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Thesis	Summary	
	
Successful	 kidney	 transplantation	 transforms	 outcome	 for	 patients	 with	 end	

stage	 kidney	 disease.	 Delayed	 graft	 function	 (DGF)	 following	 Ischaemia	

Reperfusion	 Injury	(IRI)	 is	a	major	problem,	 is	hard	 to	predict	or	monitor,	and	

preventative	 or	 therapeutic	 strategies	 are	 lacking.	 Ischaemic	 Preconditioning	

(IPC)	may	 limit	 IRI,	 but	 results	 are	 variable	 and	potential	mechanisms	 are	not	

well	defined.	The	aims	of	this	thesis	were	to	study	the	role	of	microRNAs,	which	

are	 post-transcriptional	 regulators	 of	 gene	 expression	 vital	 in	 many	

physiological	 and	 pathophysiological	 processes,	 in	 the	 context	 of	 IRI,	 IPC	 and	

DGF.	 An	 in	 vivo	 model	 of	 IRI	 and	 IPC	 was	 developed,	 and	 histological,	

biochemical	 and	 mRNA	 kidney	 injury	 marker	 analyses	 were	 undertaken.	

MicroRNAs	 were	 then	 profiled	 using	 both	 Next	 Generation	 Sequencing	 (NGS)	

and	hybridisation	arrays,	and	changes	in	selected	microRNAs	confirmed	by	RT-

qPCR.	 Histology	 scores,	 serum	 creatinine	 and	 expression	 of	 kidney	 injury	

markers	were	 significantly	 reduced	 in	 IPC	 compared	with	 IRI.	Microarray	 and	

NGS	 analysis	 identified	 a	 highly	 reproducible	 IRI	 signature,	 which	 was	

attenuated	by	 IPC.	 Subsequently,	microRNAs	were	profiled	 using	Taqman	Low	

Density	Array	(TLDA)	and	validated	by	RT-qPCR,	 from	urine	samples	of	kidney	

transplant	 patients	 with	 and	 without	 DGF.	 A	 DGF	 microRNA	 profile	 was	

uncovered,	 with	 overlap	 to	 the	 results	 from	 the	 IRI	 model.	 These	 data	 have	

identified	 a	microRNA	 signature	 of	 IRI	 that	was	 attenuated	 by	 IPC,	which	 also	

improved	 outcome.	 Urinary	microRNAs	 also	 showed	 a	 promising	 capability	 to	

predict	DGF	in	human	kidney	transplantation.	MicroRNAs	thus	show	significant	

promise	as	biomarkers	and	potential	therapeutic	targets	in	this	context.	
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Chapter	1	–	Introduction	
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The	 overall	 purpose	 of	 the	 work	 carried	 out	 in	 this	 PhD	 project	 was	 to	

understand	 the	role	of	microRNAs	 in	 Ischaemia	Reperfusion	 Injury	 (IRI)	 in	 the	

context	of	kidney	transplantation.	For	this,	I	first	used	an	in	vivo	model	of	acute	

kidney	injury	(AKI)	and	determined	the	role	of	microRNAs	within	this,	and	then	

used	 this	 knowledge	 to	 assess	 the	 utility	 of	 microRNAs	 as	 non-invasive	

biomarkers	 of	 injury	 in	 clinical	 kidney	 transplantation.	 In	 this	 introduction,	 I	

have	 first	 described	 the	 clinical	 context	 of	 why	 this	 study	 is	 important,	 by	

highlighting	 the	 need	 for	 kidney	 transplantation	 and	 increased	 use	 of	 donor	

organs	with	increased	IRI,	and	then	moved	onto	the	broader	topic	of	kidney	IRI,	

its	 pathophysiology,	 potential	 treatments	 (including	 ischaemic	 preconditioning	

(IPC))	and	the	need	to	assess	the	role	of	microRNAs	within	this.		
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1.1	Kidney	Transplantation	

1.1.1	Kidney	Disease	

Kidney	disease	has	become	increasingly	common	over	recent	years,	largely	due	

to	 the	 increased	 frequency	 in	 cardiac	 disease,	 diabetes	 and	 the	 ageing	

population.	 Currently	 within	 the	 UK,	 chronic	 kidney	 disease	 (CKD)	 affects	

approximately	1	in	10	people,	with	an	annual	incidence	of	over	100	new	patients	

per	million	of	population	developing	end-stage	renal	failure	(ESRF)	necessitating	

renal	 replacement	 therapy	 (dialysis	or	 transplantation)	 (1).	The	most	 common	

cause	of	ESRF	is	diabetes	mellitus	(DM)	(25%),	followed	by	other	causes,	which	

include	 hypertension	 (HTN),	 glomerulonephritis	 (GN),	 and	 adult	 polycystic	

kidney	disease	(APKD)	(1,	2).	

	

One	of	the	major	risk	factors	for	development	of	CKD	is	AKI,	a	clinical	syndrome	

characterised	 by	 acute	 (hours	 to	 days)	 loss	 of	 kidney	 excretory	 function.	 The	

causes	can	be	classified	as	pre-renal	(functional	response	of	kidneys	due	to	lack	

of	 perfusion),	 intrinsic	 renal	 (involving	 structural	 renal	 parenchymal	 damage)	

and	post-renal	(secondary	to	urinary	tract	outflow	obstruction).	Clinically,	AKI	is	

usually	 secondary	 to	a	 combination	of	 factors	 such	as	 lack	of	perfusion,	 sepsis,	

hypovolaemia	and	nephrotoxic	drugs.	AKI	is	common	with	an	incidence	between	

295	and	5000	per	million	per	year,	 and	an	estimated	 treatment	 cost	of	 £434	 -	

£620	million	annually	in	the	UK	(3).	

	

Patients	 who	 develop	 ESRF	 essentially	 have	 only	 two	 choices:	 Dialysis	

(peritoneal	 dialysis	 (PD)	 or	 haemodialysis	 (HD)),	 or	 kidney	 transplantation.	
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Dialysis	 is	 a	 time-consuming,	 often	 hospital-based	 treatment	 requiring	 3-4	

sessions	per	week	with	a	substantial	impact	on	the	patient’s	personal	and	social	

lifestyle,	 including	 dietary	 and	 fluid	 restrictions.	 These	 patients	 are	 also	 at	 an	

increased	 risk	 of	 morbidity	 and	 mortality	 largely	 due	 to	 accelerated	

cardiovascular	disease	(4).		

1.1.2	Kidney	transplantation	

Kidney	transplantation	is	the	treatment	of	choice	for	suitable	patients	with	ESRF	

as	 it	 significantly	 improves	 quality	 of	 life,	 prolongs	 survival	 and	 is	more	 cost-

effective	when	compared	with	dialysis	(5,	6).	Patients	with	ESRF	are	assessed	for	

transplantation	and	if	deemed	suitable	and	fit	 for	surgery,	 they	usually	wait	on	

average	for	3	years	in	the	UK	(2	years	in	Wales)	for	a	transplant	(7).	

	

In	 kidney	 transplantation	 there	 are	 3	 main	 sources	 of	 organ	 donation:	 living	

donor	 (LD)	 kidney	 –	 related	 or	 unrelated	 to	 the	 recipient;	 donation	 after	

brainstem	death	(DBD),	as	defined	by	brainstem	death	criteria	(which	confirms	

loss	 of	 capacity	 of	 breathing	 and	 consciousness)	 (8);	 and	 donation	 after	

circulatory	death	(DCD),	as	defined	by	the	Maastricht	criteria	(9).	Within	the	UK,	

Maastricht	 category	 3	 donors	 are	 the	most	 common	DCD	 (cardiac	 arrest	 after	

withdrawal	 of	 cardiovascular	 support	 on	 the	 intensive	 care	 unit).	 In	 Cardiff	

Transplant	Unit,	in	2014-2015,	37.5%,	23%	and	39.5%	of	the	kidney	transplants	

were	from	LD,	DBD,	and	DCD	donors	respectively	(10).	

	

Once	the	kidney	is	retrieved	from	the	donor,	there	is	cessation	of	its	blood	supply	

rendering	 it	 ischaemic,	 and	 when	 implanted	 into	 the	 recipient	 patient	 it	
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undergoes	reperfusion.	This	process,	called	ischaemia	reperfusion	injury	(IRI),	is	

an	 inevitable	 consequence	of	 transplantation,	 and	 is	 known	 to	have	 significant	

adverse	effect	on	graft	function.	The	ischaemic	period	can	be	divided	into	warm	

and	 cold	 ischaemic	 times.	 The	 first	 warm	 ischaemic	 time	 (WIT	 1)	 is	 the	 time	

between	cessation	of	donor	kidney	blood	supply	(ligation	of	renal	artery	for	DBD	

and	 LD,	 or	 cardiac	 arrest	 for	 DCD)	 until	 perfusion	 and	 preservation	 in	 cold	

solution.	 The	 cold	 ischaemic	 time	 (CIT)	 is	 the	 duration	 of	 perfusion	 and	

preservation	 in	 cold	 solution.	 The	 second	warm	 ischaemic	 time	 (WIT	2)	 is	 the	

interval	between	removing	the	kidney	from	the	cold	preservation	solution	until	

implantation	 into	 the	 recipient	 and	 perfusion	 with	 recipient’s	 blood.	 DCD	

kidneys	are	exposed	to	the	greatest	ischaemic	injury,	followed	by	DBD	and	then	

LD	kidneys.	

	

A	lot	of	progress	in	transplant	surgery	has	been	made	over	the	last	few	decades	

relating	to	optimization	of	surgical	techniques	and	immunosuppression.	What	is	

still	lacking	is	the	work	needed	in	the	field	of	IRI	and	its	manipulation	to	increase	

donor	organ	quality	and	long-term	success	within	the	recipient.		

1.1.3	Expansion	of	donor	pool	

Currently	 in	 the	 UK,	 there	 are	 just	 under	 5700	 patients	 active	 on	 the	 kidney	

transplant	 waiting	 list	 and	 this	 number,	 in	 spite	 of	 recent	 improvements,	 far	

outweighs	the	number	of	donors	(10).		

	

In	 order	 to	 address	 the	 problem	 of	 shortage	 of	 donors	 and	 the	 increasing	

number	 of	 patients	 on	 the	 kidney	 transplant	 waiting	 list,	 there	 has	 been	 a	
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substantial	increase	in	the	use	of	DCD,	‘marginal’	and	‘extended	criteria’	donors	

(ECD)	(defined	as	donors	over	age	60	or	donors	aged	50–59	with	at	least	two	of	

the	 following	 three	 medical	 criteria:	 history	 of	 HTN,	 final	 pre-procurement	

creatinine	 above	 1.5	 mg/dL	 and	 cerebrovascular	 accident	 (CVA)	 as	 cause	 of	

death)	 (11-13).	 Such	 organs	 were	 previously	 considered	 unsuitable	 for	

transplantation,	 but	 are	 increasingly	 accepted	 for	 use	 by	 transplant	 centres.	

Despite	this	 increase,	429	(17%)	of	kidneys	offered	in	2014-15	in	UK	were	not	

transplanted	 (15%	 DBD	 and	 20%	 DCD),	 and	 256	 (11%)	 of	 kidneys	 retrieved	

were	not	transplanted	(10).		

	

One-third	 of	 kidneys	 actually	 transplanted	 are	 from	 donors	 aged	 60	 years	 or	

older,	with	22%	being	60-69	years	old,	 and	11%	being	70	years	or	older	 (10).	

Kidneys	 from	 older	 donors	 are	 associated	 with	 poorer	 long-term	 outcomes,	

largely	 due	 to	 the	 age-related	 reduction	 in	 functioning	 nephron	 mass	 and	

associated	 co-morbidities	 (14).	 Organs	 from	 these	 donors	 typically	 have	more	

extensive	IRI	damage,	resulting	in	increased	incidence	of	delayed	graft	function	

(DGF)	 and	 primary	 non-function	 (PNF),	 which	 is	 associated	with	 poorer	 long-

term	outcomes	(15).		
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1.2	Ischaemia	Reperfusion	Injury	-	Clinical	Consequences	

1.2.1	What	is	Ischaemia	Reperfusion	Injury	(IRI)?	

IRI	 is	 a	 pathological	 process	 that	 is	 characterised	 by	 an	 initial	

restriction/occlusion	 of	 blood	 supply	 to	 the	 organ	 (ischaemia)	 followed	 by	 its	

subsequent	 reperfusion	 and	 re-oxygenation	 (reperfusion).	 	 It	 is	 an	 inevitable	

consequence	 of	 transplantation	 as	 the	 organ	 undergoes	 ischaemia	 upon	

procurement	 from	 the	 donor	 and	 reperfusion	 upon	 its	 implantation	 into	 the	

recipient.	

1.2.2	Delayed	Graft	Function	(DGF)	

In	 transplantation,	 IRI	 causes	DGF	and	PNF.	DGF	 in	kidney	 transplantation	 is	a	

form	of	AKI	in	the	immediate	post-transplantation	period,	and	is	defined	as	the	

need	 for	 dialysis	within	 the	 first	 7	 days	 post-transplantation	 (16,	 17).	 	 DGF	 is	

relatively	common	and	its	incidence	affected	by	the	type	and	quality	of	the	donor	

including	 the	 extent	 of	 ischaemic	 damage,	 recipient	 risk	 profile	 (18),	 and	

transplant	 centre	 practice	 (19).	 DGF	 is	 a	 significant	 clinical	 problem	 as	 it	

prolongs	hospital	stay,	affects	 the	patient’s	quality	of	 life	and	often	requires	an	

invasive	 biopsy	 (which	 has	 increased	 risks	 of	 bleeding	 in	 the	 initial	 post-

operative	 period)	 to	 differentiate	 it	 from	other	 types	 of	AKI	 in	 transplantation	

such	as	rejection,	 further	 increasing	patient	morbidity,	and	as	a	 result	has	cost	

implications	(16,	20-22).			

	

The	 definition	 of	 DGF	 has	 caused	 much	 debate	 in	 the	 transplant	 world	 and	

several	 definitions	 have	 been	 evaluated,	 based	 on:	 kidney	 function;	 need	 for	
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dialysis;	 and	 a	 combination	 of	 both	 (17).	 A	 recent	 article	 concluded	 that	 no	

definition	of	DGF	was	 superior	and	 that	 the	easiest	 and	most	widely	used	 (the	

use	of	dialysis	within	the	first	week	post-transplantation)	should	be	adopted	as	

the	gold	standard	(16).	

1.2.3	Primary	Non-Function	(PNF)	

PNF	is	defined	as	the	permanent	loss	of	allograft	function	after	transplantation,	

with	 reported	 incidence	 up	 to	 8%	 (23).	 Both	 DGF	 and	 PNF	 may	 be	 direct	

consequences	 of	 IRI	 and	 are	more	 common	 in	DCD	and	ECD	organs,	 reflecting	

the	negative	 influence	of	 prolonged	WIT1	and	CIT	 (24).	 PNF	 is	 an	unfortunate	

consequence	of	severe	 IRI	with	significant	 implications	on	patient	survival	 (23,	

25).	

1.2.4	Long-term	consequences	of	DGF	

DGF	has	been	described	as	‘one	of	the	most	important	independent	variables	of	

graft	 failure’	 (26).	This	 is	 because	 it	 leads	 to	 increased	 rejection	 episodes	 (27)	

and	 chronic	 allograft	 nephropathy	 (28-30),	 the	 compounded	 effect	 of	 which	

leads	 to	 increased	 risk	 of	 graft	 failure.	 Despite	 this,	 some	 studies	 have	 shown	

that,	although	DGF	is	strongly	 linked	to	chronic	allograft	nephropathy,	whether	

this	translates	to	affecting	long-term	graft	survival	may	remain	a	topic	of	debate	

(24).	
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1.3	Ischaemia	Reperfusion	Injury	–	Pathophysiology	

The	 pathophysiological	 processes	 involved	 in	 IRI	 are	 complex	 and	 include	

interactions	between	 the	endothelium,	 components	of	 the	 immune	 system	and	

cell	death	programs	(31).	Briefly,	 ischaemia	and	resultant	 tissue	hypoxia	cause	

an	 increase	 in	 vascular	 permeability	 and	 impaired	 endothelial	 cell	 barrier	

function.	Cell	death	programs	including	apoptosis,	phagocytosis,	and	necrosis	are	

activated.	 Apoptosis	 comprises	 nuclear	 fragmentation,	 loss	 of	 mitochondrial	

integrity	 and	 cell	 shrinkage.	 Restoration	 of	 blood	 flow	 upon	 reperfusion	

exacerbates	 the	 tissue	 injury	 through	 a	 profound	 inflammatory	 response,	

mediated	predominantly	by	activation	of	the	innate	and	adaptive	components	of	

the	immune	system	(31,	32).		

1.3.1	Pathological	Characteristics		

The	kidney	consists	of	an	outer	renal	cortex	and	an	inner	medulla.	Nephrons,	the	

basic	 structural	 functional	units	of	 the	kidney,	 are	mainly	 located	 in	 the	cortex	

and	 have	 an	 initial	 filtering	 portion,	 the	 renal	 corpuscle,	which	 consists	 of	 the	

glomerulus	-	a	network	of	capillaries,	surrounded	by	a	cup	liked	structure	called	

the	bowman’s	capsule.	The	corpuscle	is	followed	by	the	renal	tubule,	consisting	

of	 the	 proximal	 convoluted	 tubule,	 loop	 of	 Henle,	 and	 the	 distal	 convoluted	

tubule,	which	then	drains	 into	the	collecting	ducts.	The	renal	 tubule	 is	made	of	

tubular	 cells	 with	 surrounding	 interstitium.	 The	 most	 important	 cellular	

components	of	the	renal	cortex	in	which	damage	occurs	are:	tubular,	glomerular,	

endothelial,	and	interstitial.	
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In	renal	IRI,	endothelial	damage	is	the	result	of	the	initial	ischaemia	and	hypoxia	

leading	 to	 impaired	 cell	 barrier	 function.	 This	 causes	 endothelial	 swelling	

followed	by	cell	disruption,	eventually	leading	to	loss	of	endothelial	integrity	and	

loss	of	endothelial	cells	(33,	34).	Tubular	injury	is	the	most	characteristic	feature	

of	kidney	IRI	since	the	tubules	are	particularly	prone	to	ischaemic	damage,	and	

therefore	 potentially	 reversible	 acute	 tubular	 necrosis	 is	 a	 hallmark	 of	 kidney	

injury.	 Specifically,	 in	 IRI,	 hypoxia	 results	 in	 formation	 of	 plasma	 membrane	

blebs	 and	 loss	 of	 the	 brush	 border	 membrane	 leading	 to	 loss	 of	 polarity	 and	

integrity	 of	 the	 cellular	 tight	 junctions.	 This	 leads	 to	 cell	 death	 and	 sloughing,	

causing	 cast	 formation.	 As	 a	 result,	 cast	 formation	 and	 other	 debris	 lead	 to	

tubular	 obstruction.	 These	 changes,	 along	 with	 tubular	 necrosis,	 signify	

extensive	 tubular	damage	 (35).	 Interstitial	damage	 is	 also	 seen	 in	 IRI,	but	may	

also	result	 from	chronic	and	progressive	damage	of	varied	aetiology,	 leading	to	

fibrosis	and	atrophy.	Inflammation,	haemorrhage	and	necrosis	are	the	hallmarks	

of	acute	ischaemic	damage	to	the	interstitium	(36).	Glomerular	damage	is	also	a	

hallmark	 of	 kidney	 IRI.	 Thickening	 of	 bowman’s	 capsule,	 retraction	 of	 the	

glomerular	 tuft	 and,	 in	 severe	 cases,	 glomerular	 fibrosis	 are	 the	 histological	

features	of	ischaemic	glomerular	damage	(37)	

1.3.2	Pathophysiology	–	At	the	Biochemical/Cellular	level	

1.3.2.1	Ischaemia-induced	Injury	

Ischaemia	 results	 in	 deprivation	 of	 oxygen	 and	 nutrients	 to	 the	 tissue,	 and	

accumulation	of	waste	products.	The	cellular	changes	that	occur,	result	in	tissue	

damage,	 predominantly	 from	 reactive	 oxygen	 species	 (ROS),	 free	 radicals	 and	
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lytic	 enzymes.	 These	 changes	 are	described	 in	 a	 review	of	DGF	by	Percio	 et	 al	

(38)	and	summarised	in	Figure	1.1.		

	

Figure	1.1:	Biochemical	changes	induced	by	Ischaemia	

Ischaemia	results	in	deprivation	of	oxygen	and	nutrients	to	the	tissue,	causing	impaired	aerobic	

metabolism,	 enhanced	 anaerobic	metabolism,	 reduced	 expression	 of	 cytoprotective	 genes,	 and	

increased	 inducible	NO	 synthase.	 The	 cellular	 changes	 that	 occur	 in	 response	 to	 this,	 result	 in	
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tissue	 damage	 predominantly	 from	 reactive	 oxygen	 species,	 free	 radicals,	 and	 lytic	 enzymes.	

Figure	adapted	from	(38).	

	

One	of	the	first	changes	is	that	deprivation	of	oxygen	delivery	to	the	cell	causes	a	

switch	from	aerobic	to	anaerobic	metabolism.	Anaerobic	metabolism	is	unable	to	

meet	 the	 demands	 of	 the	 tissue,	 and	 therefore	 adenosine	 triphosphate	 (ATP)	

levels	 decrease	 rapidly	 breaking	 down	 to	 hypoxanthine,	 which	 in	 anaerobic	

conditions	 is	 metabolised	 further	 by	 xanthine	 oxidase	 to	 ROS	 (39).	 Anaerobic	

metabolism	 also	 causes	 increased	 anaerobic	 glycolysis,	 lactic	 acid	 production	

and	 resultant	 reduced	 intracellular	 pH,	 and	 inhibition	of	 the	membrane-bound	

sodium(Na+)/potassium(K+)	 ATPase	 pump	 activity	 (40).	 Anaerobic	 glycolysis	

and	the	depletion	of	ATP	cause	lysosome	membrane	destabilisation	resulting	in	

leakage	of	lytic	enzymes	and	consequently	cell	injury	(41).		

	

Inhibition	of	the	Na+/K+	ATPase	pump	causes	a	disruption	in	the	homeostasis	of	

electrolytes,	 such	 as	 Na+,	 Calcium	 (Ca2+),	 and	 Iron.	 Initially	 there	 is	 a	 large	

intracellular	increase	of	Na+,	which	causes	an	accumulation	of	water	resulting	in	

oedema,	the	degree	of	which	is	dependant	on	the	duration	of	ischaemia	(42).	As	

a	 result	of	 this	Na+	accumulation,	 the	Na+/Ca2+	antiporter	starts	 to	work	 in	 the	

reverse	direction	by	stopping	its	pumping	of	Ca2+	outside	of	the	cell,	causing	an	

accumulation	 of	 Ca2+	 (43).	 Accumulation	 of	 Ca2+	 causes	 activation	 of	 calcium-

dependant	 phospholipases	 and	 proteases	 called	 calpains	 and	 caspases.	 These	

remain	 largely	 inactive	 during	 ischaemia,	 causing	 damage	 upon	 reperfusion	

when	 the	 intracellular	pH	becomes	neutralised	 (44).	Accumulation	of	Ca2+	also	

generates	more	 reactive	 oxygen	 species.	 Binding	 of	 Iron	 to	 its	 carrier	 proteins	

(transferrin	 and	 Ferritin)	 is	 also	 inhibited,	 causing	 an	 increase	 in	 intracellular	
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free	iron,	which	acts	as	a	potent	catalyst	for	oxygen	radical-generating	reactions	

(45).		

	

Nitric	 oxide	 (NO)	 production	 is	 also	 increased,	 as	Nitric	Oxide	 Synthase	 (NOS)	

activity	is	induced	by	hypoxia.	Nitric	oxide	reacts	with	reactive	oxygen	species	to	

form	potent	oxidants	such	as	peroxynitrite,	which	causes	tissue	damage	through	

oxygen	radical	induced	injury	(46).		

	

Finally,	 ischaemia	 causes	 cytoprotective	mechanisms	 to	 be	 activated	 to	 reduce	

the	 cell’s	metabolic	 activity,	 however,	 reports	have	 suggested	 that	hypoxia	 can	

also	 result	 in	 a	 decreased	 expression	 of	 cytoprotective	 genes	 (such	 as	 heme-

oxygenase-1	(HO-1)),	with	consequentially	increased	tissue	injury	(47).		

1.3.2.2	Reperfusion-induced	Injury	

Reperfusion	 reinstitutes	 blood	 flow	 to	 the	 ischaemic	 organ/kidney	 providing	

rewarming,	re-oxygenation,	and	as	a	result	reconstitution	of	aerobic	metabolism	

and	 ATP	 production,	 and	 neutralization	 of	 intracellular	 pH.	 This	 activates	 a	

generalised	and	immune-mediated	inflammatory	response	that	exacerbates	and	

sustains	 the	 renal	 cell	 injury,	 the	 hallmarks	 of	 which	 involve	 complex	

interactions	between	activated	endothelium,	 leucocytes,	and	other	components	

such	as	complement,	in	addition	to	damage	caused	by	reactive	oxygen	species.		

	

Re-oxygenation	 and	 normoxia	 causes	 a	 large	 increase	 in	 the	 production	 of	

reactive	 oxygen	 species	 and	 free	 radicals.	 The	 protective	 antioxidant	 enzyme	

activity	is	also	reduced	(39,	45).	The	high	concentration	and	rapid	generation	of	
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reactive	oxygen	species	and	reduction	of	antioxidant	activity	cause	cell	death	by	

apoptosis	 (48).	 Lipid	 peroxidation	 of	 the	 cell	 membrane	 is	 also	 initiated	 by	

cytotoxic	and	highly	reactive	radicals	such	as	hydroxyl,	produced	from	a	reaction	

between	the	superoxide	anion	(O2-)	and	hydrogen	peroxide	(H2O2)	(45).	

	

Reperfusion	 also	 causes	 a	 further	 increase	 in	 intracellular	 Ca2+,	 which	 has	

already	accumulated	within	 the	 cytoplasm	and	mitochondria,	during	 ischaemic	

injury.	High	Ca2+	levels	within	the	cytoplasm	and	mitochondria	activate	calpains,	

which	in	neutral	pH	conditions	of	reperfusion,	cause	direct	cell	structure	damage	

and	 death	 (44).	 High	 mitochondrial	 Ca2+	 and	 reactive	 oxygen	 species	

concentration	causes	opening	of	the	mitochondrial	permeability	transition	pore	

(mPTP),	which	leads	to	cell	death	(via	apoptosis	and	necrosis)	(49,	50).	

1.3.3	Endothelial	and	micro	vascular	dysfunction	

The	 endothelium	 is	 an	 important	 component	 in	 determining	 adequate	 smooth	

muscle	 response,	 vascular	 tone	 and	 leucocyte	 function.	 Endothelial	 and	micro	

vascular	 dysfunction	 seen	 in	 IRI	 can	 be	 categorised	 into	 3	 components:	

Vasoconstriction,	Increased	vascular	permeability,	and	Leucocyte	recruitment.	

	

Following	 injury/damage	 to	 endothelial	 cells	 from	 IRI,	 there	 is	 an	 increased	

release	 of	 factors	 promoting	 vasoconstriction	 (such	 as	 endothelin-1,	

thromboxane	 A2,	 and	 platelet	 derived	 growth	 factor-B);	 and	 a	 decreased	

production	 of	 factors	 promoting	 vasodilatation	 including	 NO.	 This	 results	 in	

vasoconstriction	of	 the	micro	vessels,	 in	particular	 the	small	arterioles	 (33,	51,	

52).	
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Injured	 endothelial	 cells	 also	 express	 cell	 adhesion	 molecules	 such	 as	

intracellular	adhesion	molecule	1	(ICAM-1)	and	vascular	cell	adhesion	molecule	

1	 (VCAM-1),	 and	 leucocytes	 (which	 are	 already	 activated	 in	 response	 to	 the	

injury)	 express	 the	 counter-receptors	 (β1-integrin	 and	 β2-integrin),	 leading	 to	

augmented	 endothelial-leucocyte	 interactions.	 After	 the	 initial	 rolling	 of	 the	

leucocytes	 onto	 the	 endothelium	 (mediated	 by	 an	 increased	 expression	 of	

endothelial	 P-selectin),	 the	 interaction	 between	 cell	 adhesion	 receptors	 and	

leucocyte	counter-receptors	causes	immobilisation	and	adherence	of	leucocytes	

to	 the	 endothelium.	 This	 is	 followed	 by	 transmigration	 and	 diapedesis	 of	

leucocytes	 across	 the	 endothelium	 (38,	 53).	 The	 adherent	 leucocytes	 plug	 the	

capillaries	 and	 enhance	 the	 release	 of	 vasoactive	 cytokines,	 such	 as	 tumour	

necrosis	 factor	alpha	 (TNF-α),	which	 further	augments	 the	vasoconstriction.	 In	

addition	 to	 this,	 the	 coagulation	 system	 is	 activated	 resulting	 in	 further	

compromise	 of	 the	 micro	 vascular	 circulation	 (33).	 	 Furthermore,	 activated	

leucocytes	 within	 the	 interstitium	 release	 reactive	 oxygen	 species	 and	

proteolytic	enzymes,	causing	further	damage	(38).	

	

Damage	 to	 the	 endothelium	 results	 in	 endothelial	 swelling	 causing	 impaired	

endothelial	 cell	 barrier	 function.	 There	 is	 breakdown	 of	 the	 glycocalyx	 and	

disruption	of	the	actin	cytoskeleton.	These	changes	cause	loss	of	endothelial	cell-

cell	contacts	with	a	consequential	increase	in	the	vascular	permeability	and	loss	

of	 fluid	into	the	interstitium.	Endothelial	swelling	also	compromises	blood	flow	

(54).	
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In	 addition	 to	 this,	 there	 is	 down	 regulation	 of	 angiogenic	 factors	 such	 as	

vascular	 endothelial	 growth	 factor	 (VEGF)	 and	 up	 regulation	 of	 antiangiogenic	

factors,	causing	a	reduction	in	angiogenesis,	reflected	in	the	reduced	number	of	

vessels	in	IRI	(54,	55).	

1.3.4	Immune	response	–	Innate	and	Adaptive	

IRI	is	a	process	that	may	activate	both	the	innate	and	adaptive	immune	response.	

The	 innate	 immune	 response	 consists	 of	 a	 non-antigen-specific	 activation	

involving	 predominantly	 neutrophils,	 monocytes,	 macrophages,	 and	 natural	

killer	 cells,	whereas	 the	adaptive	 immune	 response	 consists	of	 antigen-specific	

activation	involving	predominantly	T-cells.	

1.3.4.1	Innate	immune	response	

Activated	 endothelium	 causes	 neutrophil	 adherence	 and	 migration	 into	 the	

tissues,	in	particular	the	peritubular	tissue	and	interstitium,	where	they	produce	

reactive	 oxygen	 species	 and	 proteolytic	 enzymes,	 causing	 significant	 damage.	

Neutrophils	 are	 amongst	 the	 first	 cells	 to	 be	 recruited	 at	 the	 site	 of	 injury.	

Neutrophils	also	release	pro-inflammatory	cytokines	including	interleukin	4	(IL-

4),	 TNF-α,	 interferon-gamma	 (IFN-γ)	 and	 interleukin	 17	 (IL-17).	 IL-17	 itself	

regulates	the	IFN-γ-mediated	migration	of	neutrophils	to	the	kidney	tissue,	and	

natural	killer	T-cell	activation.	

	

Monocytes	 migrate	 to	 ‘healthy	 non-injured’	 or	 ‘inflamed/injured’	 tissue	 from	

the	bone	marrow	and	differentiate	 into	macrophages	 and	dendritic	 cells.	Two	

broad	classes	of	macrophages	have	been	identified:	M1	type	(pro-injury)	and	M2	
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type	 (pro-repair).	 These	 are	 determined	 according	 to	 the	 underlying	

pathological	 conditions.	 In	 general,	 M1	 macrophages	 have	 an	 increased	

phagocytic	capacity	and	are	seen	in	high	numbers	in	the	first	few	hours	after	IRI	

persisting	for	up	to	1	week,	driving	a	“Th1	immune	response”	by	production	of	

pro-inflammatory	 cytokines	 (such	 as	 IFN-γ	 and	 TNF-α).	 In	 contrast,	 M2	

macrophages	are	present	in	high	numbers	at	3-5	days	after	IRI	when	tubular	cell	

repair	processes	have	been	established,	and	secrete	matrix	components	involved	

in	 tissue	 repair.	 They	 drive	 a	 “Th2	 immune	 response,	which	 is	 predominantly	

anti-inflammatory	and	pro-repair,	and	is	mediated	by	IL-4,	interleukin	10	(IL-10)	

and	 interleukin	 13	 (IL-13).	 Although	 it	 remains	 a	 useful	 concept	 for	

understanding	 macrophage	 function,	 the	 M1/M2	 macrophage	 paradigm	 is	

increasingly	 recognized	 to	 over-simply	 the	 variety	 of	 macrophage	 phenotypes	

found	 in	 the	 tissue	 in	 vivo	 (56),	 and	 important	 discoveries	 including	 tissue-

specific	resident	and	other	macrophage	phenotypes,	some	with	distinct	 lineage	

and	 proliferative	 control,	 are	 currently	 transforming	 understanding	 of	

macrophage	biology	(57,	58).	

	

Dendritic	cells,	also	differentiated	from	monocytes,	are	activated	in	IRI,	and	are	

involved	 in	 the	activation	of	T-cells.	Maturation	of	dendritic	cells	 is	 induced	by	

danger-associated	 molecular	 patterns	 (DAMPs)	 and	 pathogen-associated	

molecular	patterns	 (PAMPs).	They	present	 antigens	 to	T-cells,	 thus	 forming	an	

important	bridge	between	the	innate	and	adaptive	immune	responses.	In	kidney	

transplantation,	 donor	dendritic	 cells	 are	 activated	 in	 response	 to	 brain	death,	

and	subsequently	activate	recipient	T-cells.	
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DAMPs	 and	 PAMPs	 are	 also	 recognized	 by	 toll-like	 receptors	 (TLRs),	 small	

proteins	 located	on	 the	 cell	membrane	or	present	within	 the	 cytoplasm,	which	

allow	the	immune	system	to	work	more	efficiently,	by	regulating	and	integrating	

dendritic	 cell,	 T-cell	 and	 complement	 system	 function.	 Integration	 of	 signal	

allows	greater	discrimination	between	harmful	activation	(such	as	infection)	and	

other	 activation	 that	 might	 not	 require	 the	 same	 response	 from	 the	 immune	

system.	TLRs	detect	DAMPs	 including	the	nuclear	protein	 ‘High	Mobility	Group	

Box	1	(HMGB-1)’	which	binds	to	the	DNA	and	regulates	transcription.	In	kidney	

IRI,	tubular	cells	express	both	TLR-2	and	TLR-4.	TLR-4	has	an	important	role	in	

kidney	IRI	and	is	the	subject	of	an	excellent	review	by	Zhao	et	al	(59).	Essentially,	

activation	 of	 TLR-4	 (induced	 by	 endogenous	 DAMPs)	 mediates	 a	 pro-

inflammatory	 response	 by	 facilitating	 leucocyte	 infiltration	 and	migration	 and	

release	of	pro-inflammatory	cytokines.		

	

The	complement	system	is	an	important	component	of	the	immune	response	to	

IRI,	 and	 is	 the	 subject	 of	 a	 review	 by	 Sacks	 et	 al	 (60).	 Complement	 cascade	

involves	 a	 group	 of	 approximately	 30	 soluble	 proteins	 that	 are	 activated	 by	 3	

overlapping	pathways:	Classical,	Lectin	and	Alternative.	The	Classical	pathway	is	

activated	via	binding	of	complement	1q	protein	(C1q)	to	immune	complexes,	the	

lectin	 pathway	 by	 binding	 of	 mannose-binding	 lectin	 to	 the	 surface	 of	

microorganisms,	 and	 the	 Alternative	 pathway	 by	 direct	 activation	 of	 C3.	 All	 3	

pathways	lead	to	C3	deposition	onto	the	surface	of	the	pathogen/damaged	cell,	

marking	 it	 for	 destruction	 by	 the	 membrane	 attack	 complex	 (MAC)	 (made	 of	

complement	 5b	 component	 (C5b),	 complement	 6	 (C6),	 complement	 7	 (C7),	

complement	8	(C8),	and	complement	9	(C9))	or	removal	by	phagocytosis	(60).		
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Once	 the	 complement	 cascade	 is	 activated,	 there	 is	 release	 of	 C3a	 and	 C5a	

leading	 to	 formation	 of	 the	MAC,	which	 in	 turn	 activates	 cytokine	 release,	 and	

neutrophil	activation	and	infiltration.	This	leads	to	tubular	cell	injury.	In	kidney	

IRI,	the	alternative	pathway	is	the	predominant	one	(61).	Mice	deficient	in	C3	or	

factor	 B	 (an	 important	 component	 of	 the	 alternative	 pathway)	 are	 protected	

from	renal	IRI	(62,	63).		

	

The	 complement	 system	 also	 activates	 the	 adaptive	 immune	 response.	 C3	

derived	 from	macrophages	binds	onto	 the	surface	of	dendritic	 cells,	promoting	

their	 maturation,	 which	 as	 a	 result	 activates	 the	 T-cell	 response.	 In	 kidney	

transplantation,	 brain	 death	 in	 deceased	 donors	 activates	 complement,	 in	

particular	C5a,	which	binds	to	its	receptor	on	dendritic	cells,	causing	activation	

of	T-cells.	C3	deposits	are	also	 found	 to	be	 in	high	concentration	 in	biopsies	of	

deceased	donors	and	may	have	particular	importance	in	rejection.	In	addition	to	

this,	 there	 appears	 to	 be	 important	 cross	 talk	 between	 complement	 and	TLRs,	

adding	to	the	complexity	of	the	innate	immune	system	in	IRI	(64).	

1.3.4.2	Adaptive	Immune	response	

The	adaptive	 immune	response	 is	a	key	component	of	 IRI,	 and	 in	particular	T-

cells	 exhibit	 both	 inflammatory	 and	 anti-inflammatory	 roles.	 T-cells	 are	

lymphocytes	 that	 play	 an	 important	 role	 in	 cell-mediated	 immunity.	 There	 are	

two	 predominant	 types	 of	 T-cells:	 T	 helper	 cells,	 also	 known	 as	 ‘cluster	 of	

differentiation	4’	(CD4+)	T-cells	because	they	express	CD4	glycoprotein	on	their	

surfaces;	and	cytotoxic	T-cells,	known	as	 ‘cluster	of	differentiation	8’	(CD8+)	T-
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cells	as	they	express	CD8	glycoprotein	on	their	surfaces.	Once	activated,	CD4+	T-

cells	secrete	cytokines	that	assist	other	lymphocytes	in	facilitation	of	the	immune	

process,	whereas	CD8+	T-cells	are	usually	 involved	 in	destruction	of	pathogen-

infected	 cells.	Both	CD4+	and	CD8+	T	 cells	have	a	detrimental	 role	 in	 IRI	 (65).	

CD4+	T	cells	in	particular	are	activated	in	the	presence	of	co-stimulatory	factor	

‘cluster	of	differentiation	28’	(CD28).	T	cells	are	activated	by	the	presentation	of	

an	antigen	usually	expressed	on	mature	dendritic	cells	although	they	can	also	be	

activated	independent	of	antigen	presentation	(66).	T	regulatory	cells	(Tregs),	in	

contrast	are	anti-inflammatory,	and	are	found	after	3	days	following	IRI,	where	

they	are	involved	in	repair	of	damaged	cells	(67).	

1.3.5	Cell	death	programs	

IRI	 activates	 predominantly	 3	 different	 programs	 of	 cell	 death:	 Necrosis,	

Apoptosis,	and	Autophagy-associated	cell	death,	as	described	by	Hotchkiss	et	al	

(68).		

	

Necrosis	 is	 characterised	 by	 swelling	 of	 the	 cell	 and	 organelles,	 followed	 by	

rupture	of	its	surface	membranes	with	spillage	of	intracellular	contents.	Necrotic	

cells	 are	 potent	 stimulators	 of	 the	 immune	 system	 and	 cause	 cytokine	 release	

and	infiltration	of	inflammatory	cells	(68).		

	

Apoptosis	 involves	 a	 self-contained	 program	 of	 cell	 death,	 also	 known	 as	

programmed	 cell	 death,	 which	 is	 induced	 by	 an	 organized	 complex	 ‘caspase-

signalling	cascade’.	Apoptosis	is	characterised	by	cell	and	nuclear	shrinkage	with	

integrity	of	 the	plasma	membrane	at	 least	until	 the	 late	stages	of	 the	apoptosis	
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process.	 Apoptosis	 is	 thought	 to	 be	 an	 important	 process	 in	 kidney	 IRI,	 with	

studies	reporting	the	beneficial	effects	of	 inhibiting	apoptosis	 inducers,	such	as	

thrombospondin	1	(TSP-1)	(69).		In	addition	to	this,	the	expression	of	apoptosis-

related	genes	was	recently	investigated	in	pre-transplantation	biopsies	of	kidney	

transplant	patients,	reporting	a	higher	expression	of	‘BCl2-Associated	X	protein’	

(Bax)	 (pro-apoptotic	 molecule)	 and	 caspase-3	 (CASP-3)	 (apoptosis	 executor	

enzyme),	 and	 lower	 expression	 of	 ‘B-cell	 lymphoma	 2’	 (Bcl-2)	 (anti-apoptotic	

molecule)	 in	 deceased	 donor	 kidneys	 compared	 with	 LD	 kidneys,	 and	

furthermore	lower	Bcl-2	levels	in	patients	with	DGF,	a	direct	consequence	of	IRI	

(70).	

 

Finally,	 autophagy	 is	 a	 process	 that	 is	 thought	 to	 be	 a	 protective	 adaptive	

response	of	the	cells/tissues	to	various	types	of	injury	including	kidney	IRI	(71).	

The	 role	 of	 autophagy	 in	 renal	 IRI	 is	 complex,	 and	 while	 probably	 a	 largely	

protective	response,	this	may	be	dependant	on	factors	including	the	length	and	

extent	of	ischaemia,	with	autophagy	being	protective	in	shorter	ischaemic	times	

and	possibly	detrimental	with	more	prolonged	duration	of	ischaemia	(72,	73).		

1.3.6	Therapeutic	strategies	to	ameliorate	IRI	

Several	 therapies	have	been	developed	 to	attenuate	 IRI	 and	 the	 resultant	DGF.	

These	 have	 focused	 on:	 Management	 of	 the	 donor;	 Organ	 preservation;	

Management	of	the	recipient;	and	Pharmacological/Experimental	therapies.	
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1.3.6.1	Donor	Management	

Donor	management	is	essential	to	achieve	reduced	IRI.	This	includes	an	accurate	

surgical	 technique	 (and	 relatively	 fast	 for	 DCD	 donors	 to	 reduce	 the	 WIT1),	

optimum	cold	perfusion	of	the	organ,	and	reduced	cold	ischaemic	time.	There	is	

also	 an	 opportunity	 during	 donor	 management	 for	 ischaemic	 or	 chemical	

preconditioning	of	the	donor.	

1.3.6.2	Organ	Preservation	

Preservation	 solutions	 have	 been	 developed	 and	 optimised	 to,	 reduce	 osmotic	

injury	to	the	cell	(and	reduce	cell	swelling),	maintain	electrolyte	(especially	Ca2+)	

homeostasis,	 and	 reduce	 acidosis.	 The	 current	 preservation	 solutions	 used	 for	

static	 cold	 storage	 include	 Belzer	 University	 of	 Wisconsin	 (UW)	 solution	 and	

Soltran	 kidney	 perfusion	 fluid	 (74,	 75).	 Methods	 to	 store	 organs	 at	 present	

include	 simple	 cold	 storage	 and	 hypothermic	machine	 perfusion.	 Hypothermic	

machine	perfusion	reduces	 incidence	of	DGF	when	compared	with	cold	storage	

(76).	 A	 multicentre	 international	 trial	 showed	 that	 hypothermic	 machine	

perfusion	 was	 associated	 with	 a	 significantly	 reduced	 incidence	 of	 DGF,	 and	

improved	 graft	 survival	 at	 1	 and	 3	 years	 for	 DBD	 and	 ECD	 kidneys	 when	

compared	 with	 static	 cold	 storage	 (77,	 78).	 Over	 the	 past	 few	 years,	

developments	 in	 the	 perfusion	 of	 donor	 organs	 have	 led	 to	 the	 practice	 of	

normothermic	machine	perfusion	in	liver	transplantation.	It	has	been	shown	that	

ex	 vivo	 normothermic	 perfusion	 has	 many	 potential	 advantages	 over	 cold	

perfusion	for	kidney	transplantation,	and	such	practice	may	allow	for	the	use	of	

increased	use	of	donors	with	greater	ischaemic	insult	(79).	
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1.3.6.3	Recipient	Management	

It	 is	vital	 that	 the	 recipient	 is	 in	as	optimal	medical	 condition	as	possible.	This	

includes	 optimum	 electrolytes	 and	 fluid	 status.	 Often	 the	 recipient	 may	 be	

hypovolaemic	 following	 recent	 haemodialysis,	 which	 would	 routinely	 aim	 to	

bring	 the	patient	 to	 their	dry	weight.	 It	 is	 important	 to	 avoid	hypovolaemia	as	

this	 can	 cause	 further	 peri-operative	 hypo-perfusion	 and	 cause	 a	 further	

ischaemic	 insult.	 Therefore	 adequate	 intravascular	 volume	 load	 should	 be	

maintained	via	central	venous	pressure	monitoring.	In	addition	to	this,	mannitol	

is	 administered	 before	 reperfusion,	 as	 this	 may	 reduce	 DGF	 because	 of	 its	

antioxidant	properties	(80).		

1.3.6.4	Pharmacological/Experimental	Therapies	

Several	pharmacological	and	experimental	therapies/agents	have	been	used	and	

proposed	 to	 attenuate	 IRI.	 These	 include	 physical	 strategies	 such	 as	 ischaemic	

preconditioning	 (IPC),	 and	 other	 agents,	 which	 have	 anti-inflammatory,	 anti-

oxidant	 or	 vasodilatory	 properties.	 These	 have	 been	described	 in	 2	 prominent	

reviews	by	Percio	(38)	and	Siedlecki	(81)	and	summarised	in	in	Table	1.1.		
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Vasodilatory	Agents:	

• Calcium-channel	blockers	

• Prostacyclin	

• Atrial	natriuretic	peptide	

• Endothelin	receptor	antagonists	

	

Anti-oxidants:	

• Heme-oxygenase-1	(HO-1)	induction	

• N-acetyl	cysteine	(NAC)	

• Inducible	NO	synthase	inhibitors	

	

Anti-inflammatory	Agents:	

• Platelet	activating	factor	receptor	antagonists	

• Inhibitors/Antagonists/Antibodies	of	cytokines	e.g.	TNF-α,	IL-1	

• Immunosuppressants	e.g.	ATG,	MMF	

• Complement	inhibitors	e.g.	sCR1,	Eculizimab	

• Inhibitors	of	TLR-2	and	TLR-4	

• Statins	

	

Conditioning	strategies:	

• Ischaemic	preconditioning	

• Ischaemic	post	conditioning	

• Chemical	conditioning	

	
Table	1.1:	Pharmacological/Experimental	therapies	to	prevent	Kidney	IRI	

Some	of	 the	proposed	pharmacological	 and	experimental	 agents	designed	 to	 attenuate	 IRI	 and	

prevent	DGF	in	kidney	transplantation,	adapted	from	(38).	

	

IPC	and	other	conditioning	strategies	are	discussed	in	detail	in	Section	1.4.	
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1.4	Ischaemic	Preconditioning	(IPC)	

1.4.1	Definition		

IPC	 is	 a	 powerful	 treatment	 strategy	 that	 involves	 prior	 application	 of	 short	

periods	of	controlled	ischaemia,	which	may	confer	tolerance	and	protection	to	a	

subsequent	episode	of	IRI.	

1.4.2	Background	

The	phenomenon	of	IPC	was	first	described	in	1986	when	Murry	et	al	reported	

that	brief	episodes	of	non-lethal	myocardial	ischaemia	and	reperfusion	prior	to	a	

prolonged	episode	of	myocardial	 ischaemia	 reduced	 the	 size	of	 the	myocardial	

infarct	 by	 75%	 in	 a	 dog	 model	 of	 acute	 myocardial	 infarction	 (82).	 	 This	

protective	strategy	has	since	been	supported	by	many	 in	vivo	studies	in	several	

animal	species	including	small	animals	(mice	(83,	84),	rats	(85)	and	rabbits	(86))	

and	large	animals	(sheep	(87)	and	pigs	(88)).	Since	then	IPC	has	now	become	the	

‘gold	 standard’	 to	which	 other	 protective	 strategies	 in	 the	 heart	 are	 compared	

(89).	The	benefits	of	IPC	were	also	seen	and	reported	in	other	organs,	including	

the	kidney.		

1.4.3	IPC	in	the	Kidney	

Following	 the	 ‘landmark’	 studies	 in	 the	 heart,	 IPC	 has	 been	 shown	 to	 be	

beneficial	 in	ameliorating	 IRI	 in	 the	kidney	 in	several	animal	species,	 including	

small	animals	(mice	(90),	rats	(91)	and	rabbits	(92))	and	large	animals	(pigs	(93)	

and	dogs	(94)).	A	systematic	review	and	meta-analysis	by	Wever	et	al	analysed	

58	animal	studies	that	evaluated	the	effect	of	IPC	in	the	kidney	(95).	The	overall	
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conclusion	of	this	review	was	that	IPC	effectively	reduced	renal	damage	after	IRI,	

in	terms	of	reduced	serum	creatinine,	blood	urea	nitrogen,	and	histological	renal	

damage.	However,	the	number	of	studies	included	for	the	meta-analysis	was	33,	

17,	 and	 15	 for	 serum	 creatinine,	 blood	 urea	 nitrogen,	 and	 histological	 renal	

damage	 respectively.	 The	 animal	 species	 used	within	 these	 studies	 comprised	

small	animals	(rat	(34),	mouse	(14),	rabbit	(4)),	and	large	animals	(pig	(3)	and	

dog	(3)).	The	review	also	concluded	that	there	was	a	huge	variation	in	the	type	of	

IPC	protocol	 used	 and	 its	 efficacy,	 and	 that	 this	may	differ	 per	 animal	 species.	

Moreover,	 it	 identified	 the	 need	 for	 standardisation	 in	 animal	 experiments	

evaluating	IPC	(95).	

1.4.4	Variation	in	IPC	Protocols	

	
There	is	a	great	deal	of	variation	in	the	IPC	protocols	and	the	IRI	model	that	have	

been	used	in	experiments,	which	lead	to	difficulty	in	making	direct	comparisons.	

IPC	 stimulus	 can	 be	 applied	 directly	 to	 the	 organ	 of	 interest	 (localised	 IPC	 –	

LIPC)	or	remote	from	it	to	a	different	organ	or	tissue	(remote	IPC	–	RIPC).	More	

than	half	of	the	studies	analysed	in	Wever’s	review	utilised	an	IRI	animal	model,	

which	consisted	of	a	40	or	45-minute	period	of	index	ischaemia,	and	majority	of	

the	studies	utilised	LIPC	as	the	IPC	modality.	It	found	no	difference	in	the	efficacy	

of	 IPC	 between	 LIPC	 and	 RIPC	 (95).	 The	 IPC	 stimulus	 can	 be	 one	 continuous	

episode	 of	 ischaemia	 (Continuous)	 or	 it	 may	 involve	 2	 or	 more	 cycles	 of	

ischaemia	 (Pulsatile).	 	 Although	 many	 studies	 have	 shown	 benefit	 from	 both	

continuous	and	pulsatile	IPC	(96,	97),	some	show	no	benefit	of	IPC	at	all	(98,	99).	

The	interval	between	the	IPC	stimulus	and	ischaemic	injury	may	also	vary	from	

‘short’	 consisting	 of	 a	 few	 minutes	 to	 hours	 (Early	 window	 of	 protection)	 to	
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‘longer’	 consisting	 of	 days	 (Late	window	 of	 protection).	 The	majority	 of	 these	

studies	 have	 evaluated	 the	 effects	 of	 ‘Early’	 IPC	 response	 as	 compared	 with	

‘Late’.	However	both	have	shown	IPC	to	be	beneficial	(96,	100)	or	not	beneficial	

(99,	101).		

1.4.5	Clinical	Application	of	IPC	

	
Based	 on	 the	 majority	 of	 animal	 studies,	 there	 is	 a	 great	 potential	 for	 IPC	 to	

improve	 outcomes	 in	 kidney	 transplantation.	 A	 number	 of	 clinical	 trials	 in	

humans	 have	 been	 published	 reporting	 the	 protective	 effects	 of	 IPC	 in	 the	

myocardium,	 the	 first	one	being	 in	1993	(102).	 	Clinical	 trials	of	 IPC	have	now	

also	been	shown	to	have	protection	in	other	organs,	including	liver	(103),	brain	

(104),	and	lung	(105).	To	date,	22	clinical	trials	have	evaluated	the	effect	of	IPC	

on	kidney	function,	all	of	which	have	 involved	application	of	RIPC	to	the	 limbs.	

These	 studies	 show	 conflicting	 reports,	 with	 some	 showing	 that	 RIPC	 is	

beneficial	whereas	 others	 show	 that	 RIPC	 did	 not	 benefit.	Most	 importantly,	 a	

very	 large	 trial	 published	 in	 NEJM	 in	 2015	 showed	 that	 RIPC	 conferred	 no	

benefit	(106),	whereas	another	 large	trial	published	in	JAMA	showed	that	RIPC	

significantly	 reduced	AKI	 and	 the	 need	 for	 renal	 replacement	 therapy	 in	 high-

risk	patients	undergoing	cardiac	surgery	(107).	Similarly,	trials	investigating	the	

effect	 of	 RIPC	 on	 contrast-induced	 AKI	 in	 patients	 undergoing	 coronary	

angiography	have	shown	protective	as	well	as	non-protective	effects	(108-110).	

In	renal	transplantation,	Wu	et	al	showed	that	RIPC	enhanced	early	recovery	of	

renal	function	following	kidney	transplantation	(111).	One	study	showed	that	in	

living	donor	kidney	transplant	recipients,	RIPC	did	not	improve	renal	function	at	
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1	and	3	months	(112).	Chen	et	al	also	reported	similar	findings	for	RIPC	in	living	

donor	renal	transplantation	(113).		

1.4.6	Underlying	Mechanisms	of	IPC	

	
The	 mechanisms	 underlying	 IPC	 remain	 incompletely	 defined,	 although	 some	

insight	 may	 be	 gained	 from	 cardiac	 studies.	 Proposed	 mechanisms	 for	 a	

protective	 effect	 of	 IPC	 include	 trigger	 factors	 and	 intracellular	mediators,	 and	

are	 summarised	 in	 Figure	 1.2.	 IPC	 may	 release	 local	 trigger	 factors,	 which	

include	adenosine,	bradykinin	and	opioids,	and	other	factors	such	as	natriuretic	

peptides,	 and	 growth	 factors.	 Upon	 binding	 to	 their	 specific	 cell	 surface	

receptors,	these	trigger	factors	may	propagate	the	intracellular	preconditioning	

signal.	 There	 are	 three	 main	 intracellular	 pathways	 implicated	 in	 IPC:	

Reperfusion	 Injury	 Salvage	 Kinase	 (RISK),	 Survivor	 Activating	 Factor	

Enhancement	 (SAFE),	and	cyclic	Guanosine	Mono	Phosphate/	Protein	Kinase	C	

(cGMP/PKC).	The	common	effector	for	all	 these	pathways	is	predominantly	the	

modulation	 of	 mitochondria,	 designed	 to	 prevent	 mitochondrial	 dysfunction,	

inflammation,	apoptosis,	and	cell	death	resulting	from	IRI.		

	

The	RISK	pathway	involves	pro-survival	anti-apoptotic	protein	kinases	including	

Phosphatidylinositol-3-OH	Kinase	 (PI3K),	Akt	 (also	know	as	Protein	Kinase	B),	

MEK	 (also	 known	 as	Mitogen-Activated	 Protein	 Kinase	 Kinase	 –	 MAP2K),	 and	

Extracellular	regulated	Kinase	(Erk).	Activation	of	this	pathway	eventually	leads	

to	 protection	 as	 a	 result	 of	 the	 inhibition	 of	 the	 opening	 of	 the	 mPTP.	

Induction/opening	 of	 mPTP	 leads	 to	 mitochondrial	 swelling	 and	 cell	 death	

through	apoptosis	and	necrosis	(114).		
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Figure	1.2:	Proposed	mechanisms	underlying	Ischaemic	Preconditioning	(IPC)	
IPC	 stimulus	 causes	 the	 release	 of	 local	 trigger	 factors,	 e.g.	 adenosine,	 which	 upon	 binding	 to	

their	specific	cell	surface	receptors,	cause	the	propagation	of	intracellular	cascades.	The	common	

effector	 for	 the	 intracellular	 cascades/pathways	 is	 predominantly	 the	 modulation	 of	

mitochondria	 designed	 to	 prevent	 the	 damage	 of	 mitochondrial	 dysfunction,	 inflammation,	

apoptosis	and	cell	death	resulting	from	IRI.	Activation	of	nucleus	transcription	factors	(e.g.	HIF-

1α)	and	denovo	synthesis	of	proteins	(e.g.	HO-1)	is	also	thought	to	play	an	important	role	in	the	

mechanisms	of	IPC	protection.	Blue	arrows	indicate	stimulation,	Red	arrows	indicate	inhibition.	
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The	 SAFE	 pathway	 involves	 TNF-α,	 a	 pro-inflammatory	 cytokine,	 as	 a	 trigger	

factor	 and	an	 intracellular	 cascade	 that	 involves	 Janus	Kinase	 (JAK)	 and	Signal	

Transducer	and	Activator	of	Transcription-3	(STAT-3).	This	is	independent	from	

the	 RISK	 pathway,	 although	 there	 is	 likelihood	 of	 cross-talk	 between	 the	 two	

pathways	 (115).	 The	downstream	effects	 of	 the	 SAFE	pathway	 include	 STAT-3	

induced	 increase	 in	 the	 anti-apoptotic	 protein	 Bcl-2	 and	 decrease	 of	 the	 pro-

apoptotic	 protein	 bax	 (116),	 and	 inhibition	 of	 mPTP	 opening	 via	

phosphorylation	 of	 Glycogen	 Synthase	 Kinase-3	 beta	 (GSK-3β)	 (117).	 	 Also	

important,	and	mostly	attributed	to	the	delayed	IPC	protection,	are	the	activation	

of	 nucleus	 transcription	 factors	 such	 as	 ‘Nuclear	 Factor	 kappa-light-chain-

enhancer	 of	 activated	 B	 cells’	 (NF-κB)	 which	 trigger	 the	 de	 novo	 synthesis	 of	

proteins	 such	 as	 cyclo-oxygenase-2	 (COX-2)	 and	 heat	 shock	 proteins	 (HSPs).	

These	are	activated	by	both	the	RISK	and	SAFE	pathways	(118).	

	

1.4.7.	Other	Conditioning	Strategies	

1.4.7.1	Ischaemic	Post-Conditioning	

Ischaemic	Post-conditioning	 (IPOC)	 refers	 to	conditioning	 the	organ	of	 interest	

after	 IRI	 has	 been	 induced.	 This	 was	 introduced,	 as	 IPC	 may	 not	 always	 be	

practical	 in	 transplantation	 (as	 transplantation	 is	 routinely	 not	 an	 elective	

procedure).	IPOC	was	first	shown	to	limit	IRI	in	the	myocardium	in	2003	(119)	

and	 in	 the	 kidney	 in	 2007	 (120).	 Studies	 that	 have	 been	 conducted	 since	 then	

have	 largely	 shown	 a	 beneficial	 effect	 of	 IPOC	 in	 the	 kidney.	 The	 underlying	

mechanisms	 that	 have	 been	 proposed	 include	 reduction	 in	 reactive	 oxygen	

species	formation,	up	regulation	of	anti-apoptotic	factors	and	down-regulation	of	
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pro-apoptotic	factors	(121).	To	date,	one	human	study	has	evaluated	the	effect	of	

IPOC	 in	 kidney	 transplantation.	 This	 showed	 no	 beneficial	 effects	 of	 IPOC	 in	 a	

subset	of	DCD	kidney	transplants	(122).	

1.4.7.2	Pharmacological	Preconditioning	

Pharmacological	 or	 chemical	 preconditioning	 is	 based	 on	 the	 concept	 of	

mimicking	and	 inducing	 the	mechanistic	protective	effects	of	 IPC.	Amongst	 the	

agents	 tested,	 Erythropoietin	 (EPO)	 has	 been	 most	 used,	 and	 shown	 to	 be	

effective	 by	 up	 regulation	 of	 HIF-1α	 (123),	 and	 activation	 of	 anti-apoptotic	

pathways	 that	 involve	 induction	 of	 PI3K	 and	 STAT-3	 intracellular	 cascades	

(124).	Another	agent,	glutamine,	has	also	shown	protective	effects,	thought	to	be	

due	to	enhancement	of	endogenous	heat	shock	protein	expression	(125).	Both	of	

these	agents	have	shown	beneficial	effects	in	animal	studies.	To	date,	no	human	

study	 has	 been	 conducted	 to	 test	 the	 effect	 of	 chemical	 or	 pharmacological	

preconditioning.	
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1.5	Control	of	Gene	Expression	

The	biology	of	a	tissue	is	largely	determined	by	the	genes	expressed	within	it.	A	

gene	is	essentially	the	basic	physical	and	functional	unit	of	heredity,	and	is	made	

up	 of	 deoxy	 ribonucleic	 acid	 (DNA).	 Genes	 act	 as	 instructions	 for	 protein	

synthesis	and	humans	are	estimated	to	have	between	20,000	and	25,000	genes.	

Given	the	complex	patterns	of	gene	regulation	and	transcription	etc.,	Gerstein	et	

al	has	provided	a	more	concise	and	up-to-date	definition	of	a	gene	as	“a	union	of	

genomic	sequences	encoding	a	coherent	set	of	potentially	overlapping	functional	

products”	(126).		

	

The	 regulation	 of	 gene	 expression	 is	 essential	 in	 normal	 physiology	 and	 its	

altered	expression	forms	the	basis	of	diseases	processes,	therefore	it	is	essential	

that	we	 understand	 all	 the	 steps	 involved	 in	 this.	 All	 cells	 in	 the	 human	 body	

have	 the	 same	 DNA	 but	 the	 function	 of	 each	 cell	 may	 differ	 depending	 on	 its	

purpose	and	hence	different	cell	types	produce	their	own	unique	set	of	proteins.	

Proteins	 are	 the	 major	 functional	 endpoint	 of	 the	 DNA	 template	 and	 may	 be	

involved	 in	 many	 cellular	 processes	 for	 example	 enzymes,	 receptors,	 or	

signalling	molecules.	Figure	1.3	shows	the	steps	of	the	DNA	to	protein	pathway	

and	the	points	at	which	it	may	be	regulated.	The	central	paradigm	is	that	DNA	is	

transcribed	 to	 messenger	 ribonucleic	 acid	 (mRNA)	 within	 the	 nucleus,	 which	

undergoes	maturation	and	is	transported	to	the	cytoplasm	where	it	is	translated	

into	protein.	Each	of	theses	steps	are	regulated	and	described	as	below.	
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Figure	1.3:	Control	of	Gene	Expression	

DNA	 to	 protein	 pathway	 can	 be	 regulated	 at	 several	 steps,	 including	 transcriptional,	 post-

transcriptional,	translational	and	post-translational	levels.	This	diagram	was	taken	from	(127).	

	

1.5.1	Transcriptional	Control	

The	regulation	of	transcription	is	orchestrated	predominantly	by	a	combination	

of	transcription	factors,	which	act	as	activators	and	repressors.	

	

Transcription	of	DNA	 to	mRNA	begins	at	 the	 Initiation	 site	when	 the	Promoter	

region	of	 the	gene	attracts	 the	enzyme	RNA	polymerase.	This	Promoter	 region	

also	contains	regulatory	DNA	sequences	that	are	recognised	by	proteins	known	as	

transcription	regulators.	Transcription	regulators	can	be	activators,	which	when	

bound	to	the	regulatory	DNA	sequence	interact	with	the	RNA	polymerase	to	aid	

initiation	 of	 transcription,	 and	 repressors	 which	 block	 the	 access	 of	 RNA	

polymerase	 to	 the	 Promoter	 region	 of	 the	 DNA	 sequence	 (127).	 Transcription	

regulators	 can	 also	 control	 transcription	 from	 a	 distance	 of	 even	 a	 thousand	

nucleotide	base	pairs	away	from	the	promoter	site.	This	is	aided	by	DNA	looping,	

which	permits	contact	between	the	transcription	regulator	and	the	transcription	

complex	 bound	 to	 the	 promoter	 region	 (128,	 129).	 A	 complex	 of	 proteins,	
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collectively	known	as	the	Mediator,	 facilitates	this.	Transcription	activators	and	

repressors	promote	and	prevent	 the	assembly	of	 this	Mediator	 respectively.	 In	

addition,	 transcription	 regulators	 also	 attract	 other	 proteins	 that	 affect	 the	

accessibility	of	 the	RNA	polymerase	 to	 the	Promoter	region,	by	modulating	 the	

chromatin	structure.	Transcription	activators	modify	the	chromatin	structure	to	

allow	 greater	 access	 to	 the	 underlying	 DNA,	 whereas	 repressors	 have	 the	

opposite	effect	(130).	

	

In	 addition	 to	 the	 above,	 transcription	 regulators	 often	 work	 as	 a	 group	

controlling	 the	 expression	 of	 one	 gene,	 termed	Combinatorial	 control	 and	 it	 is	

also	evident	 that	one	 transcription	 regulator	may	 coordinate	 the	expression	of	

many	genes	(127).	

	

Furthermore,	 it	 is	now	evident	 that	 small	RNAs	may	play	an	 important	part	 in	

transcriptional	control	and	DNA	can	 itself	be	modified	by	methylation	 to	cause	

gene	silencing,	adding	to	the	complexity	of	transcriptional	control	(131,	132).		

1.5.2	Post-transcriptional	Control	

Post-transcriptional	 regulation	 involves	 controls	 that	 start	 operating	 once	 the	

RNA	polymerase	has	bound	to	the	promoter	region	of	the	gene	and	commenced	

initiation	of	the	transcription.	

	

Once	 the	 mRNA	 is	 transcribed,	 it	 undergoes	 modification.	 One	 of	 the	

modification	 steps	 involves	 processing	 of	 the	 3’	 end,	 including	 cleavage	 of	 the	

transcript	end	to	finish	the	mRNA	with	a	polyA	tail	(133).	The	site	of	the	cleavage	
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is	subject	to	control,	and	may	lead	to	a	change	in	the	3’	end	of	the	mRNA	and	thus	

a	 change	 in	 the	 eventual	 protein	 structure	 (134).	 	 Another	 process	within	 the	

nucleus,	which	can	alter	the	final	mRNA	and	the	resultant	protein,	is	alternative	

splicing.	The	splicing	machinery	causes	various	permutations	of	exon	 inclusion	

and	 skipping,	 resulting	 in	mRNA	 variations.	 This	 is	 regulated	 by	 negative	 and	

positive	 factors	 that	 prevent	 and	 attract	 the	 splicing	 machinery’s	 access	 to	

splicing	sites	 respectively	 (135).	RNA	editing	 is	another	method	of	altering	 the	

eventual	mRNA	produced.	This	involves	changes	in	the	nucleotide	sequences	of	

the	mRNA	transcripts,	by	enzymes	that	recognise	and	modify	the	particular	sites	

required	for	that	particular	cell/tissue	(136).	

	

Riboswitches,	 which	 are	 present	 within	 the	 mRNA,	 also	 play	 a	 part	 in	 post-

transcriptional	 control	 by	 self-regulation.	 These	 riboswitches	 are	 short	 RNA	

sequences	that	bind	to	small	molecules	causing	a	conformational	change	 in	the	

mRNA	 (137).	 Another	 mechanism	 of	 regulation	 is	 control	 of	 initiation	 of	

translation,	which	will	 determine	 the	 amount	 of	 protein	 produced.	 	 There	 are	

repressors,	which	bind	to	a	specific	sequence	within	the	5’	cap	of	the	mRNA,	an	

un-translated	 region	of	 the	RNA	 that	 guides	 the	 ribosome	 to	 the	 first	 codon	of	

translation,	 causing	 the	 ribosome	 to	miss	 the	 first	 codon	and	hence	 repressing	

the	 translation	 process.	 Cells	 can	 inactivate	 this	 repression	 to	 increase	

translation	into	protein	when	required	(138).	

	

In	addition	to	these	controls,	microRNAs	play	a	key	role	 in	post-transcriptional	

regulation	of	gene	expression.	These	are	discussed	in	detail	in	section	1.7.	
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Only	 a	 small	 proportion	 of	 the	 mRNA	 transcribed	 is	 transported	 from	 the	

nucleus	 to	 the	 cytoplasm	 for	 translation.	 Transcriptional	 and	 post-

transcriptional	 regulatory	 mechanisms	 ensure	 that	 incompletely	 processed	 or	

damaged	RNA	remains	in	the	nucleus	for	degradation	(139).	

1.5.3	Post-translational	Control	

Once	 mRNA	 is	 transported	 from	 the	 nucleus	 to	 the	 cytoplasm,	 it	 undergoes	

translation	 into	 a	 polypeptide,	 a	 chain	 of	 amino	 acids.	 Once	 a	 polypeptide	 is	

made	 it	 usually	 requires	modification	 according	 to	 the	 cell	 requirements.	 The	

most	 common	 method	 of	 modification	 post-translation	 is	 the	 addition	 of	

functional	groups,	changing	the	chemical	nature	of	some	of	the	amino	acids,	and	

cleavage	of	the	first	amino	acid	methionine	(140).		

	

A	 final	 regulatory	 mechanism	 involves	 degradation	 of	 the	 protein	 by	

proteasomes	if	the	protein	is	no	longer	required	within	the	cell	(140).	
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1.6	MicroRNAs	

As	has	 been	discussed	 in	 the	 previous	 section,	 gene	 expression	 regulation	 is	 a	

complex	 process	 involving	 combinatorial	 control	 of	 genes	 by	 multiple	

transcription	factors	at	the	transcriptional	level.	At	the	post-transcriptional	level,	

the	 emergence	 of	 small	 RNAs,	 in	 particular	 microRNAs	 has	 transformed	

molecular	 biology	 over	 the	 past	 decade.	 It	 is	 vital	 to	 understand	 fully	 their	

mechanisms	of	action	and	expression	profiles	as	this	has	profound	implications	

for	our	understanding	of	disease	processes	and	their	treatment.		

1.6.1	Background	

MicroRNAs	are	short	non-coding	RNAs	that	were	first	discovered	in	1993	by	Lee	

et	 al	 who	 described	 the	 first	 microRNA	 lin-4,	 which	 could	 regulate	 the	

translation	 of	 lin-14	 mRNA	 in	 the	 nematode	 Caenorhabditis	 elegans	 via	 an	

antisense	RNA-RNA	 interaction	 (141).	A	 second	group	demonstrated	 that	 lin-4	

regulates	(post-transcriptionally)	elements	 in	the	 lin-14	3’	un-translated	region	

(3’UTR)	to	generate	a	temporal	gradient	in	the	lin-14	protein	(142).	This	exciting	

finding	was	only	properly	appreciated	in	2000	when	it	was	discovered	that	let-7	

in	C.	elegans	is	conserved	between	different	animal	species	(143).	This	has	led	to	

extensive	research	over	the	last	15	years	and	microRNAs	have	been	discovered	

in	all	kinds	of	species	including	plants	and	animals.	

	

MicroRNAs	 are	 a	 large	 family	 of	 endogenous,	 small	 (approximately	 21-22	

nucleotides	 long)	 non-coding	 RNAs	 that	 are	 implicated	 in	 diverse	 cellular	

processes	 such	 as	 cell	 division,	 proliferation	 and	 apoptosis.	 Bioinformatic	
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predictions	estimate	that	the	expression	of	the	majority	of	human	protein-coding	

genes	are	regulated	by	microRNAs	(144).		

1.6.2	MicroRNAs	–	Biogenesis	and	Mechanisms	of	Action	

MicroRNA	 biogenesis	 (Figure	 1.4)	 begins	 in	 the	 nucleus,	 where	 they	 are	

transcribed	 by	 RNA	 polymerase	 II,	 and	 sometimes	 RNA	 polymerase	 III,	 from	

discrete	 microRNA	 loci	 or	 excised	 from	 intronic	 sequences,	 to	 produce	 long	

primary	 microRNA	 transcripts.	 These	 primary	 transcripts	 are	 made	 of	 1	 or	 2	

stem-loop	 structures,	with	 a	 7-methylguanosine	 cap	 and	 a	 poly	A	 tail.	 A	micro	

processor	complex,	made	of	an	RNAse	 III,	Drosha,	and	a	double-stranded	RNA-

binding	 protein,	 DGCR8	 (DiGeorge	 syndrome	 critical	 region	 8),	 cleaves	 the	

primary	microRNAs	 into	precursor	microRNAs,	which	are	hairpin	structures	of	

70	nucleotides	in	length,	called	pre-microRNAs.	Pre-microRNAs	are	transported	

from	 the	 nucleus	 into	 the	 cytoplasm	via	 exportin	 5,	 a	 nuclear	 export	 receptor,	

where	 another	 RNAse	 III,	 Dicer,	 further	 processes	 them	 into	 a	 >22-nucleotide	

RNA	duplex.	A	single	strand	of	this	duplex,	the	mature	microRNA,	is	transferred	

into	 the	 microRNA-induced	 silencing	 complex	 (miRISC),	 whose	 components	

include	Argonaute	(AGO)	and	GW182	proteins.	The	other	strand,	often	used	as	

the	guide	strand	for	loading	onto	the	RISC	complex,	is	usually	degraded.	

	



	

	 	 	 	 39	

	

Figure	1.4:	Biogenesis	of	microRNAs	

MicroRNAs	 are	 transcribed	 in	 the	 nucleus	 from	 the	 microRNA	 gene	 or	 excised	 from	 intronic	

sequences	 as	 long	 primary	microRNA	 transcripts	 (pri-microRNA)	 by	RNA	polymerase	 II	 or	 III.	

These	 primary	 transcripts	 are	 cleaved	 by	 the	 micro	 processor	 complex	 (made	 of	 Drosha	 and	

DGCR8)	 into	 precursor	 microRNAs	 called	 pre-microRNAs,	 which	 are	 hairpin	 structures	 of	 70	

nucleotides	 in	 length.	 Pre-microRNAs	 are	 exported	 from	 the	 nucleus	 to	 the	 cytoplasm	 via	

Exportin	 5	 (a	 nuclear	 export	 transporter),	 where	 the	 RNase	 III	 called	 Dicer	 further	 processes	

them	 into	a	22-nucleotide	RNA	duplex.	A	single	strand	of	 this	duplex,	 the	mature	microRNA,	 is	

transferred	into	the	microRNA-induced	silencing	complex	(miRISC),	whose	components	include	

Argonaute	(AGO)	and	GW182	proteins.	The	other	strand	is	usually	degraded.	Once	 loaded	onto	

the	 RISC,	 microRNAs	 select	 their	 mRNA	 targets	 via	 base	 pairing,	 causing	 their	 cleavage,	

translational	repression	or	deadenylation,	 leading	 to	ultimate	degradation	of	 the	mRNA.	Figure	

taken	from	(145).	
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Once	 loaded	 onto	 the	 RISC	 complex,	microRNAs	 select	 their	mRNA	 targets	 via	

base	pairing	between	the	microRNA	and	the	target	sequence	of	the	mRNA	script.	

The	 target	 sequence	 is	 located	 predominantly	 in	 the	 3′UTR	 of	 the	 mRNA	

transcript,	although	it	can	also	be	located	in	the	5’UTR	region.		

	

The	 seed	 sequence,	 nucleotides	 in	 positions	 2	 to	 8	 of	 the	microRNA,	 typically	

complementarily	 pairs	 with	 the	 target	 mRNA	 sequence.	 In	 the	 case	 of	 plants,	

there	is	perfect	complementarity,	leading	to	cleavage	of	the	mRNA.	In	mammals,	

there	is	partial	complementarity	and	the	emerging	consensus	is	that	the	mRNA	

transcript	 is	 repressed,	 destabilised	 and	 ultimately	 degraded	 (146-149).	 This	

involves	deadenylation	(removal	or	shortening	of	 the	poly	A	tail)	which	causes	

decapping	of	the	5’	end	of	the	mRNA	transcript,	and	such	uncapped	transcripts	

are	 degraded	 by	 exo-ribonucleases.	 The	 precise	 order	 and	 contribution	 of	

repression	verses	degradation	is	the	source	of	much	debate	(150),	however	such	

target	 degradation	 is	 a	major	 contributor	 in	 gene	 silencing.	 Importantly,	 these	

selection	mechanisms	enable	a	 single	microRNA	 to	potentially	 target	hundreds	

of	transcripts.		

	

Efficient	 microRNA-mediated	 translational	 repression	 requires	 correct	

subcellular	 localisation.	 Potential	 sites	 for	 this	 are	 the	 cellular	 RNA	 granules	

known	as	P-bodies	 (processing	bodies).	P-bodies	are	cytoplasmic	 foci	enriched	

in	miRISC	 components	 and	 enzymes	 involved	 in	deadenylation,	 decapping	 and	

decay.	The	function	of	P-bodies	 in	microRNA-mediated	translational	repression	

is	controversial,	and	the	majority	of	AGO	proteins,	microRNAs	and	mRNA	targets	

are	diffusely	distributed	in	the	cytoplasm	in	sub	microscopic	particles.	However,	
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there	 is	 a	 dynamic	 interaction	 between	 the	 sub	 microscopic	 particles	 and	 P-

bodies,	with	distinct	AGO2	kinetics	(151).	The	latter	may	indicate	a	defined	role	

for	P-bodies	in	translational	repression,	potentially	storage	of	specific	transcripts	

or	mRNA	degradation.	Further	research	will	be	required	to	establish	the	precise	

role	of	P-bodies	in	microRNA-mediated	translational	repression.	

1.6.3	Role	in	Physiology	and	Pathology	

MicroRNAs	 have	 emerged	 as	 one	 of	 the	most	 important	 regulatory	 systems	 of	

gene	 expression,	 and	bioinformatic	predictions	 estimate	 that	 the	 expression	of	

the	majority	of	human	protein-coding	genes	are	regulated	by	microRNAs	(144).	

One	microRNA	can	target	many	mRNAs	and	many	microRNAs	might	target	one	

mRNA.	This	is	largely	because	the	microRNA	recognition	sequence	on	the	target	

mRNA	is	very	short.	Indeed	microRNAs	are	present	in	every	cell	and	involved	in	

all	 cellular	 process	 (such	 as	 growth,	 metabolism,	 development	 and	

differentiation),	in	both	health	and	disease.		

	

MicroRNAs	 have	 been	 linked	 to	 the	 pathophysiological	 processes	 of	 many	

diseases,	 including	 cancer,	 cardiovascular	disease	 and	 immune	disease,	 subject	

of	 a	 thorough	 review	 by	 Ardekani	 et	 al	 (152).	 Dysregulation	 of	 microRNAs	 is	

functionally	 important	 in	 many	 cancers,	 with	 demonstration	 of	 unique	

microRNA	 expression	 profiles	 in	 cancers	 including	 colon,	 breast,	 and	

haematological	 (153).	 The	 expression	 of	 microRNAs	 is	 linked	 to	 many	 other	

disease	 processes,	 including	 cardiovascular	 disease	 (e.g.	myocardial	 infarction,	

arrhythmias,	 cardiac	 failure)	 (154),	 neurodevelopmental	 disease	 (e.g.	 Down’s	

syndrome,	 Huntington’s	 disease)	 (155,	 156),	 autoimmune	 disease	 (e.g.	
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rheumatoid	 arthritis,	 systemic	 lupus	 erythematosus)	 (157),	 infection	 (e.g.	 viral	

hepatitis)	 (158)	 and	 other	 tissue/organ	 specific	 diseases	 including	 those	

affecting	the	kidney.		

1.6.4	MicroRNAs	in	the	Kidney	

MicroRNAs	 have	 been	 shown	 to	 be	 specific	 to	 or	 enriched	 within	 the	

tissues/organs	they	originate	 from.	The	expression	profile	of	microRNAs	in	the	

healthy	kidney	has	been	shown	to	be	very	important	in	the	normal	regulation	of	

the	 kidney,	 in	 processes	 such	 as	 electrolyte	 and	water	 homeostasis	 and	 blood	

pressure	regulation.	MicroRNAs	that	have	been	shown	to	be	unique	and	enriched	

within	the	kidney	(when	compared	with	other	organs/tissues)	include	miR-192,	

-194,	-204,	-215,	and	-216	(159).	Moreover,	the	expression	levels	of	microRNAs	

within	 the	 kidney	 itself	 vary	 according	 to	 the	 type	 of	 cells,	 for	 example	 the	

expression	of	miR-192	 is	 reported	20-fold	higher	 in	 the	 cortex	 compared	with	

the	 medulla	 (160).	 Regulation	 of	 body	 water	 takes	 place	 via	 several	 ‘water	

channels’	called	aquaporins	and	it	is	thought	that	many	microRNAs	regulate	the	

expression	of	these	channels,	such	as	miR-320a	and	its	mRNA	targets	aquaporins	

1	 and	 4	 (161).	 Electrolyte	 homeostasis	 is	 also	 an	 important	 function	 of	 the	

kidney	controlled	by	 ion	channels	and	 transporters,	 and	microRNAs	have	been	

implicated	 in	 this	 context	 with	 miR-200b	 specifically	 shown	 to	 target	 the	

expression	 of	 the	 Na/H	 exchange	 regulatory	 factor-1,	 a	 key	 regulator	 for	 ion	

channel	 apical	 trafficking	 (162).	Another	 important	 role	 of	 the	 kidney	 is	 blood	

pressure	 control	 via	 the	 renin	angiotensin	 system,	 in	which	 it	has	been	 shown	

that	 the	expression	of	renin	within	 the	 juxtaglomerular	apparatus	 is	controlled	

by	microRNAs	(163).		
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1.6.5	MicroRNAs	in	Kidney	disease	

In	 addition	 to	 the	 important	 role	 that	 microRNAs	 play	 in	 normal	 kidney	

physiology	 and	 homeostasis,	 they	 have	 been	 also	 implicated	 in	 various	 kidney	

diseases,	 including	 diabetic	 nephropathy,	 APKD,	 renal	 carcinoma	 and	 AKI	 (3,	

164).	 AKI	 is	 an	 important	 clinical	 syndrome	 with	 many	 causes	 including	 IRI,	

discussed	in	detail	in	section	1.7.6.	The	role	of	microRNAs	in	AKI	with	particular	

effect	on	the	cell	cycle	has	been	published	recently	in	a	review	article	written	by	

us	(3).	

	

Yang	et	al	studied	severe	AKI	and	subsequent	development	of	fibrosis	in	various	

animal	models	including	IRI,	unilateral	ureteral	obstruction	and	aristolochic	acid	

nephrotoxicity.	 They	 demonstrated	 a	 causal	 link	 between	 AKI	 and	 subsequent	

development	 of	 fibrosis	 with	 the	 ‘Gap	 2’/’Mitosis’	 (G2/M)	 cell	 cycle	 arrest	 of	

proximal	tubular	cells	(PTCs).	Modulating	the	degree	of	G2/M	cell	cycle	arrest	of	

PTCs	profoundly	reduced	fibrosis	(165).		

	

The	mechanism	of	aristolochic	acid	induced	G2/M	cell	cycle	arrest	of	PTCs	was	

studied	in	an	in	vitro	model	recently	in	our	laboratory	(166).	Aristolochic	acid,	in	

these	 experiments,	 led	 to	 inhibition	 and	 dissociation	 of	 the	 maturation-

promoting	complex	composed	of	CDK1–cyclin-B1,	preventing	G2	to	M	transition.	

The	 G2/M	 cell	 cycle	 arrest	was	 associated	with	 the	 formation	 of	 numerous	 P-

bodies,	 similar	 to	 that	 observed	 with	 other	 nephrotoxins	 including	 sodium	

arsenite	 (167).	 Microarray	 analysis	 identified	 differential	 expression	 of	

numerous	microRNAs	in	response	to	aristolochic	acid,	 including	miR-192,	miR-

194,	miR-450a	and	miR-542-3p.	The	predominant	effect	on	cell	cycle	appeared	
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to	be	mediated	via	the	induction	of	miR-192	(166).		

	

Several	 microRNAs	 have	 been	 identified	 as	 protective	 in	 the	 context	 of	 AKI	

including	miR-34	(168),	miR-125b	(169)	and	miR-127	(170).	MicroRNA-34	had	a	

protective	 effect	 against	 PTC	 apoptosis	 in	 a	mouse	model	 of	 cisplatin	 induced	

nephrotoxic	 injury,	 but	 the	 precise	 mechanism	 was	 not	 defined	 (168).	

MicroRNA-125b	 was	 identified	 as	 protective	 in	 cisplatin	 induced	 nephrotoxic	

injury	 via	 targeting	 of	 the	 aryl	 hydrocarbon	 receptor	 repressor	 and	 indirect	

induction	of	MDM2	(169).	MicroRNA-127	was	induced	in	a	rat	model	of	IRI	and	

in	vitro	in	PTCs	via	hypoxia	inducible	factor-1α	stabilization.	MicroRNA-127	has	

been	 linked	 to	 regulation	 of	 focal	 adhesion	 complexes	 and	 tight	 junctions,	

highlighted	 as	 important	 to	 PTC	 polarity,	 and	 demonstrated	 to	 target	 kinesin	

family	member	3B,	which	is	involved	in	cell	trafficking	(170).	

 

1.6.6	MicroRNAs	in	Kidney	Transplantation	

1.6.6.1	MicroRNAs	in	Kidney	IRI	

One	 of	 the	major	 causes	 of	 AKI	 in	 kidney	 transplantation	 is	 IRI.	 Upon	 doing	 a	

literature	 search	 with	 the	 MeSH-terms	 “MicroRNA”	 and	 “Kidney	 or	 Renal	

ischaemia	reperfusion	 injury”,	46	studies	 (in	English)	were	 identified,	of	which	

18	were	In	Vivo,	as	summarized	in	Table	1.2.		
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Author	 Animal	
Species	

Type	of	IRI	 Tissue	 Focus	 Findings	 MicroRNAs		
Up	
regulated	

MicroRNAs	
down	
regulated	

Ischaemia	 Reperfusion	
Wei	et	al.		
JASN	2010	
(171)	

Mouse	 30	minutes	
Bilateral	

12h	and	48h	 Kidney	
Cortex	

Dicer	
deletion	in	
proximal	
tubules	

Dicer	deletion	
protective	
against	IRI	

miR-7	
miR-17-3p	
miR-132	
miR-207	
miR-362	
miR-467	
miR-486	
miR-489	
miR-495	
miR-668	
miR-685	
miR-687	
miR-694	

miR-18	
miR-127	
miR-135b	
miR-296	
miR-322	
mir-324-3p	
miR-379	
miR-455-3p	
miR-487b	
miR-491	

Godwin	et	al.	
PNAS	2010	
(32)	

Mouse	 30	minutes	
Unilateral	

1d,	3d,	5d,	
7d,	14d,	21d,	
and	30d	

Kidney	 Immuno-
deficient	
mice	
(lacking	
NK,	B	and	T	
cells)		

MicroRNA	
changes	
lymphocyte	
infiltration	
independent	

miR-20a	
miR-21	
miR-146a	
miR-199a-3p	
miR-214	

miR-187	
miR-192	
miR-194	
miR-805	

Saikumar	et	
al.	
Toxicol	Sci	
2012	(172)	

Rat	 30	minutes	
Bilateral	

24h	 Kidney		
Cortex	

AKI	
biomarkers	

miR-21	and	
miR-155	are	
potential	
useful	
biomarkers	of	
AKI	

miR-21	
miR-155	
miR-18a	

	

Liu	et	al.	
Kidney	Blood	
Press	Res	
2012	(173)	

Mouse	 45	minutes	
Bilateral	

4h,	24h,	48h	 Kidney	 Regulation	
of	renal	
angiogenesi
s	

miR-210	
regulates	
renal	
angiogenesis	
after	IRI	via	
targeting	the	
VEGF	
signalling	
pathway	

miR-210	 	

Wang	et	al.	
PloS	One	
2012	(174)	

Mouse	 40	minutes	
Unilateral	&	
Bilateral	

24h,	36h	 Urine	
Serum	

Biomarkers	
of	AKI	

Urinary	miR-
10a	and	miR-
30d	are	useful	
biomarkers	of	
AKI	

miR-10a	
miR-30d	

	

Xu	et	al.	
Kidney	Int	
2012	(100)	

Mouse	 30	minutes	
Bilateral	

4h,	24h,	4d	 Kidney	 Effect	of	
delayed	IPC	

Delayed	IPC	
protective	
against	IRI	

miR-21	 	

Jia	et	al.	
Anesthesiolo
gy	2013	
(175)	

Mouse	 30	minutes	
Bilateral	

24h	 Kidney	 Xenon	
preconditio
ning	

Xenon	
preconditioni
ng	beneficial	

miR-21	 	

Kaucsar	et	al.	
Nucleic	Acid	
Ther	2013	
(176)	

Mouse	 20minutes		
30	minutes	
Unilateral	
(Contralateral	
nephrectomy)	

24h,	3d,	4d	 Kidney	 Profiling	 miR-21,	miR-
17-5p	and	
miR-106a	are	
activated	
during	
maintenance	
and	recovery	
phase	of	IRI	

miR-17-5	
miR-21	
miR-106	

	

Lorenzen	et	
al.	
JASN	2014	
(177)	
	

Mouse	 27	minutes	
Unilateral	&	
Bilateral	

24h,	168h	 Kidney	 Apoptosis	 miR-24	
promotes	
injury	by	
stimulating	
apoptosis	

miR-24	 	

Bijkerk	et	al.	
JASN	2014	

Mouse	 15	minutes	
Bilateral	

72h,	3	weeks	 Kidney	 Vascular	
integrity	

miR-126	in	
haemato-

miR-126	 	
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(178)	 poeitic	
compartment	
increases	
neovasculariz
ation	

Hu	et	al.	Am	J	
Nephrol	
2014	(179)	

Mouse	 45	minutes	
Bilateral	

24h	 Kidney	 Apoptosis	 miR-21	
suppresses	
expression	of	
PDCD4	and	
exerts	
functional	
protection	

miR-21	 	

Wang	et	al.	
Med	Sci	
Monit	2014	
(180)	

Rat	 45	minutes	
Bilateral	

12h	 Plasma	 Biomarkers	
of	AKI	

miR-10a,	miR-
192,	and	miR-
194	are	
promising	
biomarkers	of	
AKI	

miR-10a	
miR-192	
miR-194	

	

Bellinger	et	
al.	PloS	One	
2014	(181)	

Mouse	 27	minutes	
Bilateral	

3h,	6h,	24h	 Kidney	
Plasma	

Profiling	 5	miRS	
elevated	
during	IRI	

miR-714	
miR-1188	
miR-1897-3p	
miR-877	
miR-1224	

	

Bhatt	et	al.	
JASN	2015	
(182)	

Mouse	 30	minutes	
Bilateral	

12-48h	 Kidney	 Mechanism
s	of	IRI	

miR-687	
induced	by	
HIF-1	targets	
Phosphatase	
and	Tensin	

miR-687	 	

Liang	et	al.		
Mol	Immunol	
2015	(183)	

Mouse	 28	minutes	
Bilateral	

24h	 Kidney	 Effect	of	
miR-26a	on	
renal	IRI	

miR-26a	
attenuates	IRI	
and	modulates		
regulatory	T-
cells	

miR-26a	 	

Wang	et	al.	
Life	Sci	2015	
(184)	

Mouse	 60	minutes	
Bilateral	

6h	 Kidney	 Autophagy	 HIF-1α,	miR-
20a-5p	and	
ATG16l1	
linked	in	
autophagy	
during	IRI	

miR-20a-5p	 	

Liu	et	al.	
Exp	Cell	Res	
2015	(185)	

Rat	 30	minutes	
Bilateral	

24h	 Kidney	 Autophagy	 miR-21	
inhibits	
autophagy	via	
targeting	
Rab11a	

miR-21	 	

Liu	et	al.	
Am	J	Nephrol	
2015	(186)	

Mouse	 35	minutes	
Unilateral	

1d,	3d,	7d	 Kidney	 Autophagy	 miR-34a	
suppresses	
autophagy	in	
IRI	

miR-34a	 	

	

Table	1.2:	Summary	of	Kidney	IRI	microRNA	In	Vivo	studies	

Summary	of	all	18	In	Vivo	studies	investigating	microRNAs	in	Kidney	IRI	

	

The	first	of	these	studies	by	Wei	et	al	(171)	involved	the	use	of	Dicer,	an	essential	

enzyme	that	cleaves	precursor	microRNAs	to	mature	and	functional	microRNAs.	

They	used	a	mouse	model	of	30	minutes	bilateral	renal	 IRI	 in	which	Dicer	was	

knocked	 out	 within	 the	 PTCs.	 They	 reported	 that	 these	 Dicer	 knockout	 mice	
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were	protected	 from	IRI	 (improved	renal	 function	and	reduced	 tissue	damage)	

compared	with	controls.	A	microarray	analysis	of	371	microRNAs	identified	173	

microRNAs,	 which	 were	 detectable	 in	 the	 renal	 cortex	 tissues.	 Of	 these,	 13	

microRNAs	were	up	regulated	and	10	down	regulated	(171).		

	

Godwin	et	al	showed	that	30	minutes	unilateral	renal	IRI	in	a	mouse	has	a	unique	

microRNA	 expression	 profile,	 with	 9	 differentially	 expressed	 microRNAs.	

Moreover,	 this	 expression	 pattern	 did	 not	 change	 in	 immuno-deficient	 mice	

(lacking	 natural	 killer	 (NK)	 cells,	 B	 cells,	 and	 T	 cells)	 signifying	 that	 these	

changes	 in	 microRNA	 expression	 in	 kidney	 IRI	 were	 lymphocyte	 infiltration	

independent	 (32).	Further	mathematical	and	statistical	analysis	using	principal	

component	analyses	by	 the	same	group	revealed	 that	 the	pattern	of	microRNA	

expression	 had	 a	 “distinct	 direction	 based	 on	 the	 trajectory	 of	 the	 first	 three	

principal	 components”	 (187).	 In	vitro	 experiments	 revealed	 that	knockdown	of	

miR-21	in	tubular	epithelial	cells	increased	cell	death	and	apoptosis,	suggesting	a	

protective	 role	 of	 miR-21	 in	 preventing	 tubular	 injury	 (32).	 Saikumar	 et	 al	

showed	that	in	a	rat	model	of	30	minutes	bilateral	IRI	(and	gentamicin-induced	

AKI),	3	microRNAs	were	significantly	up	regulated	and	from	downstream	target	

analysis	identified	their	mRNA	targets	to	include	proteins	involved	in	apoptosis	

and	cell	proliferation	(172).	Lorenzen	et	al	demonstrated	both	in	vitro	and	in	vivo	

that	 miR-24	 caused	 kidney	 injury	 via	 stimulation	 of	 apoptosis,	 and	 that	 its	

inhibition	significantly	improved	survival	and	function	(177).		

	

One	study	investigated	the	role	of	microRNAs	in	renal	angiogenesis	 induced	by	

IRI	in	mice,	and	showed	that	76	microRNAs	were	differentially	expressed	in	IRI	
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compared	with	 sham	(36	up	 regulated	and	40	down	regulated),	of	which	miR-

210	up	regulation	was	confirmed	by	RT-qPCR	with	in	vitro	demonstration	of	its	

role	in	regulation	of	angiogenesis	via	targeting	the	VEGF	pathway	(173).	Another	

study	 showed	 that	 miR-126	 within	 the	 haemopoetic	 compartment	 was	

protective	 against	 renal	 IRI	 via	 preservation	 of	 components	 of	micro	 vascular	

integrity	(178).		

	

Xu	 et	 al	 demonstrated	 that	 a	 15-minute	 localised	 IPC	 attenuated	 renal	 IRI	

induced	4	 days	 later	 in	mice,	 known	 as	 delayed	 IPC.	Moreover	 an	 anti-miR-21	

caused	tubular	cell	apoptosis	by	a	significant	up	regulation	of	pro-apoptotic	gene	

programmed	cell	death	protein	4	(PDCD4),	concluding	that	up	regulation	of	miR-

21	 contributed	 to	 the	 protective	 effects	 of	 this	 delayed	 IPC	 (100).	 The	

importance	 of	 miR-21	 up	 regulation	 in	 preconditioning	 was	 supported	 by	

another	study,	which	investigated	the	effect	of	xenon	preconditioning	in	a	mouse	

model	 of	 renal	 IRI.	 Xenon	 preconditioning	 stimulus	 given	 24	 hours	 before	 the	

onset	 of	 IRI	 significantly	 reduced	 injury	 (morphologically	 and	 functionally)	

through	 up	 regulation	 of	miR-21	 (175).	MiR-21	was	 found	 to	 be	 protective	 in	

another	 model	 of	 murine	 renal	 IRI,	 through	 its	 suppression	 of	 PDCD4	 gene	

expression	and	caspase	signalling	components	(179).		

	

Wang	 et	 al	 showed	 that	 urinary	 miR-10a	 and	 miR-30d	 were	 highly	 sensitive	

markers	of	AKI	in	a	mouse	model	of	renal	IRI	(174).	Kaucsar	et	al	used	a	Luminex	

microRNA	panel	(consisting	of	46	microRNAs)	in	a	mouse	model	of	30	minutes	

renal	IRI,	and	showed	that	5	microRNAs	were	differentially	expressed	in	IRI,	and	
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in	particular	miR-21,	-17-5p,	and	-106	were	all	activated	during	the	maintenance	

and	recovery	phases	of	IRI	(176).		

	

One	 study	 used	 a	 bilateral	 renal	 IRI	 rat	 model	 and	 performed	 a	 microarray	

analysis,	 identifying	 36	 aberrantly	 expressed	microRNAs	 in	 IRI,	 of	which	miR-

10a,	 -192,	 and	 -194	were	detected	 in	plasma	and	deemed	as	potentially	useful	

biomarkers	 of	AKI	 in	 this	 setting	 (180).	 Bellinger	 et	 al	 identified	 5	microRNAs	

within	 the	 kidney	 and	 plasma,	 that	 were	 progressively	 and	 concordantly	

elevated	in	mice	that	underwent	precisely	27	minutes	renal	IRI	(181).		

	

Bhatt	et	al	showed	that	miR-687	was	important	in	renal	IRI,	and	in	the	context	of	

mouse	 renal	 IRI	 its	 induction	 was	 mediated	 via	 HIF-1.	 Further	 in	 vitro	

experiments	 revealed	 a	 signalling	 pathway	 involving	 HIF-1,	 miR-687	 and	

phosphatase	and	tensin	homolog	(PTEN)	(182).	Liang	et	al	used	a	lentivirus-pre-

miR-26a	 vector	 to	 demonstrate	 that	miR-26a	 attenuated	 renal	 IRI	 in	mice	 via	

modulation	 of	 T	 regulatory	 cells	 (183).	 Recent	 studies	 have	 focused	 on	

autophagy	within	renal	IRI,	and	have	identified	miR-20a-5p	(184),	miR-21	(185),	

and	miR-34a	(186)	as	important	in	the	mechanisms	of	autophagy	in	the	context	

of	renal	IRI.	

	

In	summary,	several	microRNAs	have	been	implicated	in	IRI,	with	some	overlap	

between	 studies.	 In	 particular	 miR-21	 seems	 to	 be	 functionally	 important	 in	

kidney	IRI,	with	its	particular	focus	on	apoptosis.	
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1.6.6.2	MicroRNAs	in	Acute	Rejection	

Monitoring	allograft	function	post-operatively	is	important,	since	failure	to	treat	

a	potentially	reversible	and	treatable	cause	such	as	acute	rejection	can	result	in	

graft	 loss.	Several	 studies	have	evaluated	 the	microRNA	signature	within	acute	

and	chronic	rejection.		

	

Sui	et	al	(188)	identified	unique	expression	patterns	of	20	different	microRNAs	

in	acute	rejection	biopsies	(8	up-regulated	and	12	down-regulated),	but	this	was	

limited	 due	 to	 a	 total	 number	 of	 only	 three	 patients	 with	 acute	 rejection.	

Anglicheau	et	al	(189)	identified	several	miRNAs	associated	with	acute	rejection,	

and	that	the	levels	of	miR-142-5p,	miR-155,	miR-233,	miR-10b,	miR-30a-3p	and	

let-7c	 were	 highly	 sensitive	 and	 predictive	 of	 rejection	 (>90%	 sensitivity	 and	

specificity).	 Lorenzen	 et	 al	 (190)	 analysed	 urinary	 miRNAs	 as	 non-invasive	

biomarkers	for	predicting	rejection	and	reported	that	miR-10a	was	up	regulated,	

with	 miR-10b	 and	 miR-210	 down-regulated,	 in	 patients	 with	 acute	 rejection.	

Moreover,	 the	 expression	 patterns	 of	 miR-210	 were	 able	 to	 discriminate	

between	 non-treated	 and	 treated	 acute	 rejection	 (190).	 Wilflingseder	 et	 al	

demonstrated	 a	 unique	 microRNA	 expression	 profile	 discriminating	 between	

acute	cellular	rejection,	antibody	mediated	rejection,	DGF	and	controls	with	no	

graft	injury	(191).		

	

Danger	 et	 al	 investigated	 the	 microRNA	 expression	 profile	 of	 patients	 with	

chronic	 antibody	mediated	 rejection	 (CAMR)	 compared	with	 those	with	 stable	

graft	 function,	 and	 found	 that	 10	 microRNAs	 were	 associated	 with	 CAMR,	 in	

particular	miR-142-5p	(192).	Another	study	reported	elevated	expression	levels	
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of	miR-142-5p,	miR-142-3p,	miR-155,	and	miR-223	in	biopsies	of	patients	with	

acute	T-cell	mediated	rejection	compared	with	normal	biopsies.	Moreover,	they	

showed	that	miR-142-3p	and	miR-223	expression	levels	within	peripheral	blood	

mononuclear	 cells	 were	 discriminative	 between	 patients	 with	 acute	 cellular	

rejection	and	those	with	no	rejection	(193).	Tao	et	al	investigated	the	microRNA	

expression	 profile	 within	 serum	 of	 patients	with	 rejection	 and	 concluded	 that	

miR-99a	 was	 predictive	 of	 rejection	 (194).	 A	 recent	 study	 reported	 that	 the	

combined	measurement	of	5	microRNAs	(miR-15b,	-16,	-103a,	-106a,	and	-107)	

in	blood	was	able	to	discriminate	between	patients	with	severe	T-cell	mediated	

vascular	rejection	and	those	with	stable	grafts	(195).		

	

In	 summary,	 several	 studies	 have	 shown	 differential	 expression	 of	 different	

microRNAs	 implicated	 in	 rejection	 of	 the	 kidney	 allograft,	with	 the	 differences	

reflective	of	the	variability	of	patients	and	techniques	used	for	profiling.	

1.6.6.3	MicroRNAs	in	Chronic	allograft	dysfunction	and	Fibrosis	

Predicting	long-term	function	or	diagnosing	chronic	allograft	dysfunction	(CAD)	

with	 interstitial	 fibrosis	 (IF)	 is	 important	 in	 the	 management	 of	 a	 kidney	

transplant	patient.	 Several	 studies	have	 looked	at	microRNAs	as	biomarkers	of	

CAD	and	IF.	The	first	of	these	by	Scian	et	al	confirmed	the	differential	expression	

of	5	microRNAs	from	tissue	biopsies	of	patients	with	CAD/IF	compared	to	those	

with	normal	allografts.	They	also	confirmed	differential	expression	of	3	of	these	

microRNAs	 (miR-142-3p,	 miR-204,	 and	miR-211)	 within	 urine	 samples	 (196).	

The	 same	 group	 performed	 a	much	 larger	 study	 evaluating	 191	 samples	 from	

125	 kidney	 transplant	 patients	 identifying	 22	 differentially	 expressed	



	

	 	 	 	 52	

microRNAs	 in	 patients	 with	 CAD/IF	 (197).	 Another	 study	 also	 identified	 a	

differential	 expression	 of	 microRNAs	 between	 patients	 with	 tubulointerstitial	

fibrosis,	including	up	regulation	of	miR-21	and	miR-142-3p,	and	down	regulation	

of	 miR-30b	 and	 mIR-30c	 (198).	 Increased	 miR-21	 has	 been	 shown	 to	 be	

important	in	kidney	fibrosis	including	allograft	fibrosis	(199,	200).	
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1.7	Summary	and	Aims	of	Thesis	

In	 summary,	 IRI	 is	 a	 complex	 pathological	 process	 that	 involves	 multiple	

interactions	between	 the	endothelium,	 components	of	 the	 immune	system,	 cell	

death	 programs,	 and	 genetic	 reprogramming.	 IRI	 has	 serious	 clinical	

consequences	 for	 kidney	 transplantation	 and	methods	 to	 reduce	 IRI	 are	 a	 hot	

topic	 of	 research.	 One	 such	 method,	 IPC,	 has	 shown	 variable	 benefit	 but	 its	

underlying	mechanisms	 are	 poorly	 understood.	MicroRNAs	 are	 essential	 post-

transcriptional	 regulators	 of	 gene	 expression	 that	 are	 involved	 in	 multiple	

disease	processes	including	IRI.	With	this	background	in	mind,	the	objectives	of	

my	thesis	were:		

1. To	test	the	efficacy	of	IPC	in	IRI	protection	In	Vivo	

2. To	study	the	potential	role	of	microRNAs	in	IPC	

3. To	investigate	the	utility	of	microRNAs	as	IRI	biomarkers	in	the	context	of	

kidney	transplantation	
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Chapter	2	-	Methodology	
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2.1	Animal	Experiments	

In	Vivo	studies	have	been	extensively	used	to	investigate	the	mechanisms	of	IRI.	

Various	different	animal	models	have	been	well	documented	in	the	 literature.	 I	

used	 a	well-established	 animal	model	 of	 IRI,	which	 had	 also	 been	 successfully	

used	by	a	recent	MD	student,	Mr	Prabhu	Nesargikar.		

2.1.1	Lewis	Rats	

Adult	(8	to	12	week	old)	male	Lewis	rats	weighing	180	to	220	g	were	used	in	this	

project.	They	were	inbred	and	supplied	by	Harlan	Laboratories	Ltd.	(Derby,	UK).	

Lewis	rats	possess	various	features	that	make	them	ideal	for	this	work.	They	are	

well-established	 in	 vivo	 models	 for	 biological	 studies,	 including	 the	 studies	

carried	out	by	a	 recent	MD	student.	Lewis	rats	are	 ‘commercially viable’ for such 

projects and protocols for maintaining their lifestyle requirements are well established 

and easy to meet by the Joint Biological Services Unit (JBIOS) staff at the Heath 

campus, Cardiff University. Lewis rats are also very friendly animals, inquisitive in 

nature, easy to handle, and quite playful. These characteristics are a useful aid in 

determining their state of health pre and post-operatively. 

2.1.2	Preoperative	procedure	

The	 rats	 were	 delivered	 7	 days	 before	 the	 experiments,	 allowing	 for	

acclimatisation	 to	 their	new	surroundings.	Upon	arrival,	 the	rats	were	checked	

by	the	JBIOS	staff	(Heath	Campus)	and	housed	in	the	conventional	holding	room	

in	cages	(maximum	4	rats	per	cage).	The	rats	were	provided	with	drinking	water,	

rat	chow	and	sunflower	seeds.	Twenty-four	hours	before	surgery,	the	rats	were	

housed	 in	 individual	 cages	 and	 provided	 with	 analgesia	 (200μg	 of	
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buprenorphine	 crushed	 and	 dissolved	 in	 500ml	 of	 drinking	 water),	 as	

recommended	 by	 the	 Named	 Animal	 Care	 and	 Welfare	 Officer	 (NAWCO).	

Buprenorphine	 was	 recommended	 as	 it	 had	 been	 shown	 to	 provide	 effective	

analgesia	 with	 minimal	 side	 effects	 (201,	 202).	 They	 continued	 to	 be	 housed	

individually	with	access	 to	analgesia	 (within	 their	drinking	water)	until	kidney	

retrieval	at	48	hours	post	surgery.	

2.1.3	Operative	procedure	

Housing,	handling,	and	experimental	procedures	were	carried	out	in	accordance	

with	the	local	institutional	policies	and	procedures	of	JBIOS at Cardiff University,	

licensed	 by	 the	UK	Home	Office	 under	 the	Animals	 (Scientific	 Procedures)	 Act	

(1986).	The	study	was	carried	out	under	 the	Home	Office	Project	Licences	PPL	

30/2506	 (Chapter	 3	 experiments)	 and	 PPL	 30/3098	 (Chapter	 4	 experiments),	

held	by	Mr	R	Chavez,	Supervisor	for	this	project.	He	and	I	both	also	held	personal	

licences	 for	 this	 project.	 The	 methodology	 to	 carry	 out	 the	 procedures	 was	

adapted	from	previous	literature,	experience	of	the	supervisor	(Mr	Chavez),	and	

the	previous	MD	student.		

2.1.3.1	Operative	Theatre	and	Setup	

The	operative	theatre	setup	was	based	on	advice	received	from	the	NAWCO	with	

input	 from	 the	 Veterinary	 Officer	 and	 the	 Home	 Office	 Laboratory	 Animal	

Science	Association	(LASA)	guidelines.	The	emphasis	was	on	aseptic	 technique.	

Surgery	was	 carried	out	 in	 the	operative	procedures	 room,	 located	next	 to	 the	

conventional	 holding	 room.	 The	 operating	 surgeons	 (myself	 and	 Mr	 Chavez)	

used	 sterile	 gloves	 and	 gowns.	 The	 rat	 skin	 was	 shaved	 using	 a	 hair	 clipper	
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(Contura	 Chrome	 AC	 220-240V,	 UK)	 followed	 by	 clean	 scrub	 of	 the	 skin	 with	

chlorhexidine	 spray	prior	 to	 the	 skin	 incision.	An	overhead	 lamp	was	used	 for	

lighting	 and	providing	 adequate	heat	 to	maintain	body	 temperature	of	 the	 rat.	

The	anaesthetic	 induction	chamber,	attached	to	 the	ventilator	machine,	was	on	

the	main	 operating	 table,	 reducing	 transfer	 times	 for	 the	 rats	 to	 the	 operating	

area.	The	operating	board	was	made	of	a	corkboard	covered	 in	a	sterile	drape,	

enabling	 the	 use	 of	 pins	 attached	 to	 rubber	 bands	 for	 retraction	 of	 the	 limbs.	

Standard	 surgical	 instruments	 (including	 a	 10’	 disposable	 scalpel,	 mcindoe	

scissors,	non-toothed	and	toothed	forceps	and	needle	holder)	were	used	for	the	

procedure,	 in	 addition	 to	 micro	 vascular	 clips	 to	 clamp	 the	 renal	 pedicles.		

Normal	saline	was	used	to	keep	the	peritoneal	cavity	hydrated.	Vicryl	sutures	(4-

0	 size)	were	used	 to	 suture	 the	 abdominal	 cavity	 and	 skin	 close.	 Prior	 to	 each	

procedure,	 the	 instruments	 were	 deep	 cleaned	 with	 standard	 foam	 soap	 and	

water	followed	by	autoclave	for	optimum	sterility.	

2.1.3.2	Anaesthesia	

Animals	were	anesthetised	with	isoflurane	(IVAX	Pharmaceuticals,	UK)	delivered	

via	 oxygen.	 Induction	 anaesthesia	was	 administered	within	 the	 induction	 glass	

chamber	with	5%	isoflurane	delivered	via	2	l/min	of	oxygen	(Figure 2.1(b)).	This	

allowed	 the	 rat	 to	 achieve	 a	 state	 of	 deep	 anaesthesia	within	3-5mins.	 The	 rat	

was	then	moved	from	the	induction	chamber	to	the	operating	board,	where	the	

mouth	and	nose	of	the	rat	were	placed	in	a	conical	rodent	facemask	designed	to	

deliver	 the	 gas	mixture	 (Figure 2.1(c)).	 Maintenance	 anaesthesia	 was	 delivered	

via	this	facemask	using	2%	of	isoflurane	via	1-2	l/min	of	oxygen,	with	alteration	

of	the	rate	as	required	according	to	the	heart	rate,	breathing	pattern	and	general	
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appearance	of	the	rat.	At	the	end	of	the	procedure,	this	anaesthesia	delivery	was	

turned	off	and	the	rat	was	moved	to	its	cage	to	recover.	

2.1.3.3	Operative	technique	(Chapter	3	experiments)	

Following	 anaesthesia,	 the	 rat	 was	 weighed	 and	 the	 rat	 skin	 cleaned	 with	

chlorhexidine	spray	and	shaved	with	 the	electric	razor.	The	rat	was	positioned	

on	the	operating	board	and	limbs	retracted	using	rubber	bands	and	pins	secured	

on	 the	 operating	 board.	 A	 midline	 laparotomy	 incision	 was	 made	 using	 a	 10’	

scalpel	and	the	rectus	sheath	and	peritoneum	opened	with	mcindoe	scissors.	The	

abdominal	wall	was	 then	 retracted	using	paper	 clips	designed	 as	 retractors	 as	

seen	 in	 Figure	 2.1.	 The	 bowel	 was	 moved	 to	 the	 right	 side	 and	 the	 left	 renal	

pedicle	was	identified	and	clamped	for	45mins	using	a	vascular	clip	(IRI	group).	

The	 kidney	 was	 visually	 assessed	 for	 both	 ischemia	 upon	 clamping	 and	

reperfusion	 upon	 release	 of	 the	 clamp.	 The	 kidneys	 are	 usually	 pink	 in	 colour	

and	 upon	 clamping	 they	 become	 purple/dark	 brown,	 confirming	 ischaemia.	

Following	 the	 clamp	 the	 wound	 was	 covered	 with	 saline	 soaked	 gauze.	 The	

kidney	 was	 frequently	 observed	 for	 its	 colour.	 The	 rat	 was	 monitored	

throughout,	 with	 particular	 emphasis	 on	 its	 heart	 rate,	 breathing	 pattern,	 and	

colour,	allowing	for	adjustment	of	the	anaesthesia	as	needed.	Following	45mins	

of	ischaemia,	the	vascular	clip	was	removed	to	allow	reperfusion	(confirmed	by	

the	 return	 of	 the	 kidney’s	 colour	 to	 pink).	 The	 laparotomy	 wound	 was	 then	

closed	with	a	continuous	4-0	vicryl	suture	to	the	rectus	sheath/muscle	layer	and	

the	skin	was	closed	with	a	continuous	4-0	vicryl	suture	with	the	knots	carefully	

buried	 so	 as	 to	 avoid	 any	 biting/chewing	 by	 the	 rat	 post-operatively	 (Figure 

2.1(i)).	The	rat	was	then	transferred	to	its	cage,	which	was	placed	over	a	heating	
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pad,	to	allow	recovery.	Once	it	was	mobile	and	comfortable,	the	cage	was	moved	

back	to	the	conventional	holding	room.	

	

Rats	 in	 the	 Sham	 group	 underwent	 the	 same	 operation	 without	 renal	 pedicle	

clamping.	Animals	 in	 the	 IPC/IRI	group	underwent	15mins	of	 left	renal	pedicle	

clamping	followed	by	20mins	of	reperfusion	before	the	IRI.		

	

Post-operatively,	 the	 rat	was	 checked	at	 the	end	of	 the	day,	 and	on	2	 separate	

occasions	the	next	day.		The	wound	was	reviewed	to	look	for	and	document	any	

signs	of	infection	or	dehiscence.	Adequate	breathing	pattern,	general	movement	

at	ease	(without	discomfort	or	limping)	within	the	cage,	urine	and	normal	solid	

faeces	production,	 and	general	 appearance	of	 the	 skin	and	 its	 texture,	were	all	

signs	of	satisfactory	post-operative	recovery	and	behaviour.	All	of	 these	checks	

were	documented	carefully	in	the	notes.	

	

At	 48h,	 the	 rat	 underwent	 ‘terminal’	 anaesthesia.	 This	 involved	 the	 same	

induction	 and	 maintenance,	 followed	 by	 exsanguination.	 Exsanguination	 was	

performed	as	 follows.	The	 laparotomy	was	 re-opened	and	extended	 superiorly	

towards	the	sternum.	The	sternum	was	retracted	with	a	clip	to	allow	good	access	

to	the	diaphragm.	The	diaphragm	was	opened	and	the	heart	was	resected	with	

the	 scissors	 to	 allow	 exsanguination.	 Following	 this,	 the	 left	 kidney	 was	

retrieved.		

2.1.3.4	Operative	technique	(Chapter	4	experiments)	

Following	 anaesthesia,	 a	midline	 laparotomy	 incision	was	made,	 and	 the	 renal	
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pedicles	 were	 identified.	 Both	 renal	 pedicles	 were	 identified	 and	 clamped	 for	

45mins	using	vascular	clips	(IRI	group)	(Figure 2.1(d)).	The	kidneys	were	visually	

assessed	 for	both	 ischemia	 (change	of	 colour	 to	purple)	upon	clamping	 (Figure 

2.1(e)-(f)) and	 reperfusion	 (return	of	 colour	 to	pink)	upon	 release	of	 the	 clamp	

(Figure 2.1(g)-(h)).	 Rats	 in	 the	 Sham	 group	 underwent	 the	 same	 operation	

without	renal	pedicle	clamping.	During	the	procedure,	the	abdominal	cavity	was	

covered	with	saline-soaked	gauze.	The	kidneys	were	retrieved	48h	after	terminal	

anaesthesia.	 Terminal	 anaesthesia	 involved	 same	 induction	 and	 maintenance,	

followed	by	exsanguination	as	described	before,	prior	to	retrieval	of	the	kidneys.		

Direct	 Kill	 animals	 involved	 terminal	 anaesthesia,	 midline	 laparotomy,	

exsanguination	and	retrieval	of	kidneys.		

	

Experiments	were	 also	 performed	 on	 6	 different	 groups	 of	 IPC/IRI	 animals:	 3	

were	continuous	and	3	pulsatile.	The	3	continuous	IPC	regimes	that	were	tested	

were	 as	 follows:	 (a)	 10mins	 of	 ischaemia	 followed	 by	 20mins	 of	 reperfusion	

(IPC-C	10-20)	(n=4);	(b)	15mins	of	ischaemia	followed	by	20mins	of	reperfusion	

(IPC-C	 15-20)	 (n=4);	 and	 (c)	 20mins	 of	 ischaemia	 followed	 by	 20mins	 of	

reperfusion	 (IPC-C	 20-20)	 (n=4)	 (Figure	 2.2).	 The	 3	 pulsatile	 IPC	 regimes	 that	

were	 tested	 were	 as	 follows:	 (a)	 3	 cycles	 of	 2mins	 ischaemia	 and	 5mins	

reperfusion	 (IPC-P	 2-5)	 (n=4);	 (b)	 3	 cycles	 of	 5mins	 ischaemia	 and	 5mins	

reperfusion	(IPC-P	5-5)	(n=4);	and	(c)	3	cycles	of	10mins	 ischaemia	and	5mins	

reperfusion	(IPC-P	10-5)	(n=4)	(Figure	2.3).	One	of	these	regimes	with	the	most	

favourable	results	(in	terms	of	protection	against	injury)	was	chosen	(IPC-P	2-5),	

and	 a	 further	 4	 animals	 underwent	 surgery	 to	 complete	 n	 of	 8.	 Each	 of	 these	

regimes	was	performed	prior	to	IRI.	In	addition	to	this,	an	extra	group	of	animals	
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underwent	 IPC	 alone	 (3	 cycles	 of	 2mins	 ischaemia	 and	 5mins	 reperfusion)	

without	any	 subsequent	 IRI	 (n=8).	Post-operative	 checks	were	 the	 same	as	 for	

Chapter	3	experiments	as	described	in	section	2.1.3.3.		

	

Figure 2.1: Photographic representation of the animal model of bilateral IRI 

(a) Adult male Lewis rats (8-12 weeks old, approximately 200g in weight) were anaesthetised with 

isoflurane in a glass induction chamber (b) and transferred to the operating table for maintenance 

anaesthesia via a conical facemask (c). A midline laparotomy was performed and access gained to the 

peritoneal cavity, both kidneys were identified and the renal pedicles clamped with vascular clips (d). 

Upon clamping the kidneys became purple in colour ((e) and (f) representing clamped right and left 
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kidney respectively) confirming ischaemia. After 45mins of ischaemia the clamps were removed to 

allow reperfusion. The kidneys’ colour returned to pink upon release of the clamp ((g) and (h) 

representing reperfused right and left kidney respectively). Following this, the rectus sheath/muscle 

layer and the skin were closed in 2 layers with 4-0 vicryl with the knot buried so as to prevent any	

biting/chewing	by	the	rat	post-operatively	(i). 

	

	

Figure	2.2:	Continuous	IPC	regimes	

Continuous	IPC	regimes	as	performed	for	Chapter	4	experiments	
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Figure	2.3:	Pulsatile	IPC	regimes	

Pulsatile	IPC	regimes	as	performed	for	Chapter	4	experiments	

	

2.1.4	Blood	collection	

Up	to	500ul	of	blood	was	collected	at	2	time	points	from	the	animals	in	Chapter	4	

experiments:	 pre-operatively	 at	 0h	 (from	 the	 tail	 tip),	 and	 at	 time	 of	 retrieval	

(48h)	 (from	 the	 heart	 or	 central	 abdominal	 blood	 vessels).	 Pre-operatively	 a	



	

	 	 	 	 64	

small	‘incision’	was	made	on	the	rat-tail	and	blood	‘milked’	out	from	it.	At	48h	a	

syringe	 and	 needle	 was	 used	 to	 withdraw	 blood	 from	 the	 heart	 or	 central	

abdominal	vessels.	Blood	was	collected	in	small	eppendorfs	and	delivered	to	the	

biochemistry	lab	immediately	for	serum	creatinine	analysis.	 	Blood	volume	was	

calculated	according	to	the	guidelines	published	by	The	National	Centre	for	the	

Replacement,	Refinement	and	Reduction	of	Animals	in	Research	(NC3RS)	(203).		

On	 average,	 rats	 have	 64ml	 of	 blood	 per	 kg	 of	 bodyweight,	 and	 it	 is	

recommended	 that	maximum	blood	volume	 that	 can	be	 taken	 is	<10%	of	 total	

blood	volume	on	any	single	occasion	and	<15%	total	blood	volume	 in	28	days.		

Therefore,	a	rat	that	weighs	200g	would	have	a	total	blood	volume	of	12.8	ml	(64	

x	0.2	=	12.8),	 allowing	 for	a	maximum	of	1.28ml	 to	be	 taken	at	any	given	 time	

point.	Therefore	500	ul	(=0.5ml)	was	far	below	the	maximum	volume	that	could	

be	taken.		

2.1.5	Kidney	retrieval	and	storage	

Kidneys	 were	 retrieved	 at	 48h.	 Upon	 retrieval,	 each	 kidney	 was	 cut	 using	 a	

scalpel	 into	 3	 pieces:	 1	 half	 and	 2	 quarters.	 The	 ‘half’	 kidney	 was	 stored	 in	

formalin	and	sent	to	histopathology	laboratory	for	paraffin	wax	embedding	and	

sectioning,	 before	 being	 stained	 with	 haematoxylin	 and	 eosin.	 One	 ‘quarter’	

kidney	 was	 placed	 immediately	 into	 an	 eppendorf	 of	 RNA	 later	 solution	 and	

stored	at	-80°C	for	RNA	extraction	at	a	later	date.	One	‘quarter’	kidney	was	‘snap’	

frozen	 in	 liquid	 nitrogen	 and	 stored	within	 an	 eppendorf	 at	 -80°C	 for	 protein	

analysis	at	a	later	date.		
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2.1.6	Disposal	of	animal	

Following	 terminal	 anaesthesia,	 exsanguination,	 and	 retrieval	 of	 kidneys,	 the	

animal	 carcasses	 were	 placed	 in	 a	 clinical	 waste	 bag	 and	 discarded	 into	 the	

animal	carcass	freezer.		

2.1.7	Identification	coding	protocol	and	logbook	

A	unique	 coding	protocol	was	employed	 to	distinguish	between	 the	animals.	A	

logbook	was	kept	of	all	the	animal	experiments	carried	out,	with	full	pre-,	intra-,	

and	 post-operative	 details	 recorded.	 Coding	 protocol	 utilised	 the	 date	 of	 the	

experiment	followed	by	a	number	signifying	the	order	of	animal	experiments	on	

that	 day,	 for	 example,	 the	 first	 animal	 on	 5th	 January	 2015	would	 be	 coded	 as	

0501201501,	 and	 the	3rd	would	be	 coded	as	0501201503.	A	unique	mark	was	

also	 placed	 on	 the	 tail	 of	 each	 rat	 using	 a	 permanent	 marker	 pen	 for	

identification	purposes	during	the	48h	observation	period.	In	addition	to	this,	a	

card	was	attached	to	each	cage	showing	the	rat	 identification	details,	operative	

procedure	details,	project	licence	number,	my	personal	licence	number,	and	my	

mobile	phone	number	(in	case	of	any	emergency).		

	

Each	rat	kidney	or	blood	sample	was	also	labelled,	with	chapter	3	rats	labelled	as	

101	 onwards,	 and	 chapter	 4	 rats	 labelled	 as	 201	 onwards.	 For	 the	 kidney	

samples,	a	prefix	of	R	or	L	(R	for	Right	kidney,	L	for	Left	kidney)	was	used.	These	

codes	were	subsequently	used	for	H&E,	proteomics	and	RNA	studies.	
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2.2	Histology	

2.2.1	Haematoxylin	&	Eosin	staining	

Rat	 kidney	 tissue	 was	 embedded	 in	 paraffin,	 sectioned,	 and	 stained	 with	

haematoxylin	 and	 eosin.	 This	 was	 done	 by	 the	 department	 of	 pathology	 at	

University	 Hospital	 of	 Wales	 (Cardiff)	 according	 to	 their	 standard	 operating	

procedure.	

2.2.2	Assessment	of	damage	–	The	EGTI	Histology	damage	score	

All	 H&E	 slides	were	 scored	 under	 blinded	 assessment	 by	 one	 histopathologist	

(Dr	 Gilda	 Pino-Chavez)	 according	 to	 the	 system	 detailed	 in	 Table	 2.1.	 This	

comprehensive	scoring	system	has	been	adapted	specifically	for	animal	research	

on	 kidney	 tissue	 in	 the	 context	 of	 injury	 and	 provides	 a	 quantitative	

measurement	of	the	histological	damage	of	the	kidney.	The	widely	adopted	‘gold	

standard’	 scoring	 system	 for	 reporting	 histological	 damage	 in	 kidney	 injury	 is	

the	 Jablonski	 scoring	 system	 (204).	 This	 simple	 system	 is	 designed	 to	 give	 a	

rapid	and	objective	assessment	of	kidney	injury.	In	reality,	however,	it	provides	a	

limited	score	documenting	predominantly	the	degree	of	necrosis	within	tubular	

cells	 only,	 ranging	 from	 0	 signifying	 ‘no	 damage’,	 to	 4	 ‘necrosis	 affecting	 all	 3	

segments	of	the	proximal	convoluted	tubule’.	It	does	not	provide	an	assessment	

of	 the	 damage	 seen	within	 the	 other	 cellular	 components,	 such	 as	 endothelial	

and	 glomerular	 cells.	 The	 Jablonski	 scoring	 system	 was	 originally	 described	

following	 a	 prolonged	 recovery	 period	 after	 ischaemic	 injury,	 and	 includes	

features	 of	 recovery	 (e.g.	 tubular	 cell	mitoses)	 that	may	 not	 be	 evident	 in	 the	

typical	 recovery	 periods	 used	 experimentally,	 such	 as	 in	 these	 experiments.	
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Therefore	 a	more	 detailed	 scoring	 system	was	 designed	 that	 included	 damage	

seen	within	the	renal	cortex	to	endothelial	(E),	glomerular	(G),	tubular	(T),	and	

interstitial	(I)	cellular	compartments.	This	scoring	system	was	devised	based	on	

literature	 evidence	 (35,	 205-209)	 and	 has	 been	 validated	 in	 chapter	 4	

experiments,	as	described	in	section	4.2.1	and	Figure	4.1.	

	

Table	2.1:	The	EGTI	Histology	scoring	system	

The	EGTI	histology	soring	system	has	been	designed	to	provide	a	comprehensive	assessment	of	

the	 degree	 of	 architectural	 damage	 seen	 within	 the	 kidney	 cortex,	 with	 a	 cumulative	 score	
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ranging	from	0	to	14.	Median	scores	were	used	for	statistical	analyses.	

	

2.2.3	Laser	capture	micro	dissection	of	kidney	tissue	samples		

For	 chapter	 4	 experiments,	 12	 paraffin	 embedded	 kidney	 blocks	 (Sham,	 IRI,	

IPC/IRI,	 and	 IPC	 alone	 groups	 each	with	 n=3)	were	 used	 to	 isolate	 glomeruli,	

proximal	convoluted	tubuli,	distal	convoluted	tubuli,	and	vessel	tissue	(including	

endothelial	 cells),	 using	 the	 Arcturus	 Pixcell	 IIe	 infrared	 laser	 enabled	 laser	

capture	micro	 dissection	 (LCM)	 system	 (Applied	Biosystems).	 For	 each	 kidney	

block,	 two	 6-μm	 sections	 were	 obtained.	 These	 were	 prepared	 by	 Mr	 Dilwyn	

Havard	 (senior	 pathology	 technician),	 at	 the	 department	 of	 pathology	

(University	Hospital	of	Wales,	Cardiff).	The	tissues	were	cut,	placed	in	the	middle	

third	of	an	uncharged,	uncoated	glass	slide	(VFM	White	coat	slides	CellPath	Ltd)	

and	 stained	 according	 to	 the	 method	 described	 by	 Espina	 et	 al	 (210).	 Using	

infrared	laser,	the	target	tissue	was	bonded	to	a	polymer	membrane	located	on	a	

cap	(Arcturus	®	Capsure	®	Macro	LCM	caps	–	Applied	Biosystems)	placed	onto	

the	 slide	 which	 when	 lifted	 removed	 the	 highlighted/selected	 tissue.	 To	

differentiate	 between	 the	 different	 tissue	 types	 (in	 particular	 to	 differentiate	

between	 proximal	 and	 distal	 convoluted	 tubuli),	 these	 experiments	were	 done	

with	 the	 help	 and	 expert	 guidance	 of	 Dr	 Gilda	 Pino-Chavez,	 an	 experienced	

histopathologist.	
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2.3	Patient	Urine	samples	

2.3.1	Wales	Kidney	Research	Tissue	Bank	consent	

All	 patients	 recruited	 into	 the	 Chapter	 5	 experiments	were	 consented	 into	 the	

Wales	 Kidney	 Research	 Tissue	 Bank	 (WKRTB)	 prior	 to	 their	 transplantation	

using	 the	 WKRTB	 consent	 form.	 Upon	 admission	 for	 their	 kidney	

transplantation,	 patients	 were	 given	 information	 sheets	 explaining	 the	 role	 of	

WKRTB	and	the	purpose	of	 the	study	prior	 to	a	written	 informed	consent.	The	

WKRTB	consent	form	used	can	be	found	in	Appendix	1.		

2.3.2	Collection	of	urine	samples	

The	urine	samples	were	then	collected	from	new	kidney	transplant	patients	who	

had	provided	written	 informed	consent	 into	 the	WKRTB	 from	day	1	up	 to	and	

including	day	7.	The	samples	were	collected	in	a	20ml	sterile	universal	container.	

Following	a	kidney	transplant,	most	patients	had	a	urinary	catheter	in	situ	for	at	

least	 5	 days	 post-operatively,	 and	 therefore	 samples	 were	 collected	 from	 this	

using	a	sterile	technique.	After	the	catheter	was	removed,	patients	were	asked	to	

provide	mid-stream	samples	 into	the	universal	containers.	 In	patients	who	had	

passed	 very	 little	 urine,	 a	 smaller	 volume	 was	 collected	 from	 the	 urinary	

catheter.	 In	 total	33	patients	were	 recruited	 into	 the	Chapter	5	 study.	 Samples	

were	also	collected	from	10	healthy	volunteers,	as	baseline	controls.	

2.3.3	Processing	and	storage	

Upon	 collection	 of	 the	 urine	 samples	 in	 Universal	 containers,	 they	 were	

centrifuged	at	2000g	for	10mins	at	4°C	in	order	to	remove	any	living	cells.	The	
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supernatant	was	then	divided	into	3	aliquots	of	350μl	each	and	stored	at	 -80°C	

until	 RNA	 extraction.	 The	 remainder	 of	 the	 urine	was	 stored	 in	 a	 fresh	 sterile	

universal	container	and	stored	at	-80°C.	

2.3.4	Clinical	Data	Collection	

Demographic	 data	 were	 collected	 on	 the	 donors	 (age,	 gender,	 type	 of	 donor	

(living,	DBD	or	DCD),	cause	of	death	for	deceased	donors,	cold	ischaemic	times)	

and	 recipients	 (age,	 gender,	 cause	 of	 renal	 failure,	 dialysis	 status),	 Human	

Leucocyte	 Antigen	 (HLA)	 mismatch,	 duration	 of	 hospital	 stay,	 and	 estimated	

glomerular	 filtration	 rate	 (eGFR)	 at	 3,	 6,	 9,	 12	 and	 24	months.	 This	 data	 was	

collected	 from	 clinical	 patient	 databases	 (‘Vital	 Data’	 and	 Clinical	 Portal),	

hospital	 admission	 notes,	 operation	 notes,	 observation	 and	 urine	 charts,	 and	

Human	Tissue	Authority	(HTA)	retrieval	forms.		

	 	



	

	 	 	 	 71	

2.4	RNA	Analysis	

All	general	reagents	were	purchased	from	Sigma-Aldrich	Corp.	(Poole,	UK),	Life	

Technologies,	 Inc.	 (Paisley,	 UK),	 or	 New	 England	 Biolabs	 (Ipswich,	 MA,	 USA),	

unless	 otherwise	 stated.	 Oligonucleotides	 were	 purchased	 from	 Life	

Technologies.	RNA	was	extracted	from	whole	kidney	tissue,	LCM	tissue	and	urine	

samples,	and	then	analysed	with	RT-qPCR	for	microRNAs	or	mRNAs.	

	

2.4.1	RNA	Extraction	

2.4.1.1	Tissue	RNA	extraction	

Whole	kidney	tissue	was	homogenised	following	the	addition	of	TRI-zol	reagent	

(Life	 Technologies),	 with	 1ml	 of	 TRI-zol	 reagent	 per	 50-100mg	 of	 tissue.	

Following	 homogenisation,	 the	 solution	 was	 left	 for	 5mins	 to	 allow	 total	 cell	

lysis.		1ml	of	the	resulting	solution	was	used	for	the	next	step,	with	the	rest	of	the	

solution	stored	at	-80°C	for	use	in	the	future.	0.2ml	of	chloroform	was	added	to	

1ml	of	homogenised	solution.	After	mixing	by	inversion,	samples	were	incubated	

for	3mins	at	room	temperature,	then	centrifuged	at	12000rpm	for	15mins	at	4°C.	

The	colourless	upper	aqueous	phase	(containing	the	RNA)	was	transferred	to	a	

clean	micro	centrifuge	 tube	and	the	 lower	phase	(containing	DNA	and	protein)	

discarded.	RNA	precipitation	was	achieved	by	addition	of	0.5ml	 isopropanol	 to	

each	sample,	and	incubated	for	10mins	at	room	temperature.	The	samples	were	

then	briefly	vortexed	and	centrifuged	at	12000rpm	for	10mins	at	4°C	to	form	the	

RNA	pellet.	 	The	supernatant	 from	the	 tube	was	 then	pipetted	out	 leaving	only	

the	RNA	pellet	at	the	bottom	of	the	tube.	The	RNA	pellet	was	then	washed	thrice	

with	 1ml	 of	 ethanol	 (75%)	 and	 centrifuged	 at	 7500rpm	 for	 5mins	 at	 4°C	
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following	each	wash.	Ethanol	was	then	removed	and	pellet	allowed	to	air	dry	for	

15-30mins	before	re-suspension	in	50µl	of	nuclease-free	water.	

2.4.1.2	Determination	of	Tissue	RNA	purity,	concentration	and	quality	

RNA	 concentration	 was	 determined	 using	 the	 Nano	 drop	 Spectrophotometer	

(Thermo	 Fischer	 Scientific),	 at	 the	 Henry	 Wellcome	 Building,	 Cardiff.	 	 Equal	

volume	 (1µl)	 of	 sample	 was	 placed	 on	 Nano	 drop	 reader	 and	 absorbance	

measured	 at	 230nm,	 260nm	 and	 280nm.	 A	 260/280	 ratio	 of	 above	 1.8	 was	

indicative	of	a	sufficiently	pure	sample	in	terms	of	 its	purity	for	RNA.	A	second	

ratio	 260/230	 was	 calculated	 to	 determine	 the	 purity	 of	 nucleic	 acid	 from	

potential	contaminants	like	phenol.	A	260/230	ration	of	above	1.8	was	indicative	

of	 a	 pure	 sample.	 Concentration	 was	 calculated	 as	 ng/µl.	 This	 was	 done	

according	 to	 the	 manufacturer’s	 recommendations	 and	 with	 the	 guidance	 of	

previous	PhD	students	and	post-docs.	

	

RNA	quality	was	also	assessed	using	the	Agilent	Technologies	2100	Bio	analyser	

with	RNA	6000	Nano	chips	(Palo	Alto,	CA,	USA).	This	provided	an	RNA	Integrity	

Number	(RIN),	a	measure	of	the	quality	of	RNA,	with	RIN	values	above	8	deemed	

as	high	quality	RNA	suitable	for	microRNA	analyses.	Appendix	2	and	Appendix	3	

show	the	Agilent	Bio	analyser	results	for	a	subset	of	samples	from	Chapter	3	and	

Chapter	4	experiments	respectively.	

2.4.1.3	RNA	extraction	from	urine	samples	

A	previous	PhD	student	(C	Beltrami)	had	tested	several	extraction	kits	for	RNA	

extraction	from	urine	samples	and	concluded	that	the	Qiagen	miRNeasy	mini	kit	
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(Qiagen,	Cat.	No.	217004)	was	the	best	method.	RNA	extraction	was	performed	

according	 to	 the	 manufacturer’s	 recommendations	 with	 a	 few	 minor	

modifications	 as	 recommended	 by	Andreason	 et	 al	 and	 C	Beltrami	 (211,	 212),	

namely	 the	 use	 of	 carrier	 RNA	 (MS2	 RNA,	 Roche	 Cat.	 No.	 10165948001)	 per	

750μl	 of	 QIAzol	 reagent.	 Urine	 samples	 from	 transplant	 patients	 and	 control	

subjects	were	processed	according	to	the	manufacturer’s	recommendations.	The	

following	 modifications	 were	 made,	 according	 to	 C	 Beltrami’s	 PhD	 work.	 The	

urine	 sample	 (350μl)	was	mixed	with	750μl	of	QIAzol	plus	1μg	of	 carrier	RNA	

(MS2	RNA,	Roache),	and	the	mixture	incubated	at	room	temperature	for	5mins,	

after	which	0.5ρM	of	spike	in	Caenorhabditis	elegans	(cel-miR-39)	(Ambion,	Cat.	

No.	4464066,	Part	No.	MC10956)	was	added	to	each	sample.	Subsequently,	200μl	

of	 chloroform	 was	 added	 per	 sample,	 and	 samples	 were	 incubated	 at	 room	

temperature	 for	 2mins	 and	 then	 spun	 for	 15mins	 at	 4°C.	 At	 that	 point,	 the	

manufacturer’s	protocol	was	followed,	with	the	entire	aqueous	phase	from	each	

sample	loaded	onto	a	single	affinity	column.	RNA	extracts	were	then	stored	at	-

80°C	until	analysis.		

2.4.1.4	RNA	extraction	from	LCM	tissue	samples	

The	 polymer	 membrane	 on	 the	 LCM	 caps	 was	 removed	 and	 placed	 into	 an	

eppendorf.	RNA	was	 then	extracted	using	 the	RecoverALLTM	Total	Nucleic	Acid	

Kit	 (Ambion,	 Cat.	 No.	 AM1975)	 according	 to	 the	 manufacturer’s	

recommendations	 and	 protocol,	 except	 for	 2	 modifications:	 (1)	 The	

deparaffinisation	step	was	not	carried	out,	as	 this	had	already	been	performed	

before	 the	LCM	procedure;	 and	 (2)	1μg	of	RNA	 carrier	 (MS2	RNA,	Roche)	was	
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added	during	the	nucleic	acid	isolation	stage.	This	modification	was	advised	by	2	

recent	PhD	students	(C	Carrington	and	C	Beltrami).	

2.4.2	Messenger	RNA	detection	

2.4.2.1	Reverse	Transcription	(RT)	
	
Following	 total	 RNA	 extraction	 and	 quantification	 from	 the	 kidney	 tissue	

samples,	 cDNA	 was	 generated	 from	 1μg	 of	 RNA	 in	 each	 sample,	 using	 High	

Capacity	cDNA	Reverse	Transcription	Kit	(Life	Technologies,	Cat.	No.	4368814),	

according	to	the	manufacturer’s	recommendations.	Essentially,	1μg	of	total	RNA	

in	10μl	of	water,	was	added	to	10μl	of	RT	master	mix.	RT	master	mix	consisted	of	

the	following:	

RT	Master	mix	component	 Volume	in	μl	

10	x	RT	Buffer	 2	

25	x	dNTP	Mix	(100	mM)	 0.8	

10	x	RT	Random	Primers	 2	

MultiscribeTM	Reverse	Transcriptase	 1	

RNase	inhibitor	 1	

Nuclease-free	water	 3.2	
	

Table	2.2	Components	of	RT	master	mix	for	mRNA	

	

Each	 sample	was	 then	 placed	 on	 the	 thermo	 cycle	with	 the	 following	 thermal	

profile:	10mins	at	25°C,	2h	at	37°C,	and	5	sec	at	85°C,	followed	by	cooling	at	4°C.	

Following	this,	the	cDNA	was	diluted	by	adding	60μl	of	water,	and	used	for	qPCR	

or	stored	at	-20°C	for	later	use.	
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2.4.2.2	Quantitative	polymerase	chain	reaction	(qPCR)	

Quantitative	 polymerase	 chain	 reaction	 (qPCR)	 was	 performed	 on	 a	 7900-HT	

Fast	 Real-Time	 PCR	 System	 (Life	 Technologies).	 Glyceraldehyde	 3-phosphate	

dehydrogenase	 (GAPDH),	 neutrophil	 gelatinase-associated	 lipocalin	 (NGAL),	

kidney	 injury	 molecule	 1	 (KIM-1),	 IL-17,	 interleukin	 18	 (IL-18),	 and	 TNF-α	

reaction	products	were	quantified	using	POWER	SYBR®	Green	PCR	Master	Mix	

(Life	 Technologies,	 Cat.	 No.	 4367659)	 with	 300nM	 gene-specific	 primers.	 The	

amplification	of	a	single	PCR	product	was	confirmed	by	melting	curve	analysis.	

Expression	of	NGAL,	KIM-1,	IL-17,	IL-18,	and	TNF-α	was	normalised	to	GAPDH.	

The	relative	changes	in	gene	expression	were	analysed	by	the	2	to	the	power	of	

minus	 delta	 delta	 cycle	 threshold	 (2-ΔΔCT)	 method	 (213).	 The	 primers	 were	

designed	and	provided	to	me	as	a	kind	gift	by	Dr	R	Jenkins,	using	Primer-BLAST,	

against	mRNA	 sequences	 taken	 from	 the	 NCBI	 database,	 to	 amplify	 all	 known	

splice-variants.	 Primers	were	 designed	 to	 span	 intron-exon	 junctions	 and	 PCR	

product	length	was	ideally	around	100-150	base	pairs.	The	nucleotide	sequences	

of	the	used	primer	pairs	were	as	follows:	

Gene	 Forward	Primer	 Reverse	Primer	

GAPDH	 5ʹ-CCTCTGACTTCAACAGCGACAC-3ʹ	 5ʹ-TGTCATACCAGGAAATGAGCTTGA-3ʹ	

NGAL	 5ʹ-GGGCTGTCCGATGAACTGA-A-3ʹ	 5ʹ-CATTGGTCGGTGGGAACAGA-3ʹ	

KIM-1	 5ʹCGGCTAACCAGAGTGACTTGT-3ʹ	 5ʹ-TACAGAGCCTGGAAGAAGCAG-3ʹ	

IL-17	 5ʹ-CCATCCATGTGCCTGATGCT-3ʹ	 5ʹ-GTTATTGGCCTCGGCGTTTG-3ʹ	

IL-18	 5ʹ-GACCGAACAGCCAACGAATC-3ʹ	 5ʹ-ATAGGGTCACAGCCAGTCCT-3ʹ	

TNF-α	 5ʹ-ATGGGCTCCCTCTCATCAGT-3ʹ	 5ʹ-GCTTGGTGGTTTGCTACGAC-3ʹ	

	

Table	2.3	Forward	and	Reverse	primer	sequences	for	mRNA	genes	
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2.4.3	MicroRNA	detection	

MicroRNAs	 were	 analysed	 in	 whole	 rat	 kidney	 tissue	 samples,	 LCM	 tissue	

samples,	and	urine	samples.		

2.4.3.1	Reverse	Transcription	(RT)	

Following	 RNA	 extraction,	 RT	 was	 performed	 to	 generate	 cDNA,	 using	 High	

Capacity	cDNA	Reverse	Transcription	Kit	(Life	Technologies,	Cat.	No.	4368814),	

according	 to	 the	 manufacturer’s	 recommendations.	 The	 RT	 master	 mix	 per	

reaction	consisted	of	the	following:	

RT	Master	mix	component	 Volume	in	μl	

10	x	RT	Buffer	 1.5	

25	x	dNTP	Mix	(100	mM)	 0.15	

MicroRNA-specific	5	x	RT-primer	 3	

MultiscribeTM	Reverse	Transcriptase	 1	

RNase	inhibitor		 0.1	

Nuclease-free	water	 4.25	

	

Table	2.4	Components	of	RT	master	mix	for	microRNAs	

	

To	 the	 10μl	 of	 master	 mix,	 5μl	 of	 RNA	 was	 added	 (for	 tissue	 RNA	 -	 the	 5μl	

contained	10ng	of	total	RNA;	for	urine	RNA	and	LCM	tissue	samples	-	1μl	of	RNA	

was	added	to	4μl	water).	The	RT	master	mix	and	RNA	mixture	was	incubated	on	

ice	 for	 at	 least	 5mins.	 The	RT	non-template	negative	 controls	 substituted	RNA	

with	water	to	make	an	equal	volume	for	the	reaction.	Each	sample	(containing	a	

volume	of	15μl)	was	then	placed	on	the	thermo	cycle	with	the	following	thermal	
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profile:	 30mins	at	16°C,	30mins	at	42°C,	5mins	at	85°C,	 followed	by	 cooling	at	

4°C.	Following	this,	the	cDNA	was	diluted	by	adding	30μl	of	water,	and	used	for	

qPCR	or	stored	at	-20°C	for	later	use.	

2.4.3.2	Quantitative	polymerase	chain	reaction	(qPCR)	

For	each	microRNA	analysed,	the	PCR	master	mix	per	sample	consisted	of:	

• 1μl	 of	 microRNA-specific	 set	 of	 PCR-primers	 and	 Taqman	 probe	

(designed	and	supplied	by	Applied	Biosystems)	

• 5μl	of	water	

• 10μl	 of	 Taqman	 Universal	 Master	 Mix	 II	 with	 No	 AmpErase	 UNG	

(composed	 of	 an	 optimized	 solution	 of	 themostable	 DNA	 polymerase,	

deoxynucleotides,	 and	 the	 passive	 reference	 dye	 ROX	 (Applied	

Biosystems,	Cat.	No.	4440047)	

This	made	 a	 total	 of	 16μl	 of	microRNA-specific	master	mix	 per	 sample,	which	

was	added	 to	4μl	of	pre-diluted	microRNA-specific	 cDNA	per	appropriate	well,	

on	 an	 Optical	 96-well	 Fast	 Plate	 (Applied	 bio	 systems)	 for	 qPCR.	 Water	 was	

added	for	the	non-template	controls	instead	of	cDNA.	The	plate	was	sealed	with	

a	 MicroAmp	 Optical	 Adhesive	 Film	 (Applied	 Biosystems)	 and	 qPCR	 was	

performed	 on	 a	 ViiA7	 Real-Time	 PCR	 System	 (Life	 Technologies),	 using	 the	

manufacturer’s	 recommended	 parameters:	 10mins	 at	 95°C,	 followed	 by	 40	

cycles	of	15secs	at	95°C	and	1min	at	60°C.		

	

Expression	of	microRNAs	was	normalised	to	miR-16	or	miR-cel-39.	The	relative	

changes	 in	 gene	 expression	 were	 analysed	 by	 the	 2-ΔΔCT	 method	 (213).	 The	
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Taqman	assays	used	 in	this	study	are	shown	in	Table	2.5	below.	The	catalogue	

number	for	each	of	these	assays	was	4427975	(Life	Technologies).	

MicroRNA	assay	 MicroRNA	Assay	ID	

hsa-miR-9	 000583	

hsa-miR-10a	 000387	

hsa-miR-16	 000391	

hsa-miR-21	 000397	

hsa-miR-29a	 000412	

hsa-miR-191	 002299	

hsa-miR-221	 000524	

hsa-miR-222	 002276	

hsa-miR-375	 000564	

hsa-miR-429	 001024	

hsa-miR-506	 001050	

hsa-miR-574-3p	 002349	

hsa-miR-cel-39	 000200	

	
Table	2.5	Taqman	microRNA	assays	
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2.5	MicroRNA	profiling	

2.5.1	Urine	Taqman	Low	Density	Array	(TLDA)	

Taqman	low	density	array	(TLDA)	was	performed	to	profile	microRNAs	in	urine	

samples	from	transplant	patients	(Chapter	5).	The	Megaplex	RT	Primers	Human	

Pool	 A	 v.2.1	which	 consists	 of	 381	 RT	 primers	 (377	 unique	microRNAs	 and	 4	

controls)	 was	 used	 to	 perform	 the	 reverse	 transcription	 for	 microRNAs	 for	 8	

RNA	samples	(LD-No	DGF	(n=4),	CD-DGF	(n=4))	followed	by	a	pre-amplification	

step	 using	 Megaplex	 PreAmp	 primers,	 according	 to	 the	 manufacturer’s	

recommendations	(Life	technologies).			

	

For	each	RT	reaction,	a	 fixed	volume	of	3μl	of	RNA	solution	 (from	the	50	μl	of	

RNA	 solution)	 was	 used.	 The	 RT	 reaction	 was	 performed	 according	 to	 the	

manufacturer’s	recommendations	(0.8μl	of	Pooled	Primers	combined	with	0.2μl	

of	 100mmol/L	 dNTPs	 with	 dTTP,	 0.8μl	 of	 10x	 Reverse-Transcription	 Buffer,	

0.9μl	 of	 MgCl2	 (25mmol/L),	 and	 1.5μl	 of	 Multiscribe	 Reverse	 Transcriptase	

(50U/μl)	 and	 0.1μl	 of	 RNAsin	 (20U/μl).	 The	 RT	 reaction	 was	 done	 using	 a	

7900HT	thermo	cycle	(Applied	Biosystems)	with	the	following	cycle	parameters:	

16°C	 for	 2mins,	 42°C	 for	 1min	 and	 50°C	 for	 1sec	 for	 40	 cycles	 followed	 by	

incubation	 at	 85°C	 for	 5mins.	 The	 RT	 reaction	 products	 were	 then	 amplified	

using	the	Megaplex	PreAmp	Primers	(Primers	A	v2.1).	A	2.5μl	aliquot	of	the	RT	

product	 was	 combined	 with	 12.5μl	 of	 Pre-amplification	 Master	 mix	 (2x)	 and	

2.5μl	 of	 Megaplex	 PreAmp	 Primers	 (10x).	 The	 pre-amplification	 reaction	 was	

performed	under	the	following	parameters:	95°C	for	10mins,	55°C	for	2mins	and	

72°C	 for	 2mins,	 followed	 by	 12	 cycles	 of	 95°C	 for	 15secs	 and	 60°C	 for	 4mins.	
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Finally,	 samples	 were	 heated	 at	 99.9°C	 for	 10mins	 to	 ensure	 enzyme	

inactivation.	Pre-amplification	reaction	products	were	diluted	to	a	 final	volume	

of	100μl.	

	

A	 TLDA	 Human	 MicroRNA	 Panel	 Card	 A	 v.2.0	 was	 used	 to	 quantify	 and	

determine	 the	 expression	profiles	 of	 377	unique	microRNAs	 for	 these	 samples	

using	 a	 7900-HT	 Fast	 Real-Time	 PCR	 System,	 according	 to	 the	manufacturer’s	

recommendations	(Life	Technologies).	

	

In	each	array,	three	endogenous	controls	and	a	negative	control	were	included.	

Card	A	was	selected	as	 it	 focuses	on	the	more	highly	characterised	microRNAs.	

PCR	reactions	were	performed	using	450μl	of	the	Taqman	Universal	PCR	Master	

Mix	 No	 AmpErase	 UNG	 (2x)	 and	 9μl	 of	 the	 diluted	 pre-amplification	 product.	

Aliquots	 of	 100μl	 of	 the	 PCR	 master	 mix	 were	 dispensed	 to	 each	 port	 of	 the	

Taqman	 microRNA	 Array	 card.	 The	 fluidic	 card	 was	 then	 centrifuged	 and	

mechanically	sealed	prior	to	qPCR.	

	

2.5.2	Microarray	

RNA	 samples	 extracted	 from	 the	 kidney	 tissue	 of	 4	 groups	 from	 chapter	 4	

experiments	 (Sham,	 IRI,	 IPC/IRI	 and	 IPC	 Alone),	 was	 sent	 to	 an	 external	

provider,	Exiqon,	for	microRNA	profiling	hybridisation	microarray	(n=5	in	each	

group).	 The	 samples	 were	 labelled	 using	 the	 miRCURY	 LNATM	 microRNA	 Hi-

Power	 Labelling	 Kit,	 Hy3TM/Hy5TM	 and	 hybridised	 on	 the	 miRCURY	 LNATM	

microRNA	 Array	 (7th	 Gen)	 following	 a	 dual-colour	 experimental	 design.	 	 An	

outline	of	the	workflow	from	Exiqon	is	displayed	in	Figure	2.4.	
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Figure	2.4:	Exiqon	Hybridisation	microarray	Workflow	outline	

	

The	threshold	of	detection	was	calculated	for	each	individual	microarray	slide	as	

1.2	 times	 the	 25th	 percentile	 of	 the	 overall	 signal	 intensity	 of	 the	 slide.	
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MicroRNAs	 with	 intensities	 above	 threshold	 in	 less	 than	 20%	 (or	 2)	 of	 the	

samples	were	removed	from	the	final	dataset	used	for	expression	analysis.	The	

number	of	microRNAs	detectable	above	background	threshold	was	identified	for	

each	sample	(out	of	a	total	of	714	possible	microRNAs)	and	comparison	between	

groups	was	made.	

2.5.3	Next	Generation	Sequencing		

Next	Generation	Sequencing	(NGS)	was	performed	by	Exiqon	on	RNA	extracted	

from	kidney	tissue	from	4	groups	(Sham,	IRI,	IPC/IRI	and	IPC	alone)	(pooled	n=1	

for	 each	 group).	 The	 raw	 sequencing	 files	 were	 received	 from	 Exiqon,	 and	

subsequently	mapped	with	normalised	 read	 counts	 calculated.	The	normalised	

read	counts	were	analysed	by	chi-square	and	pair-wise	comparison.	Chi-square	

p-values	were	significant	for	the	majority	of	the	data	set.	Hierarchical	clustering	

was	 performed	 using	 the	 GENE-E	 software	 and	 marker	 selection	 used	 to	

interrogate	 the	 pair-wise	 comparisons.	 In	 order	 to	 interpret	 the	 data	 set,	 the	

normalised	read	counts	were	filtered	to	exclude	values	below	1000,	and	the	data	

set	was	filtered	to	exclude	fold	change	values	of	<1.5	increase	and	decrease.	The	

new	 data	 set	 was	 then	 tabulated	 and	 visualised	 on	 XY	 plots.	 These	 data	 are	

described	in	section	4.2.5.		
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2.6	Serum	Creatinine	analysis	

Blood	 samples	 taken	 from	 the	 rat	before	operation	and	at	 time	of	 retrieval	 (at	

48h)	for	the	chapter	4	experiments	were	sent	to	the	department	of	biochemistry	

(University	 Hospital	 of	 Wales,	 Cardiff).	 Serum	 creatinine	 was	 measured	 from	

these	 samples	 using	 the	 Jaffe	 reaction	 according	 to	 their	 standard	 operating	

procedure.	
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2.7	Statistical	Analysis	

Statistical	analyses	were	performed	using	Graph	Pad	Prism	Version	6	software	

(La	 Jolla,	 CA,	 USA)	 for	 majority	 of	 the	 dataset.	 Data	 were	 expressed	 as	 either	

mean	 (±	 SEM)	 or	 median	 (and	 range)	 depending	 on	 whether	 the	 data	 was	

parametric	or	non-parametric.	The	data	was	assessed	for	statistical	significance	

by	 ‘unpaired	 t	 test’	 or	 ‘one-way	ANOVA	 (with	post-hoc	Bonferroni	 correction)’	

for	 parametric	 data,	 and	 ‘Mann-Whitney	 U	 test’	 or	 ‘Wilcoxon	 test’	 for	 non-

parametric	 data.	 Differences	 with	 p	 <	 0.05	 were	 considered	 statistically	

significant.	Level	of	significance	was	portrayed	as	below:	

P-value	 Description	 Summary	
	

≥0.05	 Not	significant	 ns	
	

0.01	–	0.05	 Significant	 *	
	

0.001	–	0.01	 Very	Significant	 **	
	

<0.001	 Extremely	Significant	 ***	
	

	

Table	2.6	P-values	and	description	

	

Linear	 regressions	 and	 correlation	 analyses	were	 also	 performed	 using	 Graph	

Pad	Prism	Version	6	software,	and	significance	values	reported	as	above.	

	

For	the	microRNA	profiling	experiments,	the	following	were	used:	

• TLDA	 Array	 (Chapter	 5):	 In	 addition,	 to	 Graph	 Pad,	 Norm	 Finder	

algorithm	 was	 applied	 to	 the	 expression	 data	 in	 order	 to	 identify	 a	

suitable	reference	gene.	Several	genes	were	tested	and	all	were	found	to	

be	 quite	 variable	 and	 therefore	 not	 suitable	 as	 a	 reference	 gene.	 In	 the	
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end,	 miR-cel-39	 was	 used	 as	 the	 reference	 gene	 for	 the	 chapter	 5	 and	

chapter	6	experiments.	Volcano	plots	were	created	in	Graph	Pad.	

• Microarray	(Chapter	4):	The	heat	map	and	PCA	analyses	and	graphs	were	

obtained	from	Exiqon.	Volcano	plots	were	created	in	Graph	Pad	using	the	

raw	data	obtained	from	Exiqon.	

• NGS	 (Chapter	 4):	 The	 raw	 sequencing	 files	 received	 from	 Exiqon	 were	

mapped	 and	 normalised	 read	 counts	 calculated.	 The	 normalised	 read	

counts	 were	 analysed	 by	 chi-square	 and	 pair-wise	 comparison	 using	

Graph	Pad.	Hierarchical	clustering	was	performed	with	GENE-E	software.	
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Chapter	3	–	The	Effects	of	a	Localised	IPC	Regime	in	a	
Unilateral	IRI	Rat	Model	

	
	



	

	 	 	 	 87	

3.1	Introduction	
	
Reducing	 IRI	 is	 arguably	 the	 largest	 and	 most	 important	 challenge	 in	 kidney	

transplantation.	There	are	 several	approaches	 to	 reduce	or	ameliorate	 IRI,	 and	

IPC	 has	 been	 shown	 to	 be	 one	 such	 treatment	 strategy.	 IPC	 is	 an	 interesting	

therapeutic	 strategy	 that	 involves	 a	 brief	 period	 of	 ischaemia	 and	 reperfusion	

that	is	thought	to	allow	the	organ	of	interest	to	develop	a	degree	of	‘tolerance’	to	

a	 subsequent	 prolonged	 period	 of	 ischaemia.	 Animal	 studies	 have	 showed	

variable	 results,	 with	most	 showing	 a	 clear	 benefit	 in	 reducing	 renal	 IRI	 (95),	

whilst	 some	 have	 shown	 that	 it	 confers	 no	 benefit	 (98).	 Several	 IPC	 methods	

have	been	described,	including	having	the	stimulus	localised	at	the	target	organ	

or	 remotely	 from	 it,	 having	 one	 continuous	 episode	 of	 ischaemia	 or	 several	

cycles	of	brief	ischaemia	and	reperfusion	(pulsatile	IPC),	and	varying	the	interval	

between	 the	 IPC	 stimulus	 and	 the	 index	 ischaemia	 (90,	 95,	 96).	 Most	 IPC	

investigations	 in	kidneys	have	used	an	adult	male	rat	as	 the	animal	model	and	

45-min	IRI	period	has	been	shown	to	be	robust	and	reliable	in	studies	that	have	

evaluated	the	effects	of	treatment	on	IRI	(214,	215).		

	

For	 an	 IPC	 regime	 to	 be	 a	 practical	 and	 clinically	 transferrable	 therapeutic	

practice	 in	 kidney	 transplantation,	 a	 relatively	 short	 period	 of	 ischaemia	 and	

reperfusion	localised	to	the	organ	is	the	most	desirable	option.	Indeed,	the	meta-

analysis	 described	 in	 the	 Section	 1.4	 showed	 that	 most	 studies	 have	 used	

localised	IPC	(95).	Of	particular	note,	a	continuous	regime	of	15	minutes	of	IPC	

before	injury	has	been	shown	to	result	in	histological	and	functional	protection	

(96).		
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Several	studies	now	suggest	the	increasing	importance	of	microRNAs	in	CKD	and	

AKI	from	various	causes,	including	IRI	(164,	216,	217).	In	particular	microRNA-

21	(miR-21)	has	been	implicated	in	preventing	tubular	epithelial	cell	death	(32).	

In	one	study,	15mins	of	localised	IPC	significantly	increased	miR-21	expression,	

resulting	 in	 attenuation	 of	 IRI	 4	 days	 later,	 whereas	 knockdown	 of	 miR-21	

significantly	increased	tubular	cell	apoptosis	(100).		

	

The	aim	of	this	chapter	was	to	determine	whether	a	15-min	localised	IPC	regime	

attenuated	 injury	 in	a	 rat	model	of	unilateral	 IRI,	 and	 to	 investigate	associated	

changes	in	cytokines	and	miR-21	expression	levels.	

	

To	this	end,	the	established	rat	model	of	IRI	within	this	department	was	utilised	

(cross-clamping	of	the	left	renal	pedicle)	and	the	effect	of	IPC	was	evaluated	on:	

1. histological	architectural	damage	to	the	renal	cortex	

2. the	expression	of	AKI	markers:	KIM-1	and	NGAL	

3. the	expression	of	cytokines	(IL-17,	IL-18,	and	TNF-α)	

4. the	expression	of	miR-21	
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3.2	Results	
	

Fifteen	adult	male	Lewis	rats	underwent	a	midline	laparotomy	and	were	divided	

into	3	groups	(n=5	each):	(1)	Sham	operation;	(2)	Left	unilateral	IRI	(45	minutes	

of	cross-clamping	of	the	renal	pedicle);	and	(3)	15mins	of	ischaemia	followed	by	

20mins	of	 reperfusion	(IPC)	prior	 to	45-min	 IRI	 (IPC/IRI	group).	Kidney	 tissue	

was	retrieved	48h	later,	sectioned,	and	stained	with	haematoxylin	and	eosin	for	

histological	 assessment.	 RNA	 was	 extracted	 for	 RT-qPCR	 analysis	 of	 AKI	

markers,	cytokines,	and	miR-21.	

	

3.2.1	Histological	Architecture	

Forty-five	minutes	of	unilateral	IRI	in	the	rat	caused	marked	histological	damage	

at	48h	when	compared	with	sham	controls.	Figure	3.1	shows	the	changes	seen	in	

the	 renal	 cortex	 in	 sham	 (A),	 IRI	 (B)	 and	 IPC/IRI	 (C)	 groups.	 Sham	 animals	

showed	normal	histological	architecture	of	the	renal	cortex	with	no	damage	seen	

in	 endothelial,	 glomerular,	 tubular	 or	 tubulo-interstitial	 cellular	 components.	

Both	 the	 IRI	 and	 IPC/IRI	 groups	 showed	 extensive	 damage	 to	 the	 cellular	

compartments	 of	 the	 renal	 cortex.	 The	 changes	 seen	 included,	 endothelial	 cell	

disruption	 and	 cell	 loss;	 thickening	 of	 Bowman’s	 capsule	 and	 in	 some	 cases	

evidence	of	glomerular	tuft	retraction;	tubular	cell	damage	(loss	of	brush	border,	

cellular	 inflammation,	 cast	 formation	 and	 necrosis);	 and	 tubulo-interstitial	

damage	 (inflammation,	 haemorrhage,	 and	 necrosis)	 (Figure	 3.1	 A	 –	 C).	

Histologically	 there	was	 no	 significant	 difference	 in	 the	 damage	 seen	 between	

the	IRI	and	IPC/IRI	groups.	
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Figure	 3.1:	 Histological	 characterisation	 of	 the	 renal	 cortex	 in	 unilateral	 sham,	 IRI	 and	

IPC/IRI	rats	
Photomicrographs	 (x200)	 of	 H&E	 staining	 of	 renal	 cortex	 sections	 from	 (A)	 sham,	 (B)	45min	

unilateral	IRI,	and	(C)	IPC	(15min	ischaemia	and	20min	reperfusion)	prior	to	IRI,	in	rats	at	48h	

after	reperfusion.	(A)	shows	normal	histological	architecture	of	the	renal	cortex	with	no	damage	

seen	 in	 endothelial,	 tubular,	 glomerular	 or	 interstitial	 cell	 compartments.	 (B)	 and	 (C)	 show	

damage	to	the	cellular	compartments	of	the	renal	cortex	including	tubular	cell	necrosis.	(D)	H&E	

sections	were	 assessed	 and	 scored	 using	 a	 comprehensive	 histological	 damage	 scoring	 system	

comprising	 Endothelial,	 Glomerular,	 Tubular,	 and	 Interstitial	 cell	 damage.	Histological	 Damage	

scores	are	plotted	as	median	and	range.	

Numbers	of	animals	in	each	group:	Sham	(n=5),	IRI	(n=5),	IPC/IRI	(n=5).		

Statistical	significance:	*	p<0.05,	**	p<0.01,	***	p<0.001.		
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The	median	(and	range)	histology	score	was	0	(0-1),	10	(8-11)	and	9	(8-12)	 in	

Sham,	IRI	and	IPC/IRI	groups	respectively.	The	difference	between	sham	and	IRI	

was	 significant	 (p	 =	 0.0079),	 however	 the	 IRI	 and	 IPC/IRI	 groups	 were	 not	

significantly	different	(p	=	0.8095)	(Figure	3.1	D).		

	

No	mortality	was	associated	with	any	of	the	animals.	

	

3.2.2	Acute	kidney	injury	markers	

NGAL	 and	 KIM-1	 were	 selected	 for	 analysis	 because	 several	 studies	 have	

reported	 that	 they	 are	 accurate	 and	 robust	 biomarkers	 of	 AKI	 (218-220).	 As	

shown	 in	 Figure	 3.2,	 NGAL	 mRNA	 synthesis	 increased	 by	 30-fold	 and	 KIM-1	

mRNA	 synthesis	 increased	 by	 300-fold	 in	 the	 IRI	 group	 when	 compared	 with	

Sham	(p	<	0.0001).	 	No	statistical	significant	difference	was	 found	between	the	

IRI	 and	 the	 IPC/IRI	 groups	 in	 the	mRNA	expression	of	NGAL	 (p	=	0.0610)	and	

KIM-1	(p	=	0.7903).	

	

The	histological	and	acute	kidney	injury	marker	results	shown	in	Figures	3.1	and	

3.2	suggest	that	this	IRI	model	is	reliable,	producing	significant	non-fatal	kidney	

injury,	and	the	IPC	regime	does	not	ameliorate	this	injury.	
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Figure	3.2:	Expression	of	Acute	Kidney	Injury	markers	in	unilateral	sham,	IRI	and	IPC/IRI	

rats	

RT-qPCR	 analysis	 of	 (A)	NGAL	 and	 (B)	 KIM-1	 in	 sham,	 45min	 unilateral	 IRI,	 and	 IPC	 (15min	

ischaemia	 and	 20min	 reperfusion)	 prior	 to	 IRI,	 in	 rats	 at	 48h	 after	 reperfusion.	 Expression	 is	

normalised	to	GAPDH	and	plotted	as	mean	±	SEM.	

Numbers	of	animals	in	each	group:	Sham	(n=5),	IRI	(n=5),	IPC/IRI	(n=5).		

Statistical	significance:	*	p<0.05,	**	p<0.01,	***	p<0.001.	
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3.2.3	Cytokine	profile	

IL-17,	IL-18,	and	TNF-a	were	selected	for	analysis	because	previous	studies	have	

reported	that	they	play	an	important	role	in	the	pathophysiology	of	IRI,	including	

kidney	IRI	(221-223).	As	shown	in	Figure	3.3,	mRNA	expression	 levels	of	 IL-17	

(p	=	0.4614),	 IL-18	(p	=	0.3807),	and	TNF-a	 (p	=	0.0757)	were	all	 increased	 in	

IRI	compared	with	Sham	but	not	significantly.		

	

There	was	an	overall	increase	in	the	mRNA	expression	of	IL-17,	IL-18,	and	TNF-α	

in	the	IPC/IRI	group	compared	with	both	the	sham	and	IRI	groups.	For	IL-17	this	

difference	 was	 not	 statistically	 significant	 between	 sham	 and	 IPC/IRI	 (p	 =	

0.0960),	and	between	IRI	and	IPC/IRI		(p	=	0.2401)	(Figure	3.3	A).		

	

There	was	a	nearly	4-fold	increase	in	mRNA	synthesis	of	IL-18	in	IPC/IRI	group	

compared	with	Sham	and	this	was	statistically	significant	(p	=	0.0303).	Although,	

there	was	an	increase	in	mRNA	synthesis	of	IL-18	in	IPC/IRI	compared	with	IRI,	

this	difference	was	not	statistically	significant	(p	=	0.1683)	(Figure	3.3	B).	

	

The	 expression	 of	 TNF-a	was	 increased	 4-fold	 in	 the	 IPC/IRI	 group	 compared	

with	 Sham	 group	 (p	 =	 0.0013),	 and	 2-fold	 in	 IPC/IRI	 compared	 with	 the	 IRI	

group	(p	=	0.0328)	(Figure	3.3	C).	
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Figure	3.3:	Expression	of	Cytokines	 (IL-17,	 IL-18,	and	TNF-a)	 in	unilateral	 sham,	 IRI	and	

IPC/IRI	rats	

RT-qPCR	 analysis	 of	 (A)	 IL-17,	 (B)	 IL-18,	 and	 (C)	TNF-a	 in	 sham,	 45min	 IRI,	 and	 IPC	 (15min	

ischaemia	 and	 20min	 reperfusion)	 prior	 to	 IRI,	 in	 rats	 at	 48h	 after	 reperfusion.	 Expression	 is	

normalised	to	GAPDH	and	plotted	as	mean	±	SEM.	

Numbers	of	animals	in	each	group:	Sham	(n=5),	IRI	(n=5),	IPC/IRI	(n=5).		

Statistical	significance:	*	p<0.05,	**	p<0.01,	***	p<0.001.		
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3.2.4	MicroRNA-21	changes	

Several	reports	have	suggested	that	microRNA	expression	changes	are	important	

in	 IRI,	 with	 particular	 emphasis	 on	 the	 role	 of	 miR-21.	 There	 was	 a	 2-fold	

statistically	 significant	 increase	 in	 the	 expression	 of	 miR-21	 in	 the	 IRI	 group	

compared	 with	 the	 sham	 group	 (p	 =	 0.0347)	 (Figure	 3.4),	 and	 a	 2.5	 fold	

increased	 in	 the	 IPC/IRI	 group	 compared	 with	 the	 Sham	 group	 (p	 =	 0.0058).	

There	 was	 a	 slight	 increase	 in	 the	 expression	 of	 miR-21	 from	 IRI	 to	 IPC/IRI.	

However,	this	increased	miR-21	expression	shown	in	the	IPC/IRI	group	was	not	

significantly	different	compared	with	the	IRI	group	(P	=	0.4519)	(Figure	3.4).		

	

	

Figure	3.4:	Expression	of	miR-21	in	unilateral	sham,	IRI	and	IPC/IRI	rats	

RT-qPCR	analysis	of	miR-21	in	sham,	45min	unilateral	IRI,	and	IPC	(15	min	ischaemia	and	20min	

reperfusion)	 prior	 to	 IRI,	 in	 rats	 at	 48h	 after	 reperfusion	 (n=5	 in	 each	 group).	 Expression	 is	

normalised	to	miR-16	and	plotted	as	mean	±	SEM.	

Numbers	of	animals	in	each	group:	Sham	(n=5),	IRI	(n=5),	IPC/IRI	(n=5).		

Statistical	significance:	*	p<0.05,	**	p<0.01,	***	p<0.001.		
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3.3	Discussion	
	
This	chapter	has	demonstrated	that:	

(1) 	45mins	of	ischaemia	followed	by	48h	of	reperfusion	to	the	left	kidney	in	

the	rat	causes:		

(a)	 Significant	 damage	 to	 the	 renal	 cortex;	 (b)	 Increased	 expression	 of	

established	 markers	 of	 AKI;	 and	 (c)	 Increased	 expression	 of	

inflammatory	cytokines	shown	to	be	implicated	in	IRI.		

(2) 	The	immediate	localised	continuous	IPC	regime	(15mins	ischaemia	and	

20mins	reperfusion	prior	to	the	IRI)	used	did	not	protect	the	rat	kidney	

against	 IRI.	 This	 is	 supported	 by	 no	 significant	 differences	 seen	

histologically	 to	 the	 renal	 cortex	 architecture,	 nor	 of	 the	 levels	 of	

molecular	markers	of	kidney	injury	between	IRI	and	IPC/IRI	groups.	

(3) 	There	 is	 significant	 up-regulation	 of	 TNF-a	mRNA	 synthesis	 in	 the	 IRI	

and	 IPC/IRI	 groups,	 which	 may	 be	 suggestive	 of	 this	 inflammatory	

cytokine’s	a	role	in	the	early	mechanisms	of	IPC.		

(4) 	There	is	significantly	increased	expression	in	IRI	of	miR-21,	a	microRNA	

that	 has	 recently	 been	 shown	 to	 play	 a	 vital	 role	 in	 the	 underlying	

molecular	mechanisms	of	IRI,	however	there	was	no	difference	between	

IRI	and	IPC/IRI	groups.	

		

The	rat	model	used	is	a	well-established	in	vivo	model	of	kidney	injury/IRI	(218,	

224)	and	cross-clamping	of	the	renal	pedicle	for	45mins	produces	significant	but	

not	 fatal	 ischemic	 injury,	 reported	 in	 the	 literature	 (214,	 215).	 In	 these	

experiments,	the	48h	reperfusion	period	led	to	clear	histological	and	molecular	
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changes,	which	are	in	agreement	with	previous	studies	(96,	98,	225).	Therefore,	

it	is	not	surprising	that	IRI	as	utilised	in	this	rat	model	produced	significant	non-

fatal	 injury	 to	 the	 kidney,	 and	 consequentially	 it	 is	 a	 robust	 model	 of	 acute	

kidney	injury.	

	

The	finding	that	this	IPC	regime	does	not	affect	histological	or	molecular	markers	

of	 renal	 injury	 in	 this	 model	 should	 be	 placed	 in	 the	 context	 of	 the	 current	

controversy	 as	 to	 whether	 IPC	 protects	 from	 subsequent	 renal	 IRI.	 Although	

several	 investigators	have	 found	 IPC	 to	be	 effective	 in	protecting	 against	 renal	

IRI	in	various	animal	species	(90-94),	other	studies	have	found	no	evidence	that	

IPC	 is	 protective	 (98,	 99,	 226).	 Nevertheless,	 a	 recent	meta-analysis	 by	Wever	

and	colleagues	(95)	analysed	58	animal	studies,	concluding	that	IPC	is	associated	

with	significantly	improved	histological	injury	scores	and	renal	function	(serum	

creatinine,	 blood	 urea	 nitrogen)	 following	 IRI.	 Therefore,	 other	 types	 of	 IPC	

regimes	are	worthy	of	further	investigation.	

	

The	significant	increase	of	TNF-a	that	we	measured	in	our	model	(Figure	3.3	C)	

suggests	 that	 IPC	 had	 an	 additive	 inflammatory	 and	 potentially	 harmful	 effect.	

Although	 not	 demonstrated	 in	 these	 experiments,	 one	may	 speculate	 that	 this	

effect	may	be	part	of	the	IPC	hypothetical	series	of	events	that	would	eventually	

confer	protection,	 as	 seen	 in	other	 studies	 that	used	a	 longer	 interval	between	

IPC	and	IRI.	This	hypothesis,	if	followed,	requires	further	investigation.	

	

MiR-21	was	selected	because	several	studies	have	reported	its	significant	role	in	

kidney	 IRI	 (32,	 187,	 227).	 Tubular	 cell	 apoptosis	 contributes	 significantly	 to	
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renal	 IRI,	and	although	the	role	of	miR-21	remains	 to	be	 fully	elucidated,	some	

evidence	is	suggestive	of	a	protective	as	well	as	a	pathological	role	for	miR-21,	in	

this	context	(228).	Indeed,	anti-apoptotic	functions	have	also	been	attributed	to	

miR-21	 (32,	 229).	 In	 this	 chapter’s	 experiments,	 miR-21	 expression	 was	

significantly	 increased	 in	 IRI,	 supporting	 its	 potential	 as	 a	 biomarker	 of	 IRI-

mediated	 kidney	 injury.	 However,	 results	 observed	 between	 IRI	 and	 IPC/IRI	

groups	were	not	significantly	different.	This	is	in	contrast	to	Xu’s	study,	in	which	

a	15-min	IPC	regime	decreased	IRI	 induced	4	days	 later,	 in	association	with	an	

up	 regulation	 of	 miR-21	 and	 hypoxia-inducible	 factor	 1a	 (HIF-1a)	 expression	

(100).	Similarly	to	this	chapter’s	experiments,	they	used	an	IPC	regime	of	15mins	

of	continuous	ischemia,	but	the	extended	period	of	4	days	between	IPC	and	IRI	

may	be	key	 in	 terms	of	understanding	 the	difference	 in	outcomes.	A	beneficial	

effect	 after	 this	 extended	 recovery	 may	 be	 due	 to	 improvements	 in	 tissue	

robustness	 to	subsequent	 injury,	which	may	take	hours	rather	 than	minutes	 to	

set	in	place.	MicroRNAs	act	predominantly	by	post-transcriptional	repression	of	

their	 targets,	 leading	 to	 diminished	 target	 mRNA	 (and	 as	 a	 result)	 protein	

synthesis.	 This	diminished	 synthesis	may	 lead	 to	 a	delayed	 alteration	 in	 tissue	

phenotype	 or	 response,	 requiring	 first	 a	 change	 in	 microRNA	 expression	 or	

activity	 and	 then	 the	 time	 required	 for	 expression	 of	 key	 protein	 targets	 to	

“decay”	to	the	necessary	threshold	level	for	the	subsequent	effect,	as	determined	

by	the	degree	of	post-transcriptional	repression	elicited	and	the	stability	of	the	

protein	target.	What	is	abundantly	clear	is	that	there	is	a	huge	scope	for	further	

detailed	microRNA	analysis	studies	in	the	context	of	renal	IRI	and	IPC/IRI.		
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One	major	limitation	of	these	experiments	is	that	the	rat	model	of	unilateral	IRI	

does	not	allow	for	changes	in	overall	kidney	function	to	be	accurately	measured.	

This	 is	 because	 the	 contralateral	 (right)	 kidney	 was	 either	 not	 subjected	 to	

nephrectomy	 nor	 to	 ischemia,	 therefore	 it	 was	 not	 possible	 to	 provide	 a	

meaningful	 measurement	 of	 functional	 markers	 such	 as	 serum	 creatinine	 or	

blood	urea	nitrogen.	However,	despite	this	shortcoming,	the	histological	damage	

correlated	 well	 with	 2	 molecular	 markers	 of	 AKI	 (NGAL	 and	 KIM-1).	

Nevertheless,	 it	 is	 obvious	 that	 further	 investigations	 that	 assess	 different	 IPC	

regimes	 (or	 other	 therapies)	 are	 needed	 in	 a	 model,	 which	 allows	 for	

measurement	of	functional	assessment	of	the	renal	response	to	IRI.	For	example,	

a	 rat	model	 of	 bilateral	 IRI	 or	 a	model	 in	 which	 the	 contralateral	 kidney	was	

removed	would	be	a	way	to	move	forward.	

	

3.4	Concluding	Remarks	
	

The	next	set	of	experiments	must:	

(1) Develop	 a	 rat	 model	 of	 IRI	 that	 allows	 for	 accurate	 functional	

measurement	of	renal	function.	

(2) Methodically	 investigate	 several	different	 regimes	of	 IPC	 to	 identify	one	

that	confers	benefit	to	renal	IRI.	

(3) Perform	a	thorough	review	and	analysis	of	the	microRNA	profile	in	renal	

IRI	and	IPC.	
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Chapter	4	–	The	role	of	microRNAs	in	IPC	in	a	Bilateral	IRI	Rat	
Model	
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4.1	Introduction	
	
In	the	previous	chapter,	a	unilateral	model	of	IRI	in	the	rat	was	used	and	it	was	

shown	that	one	IPC	regime	(15mins	of	ischaemia	and	20mins	of	reperfusion)	did	

not	 confer	 any	benefit,	 as	 demonstrated	by	 the	histological	 evaluation	of	 renal	

cortex,	mRNA	synthesis	of	AKI	markers	(NGAL	and	KIM-1),	and	mRNA	synthesis	

of	 inflammatory	 cytokines.	 In	 addition	 to	 this,	 there	 was	 no	 effect	 on	 the	

expression	of	miR-21	in	response	to	IPC	stimulus.		

Although	the	above	findings	are	 in	keeping	with	 literature,	 the	vast	majority	of	

studies	 on	 IPC	 have	 shown	 that	 it	 is	 beneficial	 in	 reducing	 injury	 in	 IRI.	 It	 is	

therefore	 prudent	 that	 different	 IPC	 regimes	 are	 tested	 to	 identify	 one	 that	

would	confer	benefit	in	the	rat	model	and	also	be	easily	transferrable	to	clinical	

practice	in	transplantation.		

Secondly,	 one	 of	 the	 most	 important	 things	 in	 kidney	 IRI,	 in	 the	 context	 of	

transplantation	and	other	clinical	settings,	is	determining	kidney	function	as	well	

as	 structural	 damage.	 To	 determine	 function,	 a	 rat	 model	 that	 would	 either	

render	 ischaemia	 to	 both	 kidneys,	 or	 to	 one	 kidney	 (after	 performing	 a	

contralateral	nephrectomy)	was	clearly	needed.		

	

With	this	background	in	mind,	the	first	aims	of	this	chapter	were:	

(4) To	 develop	 a	 rat	model	 of	 IRI	 that	 allows	 for	 accurate	measurement	 of	

renal	function.	For	this	a	model	of	bilateral	IRI	was	chosen.	

(5) To	methodically	 investigate	 several	 different	 regimes	 of	 IPC	 to	 identify	

one	that	confers	benefit	to	renal	IRI.	
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Following	 on	 from	 this,	 once	 a	 suitable	 rat	model	 of	 IRI	 had	 been	 successfully	

developed	and	a	beneficial	regime	of	IPC	identified,	the	next	aims	of	this	chapter	

would	be:	

(6) To	perform	microRNA	profiling	 experiments	 to	 identify	 potential	 target	

microRNAs	within	IPC	and	IRI.	

(7) To	 determine	 the	 cellular	 origin	 of	 these	 potential	 target	 microRNAs	

within	the	kidney		

	
	

	 	



	

	 	 	 	103	

4.2	Results	

Fifty-eight	 adult	 male	 Lewis	 rats	 underwent	 a	 midline	 laparotomy	 and	 were	

divided	into	4	main	groups:	(1)	Bilateral	Sham	operation	(n=8);	(2)	Bilateral	IRI	

(45mins	of	cross	clamping	of	both	renal	pedicles);	(3)	Direct	Kill	(n=5);	and	(4)	

Several	different	IPC	regimes,	described	in	sections	4.2.2	–	4.2.4	(n=36).	Kidney	

tissue	was	 retrieved	48h	 later,	 sectioned,	 stained	with	haematoxylin	 and	eosin	

for	 histological	 assessment.	 Blood	 samples	 were	 taken	 pre-operatively	 and	 at	

48h	 (at	 time	 of	 retrieval)	 for	 serum	 creatinine	 measurement	 using	 the	 Jaffe	

reaction.	RNA	was	extracted	from	the	kidney	tissue	for	RT-qPCR	analysis	of	AKI	

markers,	and	microRNA	experiments.	

	

4.2.1	Animal	Model	of	IRI	

4.2.1.1	Bilateral	IRI	Model	

Forty-five	minutes	of	bilateral	IRI	in	the	rat	caused	marked	histological	damage	

at	48	hours	when	compared	with	sham	controls	(Figure	4.1).	The	median	(and	

range)	EGTI	histology	score	(Table	2.1)	was	8	(5	–	9)	in	the	IRI	group	compared	

to	 0	 (0	 –	 2)	 in	 the	 sham	 group	 (p<0.0001)	 (Figure	 4.2(A)).	 Mean	 serum	

creatinine	 at	 48	 hours	 was	 76.63	 (±13.36)	 µmol/l	 in	 the	 IRI	 group	 compared	

with	 31.90	 (±0.25)	µmol/l	 in	 the	 sham	 group	 (p=0.0067)	 (Figure	 4.2(B)).	 The	

mRNA	expression	of	NGAL	and	KIM-1	was	increased	14-fold	and	150-fold	in	the	

IRI	 group	 respectively	 (p<0.0001)	 (Figure	 4.2(C)-(D)).	 The	 individual	

components	 of	 the	 EGTI	 score	 were	 also	 significantly	 higher	 in	 the	 IRI	 group	

compared	with	sham	(Figure	4.3).	
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Figure	4.1:	Histological	images	of	rat	renal	cortex	sections	

Renal	 cortex	H&E	 (x200)	 paraffin	 sections,	 from	 sham	and	45-min	 bilateral	 IRI	 in	 rats,	 at	 48h	

after	 reperfusion	 (Sham	n=8,	 IRI	n=9),	were	assessed	 for	Endothelial,	Tubular,	Glomerular	and	

Interstitial	 cell	 damage,	 using	 the	 EGTI	 histology	 scoring	 system.	 [A]	 –	 [C]	 show	 normal	

appearance	of	the	renal	cortex	in	a	Sham	rat.	[A]	shows	that	the	brush	border	of	the	tubular	cells	

is	intact	with	no	thickening	of	the	basal	membrane.	No	inflammation	or	necrosis	is	seen	(Tubular	

score	0).	There	is	no	visible	interstitium	signifying	no	damage/abnormality	within	the	interstitial	

compartment	 (Interstitial	 score	 0).	 [B]	 shows	 a	 uniform	 endothelium	 with	 no	 swelling	 or	

disruption	of	the	endothelial	cells	(Endothelial	score	0).	[C]	shows	an	intact	glomerulus	with	thin	

walled	 Bowman’s	 capsule	 and	 no	 tuft	 retraction	 (Glomerular	 score	 0).	 [D]	 –	 [I]	 show	 varying	

degrees	of	damage	of	the	renal	cortex	in	45-minute	bilateral	IRI	rats.	[D]	shows	inflammation	and	

haemorrhage	within	the	interstitium,	which	is	present	in	less	than	25%	of	the	tissue	without	any	

evidence	of	 necrosis	 (Interstitial	 score	1).	 [E]	 shows	 thickened	basal	membrane	of	 the	 tubular	
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cells	with	loss	of	the	brush	border	in	more	than	25%	of	the	tubular	cells,	without	the	presence	of	

cast	formation	or	necrosis	(Tubular	score	2).	[F]	shows	a	glomerulus	with	evidence	of	thickened	

Bowman’s	capsule	(Glomerular	score	1),	and	glomerular	tuft	retraction	(Glomerular	score	2).	[G]	

shows	inflammation	and	haemorrhage	within	the	interstitial	compartment,	with	necrosis	in	up	to	

60%	of	 the	 cells	 (Interstitial	 score	 3).	 	 [H]	 shows	 complete	 necrosis	 in	 tubular	 and	 interstitial	

cellular	compartments	(Tubular	score	4,	Interstitial	score	4).	[I]	shows	evidence	of	inflammation	

and	 cast	 formation	within	 the	 tubules	with	 evidence	 of	 necrosis	 in	 up	 to	 60%	of	 tubular	 cells	

(Tubular	score	3),	and	endothelial	cell	disruption	and	loss	(Endothelial	score	3).		

	

	

	

	

Figure	4.2:	Effect	of	bilateral	IRI	on	EGTI	Histology	score,	serum	creatinine	and	expression	

of	NGAL	and	KIM-1	

(A)	Renal	 cortex	 sections	 from	 Direct	 kill,	 Sham	 and	 45min	 bilateral	 IRI,	 in	 rats	 at	 48h	 after	

reperfusion	were	 stained	with	H&E	and	assessed	using	 the	EGTI	 scoring	 system	comprising	of	

Endothelial,	Glomerular,	Tubular,	and	Interstitial	cell	damage.	EGTI	Histology	scores	are	plotted	

as	median	and	range.	(B)	Serum	creatinine	was	measured	pre-op	and	at	48h	in	sham	and	IRI	rats	

and	is	plotted	as	mean	±	SEM.	(C	and	D)	RT-qPCR	analysis	of	NGAL	and	KIM-1	was	performed.	

Expression	is	normalised	to	GAPDH	and	plotted	as	mean	±	SEM.		

Numbers	of	animals	in	each	group:	Direct	Kill	(n=5),	Sham	(n=8),	IRI	(n=9).		

Statistical	significance:	*	p<0.05,	**	p<0.01,	***	p<0.001.		

The image part with relationship ID rId36 was not found in the file.
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Figure	 4.3:	 Effect	 of	 bilateral	 IRI	 on	 Endothelial,	 Glomerular,	 Tubular,	 and	 Tubulo-

Interstitial	damages	scores	

Renal	cortex	sections	 from	sham	and	45-min	bilateral	 IRI	 in	rats	at	48h	after	reperfusion	were	

stained	with	H&E	and	assessed	using	a	comprehensive	scoring	system	comprising	of	Endothelial,	

Glomerular,	 Tubular,	 and	 Interstitial	 cell	 damage	 (Sham	 n=8,	 IRI	 n=9).	 Individual	 cellular	

component	scores	are	plotted	as	median	and	range	for	Endothelial	(A),	Glomerular	(B),	Tubular	

(C),	and	Tubulo-Interstitial	(D)	components.	

	

4.2.1.2	Validation	of	EGTI	histology	scoring	system	

These	 sham	 and	 IRI	 experiments	 also	 allowed	 for	 the	 evaluation	 of	 the	 EGTI	

scoring	system	as	a	suitable	assessment	tool	of	histological	damage	of	the	renal	

cortex.	 The	 EGTI	 histology	 scoring	 system,	 developed	 specifically	 for	 this	

research	 and	 described	 in	 section	 2.2.2	 was	 designed	 to	 comprehensively	

document	the	damage	seen	within	the	renal	cortex	of	an	in	vivo	model	of	AKI/IRI.	

The	 widely	 adopted	 ‘gold	 standard’	 scoring	 system	 for	 reporting	 histological	
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damage	 in	 kidney	 injury	 is	 the	 Jablonski	 scoring	 system	 (204).	 This	 simple	

system	is	designed	to	give	a	rapid	and	objective	assessment	of	kidney	injury.	In	

reality,	 however,	 it	 provides	 a	 limited	 score	 documenting	 predominantly	 the	

degree	 of	 necrosis	 within	 tubular	 cells	 only,	 ranging	 from	 0	 signifying	 ‘no	

damage’,	 to	 4	 ‘necrosis	 affecting	 all	 3	 segments	 of	 the	 proximal	 convoluted	

tubule’.	 It	does	not	provide	an	assessment	of	the	damage	seen	within	the	other	

cellular	 components,	 such	 as	 endothelial	 and	 glomerular	 cells.	 The	 Jablonski	

scoring	system	was	originally	described	 following	a	prolonged	recovery	period	

after	 ischaemic	 injury,	 and	 includes	 features	 of	 recovery	 (e.g.	 tubular	 cell	

mitoses)	 that	 may	 not	 be	 evident	 in	 the	 typical	 recovery	 periods	 used	

experimentally,	such	as	in	these	experiments.	Therefore	a	more	detailed	scoring	

system	 was	 designed	 that	 included	 damage	 seen	 within	 the	 renal	 cortex	 to	

endothelial	 (E),	 glomerular	 (G),	 tubular	 (T),	 and	 interstitial	 (I)	 cellular	

compartments,	as	detailed	in	Table	2.1.		

	

EGTI	 and	 Jablonski	 scores	 were	 correlated	 with	 NGAL,	 KIM-1	 and	 serum	

creatinine.	 Both	 EGTI	 and	 Jablonski	 scores	 correlated	 significantly	with	 serum	

creatinine	 at	 48	 hours,	 and	 expression	 of	 NGAL	 and	 KIM-1	 (Figure	 4.4),	

signifying	that	both	scores	are	highly	predictive	of	kidney	function	and	structural	

damage.	In	addition	to	this,	the	association	between	each	component	on	the	EGTI	

histology	scoring	system	and	serum	creatinine	at	48h,	and	expression	of	NGAL	

and	 KIM-1	 was	 examined	 using	 univariate	 logistic	 regression	 analyses.	 All	 4	

cellular	 components	 were	 independently	 associated	 with	 serum	 creatinine	 at	

48h	(p<0.05),	and	NGAL	and	KIM-1	(p<0.0001).	

	



	

	 	 	 	108	

	

Figure	4.4:	Correlation	of	EGTI	and	Jablonski	scores	with	serum	creatinine,	KIM-1,	and	

NGAL		

Renal	cortex	sections	from	sham	and	45-min	bilateral	IRI	in	rats	at	48h	after	reperfusion	(Sham	

n=8,	IRI	n=9)	were	stained	with	H&E	and	scored	using	the	EGTI	and	Jablonski	scoring	systems.	

Serum	 creatinine	 was	 measured	 at	 48h	 and	 RT-qPCR	 analysis	 of	 KIM-1	 and	 NGAL	 was	

performed,	with	expression	normalised	to	GAPDH.	EGTI	and	Jablonski	scores	were	both	plotted	

and	correlated	with	serum	creatinine	(A	and	D),	KIM-1	(B	and	E),	and	NGAL	(C	and	F).		
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4.2.2	The	Effect	of	IPC	in	the	bilateral	IRI	model	

Having	established	that	 the	bilateral	 IRI	rat	model	was	robust	and	reliable,	 the	

effect	 of	 6	 different	 localised	 IPC	 regimes	 was	 tested.	 Localised	 regimes	 were	

selected,	 as	 they	 would	 be	 easily	 transferrable	 to	 clinical	 practice.	 Three	

continuous	 and	 three	 pulsatile	 regimes	 were	 chosen.	 The	 continuous	 regimes	

consisted	of	10,	15	and	20mins	of	 ischaemia	(n=4	each)	 followed	by	20mins	of	

reperfusion	prior	 to	 IRI	 (Figure	2.2).	The	pulsatile	 regimes	consisted	of	2,	5	or	

10mins	of	 ischaemia	followed	by	5mins	of	reperfusion,	 in	3	cycles	respectively,	

prior	to	IRI	(n=4	each)	(Figure	2.3).			

4.2.2.1	The	Effect	of	continuous	IPC	regimes	

Three	 continuous	 IPC	 regimes	 were	 tested	 (n=4	 each):	 10mins	 of	 ischaemia	

followed	by	20mins	of	reperfusion	(IPC-C	10-20);	15mins	of	ischaemia	followed	

by	20mins	 of	 reperfusion	 (IPC-C	15-20);	 and	20mins	 of	 ischaemia	 followed	by	

20mins	 of	 reperfusion	 (IPC-C	 20-20).	 Neither	 of	 these	 regimes	 reduced	 injury	

(Figure	 4.5).	 There	 was	 marked	 histological	 damage	 to	 the	 renal	 cortex	 with	

45mins	of	bilateral	IRI	and	with	all	of	the	3	continuous	IPC	regimes.	The	median	

(and	range)	EGTI	histology	scores	were	8	(6	–	9),	7	(7	–	9),	and	7	(7	–	8)	in	the		

‘IPC-C	10-20’,		‘IPC-C	15-20’,	and	‘IPC-C	20-20’	groups	compared	with	8	(5	–	9)	in	

the	IRI	group	(p	=	ns)	(Figure	4.5(A)).	Mean	serum	creatinine	at	48h	was	154.5	

(±73.79)	µmol/l,	110.2	(±15.21)	µmol/l,	and	115.9	(±28.83)	µmol/l	in	the		‘IPC-C	

10-20’,	 	 ‘IPC-C	15-20’,	 and	 ‘IPC-C	20-20’	 groups	 compared	with	76.63	 (±13.36)	

µmol/l	in	the	IRI	group	(p	=	ns)	(Figure	4.5(B)).	The	mRNA	expression	of	NGAL	

was	increased	at	least	2-fold	in	all	of	the	3	continuous	IPC	groups	compared	with	

the	 IRI	 group	 (p<0.0001)	 (Figure	 4.5(C)).	 The	mRNA	 expression	 of	KIM-1	was	
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increased	 2-fold	 in	 the	 ‘IPC-C	 15-20’	 group	 compared	with	 the	 IRI	 group	 (p	 =	

0.0018),	 but	 not	 significantly	 increased	 in	 the	 IPC-C	 10-20’	 and	 ‘IPC-C	 20-20’	

groups	(Figure	4.5(D)).		

	

	

Figure	 4.5:	 Effect	 of	 continuous	 IPC	 on	 EGTI	 score,	 serum	 creatinine	 and	 expression	 of	

NGAL	and	KIM-1	

(A)	Renal	cortex	sections	from	Direct	Kill,	Sham,	45min	bilateral	IRI,	and	3	localized	continuous	

IPC	regimes	(10,	15	and	20min	ischaemia	and	20min	reperfusion	(IPC-C	10-20,	IPC-C	15-20,	and	

IPC-C	20-20	 respectively)	prior	 to	 IRI,	 in	 rats	 at	48h	after	 reperfusion,	were	 stained	with	H&E	

and	 assessed	 using	 a	 comprehensive	 scoring	 system	 comprising	 of	 Endothelial,	 Glomerular,	

Tubular,	and	Interstitial	cell	damage.	EGTI	Histology	scores	are	plotted	as	median	and	range.	(B)	

Serum	creatinine	was	measured	pre-op	and	at	48h	and	is	plotted	as	mean	±	SEM.	(C	and	D)	RT-

qPCR	 analysis	 of	 NGAL	 and	 KIM-1	 was	 performed.	 Expression	 is	 normalised	 to	 GAPDH	 and	

plotted	as	mean	±	SEM.		

Numbers	of	animals	 in	each	group:	Direct	Kill	(n=5),	Sham	(n=8),	 IRI	(n=9),	 IPC-C	10-20	(n=4),	

IPC-C	15-20	(n=4),	and	IPC-C	20-20	(n=4).	

Statistical	significance:	*	p<0.05,	**	p<0.01,	***	p<0.001.	

	

The image part with relationship ID rId36 was not found in the file.
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4.2.2.2	The	Effect	of	pulsatile	IPC	regimes	

Three	pulsatile	IPC	regimes	were	tested	(n=4	each):	3	cycles	of	2mins	ischaemia	

and	 5mins	 reperfusion	 (IPC-P	 2-5);	 3	 cycles	 of	 5mins	 ischaemia	 and	 5mins	

reperfusion	(IPC-P	5-5);	and	3	cycles	of	10mins	ischaemia	and	5mins	reperfusion	

(IPC-P	10-5).	There	was	 less	histological	damage	to	the	renal	cortex	with	the	3	

pulsatile	 IPC	 regimes	 compared	with	 IRI	 group.	 The	median	 (and	 range)	 EGTI	

histology	scores	were	7	(3	–	7),	6.5	(0	–	7),	and	7	(6	–	7)	in	the		‘IPC-P	2-5’,	‘IPC-P	

5-5’,	 and	 ‘IPC-P	10-5’	groups	compared	with	8	 (5	–	9)	 in	 the	 IRI	group	(Figure	

4.6(A)).	Mean	serum	creatinine	at	48h	was	40.43	(±3.35)	µmol/l,	55.65	(±6.88)	

µmol/l,	and	59.75	(±5.65)	µmol/l	in	the	‘IPC-P	2-5’,	‘IPC-P	5-5’,	and	‘IPC-P	10-5’	

groups	 compared	with	 76.63	 (±13.36)	µmol/l	 in	 the	 IRI	 group	 (p	 =	 0.014,	 p	 =	

0.339	and	p	=	0.435	respectively)	(Figure	4.6(B)).	The	mRNA	expression	of	NGAL	

was	not	 increased	or	decreased	significantly	compared	with	 the	 IRI	group	(p	=	

ns)	(Figure	4.6(C)).	The	mRNA	expression	of	KIM-1	was	decreased	2-fold	in	the	

‘IPC-P	2-5’	and	‘IPC-P	10-5’	groups	compared	with	the	IRI	group	(p	=	0.0009	and	

p	=	0.026	respectively),	however	it	was	not	decreased	or	increased	in	the	‘IPC-P	

5-5’	group	compared	with	the	IRI	group	(p	=	0.359)	(Figure	4.6(D)).		
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Figure	4.6:	Effect	of	localised	pulsatile	IPC	on	EGTI	score,	serum	creatinine	and	expression	

of	NGAL	and	KIM-1	

(A)	Renal	cortex	sections	from	45min	bilateral	IRI,	and	3	localised	pulsatile	IPC	regimes	(3	cycles	

of	 2,	 5	 and	 10min	 ischaemia	 and	 5min	 reperfusion	 (IPC-P	 2-5,	 IPC-P	 5-5,	 and	 IPC-P	 10-5	

respectively)	prior	 to	 IRI,	 in	rats	at	48h	after	reperfusion	were	stained	with	H&E	and	assessed	

using	 a	 comprehensive	 scoring	 system	 comprising	 of	 Endothelial,	 Glomerular,	 Tubular,	 and	

Interstitial	 cell	 damage.	 EGTI	 Histology	 scores	 are	 plotted	 as	 median	 and	 range.	 (B)	 Serum	

creatinine	was	measured	pre-op	and	at	48h	and	 is	plotted	as	mean	±	SEM.	(C	and	D)	RT-qPCR	

analysis	of	NGAL	and	KIM-1	was	performed.	Expression	is	normalised	to	GAPDH	and	plotted	as	

mean	±	SEM.		

Numbers	of	animals	in	each	group:	Direct	Kill	(n=5),	Sham	(n=8),	IRI	(n=9),	IPC-P	2-5	(n=4),	IPC-

P	5-5	(n=4),	and	IPC-P	10-5	(n=4).	

Statistical	significance:	*	p<0.05,	**	p<0.01,	***	p<0.001.	

	

4.2.3	The	Chosen	IPC	regime	

It	 became	 clear	 from	 the	 above	 results	 that	 the	 pulsatile	 regimes	 were	 more	

beneficial	in	reducing	injury	to	the	kidneys.	Having	analysed	the	results,	the	‘IPC-

P	2-5’	regime	was	chosen	to	proceed	with	and	complete	the	number	of	animals	

The image part with relationship ID rId36 was not found in the file.
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in	the	group	to	make	n	of	8,	named	the	‘IPC/IRI’	group.	This	IPC	regime	was	also	

done	alone	without	any	subsequent	IRI,	‘IPC	Alone’	group	(n	=	8).	Overall	this	IPC	

regime	reduced	structural	and	functional	damage	to	the	kidney	(Figure	4.7).	

	

	

Figure	4.7:	Effect	of	IPC	on	EGTI	score,	serum	creatinine	and	expression	of	NGAL	and	KIM-

1	

(A)	 Renal	 cortex	 sections	 from	Direct	Kill,	 Sham,	45min	bilateral	 IRI,	 localised	pulsatile	 IPC	 (3	

cycles	of	2min	ischaemia	and	5min	reperfusion)	prior	to	IRI,	and	localized	pulsatile	IPC	(3	cycles	

of	2min	ischaemia	and	5min	reperfusion)	alone	without	any	subsequent	IRI,	in	rats	at	48h	after	

reperfusion	 were	 stained	 with	 H&E	 and	 assessed	 using	 a	 comprehensive	 scoring	 system	

comprising	 of	 Endothelial,	 Glomerular,	 Tubular,	 and	 Interstitial	 cell	 damage.	 EGTI	 Histology	

scores	are	plotted	as	median	and	range.	(B)	Serum	creatinine	was	measured	pre-op	and	at	48h	

and	is	plotted	as	mean	±	SEM.	(C	and	D)	RT-qPCR	analysis	of	NGAL	and	KIM-1	was	performed.	

Expression	is	normalised	to	GAPDH	and	plotted	as	mean	±	SEM.		

Numbers	of	animals	in	each	group:	Direct	Kill	(n=5),	Sham	(n=8),	IRI	(n=9),	IPC	alone	(n=8),	and	

IPC/IRI	(n=8).	

Statistical	significance:	*	p<0.05,	**	p<0.01,	***	p<0.001.	

	

The image part with relationship ID rId36 was not found in the file.
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Three	 cycles	 of	 2mins	 ischaemia	 and	 5mins	 reperfusion	 prior	 to	 45-min	 IRI	

caused	 significantly	 less	 histological	 damage	 with	 a	 median	 (and	 range)	 EGTI	

histology	score	of	2.5	(0	–	7)	compared	with	8	(5	–	9)	in	the	IRI	group	(p	<	0.005)	

(Figure	 4.7(A)).	 Mean	 serum	 creatinine	 at	 48h	 was	 40.31	 (±1.59)	 µmol/l	

compared	 with	 76.63	 (±13.36)	 µmol/l	 in	 the	 IRI	 group	 (p	 =	 0.023)	 (Figure	

4.7(B)).	The	mRNA	expression	of	NGAL	and	KIM-1	was	decreased	4-fold	and	1.5-

fold	respectively	in	the	IPC/IRI	group	compared	with	the	IRI	group	(p	=	0.0195	

and	p	<	0.0001	respectively)	(Figure	4.7(C)-(D)).	

	

4.2.4	MicroRNA	Profiling		

RNA	extracted	from	the	kidney	tissue	from	4	groups	(Sham,	IRI,	IPC/IRI	and	IPC	

Alone)	 was	 analysed	 by	 an	 external	 provider,	 Exiqon,	 for	 microRNA	 profiling	

experiments.	Hybridisation	microarray	(n	=	5	in	each	group)	and	NGS	(pooled	n	

=	1	for	each	group)	were	both	performed.	

4.2.4.1	Microarray	

Samples	 were	 analysed	 by	 Exiqon	 using	 the	 miRCURY	 LNATM	 microRNA	 Hi-

Power	Labelling	Kit	and	hybridised	on	 the	miRCURY	LNA	microRNA	Array	(7th	

Gen)	following	a	dual-colour	experimental	design.	It	was	designed	to	identify	and	

profile	 microRNAs	 that	 are	 differentially	 expressed	 in	 the	 different	 samples.	

Following	 this,	 unsupervised	 analysis	 was	 conducted	 using	 a	 method	 called	

principal	 component	 analysis	 (PCA).	 PCA	 is	 a	 method	 designed	 to	 reduce	 the	

dimensions	 of	 large	 data	 sets	 and	 explore	 the	 naturally	 arising	 sample	 classes	

based	on	the	expression	profile.	The	top	50	microRNAs	with	the	largest	variation	
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across	 all	 the	 samples	 were	 included	 allowing	 for	 a	 plot	 which	 shows	 an	

overview	 of	 how	 the	 samples	 cluster	 based	 on	 this	 variance.	 Any	 ‘biological’	

difference	between	the	samples	allows	for	a	primary	component	of	the	variation,	

which	 leads	 to	 separation	 of	 samples	 in	 different	 regions	 of	 the	 PCA	 plot	

according	to	their	underlying	biology.		

Figure	 4.8:	 Traditional	 Principal	 Component	 Analysis	 (PCA)	 from	 microarray	 profiling	

analysis	of	bilateral	sham,	IRI,	IPC	alone	and	IPC/IRI	rats	

RNA	extracted	from	kidney	tissue	of	bilateral	sham,	45min	IRI,	IPC	alone,	and	IPC/IRI	in	rats	at	

48h	after	reperfusion	was	profiled	for	microRNA	analysis	using	Exiqon	microarray.	This	shows	a	

traditional	 PCA	 for	 the	 top	 50	microRNAs	with	 the	 highest	 standard	 deviation.	 It	 provides	 an	

overview	of	how	the	samples	cluster	based	on	their	variance	and	leads	to	separation	of	samples	

in	different	regions	of	a	PCA	plot	corresponding	to	their	underlying	microRNA	biology.	

Numbers	of	animals	in	each	group:	Sham	(n=5),	IRI	(n=5),	IPC	alone	(n=5),	and	IPC/IRI	(n=5).	

	

The	 PCA	 plot	 (Figure	 4.8)	 shows	 that	 although	 there	 is	 more	 variation	 in	 the	

sham	group	samples,	overall	all	the	samples	cluster	according	to	their	biological	

group.	This	indicates	that	the	microRNA	differences	between	the	groups	are	the	
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largest	 contributors	 to	 variation.	 A	 heat	 map	 diagram	 was	 also	 made	 which	

shows	 the	 results	 of	 a	 two-way	 hierarchical	 clustering	 of	 microRNAs	 and	

samples	(Figure	4.9).	The	clustering	is	done	using	the	complete-linkage	method	

together	with	the	euclidean	distance	measure.	As	with	the	PCA	plot,	the	heat	map	

diagram	shows	that	the	samples	cluster	according	their	biological	group.		

	

	

Figure	 4.9:	 Heat	Map	 of	 unsupervised	 hierarchical	 clustering	 from	microarray	 profiling	

analysis	of	bilateral	sham,	IRI,	IPC	alone	and	IPC/IRI	rats	

The	heat	map	diagram	shows	the	results	of	a	two-way	hierarchical	clustering	of	microRNAs	and	

samples.	 Clustering	 was	 performed	 on	 the	 top	 50	 microRNAs	 with	 the	 highest	 standard	

deviation.	 Each	 row	 represents	 a	 microRNA	 and	 each	 column	 represents	 a	 sample.	 The	



	

	 	 	 	117	

microRNA	 clustering	 tree	 is	 shown	 on	 the	 left	 and	 the	 sample	 clustering	 tree	 on	 the	 top.	 The	

colour	 scale	 illustrates	 the	 relative	 expression	 level	 of	 a	microRNA	across	 all	 the	 samples.	Red	

colour	 represents	an	expression	 level	below	 the	mean	and	green	 colour	 represents	expression	

level	above	the	mean.	

	

From	the	microarray	dataset,	comparison	analyses	were	conducted	between	the	

different	groups.	Due	to	the	high	number	of	microRNAs	being	tested	in	parallel,	

there	 is	 a	 tendency	 towards	 high	 false	 positive	 results,	 therefore	 to	 overcome	

this,	 multiple	 statistical	 tests	 were	 conducted,	 including	 the	 ‘Benjamini	 and	

Hochberg	 multiple	 testing	 adjustment	 method’.	 From	 this,	 volcano	 plots	 were	

constructed.	 When	 comparing	 IRI	 and	 Sham	 groups,	 125	 unique	 microRNAs	

were	 identified	 as	 being	 significantly	 differentially	 expressed	 (27	 up-regulated	

and	98	down-regulated	in	IRI)	(Figure	4.10(A)).	An	arbitrary	cut	off	for	log	fold	

change	 of	 0.3	 and	 -0.3	 was	 used	 to	 narrow	 down	 the	 list	 of	 differentially	

expressed	 microRNAs	 to	 97	 (21	 up-regulated	 and	 76	 down-regulated	 in	 IRI).	

When	comparing	IRI	and	IPC/IRI	groups,	30	unique	microRNAs	were	identified	

as	 being	 significantly	 differentially	 expressed	 (16	 up-regulated	 and	 14	 down-

regulated	 in	 IPC/IRI)	(Figure	4.10(B).	When	applying	the	 fold-change	cut-off	of	

>0.3	and	<-0.3,	 this	 list	was	reduced	to	21	microRNAs	(11	up-regulated	and	10	

down-regulated	 in	 IPC/IRI).	 When	 comparing	 IPC	 alone	 and	 sham	 groups,	 no	

microRNAs	were	identified	as	being	significantly	differentially	expressed	(Figure	

4.10(C)).	
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Figure	4.10:	Volcano	Plots	from	Microarray	analysis	

RNA	extracted	from	kidney	tissue	of	bilateral	sham,	45min	IRI,	IPC	alone,	and	IPC/IRI	in	rats	at	

48h	after	reperfusion	was	sent	to	Exiqon	for	Microarray	quantification	to	profile	the	expression	

of	309	unique	microRNAs	(n=5	each).	Volcano	plots	of	statistical	significance	(adjusted	p-value)	

against	Log	fold	change	were	plotted	for	(A)	‘IRI	v	Sham’,	(B)	‘IPC/IRI	v	IRI’,	and	(C)	‘IPC	Alone’	v	

Sham’	demonstrating	the	most	differentially	expressed	microRNAs.	
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4.2.4.2	Next	Generation	Sequencing	(NGS)	

NGS	 was	 performed	 by	 Exiqon	 on	 RNA	 extracted	 from	 kidney	 tissue	 from	 4	

groups	(Sham,	IRI,	IPC/IRI	and	IPC	alone)	(pooled	n=1	for	each	group).	The	raw	

sequencing	 files	 were	 received	 from	 Exiqon,	 and	 subsequently	 mapped	 with	

normalised	 read	 counts	 calculated.	 The	normalised	 read	 counts	were	 analysed	

by	chi-square	and	pair-wise	comparison.	Chi-square	p-values	were	significant	for	

the	 majority	 of	 the	 data	 set.	 Hierarchical	 clustering	 was	 performed	 using	 the	

GENE-E	 software	 and	 marker	 selection	 used	 to	 interrogate	 the	 pair-wise	

comparisons.	In	order	to	interpret	the	data	set,	the	normalised	read	counts	were	

filtered	 to	exclude	values	below	1000,	 and	 the	data	 set	was	 filtered	 to	exclude	

fold	 change	 values	 of	 <1.5	 increase	 and	 decrease.	 The	 new	 data	 set	 was	 then	

tabulated	and	visualised	on	XY	plots.	When	comparing	IRI	and	Sham	groups,	37	

unique	 microRNAs	 were	 identified	 as	 being	 differentially	 expressed	 (18	 up-

regulated,	19	down-regulated	in	IRI)	(Figure	4.11(A)).	When	comparing	IRI	and	

IPC/IRI	 groups,	 12	 unique	 microRNAs	 were	 identified	 as	 being	 differentially	

expressed	(3	up-regulated,	9	down-regulated	in	IPC/IRI)	(Figure	4.11(B)).		
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Figure	4.11:	Pairwise	comparisons	from	Next	Generation	Sequencing	analysis	

RNA	extracted	from	kidney	tissue	of	bilateral	sham,	45min	IRI,	IPC	alone,	and	IPC/IRI	in	rats	at	

48h	after	reperfusion	was	sent	to	Exiqon	for	Next	generation	Sequencing	(NGS)	(pooled	samples	

n=1	 each).	 The	 raw	 sequencing	 files	 received	 were	 mapped	 and	 normalised	 read	 counts	

calculated,	which	were	 then	 filtered	 to	exclude	values	below	1000.	Hierarchical	 clustering	was	

performed	 with	 GENE-E	 software	 and	 marker	 selection	 used	 to	 interrogate	 the	 pair-wise	

comparisons.	 The	 new	 data	 was	 then	 filtered	 to	 exclude	 fold	 change	 values	 <1.5	 increase	 or	

decrease,	tabulated	and	visualised	on	the	above	XY	plots	(A	and	B	show	pair-wise	comparisons	of	

‘Sham	v	IRI’,	and	‘IRI	v	IPC/IRI’	respectively.	
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4.2.4.3	Comparison	of	Microarray	and	NGS	data	

The	microRNA	NGS	data	was	 compared	 to	 the	microarray	data	 to	 identify	 and	

narrow	 selection	 of	 candidate	 target	 microRNAs	 for	 further	 analysis.	 Shared	

regulated	 microRNAs	 were	 identified	 as	 17	 and	 4	 in	 ‘Sham	 v	 IRI’	 and	 ‘IRI	 v	

IPC/IRI’	comparisons	respectively	(Figure	4.12).		

	

	

Figure	4.12:	Comparison	of	Microarray	and	Next	Generation	Sequencing	analyses	

RNA	extracted	from	kidney	tissue	of	bilateral	sham,	45min	IRI,	IPC	alone,	and	IPC/IRI	in	rats	at	

48h	after	reperfusion	underwent	Exiqon	Microarray	(n=5	each)	and	Next	generation	Sequencing	

(NGS)	 analyses	 (pooled	 samples	 n=1	 each).	 Venn	 diagrams	 (A)	 and	 (B)	 show	 the	 overlap	

between	Microarray	 and	NGS	 of	 differentially	 expressed	microRNAs	 in	 ‘Sham	 v	 IRI’	 and	 ‘IRI	 v	

IPC/IRI’	respectively.	
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4.2.5	Target	microRNAs	

From	the	NGS	and	microarray	data	analyses,	the	4	microRNAs	that	overlapped	in	

the	 ‘IRI	 v	 IPC/IRI’	 analysis	 (Figure	 4.12	 (B))	 were	 further	 analysed.	 These	 4	

microRNAs	were	miR-21-5p,	miR-221-3p,	and	miR-222-3p	(up	regulated	 in	 IRI	

and	down	regulated	in	IPC/IRI),	and	miR-375-3p	(down-regulated	in	IRI	and	up-

regulated	in	IPC/IRI).	

4.2.5.1	Confirmatory	RT-qPCR	Analyses	

Confirmatory	RT-qPCR	analysis	was	then	conducted	in	all	of	the	samples	in	those	

4	groups,	showing	a	highly	significant	up	regulation	in	IRI	for	miR-21,	miR-221,	

and	 miR-222	 (Figure	 4.13(A)-(C)).	 Although	 in	 both	 the	 NGS	 and	 microarray	

analyses	 miR-375	 was	 down	 regulated	 in	 IRI	 and	 up	 regulated	 in	 IPC/IRI,	 no	

statistical	difference	was	found	between	the	groups	when	the	confirmatory	RT-

qPCR	was	performed	in	all	of	the	samples	for	miR-375	(Figure	4.13(D)).		
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Figure	4.13:	Effect	of	IPC	on	expression	of	miR-21,	-221,	-222,	and	-375	

Confirmatory	RT-qPCR	analyses	of	miR-21	(A),	-221	(B),	-222	(C),	and	-375	(D)	in	sham,	45min	

bilateral	 IRI,	 localised	pulsatile	 IPC	(3	cycles	of	2min	 ischaemia	and	5min	reperfusion)	prior	 to	

IRI,	and	localised	pulsatile	IPC	(3	cycles	of	2min	ischaemia	and	5min	reperfusion)	alone	without	

any	 subsequent	 IRI,	 in	 rats	 at	 48h	 after	 reperfusion.	 Expression	 is	 normalised	 to	miR-16	 and	

plotted	 as	mean	±	 SEM.	 Numbers	 of	 animals	 in	 each	 group:	 Sham	 (n=8),	 IRI	 (n=9),	 IPC	 alone	

(n=8),	and	IPC/IRI	(n=8).	Statistical	significance:	*	p<0.05,	**	p<0.01,	***	p<0.001.		

	

4.2.5.2	Laser	capture	micro	dissection	

Following	 this,	 the	 origin	 within	 the	 nephron	 of	 these	 target	 microRNAs	 was	

tested.	 For	 this,	 a	 technique	 called	 laser	 capture	 micro	 dissection	 (LCM)	 was	

utilised	to	dissect	the	following	4	sub-compartments	of	the	nephron:	glomeruli,	

proximal	 convoluted	 tubuli,	 distal	 convoluted	 tubuli,	 and	 vessels.	 RNA	 was	

extracted	and	RT-qPCR	analyses	performed	 for	 the	 target	microRNAs	 (miR-21,	

miR-221,	miR-222,	and	miR-375)	(Figure	4.14).		
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Figure	 4.14:	 Localisation	 of	 miR-21,	 -221,	 -222,	 and	 -375	 in	 different	 nephron	 sub-

compartments	

Renal	cortex	sections	(6	microns)	from	Sham,	45min	bilateral	IRI,	localised	pulsatile	IPC	(3	cycles	

of	 2min	 ischaemia	 and	 5min	 reperfusion)	 prior	 to	 IRI,	 and	 localised	 pulsatile	 IPC	 (3	 cycles	 of	

2min	 ischaemia	 and	 5min	 reperfusion)	 alone	without	 any	 subsequent	 IRI,	 in	 rats	 at	 48h	 after	

reperfusion	 were	 stained	 with	 H&E	 for	 laser	 capture	 micro	 dissection	 (LCM).	 LCM	 was	

performed	to	extract	4	nephron	sub-compartments:	Glomerular	(G),	Proximal	convoluted	tubuli	

(PCT),	Distal	convoluted	tubuli	(DCT),	and	Vessel	(V)	for	RNA	extraction	and	RT-qPCR	analysis	of	

miR-21	(A),	-221	(B),	-222	(C),	and	-375	(D).	Expression	is	normalised	to	miR-16	and	plotted	as	

mean	±	SEM.		

Numbers	of	animals	in	each	group:	Sham	(n=3),	IRI	(n=3),	IPC	alone	(n=3),	and	IPC/IRI	(n=3).	

Statistical	significance:	*	p<0.05,	**	p<0.01,	***	p<0.001.		

	

	

These	analyses	showed	that	these	microRNAs	were	largely	found	in	each	of	the	4	

sub-compartments	 of	 the	 nephron	 and	 that	 an	 increased	 amount	 of	 these	

microRNAs	was	expressed	following	IRI.	Broadly	speaking,	an	increased	amount	
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of	these	microRNAs	was	found	in	proximal	and	distal	convoluted	tubular	tissue	

compared	with	glomerular	and	vessel	 tissue.	 In	addition	to	 this,	 these	analyses	

showed	 that	 there	 was	 very	 little	 amount	 of	 miR-375	 expressed	 within	 all	 of	

these	tissues.	
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4.3	Discussion	

The	main	findings	of	this	chapter	are	that:	

(1) The	bilateral	 IRI	model	used	proved	 to	be	 robust	and	reliable	 in	 that	 it	

produced	 significant	 but	 non-fatal	 kidney	 injury,	 as	 shown	 by	 the	

histological	damage	seen	to	the	renal	cortex,	the	mRNA	synthesis	of	AKI	

markers,	 and	 functional	 assessment	 with	 measurement	 of	 serum	

creatinine.		

(2) An	IPC	regime	(Three	cycles	of	2mins	ischaemia	and	5mins	reperfusion)	

prior	to	45-min	IRI	was	found	to	be	beneficial	in	reducing	the	structural	

damage	to	the	kidney	and	improving	kidney	function.		

(3) Pulsatile	IPC	regimes	were	better	than	continuous	IPC	regimes	

(4) Kidney	IRI	in	the	rat	was	shown	to	have	a	unique	microRNA	signature	as	

demonstrated	by	2	separate	microRNA	profiling	techniques.		

(5) This	microRNA	signature	of	kidney	IRI	was	diminished	by	IPC,	suggesting	

that	it	is	an	injury	signature.	

(6) The	cellular	location	of	these	microRNAs	within	the	nephron	was	largely	

tubular	cells.	

	

The	45-min	bilateral	IRI	rat	model	used	in	these	experiments	has	been	shown	to	

be	a	well-established	 in	vivo	model	of	kidney	 injury/IRI	(230).	 It	was	shown	 in	

this	 chapter	 and	 the	 previous	 chapter	 and	 studies	 within	 the	 literature,	 that	

cross-clamping	of	the	renal	pedicle	for	45mins	produces	significant	but	not	fatal	

ischemic	injury.	In	these	chapter	4	experiments,	the	48h	reperfusion	period	led	

to	clear	histological,	 functional	and	molecular	changes,	which	are	 in	agreement	
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with	previous	studies.	Based	on	all	of	this,	the	renal	IRI	in	vivo	model,	as	utilised	

in	 this	 chapter,	 is	 a	 robust	 and	 reliable	 model	 of	 significant	 (and	 potentially	

reversible)	acute	kidney	injury.	

	

Several	IPC	regimes	were	tested	in	this	chapter’s	experiments.	Localised	regimes	

were	 selected,	 as	 they	 would	 be	 easily	 transferrable	 to	 clinical	 practice.	 All	 3	

continuous	regimes	conferred	no	benefit	and	in	fact	it	could	be	argued	that	they	

perhaps	 worsened	 the	 injury	 to	 the	 kidney,	 based	 on	 the	 higher	 serum	

creatinine,	 higher	 histological	 damage	 scores,	 and	 significantly	 increased	

expression	 of	 AKI	markers.	 This	 is	 agreement	with	 some	 literature,	 as	 studies	

have	reported	that	IPC	may	not	be	protective	(98,	99,	226).	Indeed,	these	results	

are	also	supported	by	the	findings	of	chapter	3,	where	a	similar	continuous	IPC	

regime	 (15mins	 ischaemia	 and	 20mins	 reperfusion	 prior	 to	 IRI)	 showed	 no	

benefit.	One	study	(96)	that	investigated	several	continuous	localised	regimes	in	

a	bilateral	IRI	model	(using	40mins	as	the	index	ischaemia	period)	identified	that	

the	best	 IPC	 regime	 that	 offered	both	 structural	 and	 functional	 protection	was	

15mins	ischaemia	and	10mins	reperfusion.	They	also	found	that	prolongation	of	

the	 reperfusion	period	 to	20	or	40mins	 abolished	 that	protective	 effect	 of	 IPC.	

This	 may	 explain	 the	 reason	 why	 the	 3	 continuous	 regimes,	 as	 used	 in	 this	

chapter’s	 experiments,	 offered	 no	 protection,	 as	 the	 reperfusion	 time	 was	

20mins.	Nevertheless,	one	study	by	Xu	et	al	identified	that	a	similar	IPC	regime	

(15mins	 ischaemia	 and	 20mins	 reperfusion)	 reduced	 IRI	 4	 days	 later	 (100).	

Although	the	IPC	regime	was	similar	to	the	one	employed	in	these	experiments,	

the	extended	period	of	4	days	between	IPC	and	IRI	may	be	an	important	factor	in	

understanding	the	difference	in	outcomes.		
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Several	studies	have	 found	IPC	to	be	effective	 in	protecting	against	renal	 IRI	 in	

various	 animal	 species	 (90-94),	 and	 this	 chapter	 identified	 some	 regimes	 that	

were	protective.	Overall,	the	pulsatile	regimes	as	delivered	in	this	chapter,	were	

beneficial	 in	 protecting	 the	 kidney	 from	 injury.	 In	 particular	 one	 of	 these	

pulsatile	 IPC	 regimes,	 which	 was	 chosen,	 conferred	 the	 most	 protection	 both	

structurally	 and	 functionally.	 This	 is	 supported	 by	 the	meta-analysis	 of	Wever	

and	colleagues	(95)	which	concluded	that	majority	of	the	studies	have	reported	

that	 IPC	 is	 associated	 with	 significantly	 improved	 histological	 kidney	 injury	

scores	and	renal	function	(serum	creatinine,	blood	urea	nitrogen)	following	IRI.	

It	may	be	that	the	shorter	reperfusion	time,	as	utilised	for	the	pulsatile	regimes	

in	this	chapter’s	experiments,	is	an	important	factor	in	determining	protection.		

	

Within	 these	 experiments,	 its	 unclear	 why	 pulsatile	 regimes	 may	 be	 better.	

However,	one	can	speculate	that	the	pulsatile	nature	of	the	IPC	regime	appears	

to	 set	 up	 the	 protective	 signal	 without	 itself	 predisposing	 to	 injury.	 A	 key	

question	 to	 address	 in	 future	 studies	would	be	how	 this	 signal	 is	 initiated	and	

propagated	to	confer	its	protection.	One	important	observation	that	can	be	made	

from	 these	 experiments	 is	 that	 the	 length	 of	 the	 ischaemia	 and	 reperfusion	

components	 of	 the	 IPC	 regime	 appear	 to	 be	 important,	 as	well	 as	 the	 interval	

between	 IPC	 and	 IRI.	 Within	 the	 literature,	 a	 great	 deal	 of	 variation	 in	 IPC	

protocols	 can	 be	 seen,	 and	 each	 of	 the	 approaches	 whether	 its	 localised	 or	

remote,	 early	 or	 late,	 and	 continuous	 or	 pulsatile,	 has	 been	 shown	 in	different	

studies	to	confer	protection	to	the	kidney.		
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Furthermore	 these	 experiments	 have	 shown	 that	 kidney	 IRI	 in	 the	 rat	 has	 a	

unique	 microRNA	 signature	 as	 confirmed	 by	 2	 separate	 profiling	 techniques	

(microarray	 and	 NGS).	 Within	 the	 literature,	 18	 in	 vivo	 studies	 have	 been	

conducted	that	have	evaluated	the	role	of	microRNAs	within	kidney	IRI.	Of	these,	

only	3	have	been	conducted	in	the	rat,	and	2	(within	mice)	have	investigated	IPC	

in	this	context.	Most	of	these	studies	(including	this	chapter’s	experiments)	have	

identified	 miR-21	 to	 be	 one	 of	 the	 most	 abundant	 and	 important	 microRNAs	

within	 kidney	 IRI,	 with	 significant	 role	 being	 shown	 in	 apoptosis	 (32,	 179),	

autophagy	 (185),	 IPC	 (100,	 175)	 and	 as	 a	 biomarker	 of	 kidney	 injury	 (172).	

Although	the	role	of	miR-21	still	remains	to	be	further	fully	elucidated,	evidence	

is	suggestive	of	a	protective	as	well	as	a	pathological	role	(228).	In	this	chapter’s	

experiments,	miR-21	expression	was	significantly	increased	in	IRI,	and	reduced	

by	 IPC,	 supporting	 its	 role	 as	 a	 reliable	 and	 useful	 biomarker	 of	 IRI-mediated	

kidney	injury.		In	other	studies	however,	miR-21	expression	is	increased	by	IPC.	

Xu	et	al	showed	that	15mins	IPC	protected	the	kidney	from	injury	4	days	later,	

termed	 delayed	 IPC	 (100).	 This	 delayed	 IPC	 up	 regulated	 miR-21	 and	 was	

thought	 to	 be	 protective	 due	 to	 the	 anti-apoptotic	 properties	 of	miR-21	 (100).	

Another	 study	 also	 showed	 up	 regulation	 of	 miR-21	 was	 associated	 with	 the	

protective	effects	of	Xenon	preconditioning	to	the	kidney	(175).	A	recent	study	

showed	that	delayed	IPC	associated	with	up	regulation	of	miR-21	protected	the	

kidney	from	injury	via	HIF-1α	by	inhibiting	its	target	‘prolyl	hydroxylase	domain	

protein	2’	(PHD2)	(231).	This	chapter	has	shown	that	IPC	as	employed	in	these	

experiments,	 reduced	 the	expression	of	miR-21.	 In	all	of	 the	above	studies,	 the	

IPC	 used	 has	 been	 delayed	 IPC,	 and	 the	 difference	 in	 those	 studies	 and	 this	

chapter’s	 experiments	 further	 proves	 the	 fact	 that	 differences	 in	 IPC	 regimes	
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have	 a	 significant	 impact	 at	 the	 molecular	 level.	 This	 could	 also	 explain	 why	

there	 is	 such	 a	 difference	 in	 results	 from	 various	 studies	 evaluating	 IPC.	 In	

addition	 to	 this,	 as	 the	 role	 of	 miR-21	 is	 being	 elucidated	 further	 in	 various	

studies,	 it	 is	 becoming	 clearer	 that	 it	 has	 a	 significant	 role	 in	 regulating	 both	

protective	and	pathological	molecular	pathways	(228).		

	

The	 microRNAs	 miR-221	 and	 miR-222,	 were	 also	 found	 to	 be	 significantly	

increased	in	IRI	and	decreased	by	IPC.	They	are	both	clustered	genes	that	have	

identical	 seed	 sequences	 and	 often	 work	 in	 synergy	 (232).	 Neither	 of	 these	

microRNAs	has	been	previously	reported	within	the	literature	in	the	context	of	

kidney	 IRI.	 Therefore	 it	 is	 a	 unique	 and	 novel	 finding	 of	 this	 chapter’s	

experiments.	 It	 has	 been	 reported	within	 the	 literature	 that	 these	microRNAs,	

when	elevated,	are	poor	prognostic	indicators	within	renal	carcinoma	(233),	and	

that	 they	 have	 an	 important	 role	 in	 regulation	 of	 vascular	 calcification	 (232).	

Future	 studies	 will	 need	 to	 investigate	 the	 role	 of	 these	 microRNAs	 (on	 their	

potential	 targets)	 within	 the	 context	 of	 kidney	 injury,	 and	 may	 involve	

manipulation	 of	 these	 microRNAs	 experimentally	 to	 better	 understand	 their	

function.	 Nevertheless,	 it	 can	 be	 safely	 concluded	 that	 the	 experiments	

undertaken	within	this	chapter	have	identified	a	unique	microRNA	profile	of	rat	

kidney	IRI,	some	of	which	is	novel	and	unique	to	the	literature.	

	

The	 microRNA	 profiling	 techniques	 used	 in	 this	 chapter’s	 experiments	 were	

optimal	 at	 the	 present	 time.	 Both	 ‘hybridisation	 microarray’	 and	 ‘NGS’	

techniques	were	used	to	profile	microRNAs	within	these	experiments,	 followed	

by	confirmatory	RT-qPCR	analyses	of	selected	microRNAs.	Using	both	profiling	
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techniques	 allowed	 for	 the	 detection	 of	 microRNAs	 that	 would	 be	 robust	 and	

reliable	 for	 further	 studies.	 Both	 techniques	 have	 their	 advantages	 and	

disadvantages.	 The	 hybridisation	 microarray	 is	 an	 established	 method	 which	

when	 compared	with	NGS	 is	 fairly	 low-cost	 and	 has	 high	 throughput	 in	 that	 a	

larger	number	of	 samples	 are	 able	 to	be	processed	per	day	 (234).	However,	 it	

has	lower	specificity	than	NGS	and	it	is	not	possible	to	identify	novel	microRNAs.	

NGS	 is	 able	 to	 achieve	 high	 accuracy	 and	 can	 distinguish	 between	microRNAs	

that	are	very	 similar	 in	 sequence,	 as	well	 as	novel	microRNAs	and	 is	 therefore	

more	 unbiased	 and	 arguably	 more	 robust	 (235).	 From	 this	 chapter’s	

experiments	and	previous	studies	(235,	236),	it	seems	that	although	there	is	an	

overlap	between	the	microRNAs	that	are	profiled	between	the	2	techniques,	this	

is	not	a	complete	overlap	and	there	are	clear	differences.	This	difference/lack	of	

complete	 overlap	 may	 be	 due	 to	 the	 fact	 that	 each	 of	 the	 approaches	 may	

preferentially	 select	 a	 specific	 cohort	 of	microRNAs.	 	 For	 the	 purposes	 of	 this	

chapter’s	experiments,	 the	microRNAs	 that	overlapped	between	 the	2	profiling	

methods	 in	 ‘IRI	 vs.	 IPC/IRI’	 groups	 were	 chosen	 as	 the	 candidate	microRNAs.	

Nevertheless,	 the	 other	 microRNAs	 identified	 with	 either	 of	 the	 techniques	

should	not	be	 ignored	and	may	play	an	extremely	 important	role	 in	kidney	IPC	

and	IRI.		

	

It	was	also	shown	in	this	chapter’s	experiments	that	the	microRNAs	were	found	

in	glomerular,	 tubular	(proximal	and	distal)	and	vascular	 tissue	components	of	

the	renal	cortex,	although	they	were	in	higher	concentration	within	tubular	cells.	

This	 would	 be	 in	 keeping	 with	 the	 fact	 that	 miR-21	 is	 likely	 to	 be	 an	 injury	

marker	that	is	released	following	injury	and	that	because	tubular	cells	are	more	
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prone	to	damage	following	IRI,	more	miR-21	is	released	by	them.	In	addition	to	

this,	 a	 therapeutic	 strategy	 of	 IPC	 has	 been	 shown	 to	 diminish	 this	microRNA	

signal,	 suggesting	 that	 it	 is	 indeed	 an	 injury	 signal.	 This	 raises	 the	 intriguing	

possibility	that	these	microRNAs	are	injury	biomarkers,	which	could	potentially	

be	 measured	 in	 the	 urine.	 Therefore	 one	 of	 the	 next	 questions	 that	 seem	

pertinent	to	investigate	is	the	role	of	microRNAs	as	biomarkers	of	kidney	injury	

in	the	clinical	context	of	kidney	transplantation.		
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Chapter	5	-	The	urinary	microRNA	expression	profile	of	
Delayed	Graft	Function	in	Human	Kidney	Transplantation	
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5.1	Introduction	

In	 the	previous	 chapter,	 an	 in	vivo	model	 of	 kidney	 IRI	was	 established,	 and	 it	

was	 shown	 that	 IPC,	 a	 therapeutic	 strategy,	 reduced	 kidney	 injury	 both	

structurally	 and	 functionally.	 In	 addition	 to	 this,	 it	 was	 shown	 that	 IRI	 has	 a	

unique	 microRNA	 profile	 and	 IPC	 changes	 that	 profile,	 suggesting	 that	

microRNAs	 are	 functionally	 important	 in	 the	 kidney’s	 response	 to	 ischaemic	

injury,	 and	maybe	useful	 as	biomarkers	of	 kidney	 injury.	The	next	objective	of	

this	 thesis	 was	 to	 evaluate	 the	 utility	 of	 these	 microRNAs	 as	 biomarkers	 of	

kidney	injury	in	the	context	of	transplantation.		A	biomarker	that	informed	about	

presence	and	extent	of	renal	IRI	would	have	significant	value	within	the	field	of	

kidney	 transplantation,	 as	 the	 increased	use	of	ECD,	DCD	and	marginal	donors	

has	 increased	 the	 impact	 of	 IRI	 and	 consequent	 risk	 of	 DGF	 and	 PNF	 (11-13).	

DGF	 is	 an	 important	 clinical	 consequence	 of	 IRI	 and	 patients	 with	 DGF	 have	

increased	 complications	 and	poorer	 long-term	outcomes	 (27-29).	 Identifying	 a	

(non-invasive)	 biomarker	 of	 the	 extent	 of	 IRI	 and	 hence	 DGF,	 will	 allow	

prediction	 of	 outcome	 and	 tailored	 management	 for	 transplant	 patients.	

Development	of	this	biomarker	will	also	allow	for	testing	of	potential	treatments	

to	attenuate	IRI	and	reduce	the	risk	of	DGF.		

	

Having	identified	a	profile	of	microRNAs	differentially	regulated	in	IRI	and	IPC	in	

Chapters	3	and	4,	and	knowing	that	microRNAs	are	tissue-specific,	and	stable	in	

many	 mediums	 including	 serum	 and	 urine,	 they	 seem	 supreme	 candidates	 as	

biomarkers.	Urine	is	an	excellent	bio	fluid	in	the	context	of	kidney	pathology,	as	

its	molecular	composition	has	been	shown	to	strongly	reflect	intra-renal	events	
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(237).	It	is	also	very	attractive	because	it	is	readily	available,	easy	to	collect	and	

hence	 allows	 for	 multiple	 large	 volume	 collections.	 This	 research	 group	 has	

developed	 a	 robust	 laboratory-based	 methodology	 for	 the	 isolation	 and	

quantification	 of	 urinary	 microRNAs	 (237,	 238).	 At	 the	 time	 of	 these	

experiments,	 no	 one	 had	 evaluated	 microRNAs	 as	 biomarkers	 of	 DGF	 in	 this	

context.	 Studies	 had	 evaluated	 urinary	 microRNAs	 as	 biomarkers	 of	 acute	

rejection,	 suggesting	 that	microRNA	changes	post-transplantation	can	be	easily	

detected	 in	 urine	 and	 provide	 clinically	 useful	 information.	 Therefore,	 to	

undertake	this	study,	 I	decided	to	measure	microRNAs	within	urine	samples	of	

patients	immediately	post-transplantation	in	a	cohort	of	patients	that	went	on	to	

develop	DGF	and	one	that	did	not.	

	

The	aims	of	this	chapter	were	to:	

(1) Determine	 the	 microRNA	 expression	 profiles	 in	 urine	 samples	 from	

kidney	transplant	patients	24	hours	post-transplantation;	

(2) To	assess	the	utility	of	these	data	to	discriminate	between	patients	with	

and	without	DGF.	
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5.2	Results	

Thirty-three	 consecutive	 kidney	 transplant	 recipients	 were	 recruited	 at	 the	

Cardiff	 Transplant	 Unit.	 Recruitment	 took	 place	 until	 there	 were	 at	 least	 10	

patients	 per	 group:	 Living	 donor	 kidney	 transplant	without	 DGF	 (LD-No	DGF)	

(n=10),	 Cadaveric	 donor	 kidney	 transplant	 without	 DGF	 (CD-No	 DGF)	 (n=10),	

and	Cadaveric	donor	kidney	transplant	with	DGF	(CD-DGF)	(n=13).	All	patients	

gave	 informed	 consent	 for	 samples	 to	 be	 collected	 into	 the	 All	 Wales	 Kidney	

Research	 Tissue	 Bank.	 Urine	 samples	 were	 collected	 on	 days	 1	 to	 5	 post-

transplant	 and	 RNA	 was	 extracted	 for	 profiling	 and	 RT-qPCR	 analysis	 of	

microRNAs.	

	

5.2.1	Patient	population	

Donor	 and	 Recipient	 demographics	 are	 described	 in	 Table	 5.1.	 The	 overall	

median	 age	 of	 the	 donors	 was	 48	 (range	 12	 –	 76).	 ‘L-No	 DGF’	 donors	 were	

younger	 than	 both	 cadaveric	 groups,	 as	 expected,	 although	 the	 oldest	 ‘LD-No	

DGF’	donor	was	66,	reflecting	the	current	practice	at	Cardiff	Transplant	Unit.	Of	

the	 deceased	 donors,	 11	 (48%)	were	 DBD	 and	 12	 (52%)	 DCD	 organs.	 Overall	

median	 cold	 ischaemic	 time	 (CIT)	was	636	minutes.	However,	 as	 expected,	 for	

the	 ‘LD-No	 DGF’	 group,	 the	 CIT	 was	 more	 than	 4	 times	 less	 than	 of	 both	 the	

cadaveric	 groups.	 The	 median	 length	 of	 stay	 in	 the	 hospital	 following	

transplantation	was	6,	7	and	19	days	for	‘LD-No	DGF’,	‘CD-No	DGF’,	and	‘CD-DGF’	

groups	respectively.	Two	patients	were	lost	to	follow	up	(moved	to	out	of	area)	

and	the	median	duration	of	follow	up	was	27	months	(range	24	–	29).		
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Table	5.1:	Donor	and	Recipient	Demographics	

Consecutive	kidney	transplant	patients	were	recruited	and	separated	into	3	groups:	living	donor	

kidney	 transplant	 without	 DGF	 (LD-No	 DGF);	 cadaveric	 donor	 kidney	 transplant	 without	 DGF	

(CD-No	DGF);	 and	 cadaveric	donor	kidney	 transplant	with	DGF	 (CD-DGF).	Donor	and	 recipient	

demographics	are	described	in	the	table	above.	
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5.2.2	Clinical	Outcomes	

There	was	no	patient	mortality	during	the	follow-up	period,	however	there	were	

4	graft	failures.	One	patient	had	a	dual	kidney	transplant	with	thrombosis	of	one	

of	his	kidney	grafts	at	2	days	postop	and	 failure	of	 the	other	graft	at	2	months	

postop;	 2	 failures	 were	 due	 to	 recurrence	 of	 primary	 disease	 at	 11	 and	 22	

months;	 and	 1	 failure	 was	 secondary	 to	 acute	 rejection	 at	 12	 months.	 Eight	

(24%)	 patients	 experienced	 at	 least	 one	 episode	 of	 acute	 rejection	 following	

their	transplant	within	the	first	year.	Rejection	rates	were	30%,	10%,	and	31%	in	

the	 ‘LD-No	 DGF’,	 ‘CD-No	 DGF’,	 and	 ‘CD-DGF’	 groups	 respectively	 (p	 =	 0.452).	

Median	(and	range)	eGFR	at	6	and	12	months	post-transplantation	was	58.5	(18	

–	94)	ml/min	and	56	(15	–	100)	ml/min.	There	was	no	significant	difference	in	

eGFR	during	the	follow	up	period	between	the	3	groups	(p	>	0.9)	(Figure	5.1).	

5.2.3	MicroRNA	profile	in	DGF	

Following	 RNA	 extraction,	 from	 urine	 samples	 collected	 at	 24h	 post-

transplantation,	a	Taqman	Low	Density	Array	(TLDA)	was	performed	to	quantify	

and	 determine	 the	 expression	 of	 381	 microRNAs	 (377	 unique	 and	 4	 control	

microRNAs)	in	a	“discovery	set”	comprising	urine	of	4	transplant	recipients	from	

‘LD-No	 DGF’	 group	 compared	 to	 4	 from	 ‘CD-DGF’	 group.	 This	 profiling	

quantification	 showed	 that	 microRNAs	 were	 differentially	 expressed	 and	 that	

majority	of	these	377	unique	microRNAs	profiled,	were	up-regulated	in	the	‘CD-

DGF	group’	compared	with	the	‘LD-No	DGF’	group	(Figure	5.2).		

	



	

	 	 	 	139	

	

	

Figure	5.1:	Estimated	glomerular	filtration	rate	post-transplantation	

Consecutive	 kidney	 transplant	 patients	 were	 recruited	 into	 3	 groups:	 Living	 donor	 kidney	

transplant	without	DGF	 (LD-No	DGF);	 Cadaveric	 donor	 kidney	 transplant	without	DGF	 (CD-No	

DGF);	 and	 Cadaveric	 donor	 kidney	 transplant	 with	 DGF	 (CD-DGF).	 The	 estimated	 glomerular	

filtration	rate	(eGFR)	(in	ml/min)	was	measured	using	the	Modification	of	Diet	in	Renal	Disease	

(MDRD)	 formula	at	 several	 time	points	post-transplantation,	 and	median	values	plotted	 in	 [A].	

Median	 eGFR	 (ml/min)	 at	 12	months	 was	 also	 plotted	 [B].	 The	 boxes	 indicate	 first	 and	 third	

quartiles	 and	 the	median,	 the	whiskers	 indicate	 the	maximum	 and	minimum	 of	 the	 data,	 and	

individual	values	are	shown	as	dots.	Number	of	patients	in	each	group:	LD-No	DGF	(n=10);	CD-

No	DGF	(n=10);	and	CD-DGF	(n=13).	
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Figure	 5.2:	 Volcano	 plot	 comparing	 microRNA	 expression	 in	 first	 pass	 urine	 from	

cadaveric	donors	 subsequently	developing	 versus	not	developing	delayed	 graft	 function	

(DGF)	

Taqman	 Low	Density	 Array	 (TLDA)	 quantification	was	 performed	 to	 profile	 the	 expression	 of	

377	microRNAs	in	urine	collected	24	hours	post-transplantation	in	a	“discovery	set”	comprising	

first	 pass	urine	of	 4	 recipients	 of	 living	donor	 kidneys	who	did	not	 subsequently	develop	DGF	

(LD-No	 DGF)	 compared	 to	 4	 recipients	 of	 Cadaveric	 (Deceased	 after	 Cardiac	 Death	 (DCD))	

kidneys	with	DGF	(CD-DGF).	Independent	profiling	was	performed	on	each	urine	sample	before	

normalisation	 to	 miR-cel-39.	 Relative	 expression	 was	 calculated	 by	 the	 delta	 delta	 Ct	 method	

(213).	 MicroRNAs	 that	 were	 undetectable	 in	more	 than	 1	 sample	 were	 excluded,	 leaving	 137	

microRNAs	displayed	in	this	plot.	A	volcano	plot	of	statistical	significance	(p-value)	against	fold-

change	 was	 plotted	 between	 ‘LD-No	 DGF’	 and	 ‘CD-DGF’.	 The	 most	 differentially	 expressed	

microRNAs	were	selected	as	candidates	for	further	analysis	(miR-9,	-10a,	-21,	-29a,	-221,	-429,	-

506,	and	-574-3p).		

	

Moreover,	 7	 microRNAs	 were	 significantly	 up-regulated	 and	 1	 microRNA	

significantly	 down-regulated,	 in	 the	 ‘CD-DGF’	 group	 when	 compared	 with	 the	

‘LD-No	DGF’	group.	These	8	microRNAs	that	were	most	differentially	expressed	

based	 on	 fold	 change	 and	 significance	 level	 were	 selected	 as	 candidates	 for	

further	analysis/validation	in	a	larger	sample	set.	
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5.2.4	Validation	of	target	microRNAs	

From	 the	TLDA	profiling	quantification,	8	microRNAs	 (miR-9,	 -10a,	 -21,	 -29a,	 -

221,	-429,	-506,	and	-574-3p),	which	were	most	differentially	expressed	in	‘CD-

DGF’	 group	 compared	with	 ‘LD-No	DGF’	 group	 24h	 post-transplantation,	were	

chosen	for	confirmatory	RT-qPCRs	in	all	patient	urine	samples.	MiR-9	was	down-

regulated	 and	 the	 remaining	 7	 microRNAs	 up-regulated	 in	 the	 ‘C-DGF’	 group	

compared	with	‘L-No	DGF’	group	in	the	TLDA	quantification.	However,	when	all	

of	the	patient	samples	were	analysed	for	confirmatory	RT-qPCR	analysis,	miR-9	

was	 also	 significantly	 up	 regulated	 in	 the	 ‘CD-DGF’	 group	 compared	with	 both	

‘LD-No	DGF’	and	‘CD-No	DGF’	groups.	Expression	of	miR-9,	-10a,	-29a,	-221,	and	-

429	was	 significantly	 up-regulated	with	 ≥5-fold	 change	 in	 the	 ‘CD-DGF’	 group	

compared	 with	 both	 ‘LD-No	 DGF’	 and	 ‘CD-No	 DGF’	 groups,	 and	 expression	 of	

miR-21	and	-574-3p	was	significantly	up	regulated	with	≥20-fold	change	in	the	

‘CD-DGF’	group	compared	with	both	‘LD-No	DGF’	and	‘CD-No	DGF’	groups,	at	24h	

post-transplantation	(Figure	5.3).	

	



	

	 	 	 	142	

	

Figure	5.3:	RT-qPCR	analysis	of	microRNAs	differentially	expressed	in	DGF		

MicroRNAs	 identified	as	differentially	expressed	 in	TLDA	profiling	 (Figure	32)	were	quantified	

by	 RT-qPCR	 in	 first	 pass	 urine	 from	 the	 full	 set	 of	 33	 patients,	 whose	 donor	 and	 recipient	

characteristics	 are	 described	 in	 Table	 4.	 MicroRNAs	 were	 quantified	 by	 Taqman	 individual	

microRNA	assay,	and	data	are	normalised	to	miR-Cel-39	before	calculation	of	relative	expression	

by	the	delta	delta	Ct	method	(213).	6	of	7	up	regulated	microRNAs	were	validated.	Mir-9,	found	
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to	 be	 down	 regulated	 by	TLDA	 analysis,	was	 actually	 significantly	 up	 regulated	 in	 the	 CD-DGF	

group	upon	this	confirmatory	RT-qPCR	analysis.	

Data	are	plotted	as	mean	±	SEM.	Number	of	patients	 in	each	group:	LD-No	DGF	(n=10);	CD-No	

DGF	(n=10);	and	CD-DGF	(n=13).	Statistical	significance:	*	p<0.05,	**	p<0.01,	***	p<0.001.	

	

5.2.5	Correlation	with	graft	function	

The	 expression	 of	 the	 target	 microRNAs	 identified	 from	 the	 TLDA	 profiling	

quantification	(miR-9,	-10a,	-21,	-29a,	-221,	-429,	-506,	and	-574-3p)	at	24h	post-

transplantation,	 was	 correlated	 with	 eGFR	 at	 6,	 12	 and	 24	 months	 post-

transplantation.	No	significant	correlation	was	identified	(R2	<0.1,	p	=	ns).	

	

5.2.6	MiR-21	expression	profile	in	the	1st	5	days	post-transplantation	

The	 above	 data	 has	 shown	 clear	 differences	 between	 the	 DGF	 and	 ‘No	 DGF’	

groups	at	24	hours	post-transplantation.	Following	this,	the	time	course	of	these	

changes	post-transplantation	was	assessed,	 as	 that	would	be	 relevant	 for	 their	

potential	 use	 as	 urinary	 biomarkers	 in	 this	 context.	 MiR-21	 was	 measured	

because	it	has	been	shown	to	be	an	important	microRNA	biomarker	of	IRI	from	

our	previous	studies	and	within	the	literature,	particularly	in	animal	studies	(32,	

100,	 228).	 The	 expression	 profile	 of	 miR-21	 was	 determined	 within	 urine	 of	

transplanted	 patients	 in	 the	 immediate	 5	 days	 post-transplantation	 in	 the	 3	

groups.	The	expression	of	miR-21	in	urine	was	significantly	up-regulated	in	the	

‘CD-DGF’	group	compared	with	both	the	‘No	DGF’	groups	during	the	1st	five	days	

post-transplantation	(p	<	0.05)	(Figure	5.4).	When	the	 ‘CD-No	DGF’	and	 ‘LD-No	

DGF’	 groups	 were	 compared,	 no	 significant	 difference	 in	 miR-21	 expression	

levels	was	found.		
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Figure	5.4:	The	urinary	expression	profile	of	miR-21	post-transplantation	

MicroRNAs	 identified	as	differentially	expressed	 in	TLDA	profiling	 (Figure	32)	were	quantified	

by	 RT-qPCR	 in	 first	 pass	 urine	 from	 the	 full	 set	 of	 33	 patients,	 whose	 donor	 and	 recipient	

characteristics	 are	 described	 in	 Table	 4.	 MicroRNAs	 were	 quantified	 by	 Taqman	 individual	

microRNA	assay,	and	data	are	normalised	to	miR-Cel-39	before	calculation	of	relative	expression	

by	the	delta	delta	Ct	method	(213).	7	up	regulated	microRNAs	were	validated,	of	which	miR-21	

was	 one	 of	 the	 most	 differentially	 expressed	 at	 24h	 post-transplantation.	 RT-qPCR	 was	

performed	for	miR-21	to	determine	its	expression	profile	in	the	first	5	days	post-transplantation.	

Data	are	plotted	as	mean	±	SEM.	Number	of	patients	 in	each	group:	LD-No	DGF	(n=10);	CD-No	

DGF	(n=10);	and	CD-DGF	(n=13).	Statistical	significance:	*	p<0.05,	**	p<0.01,	***	p<0.001.	

1 2 3 4 5
0

100

200

300

400

Day post-transplantation

m
iR

-2
1 

R
Q

 (2
-D

DC
t )

Cadaveric 
DGF

Cadaveric 
NO DGF

Live 
NO DGF

1 2 3 4 5
0

5

10

15

20

Day post-transplantation

m
iR

-2
1 

R
Q

 (2
-D

DC
t )

Cadaveric 
NO DGF

Live 
NO DGF

A

B



	

	 	 	 	145	

5.3	Discussion	

MicroRNAs	 are	 clearly	 emerging	 as	 important	 biomarkers	 in	 the	 context	 of	

kidney	 injury	 and	 transplantation.	 This	 chapter	 shows	 that	 the	 expression	 of	

miR-9,	 -10a,	 -21,	 -29a,	 -221,	 -429,	 and	 -574-3p	 in	 urine	 on	 day	 1	 post-

transplantation	is	predictive	of	DGF.	Moreover,	the	expression	profile	of	miR-21	

remained	strongly	predictive	of	DGF	in	the	first	5	days	post-transplantation.	

	

To	the	best	of	my	knowledge,	this	is	the	first	study	that	has	evaluated	the	urinary	

microRNA	 profile	 in	 transplant	 patients	 in	 the	 immediate	 post-transplantation	

period,	and	indeed	it	 is	 the	only	study	that	has	evaluated	the	microRNA	profile	

within	DGF.			

	

Development	of	these	microRNAs	into	non-invasive	biomarkers	of	injury	has	the	

potential	 for	 profound	 implications	 in	 the	 field	 of	 kidney	 transplantation.	

Predicting	 outcomes	 post-transplantation	 currently	 relies	 on	 clinical	

examination,	serum	creatinine	measurement,	and	invasive	biopsy	of	the	kidney	

graft.	 Blood	 and	 urine	 testing	 occur	 daily	 in	 all	 post-transplant	 patients,	 and	

invasive	 biopsy	 of	 the	 kidney	 graft	 is	 frequently	 employed	 in	 order	 to	

differentiate	DGF	 from	other	possible	causes	of	graft	dysfunction	such	as	acute	

rejection.	Biopsy	of	the	graft	is	an	invasive	procedure	that	is	uncomfortable	and	

painful	 for	the	patient,	and	can	cause	significant	bleeding	potentially	 leading	to	

graft	loss,	the	risk	of	which	is	increased	in	the	immediate	post-transplant	period	

(20).		
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MicroRNAs	detected	within	the	urine	largely	arise	from	the	urogenital	tract.	This	

is	 supported	 by	 recent	 work	 from	 our	 laboratory,	 which	 has	 shown	 that:	 (i)	

MicroRNAs	are	readily	detected	in	the	urine	of	kidney	failure	patients	(237);	(ii)	

Urinary	 microRNAs	 are	 very	 informative	 about	 important	 clinical	 changes	 in	

diabetes	(in	preparation);	and	(iii)	that	microRNAs	are	stabilised	in	the	urine	by	

Ago2	and	exosome	association	(212).	

	

There	is	accumulating	evidence	that	microRNAs	play	a	key	role	in	AKI	of	various	

aetiologies	including	IRI	((32,	164,	216)	and	Chapters	1-2).	MiR-21	in	particular	

has	been	shown	to	have	a	significant	role	in	kidney	IRI.	Tubular	cell	apoptosis	is	

a	 hallmark	 of	 kidney	 IRI,	 and	 although	 the	 full	 role	 of	 miR-21	 is	 yet	 to	 be	

determined,	it	has	been	attributed	to	anti-apoptotic	and	metabolic	functions	(32,	

227,	239).	 Indeed	we	have	shown	 in	Chapters	1	and	2,	 that	kidney	 IRI	 in	an	 in	

vivo	model	is	associated	with	significantly	increased	expression	levels	of	miR-21,	

supporting	 its	role	as	a	marker	of	 IRI-mediated	kidney	 injury	(240).	Consistent	

with	 this,	 in	 the	 present	 study	 miR-21	 expression	 levels	 within	 urine	 of	 DGF	

patients	 was	 significantly	 increased.	 Moreover,	 this	 expression	 level	 remained	

significantly	increased	compared	to	the	‘No	DGF’	groups	for	the	first	5	days	post-

transplantation.	In	addition,	miR-221	was	found	to	be	up	regulated	within	both	

DGF	(in	this	study)	and	IRI	in	the	rat	kidney	model	(Chapter	2).		

	

MicroRNAs	have	been	investigated	as	potential	biomarkers	in	determining	acute	

rejection	 in	 transplant	 patients	 (188-190).	One	 study	 in	 particular	 identified	 3	

microRNAs,	 which	 were	 dys-regulated	 in	 acute	 rejection:	 miR-10a	 was	 up	

regulated,	and	miR-10b	and	-210	down	regulated.	The	study	went	on	to	conclude	



	

	 	 	 	147	

that	urinary	miR-210	in	particular	was	able	to	discriminate	between	treated	and	

un-treated	 acute	 rejection	 (190).	 Indeed	 in	 the	 present	 study,	we	 also	 showed	

that	miR-10a	was	significantly	up	regulated	in	the	DGF	group.	This	supports	the	

fact	 the	 miR-10a	 may	 be	 a	 useful	 biomarker	 of	 AKI	 in	 transplant	 patients,	

however	non-discriminative	in	whether	the	AKI	is	secondary	to	DGF	or	rejection.	

Another	 study	 also	 identified	 urinary	 miR-10a	 as	 sensitive	 and	 specific	

biomarker	 of	 AKI	 in	 a	 mouse	 model	 of	 kidney	 damage	 secondary	 to	 IRI	 or	

stretozotocin-induced	 diabetes	 (174),	 further	 supporting	 evidence	 that	 it	 is	 a	

useful	biomarker	of	AKI	secondary	to	a	variety	of	pathologies.	

	

In	terms	of	clinical	outcomes	within	this	cohort	of	patients,	 it	 is	clearly	evident	

that	 overall	 this	 group	 of	 patients	 had	 a	 good	 graft	 function	 with	 no	 patient	

mortality	 during	 the	 follow-up	 period.	 There	 was	 no	 statistical	 difference	 in	

eGFR	 between	 the	 3	 groups,	 suggesting	 that	 even	 those	 patients	 with	 DGF	

recovered	well	with	eventual	good	function.	It	would	be	interesting	to	note	their	

graft	 function	over	a	 longer	period	of	 time.	 It	 is	perhaps	because	of	 such	good	

and	 indifferent	graft	 function	between	 the	groups	 that	 the	expression	 levels	of	

the	microRNAs	did	not	correlate	with	eGFR.	

	

Profiling	 techniques	 are	 continuously	 developing,	 and	 in	 the	 future	 it	 may	 be	

possible	to	apply	alternative	approaches	including	‘Next	Generation	Sequencing’	

(NGS)	 to	 profile	microRNAs	 in	 low	 abundance	 clinical	 samples,	 such	 as	 I	 have	

done	here.	However,	 a	previous	attempt	 to	do	 this	 for	RNA	 from	 laser	 capture	

micro	dissected	glomeruli	in	this	laboratory	was	not	successful,	despite	working	

collaboratively	 with	 one	 of	 the	 world-leading	 authorities	 in	 this	 technique	 (C	
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Carrington,	 personal	 communication).	 Therefore	 I	 selected	 the	 TLDA	

quantification	method	for	profiling	the	microRNAs	was	selected	in	this	cohort	of	

patients,	which	had	recently	been	optimised	in	this	laboratory	for	use	with	urine	

samples.	 TLDA	 quantification	 is	 a	 384-well	 plate	 format	 that	 allows	 the	

simultaneous	determination	of	the	expression	of	377	unique	microRNAs	(Human	

MicroRNA	Panel	Card	A	v.2.0).		

	

RNA	 is	 extracted	 from	 urine	 is	 in	 low	 quantities,	 and	 our	 current	 established	

methodology	 for	RNA	extraction	 from	urine	 requires	 the	use	 of	 a	 carrier	RNA,	

hence	making	 it	 difficult	 for	 an	 accurate	measurement	 of	 RNA	quantity	within	

the	 sample.	 Hence,	 miR-cel-39	 is	 included	 as	 a	 spike	 in	 control,	 allowing	

evaluation	of	extraction	efficiency	between	samples.	Choice	of	normaliser	is	also	

a	challenge	in	studies	such	as	this.	At	present	there	is	no	single	“gold	standard”	to	

overcome	 this	 limitation,	 and	my	 approach	 in	 this	 study/set	 of	 experiments	 is	

deemed	as	acceptable	practice	(241).	

		

One	 limitation	 of	 this	 study	 is	 the	 relatively	 small	 sample	 size	 within	 the	 3	

groups,	 increasing	 the	 possibility	 of	 a	 type	 2	 statistical	 error.	 Previous	 studies	

that	have	investigated	microRNAs	as	biomarkers	in	kidney	transplantation	have	

also	 had	 relatively	 small	 number	 of	 patients,	 with	 one	 study	 reporting	 their	

findings	with	n	of	3	in	each	group	(188).	The	substantial	fold-changes	and	high	

level	of	statistical	significance	that	I	have	found	in	this	dataset	is	suggestive	that	

these	findings	represent	real	and	important	differences	in	the	groups	that	have	

been	 studied.	 Furthermore,	 the	 link	 to	 outcome	 (risk	 of	 DGF)	 highlights	 the	

potential	 utility	 of	 these	 as	 novel	 biomarkers.	 It	will	 be	 important	 to	 evaluate	
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these	 further	 in	 larger	 sample	 cohorts,	 and	 to	 this	 end	 the	 laboratory	 is	 in	

discussion	with	the	tissue	banks	led	by	Prof	Neil	Sheerin	in	Newcastle	University	

and	Prof	Rutger	Ploeg	in	Oxford	University,	to	enable	this	next	phase	of	the	work.	

	

It	 is	 clearly	 evident	 that	microRNAs	 are	 emerging	 as	 important	 biomarkers	 in	

multiple	disease	processes	including	kidney	injury	and	transplantation.	Further	

refinement	of	 the	microRNA	data	reported	 in	 this	study	 is	needed	to	 identify	a	

non-invasive	biomarker	panel	that	discriminates	reliably	between	DGF	and	other	

pathologies,	 such	 as	 acute	 rejection.	 The	 identification	 and	 refinement	 of	 a	

biomarker	 that	 is	 specific	 to	 kidney	 injury	 in	 the	 context	 of	 transplantation	

would	 allow	 for	 its	 potential	 use	 in	 determining	 outcomes	 prior	 to	

transplantation.	Such	a	thing	would	so	advantageous	to	the	transplant	surgeon,	

as	given	the	fact	that	the	organs	used	are	increasingly	from	ECD,	DCD,	marginal	

and	 older	 donors,	 any	 methodology	 that	 allows	 for	 accurate	 prediction	 of	

outcomes	prior	to	their	implantation,	would	aid	in	the	decision	making	process	

of	usage	or	discard	and	selection	of	most	suitable	recipient.		
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Chapter	6	-	Can	microRNA-21	expression	in	hypothermic	
machine	perfusate	predict	early	outcomes	in	Clinical	Kidney	
Transplantation?	
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6.1	Introduction	
	

In	 the	 previous	 chapter,	 microRNAs	 were	 profiled	 in	 urine	 samples	 24h	 post	

kidney	transplantation	in	patients	subsequently	developing	DGF	and	in	those	not	

developing	DGF.	 The	 previous	 chapter’s	 findings	were	 that	 7	microRNAs	were	

significantly	 up	 regulated	 in	 DGF	 and	 were/are	 therefore	 potentially	 useful	

biomarkers	of	kidney	injury	in	this	context.	Moreover,	it	was	shown	that	miR-21,	

one	of	these	7	microRNAs,	was	not	only	a	highly	sensitive	biomarker	of	DGF	but	

that	 it	 remained	 significantly	 up	 regulated	 in	 the	 first	 five	 days	 post-

transplantation	within	 the	DGF	group.	 It	was	also	 shown	 that	miR-21	 is	highly	

expressed	in	the	kidney	and	prominent	in	the	signature	of	microRNAs	increased	

by	IRI	(Chapters	3	and	4).		

	

Currently	 in	 the	 field	 of	 kidney	 transplantation,	 with	 the	 increased	 usage	 of	

marginal	 and	ECD	organs,	 there	 is	 a	 real	 need	 for	 a	 reliable	measure	 of	 organ	

quality	 prior	 to	 transplantation.	 The	 lack	 of	 such	 a	 biomarker	 limits	 the	

capability	 of	 the	 transplant	 team	 to	 predict	 graft	 performance	 following	

transplantation,	 especially	 in	 the	 case	 of	 marginal	 donor	 kidneys.	 Such	 a	

biomarker	 would	 potentially	 be	 ‘revolutionary’	 as	 it	 would	 aid	 transplant	

surgeons	in	the	decision	making	process	of	organ	usage	or	discard,	and	selection	

of	the	most	suitable	recipient.		

	

Hypothermic	machine	perfusion	is	a	technique	used	to	preserve	organs	and	has	

been	 shown	 to	 reduce	 the	 incidence	 of	 DGF	 when	 compared	 with	 static	 cold	

storage	 (76).	 There	 is	 great	 interest	 at	 present	 in	 potential	measures	 of	 organ	
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quality	 that	 may	 be	 assayed	 from	 the	 hypothermic	 machine	 perfusate	 (HMP)	

solution,	 and	 that	may	 inform	 about	 the	 quality	 of	 the	 donated	 organ	 prior	 to	

making	 the	 decision	 to	 commit	 to	 transplantation.	 MicroRNAs	 have	 not	

previously	been	studied	in	this	context.	With	this	background	in	mind,	the	aims	

of	this	chapter	were:		

1. To	 determine	 whether	 microRNAs	 could	 be	 extracted	 from	 HMP	 by	

adapting	 the	 laboratory’s	 established	methods	 for	 RNA	 extraction	 from	

urine	samples.	

2. To	 evaluate	 miR-21	 quantification	 in	 HMP	 as	 a	 sentinel	 for	 outcome	

following	kidney	transplant.	
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6.2	Results	

6.2.1	Stability	of	microRNAs	in	HMP	samples	

To	test	the	stability	of	microRNAs	within	HMP,	samples	were	first	collected	from	

2	donor	kidneys	(1	DCD,	1	DBD)	placed	on	the	hypothermic	machine	perfusion	

system	at	1	h	after	perfusion.	Samples	were	centrifuged	at	2,000g	for	10	min	at	

4°C	at	0h	and	then	maintained	at	room	temperature,	with	aliquots	of	350μl	taken	

at	0,	6,	12	and	24h.	Aliquots	of	350μl	were	also	taken	at	these	time	points	from	

samples	not	subjected	to	centrifugation.	Samples	showed	stability	of	microRNA	

signal	 at	 time	 points	 up	 to	 6h	 following	 collection.	 Twelve	 to	 twenty-four	 h	

samples	 showed	 increasing	 variation	 in	 retained	 microRNA	 signal,	 consistent	

with	partial	degradation,	with	delay	of	>6	hours	between	sample	collection	and	

RNA	 extraction,	 but	 stability	 of	 endogenous	 microRNAs	 at	 earlier	 time	 points	

(Figure	6.1).	The	urine	development	work	done	in	this	laboratory	has	shown	the	

importance	 of	 a	 centrifugation	 step	 for	 preservation	 of	 microRNA	 signal	 (C	

Beltrami	 and	 K	 Simpson,	 personal	 communication)	 and	 I	 therefore	 evaluated	

microRNA	signal	 for	time	points	to	24h	following	HMP	sampling	both	with	and	

without	centrifugation.	However,	 for	 the	remainder	of	 the	experiments,	 I	chose	

to	 use	 the	 established	protocol,	which	 included	 centrifugation	 as	 an	 important	

step.		
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Figure	6.1:	MicroRNA	recovery	from	HMP	samples	

HMP	samples	were	taken	from	2	donor	kidneys	(1	DBD,	1	DCD)	placed	on	the	Life	Port®	at	1h	

after	perfusion.	Following	RNA	extraction	using	miRNeasy	Mini	Kits	(Qiagen),	RT-qPCR	analysis	

was	performed	for	miR-21	and	cel-miR-39	at	0,	6,	12	and	24h	at	room	temperature	for	samples	

which	were	centrifuged	at	0h,	24h	or	not	centrifuged.	Relative	expression	of	endogenous	miR-21	

and	 exogenous	 miR-cel-39	 were	 plotted	 over	 24h	 for	 1	 DBD	 [A,	 B]	 and	 1	 DCD	 [C,	 D]	 kidney	

respectively.	

	

6.2.2	Patient	Population	

Eleven	 ECD	 kidneys	 were	 placed	 on	 the	 Life	 Port®	 hypothermic	 machine	

perfusion	system	following	backbench	preparation	for	a	median	627mins	(range	

117	 –	 1027)	 using	 Kidney	 Preservation	 Solution-1	 (KPS-1)	 (Organ	 Recovery	

Systems,	 Chicago,	 USA),	 prior	 to	 transplantation	 at	 Cardiff	 Transplant	 Unit	

(University	 Hospital	 of	 Wales,	 Cardiff).	 HMP	 samples	 were	 taken	 1h	 after	

perfusion.	 HMP	 samples	 were	 centrifuged	 at	 2,000	 g	 for	 10	 mines	 at	 4°C	 to	

remove	 debris.	 The	 supernatant	 was	 divided	 into	 350μl	 aliquots	 that	 were	
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stored	 at	 -80°C	 prior	 to	 RNA	 extraction.	 RT-qPCR	 was	 performed	 for	

quantification	of	miR-21,	and	correlated	to	clinical	outcomes.	

	

Table	6.1:	Donor	and	Recipient	Demographics	

Eleven	 ‘Extended	 Criteria	 Donor’	 (ECD)	 and	 ‘Donation	 after	 Circulatory	 Death’	 (DCD)	 kidneys	

were	placed	on	Life	port®	(a	hypothermic	machine	perfusion	system)	prior	to	transplantation.	

Donor	and	recipient	demographics	are	described	in	the	table	above.	
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Ten	of	the	donors	were	DCD	organs	and	one	DBD	organ.	For	the	10	DCD	kidneys,	

the	agonal	time	(withdrawal	of	treatment	to	cold	perfusion)	and	WIT1	(cardiac	

arrest	to	cold	perfusion)	were	27mins	(range	18	–	155)	and	13mins	(range	9	–	

18)	respectively.	Details	of	the	donor	and	recipient	demographics	are	described	

in	Table	6.1.	None	of	the	donors	were	diabetic	and	4	had	hypertension.	None	of	

the	recipients	were	lost	to	follow	up	and	the	median	duration	of	follow	up	was	

33	 months	 (range	 12	 –	 37).	 None	 of	 the	 patients	 had	 a	 positive	 cross-match,	

donor	specific	antibodies	or	any	previous	transplants.	

	

6.2.3	Hypothermic	Machine	Perfusion	Characteristics	

The	 pre-set	 perfusion	 pressure	 on	 the	 Life	 Port®	 hypothermic	 machine	

perfusion	system	was	30mmHg.	Renal	flow	and	resistance	rates	were	measured	

as	 follows.	 Mean	 (±	 SEM)	 start	 flow	 rate	 across	 the	 cohort	 was	 72.3	 (±	 8.6)	

ml/min.	When	compared	with	1h	(127.4	(±	14.9)	ml/min)	and	end	of	perfusion	

(117.8	 (±	 14.5)	ml/min)	 flow	 rates,	 the	 difference	was	 found	 to	 be	 significant	

(p=0.005	 and	 p=0.022	 respectively)	 (Figure	 6.2	 [A]).	Mean	 (±	 SEM)	 resistance	

was	 0.432	 (±	 0.07)	 mmHg/ml/min	 at	 start	 of	 flow,	 when	 compared	 with	 1h	

(0.246	 (±	0.04)	mmHg/ml/min)	 and	 end	of	 perfusion	 (0.215	 (±	0.04)	ml/min)	

resistance	rates,	the	difference	was	found	to	be	significant	(p=0.014	and	p=0.032	

respectively)	 (Figure	 6.2	 [B]).	 	 In	 agreement	 with	 previous	 reports	 (242),	 we	

found	increased	flow	rate	and	decreased	resistance	pressure	in	the	first	hour	of	

perfusion,	with	apparent	steady	state	function	thereafter.	The	1	h	time	point	was	

therefore	 selected	 as	 the	 first	 point	 at	 which	 the	 flow	 rate	 and	 resistance	
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pressure	were	stable,	and	also	represented	a	time	that	was	relevant	in	informing	

organ	usage	decisions.	

	

Figure	6.2:	Hypothermic	Machine	Perfusion	Flow	Rates	

Eleven	 ‘Extended	 Criteria	 Donor’	 (ECD)	 and	 ‘Donation	 after	 Circulatory	 Death’	 (DCD)	 kidneys	

were	placed	on	Life	port®	(a	hypothermic	machine	perfusion	system)	prior	to	transplantation.	

Flow	rates	(ml/min)	[A]	and	resistance	rates	(mmHg/ml/min)	[B]	were	measured	at	hourly	time	

points	until	the	end	of	perfusion.	Data	were	plotted	as	mean	±	SEM.	

Statistical	significance:	*	p<0.05,	**	p<0.01,	***	p<0.001.	
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6.2.4	Clinical	Outcomes	

There	was	1	graft	 failure	at	33	months	and	1	patient	death	(with	a	 functioning	

graft)	at	21	months.	One	patient	experienced	an	episode	of	acute	rejection	within	

the	 first	 year	 following	 transplant.	 Median	 eGFR	 at	 6	 months	 and	 12	 months	

post-transplantation	was	40	 (22	–	99)	and	41	 (22	–	100)	ml/min	 respectively.	

Nine	(82%)	patients	had	DGF.	

	

6.2.5	MiR-21	Expression	in	HMP	

MiR-21	expression	levels	from	HMP	samples	taken	from	11	ECD	kidneys	placed	

on	 the	 hypothermic	 machine	 perfusion	 system	 after	 1h	 of	 perfusion	 were	

correlated	 with	 eGFR	 at	 6	 and	 12	months	 post-transplantation.	 Individuals	 in	

this	group	exhibited	little	change	in	eGFR	over	this	period,	consistent	with	their	

clinical	stability.	The	expression	levels	of	miR-21	showed	significant	correlation	

with	eGFR	of	the	kidney	graft	at	6	and	12	months	post-transplantation	(R=-0.71,	

p=0.014;	and	R=-0.68,	p=0.021	respectively	(Figure	6.3).		
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Figure	6.3:	Correlation	of	miR-21	Expression	in	HMP	with	eGFR	

Following	 RNA	 extraction	 using	 miRNeasy	 Mini	 Kits	 (Qiagen)	 from	 Hypothermic	 machine	

Perfusate	 (HMP)	 samples	 from	 11	 ECD	 DCD	 kidneys	 placed	 on	 Life	 port®	 (a	 hypothermic	

machine	perfusion	system)	at	1	h	after	perfusion,	RT-qPCR	analysis	was	performed	for	miR-21.	

The	expression	 levels	of	miR-21	were	normalised	 to	cel-miR-39	and	correlated	with	eGFR	at	6	

months	[A]	and	12	months	[B]	post-transplantation.		
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6.3	Discussion	

The	data	presented	 in	 this	 chapter	 show	 that	microRNAs	can	be	extracted	and	

measured	reproducibly	in	HMP	fluid	samples,	and	that	the	expression	of	miR-21	

in	 HMP	 at	 1h	 after	 perfusion	 of	 kidneys	 placed	 on	 the	 hypothermic	 machine	

perfusion	system	correlates	significantly	with	graft	function	at	6	and	12	months.	

This	 is	 a	 novel	 approach	 to	 pre-transplant	 organ	 assessment.	 Previous	 studies	

have	 shown	 that	 hypothermic	 machine	 perfusion	 significantly	 improves	

outcomes	 when	 compared	 with	 static	 cold	 storage	 (76,	 77),	 and	 the	 data	

presented	 here	 also	 confirm	 good	 outcomes	 from	 hypothermic	 machine-

perfused	kidneys.	The	Life	Port®	hypothermic	machine	perfusion	system	is	one	

such	approach	in	common	current	usage	across	transplant	centres.		

	

This	study	analysed	10	DCD	and	one	DBD	kidneys.	Increased	use	of	ECD	organs	

has	 increased	risk	of	poor	outcome	due	to	extensive	damage,	and	an	 increased	

discard	rate	that	exacerbates	the	problem	of	donor	shortage.	A	reliable	method	

to	objectively	assess	organ	viability	is	therefore	needed,	particularly	for	DCD	and	

ECD	donors,	prior	to	transplantation.	The	ideal	pre-transplant	organ	assessment	

test	 would	 be	 a	 simple,	 sensitive	 and	 reliable	 screening	 method	 to	 measure	

organ	 viability	 that	 accurately	 predicts	 graft	 function.	 I	 believe	 that	 such	 a	

biomarker	 (e.g.	 miR-21)	 would	 be	 extremely	 informative	 to	 the	 transplant	

surgeon	in	the	aiding	of	the	decision-making	process	for	recipient	selection	and	

guidance	of	appropriate	post-transplant	management.	This	 is	timely	at	present,	

because	in	the	UK,	the	number	of	ECD	donors	is	increasing,	with	one-third	of	all	

UK	donors	 being	60	 years	 or	 older	 (10).	 In	 addition	 to	 this,	 identifying	 a	 non-
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invasive	 biomarker	 of	 the	 extent	 of	 IRI	 may	 enable	 stratified	 management	

approaches	 for	 transplant	 patients,	 and	 testing	 of	 potential	 treatments	 to	

attenuate	IRI	and	reduce	the	risk	of	DGF	and	PNF.	

	

To	 the	 best	 of	 my	 knowledge,	 this	 is	 the	 first	 study	 that	 has	 evaluated	 the	

microRNA	expression	 in	HMP	samples	 in	kidney	 transplantation	and	 therefore	

represents	a	novel	approach	to	pre-transplant	organ	assessment.	One	additional	

study	has	evaluated	 the	profile	of	microRNAs	 in	 liver	 transplantation	 (243).	 In	

this	 study,	 microRNA	 evaluation	 was	 performed	 in	 perfusate	 flushes	 from	

cadaveric	 donors,	 and	 the	 investigators	 found	 that	 microRNAs	 were	

differentially	 expressed	 between	 DBD	 and	 DCD	 liver	 transplants,	 and	 that	 the	

expression	 levels	 were	 predictive	 of	 ischemic-type	 biliary	 tract	 lesions	 post-

transplantation.	 Organ	 preservation	 or	 perfusion	 fluid,	 whether	 HMP	 or	

perfusate	 flushes,	may	 thus	provide	a	valuable	pre-transplantation	source	with	

which	 to	 identify	 biomarkers	 of	 organ	 viability.	 The	 findings	 described	 in	 this	

chapter	 demonstrate	 that	 microRNA	 analysis	 of	 machine	 perfusate	 may	 have	

value	in	predicting	outcomes	following	kidney	transplantation.		

	

The	primary	limitation	of	this	study	is	the	small	sample	size	restricted	to	older	

ECD	 kidneys	 from	 a	 single	 centre,	 using	 the	 same	 tightly	 defined	 perfusion	

protocol	 for	 the	 kidney	 and	 sample	 acquisition	 and	 profiling	 approach	 for	 all	

samples.	 I	 have	 demonstrated	 the	 stability	 and	 reproducibility	 of	 microRNA	

analysis	in	machine	perfusate	measured	at	1h	post-perfusion,	together	with	the	

capability	of	miR-21	in	this	study	to	act	as	a	sentinel	for	graft	function.	In	order	

for	these	findings	to	be	more	generally	applicable,	it	will	be	important	for	them	
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to	be	tested	in	larger	cohorts	collected	from	multiple	centres,	reflecting	the	full	

range	of	clinical	practice	 in	terms	of	kidneys	selected	for	hypothermic	machine	

perfusion.		

	

This	 data	 clearly	 supports	 the	 fact	 that	microRNAs	 are	 becoming	 increasingly	

important	 as	biomarkers	 in	multiple	disease	processes	 including	kidney	 injury	

and	 transplantation.	 A	 larger	 cohort	 of	HMP	will	 be	 required	 to	 validate	 these	

findings,	 and	 further	 define	 the	 capability	 of	 perfusate	 miR-21	 to	 predict	

significant	AKI	prior	to	transplantation.	

	

In	 conclusion,	 in	 the	 era	 of	ECD	kidneys	 a	 reliable	measure	of	 organ	quality	 is	

urgently	needed	and	this	chapter	suggests	that	miR-21	may	be	such	a	marker.	
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Chapter	7	–	General	Discussion	
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The	main	aspect	of	this	thesis	was	to	study	kidney	ischaemia	reperfusion	injury	

(IRI)	in	the	context	of	transplantation.	At	present	there	is	a	real	shortage	in	the	

supply	 of	 organ	 donors,	 leading	 to	 the	 increased	 use	 of	 DCD	 and	 ECD	 donors,	

which	have	 increased	 IRI.	 IRI	 is	 arguably	 the	most	 important	 cause	of	 delayed	

graft	 function	 (DGF),	 a	 form	 of	 acute	 kidney	 injury	 (AKI)	 in	 the	 transplanted	

kidney.	DGF	can	lead	to	many	problems,	 including	a	higher	risk	of	graft	 failure.	

Understanding	 the	 underlying	mechanisms	 of	 IRI	 and	 its	 potential	 treatments,	

such	as	 ischaemic	preconditioning	(IPC),	 is	key.	 In	addition	 to	 this,	microRNAs,	

recently	described	post-transcriptional	regulators	of	gene	expression,	have	been	

shown	to	be	important	in	many	physiological	and	pathophysiological	situations,	

and	as	potential	biomarkers.	Therefore,	with	this	background	in	mind,	the	aims	

and	objectives	of	this	thesis	were	firstly,	to	understand	the	role	of	microRNAs	in	

IRI	 and	 IPC	 by	 using	 an	 in	 vivo	 model	 of	 AKI,	 and	 secondly,	 to	 utilise	 this	

knowledge	 in	 order	 to	 determine	 the	 utility	 of	 microRNAs	 as	 non-invasive	

biomarkers	of	IRI	in	the	context	of	clinical	kidney	transplantation.		

	

At	the	time	of	starting	my	thesis,	 this	department	had	an	established	unilateral	

IRI	model	of	AKI	in	the	rat.	 I	used	this	model	to	test	one	IPC	regime,	which	did	

not	reduce	injury	to	the	kidney	(Chapter	3).	One	of	the	major	limitations	of	this	

set	of	experiments	was	that	there	was	that,	given	the	unilateral	injury,	there	was	

no	alteration	in	measured	excretory	kidney	function.	Therefore,	for	the	next	set	

of	experiments	(Chapter	4),	 I	adapted	 this	model	 to	bilateral	kidney	 IRI.	 I	used	

this	bilateral	IRI	model	to	test	various	IPC	regimes,	with	the	aim	of	identifying	an	

IPC	 regime	 that	 would	 be	 beneficial.	 I	 elected	 to	 test	 varying	 continuous	 and	

pulsatile	 regimes	 systematically	 because	 of	 the	 variety	 of	 outcomes	 (beneficial	
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and	 not)	 reported	 by	 other	 investigators.	 Having	 tested	 6	 different	 regimes,	 I	

showed	that	pulsatile	 IPC	regimes	were	beneficial	and	that	continuous	regimes	

were	 not	 (similar	 to	 the	 one	 utilised	 in	 the	 unilateral	 IRI	 model).	 Moreover	 I	

showed	that	one	pulsatile	regime	was	 the	most	beneficial	 in	reducing	 injury	 to	

the	kidney.	I	tested	IPC	regimes	that	were	localised	to	the	kidney	and	‘early’	i.e.	

the	 IPC	 was	 conducted	 only	 minutes	 prior	 to	 the	 IRI.	 There	 are	 clearly	 more	

studies	 that	 can	 be	 undertaken	 in	 this	 model.	 One	 of	 them,	 currently	 being	

undertaken	by	a	PhD	student	 following	on	from	this	work,	 is	 to	test	the	role	of	

remote	 IPC	 (hind	 limb	 ischaemia	 prior	 to	 IRI).	 Other	 future	 studies	 could	

evaluate	the	effects	of	‘late’	IPC,	i.e.	perform	the	IPC	days	before	the	IRI.		

	

The	rat	was	used	as	the	animal	model,	as	it	was	already	established	as	the	in	vivo	

model	 of	 choice	 with	 robust	 results	 from	 previous	 studies	 and	 the	 work	 of	 a	

previous	MD	student.	Rats	have	been	successfully	used	 in	many	animal	studies	

investigating	kidney	IRI.	There	are	obvious	advantages	to	using	a	rat	over	other	

animals	 such	as	mice,	 as	well	 as	 limitations.	One	of	 the	advantages	 is	 that	 it	 is	

easier	to	operate	on,	as	its	larger,	and	more	blood	volume	can	be	taken.	However,	

an	 important	 limitation	 is	 that	 it	 is	 relatively	 more	 difficult	 to	 genetically	

manipulate	within	 the	rat.	Whereas,	with	mice,	 it	 is	much	easier	 to	manipulate	

their	underlying	genetics	and	there	is	more	variety	of	genetically	modified	mice	

than	 rats.	 Therefore	 a	 useful	 follow	 on	 project	 from	 this	 thesis	 would	 be	 to	

develop	 a	 mouse	 model	 of	 AKI,	 allowing	 for	 genetic	 manipulation	 of	 the	

microRNAs	 identified	 from	 this	 thesis.	 Other	 alternative	 animals	 that	 could	 be	

used	can	be	pigs	for	example,	their	obvious	advantage	being	increased	similarity	
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to	humans	in	terms	of	the	pathology	and	response	to	treatments,	however	with	

the	big	limitation	of	needing	additional	infrastructure	and	resources.		

	

One	 of	 the	 most	 important	 factors	 when	 selecting	 a	 model	 of	 IRI	 is	 length	 of	

ischaemia	and	reperfusion.	In	this	thesis,	I	chose	to	use	a	relatively	acute	model	

of	 AKI,	 and	 it	 showed	 to	 be	 an	 easily	 reproducible,	 robust	 and	 reliable	 in	vivo	

model	of	AKI.	However,	there	is	evidence	that	IRI	can	cause	kidney	fibrosis	in	the	

long-term,	and	therefore	a	model	of	AKI	with	a	longer-term	follow	up	would	be	

useful	in	our	understanding	of	the	role	of	microRNAs	in	this	context,	in	particular	

miR-21,	which	has	been	implicated	in	fibrosis.		

	

Having	 identified	an	 IPC	 regime	 that	was	beneficial,	within	a	 robust	and	easily	

reproducible	 in	 vivo	 model	 of	 AKI,	 the	 next	 objective	 was	 to	 profile	 the	

microRNAs	within	 the	kidney	 in	 this	model.	 I	 did	 this	by	using	a	hybridisation	

microarray	and	NGS,	the	2	most	well	established	methods	of	small	RNA	profiling	

currently	available.	These	experiments	demonstrated	 that	kidney	 IRI	 in	 the	rat	

has	 a	 unique	 microRNA	 signature,	 which	 is	 diminished	 by	 IPC.	 Both	 of	 these	

profiling	methods	showed	overlap	between	key	microRNAs,	which	 I	 confirmed	

in	all	of	the	samples	using	RT-qPCR.	Nevertheless,	a	lot	of	microRNAs	that	were	

identified	 by	 these	 techniques	 did	 not	 overlap	 between	 the	 two.	 A	 possible	

explanation	for	this	is	that	the	two	techniques	are	biased	towards	different	pools	

of	 microRNAs,	 for	 example,	 there	 may	 be	 a	 preferential	 hybridisation	 of	

sequences	or	microRNAs	of	certain	GC	content	 to	 the	arrays.	 It	 is	possible	 that	

these	microRNAs,	which	were	not	tested	further	in	this	thesis,	may	well	play	an	
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extremely	important	part	in	IRI	and	IPC,	and	therefore	a	potential	future	project	

would	be	to	determine	their	role	in	IRI.	

	

By	showing	that	IRI	has	a	unique	microRNA	signature	that	is	diminished	by	IPC,	

it	is	likely	that	it	represents	an	injury	signature.	It	is	also	most	likely	the	case	that	

these	microRNAs	are	 functionally	 very	 important	 in	 IRI.	 In	order	 to	determine	

this	 question,	 further	 detailed	 analyses	 needs	 to	 be	 undertaken,	 that	 would	

identify	 potential	 targets	 of	 these	 microRNAs.	 A	 provisional	 target	 prediction	

analysis	 of	microRNAs	 identified	 from	 this	 thesis	 (miR-21,	miR-221,	 and	miR-

222)	 in	 Ingenuity	 Pathway	 Analysis	 (IPA)	 software	 (performed	 by	 Professor	

Donald	Fraser)	has	 identified	a	complex	network	of	 intracellular	pathways	and	

targets	 that	 overlap,	 suggesting	 an	 underlying	 functional	 network	 that	 merits	

further	 investigation	 (Appendix	 4).	 However,	 such	 microRNA	 target	 and	

functional	 prediction	 remains	 inexact	 and	 much	 work	 will	 be	 needed	 to	

determine	 the	 functional	 importance	 of	 these	microRNAs	 in	 the	 context	 of	 IRI	

and	IPC.	On-going	work	in	this	laboratory	to	address	this	includes	a	deeper	IPA	

analysis	and	proteomics	studies.	

	

Another	aspect	to	consider	 is	 that	the	kidney	 is	a	complex	organ	with	different	

cells.	In	order	to	address	this,	laser	capture	micro	dissection	(LCM)	was	used.	It	

was	shown	that	the	microRNAs	were	found	in	various	tissue	components	of	the	

renal	cortex,	with	a	higher	concentration	within	tubular	cells,	in	keeping	with	the	

fact	that	they	may	be	markers	released	following	injury	and	that	because	tubular	

cells	are	more	prone	to	damage	following	IRI,	more	microRNAs	are	released	by	
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them.	Therefore,	 I	 chose	 to	 investigate	 the	role	of	microRNAs	as	biomarkers	 in	

the	context	of	human	kidney	transplantation	(Chapters	5	and	6).		

	

I	also	showed	that	microRNAs	measured	in	urine	are	highly	predictive	of	DGF	in	

kidney	 transplant	 patients	 (Chapter	 5).	 I	 profiled	microRNAs	 in	 urine	 samples	

one	 day	 post-kidney	 transplantation,	 in	 patients	 subsequently	 developing	 DGF	

and	in	those	not	developing	DGF,	using	a	TLDA	array.	I	found	7	microRNAs	were	

significantly	up	regulated	in	DGF	and	therefore	potentially	useful	biomarkers,	in	

particular	miR-21,	which	remained	significantly	up	regulated	in	DGF	within	the	

first	 5	 days	 post-transplantation.	 This	 is	 the	 first	 study	 that	 has	 evaluated	 the	

urinary	microRNA	 profile	 in	 kidney	 transplant	 patients	 in	 the	 context	 of	 DGF.		

More	 work	 needs	 to	 be	 done	 in	 order	 to	 differentiate	 the	 microRNA	 profile	

between	DGF	and	other	forms	of	AKI	post-transplantation,	such	as	rejection,	as	

development	 of	 these	 microRNAs	 into	 non-invasive	 biomarkers	 of	 DGF	 may	

avoid	the	need	for	invasive	biopsy	of	the	kidney	graft.	This	is	a	future	project	that	

I	am	planning	to	undertake.		

	

One	 limitation	of	Chapter	5’s	work	was	 the	 relatively	 small	 sample	 size	within	

the	 groups,	 although	 previous	 studies	 that	 have	 investigated	 microRNAs	 as	

biomarkers	in	kidney	transplantation	have	also	had	a	relatively	small	number	of	

patients.	 The	 substantial	 fold-changes	 and	 high	 level	 of	 statistical	 significance	

that	I	have	found	in	my	dataset	are	suggestive	that	these	findings	represent	real	

and	important	differences	in	the	groups	that	that	were	studied.	It	is	important	to	

evaluate	these	further	in	larger	sample	cohorts,	and	to	enable	this	next	phase	of	

the	 work,	 we	 have	 been	 in	 discussion	 with	 the	 tissue	 banks	 led	 by	 Prof	 Neil	
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Sheerin	 in	 Newcastle	 University	 and	 Prof	 Rutger	 Ploeg	 in	 Oxford	 University.	

Larger	cohorts	may	also	allow	us	to	appreciate	a	better	correlation	of	eGFR	with	

microRNA	expression	levels.	

	

The	identification	and	refinement	of	a	biomarker	that	is	specific	to	kidney	injury	

in	the	context	of	transplantation	would	allow	for	its	potential	use	in	determining	

outcomes	 prior	 to	 transplantation.	 Such	 a	 thing	would	 so	 advantageous	 to	 the	

transplant	surgeon,	as	given	the	fact	that	the	organs	used	are	increasingly	from	

ECD,	DCD,	marginal	and	older	donors,	any	methodology	that	allows	for	accurate	

prediction	 of	 outcomes	 prior	 to	 their	 implantation,	 would	 aid	 in	 the	 decision	

making	 process	 of	 usage	 or	 discard	 and	 selection	 of	 most	 suitable	 recipient.	

Therefore,	 I	measured	miR-21	 in	 hypothermic	machine	 perfusate	 samples	 and	

correlated	 it	 to	 the	eGFR	at	6	and	12	months	post-transplantation	(Chapter	6).	

Interestingly,	 I	 showed	 that	 microRNAs	 are	 stable,	 can	 be	 extracted	 and	

measured	reproducibly	in	HMP	fluid	samples,	and	that	the	expression	of	miR-21	

in	HMP	at	1	hour	after	perfusion	of	kidneys	placed	on	the	hypothermic	machine	

perfusion	system	correlated	significantly	with	graft	function	at	6	and	12	months.	

This	 is	 the	 first	 study	 that	 has	 evaluated	 microRNAs	 in	 HMP,	 representing	 a	

novel	approach	to	pre-transplant	organ	assessment,	and	this	work	is	timely,	with	

the	number	of	ECD	donors	increasing	in	the	UK,	and	one-third	of	all	UK	donors	

being	 60	 years	 or	 older.	 Clearly,	 a	 larger	 cohort	 of	 HMP	 will	 be	 required	 to	

validate	my	findings,	and	to	further	define	the	capability	of	perfusate	miR-21	to	

predict	 significant	 ischaemic	 injury	 prior	 to	 transplantation.	 We	 are	 in	 the	

process	 of	 collecting	 more	 HMP	 samples	 from	 kidneys	 that	 are	 placed	 on	

Lifeport®	at	Cardiff	Transplant	Unit.	
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Chapters	 5	 and	 6	 clearly	 support	 the	 fact	 that	 microRNAs	 are	 becoming	

increasingly	 important	 as	 biomarkers	 of	 kidney	 injury	 in	 the	 clinical	 setting	 of	

kidney	transplantation.	
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Overall	Conclusions		

Kidney	 IRI	 has	 a	 unique	 microRNA	 signature	 that	 is	 attenuated	 by	 beneficial	

protective	IPC	in	the	rat,	suggesting	that	it	is	an	injury	signature	with	functional	

importance.	 MicroRNAs	 are	 readily	 detectable	 in	 the	 urine	 of	 human	 kidney	

transplant	 recipients,	 and	 show	 a	 promising	 capability	 to	 predict	 DGF.	

MicroRNAs	are	also	detectable	in	HMP	solution	and	show	significant	promise	as	

biomarkers	and	potential	therapeutic	targets	in	this	context.		
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Appendix	1	–	Wales	Kidney	Research	Tissue	Bank	patient	consent	form	
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Appendix	2	–	Agilent	bio-analyser	results	from	Chapter	3	experiments		
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Appendix	3	–	Agilent	bio-analyser	results	from	Chapter	4	experiments	
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Appendix	4	–	Ingenuity	Pathway	analysis	for	miR-21,	-221	and	-222	

 
	
	


