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Band narrowing and Mott localization in isotropically superstrained graphene

L. Craco,! S. S. Carara,! and S. Leoni?
Instituto de Fisica, Universidade Federal de Mato Grosso, 78060-900, Cuiabd, MT, Brazil
28chool of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
(Dated: September 23, 2016)

We explore the effect of multi-orbital electron-electron interactions in a two-dimensional mono-
layer made of elemental Carbon. Using density functional dynamical mean-field theory (DFDMFT)
it is shown that the interplay between one-particle band narrowing and sizable on-site interactions
naturally stabilizes the Mott insulating state in isotropically superstrained graphene. Our theory is
expected to be a key step to understanding both the ability of graphene to afford large strain defor-
mations and the changes in electronic degrees of freedom of p-band Coulomb interacting electrons
for the next-generation of flexible electronics made of semiconductive graphene.

PACS numbers: 81.05.ue, 73.22.Pr, 71.10.Fd, 71.30.4+h

I. INTRODUCTION

Graphene is a two-dimensional monolayer of Carbon
atoms arranged in a hexagonal honeycomb lattice struc-
ture, see Fig. 1. Its electronic properties at low energies
are mostly governed by elementary excitations created
around the Fermi surface.! These elementary excitations
are known to be massless Dirac fermions with linear spec-
trum. In recent years, graphene is attracting the atten-
tion of the wider scientific community due to a range of
physical properties, suggesting its application in fields as
diverse as photonics, sensor technology and spintronics.?
More precisely, graphene and its derivatives are expected
to form the next-generation of (radio frequency) transis-
tors,® flexible electronics,*® spintronics® and nanoelec-
tronic devices,” as well as electrochemical, bio and gas-
sensors.?® However, the semimetallic nature of graphene
with a Dirac like spectrum near the Fermi energy (Er)
and finite conductivity values,’ seems to prevent its ap-
plication as the host material for the next-generation of
flexible electronic devices® and stretchable transparent
electrodes.* Hence, what is needed for having full working
devices made of graphene is to find promising directions
for bandgap engineering of graphene.!?

Presently, several experimental and theoretical pro-
posals have been made to open an energy gap in the
electronic spectra of graphene. Experimentally, it has
been found that an energy gap can be induced in epi-
taxial graphene on a SiC substrate via strong graphene-
substrate interaction.'® A semiconducting regime in epi-
taxial graphene can also be developed by suitable molec-
ular doping.'' Theoretical studies have predicted simi-
lar routes for tuning graphene’s band gap. An inter-
esting proposal is, for example, that a small band gap
opens up in the band structure of graphene when water
or ammonia molecules adhere to its surface.'? Similar
effect is also observed when gold nanoparticles are de-
posited on graphene’s surface.'® An alternative approch
of producing a charge gap in the spectrum of graphene
is by depositing it on top of a lattice-matched hexag-
onal boron nitride substrate.!* Moreover, the potential
to tune novel physical properties, including band gap

FIG. 1: (Color online) Crystal structure of natural (L =
0.24669 nm) and superstrained (L = 0.3759 nm) graphene,
with L being the lattice constant of the system.

tuning,'® of graphene by applying mechanical strain has
been explored in recent years both experimentally!619
and theoretically.2%:2! Theoretically, at one-particle level
strain can turn semimetal graphene metallic,?"?? see
also our results below. Importantly, several experiments
have been performed to explore the physical properties
of graphene when its hexagonal lattice is stretched out
of its equilibrium.'®'7 Uniaxial strain can be induced
by bending the substrates on which graphene is elon-
gated.!® Graphene on top of SiX (X =0,,C) surface!'®
also experiences a moderate strain due to surface corru-
gations or lattice mismatch. Presently graphene can be
stretched to 30%,* however it is worth noting that car-
bon nanotube films with a serpentine morphology can
be stretched one time 170% before failure,?> meaning
that pristine graphene might have higher sheer elastic-
ity and stretchability hitherto probed yet. In fact, ex-
periments performed on graphene/poly(dimethyl silox-
ane) composities?* seem to corroborate our prediction
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FIG. 2: (Color online) GGA orbital resolved and total DOS of graphene for different values of the lattice constant L. Notice
the band narrowing and the evolution of the electronic spectrum with increasing L. A particularly relevant feature to be seen
is the metallic state in GGA for L =0.3759 nm. This corresponds to a C-C average bond length of 0.217 nm (0.142 nm in

natural graphene).

by showing that these flexibe conductors can support
strains higher than 50% before they start to break. Thus,
motivated by this and other studies on stretchable pat-
terned graphene systems® as well as by an experimental
study!'” establishing graphene as the strongest material
ever seen in nature, we carried out first-principles gen-
eralized gradient approximation plus dynamical mean-
field theory (GGA+DMFT)?5 calculations to investigate
changes in the electronic properties of isotropically su-
perstrained graphene. We show that incorporation of
on-site Coulomb correlations via GGA+DMFT an en-
ergy gap naturally opens up in graphene with nearly
52% streching.?! We thus expect that under controlled,
albeit extreme strain conditions the interplay between
electron-electron interactions?® and lattice strain will
naturally induce Mott localization, i.e. the formation
of a gapped excitation spectrum at low energies in su-
perstrained graphene.

The proximity to a Mott-Hubbard metal-insulator
transition point?” (Mottness) is a clear manifestation
of dynamical many-body effects in correlated electrons.
Historically, the Mott transition was considered to occur
as a function of the expansion of the lattice constant L.
In Mott’s picture,?® a first-order transition from an in-
sulator to a metallic state takes place at a critical value
L =L, For L > L. a cubic crystalline array of one-
electron atoms should be in a charge insulating state
whereas for L < L., one should have a metal. The charge
gap at the Mott transition jumps discontinuously from a
finite value to zero. Mott’s original idea was to tune
the ratio U/W between the on-site Coulomb interaction
U and the one-particle bandwidth W (i.e., the kinetic
energy of the electrons) which defines the phase bound-
ary between the metallic and the gaped (semiconducting)
phase. However, the possibility of Mottness in Carbon-
based materials?? or in purely p®° band systems remains
an open and intriguing problem, since the naive expec-

tation dictates that the itinerance (kinetic energy of p-
carriers) is appreciable compared to the electron-electron
interactions, as distinct from d-band systems, where the
d electrons reside in much narrower bands (hence the ef-
fective U/W is sizable).?” Thus, searching for and charac-
terizing Mott localization in systems with active p bands
is an issue of contemporary and future interest.

15.0 . . . : —
o
e
10.0+ o .
— ///120
% ///
N— , —
8 -
5.0(- S3
/ w
// o
e L
\\ //‘
0.0F T
|
0.2 0.3
L (nm)
FIG. 3: (Color online) Total energy difference dE(L) =

E1,— FEop.24669 between strained and natural graphene obtained
from GGA calculations, showing nonmonotonic response as
function of the lattice constant L. Inset shows the behavior
of the external forces, §E'(L) = 4§ E(L), required to stretch
graphene. Notice the maximum in §E'(L) for strain values
around 25%, suggesting that a crossover between hard and
soft graphene might be achieved in future experiments on su-

perstrained graphene across the critical value L. = 0.309 nm.



FIG. 4: (Color online) Electron localization function (ELF)
and electronic density gradient (grey field lines) analysis for
symmetrical superstrained graphene with L = 0.3759 nm.
Notice the C-C bond between the two carbon atoms. [The
ELF colormap range used here goes from 0.0 (purple/black)
to 1.0 (white)].

II. RESULTS AND DISCUSSION

It is recognized that under external perturbations like
lattice strain, the hopping elements are renormalized
in non-trivial ways. On the other hand, due to its
atomic nature the one-site Coulomb U interaction is
expected to be less affected under extreme conditions.
With this in mind, in this work we explore the effect
of isotropic strain on the bare electronic structure of
strained graphene,?! showing how it can be reshaped by
interaction effects at not yet explored superstrain con-
ditions. To establish that Mott localization can be nat-
urally induced in two-dimensional graphene we carried
out generalized gradient approximation plus dynamical
mean-field theory (GGA+DMFT)?® calculations and in-
vestigate the reconstructed electronic properties of our
superstrained graphene system. We focus mostly on
correlation-induced Mott-Hubbard localization, since the
issue related to electronic reconstruction associated with
the interplay between U and W at currently acceptable
strain conditions* was already studied in Ref. 31. How-
ever, if we aim to understand the material specific proper-
ties it is important to identify the character of dominant
bands near the Fermi level and their energy distribution.
For this purpose, the first principles density-functional
theories (DFT) are the best tools available. Hence, in
Fig. 2 we show the GGA spectral function of natural
graphene,?? i.e., with L = 0.24669 nm. At normal con-
ditions, the sp? hybridization of atomic s — Da,y Orbitals
of Carbon atoms create lateral o bonds, and the remain-
ing p, orbital perpendicular to the plane form the non-
hybridized 7 bands in graphene and graphite. Due to
strong in plane covalency a large bonding-antibonding
splitting is created in the planar (denoted as p,,) or-
bitals resulting in a pronounced charge gap as shown in
Fig. 2. As seen in this figure, the electronic density of

states (DOS) of the p, orbital vanishes linearly near the
Fermi energy at Fr = w = 0, exhibiting the semimetallic
nature of graphene. As seen in Fig. 2, the linear (Dirac-
like) band dispersion is reshaped by isotropically increas-
ing the lattice constant L. An overall reduction of the
one-electron bandwidth W, including the energy position
of the van-Hove singularities at the border of the Dirac
dispersion is found in the p, band for the lattice constants
varying from 0.24669 to 0.3209 nm.?!3! Also interesting
is the band structure reconstruction within the planar
Dz,y bands, where the charge gap shrinks with increasing
the lattice constant until it is fully suppressed at large
L in GGA.?2! We shall notice here that even at larger
C-C bond distances the GGA forces acting between the
Carbon atoms are such that the equilibrium geometry
is recovered upon release of the mechanical constrain.
This in turn suggests accessibility of engineering a tun-
able bonded state in graphenelike systems. However, the
central result to be seen in Fig. 2 is the pronounced one-
particle band narrowing which can be tuned by pulling
the Carbon atoms further apart, in accordance with Mott
ideas.?®

Within GGA we have also computed the total energy
difference between strained (or compressed) and natural
graphene [0F = Er — Ej.24669] as function of the lat-
tice constant L. As expected, our results in Fig. 3 shows
that the minimum value of JF is obtained for natural
graphene, confirming the lattice stability of this funda-
mental 2D carbon allotrope. However, the fact that 0 FE
increases when L # 0.24669 nm naturally implies that
graphene is resistant to strain or compressive strain. As
visible in Fig. 3, the L-dependence of dF is nonmono-
tonic with a tendency towards to saturating behavior at
extremely high lattice constant values (not shown). In
order to explore the implications of our results for su-
perstrained graphene, in the inset of Fig. 3 we display
the forces [JE'(L) = -6F] needed to stretch graphene
beyond its most stable configuration. Surprisingly, our
results reveal a maximum in §F’ for a critical strain
around 25%, a value close to that experimentally re-
ported by Kim et al. This in turn implies that different
elastic properties with a crossover between hard and soft
graphene are expected to occur in monolayer graphene.
According to our results in Fig. 3, above the critical value
L. = 0.309 nm strained graphene is predicted to lose
its robust strength and therefore it shall demand less
work or effort to yield large symmetrical deformations.
Our prediction is consistent with the electron localiza-
tion function (ELF)3? analysis in Fig. 4, where local-
ization domains of the ELF around each Carbon atom
are clearly observed for L = 0.3759 nm.?* Nevertheless,
it might be plausible to assume that above L. super-
strained graphene might lose part of its intrinsic elasticity
being less capable of recovering its size and shape after
strong deformations. Taken together, our ab initio GGA
and ELF results in Figs. 3 and 4 strongly suggest that
a defect-free graphene might support deformations well
beyond the linear regime discussed in Ref. 17 and this



FIG. 5: (Color online) Comparison between GGA (solid line) and GGA+DMFT results of (super)strained graphene with
L =0.3759 nm. Notice the evolution towards a Mott insulator with increasing the on-site Coulomb repulsion U. Compared to
the GGA results, large spectral weight transfer is visible in the GGA4+DMFT spectral functions.

prediction could be tested in future experiments on sym-
metrical superstrained graphene with strain values well
above 30%.

Multi-orbital (MO) electron-electron interactions often
drive spectacular effects in real materials: precisely how
this might come about is an open, challenging problem
also for wide band systems. Here, we study correla-
tion induced electronic reconstruction in superstrained
graphene using combined GGA and DMFT methods.
This scheme was used to revisit the long-standing issues
of transport anisotropy due to incoherence-coherence
crossovers in graphite®® and to reveal the hidden cor-
related electronic structure of strained graphene with
L = 0.3209 nm,*' both studies showing good agreement
with spectroscopy (graphite) and tunneling (strained
graphene nanobubbles) measurements. This gives us the
confidence to use GGA+DMFT to predict the electronic
properties of graphene at higher lattice strain conditions.
The realistic Coulomb interaction parameter for natu-
ral graphene is U = 9.3 eV.?5 Owing to the metallic
p-band DOS in strained graphene with L = 0.3759 nm
(see Fig. 2), one expects the Hubbard U (or the on-site
Coulomb interaction) to be partially screened as com-
pared to natural graphene. Thus, in our study we choose
renormalized U values to reveal an interaction-induced
Mott transition (which is characterized by a gap opening
at Ep) for L = 0.3759 nm and realistic values of U.

The many-body Hamiltonian relevant for graphene3!
is H= Hy+ Hin, with Hy = >, eq(K)cf

kao Ckao s and

Hint =U > Niatniay + ¥ Uniianiy — Ju Y Sia - S, -
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Here, a = x,y, z label the diagonalized p-bands and ¢, (k)
is the one-electron band dispersion, which encodes details
of the one-electron (GGA) band structure. U’ = U—-2Jp,
with U, U’ being the intra- and inter-orbital Coulomb re-
pulsion and Jg is Hund’s rule coupling. Effect of tuning

the one-band dispersions are read off from e, (k): these
are inputs for MO DMFT which generates a Mott insu-
lating state for U = 6.1 eV at L = 0.3759 nm, as shown
below. We use MO DMFT for the three-orbital model
of strained graphene with the MO iterated-perturbation-
theory (MO-IPT) as impurity solver. The detailed for-
mulation of MO-IPT for correlated electron systems has
already been developed?’ and used in the context of
Carbon-based systems in Refs. 31,39,41, so we do not
repeat the equations here.

To pinpoint the excitation spectrum that emerges
from dynamical MO electron-electron interactions in su-
perstrained graphene (with chosen L=0.3759 nm), we
present in Fig. 5 our GGA+DMFT results for U = 4.0 eV
and 8 eV with fixed Jg = 0.4 V. [Our choice for Jy is
in accordance with values estimated within GGA on a
different local moment problem in graphene.*?] The for-
mation of the Mott-Hubbard insulating gap at low ener-
gies with concomitant appearance of lower- (LHB) and
upper-Hubbard (UHB) bands on different orbitals at high
energies with increasing U is visible in Fig. 5. As com-
mon to system approaching the Mott transition, electron-
electron interactions strongly modifies the bare, GGA
spectral functions. MO dynamical correlations arising
from U, U’ and Jy lead to spectral weight redistribu-
tion over large energy scales and the formation of LHB
(local moments) and UHB at high energies. Noticeable
differences in the spectral weight transfer (SWT) is seen
between the p. and p, , channels. Within the p, orbital
the LHB at w &2 2.0 eV for U =4 eV (and, U’ = 3.2 eV)
is clearly resolved and moves to higher energies with in-
creasing U. SWT is also seen within the planar orbitals.
Interestingly, in these channels the bonding-antibonding
bands in GGA are transfer to higher energies but their
spectral lineshape remain close to that found in GGA, in-
dicating that dynamical correlations partially renormal-
ize the C—C bonds. Hence, as in transition-metal systems
under extreme conditions,?” it is plausible to assume that
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FIG. 6: (Color online) Orbital-resolved spectral functions and imaginary parts of the self-energies of superstrained graphene
for two values of U and Jy = 0.4 eV. A crossover from selective-Kondo (U = 5.5 e€V) to an incoherent metallic regime (at
U = 6.0 eV) is visible. Notice the evolution of the self-energies near Er across the correlation-induced Fermi to non-Fermi

liquid crossover.

the Mott phase sets in without spontaneously broken the
hexagonal crystal lattice of our superstrained graphene.

Since the dependence of electron-electron interactions
in the excitation spectrum graphene-based systems is
quite subtle and not yet fully understood,*? in Fig. 6
we display the orbital resolved DOS and imaginary part
of self-energies [ImX,(w)] within the correlated metal
phase. Up to U = 5.0 eV the charge carriers of highly
strained graphene are in a Fermi liquid (FL) regime,
characterized by the emergence of narrow quasiparticle
resonances in the orbital-selective DOS near Fr and w?-
dependence in the self-energy imaginary parts, see Fig. 6.
Moreover, as can be seen in Fig. 6, our self-consistent
GGA+DMFT calculation also resolves a pseudogap fea-
ture near Ep for U = 6.0 eV, implying a crossover
from a FL to a non-FL regime. This behavior is often
seen in MO metallic systems close to Mottness, where
strong orbital and spin fluctuations prevent the FL fixed
point. In our superstrained graphene system the transfer
of spectral weight found in the FL and non-FL metal-
lic phases can be traced to dynamical scattering process
that leads to electron mass enhancement, which is not ex-
pected for massless Dirac fermion systems like in natural
graphene.?4

To further illustrate the correlated nature of our spec-
tral functions near the localization-delocalization transi-
tion point, in Fig. 7 we show the changes in the orbital-
resolved DOS and Im3,(w) across the Mott transition.
Interestingly, the transition found here is of first or-
der type showing large-scale changes in SWT at the
(6.05 eV < U, < 6.1 €V) phase boundary. In this regime,
the imaginary parts of the orbital-resolved self-energies

in Fig. 7 display signatures of selective Mott-Hubbard
physics. The out-of-plane p.-orbital shows weak devia-
tions from the —w? (FL) form at small w, being consistent
instead with a sub-linear w-dependence, along with a fi-
nite value at Ep (w = 0) for U = 6.05 eV. On the other
hand, the p,, self-energies reveal strong Mott localiza-
tion physics. The Mott-Hubbard insulating state thus
goes hand-in-hand with the development of a sharp pole
in Im¥, ,(w) close to Ep. This implies that the charge
carriers in superstrained graphene have a dual nature,
where effectively Mott localized p, , states co-exist with
incoherent p, electronic states at U = 6.1 eV. In this two-
fluid scenario localization of the p, , states in our system
implies that these orbitals now act like an intrinsic source
of electronic disorder in the system. With U’ = 5.3 eV
this suggests that an intrinsic disorder potential, aris-
ing from orbital-selective physics exists near the Mott
transition. Such behavior results from strong scattering
between effectively (Mott) localized and quasi-itinerant
components of the full DMFT matrix propagators. Our
work calls for electrical transport studies in superstrained
graphene. These studies will constitute a proof to Mott
localization and the ability of deffect-free graphene to af-
ford large strain deformation as well as the importance
of treating dynamical correlations adequately to reveal a
variety of unexplored responses in complex materials.

III. CONCLUSION

In conclusion, we have performed first-principles GGA
calculations to confirm that semimetal graphene turns
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FIG. 7: (Color online) Orbital-resolved GGA+DMFT DOS and imaginary parts of the self-energies of superstrained graphene
near the Mott transition point at 6.05 eV < U. < 6.1 eV. Notice the sharp pole in the planar p, , self-energies near Er within
the Mott insulating phase of graphene at extreme strain conditions. This behavior is characteristic of selective Mott physics in

multi-orbital systems.

to metallic with increasing the lattice constant from
0.24669 nm to 0.3759 nm.?! Using GGA+DMFT for
a realistic multi-orbital Hubbard model we explore the
correlated nature of the excitation spectrum of a super-
strained graphene. In a regime of isotropically large lat-
tice distances, the interplay between one-particle band
narrowing and multi-orbital electron-electron interac-
tions pushes strained graphene into a Mott insulating
state characterized by selective orbital physics at low
energies. Our microscopic description of coupled multi-
orbital Hubbard interactions is expected to be generally
applicable to three-dimensional flexible graphene net-
works?* as well as for superstrechable graphene films for

transparent and biocompatible electrodes.*?
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