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A mathematical solution of the two-dimensional linear problem of an acoustic-gravity wave interacting with a rectangular trench,
in a compressible ocean, is presented. Expressions for the flow field on both sides of the trench are derived. The dynamic bottom
pressure produced by the acoustic-gravity waves on both sides of the trench is measurable, though on the transmission side it
decreases with the trench depth. A successful recording of the bottom pressures could assist in the early detection of tsunami.

1. Introduction

The aim of the current work is to study the behaviour of
acoustic-gravity waves interacting with a rectangular trench.
Acoustic-gravity waves may form in the ocean from various
sources, for example, submarine earthquakes, landslides,
fall of meteors, underwater explosions, or nonlinear wave
interaction. The mathematical formulation of the problem
requires accounting for the compressibility of the ocean in
order to obtain propagating wave modes other than the
gravity mode (i.e., acoustic-gravity modes).

The problems of the diffraction of incident waves by finite
obstacles have been extensively examined in the last decades.
Amongst these, a problem of interest is the propagation
of incident water waves over a trench. Kreisel [1], Mei
and Black [2], Lee and Ayer [3], Miles [4], and Kirby and
Dalrymple [5] have all investigated water wave diffraction in
an incompressible fluid. Ignoring the slight compressibility of
ocean results in a single propagating wave mode—the gravity
mode.The fluidmechanics significance of the compressibility
of the ocean has been investigated by a number of researchers.
Among those, Miyoshi [6] investigated the effect of ocean
bottom dislocation and showed that as a consequence the
surface oscillates up and down; Sells [7] studied the problem
of an infinite-strip block in a compressible ocean which
undergoes a sudden change and concluded that two types of
waves, acoustic and gravity, are generated each dominating
distinct space-time regions; Kajiura [8] presented a formula
to compute tsunami waves that were generated by a broad

crustal deformation using the long wave approximation;
Yamamoto [9] carried out an analytical study of the time
harmonic problem of the propagation of acoustic and gravity
waves in the ocean by vertical oscillation of a block of
ocean floor of simplified geometry; Nosov [10] carried out a
comparative study of wave generation by piston bottom dis-
placements in compressible and incompressible fluids using
linear potential theory; Nosov and Kolesov [11] performed
spectrum analysis of bottom pressure variations and proved
the existence of elastic oscillations of water column; Chierici
et al. [12] modelled the propagation of the generated acoustic
signal and tsunami wave generated and included a porous
seabed; Renzi andDias [13] studied the generation of hydroa-
coustic waves by space-time localised pressure changes on
the ocean surface; Kadri and Stiassnie [14] studied the
interaction of the generated acoustic modes with the shelf-
break; shoaling effects were studied by Kadri and Stiassnie
[15], and the contribution of an elastic seafloor was studied by
Eyov et al. [16]; Kadri and Stiassnie [17] proved the existence
of resonating triad interactions between gravity and acoustic
waves which is a main factor in generating microseisms;
the importance of triad interaction has been explained in a
comprehensive paper by Ardhuin and Herbers [18]; Kozdon
and Dunham [19] modelled seismic and acoustic waves
from the 2011 Tohoku earthquake and showed that near-
trench seafloor uplift excites leaking 𝑃 waves; and Kadri [20]
gave a general solution for the nonlinear interaction of two
opposing gravity waves with an acoustic wave in a compress-
ible ocean.
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The work by Yamamoto [9] provides an analytical solu-
tion of the problem of gravity and acoustic-gravity waves
generated by vertical oscillation of a block of ocean floor.
Further investigation of the acoustic-gravity waves has been
carried out by Kadri and Stiassnie [14], who studied the
interaction of acoustic-gravity waves with a continental shelf-
break, in order to estimate the dynamic bottom pressure
on the reflection and transmission sides of the break. Kadri
and Stiassnie [14] constructed separate solutions for each
constant depth in terms of eigenfunction expansions of the
velocity potential and then matched the solutions at the
vertical boundaries resulting in a system of infinite linear
algebraic equations with infinite unknowns that is truncated
and solved. A similar approach is carried out, in this paper,
to formulate and solve the two-dimensional mathematical
problem of an acoustic-gravity wave mode, referred to as an
incident wave mode, interacting with a rectangular trench
in a compressible fluid. We then extend the problem and
solve for an incident group of acoustic-gravity wave modes
generated by a sudden rise of a block of the ocean floor.
As the modes approach a trench, part of the energy is
reflected whereas the other part is transmitted. The general
solution of the problem enables us to obtain an expression
for the dynamic bottom pressure, at the two sides of the
trench.

The formulation of the mathematical problem is intro-
duced in Section 2. The solution of a single incident wave
is provided in Section 3. A numerical example of a single
incident mode interacting with a symmetric trench and
solution validation using energy flux balance are presented
in Section 4. A second example considering an asymmet-
ric trench is given in Section 5. A third example of a
group of incident modes propagating towards a trench is
given in Section 6. Finally, concluding remarks are given in
Section 7.

2. Formulation and Basics

2.1. Formulation. This paper considers the two-dimensional
problem of a wave mode propagating in an ideal homoge-
neous compressible fluid, with constant frequency 𝜔, over a
bottom with a right-angled rectangular trench, as presented
in Figure 1 (ℎ

1
< ℎ
2
and (ℎ

3
< ℎ
2
)). As the wave mode

interacts with the trench, part of the energy is reflected,
whereas the other part is transmitted. The objective is to find
the surface wave elevation 𝑧 = 𝜂(𝑥, 𝑡), as well as the dynamic
bottom pressure 𝑝

𝑏
on the two sides of the trench. To this

end, we solve the problem for the flow velocity potential
𝜙(𝑥, 𝑧, 𝑡). The governing equation is the two-dimensional
wave equation:

𝜙
𝑡𝑡
− 𝑐
2
(𝜙
𝑥𝑥

+ 𝜙
𝑧𝑧
) = 0, on −ℎ ≤ 𝑧 ≤ 0, (1)

where 𝑐 is the speed of sound (it is easy to show that variations
in the speed of sound in the ocean have a negligible effect
on acoustic-gravity waves), ℎ = ℎ

1
for 𝑥 < 0, ℎ = ℎ

2
for

0 < 𝑥 < 𝐿, and ℎ = ℎ
3
for 𝑥 > 𝐿, where 𝐿 is the trench width.
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Figure 1: Schematic representation of the flowdomain; ℎ
1
and ℎ

3
are

the depths of the ocean at the two sides of the trench; ℎ
2
and 𝐿 are the

depth and width of the trench, respectively; 2𝑏 and 𝜁
0
are the lateral

and vertical extents of the bottommotion; 𝑥
0
is the distance between

the earthquake epicentre and the incidence side of the trench.

Subscripts denote partial derivatives. The bottom and the
combined free-surface boundary conditions are, respectively,

𝜙
𝑧
= 0, on 𝑧 = −ℎ, (2)

𝜙
𝑡𝑡
+ 𝑔𝜙
𝑧
= 0, on 𝑧 = 0, (3)

where 𝑔 is the acceleration due to gravity and ℎ is uniform
in each section. The lateral boundary conditions include
Sommerfield’s radiation condition at |𝑥| → ∞, and

𝜙
𝑥
= 0 on{𝑥 = 0, −ℎ

2
< 𝑧 < −ℎ

1

𝑥 = 𝐿, −ℎ
2
< 𝑧 < −ℎ

3
.

(4)

The free-surface elevation and the bottom pressure are
then given by

𝜂(𝑥, 𝑡) = −
1

𝑔
𝜙
𝑡
, on 𝑧 = 0, (5)

𝑝
𝑏
(𝑥, 𝑡) = −𝜌𝜙

𝑡
, on 𝑧 = −ℎ, (6)

where 𝜌 is the density of water.

2.2. Basics. A solution of the linear problem is found by using
the method of separation of variables. For any amplitude 𝛼

𝑛

and a prescribed frequency 𝜔 we have the basic solutions

𝜙
𝑛
= 𝛼
𝑛
𝑓
𝑛
(𝑧)𝑒
𝑖(𝑘
𝑛
𝑥−𝜔𝑡)

, 𝑛 = 0, 1, 2, . . . , (7)

where from (1) to (3)

𝑓
𝑛
(𝑧) =

cosh[𝜆
𝑛
(ℎ + 𝑧)]

√𝐼
𝑛

(8)

are the orthonormal eigenfunctions of the Sturm-Liouville
problem in 𝑧 ∈ (−ℎ, 0), with

𝐼
𝑛
= ∫

0

−ℎ

cosh2[𝜆
𝑛
(ℎ + 𝑧)]𝑑𝑧; (9)
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and 𝜆
𝑛
are the eigenvalues, which are solutions of the disper-

sion relation

𝜔
2
= 𝑔𝜆
𝑛
tanh(𝜆

𝑛
ℎ). (10)

The wave numbers 𝑘
𝑛
, in (7), are given by

𝑘
2

𝑛
= 𝜆
2

𝑛
+
𝜔
2

𝑐2
. (11)

The first eigenvalue 𝜆
0
, which corresponds to the surface

wave, is real, whereas all the rest are purely imaginary.
Similarly, the first wave number 𝑘

0
is always real. The

following 𝑁a.g. wave numbers, [𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑁a.g.
], where 𝑁a.g.

is the nearest integer smaller than [𝜔ℎ/𝜋𝑐 + 1/2], are also
real and are called acoustic-gravity (or hydroacoustic) waves.
The gravity and the acoustic-gravity modes are all progres-
sive waves.The remaining wave numbers [𝑘

𝑁a.g.+1
, 𝑘
𝑁a.g.+2

, . . .]
are all imaginary and correspond to decaying evanescent
modes.

3. Solution for a Single Incident Wave

Since acoustic-gravity waves are nonevanescent periodic
modes (no dissipation is considered, etc.), the width 𝐿 affects
only the evanescent modes, 𝑛 > 𝑁a.g., which decay exponen-
tially with distance and have a negligible contribution, even
in the near-field prior to decaying (see Kadri and Stiassnie
[14]). Although the behaviour of acoustic-gravity wavewithin
the trench is of great significance to various applications,
for example, deep water transport (see Kadri [21]), the focus
here is merely on examining the magnitudes of reflected and
transmitted acoustic-gravity wave modes for applications far
from the trench, serving, among others, as early precursors
of tsunami and rogue waves. Therefore, although we derive
expressions for the modes both outside and within the
trench, we present results only for modes that are reflected
from the incident side of the trench (left side) and those
successfully passing the trench (transmitted to the right
side).

The solution at the incidence side of the trench (left side),
denoted by (1), is given by the incident wave mode, denoted
by �̂� (with 𝛼

�̂�
= 1), propagating to the right, from 𝑥 → −∞

to 𝑥 = 0, and an infinite sum of all modes which propagate
to the left, from 𝑥 = 0 to 𝑥 → −∞, including the evanescent
modes that decay exponentially in space:

Φ
(1)

=

cosh[𝜆(1)
�̂�
(ℎ
1
+ 𝑧)]

√𝐼
(1)

�̂�

𝑒
𝑖(𝑘
(1)

�̂�
𝑥−𝜔𝑡)

+

∞

∑

𝑛=0

𝛼
(1)

𝑛

cosh[𝜆(1)
𝑛
(ℎ
1
+ 𝑧)]

√𝐼
(1)

𝑛

𝑒
−𝑖(𝑘
(1)

𝑛
𝑥+𝜔𝑡)

.

(12)

The solution inside the trench, denoted by (2), is given
as an infinite sum of all modes which propagate to the right,
from 𝑥 = 0 to 𝑥 = 𝐿, and an infinite sum of all modes which

propagate to the left, from 𝑥 = 𝐿 to 𝑥 = 0; in both cases the
solution includes the evanescent modes:

Φ
(2)

=

∞

∑

𝑛=0

𝛼
(2)

𝑛

cosh[𝜆(2)
𝑛
(ℎ
2
+ 𝑧)]

√𝐼
(2)

𝑛

𝑒
𝑖(𝑘
(2)

𝑛
𝑥−𝜔𝑡)

+

∞

∑

𝑛=0

�̃�
(2)

𝑛

cosh[�̃�(2)
𝑛
(ℎ
2
+ 𝑧)]

√𝐼
(2)

𝑛

𝑒
−𝑖[�̃�
(2)

𝑛
(𝑥−𝐿)+𝜔𝑡]

,

(13)

where �̃�(2)
𝑛

= 𝜆
(2)

𝑛
, �̃�(2)
𝑛

= 𝑘
(2)

𝑛
, and 𝐼(2)

𝑛
= 𝐼
(2)

𝑛
.

The solution in the transmission side of the trench (right
side), denoted by (3), is given as an infinite sum of all
modes which propagate to the right, from 𝑥 = 𝐿 to 𝑥 →

∞, again including the evanescent modes that here decay
exponentially for 𝑥 → ∞:

Φ
(3)

=

∞

∑

𝑛=0

𝛼
(3)

𝑛

cosh[𝜆(3)
𝑛
(ℎ
3
+ 𝑧)]

√𝐼
(3)

𝑛

𝑒
𝑖[𝑘
(3)

𝑛
(𝑥−𝐿)−𝜔𝑡]

. (14)

From (5), the corresponding surface wave elevations are

𝜂
(1)

= −
𝑖𝜔

𝑔

cosh(𝜆(1)
�̂�
ℎ
1
)

√𝐼
(1)

�̂�

𝑒
𝑖(𝑘
(1)

�̂�
𝑥−𝜔𝑡)

−
𝑖𝜔

𝑔

∞

∑

𝑛=0

𝛼
(1)

𝑛

cosh(𝜆(1)
𝑛
ℎ
1
)

√𝐼
(1)

𝑛

𝑒
−𝑖(𝑘
(1)

𝑛
𝑥+𝜔𝑡)

,

𝜂
(2)

= −
𝑖𝜔

𝑔

⋅

∞

∑

𝑛=0

cosh(𝜆(2)
𝑛
ℎ
2
)

√𝐼
(2)

𝑛

⋅ (𝛼
(2)

𝑛
𝑒
𝑖(𝑘
(2)

𝑛
𝑥−𝜔𝑡)

+ �̃�
(2)

𝑛
𝑒
−𝑖[𝑘
(2)

𝑛
(𝑥−𝐿)−𝜔𝑡]

),

𝜂
(3)

= −
𝑖𝜔

𝑔

∞

∑

𝑛=0

𝛼
(3)

𝑛

cosh(𝜆(3)
𝑛
ℎ
3
)

√𝐼
(2)

𝑛

𝑒
𝑖(𝑘
(3)

𝑛
(𝑥−𝐿)−𝜔𝑡)

.

(15)

The corresponding free-surface amplitudes are given by

𝑎
(𝑗)

𝑛
=
𝜔

𝑔


𝛼
(𝑗)

𝑛



cosh(𝜆(𝑗)
𝑛
ℎ
𝑗
)

√𝐼
(𝑗)

𝑛

. (16)

The amplitudes of the potentials 𝛼(1)
𝑛
, 𝛼(2)
𝑛
, �̃�(2)
𝑛
, and 𝛼

(3)

𝑛

are unknowns, which are found from the following matching
conditions (given by Kirby and Dalrymple [5] for water
waves):

Φ
(1)

= Φ
(2)
, for 𝑥 = 0, −ℎ

1
< 𝑧 < 0,

Φ
(2)

= Φ
(3)
, for 𝑥 = 𝐿, −ℎ

3
< 𝑧 < 0,
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𝜕Φ
(1)

𝜕𝑥
=

{

{

{

0, for 𝑥 = 0, −ℎ
2
< 𝑧 < −ℎ

1

𝜕Φ
(2)

𝜕𝑥
, for 𝑥 = 0, −ℎ

2
< 𝑧 < 0,

𝜕Φ
(2)

𝜕𝑥
=

{

{

{

0, for 𝑥 = 𝐿, −ℎ
2
< 𝑧 < −ℎ

3

𝜕Φ
(3)

𝜕𝑥
, for 𝑥 = 𝐿, −ℎ

2
< 𝑧 < 0.

(17)

Substituting (12)–(14) into (17) andusing the orthonormal
identity of the eigenfunctions 𝑓(1)

𝑛
(𝑧) in 𝑧 ∈ (−ℎ

1
, 0) and

𝑓
(2)

𝑛
(𝑧) in 𝑧 ∈ (−ℎ

2
, 0) (see (8) and (9)) yield

𝐽
(12)

�̂�,𝑀
+

∞

∑

𝑞=0

𝐽
(12)

𝑞,𝑀
𝛼
(1)

𝑞
= 𝛼
(2)

𝑀
+ �̃�
(2)

𝑀
, 𝑀 = 0, 1, 2, . . . , (18)

𝑖𝑘
(1)

�̂�
𝛿
�̂�,𝑀

− 𝑖𝑘
(1)

𝑀
𝛼
(1)

𝑀

=

∞

∑

𝑚=0

𝑖𝑘
(2)

𝑚
𝐽
(12)

𝑀,𝑚
(𝛼
(2)

𝑚
− �̃�
(2)

𝑚
), 𝑀 = 0, 1, 2, . . . ,

(19)

∞

∑

𝑛=0

𝐽
(23)

𝑛,𝑀
(𝛼
(2)

𝑛
+ �̃�
(2)

𝑛
) = 𝛼
(3)

𝑀
, 𝑀 = 0, 1, 2, . . . , (20)

𝑖𝑘
(2)

𝑚
(𝛼
(2)

𝑀
− �̃�
(2)

𝑀
)

=

∞

∑

𝑟=0

𝑖𝑘
(3)

𝑟
𝐽
(23)

𝑀,𝑟
𝛼
(3)

𝑟
, 𝑀 = 0, 1, 2, . . . ,

(21)

where 𝛿
�̂�,𝑀

is the Kronecker delta, and

𝐽
(𝑖𝑗)

𝑛,𝑚
= ∫

0

−min{ℎ
𝑖
,ℎ
𝑗
}

cosh[𝜆(𝑖)
𝑛
(ℎ
𝑖
+ 𝑧)] cosh[𝜆(𝑗)

𝑚
(ℎ
𝑗
+ 𝑧)]

√𝐼
(𝑖)

𝑛 𝐼
(𝑗)

𝑚

𝑑𝑧.

(22)

Dividing (19) and (21) by 𝑖 and substituting (𝛼(2)
𝑀

+ �̃�
(2)

𝑀
)

from (18) into (20) and substituting (𝛼(2)
𝑀
−�̃�
(2)

𝑀
) from (19) into

(21) give

𝛼
(3)

𝑀
=

∞

∑

𝑛=0

𝐽
(12)

�̂�,𝑛
𝐽
(23)

𝑛,𝑀

+

∞

∑

𝑛=0

∞

∑

𝑞=0

𝐽
(12)

𝑞,𝑛
𝐽
(23)

𝑛,𝑀
𝛼
(1)

𝑞
, 𝑀 = 0, 1, 2, . . . ,

(23)

𝑘
(1)

�̂�
𝛿
�̂�,𝑀

− 𝑘
(1)

𝑀
𝛼
(1)

𝑀

=

∞

∑

𝑚=0

∞

∑

𝑟=0

𝑘
(3)

𝑟
𝐽
(23)

𝑚,𝑟
𝐽
(12)

𝑀,𝑚
𝛼
(3)

𝑟
, 𝑀 = 0, 1, 2, . . . .

(24)

Finally, substituting 𝛼(3)
𝑀

from (23) into (24) yields

𝑘
(1)

𝑀
𝛼
(1)

𝑀
+

∞

∑

𝑚=0

∞

∑

𝑟=0

∞

∑

𝑛=0

∞

∑

𝑞=0

𝑘
(3)

𝑟
𝐽
(23)

𝑚,𝑟
𝐽
(12)

𝑀,𝑚
𝐽
(23)

𝑛,𝑟
𝐽
(12)

𝑞,𝑛
𝛼
(1)

𝑞

= 𝑘
(1)

�̂�
𝛿
�̂�,𝑀

−

∞

∑

𝑚=0

∞

∑

𝑟=0

∞

∑

𝑛=0

𝑘
(3)

𝑟
𝐽
(23)

𝑚,𝑟
𝐽
(12)

𝑀,𝑚
𝐽
(12)

�̂�,𝑛
𝐽
(23)

𝑛,𝑟
,

𝑀 = 0, 1, 2, . . . .

(25)

Equation (25) is a system of infinite linear algebraic equa-
tions with infinite unknowns 𝛼(1)

𝑀
. This system of equations

can be written in a matrix form and truncated to 𝜇 + 1

equations with 𝜇 + 1 unknowns as follows:

(
(
(
(
(

(

𝐺
0,0

+ 𝑘
(1)

0
𝐺
0,1

. . . 𝐺
0,𝜇

𝐺
1,0

𝐺
1,1

+ 𝑘
(1)

1
. . . 𝐺

1,𝜇

.

.

.
.
.
. d

.

.

.

𝐺
�̂�,0

d 𝐺
�̂�,̂𝚤
+ 𝑘
(1)

�̂�

.

.

.

.

.

.
.
.
. d

.

.

.

𝐺
𝜇,0

𝐺
𝜇,1

. . . 𝐺
𝜇,𝜇

)
)
)
)
)

)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

A

×

(
(
(
(

(

𝛼
(1)

0

𝛼
(1)

1

.

.

.

𝛼
(1)

�̂�

.

.

.

𝛼
(1)

𝜇

)
)
)
)

)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝛼
(1)

=

(
(
(

(

𝐹
0

𝐹
1

.

.

.

𝑘
(1)

�̂�
+ 𝐹
𝚤

.

.

.

𝐹
𝜇

)
)
)

)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

B

,

(26)

where

𝐺
𝑀,𝑚

=

∞

∑

𝑚=0

∞

∑

𝑟=0

∞

∑

𝑛=0

∞

∑

𝑞=0

𝑘
(3)

3
𝐽
(23)

𝑀,𝑟
𝐽
(12)

𝑀,𝑚
𝐽
(23)

𝑛,𝑟
𝐽
(12)

𝑞,𝑛
,

𝑀 = 0, 1, . . . , 𝜇,

𝐹
𝑀
=

∞

∑

𝑚=0

∞

∑

𝑟=0

∞

∑

𝑛=0

𝑘
(3)

𝑟
𝐽
(23)

𝑀,𝑟
𝐽
(12)

𝑀,𝑚
𝐽
(12)

�̂�,𝑛
𝐽
(23)

𝑛,𝑟
,

𝑀 = 0, 1, . . . , 𝜇.

(27)

Once the matrix A and the vector B are calculated, the
amplitude of the velocity potential on the left side of the step,
𝛼
(1), is found from (26):

𝛼
(1)

= A
−1B. (28)

Once 𝛼(1) is found, the unknown amplitude vector 𝛼(3)
(related to the right side of the trench) is obtained from (23).
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The reflection and transmission coefficients are, respec-
tively, defined (note that this definition differs from the
common definition for surface waves) as

𝐾
(𝑅)

𝑛
≡

𝛼
(1)

𝑛


,

𝐾
(𝑇)

𝑛
≡

𝛼
(3)

𝑛



cosh[𝜆(3)
𝑛
ℎ
3
]

cosh[𝜆(1)𝑛 ℎ1]
.

(29)

4. Numerical Example I: A Single Incident
Mode (Validation)

Consider a single acoustic-gravity mode propagating at a
prescribed frequency 𝜔 = 10 rad/sec and interacting with
a rectangular trench, where ℎ

1
= ℎ
3
and ℎ

1
≤ ℎ
2
≤ 3ℎ
1
.

The acceleration due to gravity is taken as 𝑔 = 10m/s2, and
the water density is assumed 𝜌 = 1000 kg/m3. Following
Yamamoto [9] one can show that the average energy flux of
the progressive modes is given by

F
(𝑗)

𝑛
=
1

2
𝜌𝜔𝑘
(𝑗)

𝑛


𝛼
(𝑗)

𝑛



2

, 𝑛 = 0, 1, . . . , 𝑁a.g.. (30)

Since the energy flux of each incident mode is either reflected
or transmitted, the calculation error, err

�̂�
(of each incident

mode), could be estimated by the flux balance

err
�̂�
= 1 −

∑ F (1)
𝑛

+ ∑ F (3)
𝑛

F
(1)

�̂�

, for 𝑛 = 0, 1, . . . , 𝑁a.g., (31)

where F
�̂�
is the energy flux of the incident mode and F (1)

𝑛
and

F (3)
𝑛

are the corresponding energy fluxes of the reflected and
transmitted modes, respectively. Note that all computations
consider at least the first 19 modes (𝜇 ≤ 19), which
include the zero mode (gravity wave), acoustic-gravity, and
evanescent modes. Nevertheless, we only present results for
acoustic-gravity waves.

Figure 2 presents calculations of 𝐾(𝑅) and 𝐾
(𝑇), which

represent the reflection (see left column subplots) and trans-
mission (see right column subplots) coefficients, for the first
eight incident modes, as function of trench depth ratio ℎ

2
/ℎ
1
.

In each subplot, the bold number indicates the incident
mode (e.g., in the third row the incident mode is �̂� = 3)
and the bold curve is the reflection or transmission in the
same mode as of the incident (𝑛 = �̂�). Figure 2 predicts, as
expected, zero reflection and full transmission of energy by
the incident mode at the absence of a trench (ℎ

2
/ℎ
1
= 1).

More interestingly, it shows that at ℎ
2
/ℎ
1
> 1 the energy

is primarily transferred to the mode of incidence as well as
to the neighbouring modes. However, as the trench depth
increases most of the reflected energy is transferred to the
mode of incidence, while most of the transmitted energy is
transferred to the leading modes, in particular to the first
mode. It is also noticeable that themagnitude of transmission,
for all modes, is oscillatory and dependent on the trench
depth.

In order to assess the accuracy of the calculations pre-
sented in Figure 2 we use the energy flux balance which is
given in (31). The energy flux of the incident mode prior to
interactingwith the trench is equal to the sumof energy fluxes
of all reflected and transmitted modes as given in (31). In all
cases the error err

�̂�
is enormously small 𝑂(10−14), which is a

validation of the flux conservation assumption.

5. Numerical Example II: Asymmetric Trench

This section examines the effect of trench asymmetry on the
reflection and transmission coefficients. Consider a similar
problem as described in example II thoughwith ℎ

1
= 4000m,

ℎ
2
= 7000m, and 500 ≤ ℎ

3
≤ 7000m. Figure 3 presents

calculations of𝐾(𝑇) (upper subplot) and𝐾(𝑅) (lower subplot),
for the leading incident acoustic-gravity mode, as function
of trench asymmetry ratio ℎ

3
/ℎ
1
. The bold number indicates

the leading incident mode (�̂� = 1). Figure 3 predicts, as
expected, that as ℎ

3
/ℎ
1
increases, the transmission coefficient

of the leading mode increases, while the reflection coefficient
decreases, and vice versa. Interestingly, as ℎ

3
increases more

modes arise, each having locally a maximum 𝐾
(𝑇) at about

ℎ = 3𝜋(𝑛 − 1)𝑐/𝜔, 𝑛 = 2, 3, . . .. Note that ℎ
3
/ℎ
1
= 1 predicts

the same coefficients given in Figure 2 (upper subplots), for
the same trench relative depth, that is, ℎ

2
/ℎ
1
= 1.75.

6. Numerical Example III: A Group of
Incident Modes

In this section we consider a group of 𝑁 incident acoustic-
gravity modes, generated by a rise of a block of the ocean
floor propagating towards a trench as shown in Figure 1. In
the current example, the depth of the ocean at the two sides
of the trench is ℎ

1
= ℎ
3
= 4000m, and the trench depth is

ℎ
2
= 11000m.The distance between the block epicentre and

the left side of the trench is 𝑥
0
= 10
6m. The speed of sound

in water is 𝑐 = 1500m/s. Following Nosov [10] the motion of
the bottom is given by

𝜕𝜁(𝑥, 𝑡)

𝜕𝑡
=
𝜁
0

𝜏
H(𝑏
2
− (𝑥 + 𝑥

0
)
2

)H[𝑡(𝜏 − 𝑡)], (32)

where the function H is the Heaviside function; 𝜁
0
= 1m,

𝑏 = 4 × 10
4m, and 𝜏 = 10 s are the vertical and the lateral

extents and the duration of the bottom motion, respectively.
Note that, apart from the bottom motion due to the block
movement, the bottom is assumed rigid. Following Stiassnie
[22], the incident acoustic-gravity modes at (0, 𝑡

0
) propagate

each at a specific frequency given by

𝜔
�̂�
=

−𝑖𝜆
(1)

�̂�
𝑐

√1 − (𝑥
0
/𝑐𝑡
0
)
2

, (33)

where 𝜆(1)
�̂�

is real (𝜆(1)
�̂�

= 𝑖𝜆
(1)

�̂�
). For a group of 𝑁 incident

modes, each propagating with its own frequency 𝜔
�̂�
, the total
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Figure 2: Reflection and transmission of amplitude coefficients on the left (𝐾(𝑅)) and right (𝐾(𝑇)) sides of a rectangular trench as function of
the trench depth ℎ

2
/ℎ
1
. The ocean depth on the two sides of the trench is ℎ

1
= ℎ
3
= 4000m. In each subplot, the bold number indicates the

mode of incidence �̂�. The calculation error, err
�̂�
≪ 10
−14.

velocity potential on the 𝑗th side of the trench caused by all
incident modes is

Φ
(𝑗)

=

𝑁

∑

�̂�=1

𝛽
(1)

�̂�
Φ
(𝑗)

�̂�
(𝜔
�̂�
), (34)

where Φ(𝑗)
�̂�
(𝜔) is the velocity potential on the 𝑗th side of the

trench caused by the �̂�th incident mode. Since the considered
problem is linear, each Φ

(𝑗)

�̂�
(𝜔) (�̂� = 1, 2, . . . , 𝑁) is solved

separately based on the solution given in Section 3. The 𝛽(1)
�̂�

are the complex amplitudes of the incident modes that are
evaluated from the surface elevation at (0, 𝑡

0
), given in (28) of

Kadri and Stiassnie [14]:

𝛽
(1)

�̂�
= −𝑖

𝑔

𝜔
�̂�

𝜁
0
√𝐼
(1)

�̂�

cos(𝜆(1)
�̂�

)

×

2
5/2
𝑡
0

1/2
(1 − (𝑥

0
/𝑐𝑡
0
)
2

)
5/4

√𝜋(𝜆
(1)

�̂�
)
5/2

𝑐1/2𝜏𝑥
0
ℎ
1



International Journal of Geophysics 7

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

1

2 3 4 5

K
(T
)

h3/h1

Right

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1
1

2
3 4

K
(R
)

h3/h1

Left

(b)

Figure 3: Reflection and transmission of amplitude coefficients on the left (𝐾(𝑅)) and right (𝐾(𝑇)) sides of a rectangular trench of depth ℎ
2
=

7000m.The ocean depth on the left side of the trench is ℎ
1
= 4000m, whereas the depth on the right side of the trench ℎ

3
= 500 ⋅ ⋅ ⋅ 7000m.

The bold numbers indicate the mode of incidence �̂� = 1. The calculation error, err
�̂�
≪ 10
−14.

× sin(
𝜆
(1)

�̂�
𝑐𝜏/2

√1 − (𝑥
0
/𝑐𝑡
0
)
2

)

× sin(
𝜆
(1)

�̂�
𝑏𝑥
0
/(𝑐𝑡
0
)

√1 − (𝑥/𝑐𝑡
0
)
2

)

× exp(−𝑖(𝜆(1)
�̂�

√𝑐2𝑡
0

2
− 𝑥
0

2 +
𝜋

4
)).

(35)

The total dynamic bottom pressure caused by all 𝑁
incident modes is

𝑝
(𝑗)

𝑏
=

𝑁

∑

�̂�=1

𝛽
(1)

�̂�
𝑝
(𝑗)

𝑏,̂𝚤
(𝜔
�̂�
), (36)

where 𝑝(𝑗)
𝑏,̂𝚤
(𝜔
�̂�
) is the dynamic bottom pressure caused by the

�̂�th incident mode calculated by (6).
Table 1 presents the following values for each incident

mode �̂�: frequency 𝜔
�̂�
, wave number 𝑘

�̂�
, wavelength 𝑙

𝚤
, and

incidentwave amplitude 𝑎
�̂�
. For each incidentmode �̂� there are

𝑟 = 1, . . . , �̂� reflected and transmittedmodes that all propagate
at the same frequency𝜔

�̂�
. Only the �̂�th reflected or transmitted

mode has the same wave properties as the incident mode.
Figure 4 presents calculations of the total dynamic bot-

tom pressure at the trench, on its left (𝑥 = −𝜖) and right (𝑥 =

𝐿 + 𝜖) sides, where 𝜖 ≪ 1. The number of incident acoustic-
gravity modes is 𝑁 = 8. The bottom pressure amplitudes
on the left and right sides of the trench are 760Pa (7.5 ×

10
−3 atm) and 220Pa (2.2×10−3 atm), respectively. Compared

to the sensitivity of existing sensors, these magnitudes are
sufficiently large for measurement purposes.

Since the amplitudes of the incidentmodes are oscillatory
in both space and time, contributions of higher modes to the
dynamic bottom pressure may become significant (the first
mode is not necessarily the leading). It is noticeable that as

Table 1: Values for the first 8 incident modes; ℎ
1
= 4000m, 𝑔 =

10m/s2, and 𝑐 = 1500m/s.

�̂� 𝜔
�̂�
[rad/s] 𝑘

�̂�
[rad/m] 𝑙

𝚤
[km] 𝑎

�̂�
[m]

1 0.608 8.890 × 10
−5

70.7 5.877 × 10
−3

2 1.824 2.966 × 10
−4

21.2 3.062 × 10
−3

3 3.039 4.982 × 10
−4

12.6 1.919 × 10
−3

4 4.255 6.989 × 10
−4

8.99 1.158 × 10
−3

5 5.471 8.993 × 10
−4

6.99 6.237 × 10
−4

6 6.687 1.099 × 10
−3

5.71 2.758 × 10
−4

7 7.902 1.299 × 10
−3

4.83 8.399 × 10
−5

8 9.118 1.500 × 10
−3

4.19 8.409 × 10
−6

long as the transmission side of the trench is deep enough,
to allow for the existence of acoustic-gravity waves, the total
pressure will have an oscillatory nonevanescent contribution.

7. Concluding Remarks

The two-dimensional problem of an acoustic-gravity wave
mode propagating towards a rectangular trench in an ideal
compressible fluid has been addressed. As an incident
acoustic-gravity mode reaches the trench, part of the energy
is reflected whereas the rest is transmitted. The two parts
are distributed among the allowed wave modes.The dynamic
bottom pressure is calculated from the potential amplitudes
of the transmitted and reflected modes.

Calculations of the total dynamic bottom pressure at both
sides of the trench show that although the magnitudes of
the bottom pressure on the transmission side of the trench
decrease, it is sufficiently large for measuring purposes. Note
that the contribution of evanescent modes to the dynamic
bottom pressure has been considered by Kadri and Stiassnie
[14] who showed that convergence due to the consideration
of evanescent modes is relatively fast, and in the present case
their contribution is negligible. The contribution of evanes-
cent modes becomes significant when the transmission side
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Figure 4: Calculations of the dynamic bottom pressure at both sides of the trench; at 𝑥 = −𝜖 (a) and 𝑥 = 𝐿 + 𝜖 (b), where 𝜖 ≪ 1.

of the trench is shallow enough to prevent the existence of the
low acoustic-gravity modes.

The results presented here might find application in
verifying numerical codes for wave propagation and cer-
tain observational studies. However, such an application is
bounded by the idealised bathymetry, as mode coupling can
be sensitive to ocean floor irregularities, with sharp depth
variations; another limitation is the neglect of coupling to the
elastic ocean floor. Considering the elasticity of the bottom
results in Rayleigh waves (e.g., see Stoneley [23]), or Scholte
type of waves (e.g., see Webb and Shultz [24]), and thus
might be important when discussing the properties of waves
interacting with the ocean floor at near-critical depths. The
transition of acoustic-gravity waves into Rayleigh waves at
critical depths, and into Scholte wave at the shoreline, is
thoroughly discussed in Eyov et al. [16]. Moreover, note that
the low acoustic-gravity modes have wavelengths larger than
to be trapped within the SOFAR channel. Therefore, energy
loss due to refraction and scattering on a more realistic and
elastic bottom with irregularities has to be considered in
order to assess the magnitude of the acoustic-gravity bottom
pressure far from the source. If the pressure is still found
measurable, it should be considered for the early detection
of tsunami as proposed, among others, by Chierici et al. [12]
and Kadri and Stiassnie [14].
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