not only 

affecting the electric power systems but also the transport networks. For this 

reason, authorities are considering possible impacts of EVs charging on the 

traffic condition or parking spaces of a geographic area. 

 Due to the variety of charging data, a generic data analysis methodology 

is needed for extracting the relevant information for each application. The 

complexity of this process and the large amount of data, make data mining 

techniques a promising solution in extracting information from charging 

events records [51], [52]. Particularly, EVs load forecasting is influenced by 

fluctuating factors like driving and travel patterns of each EV owner. These 
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patterns are important to be considered in order to estimate the charging 

demand. Therefore, the stochastic nature of the EVs charging demand factors 

forces the use of advanced forecasting techniques which are able to decipher 

all the patterns. The use of artificial intelligence techniques enables the 

decoding of complicated historical charging events despite the high 

randomness they appear. The scope of this research work is to evaluate the 

performance of various data mining methods in forecasting the charging 

demand of an EV fleet. For this evaluation, two different case studies were 

considered based on real EVs charging data. 

4.2.1 Data Mining Methods 

Data mining is an interdisciplinary process combining different techniques 

like machine learning, pattern recognition and statistics in order to extract 

information from large datasets [53]. It is the process of discovering hidden 

patterns, associations, anomalies and significant structures in large amounts 

of data. Data mining is a step in the procedure known as Knowledge-

Discovery-from-Databases (KDD) [76]. Data pre-processing, data formatting 

and data mining actions constitute the KDD process, as presented in Figure 

4.1. 
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Figure 4.1: The flowchart of the KDD process 

The Data Pre-processing stage includes data selection and data clearance 

actions. Once the data are collected from a database, a preliminary analysis 

takes place in order to understand and select the useful data. This selection is 

critical for the extraction of information as the unnecessary data create noise 

and lead to incorrect conclusions. Furthermore, the data selection reduces the 

size of the dataset, resulting in lower storage and computational requirements, 

as well as in reduced processing time. The selected data are then forwarded 

into a sequence of clearing actions, where missing values are either removed 

or forecasted whenever it is possible. In addition, outliers like unrealistic 

charging durations are detected and eliminated so that the extracted 

conclusions are not distorted.  

In the Data Formatting stage, data are transformed and formatted based on 

the data mining technique of the next stage. Attributes are defined to express 

the different features in the dataset. The data are then organised in attribute 

groups that express the same type of information. This arrangement is 

essential for the KDD procedure and a potential error in the Data Formatting 

stage will influence the outcome. 
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The Data Mining stage is the final and the most important stage of the 

KDD procedure. This stage includes data processing with one or more 

algorithms, defined in agreement with the goal of the analysis. Two main 

types of algorithms exist based on the applied learning procedure: 

unsupervised and supervised learning algorithms. Unsupervised learning 

algorithms include clustering procedures, often useful for an initial 

understanding of a dataset, as well as (depending on the application) data 

partitioning and pattern recognition. In supervised learning algorithms each 

data string is a pair of an attribute vector and a target (desired) value. Because 

of this formulation the algorithm is forced to learn the correlation between 

the attributes and the target values and they are widely used for classification 

and forecasting tasks. In order to evaluate the learning capability of a data 

mining method, the initial dataset is divided in the training and the testing 

dataset. The training dataset is provided to the KDD procedure to learn the 

correlations among the attributes and create a trained model. This process is 

called “training process”. The testing dataset is then forwarded to the trained 

model to evaluate its performance (“testing process”). In case the trained 

model fails to provide the desired output (within a confidence interval), a 

reconfiguration of the data mining method is applied and the training-testing 

sequence is repeated. This iterative process is terminated once the desired 

output is reached.  

In this research work four data mining methods were considered and 

briefly described in the following subsections. 

4.2.1.1 Decision Tables 

Decision Table algorithms build and use a simple decision table majority 

classifier as proposed by Kohavi [77]. The dataset is summarised with a 

decision table which contains the same number of attributes as the original 

dataset. The simplicity of creating and reading a decision table is one of the 

method’s main advantages. The main structure of a decision table is shown 

in Table 4-1.  
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Table 4-1: General structure of a Decision Table [18] 

In general, a decision table is divided into four quadrants. The upper two 

quadrants contain the conditions for each Decision rule. The lower two 

quadrants describe all the possible actions for every corresponding condition. 

However, one important drawback is that in complex datasets with many 

attributes Decision tables may became extremely large. 

4.2.1.2 Decision Trees 

Decision Trees are a supervised learning method used for classification 

tasks. Decision Trees are used to classify instances by categorising them 

taking into account the feature values. All the middle nodes represent an 

evaluation of a condition (Decision Nodes) and the terminal nodes (Leaf 

Nodes) represent the decision result. A typical structure of a decision tree is 

shown in Table 4-2. 

 

Figure 4.2: Typical structure of a decision tree 

 Decision Rule 1 Decision Rule 2 Decision Rule 3 
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In this research work the Reduced Error Pruning (REP) Tree was used. 

REP Tree algorithm is a fast decision tree learner [78]. It builds a decision 

tree using known information and prunes it using reduced-error pruning. With 

this algorithm the possibility of pruning sub-trees is examined and evaluated 

according to the reduction or not of the error. In case of an error reduction, 

the sub-tree is pruned and the final tree is smaller and more accurate.  

4.2.1.3 Artificial Neural Networks  

Artificial Neural Networks (ANNs) were inspired from the human 

neurons. ANNs are able to find hidden correlations between input data and 

target value and solve complicated problems despite noise and fluctuation in 

the data. There are various types of ANNs and the most known are the Multi-

Layered Perceptron (MLP), Radial Basis Function (RBF) and the Kohonen 

networks [79]. In this research MLP was selected to provide forecasts. MLP 

consist of three basic layers: The Input Layer, the Hidden Layer and the 

Output Layer [76]. The Input layer can have any number of inputs. The 

Hidden Layer can contain one or more (sub) layers and each of them can 

contain one or more nodes. They are called “Hidden” because they receive 

internal inputs and produce internal outputs, not directly connected to the 

external layers. The only existing connections are between the input layer and 

first hidden layer and the last hidden layer and the output layer. The structure 

of an MLP neural network is described in Figure 4.3Table 4-3. 

 

Figure 4.3: Structure of an MLP neural network 
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4.2.1.4 Support Vector Machines 

Support Vector Machines (SVM) is a machine learning method associated 

with classification, regression and other learning tasks and was developed by 

Vapnic, Guyon and Boser [80]. SVM tries to find linear separations between 

the data (“decision boundaries” for separating one class from another). 

Assuming data with two attributes, SVM depicts them into a two dimensional 

space and search for possible separating lines. If the data are depended on 

three attributes, they are projected on a three dimensional space and SVM 

searches for the possible separating planes. Generalising for n-attributes, the 

depiction is on an n-dimension space and SVM search for separating 

hyperplanes. SVM will find many different lines or hyperplanes which divide 

the data. The optimal line/hyperplane is selected based on the maximisation 

of the separating distance. When SVM cannot find linear separations in the 

initial data, they transform these data into new spaces using the kernel 

functions. For each kernel type, there are different variables that need to be 

tuned in order to perform effectively [81]–[83]. The Gaussian RBF described 

in Eq. (4.1) is found to outperform in many cases of learning tasks and thus 

this kernel type was used in the EVs load forecast algorithm [84]. Thus, for 

the EVs load forecast method the parameters γ, C and ε are considered in the 

tuning process. Parameter γ expresses the width in the kernel function [83], 

parameter C represents the trade-off between the training error and the 

maximum number of data points that can be separated in all possible ways 

[85], while parameter ε influences the number of support vectors and 

consequently the generalisation capability of the model [86]. 

where x and y express samples of different attribute vectors. An example of a 

simple two-dimensional case is illustrated in Figure 4.4.  

    2
exp, yxyxK    , γ > 0 (4.1) 
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Figure 4.4: a) A random pair of separating lines, b) The pair of separating 

lines with the maximum distance 

4.2.2 Data Pre-processing stage 

In order to develop the EVs load forecasting algorithm, all the stages of 

the KDD process are considered. Recorded datasets of EVs charging events 

contain both useful and irrelevant information to the purpose of the particular 

analysis. For example, in case the purpose is a behavioural analysis of the 

EVs owners, information regarding the time, the location and the User ID of 

each charging event are most relevant in contrast to data regarding the 

charging station manufacturer. On the other hand, in case the purpose is to 

calculate the utility of a particular company’s charging stations, information 

about the charging station manufacturer becomes more important than data 

regarding the User ID. Therefore, according to the target of the particular 

analysis and the availability of the data, an appropriate data selection process 

is important to be applied. Data regarding a charging event is recorded from 

the charging station and then forwarded to one or more data collection 

centres. This process involves a number of components and communication 

links increasing the risk of a potential failure in this chain. Corrupted or 

missing data are not a rare phenomenon in such complex communication 

networks. Therefore, data clearing processes are important to remove the 

noisy data and the outliers. For example, charging events with zero or 

negative energy are removed from the dataset. However, a careful analysis at 

this stage is beneficial from another point of view. By keeping track of the 
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location or the station’s ID from where the corrupted data come, an indication 

of the normal/abnormal operation is obtained. 

Due to the amount of charging events and variety of additional data, the 

Data Pre-processing stage of the KDD process is time consuming without an 

automated way of processing this volume of information. Furthermore, it is 

highly possible that additional information about charging events (Stations 

info or User Info) may be stored in different files. Thus, in order to effectively 

cope with the data, a script for integrating all sources of information in one 

dataset is developed. Then, another script is executed in order to select the 

appropriate data for the ongoing analysis as well as to check the data for 

mistaken values or outliers within the dataset. The steps of the Data Pre-

processing stage are illustrated in Figure 4.5. 

  

Figure 4.5: The Data Pre-processing stage 

4.2.3 Data Formatting stage 

In the Data Formatting stage, a transformation script is applied to the 

Cleared Data in order to change their structure. For forecasting applications, 

the structure of the data follows the template presented in Table 4-2.  
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Table 4-2: Structure of the Formed Data 

This structure is important for training the model to decode the correlations 

among the attributes. The time horizon of the forecast defines the time 

difference between the target and the attribute values. For a day ahead EVs 

charging demand forecast for example, the target values are related to the 

charging demand of N day while the attribute values refer to N-1 day. 

Moreover, the resolution of the forecast defines the time difference between 

consecutive rows. In the day ahead EVs charging demand forecasting case 

for instance, assuming a half hour resolution, each row is related to a specific 

half hour of a day. The new data structure is presented in Table 4-3. 

Table 4-3: Data structure for a day-ahead EVs charging demand forecast with 

a half hourly resolution 

Target Title Attribute_1 Title … Attribute_M Title 

Target Value-1 Attribute_1 Value-1 … Attribute_M Value-1 

Target Value-2 Attribute_1 Value-2 … Attribute_M Value-2 

… … … … 

Target Value-N Attribute_1 Value-N … Attribute_M Value-N 

EVs charging demand Attribute_1 Title … Attribute_M Title 

EVs charging demand 

for 1st half hour of N day 

Attribute_1 Value 

for 1st half hour 

of N-1 day 

… 

Attribute_M Value 

for 1st half hour of 

N-1 day 

EVs charging demand 

for 2nd half hour of N 

day 

Attribute_1 Value 

for 2nd half hour 

of N-1 day 

… 

Attribute_M Value 

for 2nd half hour of 

N-1 day 

… … … … 

EVs charging demand 

for 48th half hour of N 

day 

Attribute_1 Value 

for 48th half hour 

of N-1 day 

… 

Attribute_M Value 

for 48th half hour of 

N-1 day 
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4.2.4 The Training and Forecasting Process 

Once the Data Formatting stage is complete, the formed data are used to 

train the forecasting model. The training process of the forecasting model is 

shown in Figure 4.6.  

 

Figure 4.6: The Training and Forecasting Process 

An appropriate data mining technique is selected for the forecasting model 

depending on the characteristics of the EVs charging events. Factors like 

randomness can make one data mining technique more suitable than another. 

For example, advanced data mining techniques are needed for an accurate 

forecast, if high fluctuating data are coming from a public charging station. 

On the other hand, charging events from a residential charging point are more 

periodic and easier to predict. A simple method like linear regression can be 

used for less complicated forecasting models while powerful methods like 

SVM, ANNs and Trees [87], [88] are used by advanced forecasting models. 

Regardless the fluctuation of data, a proper configuration of the selected data 
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mining method is also important for the accuracy of the forecasting model 

(parameters tuning process).  

The formed data are separated in two parts, the Training and Testing 

dataset. Since the appropriate data mining method and its parameters are 

selected, the model is trained based on the training dataset. Once the model 

is trained, the testing dataset is used to evaluate the performance of the 

forecasting model. In the evaluation process, only the attribute values of the 

testing dataset are supplied to the trained model in order to forecast the 

corresponding target values of the testing dataset. By comparing the 

forecasted values with the actual target values of the testing dataset, the 

performance of the model is evaluated. If the accuracy of the model is not 

sufficient, a reconfiguration of the parameters of the data mining method is 

required and then the model is retrained. Subsequently, the performance of 

the new trained model is evaluated and this iterative process terminates when 

the accuracy level is reached. In this research work the termination criterion 

used for training the model was a Mean Absolute Percentage Error (MAPE) 

with less than 5%.  

Once this procedure is completed, the forecasting model can be used on 

unknown data. The new dataset includes values in the attribute columns, 

while the target values are missing (unknown). The forecasting model based 

on the correlations learned from the training process and the supplied attribute 

values will predict the unknown target values. Note that the time difference 

between the attribute and target values of the new dataset will match the one 

of the training dataset. If the model was trained for a day-ahead forecast for 

example, this will be the time horizon of the forecast and the target values of 

the next day constitute the output. A sample of the MATLAB code used for 

the training and testing process of the EV load forecasting model is presented 

in Appendix B. 
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4.2.5 Performance Indices 

The accuracy of the model output was assessed using MAPE, Root Mean 

Square Error (RMSE) and r-Correlation. The training and testing duration 

were also considered to evaluate the performance. 

MAPE is an accepted industry standard for measuring the accuracy of a 

forecasting method while RMSE penalises large absolute differences between 

actual and forecasted values. The r-correlation shows the general 

performance of a model. These performance indices are calculated using Eqs. 

(4.2) - (4.4). 

where N is the number of the forecasted values, X is the actual values, Y  is 

the forecasted values, X is the mean of the actual values and Y is the mean 

of the forecasted values. 

4.2.6 Case Studies 

The data mining tasks were conducted on an Intel i3 Processor Platform, 

which consists of 3GB RAM and Microsoft Windows 7 operating system. 

WEKA 3.6.9 software tool was used [89]. WEKA is a widely known toolkit 

for machine learning and data mining algorithms such as regression, 

classification, clustering, association rules, visualisation and data processing, 

developed by the University of Waikato. Data sets used in WEKA was in 

Comma-Separated Values (CSV) file format, where values are separated by 

commas and sorted according to the attribute. 
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4.2.6.1 Case Study 1: Residential charging Stations in USA 

The EV Project is a large deployment of EVs and charging infrastructure 

in United States of America (USA) launched by ECOtality on October 1, 

2009 [90]. With grants received from the Department of Energy and the 

support of various Industrial Partners, EVSE was installed in major cities and 

metropolitan areas across the United States. By the end of 2012, 7,376 EVs 

(Nissan Leafs, Chevrolet Volts and Smart4Two) participated in the project 

[90]. A total number of 9,333 charging stations were installed, 6,694 of which 

are residential, 2,583 commercial and 56 dc fast chargers. For this case study, 

aggregated residential data from the 4th Quarter of 2012 were provided by 

ECOtality, in order to test the performance of various data mining methods. 

4.2.6.1.1 Data Description 

Data from ECOtality project include distribution curves that were used to 

create a representative EV fleet and its charging demand for one year. Figure 

4.7 and Figure 4.8 show the distribution of the energy consumption and the 

duration per charging event.  

 

Figure 4.7: Energy consumption distribution / charging event 
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Figure 4.8: Charging duration distribution / charging event 

A fleet of 3000 EVs was considered and their charging events were created 

based on the above distributions. Arrival times for the EVs were estimated 

using the Charging Availability graph for a typical weekday/weekend as 

shown in Figure 4.9. 

 

Figure 4.9: Charging Availability for 24 hours 

Using the above data, the aggregated charging demand was created for one 

year on a half-hourly basis. The attributes for each half hour are shown in 

Table 4-4. 
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Table 4-4: Attribute used for the training process 

Once the dataset is structured using the above template, the last day of the 

dataset was selected for the Test Dataset. All the previous ones are the Train 

Dataset. 

4.2.6.1.2 Results 

Using the procedure described in Figure 4.6, the forecasts of the four data 

mining methods are shown in Figure 4.10 in comparison with the actual 

demand.  The performance measures for each method are summarised in 

Table 4-5. 

 

Attribute Name  Description 

Previous Day Load 
The charging demand of the same day of previous 

week for each half hour 

Week Number of the week (1-53) 

Day Number of the day (1-7) starting with Monday 

Type of Day Weekday or Weekend. 

Half Hour 1-48 half hour parts of each day 

Number of New 

Connections 
The new EV plug-in connections for every half hour 

Total Charging 

Connections 

The number of EV that are connected and charging 

for every half hour 
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Figure 4.10 Charging Demand Forecasts 
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Table 4-5: Performance measures for each method 

As seen in Table 4-5, MAPE ranges between 4.616% - 6.407% among all 

different methods. In [91], it is stated that the cost of a 1% increase in the 

forecasting error was 10 million pounds per year for the British power system. 

Although all different data mining methods provide similar accuracy levels, 

the duration for the training processes of each method were comparatively 

very different. Less than one second was the training time for Decision Tables 

and Rep Trees while MLP ANNs and SVM needed half and one minute 

respectively. Although this difference is proportional very big, it remains very 

small for a real application. Considering that a DNO will perform a one day 

ahead forecast, the training time of one minute is very small to affect the 

procedure.  

4.2.6.2 Case Study 2: Public charging stations in France 

The proposed methodology is applied on a dataset coming from real 

charging events recorded from public charging stations. The data are from a 

pilot project in Paris involving 71 EVs. The EVs’ charging activities were 

recorded for one year. The period that these charging events took place was 

from April 2011 until February 2012.  

4.2.6.2.1 Data Description 

The charging events were classified based on the ID of each EV and 

examined individually. For each EV, charging patterns like the 

connection/disconnection time and the energy demand per charging event 

were analysed in order to produce weekly distributions of that characteristics. 

Performance index 
Decision 

Tables 
Rep Trees MLP ANNs SVM 

MAPE (%) 6.407 5.675 5.387 4.616 

RMSE 87.73 83.99 70.92 67.05 

r-Correlation (%) 96.69 96.83 97.84 98.09 

Training Time (s) 0.7 0.22 26.71 48.89 

Testing Time (s) 0.64 0.25 27.01 48.25 
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An example of the charging demand distribution of four random EVs for one 

week is shown in Figure 4.11. 

 

Figure 4.11: Charging Demand distribution for one week 
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These distributions are important for analysing the charging demand 

profile of each EVs owner. Useful information is also extracted analysing the 

distributions for the times the EVs owners connect and disconnect their 

vehicles to a public charging station. Due to the small size of this sample, a 

generalisation was necessary in order to build a larger EVs fleet. The 

distributions of the analysed features were used to create EVs with similar 

charging demand profiles. In this scenario 2,130 EVs were created and the 

total charging demand of this fleet was calculated for one year. This charging 

demand was used as input to the forecasting model. Based on the available 

information in the initial dataset, the attributes used for the training and 

testing procedures are shown in Table 4-6. 

Table 4-6: Attributes used for the training process 

Once the dataset is properly formed, the last day is considered “unknown” 

and constitutes the target of the forecast. The rest of the data are split in 

training and testing datasets and the next stage is the forecasting process. 

4.2.6.2.2 Results 

Using again the same procedure as described in Figure 4.6, the forecasts 

for one week were produced using the four data mining methods.  

Attribute Name  Description 

Previous Week Load 
The charging demand of the same day of 

previous week for each half hour 

Week Number of the week (1-53) 

Day Number of the day (1-7) starting with Monday 

Half Hour 1-48 half hour parts of each day 

Number of New 

Connections 

The new EV plug-in connections for every half 

hour 
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Figure 4.12: Correlation plots for each method 

The correlation plots between the forecast and the actual values are 

represented in Figure 4.12, while the performance measures for each method 

are summarised in Table 4-7. 
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Table 4-7: Performance measures for each method 

The above results showed that the MAPE increased compared to the 

previous case study. This is justified by the fact that the charging events on 

this case occurred in public charging stations. The fluctuation and 

randomness of these events are higher than in the residential charging stations 

and so the relative errors increase.  

SVM provided again the most accurate forecast, but Rep Trees can reach 

almost the same accuracy needing zero time. As mentioned before, a training 

time of less than one minute does not affect the appropriateness of this model 

for real world tasks. Obviously, there is a trade-off between accuracy and 

training time, which implies that more complex methods require more time 

to provide a more accurate forecast.  

Considering that the charging events were recorded from public stations 

and present high fluctuation, the performance of SVM was considered 

accurate enough. Additional information and attributes may increase the 

accuracy of the forecast. Weather data when available can be used to reduce 

the errors of a forecast. However, adding more attributes could increase the 

risk of finding irrelevant connections between the data and reduce the 

learning capability of the model. Therefore, several trials are necessary to 

achieve the best results involving different datasets. 

4.3 A FORECASTING MODEL FOR RENEWABLE 

ENERGY GENERATION  

RES are seen as a promising solution to decrease GHG. However, a higher 

proportion of fluctuating RES such as wind power in the generation mix insert 

Method Index Decision Tables Rep Trees MLP ANNs SVM 

MAPE (%) 7.975 6.850 6.975 6.74 

RMSE 37.64 30.63 23.44 21.64 

r-Correlation (%) 98.97 99.31 99.36 99.39 

Training Time (s) 0.28 0.13 91.59 55.72 

Testing Time (s) 0.09 0.08 0.11 1.06 
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uncertainties to the electric power system due to their variability. The most 

significant challenge is associated with the generation unit commitment, 

which determines the on/off states and the output power of each generator 

unit for the next day [92].  

In contract to conventional ICE vehicles, EVs charging management does 

not only provide ancillary services such as peak power reduction and 

frequency regulation, but also offer higher potentials for utilising locally 

generated renewable energy which also results in lower operating costs [93]. 

The development of smart grids allows the effective integration of higher 

share of RES in the generation mix by utilising the charging flexibility of 

EVs.  This flexibility comes from the fact that EVs remain parked most of 

their time while EVs owners only require to have their vehicles fully charged 

when they departure.  

Several studies have demonstrated the benefits of coordination between 

wind power generators and EVs in power networks. In [94] a model is 

developed to manage energy exchanges between EVs load and wind 

generation utilities participating in the day-ahead energy, balancing, and 

regulation markets.  The uncertainties associated with wind power forecasting 

are assumed to be provided to the EV aggregator.  These wind power forecasts 

are used to design the optimal bidding strategy model for mitigating wind 

energy and EV imbalance threats, resulting in optimised EV charging 

profiles. In [95] an adaptive algorithm is developed to control EVs charging 

demand aiming to balance the available wind power production. The 

uncertainties regarding the wind power is modelled using a Markov Decision 

Process (MDP).  

The importance of modelling the uncertainties associated with the 

renewable generation in order to effectively manage the EV charging demand 

were demonstrated in [94] and [95]. Apparently, the future knowledge of the 

local renewable energy generation is important to a charging energy 

management system. To this end, the EV aggregator must develop 

appropriate forecasting techniques to effectively estimate the day ahead 

renewable generation in order to plan the appropriate charging strategy.  
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The next sections present the modelling framework for generating 

stochastic forecast scenarios using only historical time series data. This model 

can be used by the EVs Aggregator to produce stochastic forecasting 

scenarios for the day ahead renewable generation in a geographical area. The 

model is applied on real wind power time series data in order to demonstrate 

its performance.  

4.3.1 Methodology 

A generalised model was developed to produce forecast stochastic 

scenarios based only on the historical data values of a times series. As shown 

in Figure 4.13, the model consists of three stages: Data pre-processing, 

Training and Forecasting. 

 

Figure 4.13: Flowchart of the model 
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4.3.1.1 Data Pre-processing Stage 

A data pre-processing stage is required to prepare the inputs for the model.  

In this stage, the time series data are normalised between zero and one, based 

on the maximum value of the time series data. Then, the normalised data were 

separated in two datasets, namely Training and Testing dataset. The Training 

dataset was used in the Training process where the model finds the hidden 

correlations and patterns behind the data. The Testing dataset represents the 

actual data and was used to evaluate the performance of the model. The 

largest part of the data forms the Training Dataset whereas the rest are used 

in the Testing dataset. 

4.3.1.2 Training Stage  

During the Training stage, the relationship between two consecutive 

values of the training dataset is identified. Each value of the time series is 

classified according to its magnitude and trend. A number of N equal intervals 

(between zero and one) is used to classify the magnitude classes of the 

normalised values of the time series. For the trend classification, there are 

three possible classes, namely “Increase”, “Decrease” and “Constant”. In 

order to determine the trend class of a specific value of the time series, the 

magnitude class of the previous value is considered. If the previous value 

belongs to smaller or larger magnitude interval, then the trend class is either 

“Increase” or “Decrease” respectively. If both values belong to the same 

magnitude interval, then the trend class of the most recent value is considered 

as “Constant”. Figure 4.14 illustrates the structure of the classification tree.   
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Figure 4.14: The classification tree 
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series belongs to Magnitude Interval N, then the (M+1)th value is assigned to 

“Future Value Bin 3N-1”. This procedure is called Arrangement.  

The final step of the training process is the calculation of the PDFs of each 
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defined by a weight function K(x) and a bandwidth value h that controls the 
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probability curve. In this model, the Epanechnikov kernel weight function is 

used, described in Eq. (4.6). The bandwidth value h is considered equal to 2. 

The training process is summarised with the following algorithm. A 

sample of the MATLAB code used for the training process is also presented 

in Appendix C. 
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Algorithm 1: Training  

4.3.1.3 Forecasting Stage 

This model generates the next time step normalised value considering the 

two most recent time steps. The normalised values of these two time steps are 

defined as base value1 (one-time step before) and base value2 (two-time step 

before) respectively. The model first recognises the Magnitude of both base 

values and then identifies the Trend Class of base value1. Once the class of 

base value1 is recognised, the model retrieves the parameters of the 

corresponding PDF. A random number is then generated following the 

specific PDF. This process is repeated for the whole forecasting period (N 
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1 for i = 2..(Ntrain -1) do 

2  for Magnitude = interval: interval: 1 do 

3        if Train_Data (i) < Magnitude then 

4   if Train_Data (i-1) > Magnitude then 

5    Trend ← ‘Decrease’       

6   elseif Train_Data (i-1) < Magnitude- interval 

7    Trend ← ‘Increase’       

8   else 

9    Trend ← ‘Constant’        

10   end if 

11                    ClassID←class.(Magnitude).(Trend).FutureValueBin 

12         push Train_Data (i+1) to ClassID 

13         break 

14      end if 

15           end for 

16 end for 

P
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17 for Magnitude = interval: interval:1 do 

18  for round = 1..3 do 

19        if round=1 then 

20   Trend ← ‘Decrease’       

21         elseif round=2 

22   Trend ← ‘Increase’   

23         else 

24   Trend ← ‘Constant’        

25         end if 

26         Data ← class.(Magnitude).(Trend). FutureValueBin 

27                    PDF_ID← class.(Magnitude).(Trend).PDF   

28         push KernelDensityFunction(Data) to PDF_ID 

29              end for 

30 end for 
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time steps), using the two most recent generated values to produce the value 

of the next time step.  

The values of the future time steps are generated using a rolling process. 

Every generated value of a time step is considered as the base value1 to 

produce the value for the next time step. This results in less accurate 

predictions as the forecast time horizon increases. The generated value of the 

first time step introduces an error which is transferred to every consequent 

generated value. To overcome this problem, this model updates regularly the 

base values using the two past time steps actual values of the time series data. 

Frequent updates of the base values result in decreased forecasting errors, 

however the computation cost is increasing. Therefore, this number is defined 

subject to the desired accuracy levels or the computational limitations. Due 

to the occurrence of larger errors in further ahead time steps, the impact of 

updating the model using the most available data is worthwhile to be 

explored. However, it is out of the scope of this research work to analyse the 

computational cost when increasing the frequency of updating this model. 

Algorithm 2 describes the detailed actions in order to produce the value of 

the next time step using the PDFs calculated during the Training stage. In this 

algorithm, two tasks are implemented namely, Base Values Calculation and 

Random Value Generation. A list containing the numbers of the future time 

steps (of the Testing Period) when the model needs to update its Base Values 

is assigned to an “UpdateFrequency” variable. 

For the first time step of the forecasting period, the last two values of the 

Training dataset are used to complement the base values. For the remaining 

time steps, the model checks if the current time step is included in the 

“UpdateFrequency” list. In case the current time step is included in the 

“UpdateFrequency” list, the actual time series values of the two previous 

time steps are used to describe the base value1 (one-time step before) and 

base value2 (two time steps before). In the specific case when the current time 

step is equal to the second time step of the Testing period, the model uses the 

last time step of the Training Dataset as base value2 and the actual value of 

the first time step (of the Testing period) as base value1. In case the current 
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time step is not included in the “UpdateFrequency” list, the actual values of 

the two past time steps are used as base value1 (one-time step before) and 

base value2 (two time steps before) respectively. The Base Values 

Calculation task is described with lines 2-16 of the Algorithm 2. 

Once the Base Values Calculation task is complete, the next stage is the 

Random Value Generation. First, the model identifies the Magnitude Class of 

base value1 and then compares it with the Magnitude Class of base value2. 

According to Magnitude Class and Trend Class of base value1, the 

parameters of the corresponding PDF are retrieved. A random number is 

generated using these parameters, which is the forecasted value for the current 

time step. This process is described with the lines 17-31 of Algorithm 2. A 

sample of the MATLAB code used for the production of the stochastic 

forecast scenarios is presented in Appendix C. 
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Algorithm 2: Forecasting 

4.3.2 Case Study 

4.3.2.1 Data Description 

The model was applied on real aggregate wind power data, obtained from 

[www.elexon.co.uk]. The data consisted of 10,416 half-hourly aggregate 

wind power values from wind farms across the Great Britain, for the period 

of 01/3/2014 to 3/10/2014. Figure 4.15 shows the time series of the actual 

wind power and its first difference over time.  

 1 for ts = 1..Ntest  do 
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2              if ts = 1 then 

3          base_value1 ← Train_Data (Ntrain ) 

4          base_value2 ← Train_Data (Ntrain -1) 

5              elseif ts mod UpdateFrequency = 0 

6                       if ts=2 

7      base_value1 ← Forecast_Data (ts-1) 

8      base_value2 ← Train_Data (Ntrain ) 

9                      else  

10      base_value1 ← Test_Data (ts-1) 

11      base_value2 ← Test_Data (ts-2) 

12                       endif 

13              else 

14           base_value1 ← Forecast_Data (ts-1) 

15           base_value2 ← Forecast_Data (ts-2) 

16  endif 
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  17  for Magnitude = interval: interval: 1 do 

18        if base_value1 < Magnitude then 

19                        if base_value2 > Magnitude then 

20    Trend ← ‘Decrease’       

21   elseif base_value2 < Magnitude- interval 

22    Trend ← ‘Increase’       

23   else 

24    Trend ← ‘Constant’        

25                           endif 

26                           PDF_ID←class.(Magnitude).(Trend).PDF 

27   NewForecast←RandomGenerator() 

28   Forecast_Data(ts)← NewForecast 

29   break  

30                        endif 

31  endfor 

 32 endfor 
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Figure 4.15: Times Series of the aggregate wind power and its first difference 

The data were pre-processed following the methodology of Figure 4.13. 

The total installed capacity of wind farms across GB throughout the whole 

period under study (31 weeks in total) was used to normalise the data. The 

normalised data were separated in two groups, the Training and the Testing 

datasets. Data from the first 30 weeks were used as the Training dataset 

whereas data from the last week were used as the Testing dataset. Some 

analysis metrics are presented in Table 4-8.  
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Table 4-8: Descriptive Statistics 

During the training process, the training data were classified based on their 

magnitude and trend. Intervals of 0.01 (normalised wind power) were used in 

the magnitude classification, whereas the trend was determined by comparing 

with the previous data entry. The classification tree consists of 300 classes 

(leaves), and consequently 300 “future” groups.  

4.3.2.2 Performance Indices 

The penetration of wind generation is expected to increase in the following 

years due to environmental and energy security reasons. However, wind 

power is high fluctuating and unmanageable. Short term forecasting of the 

wind power up to 48 hours is important for its large scale integration to the 

national generation mix of each country. Therefore, it is important that a wind 

power forecasting model is properly evaluated. A review of the evaluation 

criteria for wind power forecast is described in [97]–[100]. In this work, the 

following evaluation criteria used for the performance of the forecasting 

model are listed below: 

Mean Error (ME)  
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Normalised Mean Absolute Error (NMAE) 

 
 





N

t

tktk e
NP

NMAE
1

|

max

11
 

(6.4) 

Mean Absolute Percentage Error (MAPE) 

 

 

Index Value 

Mean (kW) 1720.711 

Standard Deviation (kW) 1281.504 

Average Rate of Change (%) 17.06 

Max Wind Power (kW) 5786 

Min Wind Power (kW) 1 

Capacity of wind farm (kW) 7740 
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Standard Deviation of the Errors (SDE) 

 
 

 
1

1

2

|





  

N

ee
SDE

N

t ktkt

k  

(6.6) 

Where: 

ktkttkt PPe  


|  is the error corresponding to time t+k for the 

prediction made at time t 

ktP  is the time series value at time t+k 

ktP


 is the forecasted value for time t+k made at time t 

maxP is the maximum value of the time series 

N is the number of prediction errors used for method evaluation 

Any prediction error consists of a systematic μe and random χe, where μe 

is a constant and χe is a zero mean random variable. Mean Absolute Error 

(MAE) is affected by both systematic and random errors whereas only 

random errors affect the SDE criterion which describes the error distribution. 

MAE presents robustness when large prediction errors exist [98]. This 

criterion is essential to be included in the error evaluation of a forecasting 

model. 

4.3.2.3 Results 

After the training process, the forecasting model was used to forecast the 

wind power of the last week (31st) of the dataset. As mentioned before, the 

base values are regularly updated with the actual wind power values (Testing 

dataset) at a given frequency. Seven different update frequencies were 

considered, namely every 48, 24, 16, 12, 8, 4 and 2 half-hourly time steps. 

The forecasting model was run 20 times for every update frequency, resulting 

in 140 forecasts in total for the 31st week of the dataset. The results are shown 
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in Figure 4.16. Table 4-7 presents the performance indices which were used 

to evaluate the accuracy of the forecast.  

Table 4-9: Performance Indices 

 

 

Update 

Frequency 
Index 
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Every 48 

time steps 

MAPE  32.79 53.45 41.86 35.75 172.08 68.83 44.96 

SDE 0.1 0.12 0.16 0.07 0.11 0.05 0.07 

NMAE 0.14 0.34 0.19 0.1 0.15 0.05 0.17 

Every 24 

time steps 

MAPE  29.2 32.76 45.19 34.09 72.75 44.69 28.54 

SDE 0.08 0.1 0.12 0.07 0.06 0.03 0.06 

NMAE 0.12 0.19 0.19 0.1 0.08 0.03 0.1 

Every 16 

time steps 

MAPE  31.59 23.09 29.69 24.36 41.09 37.49 22.97 

SDE 0.07 0.07 0.11 0.05 0.04 0.02 0.05 

NMAE 0.12 0.13 0.14 0.07 0.05 0.03 0.08 

Every 12 

time steps 

MAPE  23.01 19.92 18.96 24.7 34.78 39.41 18.8 

SDE 0.06 0.06 0.08 0.05 0.03 0.02 0.04 

NMAE 0.09 0.11 0.1 0.07 0.04 0.03 0.06 

Every 8 

time steps 

MAPE  15.46 13.38 16.24 19.45 25.23 27.97 14.53 

SDE 0.04 0.05 0.06 0.04 0.03 0.02 0.03 

NMAE 0.07 0.07 0.08 0.06 0.03 0.02 0.05 

Every 4 

time steps 

MAPE  9.25 7.49 8.56 12.96 15.79 21.49 10.31 

SDE 0.03 0.03 0.04 0.03 0.02 0.01 0.03 

NMAE 0.04 0.04 0.05 0.04 0.02 0.01 0.03 

Every 2 

time steps 

MAPE  6.06 4.9 5.12 8.18 10.74 14.25 7.42 

SDE 0.02 0.02 0.02 0.02 0.01 0.01 0.02 

NMAE 0.03 0.03 0.03 0.02 0.01 0.01 0.02 
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Figure 4.16: Twenty forecasts for every day and update frequency 
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As seen from Figure 4.16, updating the base values more frequently results 

in more accurate forecasts. This is also depicted in Table 4-9, where the 

indices show a forecasting improvement as the update frequency is increased. 

This is because of the chain-like behaviour of the forecasting model. An error 

in forecasting the first time step contributes to the next forecast, creating 

another error and so on. This error chain breaks when the base values are 

updated with the actual wind power, and the model generates the next forecast 

without any previous errors. The wind power on days 2 and 3 is very 

fluctuating; therefore, the forecasting errors are higher. On the other hand, 

day 6 has almost a constant wind power generation, and the forecasting errors 

are very low. In overall, all the performance indices are improved when the 

update frequency is increased. The MAPE ranges between 32.79% - 172.08% 

when the base values are updated every 48 time steps. When the update 

frequency is increased to every 2 time steps, the MAPE ranges between 4.9% 

- 14.25%; an average of 84.827% improvement. Average improvements of 

80.657% and 85.073% are also observed for the SDE and NMAE 

respectively. 

The performance of the proposed model was compared to Persistence 

Model, described in [97]. This is a reference model, widely used for wind 

power prediction and meteorology. The Persistence Model assumes that the 

future wind power production remains constant and equal to the last measured 

value of wind power. In Figure 4.17 the MAE of the Persistence model was 

compared with the proposed forecasting model when the base values are 

updated every 48 half hours. In Figure 4.18 the cumulative NMAE of the 

Persistence model is compared to the proposed forecasting model when the 

base values are updated every 48 half hours. The results show that as the 

forecast time horizon increases, the proposed model provides more accurate 

forecasts. 
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Figure 4.17: MAE for the Persistence and Proposed Model 

 

Figure 4.18: Cumulative NMAE for the Persistence and Proposed Model 

Figure 4.19 presents the distribution of the error on every day of the 

forecasted week. On each box, the red line is the median and the edges of the 

blue box are the 25th and 75th percentiles. Every data point outside the box 

is considered outlier, and is drawn in black. The stochastic nature of the 

forecasting model results in different forecasted values each time.  
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Figure 4.19: Daily error distribution 
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Figure 4.19: Daily error distribution (Continued) 

To investigate and capture any possible systemic errors, 1000 forecasts 

were generated for the same week. The half-hourly forecast errors were 

calculated, and the results are shown in Figure 4.20. All seven days of the 31st 

week were considered, for every update frequency. In all cases the error 

median is close to zero for every half-hour, proof that there is no systemic 

error in the model. High update frequency results in low error range, 

improving the forecasting accuracy. 
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Figure 4.20: Half-hourly error distribution 
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Figure 4.20: Half-hourly error distribution (Continued) 
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frequencies however, reducing the size of magnitude interval (increasing the 

number of magnitude classes) results in further improvement of the 

forecasting accuracy.  

 

Figure 4.21:  MAPE for different Rolling Update Frequencies and number of 

Magnitude Classes 

In overall, considering 10 Magnitude Classes the average MAPE for 1000 

forecasts was reduced from 44.2% to 10.15% when the update frequency 

increased from 48 to 2 time steps. This represents a reduction of 77.03% in 

the forecasting error. The accuracy can be further improved by increasing the 

number of Magnitude Classes used in Training Stage. Considering 100 

Magnitude Classes, the average MAPE for 1000 forecasts was reduced by 

84.79% from 42.3% to 6.43% when the update frequency increased from 48 

to 2 time steps. In addition, increasing the number of Magnitude Classes 

results in a reduction on the error range. For 10 magnitude classes and update 

frequency of 2 half-hours the error range is 23.48%. However, for 100 

magnitude classes the error range is 7.96%. 
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4.4 SUMMARY 

In this chapter the use of data mining methods for forecasting the EV 

charging demand was studied. Two different realistic study cases where 

considered and the performance of four different data mining methods was 

evaluated. In the first study case the day-ahead charging demand of 3,000 

EVs was forecasted and compared to the actual data. The second study case 

considered a fleet of 2,130 EVs and predicted the charging demand of a whole 

week on a half-hourly basis. The results showed that data mining methods 

can be used for forecasting the EV charging load, with increased accuracy 

especially when the configuration parameters of each method are carefully 

selected. However, more cases have to be studied, in order to clearly 

understand the key attributes that indicate the choice of one data mining 

method over another. The proposed forecasting model for the EVs charging 

demand was part of the charging control algorithms described in Chapter 5 

and Chapter 6. 

In addition, a model was developed for producing day-ahead probabilistic 

generation forecast scenarios. Using a rolling forecasting approach, the 

impact of frequent updating of the forecasts was investigated. The modelling 

framework consisted of three parts, Data pre-processing, Training and 

Forecasting. The Data pre-processing stage included a data normalisation. 

The training stage is related to the extraction of the knowledge hidden behind 

the wind power data. Each normalised data point was classified according to 

its magnitude level and trend. For every combination of the above classes, the 

PDFs were calculated using kernel density estimators. Finally, the model 

provides probabilistic rolling forecasts for the next time step according to the 

Magnitude classes of the two previous time steps and the Trend Class of the 

previous time step. This rolling forecasting model is updated in a regular 

basis, increasing its accuracy. It was demonstrated that increasing the number 

of magnitude classes together with the update frequency results in more 

accurate forecasts. This impact of various data updating frequency on the 

accuracy of the forecasts was investigated. The results showed an 

improvement of the forecast accuracy as the model updates the base values 
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more frequently. Although this forecasting model was tested on wind power 

data, its main advantage is its universal design which makes it applicable to 

any time series data (PV power times series, etc.). A charging controller can 

utilise the output of this model in order to plan the appropriate charging 

strategy and coordinate EVs to charge preferentially from RES. However, for 

ease of implementation of the EVs smart charging controller described in 

Chapter 6, PV forecasts were assumed to be provided due to lack of sufficient 

amount of historical PV power data. 
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CHAPTER 5  

SMART MANAGEMENT OF ELECTRIC 

VEHICLE CHARGING ENHANCED BY 

ELECTRIC VEHICLE LOAD 

FORECASTING 

5.1 INTRODUCTION 

The continuous growth and evolve of vehicle electrification causes the 

electric power systems to confront new challenges, since the load profile 

changes, and new parameters are being set. With the number of EVs gradually 

rising, problems may occur in technical characteristics of the network, like 

bus voltages and line congestion [6]. 

In order to prevent grid technical violation and avoid early reinforcements 

of existing infrastructure, it is necessary to develop EVs management systems 

so as to prevent such phenomena. The effectiveness of such systems is heavily 

depended on the early knowledge of future demand. This knowledge can be 

provided by accurate EVs load forecasting techniques. 

This chapter presents a control algorithm to manage the EVs charging 

requests. The aim of the control algorithm is to achieve a valley-filling effect 

on the demand curve, avoiding a potential increase in the peak demand. The 

proposed control model utilises the EVs forecasting model described in 

Chapter 4. This incorporation of the forecast model to EVs charging 

management contributes to the effectiveness of the charging control model. 

Through different case studies, the performance of the proposed model is 

evaluated and the value of the EVs load forecasting as part of the EVs load 

management process is illustrated.  
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The rest of the chapter is structured as follows: Section 5.2 indicates the 

importance of EVs load forecast to the management of the EVs charging. 

Also, Section 5.3 presents the integrated proposed model in detail as well as 

the operation of the main entities of the model. Section 5.4 presents the 

simulation results and the effectiveness of the integrated model is evaluated. 

Finally, a summary is given in Section 5.5. 

5.2 THE IMPORTANCE OF THE EVS LOAD FORECAST 

The majority of charging control models assumes that all EVs are 

participating in the control scheme. However, this is not a realistic scenario 

for the future composition of the EVs fleet. In a realistic case, the EVs fleet 

is separated in “Responsive” and “Unresponsive” EVs to control signals 

coming from the aggregator. “Responsive” EVs are the ones that participate 

in coordination process responding to control signals from the EVs 

aggregators or other central management entities. On the contrary, 

“Unresponsive” EVs are not willing to participate in the control scheme. This 

willingness to participate in the control scheme is defined by the EVs owners 

and their routine. For example, if the daily routine of a EVs owner is affected 

due to an event, this may also influence the flexibility in charging the vehicle. 

Note also that some EVs can be responsive to control signals in most cases. 

However, this does not mean that abnormal charging events are not 

happening occasionally from the same EVs. Forecasting the demand from 

“Unresponsive” EVs is critical for the effectiveness of the control scheme. 

Historical charging events are used to extract information about the abnormal 

charging demand from “Unresponsive” EVs. The value of EVs load forecast 

to the control of EVs charging is illustrated through an example. In this 

example a mixture of “Responsive” and “Unresponsive” EVs is assumed. The 

arrival and departures times of both types of EVs are shown in  Figure 5.1a. 

An abnormal event occurs at 10:00, when a number of “Unresponsive” EVs 

are connected to the charging stations requiring charging for a short period of 

time. Despite other EVs (the responsive ones) having a level of flexibility for 

the connection time, the inflexible demand from the “Unresponsive” EVs is 

critical for the effectiveness of the control algorithm.  



94 

 

 

Figure 5.1: a) Distributions of arrival and departure times of “Responsive” 

and “Unresponsive” EVs b) Demand without adding the demand from 

“Unresponsive” EVs, c) Total Demand 

In this example, a control algorithm was applied to coordinate all EVs 

without having future knowledge of the demand from the “Unresponsive” 

EVs. The objective of this control algorithm is to have a valley-filling effect 

on the demand curve of the assumed network. Figure 5.1b shows the final 

demand from the “Responsive” EVs. Based on the control model, a number 

of EVs were responsive to the control signals and as a result they are 

coordinated to charge at times when the demand is low. However, in a mix 
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scenario like this example, without forecasting the demand from the 

“Unresponsive” EVs, the final result of the coordination algorithm is not 

optimal. Figure 5.1c indicates this weakness of the majority of the control 

models proposed in the literature. 

5.3 THE INTEGRATED MODEL FOR CHARGING 

MANAGEMENT OF EVS 

A control algorithm was developed to manage the EVs charging schedules, 

enhanced by EVs load forecast. The aim of the control algorithm was to 

achieve a valley-filling effect on the demand curve, avoiding a potential 

increase of the peak demand. The structure of this model follows the 

architecture of a MAS where each entity is an agent. An agent is categorised 

as active when its activities aim in achieving a goal in the system whereas an 

agent which does not affect the system with its actions is called passive agent 

[101]. In this model, there are two active agent classes, the EVs agent and the 

EVs aggregator agent whereas the passive one is the DSO agent.  

 Figure 5.2 shows the location of each entity in an example network. EVs 

agents are located at the LV level and each LV feeder constitutes a EVs 

cluster. Each EVs cluster is a group of EVs which are supplied with energy 

from the same LV feeder of which the technical constraints have to be 

respected. On the top level of the network, there is the DSO agent who is 

responsible to monitor the demand and voltage in the most significant parts 

of the network.  Its role is only to provide information regarding the grid 

condition to the EVs aggregator without taking any decisions which affect the 

system. EVs aggregator is an entity which is located in an intermediate level 

between EVs and DSO. Based on the objectives of the control algorithm, the 

EVs aggregator can be located either in Medium Voltage (MV) transformer 

or in a LV transformer.  
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Figure 5.2 Schematic example of the charging system 

The proposed control algorithm is designed based on the structure of a UK 

generic LV distribution network obtained from [102], without affecting the 

generality of the model. The EVs aggregator is located on the MV level, while 

the EVs agents are dispersed in the LV feeders. The EVs aggregator’s role is 

to collect the historical charging data of the EVs fleet and apply machine 

learning algorithms to provide accurate forecasts of the future charging 

demand of “Unresponsive” EVs. The EVs Load Forecasting process uses 

SVM, and is executed by the EVs Aggregator to improve the effectiveness of 

the algorithm. The EVs are coordinated to achieve a local valley-filling effect 

in the demand curve of the LV feeder to which they are connected. In order 

to demonstrate the importance of the EVs load forecast algorithm in the 

proposed control scheme, different charging scenarios and composition of the 

EVs fleet were considered.  

Figure 5.3 presents the basic operations of the EVs and the EVs 

Aggregator. The DSO agent provides information to the EVs aggregator 

regarding the technical constraints of the network. This information is linked 

with the maximum power demand of the corresponding feeder, transformer 

loading and the thermal limits of the network cables. In addition, EVs 

aggregator is receiving the forecasted non EVs demand of the next two days. 
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In the proposed model, it is assumed that none EVs owners leave their 

vehicles connected in a charging point for more than 24 hours. 

 

Figure 5.3: Flow of Information diagram 

Initially, the EVs load forecast model is updated with charging data of the 

previous day. These data are processed based on the methodology presented 

in Section 4.2.4. Moreover, in case other sources of information like weather 

data or traffic measurements are accessible to the EVs aggregator, they are 

also included in the forecast model in order to increase the accuracy of the 

predictions. The forecasting model is updated with the latest data and 

provides the two-days ahead forecasted charging demand from 

“Unresponsive” EVs. Once the output of the forecast model and relevant data 

from DSO are available to the EVs aggregator, the next stage includes the 

calculation of the control signals. The EVs aggregator calculates the 

network’s capacity for EVs charging demand based on the EVs forecasted 

demand. The objective of the control model is a valley-filling effect on the 
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demand of the LV feeders. Therefore, each EVs cluster is associated with a 

specific LV feeder and each group of EVs receives the same control signals. 

These signals are related to the existing charging schedules and the predicted 

EVs demand for the corresponding part of the network. Based on those 

signals, each EV defines its own charging schedule by selecting when to 

charge. The charging events are recorded, and used to update the forecasting 

procedure. 

The timeframe resolution of the proposed model is measured in time steps 

(e.g. 10 min interval). The time steps affect the regularity of the control 

actions, for example a small time step indicates a more frequent delivery of 

control signal to the EVs, and vice versa. However, the effectiveness of the 

proposed model is not affected by this interval. In this control model, 6 min 

time step duration is considered and thus every day is consisted of 240 time 

steps.  

In the proposed control scheme, there are four main procedures which are 

repeated sequentially in a daily or a time step basis (see Figure 5.4). At the 

beginning of each day, forecasting actions are taking place in order to 

estimate the future demand from the “Unresponsive” EVs.  

 

Figure 5.4: Daily and time step routine in the control model 

The selected data mining method used in the EVs load forecast model is 

SVMs due to its high performance and its ability to extract information 

behind difficult patterns. Figure 5.5 presents the flowchart of the EVs load 

forecast model. 
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Figure 5.5: EVs load forecast model for “Unresponsive” EVs 

The EVs load forecast model is updated at the end of each day with all 

recorded charging events. The charging data include information about the 

connection times, disconnection times and the energy requirement of the EVs 

fleet. In addition, each EVs has an ID and this is used to identify the charging 

pattern of a EVs owner. In addition, information about the ID of the EVs and 

its responsiveness to control signals is provided to the forecasting model. 

Based on the available information, the attributes used for the training and 

testing procedures are shown in Table 5-1. 
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Table 5-1: Attribute used for the training process 

The target for the EVs forecast model is to forecast the EVs demand from 

“Unresponsive” EVs for each time step of the next two days. Once the 

training data are properly formed, the SVM and the RBF kernel parameters 

are initialised randomly. A script is executed in order to divide the sample in 

two separate datasets, one for the training and the other for the evaluation of 

Attribute Name  Description 

Two-day “Unresponsive” EVs 

Load 

The aggregated charging demand 

from “Unresponsive” EVs of the 

previous two days for each time step. 

Two-day “Responsive” EVs  

Load 

The aggregated charging demand 

from “Responsive” EVs of the 

previous two days for each time step. 

Two-day “Unresponsive” EVs 

Load of previous week 

The “Unresponsive” EVs charging 

demand of the same days of previous 

week for each time step. 

Two-day “Responsive” EVs  

Load of previous week 

The “Responsive” EVs charging 

demand of the same days of previous 

week for each time step. 

Day 
The number of the day (1-7) starting 

with Monday. 

Month 
The number of the month (1-12) 

starting with January. 

6 minutes’ time step 1-240 parts of each day. 

Number of “Unresponsive” EVs 

Connections 

The number of “Unresponsive” EVs 

connections for every time step. 

Number of “Responsive” EVs 

Connections 

The number of “Responsive” EVs 

connections for every time step. 

Number of “Unresponsive” EVs 

Disconnections 

The number of “Unresponsive” EVs 

disconnections for every time step. 

Number of “Responsive” EVs 

Disconnections 

The number of “Responsive” EVs 

disconnections for every time step. 
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the model. The testing dataset includes the values of the last two days of the 

initial datasets while the rest constitute the training dataset. Once the model 

is trained with the initial SVM parameters, it is evaluated through the testing 

dataset. The MAPE is calculated based on Eq. (4.2). The model is using a 

second script for updating the SVM parameters. The parameter C takes all 

integer values between the minimum and the maximum target value [83]. 

Additionally, parameter γ is updated within a range of [0.85/n, 1.15/n] with a 

step of (0.1/n), where n is the number of the attributes. The parameter ε is 

considered constant 0.001 (default value). All possible combinations of C and 

γ within the specified range are checked and the ones which result in the 

minimum MAPE are selected. Once this process is completed, the model is 

tested on the new dataset (which contains the attributes of the next two days) 

in order to provide a forecast of the charging demand from “Unresponsive” 

EVs for the next two days. The accuracy of this process is significant to the 

effectiveness of the control model. 

In every time step, two main procedures are taking place namely 

“Dispatch” and “Schedule”. The “Dispatch” procedure is presented in Figure 

5.6. 

 

Figure 5.6: Flowchart of the Dispatch process 
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Every process involves different tasks from both the EVs aggregator and 

the corresponding EVs. The “Dispatch” procedure involves the execution of 

the existing EVs charging schedules. In this procedure, the EVs aggregator 

first runs power flows for the specific part of the distribution network 

according to the EVs scheduled charging demand. According to this 

scheduled demand, the total non EVs demand and the demand from the 

“Unresponsive” EVs, the real time network constraints are calculated by the 

aggregator and sent to the corresponding EVs. After receiving these 

constraints, the EVs checks for a possible violation of the network constraints. 

In case the limits are violated, the EVs is rescheduling this charging demand 

in future time steps. This procedure is repeated until the scheduled demand 

of every existing EVs is either supplied or rescheduled.  

In case new EVs are connected (or the existing charging schedule violates 

the technical constraints of the network) the “Schedule” phase is activated 

(see Figure 5.7). During this phase, each EVs will solve the scheduling 

problem to satisfy its charging requirements. Internal information such as the 

battery SOC and the charging station power rate, as well as information 

coming from the EVs aggregator (external) like the network’s capacity and 

the forecasted EVs demand are used in the scheduling process.  



103 

 

 

Figure 5.7: Flowchart of the Schedule process 

The scheduling problem for EVs-n is formulated as follows: 

where tn is the connection time of EVs-n, dn is the charging duration of EVs-

n , Pn(t) is the instantaneous charging power demand of EVs-n and Vn(t) is 

the virtual cost value of a time step.  

Every EVs tries to minimise a virtual cost function given in Eq. (5.1). The 

virtual cost values Vn(t) are calculated by the EVs Aggregator according to 

the forecasted demand from “Unresponsive” EVs, the existing EVs charging 

schedules and the non EVs demand. The EVs aggregator sends to every EVs 

a vector Vn. This vector contains the order sequence of the time steps with the 

lowest to highest demand for the period [tn, tn+dn]. For example, the virtual 

cost value for the time step with the lowest demand is 1, while the one with 

the highest demand is dn , and the intermediate time steps are taking values 

between 1 and dn . 

    



nn

n

dt

t

nn tVtPmin  (5.1) 
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Minimising Eq. (5.1) will result in an adaptive EVs behaviour based on 

the local network’s condition. Each EVs has knowledge of the future local 

aggregated demand and adjusts its charging schedule accordingly. The 

scheduling problem is subject to the following constraints: 

where SOCfinaln
 is the desired SOC of EVs-n, SOCinn

 is the initial SOC of 

EVs-n, Cbatn
 is the battery capacity of EVs-n, δeffn

 is the efficiency of the 

charging station and Pch.nomn is the nominal power rate of the charging station.  

Eq. (5.2) expresses the energy requirements of EVs-n. These requirements 

are satisfied during the connection period of the particular EVs [tn, tn+dn]. 

The instantaneous charging power Pn(t) must not exceed the power rating of 

the charging station (Pch.nomn
) for every t, as described in Eq. (5.3). The next 

two constraints are related to the network topology and characteristics. Let us 

denote f as the LV feeder that a EVs is connected. Every such feeder has a 

group Af that is consisted of all EVs charging on LV feeder f at time t. Based 

on the network topology, the size of this group (|A|) has an upper boundary 

C1 (maximum number of EVs on feeder f). Additionally, denoting l as the 

MV/LV transformer that LV feeder f is attached, there is a group Bl 

Blcontaining all the corresponding feeders. C2 expresses the number of 

feeders on a transformer. Eqs. (5.4) and (5.5) are used to keep the power 

demand of feeder f and the transformer l between the limits. 
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where Pfd.nomf is the nominal power of feeder f and Pm(t) is the power demand 

of EVs-m in feeder f. Eq. (5.4) expresses that the charging power for EVs-n 

should not exceed the corresponding nominal feeder limit considering also all 

the other EVs which are charging in the same feeder. 

where Ptr.noml is the nominal power limit of the transformer. Eq. (5.5) 

expresses that the charging power for EVs-n should not exceed the 

corresponding nominal transformer limit considering also all the other EVs 

which are charging in the same transformer.  

5.4 SIMULATION RESULTS 

In order to demonstrate the importance of the EVs load forecast in the 

proposed control scheme, different charging scenarios and different 

composition of the EVs fleet were considered. A specific distribution network 

was used to test the performance of the control model. Different percentage 

of “Unresponsive” EVs were considered and the effectiveness of the control 

model is evaluated through case studies. In addition, the effect of the charging 

rate on the valley filling effect on the local demand curve is also presented. 

5.4.1 Network Topology 

The typical 33/11/0.4kV UK generic distribution network model is based 

on [102]. The system is comprised of a 33kV three-phase source, two 

33/11.5kV 15MVA transformers with on-line-tap-changer and an 11kV 

substation with five 11kV outgoing MV feeders. Each 11kV feeder supplies 

   
f m

mnomtrn tPPtP
l.  (5.5) 

lBl = {f | connected on l = true}, |B|=C2 

lBf    

 nAm f    
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eight 11/0.433kV 500kVA distributed transformers. Each MV/LV 

transformer has four LV feeders, and each LV feeder provides energy to 96 

customers. The topology is presented in Figure 5.8.  

 

Figure 5.8: Typical 33/11/0.4 UK generic distribution network 

The EVs are connected at the LV level, while the EVs aggregator is located 

on a MV feeder, and is responsible for 3072 customers. In order to evaluate 

the control model, a realistic EVs fleet with the following characteristics is 

created, as shown in Table 5-2.  

Table 5-2: EVs Fleet characteristics 

EVs Fleet variables 
Mean 

Value (μ) 

Standard 

Deviation (σ) 

Battery Capacity (kWh) 30 2 

Initial SOC (%) 40 5 

Final SOC (%) 90 10 

Arrival time of “Responsive” EVs (h) 09:00 1 

Departure time of “Responsive” EVs (h) 17:00 1 

Arrival time of “Unresponsive” EVs (h) 10:30 0.5 

Departure time of “Unresponsive” EVs (h) 13:30 0.5 
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An uptake level of 20% EVs is considered as the Business as Usual (BAU) 

Scenario [42]. This uptake level was used for different case studies to 

investigate the impact of EVs load forecast on the effectiveness of the 

proposed control model. Representative charging rates of 3.6kW, 11kW and 

22kW for the charging stations are considered to study their effect on the 

flexibility of a responsive EVs fleet. The charging stations were assumed to 

have a single outlet/connector and provide ac charging. Non EVs demand 

curves are obtained from [103] for a typical spring weekday. Different ratios 

of “Unresponsive” and “Responsive” EVs are used to analyse the influence 

of this ratio to the effectiveness of the proposed model. 

5.4.2 Case Study 1 

In this case study a number of 614 EVs were assumed, equivalent with 

20% uptake, having the characteristics presented in Table 5-2. Different EVs 

fleet synthesis with “Responsive” and “Unresponsive” EVs is considered, 

charging at 11kW charging stations. Two control options are presented, one 

without activating the forecasting modules of the model, and the second one 

that uses the forecasting model. Figure 5.9 shows the demand on the MV level 

for both options (without and with EVs load forecast) for different ratios of 

“Responsive” and “Unresponsive” EVs. 



108 

 

 

Figure 5.9: Charging demand for different levels of “Unresponsive” EVs after 

two control strategies 



109 

 

The results show that when EVs load forecast option is activated, EVs are 

modifying their charging schedules in order to reduce the impact of 

“Unresponsive” EVs charging on the demand curve. The charging demand of 

the “Responsive” EVs is adapted to the “Unresponsive” EVs charging 

demand so that their aggregation results in a valley filling effect on the Non 

EVs demand curve. In most cases, this adaptive behaviour of “Responsive” 

EVs leads to a reduction of the aggregated charging demand peak. For low 

levels of “Unresponsive” EVs (until 20%), the control model is able to 

completely absorb the “Unresponsive” EVs demand. On the other hand, high 

levels of “Unresponsive” EVs lead to inflexible demand, thus the capability 

of the proposed control model to reduce the peak charging demand is limited. 

Obviously, without having “Responsive” EVs in our system, the integrated 

model with EVs load forecast is not affecting the final charging demand. 

5.4.3 Case Study 2 

This case study investigates the effect of the charging stations’ power rate 

on the effectiveness of the control model. The charging rates of 3kW, 11kW 

and 22kW and an uptake of 20% EVs are used for this analysis. The Peak-to-

Average Ratio (PAR) and peak reduction criteria are used to evaluate the 

performance of the model. PAR is calculated according to Eq. (5.6). This 

index indicates the valley filling effect on the demand curve. 

where Pmax is the peak power demand of a day and Paverage is the mean power 

demand for the specific day. 

As seen from Figure 5.10, different charging rates have a different effect 

on PAR-index. At low charging rates (3.6kW) the control model with EVs 

load forecast is capable to delay the increase of this index, even until a 50/50 

ratio of “Responsive” and “Unresponsive” EVs is achieved. For higher 

charging rates, “Unresponsive” EVs have a significant impact on PAR, even 

at low penetration levels. Despite this, the control model with EVs load 

forecast improves the results. At 0% and 100% levels of “Unresponsive” EVs 

averageP

P
PAR max  

(5.6) 
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the results are identical, and both control options lead to the same demand 

curve. In every combination of “Responsive” and “Unresponsive” EVs 

(except of course the extreme values of 0% and 100%) there is a peak 

reduction due to the contribution of the forecasting model. For every charging 

rate, this reduction can reach up to 35%. However, this reduction occurs at 

different percentage of “Unresponsive” EVs for each charging rate. For low 

charging rates a significant peak reduction is observed at a wide range of 

“Unresponsive” EVs percentages. On the contrary when the charging rate is 

increased, this range is narrower and the maximum peak reduction is found 

on lower “Unresponsive” EVs percentages.  

 

Figure 5.10: Peak-to-average ratio and Peak reduction for a) 3.6kW, b) 11kW 

and c) 22kW charger 



111 

 

5.5 SUMMARY 

The flexibility of the electricity sector in managing changes will have a 

significant influence to the success of the electric vehicle deployment. The 

development of the charging infrastructure is often seen as an essential 

investment to offer EVs drivers the psychological support to overcome the 

range anxiety, one of the most inhibiting factors in EVs adoption. In order to 

manage the EVs charging in distribution networks, DNOs will have to 

upgrade their infrastructure or implement smart control techniques in parallel 

with the development of regulative measures to serve these new customers.  

The “aggregator” is a new player which will control multiple EVs. This 

research is proposing a charging control framework for a mixture of 

“Responsive” and “Unresponsive” EVs enhanced by EVs load forecasting. 

The main aim of the control algorithm is to achieve a valley-filling effect on 

the demand curve. The effectiveness of the control algorithm was tested in a 

UK generic distribution network considering a geographical area with 3072 

customers. Two case studies were presented. The first case study considered 

a EVs fleet charging at 11kW charging stations comprising of “Responsive” 

and “Unresponsive” EVs. It was demonstrated that when the EVs load 

forecast option is activated the EVs are adapting their charging schedule to 

reduce the impact of the “Unresponsive” EVs on the demand curve. The 

second case study investigated the effect of the charging station’s power rate 

on the effectiveness of the control model. It was shown that when the 

forecasting module is activated there is a demand peak reduction for every 

combination of “Responsive” and “Unresponsive” EVs considering charging 

rates of 3kW, 11kW and 22kW. 

Smart management of EVs charging based on aggregation enhanced by 

EVs load forecasting could be seen as a win-win strategy for both the DNO 

and the vehicle owner.  
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CHAPTER 6  

A MULTI-AGENT BASED SCHEDULING 

ALGORITHM FOR ADAPTIVE EVS 

CHARGING 

6.1 INTRODUCTION 

In this chapter a decentralised scheduling algorithm for EVs charging is 

presented. The charging control model follows the architecture of a MAS. 

Each entity was modelled as an autonomous agent, which interacts with other 

agents and tries to achieve its own goals. The MAS consists of a EVs/DG 

aggregator agent and “Responsive” or “Unresponsive” EVs agents. The 

EVs/DG aggregator agent is responsible to design the virtual pricing policy 

according to EVs charging demand and DG forecasts. “Responsive” EVs 

agents are the ones that respond rationally to the virtual pricing signals, 

whereas “Unresponsive” EVs agents define their charging schedule 

regardless the virtual cost. “Responsive” EVs agents are adjusting their 

charging schedules based on the charging demand from “Unresponsive EVs 

agents”, indicating their adaptive behaviour. The performance of the control 

model was experimentally demonstrated at the EES Laboratory hosted at the 

NTUA. Three factors were investigated: (i) the location of the EVs/DG 

aggregator, (ii) the importance of forecasting the demand from 

“Unresponsive” EVs agents and (iii) the charging behaviour of “Responsive” 

EVs agents when renewables generation is available. The results showed the 

adaptive behaviour of “Responsive” EVs agents and proved their ability to 

charge preferentially from Renewables. 

In contrast to the existing literature, this model considers a realistic 

scenario for the future EVs fleet by classifying the EVs agents into 
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“Responsive” and “Unresponsive” to the control strategy. To the best of my 

knowledge, it is the first time that the forecast of inflexible EVs charging 

demand is integrated in a charging control model. A novel algorithm was 

developed for the distributed management of EVs charging. Although the 

EVs agents are trying to minimise their virtual cost, this results in a valley-

filling effect on the total demand curve. This is achieved through the dynamic 

pricing mechanism of an EVs/DG aggregator. By modifying the virtual prices 

after each charging request, the “Responsive” EVs agents adapt their charging 

demand to the demand from “Unresponsive” EVs agents. 

The rest of the chapter is organised as follows. In Section 6.2 the EVs 

Management Framework is illustrated. The experimental demonstration of 

the charging control model is described in Section 6.3. A summary is given 

in Section 6.4. 

6.2 ADAPTIVE EVS CHARGING CONTROL MODEL 

6.2.1 Architecture 

The EVs management scheme follows a two-layer decentralised structure 

based on the UK generic distribution network [102]. The bottom layer 

includes the EVs agents at the LV customer level, whereas the top layer 

includes the EVs/DG aggregator agents at the MV/LV transformer level.  

The EVs/DG aggregator agent represents an energy market entity which 

manages the EVs charging demand and owns small scale renewable energy 

generation in a geographical area. It tries to increase its revenues from 

existing contractual agreements with the EVs owners and the DNO. The 

EVs/DG aggregator purchases energy from the wholesale energy market, 

based on forecasts for the next day’s local EVs charging demand and local 

renewable energy generation. The EVs charging requests are operated in 

order to maximise the use of the local renewable energy for their charging 

and to minimise the purchase cost of additional energy from the grid. 

Ancillary services (e.g. load shifting) can also be offered to the DNOs in order 

to reduce the demand during the peak hours and utilise the off-peak hours for 

the EVs charging (valley-fill). The EVs charging demand is controlled in an 
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indirect manner by adopting a dynamic virtual pricing mechanism according 

to the forecasted EVs charging demand and local renewable generation 

production. In the proposed pricing scheme, the EVs/DG aggregator’s 

objective is achieved by assigning low virtual price values to the preferred 

hours for EVs charging, and higher virtual price values to hours where EVs 

charging should be avoided.  Based on the charging demand, these price 

values are constantly updated to ensure that the objective is achieved. 

The EVs agents are entities representing the EVs owner’s rational 

behaviour. Their objective is to minimise their individual charging cost, based 

on the virtual price values. To this end, the EVs agents define their charging 

schedules individually so that they charge at the cheapest hours. As EVs are 

the decision making components of the charging management system, 

therefore the charging control model can be classified as decentralised.  

Although there is not a direct interaction between them, one EVs agent’s 

charging schedule affects the virtual price values for the other EVs agents, 

and thus their interdependence is indirect. In reality, it is unlikely that all EVs 

owners will participate in such management scheme at all times slots. The 

flexibility of EVs charging demand should not be taken for granted. To reflect 

this realistic characteristic of future EVs fleets, in the adopted charging 

management framework the EVs agents are classified as “Responsive” or 

“Unresponsive” to the pricing signals. “Responsive” EVs agents are the ones 

that respond rationally to the pricing signals, whereas “Unresponsive” EVs 

agents define their charging schedule regardless the cost.   

6.2.2 Charging Control Strategy 

The EV/DG aggregator provides valley-filling services to the DNO and is 

paid for these services. Its revenues are also increased when the charging 

energy demand is supplied from (owned) local renewable energy generation. 

In this context, the EV/DG aggregator sets a dynamic pricing strategy so that 

the energy demand valleys are used for the EVs charging, and when available, 

the owned renewable energy generation supplies the EVs charging demand. 
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The pricing policy considers the technical constraints of the downstream 

network (MV/LV transformer, LV feeders). The EV/DG aggregator prevents 

the violation of operational limits by modifying the virtual prices based on 

the network’s stress level. 

The “Responsive” EVs agents adjust their charging schedule to the lowest 

virtual prices, trying to reduce their own individual charging cost. In case of 

a fixed price curve, the charging demand of all the “Responsive” EVs agents 

would coincide during the cheapest hours, resulting in a new peak. To avoid 

this, the EV/DG aggregator adopts a dynamic pricing strategy where the 

virtual price values are updated sequentially, after the scheduling process of 

each “Responsive” EV agent.  Figure 6.1 shows the resulting demand curve 

after a fixed and dynamic pricing strategy. 

 

Figure 6.1: Fixed charging strategy versus Dynamic Pricing Policy Strategy 

In addition, the effectiveness of the control scheme is significantly affected 

by the “Unresponsive” EVs agents. The inflexible charging demand from 

“Unresponsive” EVs agents changes the shape of the total demand curve, and 

is considered when setting the virtual prices, otherwise the allocation of the 

flexible EVs charging demand is not optimal. This effect is explained with an 

example. A mixture of “Responsive” and “Unresponsive” EVs agents is 

assumed and their arrival and departures times are shown in Figure 6.2a. An 

abnormal event occurs at 10:00, when a number of “Unresponsive” EVs 

agents connect to the charging stations requiring charging for a short period 

of time. Without prior knowledge of this abnormal event, the EVs/DG 

aggregator does not adjust the virtual prices correspondingly, and the 
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“Responsive” EVs agents schedule their charging in a non-optimal fashion 

(Figure 6.2b and Figure 6.2c). To the best of my knowledge, this example 

indicates the weakness of the majority of the control strategies proposed in 

the literature. 

 

Figure 6.2: EVs Management without forecasting the demand from 

“Unresponsive” EVs agents 

If the abnormal event is known a priori, the virtual prices could be 

modified to reflect the new shape of the demand curve. As a consequence of 

this change the “Responsive” EVs agents charge in an optimal fashion. 

Therefore, forecasting the demand from “Unresponsive” EVs is critical for 

the effectiveness of the control scheme. In the adopted control strategy, the 
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In addition, the EVs/DG aggregator tries to satisfy the EVs charging 

demand with the local owned renewable energy generation. To this end, it 

forecasts the next-day’s DG and adjusts the virtual prices correspondingly. 

By setting lower charging cost when DGs are expected to be available, the 

EVs/DG aggregator incentivises the “Responsive” EVs agents to consume 

the DG locally. The forecast model described in Section 4.3 can be also used 

to produce the day ahead generation forecast scenarios. However, the DG 

forecasts used in Section 6.3.4 were assumed to be provided by an external 

source due to lack of sufficient amount of data. 

The virtual price values depend on the accuracy of the forecasts (both 

charging demand and DG). An inaccurate forecast results in profit loss for the 

EVs/DG aggregator as the scheduling solution is not optimal at the end of the 

day. Therefore, this control strategy considers two operational modes, namely 

normal and emergency. During normal operation, the forecasts are accurate 

and the charging schedules are executed exactly as planned. In case of an 

error in the demand or generation forecast, an emergency mechanism is 

activated for the current time-step. The EVs/DG aggregator calculates the 

new virtual price values according to the actual demand and generation of the 

current time-step. The connected “Responsive” EVs agents modify their 

charging schedule, following the updated virtual prices. This is a sequential 

process, and the virtual values are updated after “rescheduling” each 

“Responsive” EVs agent. The emergency operation terminates when the 

charging demand is again optimally scheduled, based on the new condition 

of the system. To ensure the participation of “Responsive” EVs agents in this 

emergency operation, additional incentives are given (e.g. the rescheduled 

charging demand is not charged). This feature can be utilised to offer demand 

response services to DNOs, e.g. reduce the charging demand during a certain 

period. Additional contractual agreements should be in place, but the 

regulatory and contractual aspects are not in the scope of this research.   

6.2.3 Charging Control Model 

The charging control model follows the MAS architecture. Each entity is 

modelled as an autonomous agent, which interacts with other agents and tries 
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to achieve its own goals. All the agents exist in an environment where time is 

measured in time-steps. During one time-step, an agent either performs a set 

of actions or waits for a triggering signal from another agent. A sequence of 

six operational phases occurs in every time-step, namely Initial, Forecasting, 

Planning, Normal, Emergency and Final. 

In the Initial Phase the EVs/DG aggregator decides whether a new forecast 

for the demand of “Unresponsive” EVs and the renewable generation is 

required. The Forecasting Phase is executed on the first time-step of every 

24 hours, and thus during Initial Phase the EVs/DG aggregator evaluates the 

current time-step. At the same time, the EVs agent compares the current time-

step with its connection time-step in order to decide its next action. In case 

the current time-step is equal to the connection time-step the EVs agent enters 

its Planning Phase, otherwise it enters the Normal Phase. 

During Forecasting Phase, the EVs/DG aggregator forecasts the two days-

ahead demand of “Unresponsive” EVs and renewable generation for every 

LV feeder of the corresponding MV/LV transformer in a time-step resolution. 

The forecast model described in [104] is implemented, based on SVM and 

trained using historical data. The historical data contain information about the 

charging demand from “Unresponsive” EVs and the renewable generation 

profiles. Once the forecasts are available, the EVs/DG aggregator uses a 

typical NoEV demand profile for every LV feeder to calculate the total 

scheduled demand of the next day. Assuming that the day is divided in N 

time-steps, an array of N values was created for every LV feeder ( DMDschT _ ). 

The array contains the total scheduled demand for every time-step k, and was 

calculated using Eq. (6.1):  

Where: 

 k = 1…N 

 f = 1…Number of LV feeders on MV/LV transformer.  

fk

noEV

fk

spEV

fk

DER

fk

UnrespEV

fk

DMDsch FSFFT ,,

Re

,,,

_   (6.1) 
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k

UnrespF   is the forecasted charging demand from “Unresponsive” EVs for 

the time-step k. 

k

nFRe      is the forecasted renewable generation for the time-step k. 

k

spSRe    is the total scheduled charging demand of “Responsive” EVs for 

the time-step k. 

k

noEVF    is the forecasted NoEV demand for the time-step k. 

Based on the total scheduled demand, the N virtual prices are calculated. 

A simple pricing mechanism was applied, where the virtual prices are defined 

in a way that they reflect the EVs/DG aggregator’s preference for EVs 

charging demand in a certain time-step (valley filling strategy). The EVs/DG 

aggregator decreases the virtual cost of charging during the time-steps with 

low expected demand, incentivising the EVs agents to charge accordingly. 

The pricing formula is presented in Eq. (6.2).  

Where: 

Pf is the thermal power limit of the corresponding LV feeder. 

w is a profit factor related to the contractual agreement between the 

EVs/DG aggregator and the EVs agents. 

The profit factor w does not affect the behaviour of the model, but is related 

to the revenue targets of the EVs/DG aggregator. The actual contractual 

agreements between the EVs/DG aggregator and the EVs agents are out of 

the scope of this research and thus the factor w is assumed to be equal to 1. 

In case there are new arrivals or connections of EVs agents, the agents 

enter in the Planning Phase. A queue is created (Schedule Queue) containing 

all the EVs agents that have just connected to their charging stations. The EVs 

agents of Schedule Queue solve their scheduling problem on a first-come 

first-served sequence based on the virtual prices sent from the EVs/DG 

w
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T
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DMDsch
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aggregator. Therefore, the decentralised structure of the charging control 

model is demonstrated when each EVs agent defines its charging schedules 

individually. Each EVs agent solves the scheduling problem described by 

Eqs. (6.3) - (6.5).  

   



nn

n

dt

t

fkn tVPtP ,min  
(6.3) 
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Where: 

tn is the connection time of EVs agent n to feeder f. 

dn is the charging duration of EVs agent n. 

Pn(t) is the instantaneous charging power demand of EVs agent n. 

VPk,f(t) is the virtual cost value of each time step k . 

SOCfinaln
 is the desired SOC of EVs agent n. 

SOCinn
 is the initial SOC of EVs agent n. 

Cbatn
 is the battery capacity of EVs agent n. 

δeffn
 is the efficiency of the charging station. 

Pch.nomn is the nominal power rate of the charging station. 

Eq. (6.4) expresses the energy requirements of EVs agent n. These 

requirements are satisfied during the connection period [tn, tn+dn]. The 

instantaneous charging power Pn(t) must not exceed the power rating of the 

charging station (Pch.nomn
) for every t, as described in Eq. (6.5). Once the EVs 

agent defines its charging schedule, it informs the EVs/DG aggregator and 

leaves the Schedule Queue. When the EVs/DG aggregator receives a charging 

schedule from an EVs agent, it updates the total schedule demand 
DMDschT _
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of the corresponding feeder. The virtual price values are recalculated 

according to the updated  DMDschT _  , waiting for the next EVs agent. 

In case there are no EVs agents in the Planning Phase, the Normal Phase 

follows. The EVs/DG aggregator monitors the actual NoEV demand, the 

demand from “Unresponsive” EVs agents and the renewable energy 

generation for the current time-step. In order to check for possible violations 

of the network technical constraints, power flow analysis is performed 

considering the scheduled EVs charging demand (from “Responsive” EVs 

agents) and the monitored information (real time power demand). In case 

there are no violations or forecasting errors, the EVs agents execute their 

charging schedule for the current time-step. If the technical constraints 

(transformer nominal ratings, voltage statutory limits, line thermal limits) are 

violated or the charging schedule is not optimal due to forecasting errors, the 

EVs/DG aggregator transmits an emergency signal to all connected 

“Responsive” EVs agents. The EVs charging schedule is not executed, and 

the Emergency Phase begins. 

A Reschedule Queue is created with the “Responsive” EVs agents that are 

connected in that time-step. The EVs/DG aggregator calculates the amount 

of EVs charging demand that needs to be rescheduled (Prsch) in order to 

eliminate the problem and updates the virtual prices correspondingly. The 

EVs agents reschedule their charging demand for the remaining period before 

their departure (including the current time-step) using Eqs. (6.3)-(6.5) 

sequentially. After its reschedule, each EVs agent updates the total scheduled 

charging demand of “Responsive” EVs (
k

spSRe ) and leaves the Reschedule 

Queue. When an EVs agent leaves the Reschedule Queue, the EVs/DG 

aggregator updates the Total Scheduled Demand ( DMDschT _ ) and re-evaluates 

the emergency condition. If the problem remains, the Prsch is recalculated 

along with new virtual prices, and the procedure is repeated for the next EVs 

agent in the Reschedule Queue. The procedure is terminated when either Prsch 

is equal to zero, or the Reschedule Queue is empty. 
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During Final Phase, the EVs agents compare the current time-step with 

their departure time-step (tn+dn), in order to either disconnect or repeat the 

operation in the following time-step. At the same time, the EVs/DG 

aggregator returns to its initial state. 

All the actions of the EVs/DG aggregator agent and the EVs agents during 

one time-step are presented in Figure 6.3. A sample of the MATLAB code 

used for scheduling EVs charging demand is presented in Appendix D. 
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Figure 6.3: Flowchart of EVs Charging Control Model 
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6.3 EXPERIMENTAL RESULTS  

6.3.1 General Set Up 

The control model was experimentally demonstrated at the EES 

Laboratory hosted at the NTUA. The Model-In-the-Loop (MIL) technique is 

used to demonstrate the EVs charging control model under real time 

conditions. MIL enables the interconnection of a software model and 

hardware component, identifying their potential interactions and 

demonstrating the performance of the computer model without increased 

implementation costs. MIL is defined as a Hardware-in-the-Loop (HIL) 

testing technique with partially real and virtual (real time software program) 

test specimens [105]. HIL simulation is an approach where physical 

equipment is connected to a simulated system. This technique is used to test 

equipment (Hardware under Test - HuT) under real time operation conditions, 

approaching real life system conditions. Figure 6.4 shows a diagram depicting 

the MIL paradigm followed in the experiments.  

 

Figure 6.4: Experiment Structure 

The hardware components include a Real Time Digital Simulator (RTDS) 

and a PV inverter whereas the charging control model is hosted on a personal 
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computer. RTDS is a fully digital device suitable for simulating electrical 

power systems and networks in real time. It is used to solve power system 

equations fast enough to generate realistic output conditions approaching the 

actual operating conditions of a network. The main user’s interface with the 

RTDS hardware is RSCAD which is used to support the design, 

implementation and analysis of the HIL test. The RTDS used in this setup, 

comprises several processing cards operating in parallel as well as various 

digital and analogue inputs and outputs so as to interact with the charging 

control model in a time step of 0.5sec.  

The typical 33/11/0.4kV UK generic distribution network model [102] was 

simulated in RSCAD. The system is comprised of a 33kV three-phase source, 

two 33/11.5kV 15MVA transformers with on-line-tap-changer and an 11kV 

substation with five 11kV outgoing MV feeders. Each 11kV feeder supplies 

eight 11/0.433kV 500kVA distributed transformers with off-line-tap-

changer. Each MV/LV transformer has 4 LV feeders, and each LV feeder 

provides energy to 96 customers. The network’s topology is shown in Figure 

5.8. Real-time PV generation values were obtained from 10 PV modules 

(110W each) through the SMA Sunny Boy inverter (1100W) and were used 

as inputs to the charging control model.   

Three case studies were considered to demonstrate the performance of the 

charging control model under different operating conditions. The 

experiments allowed the examination of the closed-loop system consisted of 

the PVs, the simulated electric power network and the charging control 

model. 

6.3.2 Locating the EVs/DG Aggregator Agent 

This case study investigates the impact of EVs charging on the UK 

distribution network considering two different locations for the EVs/DG 

Aggregator. In the proposed control strategy, the EVs/DG aggregator was 

located at the MV/LV transformer, responsible for 384 customers equally 

allocated to 4 LV feeders. In this case, the virtual prices were calculated 

according to the demand of each LV feeder. An alternative location was also 
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studied, where the EVs/DG aggregator was located before the MV feeder, 

responsible for 3072 customers (8 MV/LV transformers). In this case, the 

EVs/DG aggregator calculated the virtual prices according to the demand of 

the MV feeder. The control strategy and the behaviour of the agents were 

considered the same; the only difference between the two cases was the 

location of the EVs/DG aggregator and the calculation of the pricing signals. 

The assumptions are presented in Table 6-1. In the residential charging 

scenario, the EVs agents are charging at home after work. An EVs uptake 

level of 20% is considered as the BAU scenario [42]. Therefore, a number of 

640 EVs agents was considered, equally distributed to the 32 LV feeders. Non 

EVs demand curves were obtained from [103] for a typical Spring weekday.  

Table 6-1: Fleet assumptions for the residential charging scenario 

Figure 6.5 presents the results for the two different cases. Figure 6.5a is 

related to the case where the EVs/DG aggregator was located at the MV 

feeder. The results when the EVs/DG aggregator was located at the MV/LV 

transformer are shown in Figure 6.5b. 

Variable 
Mean  

Value (μ) 

Standard 

Deviation (σ) 

Number of “Responsive” EVs agents 640 - 

Number of “Unresponsive” EVs agents 0 - 

Arrival of “Responsive” EVs agents (h) 18:00 2 

Departure of “Responsive” EVs agents (h) 08:00 2 

Power of EVs charging stations (kW) 3.6 - 

Efficiency of charging station (δeff) 0.8 - 

Battery Capacity (kWh) 30 2 

Initial SOC (%) 40 10 

Final SOC (%) 90 10 
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Figure 6.5:  Power Demand when the location of the EV/DG aggregator agent 

is at the a) MV feeder b) MV/LV transformers 

In both cases the EVs agents charge during off-peak hours, achieving a 

valley-filling effect at the demand curve of the MV feeder. However, when 

the prices were calculated according to the power demand of MV feeder 

(Figure 6.5a), the operation of the downstream network was not optimal. The 

demand profiles of the MV/LV transformers and the corresponding LV 

feeders are fluctuating during the EVs charging period. On the other hand, 

when the EVs/DG aggregator was located at the MV/LV transformer and the 

virtual prices were calculated based on the demand of each LV feeder, the 

demand profiles show a significant improvement. The demand fluctuation 

during the EVs charging period was reduced, resulting in a flattened demand 

curve at all voltage levels.  

6.3.3 Importance of Forecasting the Charging Demand of 

“Unresponsive” EVs Agents 

In the proposed control strategy, the EVs/DG aggregator forecasts the two 

days ahead charging demand of “Unresponsive” EVs agents. In this case 
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study, the performance of the proposed control model was compared with the 

case when the EVs/DG aggregator does not have the capability to provide 

forecasts of the charging demand from “Unresponsive” EVs agents. A mixed 

residential EVs charging scenario was also considered in this case study. To 

highlight the importance of the forecasting actions, an EVs uptake level of 

60% (Extreme Scenario of [42]) was considered. According to this uptake 

level a total number of 1,824 EVs agents was used with 352 “Unresponsive” 

EVs agents and 1,472 “Responsive” EVs agents. An abnormal event was 

assumed to occur around 21:30, when all “Unresponsive” EVs agents arrived 

to their charging station and start charging. A 100% accurate forecast of this 

event was assumed to be available, so that the EVs/DG aggregator can adjust 

the virtual prices accordingly. The assumptions are presented in Table 6-2. 

Table 6-2: Fleet assumptions for the mixed residential charging scenario 

Figure 6.6 presents the power demand of the MV/LV transformer and its 

corresponding LV feeders in both cases. The results show that due to the EVs 

load forecasting capability of the EVs/DG aggregator, the “Responsive” EVs 

agents are modifying their charging schedules in order to reduce the impact 

of “Unresponsive” EVs charging on the demand curve. The charging demand 

Variable 
Mean 

Value (μ) 

Standard 

Deviation (σ) 

Number of “Responsive” EVs agents 1472 - 

Number of “Unresponsive” EVs agents 352 - 

Arrival of “Responsive” EVs agents (h) 18:00 2 

Departure of “Responsive” EVs agents (h) 08:00 2 

Arrival of “Unresponsive” EVs agents (h) 21:30 1 

Departure of “Unresponsive” EVs agents (h) 08:00 2 

Power of EV charging stations (kW) 3.6 - 

Efficiency of charging station (δeff) 0.8 - 

Battery Capacity (kWh) 30 2 

Initial SOC (%) 40 10 

Final SOC (%) 90 10 
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of the “Responsive” EVs was adapted to the “Unresponsive” EVs charging 

demand so that their aggregation results in a valley filling effect on the Non 

EVs demand curve. In most cases, this adaptive behaviour of “Responsive” 

EVs leads to a reduction of the aggregated charging demand peak.  

 

Figure 6.6:  Power Demand for the MV/LV transformer and the 

corresponding LV feeders when the forecasting capability of the EV/DG 

aggregator agent is a) disabled b) enabled 

The level of this reduction was affected by the charging scenario. High 

levels of “Unresponsive” EVs lead to inflexible demand, thus the capability 

of the proposed control model to reduce the peak charging demand was 

limited. Moreover, the accuracy of the forecast affects the final result, as the 

virtual prices would then be calculated based on incorrect estimation of the 

power demand. Finally, if the charging times of “Responsive” and 

“Unresponsive” EVs agents do not coincide (e.g. the responsible EVs agents 
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charge at night and the “Unresponsive” EVs agents charge during the 

morning), the aggregated charging demand cannot be modified. 

6.3.4 Charge Preferentially from Renewables 

This case study investigates the capability of both “Responsive” and 

“Unresponsive” EVs agents to adapt their charging schedules to the local DG. 

The PV panels of the micro grid Laboratory of NTUA were used as local DG 

connected to one MV/LV transformer. Their capacity of 1.1kW was scaled 

up to 132kW in order to represent a PV park of considerable size. Historical 

data of one year were used to forecast the two days ahead PV generation. A 

morning charging scenario was assumed, where the EVs agents charge during 

the day. The EVs/DG aggregator agent acquired real time PV generation 

values from the PV inverter, and when necessary entered in the Emergency 

Phase. During this phase, the “Responsive” EVs agents modified their 

charging schedule, in order to consume the local DG. Table 6-3 presents the 

assumptions for this case study. 

Table 6-3: Fleet assumptions for the morning charging scenario 

Figure 6.7a and Figure 6.7b presents the MV/LV transformer loading and 

voltage of LV bus in two different cases. In the case where PVs and 

“Unresponsive” EVs agents were considered, a new peak was created on the 

Variable 
Mean 

Value (μ) 

Standard 

Deviation (σ) 

Number of EVs agents 640 - 

Arrival time of EVs agents (h) 08:00 2 

Departure time of EVs agents (h) 17:00 2 

Power of EVs charging stations (kW) 3.6 - 

Efficiency of charging station (δeff) 0.8 - 

Battery Capacity (kWh) 30 2 

Initial SOC (%) 40 10 

Final SOC (%) 90 10 

PV generation capacity (kW) 132 - 
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power demand curve of the MV/LV transformer. However, in the case where 

PVs and “Responsive” EVs agents were considered, the fluctuation in the 

power demand curve of the MV/LV transformer was decreased without 

creating a new peak. Similarly, the LV bus voltage shows less fluctuation 

when the “Responsive” EVs agents adapt their charging demand according to 

the PV generation profile. 

Figure 6.7c and Figure 6.7d shows the proportion of the consumed PV 

generation for EVs charging from “Unresponsive” and “Responsive” EVs 

agents respectively. In Figure 6.7c, the 64.73% of the PV generation was used 

to charge the batteries of the “Unresponsive” EVs agents. However, when the 

EVs agents were responsive, they adjusted their charging schedules according 

to the times with high PV generation, utilising the 94.41% of the PV 

generation. 

 In the case with “Unresponsive” EVs agents, the proportion of their 

charging demand in the PV generation was depended on the charging 

scenario. For example, while the EVs charging demand coincides with the 

PV generation, this proportion increases. Therefore, unless a coincidence 

between EVs charging demand from “Unresponsive” EVs agents and 

renewable generation exists, they charge without considering the times with 

renewable generation. 

As seen from Figure 6.7c, an unexpected drop in the PV generation 

occurred at around 12:00 due to cloudiness, and the EVs agents had to charge 

using energy from the grid. The “Unresponsive” EVs agents ignored this 

change and used the energy from the grid for their charging. However, this 

drop in the PV generation was dealt differently by the “Responsive” EVs 

agents.  Incentivised by the EVs/DG aggregator, they entered the Emergency 

Phase and rescheduled their charging demand in a way that the required 

energy from the grid was consumed in a valley-filling fashion. The results 

demonstrated the adaptive behaviour of “Responsive” EVs agents and their 

preference to charge from RES. 
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Figure 6.7: a) Power Demand for the MV/LV transformer, b) Voltage Profile 

at the LV bus level, c) Charging Demand from “Unresponsive” EVs agents, d) 

Charging Demand from “Responsive” EVs agents 

6.4 SUMMARY 

This research presented a decentralised EVs management framework for 

the EVs charging. The architecture followed in this charging control model 

was based on MAS. Each entity was modelled as an autonomous agent, 
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interacting with other agents and trying to achieve its own goals. The MAS 

consisted of an EVs/DG aggregator agent and “Responsive” or 

“Unresponsive” EVs agents. The EVs/DG aggregator agent was responsible 

to design the appropriate virtual pricing policy so that it can achieve its 

objectives. “Responsive” EVs agents were able to respond rationally to the 

virtual pricing signals, whereas “Unresponsive” EVs agents were defining 

their charging schedule regardless the virtual cost.  

The effectiveness of the control model was experimentally validated into 

the EES Laboratory of the NTUA. Three cases studies were presented. The 

first case study investigated the impact of EVs charging on the UK 

distribution network when the EVs/DG Aggregator was located either in the 

MV/LV transformer or the MV feeder. It was demonstrated that the location 

of the EVs/DG aggregator agent affects the demand and voltage profiles of 

the LV feeders. The second case study demonstrated the value of the EVs 

load forecasting in the control strategy. When the EVs/DG aggregator has 

load forecasting capabilities, the “Responsive” EVs agents are adapting their 

charging schedule to reduce the impact of the “Unresponsive” EVs agents on 

the demand curve. The third case study tested the capability of “Responsive” 

EVs agents to charge preferentially from RES. The results demonstrated their 

capability to reschedule their charging demand following a real time PV 

generation profile.  
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CHAPTER 7  

CONCLUSIONS AND FUTURE WORK 

7.1 MAIN THESIS CONTRIBUTIONS  

This thesis investigated the management of EVs charging in distribution 

networks. The main contributions of this thesis are summarised below: 

i. A data analysis framework for handling real EVs charging data is 

proposed. 

ii. Forecasting models for an EVs aggregator were developed. 

iii. A control algorithm to manage EVs charging demand utilising 

forecasting processes was presented. The performance of the 

charging control model was demonstrated through simulation and 

experimental case studies. 

7.2 DATA ANALYSIS FRAMEWORK FOR HANDLING 

REAL EVS CHARGING DATA 

A data driven framework for characterising the risk level of the charging 

demand of EVs was presented.  A data mining model was developed to extract 

information hidden behind charging events and to identify the characteristics 

of the EVs charging load. Three key characteristics of EVs charging demand 

in a geographical area were investigated using the proposed methodology, 

namely shape of the typical daily profile, predictability with respect to 

weather and trend of EVs charging demand. Clustering, correlation and 

regression analysis were performed to study each characteristic, using factors 

to quantify them. Analysing these characteristics resulted in assessing the 

potential risks and uncertainties which affect the mid-term normal operation 

of the corresponding distribution network.  A fuzzy logic decision model was 

developed that aggregates the three factors into one “risk level” index. The 
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“risk level” index was defined in order to characterise the EVs charging 

demand, reflecting its potential impact on the energy demand in a 

geographical area. The framework was applied on a dataset of real charging 

events from the counties of Nottinghamshire, Leicestershire and West 

Midlands in UK, and their “risk level” index was calculated. 

The main conclusions are presented below: 

i. Areas with high “risk level” values imply a potential risk for the 

mid-term normal operation of the distribution networks and such 

analysis could be important for the DNO. 

ii. It was found that the EVs charging demand in West Midlands has 

the lowest value for “risk level” index whereas Leicestershire and 

Nottinghamshire on the other hand were characterised with higher 

values of the risk level index. 

7.3 FORECASTING MODELS FOR THE EVS 

AGGREGATOR 

An EVs Aggregator can manage the EVs charging demand more 

effectively if future knowledge of the system is provided. To this end, two 

forecasting models were developed in order to enhance the performance of 

the EVs charging management.  

This performance is affected by various uncertainties which are associated 

with the random EVs charging demand patterns and the fluctuating energy 

market prices. The volatilities in the energy market prices are caused by large 

penetrations of variable renewable energy generation and random load 

demand. In particular, uncertainties on power generation increases with 

higher share of intermittent RES in the generation mix such as wind power. 

These uncertainties could pose technical and financial risks to EV 

aggregators’ operation. Therefore, two methodologies were developed to 

forecast the future EVs charging demand as well as the available renewable 

generation in order to effectively coordinate EVs charging.   

The first is a model for forecasting the EVs charging demand using data 

mining methods for the training processes. Its performance was evaluated 
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using four different data mining method and EVs charging data from real 

world pilots. The key findings with regards to this model are summarised 

below: 

i. The results showed that SVM provided the most accurate forecasts 

in both case studies, achieving a MAPE of less than 5%. 

ii. The results showed that the training time increases significantly 

when using SVM compared to the other methods. Selecting the 

best method is a trade of between accuracy and training time. 

The latter is a model for producing stochastic forecast scenarios using 

historical time series data for the training process. Using a rolling forecasting 

approach, the impact of frequent updating of the forecasts was investigated. 

This rolling scenarios forecasting model is updated on a regular basis, 

increasing its accuracy. A case study was presented to evaluate the 

performance of the model based on real time series data from wind generators 

in UK.  The most significant findings with regards to this model are listed 

below: 

i. The impact of more frequents updates on the accuracy of the model 

was quantified. The MAPE ranged between 32.79% - 172.08% 

when the base values were updated every 48 time steps. When the 

update frequency was increased to every 2 time steps, the range of 

the MAPE was between 4.9% - 14.25%; an average of 84.827% 

improvement. 

ii. The impact of the number of magnitude intervals on the 

performance of the scenarios forecasting model was evaluated. For 

10 magnitude classes and update frequency of 2 half-hours the 

error range was 23.48% whereas for 100 magnitude classes the 

error range was 7.96%, a reduction of 33.9%.  

7.4 EVS CHARGING MANAGEMENT  

A decentralised charging control model was developed following the 

architecture of a MAS. Each entity was modelled as an autonomous agent, 

which interacts with other agents and tries to achieve its own goals. The main 
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aim of the control algorithm was to achieve a valley-filling effect on the 

demand curve.  

The MAS consists of a EVs/DG aggregator agent and “Responsive” or 

“Unresponsive” EVs agents. The EVs/DG aggregator agent designs the 

appropriate virtual pricing policy based on accurate power demand and 

generation forecasts. “Responsive” EVs agents are the ones that respond 

rationally to the virtual pricing signals, whereas “Unresponsive” EVs agents 

define their charging schedule regardless the virtual cost. “Responsive” EVs 

agents are adjusting their charging schedules according to the charging 

demand from “Unresponsive EVs agents”, indicating their adaptive 

behaviour. The performance of the charging control model was evaluated 

through simulation and experimental case studies.  

The most significant key findings from the simulation case studies are 

presented below: 

i. The impact of the ratio between “Unresponsive” and “Responsive” 

EVs on the adaptive behaviour of the “Responsive” EVs was 

investigated. It was demonstrated that the control model was able 

to completely absorb the “Unresponsive” EVs demand for low 

levels of “Unresponsive” EVs (up to 20%). 

ii. The impact of the charging stations’ power rates on the 

effectiveness of the control model was analysed considering 

different percentages of “Responsive” and “Unresponsive” EVs. It 

was demonstrated that the control model using demand forecasts 

from “Unresponsive” EVs, achieved a peak reduction up to 35% 

from the total load demand for every charging rate. A significant 

peak reduction was observed at a wide range of “Unresponsive” 

EVs percentages for low charging rates. However, when the 

charging rate was increased, this range was narrower and the 

maximum peak reduction was found on lower percentages of 

“Unresponsive” EVs. 

The control model was experimentally demonstrated at the EES 

Laboratory hosted at the NTUA. The Model-In-the-Loop (MIL) technique is 
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used to demonstrate the EVs charging control model under real time 

conditions. The hardware components included RTDS and PV inverter 

whereas the charging control model was hosted on a personal computer.  

The most significant key findings from the experimental cased studies are 

concluded below: 

i. The effect of the location of the EVs/DG aggregator on the 

performance of the control model was investigated. An improved 

operation of the network was indicated when the EVs/DG 

aggregator is located at the MV/LV transformers in contrast to 

when the EVs/DG aggregator is located at the MV feeder level. It 

was demonstrated that the demand fluctuation during the EVs 

charging period was reduced, resulting in a flattened demand curve 

at all voltage levels. 

ii. The performance of the proposed control model was compared 

with the case when the EVs/DG aggregator does not have the 

capability to provide forecasts of the charging demand from 

“Unresponsive” EVs agents. The experiments demonstrated that 

the charging demand of the “Responsive” EVs was adapted to the 

“Unresponsive” EVs charging demand so that their aggregation 

resulted in a valley filling effect on the non EVs demand curve. 

iii. The capability of both “Responsive” and “Unresponsive” EVs 

agents to adapt their charging schedules to the local DG was 

investigated. It was demonstrated that “Responsive” EVs agents 

adjusted their charging schedules according to the times with high 

PV generation, utilising the 94.41% of the PV generation. 

7.5 FUTURE WORK 

The work presented in this thesis can be extended in the following ways: 

i. The appropriateness of various different communication 

technologies like Power Line Communication (PLC), Digital 

Subscriber Line (DSL), General Packet Radio Service (GPRS), 

Wi-Fi, etc for the agents’ interactions within the MAS could be 
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investigated. The communication infrastructure must be reliable 

and secure with low latencies for the normal exchange of messages 

among the agents. The number of messages needed for the 

coordination of EVs will define the specifications for the necessary 

communication systems.  

ii. In this work, the power rate of EVs battery charging was assumed 

to be constant and independent to the battery SOC. In reality, the 

charging power rate of a battery is dependent on the SOC and 

voltage of the battery [27]. The battery degradation accelerates 

with high charging current, temperature, SOC and DOD. The 

impact of the charging control model on the EVs battery SOH 

could be examined. 

iii. The V2G capability could be incorporated in the charging control 

model. The adaptive behaviour of “Responsive” EVs agents could 

be improved further if V2G capability exists. 

7.6 OVERALL RESEARCH BENEFIT 

A number of actors could benefit from the work provided in this thesis. 

Distribution system operators may benefit from this research in different 

ways. The proposed framework for analysing real EVs charging data may 

indicate areas with high risk level index. Therefore, this increases their 

awareness for the potential risk of the mid-term normal operation of the 

distribution networks in the corresponding area. In addition, the proposed 

EVs charging control model achieves a valley filling effect on the demand 

curve, reduces the peak demand and increases the utilisation of DG for EVs 

charging. These result in an optimal operation of the distribution network 

even with high penetrations of EVs. Therefore, this is a cost effective solution 

for the DSO because they may postpone expensive network reinforcement. 

EVs aggregators may have various benefits from this research work. As 

an energy market entity, it tries to increase its revenues from existing 

contractual agreements with the EVs owners and the DNO. The developed 
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algorithms for predicting and controlling EVs charging demand may help 

EVs Aggregators meet their contractual agreements and increase their profits. 

Society and the environment may generally benefit from this research. 

The management of EVs battery charging could increase the utilisation of 

higher shares of RES, and effectively higher CO2 emissions reductions. In 

addition, economic benefits may be seen due to the deferral of expensive 

infrastructural reinforcements of distribution networks. 
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APPENDIX A  

A sample of the MATLAB code used for the development of the clustering 

module (presented in Chapter 3) is shown below. 

for cluster_type=2:2 

    for profile=1:profiles 

        All_Criterion_Values=[]; 

        All_IDXs=[]; 

        All_clusters=[]; 

        for evaluation_index=1:4 

            if cluster_type==1 

                orio=floor(size(hourly_dmd,1)/168); 

                grammi=orio*168; 

                demand1=reshape(hourly_dmd(1:grammi,profile),168,[])'; 

            else 

                orio=floor(size(hourly_dmd,1)/24); 

                grammi=orio*24; 

                demand1=reshape(hourly_dmd(1:grammi,profile),24,[])'; 

            end; 

            demand=[]; 

            for lopa1=1:size(demand1,1) 

                if sum(demand1(lopa1,:))>0 

                    demand=vertcat(demand,demand1(lopa1,1:end)); 

                end; 

            end; 

            max_cluster_check2=7; 

            if evaluation_index==1 

                Evaluation_cluster2 = 

evalclusters(demand,'kmeans','CalinskiHarabasz','klist',[1:max_cluster_che

ck2]); 

                index_name='Calinski'; 

                h=Evaluation_cluster2.CriterionValues; 

            elseif evaluation_index==2 

                Evaluation_cluster2 = 

evalclusters(demand,'kmeans','silhouette','klist',[1:max_cluster_check2]); 

                index_name='silh'; 

                h=Evaluation_cluster2.CriterionValues; 

            elseif evaluation_index==3 

                Evaluation_cluster2 = 

evalclusters(demand,'kmeans','Gap','klist',[1:max_cluster_check2]); 

                index_name='Gap'; 

                h=Evaluation_cluster2.CriterionValues; 

            else 

                Evaluation_cluster2 = evalclusters(demand,'kmeans', 

'DaviesBouldin','klist',[1:max_cluster_check2]); 

                index_name='Davies'; 

                h=Evaluation_cluster2.CriterionValues; 

            end; 

            All_Criterion_Values= [All_Criterion_Values 

                h]; 
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            clear h; 

            num_cluster=Evaluation_cluster2.OptimalK; 

            [IDX,Centroids] = kmeans(demand,num_cluster,.. 

'distance','sqEuclidean', 'Display','iter','emptyaction','drop'); 

            proto=min(IDX); 

            teleutaio=max(IDX); 

            Centroid_ID=[proto:teleutaio]; 

            Total_Num_of_IDXs=zeros(1,teleutaio); 

            weights=zeros(1,teleutaio); 

            athroisma=size(IDX,1); 

            for lopa1=proto:teleutaio 

                for lopa2=1:size(IDX,1) 

                    if IDX(lopa2,1)==lopa1 

                        Total_Num_of_IDXs(1,lopa1)= 

Total_Num_of_IDXs(1,lopa1)+1; 

                    end; 

                end; 

                weights(1,lopa1)=Total_Num_of_IDXs(1,lopa1)/athroisma; 

            end; 

            temp3=ones(1,teleutaio); 

            temp4=evaluation_index*temp3; 

            All_IDXs=[All_IDXs IDX]; 

clusters_results=vertcat(temp4,Centroid_ID,Total_Num_of_IDXs,weights,Centr

oids'); 

            All_clusters=[All_clusters clusters_results]; 

        end; 

        final_All_IDXs=[All_IDXs demand sum(demand,2)]; 

        temp_cluster=All_clusters(5:end,:); 

        whole_dmd=zeros(1,size(temp_cluster,2)); 

        for j=1:size(temp_cluster,2) 

            whole_dmd(1,j)=sum(temp_cluster(:,j)); 

        end; 

        res_dmd=zeros(1,size(temp_cluster,2)); 

        for j=1:size(temp_cluster,2) 

            for i=1:size(temp_cluster,1) 

                ora= mod(i,24); 

                if ora<=7 || ora>=16 

                    res_dmd(1,j)= res_dmd(1,j)+ temp_cluster(i,j); 

                end; 

            end; 

        end; 

        fuzzy_res_dmd=zeros(1,size(temp_cluster,2)); 

        for j=1:size(temp_cluster,2) 

            if  whole_dmd(1,j)>0 

                fuzzy_res_dmd(1,j)= res_dmd(1,j)/whole_dmd(1,j); 

            end; 

        end;     

Centroids_dmd_characteristics=vertcat(whole_dmd,res_dmd,fuzzy_res_dmd); 

   end; 

end; 

 Published with MATLAB® R2015b 

http://www.mathworks.com/products/matlab
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APPENDIX B 

A sample of the MATLAB code used in the model for forecasting electric 

vehicle charging demand using Support Vector Machines is described below. 

 

  

 

target_train1 = demand_profile((13:end),i); 

atributes_train1 = demand_profile((1:12),i); 

 

target_test1 = target_train1; 

atributes_test1 = target_train1; 

 

c=ceil((max(demand_profile(:,i)))); 

g=(1/10); 

phrase1='-s 3 -t 2 -g'; 

gamma=sprintf(' %f',g); 

phrase2='-c '; 

com=sprintf(' %f',c); 

phrase3='-e 0.1'; 

 

options=strcat(phrase1,gamma,phrase2,com,phrase3); 

 

model1 = libsvmtrain(target_train1, atributes_train1,… options); 

 

[EV_Forecast] = libsvmpredict(target_test1, … atributes_test1, model1); 

 

clear g c phrase1 gamma phrase2 com; 

clear EV_Forecast target_train1 atributes_train1; 

clear target_test1 atributes_test1; 

clear i j phrase3 epiloges model1; 

Published with MATLAB® R2015b 
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APPENDIX C 

The main MATLAB code used for the development of the model for 

producing the stochastic forecast scenarios (presented in Chapter 6) is shown 

below. 

All_Steps=[11 21 51 101]; 

fore_Scenarios=[20 50 100 200 500 1000]; 

s=size(All_Steps,2); 

f=size(fore_Scenarios,2); 

orizontas=[48 24 16 12 8 4 2]; 

Days_Forecast=1; 

indexes=6; 

TEMP_RES=zeros(s*f*7,indexes); 

Final_Res_names=cell(s*f*7,3); 

clear s f; 

 

for forecast_loop=1:1%size(fore_Scenarios,2)  

forecast_loop_phrase=strcat('For_',num2str(fore_Scenarios(forecast_loop)))

; 

    for StepSize_Case=1:1%size(All_Steps,2)      

StepSize_Case_phrase=strcat('_Steps_',num2str(All_Steps(1,StepSize_Case)))

; 

        %%%%%%%%%% input data  %%%%%%%%%%%%% 

        workbookFile='WPD_kriton.xlsx'; 

        evdata = importfile(workbookFile); 

        dmd=cell2mat(evdata(2:end,1)); 

        clear workbookFile evdata; 

        fprintf('Start Creating Probability Density Function for %s with 

%s\n',forecast_loop_phrase,StepSize_Case_phrase); 

        max_power= 1+max(dmd); 

        norm_dmd=dmd./max_power; 

        clear dmd; 

        Proto_Timestep=size(norm_dmd,1)-(Days_Forecast*48); 

        train=norm_dmd(1:Proto_Timestep,1); 

        test=norm_dmd(Proto_Timestep:Proto_Timestep+(Days_Forecast*48)-

1,1); 

        num_Forecasts=fore_Scenarios(1,forecast_loop); 

        orizontas=[48 24 16 12 8 4 2]; 

        Number_Steps=All_Steps(1,StepSize_Case); 

        Steps = (linspace(0,1,Number_Steps))'; 

        for loopa1=1:1:1                %%%%%(Days_Forecast*48) 

            frasi='Half_hours_forward_'; 

            frasi2=num2str(loopa1); 

            frasi3=strcat(frasi,frasi2); 

            for i=1:(size(Steps,1)-1) 

                display(Steps(i,1)); 

                clear all_cases_increase all_cases_decrease 

all_cases_flat; 

                all_cases_increase=[]; 
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                all_cases_decrease=[]; 

                all_cases_flat=[]; 

 

                dmd_min=Steps(i,1); 

                dmd_max=Steps(i+1,1); 

                temp1='Step'; 

                temp2=num2str(i); 

                phrase=strcat(temp1,temp2); 

                for loopa2=2:size(train,1)-1  

                    if loopa2+loopa1<=size(train,1) 

                        if train(loopa2,1)>=dmd_min && 

train(loopa2,1)<dmd_max 

                            if train(loopa2-1,1)>=dmd_min && train(loopa2-

1,1)<dmd_max 

                                all_cases_flat=[all_cases_flat 

                                    train(loopa2+1,1)]; 

                            elseif train(loopa2-1,1)>=dmd_max 

                                all_cases_decrease=[all_cases_decrease 

                                    train(loopa2+1,1)]; 

                            elseif train(loopa2-1,1)<dmd_min 

                                all_cases_increase=[all_cases_increase 

                                    train(loopa2+1,1)]; 

                            else 

                                display('de brika tpt'); 

                            end; 

                        end; 

                    end; 

                end; 

                clear loopa2; 

                if size(all_cases_flat,1)>0 

                    ksd_flat = 

fitdist(all_cases_flat,'kernel','Kernel','triangle'); 

                    WInd_Past_Cases.(frasi3).(phrase).('Flat') =struct 

('all_cases_flat',all_cases_flat,'Kernel_Probability',ksd_flat); 

                    State_Flat=0; 

                    clear ksd_flat; 

                else 

                    State_Flat=1; 

                end; 

                if size(all_cases_decrease,1)>0 

                    ksd_decrease = 

fitdist(all_cases_decrease,'kernel','Kernel','triangle'); 

                    WInd_Past_Cases.(frasi3).(phrase).('Decrease') =struct 

('all_cases_Decrease',all_cases_decrease,'Kernel_Probability',ksd_decrease

); 

                    clear ksd_decrease; 

                    State_decrease=0; 

                else 

                    State_decrease=1; 

                end; 

                if size(all_cases_increase,1)>0 

                    ksd_increase = 

fitdist(all_cases_increase,'kernel','Kernel','triangle'); 

                    WInd_Past_Cases.(frasi3).(phrase).('Increase') =struct 

('all_cases_Increase',all_cases_increase,'Kernel_Probability',ksd_increase

); 

                    State_increase=0; 
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                    clear ksd_increase; 

                else 

                    State_increase=1; 

                end; 

                if (State_increase==1)&& (State_decrease==1)&& 

(State_Flat==1) 

                    fprintf('There is no KSD for the Step 

%d:\n',Steps(i,1)); 

                end; 

            end; 

        end; 

        clear loopa1 ; 

        fprintf('End Creating Probability Density Function for %s with 

%s\n',forecast_loop_phrase,StepSize_Case_phrase); 

        display('Start Forecasting'); 

        all_Updates=size(orizontas,2); 

        for periptosi=1:all_Updates 

            clear Fore_Update forecast_table; 

            fprintf('Update Forecast Every %d 

timesteps:\n',orizontas(1,periptosi)); 

          

Update_Phrase=strcat('_Update_',num2str(orizontas(1,periptosi))); 

            Fore_Update=0:orizontas(1,periptosi):(Days_Forecast*48); 

            forecast_table=zeros((Days_Forecast*48),num_Forecasts); 

            for MonteCarlo=1:num_Forecasts 

                for timestep=0:1:(Days_Forecast*48)-1 

                    ts=timestep+Proto_Timestep; 

                    clear dmd_now dmd_bef state; 

                    state=0; 

                    if timestep<2 

                        dmd_now=norm_dmd(ts,1); 

                        dmd_bef=norm_dmd(ts-1,1); 

                    else 

                        for loopa=1:(size(Fore_Update,2)-1) 

                            if timestep==Fore_Update(1,loopa) 

                                dmd_now=norm_dmd(ts,1); 

                                dmd_bef=norm_dmd(ts-1,1); 

                                state=1; 

                            end; 

                        end; 

                        clear loopa; 

                        if state==0 

                            dmd_now=forecast_table(timestep,MonteCarlo); 

                            dmd_bef=forecast_table(timestep-1,MonteCarlo); 

                        end; 

                        clear state; 

                    end; 

                    clear dmd_min dmd_max temp1 temp2 phrase; 

                    for i=1:(size(Steps,1)-1) 

                        dmd_min=Steps(i,1); 

                        dmd_max=Steps(i+1,1); 

                        temp1='Step'; 

                        temp2=num2str(i); 

                        phrase=strcat(temp1,temp2); 

                        if dmd_now<dmd_max && dmd_now>=dmd_min 

                            frasi='Half_hours_forward_1'; 

                            if dmd_bef<dmd_max && dmd_bef>=dmd_min 
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                                if 

isfield(WInd_Past_Cases.(frasi).(phrase),'Flat')                                   

ksd=WInd_Past_Cases.(frasi).(phrase).('Flat').('Kernel_Probability'); 

                                elseif 

isfield(WInd_Past_Cases.(frasi).(phrase),'Increase')                                   

ksd=WInd_Past_Cases.(frasi).(phrase).('Increase').('Kernel_Probability'); 

                                elseif 

isfield(WInd_Past_Cases.(frasi).(phrase),'Decrease')                                   

ksd=WInd_Past_Cases.(frasi).(phrase).('Decrease').('Kernel_Probability'); 

                                else 

                                    display(phrase); 

                                end; 

 

                            elseif dmd_bef<dmd_min 

                                if 

isfield(WInd_Past_Cases.(frasi).(phrase),'Increase') 

                                    

ksd=WInd_Past_Cases.(frasi).(phrase).('Increase').('Kernel_Probability'); 

                                elseif 

isfield(WInd_Past_Cases.(frasi).(phrase),'Flat')                                 

ksd=WInd_Past_Cases.(frasi).(phrase).('Flat').('Kernel_Probability'); 

                                elseif 

isfield(WInd_Past_Cases.(frasi).(phrase),'Decrease')                     

ksd=WInd_Past_Cases.(frasi).(phrase).('Decrease').('Kernel_Probability'); 

                                else 

                                    display(phrase); 

                                end; 

                            else 

                                if 

isfield(WInd_Past_Cases.(frasi).(phrase),'Decrease') 

                                    

ksd=WInd_Past_Cases.(frasi).(phrase).('Decrease').('Kernel_Probability'); 

                                elseif 

isfield(WInd_Past_Cases.(frasi).(phrase),'Flat') 

                                    

ksd=WInd_Past_Cases.(frasi).(phrase).('Flat').('Kernel_Probability'); 

                                elseif 

isfield(WInd_Past_Cases.(frasi).(phrase),'Increase') 

                                    

ksd=WInd_Past_Cases.(frasi).(phrase).('Increase').('Kernel_Probability'); 

                                else 

                                    display('den yparxei kamia ksd'); 

                                    display(phrase); 

                                end; 

                            end; 

                            temp=abs(ksd.random(1,1)); 

                            forecast_table(timestep+1,MonteCarlo)=temp; 

                            clear temp ksd; 

                        end; 

                    end; 

                end; 

            end; 

Published with MATLAB® R2015b 

http://www.mathworks.com/products/matlab
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APPENDIX D 

A sample of the MATLAB code used for the scheduling of EVs charging 

is described below. 

% Port = 8085; 

% Host ='192.168.1.114'; 

% % Open the connection 

% JTCPOBJ = jtcp('REQUEST',Host,Port);        % Runtime is acting as TCP 

socket server 

%******************* Initialisation ***************************** 

period=2;                              % days 

customers=610;                         %number of customers 

max_penetration=1;                     %max EV penetration  

timeslot_duration=0.1;                 %duration 

ts=24/timeslot_duration;               %number of timeslots in 1 day 

 

modes=[1               %residential charger 

       0               %public charger 

      0];              %fast charger 

 

types=[0            %dumb charging 

       1            %eco charging 

       0];          %smart charging 

[nom_11_04_transf, nom_LV_feeders, nom_MV_feeder, DER_F, NoEV_DMD, 

id_rates]=parametroi(); 

[DER_Fore_ts , der_real_stili]=der_kampiles(); 

der_real=zeros(period*ts,32); 

x=zeros(3200,(period*ts)); 

schedule=[id_rates x]; 

der_schedule=schedule; 

EV_Forecast_ts=zeros(period*ts,1); 

NoEV_DMD_ts=gram_paremboli(NoEV_DMD, period, timeslot_duration); 

DER_Forecast_ts1=[]; 

DER_Forecast_ts=zeros(period*ts,1); 

total_DMD=zeros(period*ts,1); 

fMV_real=zeros(period*ts,1); 

tr_real=zeros(period*ts,8); 

fd_real=zeros(period*ts,32); 

der_real=zeros(period*ts,32); 

real_noev=NoEV_DMD_ts; 

total_der=zeros(period*ts,32); 

[fMV, t1, t2, t3, t4, t5, t6, t7, t8, f11, f12, f13, f14, f21, f22, f23, 

f24, f31, f32, f33, f34, f41, f42, f43, f44, f51, f52, f53, f54, f61, f62, 

f63, f64, f71, f72, f73, f74, f81, f82, f83, 

f84]=availability(NoEV_DMD_ts, nom_MV_feeder, nom_LV_feeders, 

nom_11_04_transf, period, timeslot_duration); 

tr=[t1 t2 t3 t4 t5 t6 t7 t8]; 

fd=[f11 f12 f13 f14 f21 f22 f23 f24 f31 f32 f33 f34 f41 f42 f43 f44 f51 

f52 f53 f54 f61 f62 f63 f64 f71 f72 f73 f74 f81 f82 f83 f84]; 

%********************** FLeet ********************************* 
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[stolos]=EV_fleet(timeslot_duration, max_penetration, customers, period, 

types); 

stolos2=stolos; 

clear customers max_penetration modes; 

%********************** Start ***************************** 

if types(1,1)==0 

    [rank_sm] = smart_rank (ts, EV_Forecast_ts, NoEV_DMD_ts, 1, period); 

end; 

asdf=[]; 

step=timeslot_duration*10; 

qwerty=[]; 

for day=1:(period); 

    stili=(day-1)*8+1;            

    c=1;                         %counter of EV arriving on k 

    z=(day-1)*ts;                %last timeslot of last day 

 

   for i=1:ts                   %timeslot of day# 

        tic; 

        k = z+i;                 %real time 

        kk=k+1;                   

        total_DMD(k,1)=real_noev(k,1); 

        fMV_real(k,1)=4000-total_DMD(k,1); 

        for loop=1:8 

            tr_real(k,loop)=500-((total_DMD(k,1))/8); 

        end; 

        for loop=1:32 

            fd_real(k,loop)=125-((total_DMD(k,1))/32); 

        end; 

        for loop=1:32 

            der_real(k,loop)=der_real_stili(k,1); 

        end; 

%**************************** DISPATCH *********************************** 

        if types(2,1)==1 

            for gr=1:3200 

                if der_schedule(gr,kk)>0 

                    idd=der_schedule(gr,1); 

                    if day>1 

                        found=0; 

                        for p=1:size(stolos2,1) 

                            if stolos2(p,stili+1)==idd 

                                evdata2=[stolos2(p,stili) 

stolos2(p,stili+1) stolos2(p,stili+2) stolos2(p,stili+3) 

stolos2(p,stili+4) stolos2(p,stili+5) stolos2(p,stili+6) 

stolos2(p,stili+7)]; 

                                if evdata2(1)<k 

                                    found=1; 

                                    break; 

                                end; 

                            end; 

                        end; 

                        if found==0 

                            for p=1:size(stolos2,1) 

                                if stolos2(p,stili+1-8)==idd 

                                    evdata2=[stolos2(p,stili-8) 

stolos2(p,stili+1-8) stolos2(p,stili+2-8) stolos2(p,stili+3-8) 

stolos2(p,stili+4-8) stolos2(p,stili+5-8) stolos2(p,stili+6-8) 

stolos2(p,stili+7-8)]; 
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                                    break; 

                                end; 

                            end; 

                        end; 

                    else 

                        for p=1:size(stolos2,1) 

                            if stolos2(p,stili+1)==idd 

                                evdata2=[stolos2(p,stili) 

stolos2(p,stili+1) stolos2(p,stili+2) stolos2(p,stili+3) 

stolos2(p,stili+4) stolos2(p,stili+5) stolos2(p,stili+6) 

stolos2(p,stili+7)]; 

                                break; 

                            end; 

                        end; 

                    end; 

 

                    t=floor(idd/1000); 

                    f=floor(mod(idd,1000)/100); 

                    xx=(t-1)*4+f; 

                    isxis_der=der_schedule(gr,kk); 

 

                    [P_der_error, der_real]=der_dispatch_function(idd, k, 

isxis_der, der_real); 

                    total_der(k,xx)=total_der(k,xx)+isxis_der; 

                    if P_der_error>0.01 

 

                        total_der(k,xx)=total_der(k,xx)-P_der_error; 

                        der_schedule(gr,kk)=der_schedule(gr,kk)-

P_der_error; 

                        Der_Energy_error=P_der_error*timeslot_duration; 

                        cpnew=evdata2(1)+evdata2(3)-k; 

                        evdata_new=[k evdata2(2) cpnew evdata2(4) 

evdata2(5) Der_Energy_error evdata2(7)]; 

                        der_f1=DER_Forecast_ts(:,xx); 

                        [rank_der] = ranking_der (ts, EV_Forecast_ts, 

der_f1, day, period); 

                        [DER_Forecast_ts, der_schedule, Eremain1, 

g]=ecofunction(DER_Forecast_ts, rank_der, der_schedule, evdata_new, 

id_rates, timeslot_duration, z, 2); 

                        c2=1; 

                        for c2=1:size(stolos,1) 

                            if stolos(c2,stili+1)==evdata_new(2) 

                                break; 

                            end; 

                        end; 

                        if Eremain1>0.01 

                            fmv_old=fMV; 

                            sched_old=schedule; 

                            evdata_new(6)=Eremain1; 

                            evdata_new(1)=k-1; 

                            evdata_new(3)=evdata_new(3)+1; 

                            fd_ts=125-fd(:,xx); 

                            [rank_sm] = smart_rank (ts, EV_Forecast_ts, 

fd_ts, day, period); 

                            [schedule, fMV, tr, fd, Eremain, 

g]=smartfunction(rank_sm, schedule, evdata_new, id_rates, fMV, tr, fd, 

timeslot_duration, z, 2, der_schedule); 



172 

 

                            stolos(c2,stili+7)=Eremain; 

                            for ttt=k:(evdata_new(1)+evdata_new(3)) 

                                NoEV_DMD_ts(ttt,1)=4000-fmv_new(ttt,1); 

                            end; 

                        else 

                            stolos(c2,stili+7)=Eremain1; 

                        end; 

                    end; 

                end; 

            end; 

            for feeder=1:32 

                if der_real(k,feeder)>DER_Forecast_ts(k,feeder)+0.01 

                    for grammi=((feeder-1)*100+1):(feeder*100) 

                        idd=der_schedule(grammi,1); 

                        found2=0; 

                        if day>1 

                            found=0; 

                            for p=1:size(stolos2,1) 

                                if 

(stolos2(p,stili+1)==idd)&&(stolos2(p,stili)<k)&&(stolos2(p,stili)+stolos2

(p,stili+2)>=k) 

                                    evdata3=[stolos2(p,stili) 

stolos2(p,stili+1) stolos2(p,stili+2) stolos2(p,stili+3) 

stolos2(p,stili+4) stolos2(p,stili+5) stolos2(p,stili+6) 

stolos2(p,stili+7)]; 

                                    if evdata3(1)<k 

                                        found=1; 

                                        found2=1; 

                                        break; 

                                    end; 

                                end; 

                            end; 

                            if found==0 

                                for p=1:size(stolos2,1) 

                                    if (stolos2(p,stili+1-

8)==idd)&&(stolos2(p,stili-8)<k)&&(stolos2(p,stili)+stolos2(p,stili+2-

8)>=k) 

                                        evdata3=[stolos2(p,stili-8) 

stolos2(p,stili+1-8) stolos2(p,stili+2-8) stolos2(p,stili+3-8) 

stolos2(p,stili+4-8) stolos2(p,stili+5-8) stolos2(p,stili+6-8) 

stolos2(p,stili+7-8)]; 

                                        found2=1; 

                                        break; 

                                    end; 

                                end; 

                            end; 

                        else 

                            for p=1:size(stolos2,1) 

                                if 

(stolos2(p,stili+1)==idd)&&(stolos2(p,stili)<k)&&(stolos2(p,stili)+stolos2

(p,stili+2)>=k) 

                                    evdata3=[stolos2(p,stili) 

stolos2(p,stili+1) stolos2(p,stili+2) stolos2(p,stili+3) 

stolos2(p,stili+4) stolos2(p,stili+5) stolos2(p,stili+6) 

stolos2(p,stili+7)]; 

                                    found2=1; 

                                    break; 



173 

 

                                end; 

                            end; 

                        end; 

                        if found2==1 

                            telos=0; 

                            for ww=k:(evdata3(1)+evdata3(3)) 

                                if 

der_schedule(grammi,1+k)<id_rates(grammi,2) 

                                    help4=id_rates(grammi,2)-

der_schedule(grammi,1+k); 

                                    help5=[der_real(k,feeder), help4, 

schedule(grammi,1+ww)]; 

                                    extra=min(help5); 

                                    if extra>0                                      

der_schedule(grammi,1+k)=der_schedule(grammi,1+k)+extra;                                       

der_real(k,feeder)=der_real(k,feeder)-extra;                                      

schedule(grammi,1+ww)=schedule(grammi,1+ww)-extra; 

                                        if ww==k 

                                       

fMV_real(ww,1)=fMV_real(ww,1)+extra;                                        

tr_real(ww,floor((idd)/1000))=tr_real(ww,floor((idd)/1000))+extra;                                       

fd_real(ww,feeder)=fd_real(ww,feeder)+extra; 

                                        else 

                                            fMV(ww,1)=fMV(ww,1)+extra;                                       

tr(ww,floor((idd)/1000))=tr(ww,floor((idd)/1000))+extra;                                   

fd(ww,feeder)=fd(ww,feeder)+extra; 

                                        end; 

                                    end; 

                                    extra=0; 

                                    if der_real(k,feeder)==0 

                                        telos=1; 

                                        break; 

                                    end; 

                                end; 

                            end; 

                            if telos==0 

                               for ww=(evdata3(1)+evdata3(3)):-1:(k+1)  

                                    if 

der_schedule(grammi,1+k)+0.01<id_rates(grammi,2) 

                                        help4=id_rates(grammi,2)-

der_schedule(grammi,1+k); 

                                        help5=[der_real(k,feeder), help4, 

der_schedule(grammi,1+ww)]; 

                                        extra=min(help5); 

                                        if extra>0                                 

der_schedule(grammi,1+k)=der_schedule(grammi,1+k)+extra;                                            

der_schedule(grammi,1+ww)=der_schedule(grammi,1+ww)-extra;                                            

der_real(k,feeder)=der_real(k,feeder)-extra;                                           

DER_Forecast_ts(ww,feeder)=DER_Forecast_ts(ww,feeder)+extra; 

                                       end; 

                                    end; 

                                end; 

                            end; 

                            found2=0; 

                        end; 

                    end; 

               end; 
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            end; 

        end; 

        for  gr=1:3200 

            if schedule(gr,kk)>0 

                idd=schedule(gr,1); 

                if day>1 

                    found=0; 

                    for p=1:size(stolos2,1) 

                        if stolos2(p,stili+1)==idd 

                            evdata2=[stolos2(p,stili) stolos2(p,stili+1) 

stolos2(p,stili+2) stolos2(p,stili+3) stolos2(p,stili+4) 

stolos2(p,stili+5) stolos2(p,stili+6) stolos2(p,stili+7)]; 

                            if evdata2(1)<k 

                                found=1; 

                                break; 

                            end; 

                        end; 

                    end; 

                    if found==0 

                        for p=1:size(stolos2,1) 

                            if stolos2(p,stili+1-8)==idd 

                                evdata2=[stolos2(p,stili-8) 

stolos2(p,stili+1-8) stolos2(p,stili+2-8) stolos2(p,stili+3-8) 

stolos2(p,stili+4-8) stolos2(p,stili+5-8) stolos2(p,stili+6-8) 

stolos2(p,stili+7-8)]; 

                                break; 

                            end; 

                        end; 

                    end; 

                else 

                    for p=1:size(stolos2,1) 

                        if stolos2(p,stili+1)==idd 

                            evdata2=[stolos2(p,stili) stolos2(p,stili+1) 

stolos2(p,stili+2) stolos2(p,stili+3) stolos2(p,stili+4) 

stolos2(p,stili+5) stolos2(p,stili+6) stolos2(p,stili+7)]; 

                            break; 

                        end; 

                    end; 

                end; 

                isxis=schedule(gr,kk); 

                [Perror, fMV_real, tr_real, 

fd_real]=dispatch_function(idd, k, isxis, fMV_real, tr_real, fd_real); 

                schedule(gr,kk)=schedule(gr,kk)-Perror; 

                total_DMD(k,1)= total_DMD(k,1)+ (isxis-Perror); 

            end; 

        end; 

        while stolos(c,stili)==k 

            evdata=[stolos(c,stili) stolos(c,stili+1) stolos(c,stili+2) 

stolos(c,stili+3) stolos(c,stili+4) stolos(c,stili+5) stolos(c,stili+6)]; 

           t=floor(evdata(2)/1000); 

            f=floor(mod(evdata(2),1000)/100); 

            wwww=(t-1)*4+f; 

            Eremain1=evdata(6); 

            if types(2,1)==1 

                der_f1=DER_Forecast_ts(:,wwww); 

                [rank_der] = ranking_der (ts, EV_Forecast_ts, der_f1, day, 

period); 
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                [DER_Forecast_ts, der_schedule, Eremain1, 

g]=ecofunction(DER_Forecast_ts, rank_der, der_schedule, evdata, id_rates, 

timeslot_duration, z, 1); 

            end; 

            if Eremain1>0 

                evdata(6)=Eremain1; 

                if types(1,1)==1 

                    [schedule, fMV, tr, fd, Eremain, 

g]=dumpfunction(schedule, evdata, id_rates, fMV, tr, fd, 

timeslot_duration, 1); 

                else 

                    fd_ts=125-fd(:,wwww); 

                    [rank_sm] = smart_rank (ts, EV_Forecast_ts, fd_ts, 

day, period); 

                    [schedule, fMV, tr, fd, Eremain, 

g]=smartfunction(rank_sm, schedule, evdata, id_rates, fMV, tr, fd, 

timeslot_duration, z, 1, der_schedule); 

                end; 

                stolos(c,stili+7)=Eremain; 

            else 

                stolos(c,stili+7)=Eremain1; 

            end; 

            for w=1:evdata(3) 

                NoEV_DMD_ts(evdata(1)+w,1) = 

NoEV_DMD_ts(evdata(1)+w,1)+schedule(g,1+evdata(1)+w); 

            end; 

            if c<size(stolos,1) 

                c=c+1; 

            else 

                break; 

            end; 

        end; 

   end; 

end; 

%*************************** End *************************** 

% jtcp('close',JTCPOBJ); 
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