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Revisiting Rescheduling: MRP Nervousness and the Bullwhip Effect 

Li, Q., and Disney, S.M. 

We study the material requirement planning (MRP) system nervousness problem from 

a dynamic, stochastic and economic perspective in a two-echelon supply chain under 

first order auto-regressive demand. MRP nervousness is an effect where the future 

order forecasts, given to suppliers so that they may plan production and organize their 

affairs, exhibits extreme period-to-period variability. We develop a measure of 

nervousness that weights future forecast errors geometrically over time. Near-term 

forecast errors are weighted higher than distant forecast errors. Focusing on 

replenishment policies for high volume items, we investigate two methods of 

generating order call-offs and two methods of creating order forecasts. For order call-

offs, we consider the traditional order-up-to (OUT) policy and the proportional OUT 

policy (POUT). For order forecasts, we study both minimum mean square error 

(MMSE) forecasts of the demand process and MMSE forecasts coupled with a 

procedure that accounts for the known future influence of the POUT policy. We show 

that when retailers use the POUT policy and account for its predictable future behavior, 

they can reduce the bullwhip effect, supply chain inventory costs and the 

manufacturer’s MRP nervousness.  

Keywords: Bullwhip Effect, Inventory Management, Material Requirements Planning 

(MRP), Supply Chain Management, Nervousness 

Word count: In total 8525, Abstract 182, Main body 6599, Bibliography 1086, 

Appendices 614. 

1. Introduction 

It is common practice in automotive, manufacturing, and electronic industries to issue 

suppliers call-off orders (firm orders that must be satisfied immediately), and order forecasts 

(a set of future orders forecasts), Harrison (1997) and Terwiesch et al., (2005). By way of a 

real example, Table 1 documents a company’s orders given to their supplier. In each 

replenishment cycle (a week in this case, but it could be as short as a few hours, or as long as 

a month), a firm order–a call-off order–is given to the supplier instructing how much to 
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dispatch now. At the same time, some guidance of the likely, but not guaranteed, orders in the 

future–the order forecasts–are also passed to the supplier. In week 1, the company did not 

order anything (the zero in the (1,1)th entry of the matrix in Table 1). However, they 

forecasted the requirements for the next seven weeks–the (1, j)th entry of the matrix in Table 

1,  2,3, ,8 .j   This future guidance together with inventory, production, and delivery 

information is used by the supplier to initiate production, procure materials, schedule labor, 

and plan capacity acquisitions. In practice, material requirements planning (MRP) systems 

are used to facilitate this task. 

In the second week, a new call-off quantity (the (2,2)th entry of the matrix in Table 1) 

and seven new future order forecasts were generated. The call-off order was the same as the 

forecast for the week 2 made in week 1. However, the order forecasts for weeks 3, 4, 6 and 7 

were updated. In week 3, the call-off for week 3 was no longer 5940 as predicted in the 

previous week, but 5400, and the week 4 forecast changed from 7020 to 5940. 

Quantity 
For delivery in week 

1 2 3 4 5 6 7 8 9 10 

O
rd

er
s 

p
la

ce
d

 

in
 w

ee
k 1 0 1620 2160 4860 8100 8100 8100 0 - - 

2 - 1620 5940 7020 8100 7560 4860 7020 0 - 

3 - - 5400 5940 8100 7560 4860 7020 0 7020 

Table 1. Real-life example of system nervousness (Key: Call-off orders in bold) 

 

When new, and presumably more accurate data becomes available regarding future 

requirements, the supplier’s previously calculated schedule needs revision. Order forecasts 

that change every period make the supplier’s MRP system nervous (Mather 1977). 

Nervousness is undesirable as quantity increases within the lead-time cannot be met without 

expediting production or delivery. Alternatively, volume decreases result in excessive 

inventory accumulating. Nervousness also leads to reduced productivity and confusion on the 

shop floor. The variability of the call-off order leads to the bullwhip problem (Wang and 
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Disney 2016). Bullwhip results in production and replenishment plans that have unduly high 

variability causing capacity losses and increased inventory requirements (Disney and 

Lambrecht 2008). Distressingly, many companies will experience both systems nervousness 

and bullwhip simultaneously.  

While suppliers may not be able to measure and transfer the cost of nervousness to 

their customers directly, all costs–including the cost of nervousness–must be absorbed into 

the supply chain somewhere. Therefore, we focus on how one might produce more reliable 

future guidance so as to reduce system nervousness. Recently dynamic supply chain studies 

have ignored the nervousness problem as it is difficult to quantify the cost of nervousness 

directly.  Indeed, there does not appear to be an established cost function for nervousness in 

the literature (although Ho (2005) provides a review of nervousness definitions). However, 

the impact of nervousness upon inventory and capacity (bullwhip) costs can be readily 

measured and do have established cost functions. Inventory and bullwhip measures are 

important as companies are not only concerned about their costs but also their suppliers, 

especially when the same company owns an assembly site and its component supplier.  

MRP/enterprise resource planning (ERP) systems are often used in industry to plan 

and record commercial supply chain transactions, even in lean production environments. The 

workflow in MRP/ERP systems typically starts by updating forecasts for final assembly items 

by delivery location over the next 3-6 months in (often weekly) time buckets. Demand and 

forecast information passes to a planning book where, together with inventory, production 

and delivery information, a master production schedule (MPS) is calculated. Two approaches 

are usually used to construct the MPS. The first method, suitable for high volume products 

produced every period, is the order-up-to (OUT) policy. The second method is the economic 

order quantity method, used for low volume products, or those with high set-up/changeover 

costs. Then the MPS is exploded out down through the bill of materials (BOM) and work 
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assigned to individual production facilities (machines, workstations, assembly lines, etc.) in a 

detailed production planning module that considers changeover costs and times. Here minute-

by-minute, hour-by-hour production plans can often be manipulated in a Gantt chart like 

interface to account for factors such as maintenance, urgent shipping requirements, raw 

material availability, and forthcoming holidays/factory shutdowns. Finally, the MRP system 

issues order call-off and order forecasts to suppliers. This task requires accurate BOM, 

routing, and lead-time information. 

This paper considers a generalization to the OUT policy, called the proportional 

order-up-to (POUT) policy, based on adding a proportional controller into the inventory 

position feedback loop of the OUT policy (Disney and Towill 2003). We investigate how the 

POUT policy reduces nervousness when compared to the OUT policy. Furthermore, we also 

propose a mechanism called proportional future guidance (PFG). The PFG mechanism 

constructs order forecasts as a sum of demand forecasts and the predictable future 

consequences of the proportional feedback controller. We will show the PFG mechanism 

further reduces MRP nervousness. Our policy is easy to understand, simple to use, and 

provides competitive performance without the need for sophisticated IT systems to share 

demand information. 

We focus on the OUT policy type of MPS calculation for the following reasons. 

Principally the OUT policy (and its POUT variant) is a linear system. Hence we can fully 

characterize the solution. Second, the OUT policy is suitable for high volume items which 

typically use the largest proportion of available capacity. Third, the POUT policy is known to 

be able to smooth the call-off orders and reduce capacity costs. Finally, the POUT/PFG 

policy is practically implementable as we have incorporated it into a global manufacturer’s 

ERP system by custom coding user defined macros in the ERP planning book (see Disney et 

al., (2013) for an early report on this project). We have also worked with companies to 
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implement the POUT policy by custom coding turnkey IT systems and developing Excel-

based decision support systems (for example, see Potter and Disney (2010)). 

We take a descriptive, rather than a prescriptive, stance to this research. That is, we 

are interested in understanding how real, implementable policies behave rather than finding 

optimal policies for a given cost function. Furthermore, to gain analytical insights we have 

assumed a linear system exists. Importantly, we assume that the manufacturer guarantees 

supply to the retailer. If the manufacturer does not have enough stock to fill an order, he 

obtains the backlogged quantity from an alternative source with the same lead-time. He is 

also responsible for resupplying this source later at a penalty cost. This assumption is quite 

common in the literature (see Lee et al., (2000)), and allows us to fully characterize the 

policies studied, a feat not often achievable with non-linear models. Further assumptions in 

our model include known and constant lead-times, no capacity constraints, the free return of 

excess inventory, and no quality losses or unreliable supply. 

Our contribution is to show that the POUT policy, known to be able to reduce the 

bullwhip effect, is also able to reduce MRP nervousness even without taking particular 

account of its anticipated impact on future orders. Furthermore, if we do account for the 

POUT policy’s future impact, nervousness is reduced even further. Our paper is organized as 

follows: §2 reviews the literature. §3 defines the model setup. §4 measures the nervousness 

induced by the proposed policies. §5 investigates economic performance via capacity and 

inventory costs. §6 provides managerial implications, and §7 concludes.  Appendix I lists 

notation and Appendices II-IV provide mathematical derivations. 

2. Literature review 

Frequently changing schedules is the essence of the MRP nervousness problem (Mather 

1977). Frequently changing schedules lead to reduced productivity, increased costs, reduced 
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inventory availability, and confusion on the shop floor (Hayes and Clark 1985). A range of 

solutions has been proposed to reduce nervousness, which we now review.   

Mather (1977) proposed filtering insignificant rescheduling messages to avoid 

disruptions to open orders (open order are orders that have been placed, but not yet received). 

Significant rescheduling can be accommodated by revising the due dates of open orders. Ho 

(2005) argued the effectiveness of this approach depends on the operating environment. 

Carlson et al., (1979) proposed an objective function that included a changeover cost that 

depends on the previous schedule. The cost for a previously scheduled changeover is 

penalized less than a previously unscheduled one. The objective function ensures schedules 

are generated that balance the costs of nervousness and responsiveness. Additionally, lot-

sizing algorithms have been found to have a significant impact on both nervousness (Ho and 

Ireland 1998) and costs (de Bodt and Van Wassenhove 1983).  

Zhao et al., (1995) and Kadipasaoglu and Sridharan (1995) studied order- and period-

based freezing methods, finding that freezing methods can reduce nervousness. Freezing is 

also considered as the most effective strategy to reduce nervousness in multi-level MRP 

systems (Sahin et al., 2013). However, the act of freezing was deemed to be a potential 

source of nervousness itself. Tang and Grubbström (2002) found that forecast errors have an 

impact on the re-planning frequency and the length of the frozen period, particularly when 

the safety stock is not optimal. Xie et al., (2003) revealed that the interaction between 

freezing parameters and forecast errors significantly affects the performance of a 

manufacturing system. 

Buffers–of stock, capacity, or lead-time–can be used to reduce nervousness. Safety 

stock and safety capacity are more economical than rescheduling (Schmitt 1984). Grasso and 

Taylor (1984) assessed the impact of safety stock and safety lead-time on cost, finding that 
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safety stock is more efficient than safety lead-time. Sridharan and LaForge (1989) indicated 

that a small amount of safety stock improved schedule stability but the act of increasing 

safety stock may itself induce instability. Grubbström and Molinder (1996) calculated 

optimal safety stock and production plans under Poisson distributed demand.  

Recent studies on MRP and MPS have turned to programming approaches to improve 

industrial applications. Herrera et al., (2016) proposed a reactive approach based on 

parametric mixed-integer programming for manufacturers to reduce nervousness. Rossi et al., 

(2016) combined the traditional MRP procedure with an approach based on linear 

programming to consider capacity constraints. Integrating a stochastic programming model 

into a hierarchical production planning and control system, Englberger et al., (2016) created a 

smoothed MPS at the expense of increased safety stocks. 

While the literature has mainly investigated nervousness from a single-stage 

perspective, some research has considered multi-echelon scenarios where the future guidance 

is also established. Sahin et al., (2008) evaluated the interaction between the MPS and the 

future guidance via cost and schedule performance at both a manufacturer and a vendor. They 

found that the manufacturer’s optimal MPS policy often sabotages the vendor’s cost 

performance. Robinson et al., (2008) considered interaction effects in a two-stage scenario 

focusing on the schedule flexibility after the frozen period. Their results suggest channel 

flexibility can yield substantial costs savings. Nedaei and Mahlooji (2014) extended this 

approach to consider smoothness-based objectives in a two-echelon supply chain. Sahin et 

al., (2013) provided a comprehensive review of rolling horizon planning studies.  

A few studies have also considered the nervousness and bullwhip problems together. 

Integrated control policies were applied Phillips’ supply chain by de Kok et al., (2005). An 

ERP system created synchronized work-orders across the entire chain, reducing both the 
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bullwhip and nervousness problems. Chen and Lee (2009) investigated a general demand 

pattern and linear, generalized order-up-to replenishment policies based on weighted future 

order forecasts. They showed how weighted forecasts might be used to reduce order 

variability, order uncertainty, and inventory costs. Bray and Mendelson (2015) extended this 

idea by arguing that firms amplify last minute surprises more than the forecasts in the distant 

future1.  

3. Methods to generate call-off orders and order forecasts 

We investigate a two-echelon supply chain with a single retailer and a single manufacturer. 

Either player could be a retailer, distributor, manufacturer, or supplier, but we use the term 

retailer (manufacturer) as it is easily recognized as the downstream (upstream) player. We 

assume both players are motivated to minimize capacity and inventory related costs. We have 

worked with a global company who owned and operated both the downstream assembly site 

and the upstream component manufacturer. He was concerned with capacity and inventory 

costs in both echelons. We have also worked with a UK grocery retailer who was concerned 

with in-store availability as well as capacity and inventory related costs in their distribution 

centers. The capacity costs were associated with variable workloads in the cross-docking 

operations as well as the inefficient use of transportation.  

We consider the following setting. The retailer satisfies end consumer demand from 

stock replenished after a lead-time of pT  time periods. The retailer’s order must be 

dispatched immediately from the manufacturer’s finished goods inventory. As such, the 

manufacturer does not get any frozen period. The manufacturer also experiences a lead-time 

                                                 
1 This stream of research has used the moniker order uncertainty to describe the nervousness effect. 

We have elected not do this to avoid confusion with the risk/uncertainty framework. Furthermore, 

using the nervousness term draws attention to the established literature in the MRP field. 
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(of 
sT ) to replenish his finished goods inventory. Thus he must also operate a make-to-stock 

system. We assume that any changeover costs are either non-existent (i.e. there are no 

changeovers) or constant and independent of the call-off quantities. 

3.1. Call-off order and order forecast notation  

Let  , 1 , 2 ,
ˆ ˆ ˆ, , ,...,t t t t t t t jO O O O    be the set of information passed to the manufacturer by 

the retailer each period: tO , is the call-off order given to the manufacturer at time t; ,
ˆ

t t jO   is 

the prediction made at time t of the order quantity in the period t j , t jO  .  j  , where 

the number of future predictions provided is linked to the length of the manufacturer’s 

planning horizon. Practically, in a weekly planning system, organizations usually prepare 

forecasts for up to 13 or 26 weeks in advance. Often order forecasts near the horizon are 

aggregated into monthly buckets.  

3.2. Scenario A: The proportional order-up-to policy with minimum mean squared 

error forecasts 

In Scenario A, the retailer generates call-off orders via the POUT policy with  

   , 1 ,1

1ˆ ˆp

p

T

t t t T t t t i t ii
i

O D TNS RNS D O
T

   
     , (1) 

where tO  is the order placed at time t that must be dispatched in this period. 0

pT   is the 

replenishment lead-time. , 1
ˆ

pt t TD    is a forecast of demand, made at time t of demand 1pT   

periods ahead. TNS is the target net stock, a time-invariant safety stock that can be set to 

minimize inventory holding and backlog costs via the newsvendor principle (Brown 1962). 

tRNS  is the retailer’s net stock at time t. A positive (negative) net stock denotes inventory 

holding (backlogs). The final component of (1) is a sum over the lead-time, pT , of the 
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difference between forecasted demand over the lead-time, ,1

ˆpT

t t ii
D  , and the call-off orders 

placed, but not yet received, 
1

pT

t ii
O  .  

iT  is the proportional feedback controller. 0.5 iT   is required for stability 

(Disney 2008). The POUT policy (1) allows access to a wide range of replenishment 

strategies. For example, (1) degenerates into the OUT policy when 1iT  . The POUT policy 

can reduce the bullwhip effect in the supply chain when 1iT  . For i.i.d. demand with MMSE 

forecasting,  2 2 2 1O D iT   , Disney et al., (2004). For arbitrary demand when iT    the 

variance of the orders equals the variance of the forecasted demand, 2 2

ˆO D
  . If the demand 

forecasts are constant (say for all t and x, ,
ˆ

t t xD   , where   is the average demand), and 

iT   , then 2 2

ˆ 0O D
    and a level scheduling strategy exists. When ,

ˆ
t t xD    and 1iT   

then t tO D  and a pass-on-orders strategy exists.  

The inventory balance equation, 1 1pt t t T tRNS RNS O D     , completes the system. 

The retailer uses minimum mean squared error (MMSE) demand forecasts for the future 

order forecasts, 

 , , 1
ˆ ˆ ,   

pt t j t t T jO D j 

     . (2) 

We denote this approach as the POUT/MMSE strategy and use the subscript A to 

refer to this strategy in equations. We use the term OUT/MMSE (and the subscript A,1) to 

describe Scenario A when 1iT  . 

3.4. Scenario B: The proportional order-up-to policy with proportional future 

guidance  

In Scenario B,  (1) generates the call-off orders. However, the future guidance is 

based on, 
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     11
, , 1 ,1

ˆ ˆ ˆ ,   1
pi

p i i

j TT

t t j t t T j t t t i t i iT T i
O D TNS RNS D O T



     
      . (3) 

This method accounts for the predictable future consequences of the POUT policy reacting to 

the current error in the inventory position. We denote this approach the POUT/PFG strategy 

and use the subscript B to refer to this policy in equations.  

4. Measuring systems nervousness 

We assume that the manufacturer reschedules his production quantity each period to reflect 

the latest available information, hence he has no frozen period. The variance of the j-step 

ahead order forecast error is 

    ,
ˆvar t j t tj O O   .  (4) 

 j  is an increasing function of j. This variance is a measure of the j period ahead order 

forecast provided by the retailer. Note, we are unconcerned whether the forecast error is 

positive or negative. As a forecast error in the near future is more costly (or at least harder to 

deal with) than one in the distant future we adopt a geometrically weighted sum of order 

forecast error variances2 as a measure of nervousness: 

    
1

1

1
j

j

w w j






    . (5) 

                                                 
2 It is widely accepted in the literature that rescheduling an open order in the near future is more costly 

than one in the distant future. It was reflected in the change cost procedure by Carlson et al. 

(1979). The methods to evaluate nervousness from Sridharan et al. (1988), Kimms (1998), 

Pujawan (2004) and Kabak and Ornek (2009) also considered that there is either no consequences 

of distant change, an equal weight, or a proportional weight. These measures are only amenable to 

numerical analysis. However, our geometrically weighted forecast error results in a closed form 

solution, a desirable property in a mathematical modelling study. 
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Here the geometric weighting factor, w, determines how quickly the variability of the future 

order forecast errors decay away (in much the same way as the forecasting parameter in 

exponential smoothing behaves). When w  is large, the influence of the forecast error decays 

away more quickly than when w is small. When 0 1w  , the sum in (5) converges to a 

finite number, allowing us to compare the nervousness produced by different replenishment 

system designs. For a given w, smaller   indicate more accurate future guidance, (that is, 

less nervousness is created), and the easier it will be for companies to organize their activities 

to meet demand.  w should be selected to reflect the period over which the future order 

forecasts are relevant. For example, w near zero is chosen when the forecasts errors over an 

extended forecast horizon are important (perhaps because of a long lead-time) and w near one 

is selected when only the one period forecast error is important.  

We assume the retailer faces a first order auto-regressive random demand, AR(1) 

(Box et al., 1994). The AR(1) process was selected as it is the simplest demand process 

without a constant future forecast. The AR(1) demand process was also found to be 

representative of: over 80 electronic products by Lee et al., (2000), and grocery demand in 

Hosoda et al., (2008). Disney et al., (2016) find that the i.i.d. demand pattern (a particular 

case of the AR(1) process) was representative of the demand for industrial printers. The mean 

centered AR(1) process is given by 

  1t t tD D       , (6) 

where, tD  is the demand in period t, and   is the auto-regressive parameter. 1 1    

ensures a stable and invertible demand process (Box et al., 1994). The error term, t , is a 

white noise random process with zero mean and a variance of 2

 .  

We will now derive variance expressions that hold when t  is drawn from any 

continuous distribution. We may assume that the average demand 0   when we investigate 
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variances (but 0   will be needed in our economic analysis later). Box et al., (1994) show 

the variance of AR(1) demand is 

  2 22 1D    . (7) 

The OUT (and POUT) policy  requires two MMSE forecasts of the AR(1) demand: 

1

, 1
ˆ ,p

p

T

t t T tD D


    and (8) 

   ,1 1

ˆ 1 1 .
p p p

T T Ti

t t i t ti i
D D D    

      (9) 

Appendix I shows that the nervousness of the POUT/MMSE strategy is given by 

 
    

1 2 22

2

2 2

2 1 1 1 1 1

p pT

i

A

T

i iT T T w w


  

 


 

 
 

  
     

 
 

, (10) 

and that the nervousness of the POUT/PFG strategy is: 

 
      

1 2 22

2

2

2

2

1 1 1 12 1 1

p pT T

ii

B

ii
T T w wT w T



  






 

 


 
   

 


    


, (11) 

where    
1

1 1pT
 


  . The behavior of   is rather complex and hints at an odd-even 

lead-time effect that we will see throughout our analysis. When 0  ,   is increasing in pT  

and  . When 0   and the lead time pT  is even (odd), it is convex (increasing) in  . Both 

A  and B  tend to  2( 1)2 21 (1 )pT
w  


     as .iT    

By setting 1iT   in (10) we obtain the nervousness expression for the OUT/MMSE 

policy:  

  
 

2

2

2

1

2

2,

1
2

1 1

p

p

T
T

A
w




 



 

   



  




. (12) 

As ,1
1

lim A


    and ,1 0Ad d   when 0 1,   the nervousness induced by the 

OUT/MMSE strategy, ,1A , is increasing in   for non-negatively correlated demand. The 
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derivative at 1   is negative and ,1 ,11 0A A  
   . Therefore ,1A  must have at least 

one minimum3 between 1 0   . (12) has a lower bound of 

  2

,1 ,1
1

2
1

lim [1]p

A A

T

w
  




    ,  (13) 

and an upper bound of 

 

2 2
122

,1
0 2

2
1

lim
p

pT

A
w

T

 









 
 


   

.  (14) 

Note (13) also represents the variance of the one-period-ahead order forecast error,  1 .  

Proposition 1: In the majority of cases, for positively correlated demand, the 

nervousness induced by the OUT/MMSE policy is larger than the variance of the end 

customer demand.  

Proof: The minimum nervousness produced by OUT/MMSE can be derived from the 

lower bound (13) as  

  
2 2

2 1

2 2

0

2

,1 1
1

1

p p

i

A

T T

D

i

 


 


 



  
   
       


  

 .  (15) 

Only when   negative or near 1  , does 1

2

, DA    hold. In the region where most real 

demand patterns occur (that is, 0 0.7  , see Lee et al., 2000), 1

2

, DA   . Therefore, for all 

pT  and w, ,1A  is likely to be greater than 2

D . □  

4.1. The impact of the proportional feedback controller on nervousness 

In this section, we study the impact of the proportional feedback controller, iT , on 

nervousness. 

                                                 
3 Extensive numerical investigations suggest that only one minimum exists, but we remain unable to 

formally prove this. 
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Proposition 2: In a two-echelon supply chain facing i.i.d. demand, with 1iT  , the 

proportional feedback controller can reduce the manufacturer’s nervousness. The 

POUT/PFG strategy creates the least nervous system.  

Proof: When 0  , (12), (10) and (11) reduces to 

 2

,1A   , (16) 

  2 2 1A iT   , and (17) 

   22 2 1 1B i iT T w     , (18) 

respectively. We observe that nervousness is independent of the lead-time when there is no 

demand correlation. Both (17) and (18) are decreasing in iT . When 1iT   in (17) and (18), 

,1A A B     . □ 

Proposition 3: For positively correlated demand, nervousness decreases in iT . 

Proof: Observe (12) and (10); the coefficient of the first addend, 2 , changes from 1 

to  1 2 1 ;iT   the coefficient of the second addend, 
1

2 ,pT



 changes to 

   
1

1 1i iT T w


   ; the third addend remains the same. When 1iT  , 2 1 1iT    and 

  1 1 1i iT T w     , then, for 0  , 

 
2

2

2 1iT


 


, and  (19) 

 
  

1
1 2

2
1 1

p

p

T
T

i iT T w









  
 .  (20) 

Thus, B A    when 0   and 1iT  .  

The first derivative, 

 
 

  

   
2

12

2 2
1

2 1 12
0

2 11

p

i

T

T A

i i i

w

T wT T


 




  
   
  

  
  

  (21) 
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when 0  . Thus A  is strictly decreasing in  0.5,  iT   . □ 

 

Figure 1. Nervousness in the POUT/MMSE policy when 0.5w   under AR(1) demand 

 

Figure 1 illustrates A  for various iT ,  , and pT , when 0.5w   and 2 1  . Using 

1 iT  in the ordinate allows us to plot the entire stability region of iT . If 0  , iT  

significantly reduces nervousness. Future guidance becomes more accurate as iT  increases. 

 

For negative  , (19) still holds. However, (20) only holds when the lead-time pT  is 

an odd number. Thus, an odd pT  and 1iT   is a sufficient condition for ,1A A   . 

Proposition 1 and 2 reveal that 1iT   and 0   is another sufficient condition for ,1A A   . 

If pT  is even,  

 ,1
1

1
lim 1A

w
   , and  (22) 

 
 1

1 1 2
lim

12 1 2
A

i iT Tw w w
 








.  (23) 
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(22) is greater than (23), when  
1

2 1iw T


    and 0 1w  . This shows that a 

nervousness reduction is possible for an even lead-time, but that a 1iT   may be required for 

negatively correlated demand. Figure 1 confirms that increasing iT  under an even lead-time 

might amplify nervousness when demand is highly negatively correlated. Although the lead-

time is an exogenous variable in many situations, it can be strategically changed. For 

example, alternative production technologies or transport modes may alter lead-times 

significantly. Appropriate supplier selection or contract terms may also allow one to modify 

or specify a lead-time. Perhaps, if the lead-time cannot be reduced, it could be artificially 

increased. 

4.2. The impact of the proportional future guidance policy 

In this section, we study the consequences of using the PFG policy to generate order 

forecasts. 

Proposition 4: For 0,   the POUT/PFG strategy exhibits less nervousness, 

particularly in the near future, than the POUT/MMSE strategy. 

Proof: For 0  , the variance of the j period ahead order forecast error in Scenario A 

and B are  

      
2

2 1 1 2

0
[ ] 1 2 1

n

A i i i in
j T T T T  

  


     , (24) 

and 

       1
2

12 1

0

2

1 2
1

[ ] 1
1

2 1

n

j

i

j i i

B i i in

T T
j T T T

T
  



  



 
       


 . (25) 

(24) is decreasing in iT  and independent of j  and pT . 0.5iT  ensures stability. (25) 

decreases in iT  and increases in .j  As ,j   (25) converges to (24). Therefore, 

[ ]A j  [ ] 0B j   and decreases in .j  □  
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Proposition 4 indicates, and Figure 2 verifies, that the POUT/PFG strategy can reduce 

nervousness in the near future; presumably this is of greater practical benefit than an 

equivalent nervousness reduction in the distant future.  

 

Figure 2. The accuracy of forecasted orders for i.i.d. demand when 5iT   and 2 1    

 

Proposition 5: For any ,  the POUT/PFG strategy is less nervous than the 

POUT/MMSE strategy. 

Proof: Observe, from (10) and (11), the difference between the POUT/MMSE and 

POUT/PFG strategies nervousness is 

 
 

    

2

2

2

21

2 1 2 1 1

i

i i i

A B

w T

T T w T



 

 
     
 

   . (26) 

Eq. (26) is always positive when (0.5,1) (1, )iT     implying that B A    . □  
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Figure 3. Percentage improvements in nervousness resulting from changing the 

POUT/MMSE to the POUT/PFG policy 

 

Figure 3 illustrates the percentage accuracy improvement,    100%AA B    , in 

six numerical settings. It shows that the PFG strategy can further reduce nervousness 

compared to the MMSE strategies. These improvements reduce as 1.   When 0.5iT   or 

when iT   more accurate future guidance exists. Lead-times also have a strong influence 

on nervousness reduction. The odd-even lead-time effect in both (10) and (11), can be seen in 

Figure 3. Longer lead times result in larger reductions in nervousness from the POUT/PFG 

policy. Even lead-times remain undesirable under the POUT/PFG policy with highly negative 

demand correlation.  

In summary, the POUT/PFG policy reduces nervousness compared to the 

POUT/MMSE policy. For non-negative demand correlation, nervousness reduction is 
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guaranteed when 1iT  . If demand is strongly negatively correlated, a careful choice of pT  

and iT  is required. Odd lead-times allow a form of temporal aggregation as the odd lead-time 

and the review period mean that an even number of negatively correlated demands are 

aggregated into the order-up-to level and the inventory position. This pooling effect reduces 

the variability in the system. 

5. Capacity and inventory performance 

In this section, we extend our model and analysis to include an upstream manufacturer. We 

assume that the manufacturer has to dispatch his customer order within the current period, but 

that he has a lead-time of sT . The cooperative and trusting manufacturer incorporates the 

retailer’s future guidance into his planning process by setting his production orders to 

    , 1 , 1, 1, 11 1

ˆ ˆ ˆ ˆ .
s s

s s

T T

t t t T t t j t t T t t j tj j
P O O O O O        
       (27) 

Notice that (27) is an OUT policy. In (27), tP  is the production order quantity made by the 

manufacturer at time t. The demand that the manufacturer receives at time t is the retailer's 

order, tO . The forecasts for the demand during  ,1

ˆsT

t t jj
O  , and in the period after 

 , 1
ˆ

st t TO   , the manufacturer’s lead-time, sT , are drawn from the retailer’s future guidance. 

The finished goods inventory maintained by the manufacturer (the manufacturer’s net stock, 

tMNS ) is governed by  

 1 1st t t T tMNS MNS P O     . (28) 

5.1. Inventory variance in three scenarios  

The retailer’s inventory variance under the POUT policy is  
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, (29) 

which has a minimum at 1iT   (Hosoda and Disney 2006). When 1iT  , (29) represents the 

retailer’s net stock variance under the OUT policy (the term in the square brackets 

disappears).  

Appendix III shows the manufacturer’s net stock variance in Scenarios A and B are, 
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and  
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Both (30) and (31) have closed forms. However, we leave them unevaluated as they result in 

very long expressions. Figure 4 shows that when   is close to zero in Scenario B, the 

manufacturer’s inventory may experience near zero variability. Setting 1iT   in (30) provides 

the manufacturer’s inventory variance under the OUT/MMSE strategy,  
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. (32) 

5.2. Bullwhip behavior in the three scenarios  

The retailer’s order variance generated in Scenario A and B are identical as 
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. (33) 

,1

2

AO  can be obtained as a particular case of (33) with 1iT  . When 0,    2 2 2 1O D iT   , 

and is independent of pT . Here the order variance is; decreasing in iT , zero when iT   , 
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Figure 4. The net stock variance in a two-echelon supply chain for Scenario B when 2 1    

 

equal to the demand variance when 1iT  , and approaches infinity when 0.5iT  . 

For 0,   and any ,pT  when 1 1iT    , 2 2

O D  , see Appendix IV. 2

O  is 

decreasing in iT  and equal to 2

D  when 1 1iT    . For 0  , (33) is a decreasing function 

of pT  when 1 1 .iT     When 1 1iT    , (33) increases in pT . 
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For 0,   pT  has an odd-even lead-time effect on the retailer’s order variance. When 

pT  increases, the order variance oscillates but converges to    22 2 2 1 1
p

O iT
T  


   . 

If 1iT  , it is possible to eliminate the bullwhip effect. If 1iT  , the OUT policy is present 

and 2 2

O D  . While not generally recommended, 0.5 1iT   is stable and sometimes allows 

bullwhip to be avoided when demand is negatively correlated. 

The manufacturer’s order variance in the POUT/MMSE strategy is  
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The effect of the lead times disappears when 0   as (34) reduces to 2 2

A AP O    

 2 2 1iT  . The manufacturer’s order variance under the OUT/MMSE policy can be 

obtained by setting 1iT   in (34):  
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The manufacturer’s order variance under the POUT/PFG strategy is 
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      

  

. (36) 

(36) shows that both pT  and sT  have odd-even exponents which create oscillations in 
2

BP  

when 0  . When 
1 1iT    , the impact of pT  disappears as (36) reduces to 
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2 3 4 2

2 2

2

1 2 2 2

(1 ) (1 )

s s s

B

T T T

P 

   
 

 

      
  

  
. (37) 

(37) is: an increasing function of 
sT ; always greater than 2

D  when 0  ; equal to 2

D  when 

0   regardless of pT  and 
sT ; and when 0  , 2

BP  oscillates around, and converges to 2

D  

as 
sT  increases. 

For 1 1iT    , when 0  , the effect of pT  disappears in (36). 2

BP  is increasing in 

sT  and has a limit of 2

D . When 0  , 
2

BP  is increasing in 
sT  and decreasing in pT , and 

2 2

BP D   is possible when 
sT  is small and 

iT  is large. When 0  , the bullwhip behavior is 

rather complex, but it can be shown that 
2

BP  is increasing in 
sT  and we can weaken the odd-

even effect of pT  by increasing 
iT .  

For 1 1iT    , when 0,   
sT  has an odd-even lead-time effect on 

2

BP  which 

oscillates around and converges to 2

D . For positive ,  and   11 1iT    , increasing 

either lead-time, increases the order variance, and 
2 2

BP D  . When 1iT   or 0  , it is 

possible to avoid generating bullwhip although the relationship between pT , 
sT , iT  and the 

bullwhip effect is rather complicated. As ,iT  2 0
AP   and 

      
   

2 1 2 2 2

2

1 2 2 1
2

1 1

T Tp Ts s

BP

    

 


  
   

 
 .  Together with (35), these facts mean that there always exist 

a iT  such that 
,1

2 2

A AP P   and  
2 2

A BP P  . 

5.3. Inventory and capacity cost analysis  

Until this point in our variance and nervousness analysis, we have not made any 

specific assumptions about the distribution of the error term, t . However, to be able to 

conduct an economic analysis we now need to assume t  is normally distributed. Then, as a 
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linear system exists, all the system states will also be normally distributed, and we can 

characterize performance analytically4.  

Let H (B) be the cost of holding (backlogging) one unit of inventory for one period. 

The inventory cost function at an individual echelon is    ,NS t t tJ H NS B NS
 

   , and the 

optimal target net stock level, *

NSTNS z  with  
11z B B H
    

 
 ensures that 

 
1

B B H


 100%  of periods end with inventory in stock (Brown 1962). Here  1  is the 

inverse cumulative distribution function of the standard normal distribution. The expected, 

per period, inventory cost at each echelon is then 

    ,NS NS t NSJ E J B H z      , (38) 

where    is the probability density function of the standard normal distribution. Note (38) 

can be readily adapted for the inventory cost at the retailer (denoted RNSJ ) and the 

manufacturer (indicated by MNSJ ) by using the standard deviation of the appropriate net stock 

levels. 

Corollary 1: When 1iT  , the relationship 
,1B A AMNS MNS MNSJ J J   holds for all  , pT  

and sT .  

Proof: This follows directly from (38), inventory costs are linear functions of NS , 

and 
,1

2 2 2

B A ANS NS NS     holds. □  

When the retailer uses the POUT/PFG strategy, larger   lead to greater reductions in 

the manufacturer’s inventory because of the linear relationship between the standard 

                                                 
4 Without this normality assumption, we would have to resort to a simulation based analysis as the 

required convolution of the pdf’s involved quickly becomes intractable. 
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deviation of the inventory levels and inventory costs. Larger iT  leads to greater reductions in 

inventory cost at the manufacturer and reduces nervousness. 

To allocate capacity costs to the production variability, we assume that each echelon 

works regular shifts, guaranteeing labor s   hours of work each week.  Here    is the 

average demand and s is an amount of space capacity above (or below)  . When 
tP  

corresponds to less work than the guaranteed hours, the workers receive a full weekly wage, 

despite standing idle for some of it. If tP  requires more hours of work than the guaranteed 

hours, flexible overtime is used to make up the difference. Let U represent the cost of 

producing one unit during regular working time and W represent the unit overtime cost, 

.W U  The capacity cost function to be minimized is 
, ,P tE J    where 

   ,P t tJ U s W P s 


     . Hosoda and Disney (2012) show that the optimal slack 

capacity, *

P Ps z  with  1 ,Pz W U W    results in   100%U W   of periods using 

overtime. Then, under the optimal slack capacity, the manufacturer’s capacity cost is 

  ,P P t P PJ E J U W z       . (39) 

Note the capacity cost (39) mechanism can also be applied to both the manufacturer and the 

retailer (after substituting in the appropriate standard deviation of the orders).  

 

5.4. Numerical investigations  

In this section, we will explore a numerical setting by assuming: the lead-times 

1p sT T  , the AR(1) demand process has an autocorrelation coefficient of 0.4   and 

mean 12  , and the nervousness weight, 0.5.w   Table 2 highlights the economic 

consequences of different objectives at the retailer. Here, 9B   and 1H   at both the retailer 

and the manufacturer, implying an economic stockout probability at each echelon of 10%. 



Li, Q., and Disney, S.M., (2016), “Revisiting rescheduling: MRP nervousness and the bullwhip effect”,  
accepted for publication in the International Journal of Production Research. 

27 

 

We also assume that labor receives 150% of the regular hourly wage for working overtime by 

using 4U   and 6W  .  

As 
OJ , PJ  and 

MNSJ  are decreasing in iT , if the sole objective is to minimize 
OJ , PJ  

or MNSJ  then *

iT   , RNSJ   , O PJ J U   and SJ  . These objectives are denoted 

as an empty set   in Table 2. The bold numbers in Table 2 illustrate the OUT/MMSE policy 

and, as 1iT   for this strategy, these represent all possible cost functions. Furthermore, when 

the retailer is only interested in minimizing his inventory cost, both POUT strategies 

degenerate into the OUT strategy.  

For a local cost optimizing retailer with both capacity and inventory costs, then * 1iT   

implying that one of the POUT strategies should be adopted. Although there is an increase in 

the retailer’s inventory cost, the capacity cost in both echelons and the manufacturer’s 

inventory cost and nervousness are reduced. Table 2 confirms Corollary 1, more accurate 

future guidance reduces the manufacturer’s inventory cost. However, the PFG mechanism 

slightly increases the manufacturer’s capacity cost. For all cost structures at the manufacturer, 

Scenario B requires a larger iT  than Scenario A. Then, 
B AMNS MNSJ J , 

B AP PJ J .  

Table 2 shows that a local cost optimizing retailer cannot coordinate the whole supply 

chain. However, if the retailer can understand the structure of total supply chain costs and act 

altruistically, supply chain costs reduce. The manufacturer has the responsibility to trust the 

retailer’s future guidance and to share the spoils of the retailer’s selfless act. This altruistic 

behavior may be present if a single company owns both echelons. Table 2 also shows that 

both POUT strategies successfully reduce the total supply chain costs and nervousness 

compared to the OUT/MMSE approach. The POUT/MMSE strategy is the most economical 

but is more nervous than the POUT/PFG strategy.  
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,1: /

: /

: /

A OUT MMSE

A POUT MMSE

B POUT PFG

 Capacity cost objectives 

OJ  PJ  O PJ J    

In
v
en

to
ry

 c
o
st

 o
b

je
ct

iv
es

 

RNSJ  

Scenario A B A B A B (A,1), A, B 
*

iT  2.5 2.5 2.59 3.36 4.08 5.18 1 

RNSJ  3.54 3.54 3.57 3.87 4.14 4.51 3.02 

OJ  49.9 49.9 49.86 49.63 49.48 49.32 51.41 

MNSJ  2.62 2.34 2.57 1.92 2.09 1.46 3.95 

PJ  50 50.96 49.96 50.58 49.57 50.07 51.6 

SJ  106.05 106.73 105.97 106.01 105.27 105.37 109.98 

  0.72 0.61 0.69 0.41 0.43 0.24 2.44 

MNSJ    

RNSJ

+ 

MNSJ  

Scenario A B A B A B A B 
*

iT  4.57 4.76 4.61 5.82 6.14 7.19 2.89 3.34 

RNSJ  4.31 4.37 4.32 4.72 4.82 5.14 3.69 3.86 

OJ  49.4 49.38 49.4 49.25 49.22 49.14 49.76 49.64 

MNSJ  1.98 1.54 1.97 1.36 1.73 1.2 2.45 1.93 

PJ  49.48 50.16 49.48 49.94 49.3 49.74 49.86 50.59 

SJ  105.18 105.45 105.17 105.28 105.08 105.22 105.76 106.02 

  0.38 0.27 0.42 0.21 0.29 0.16 0.61 0.41 

    

Table 2. Numerical solutions for 1p sT T  , 0.4  , 12  , 0.5w   

 

The total supply chain inventory costs in both POUT policies are convex in iT . It's 

hard to find the value of *

iT  analytically, but from extensive numerical investigations we 

propose: 

Conjecture 1: For any feasible objective function other than solely minimizing the retailer’s 

inventory cost, 
,1B A ASNS SNS SNSJ J J   and 

,1A B ASO SO SOJ J J   hold for all  ,  p sT T  when 

0  . 

This conjecture proposes that both the POUT strategies can reduce inventory and 

capacity costs in a supply chain, even if the retailer is not striving to minimize these 

objectives. The POUT/PFG approach can achieve the lowest supply chain inventory cost and 
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the least nervous system. However, the POUT/MMSE strategy has better capacity 

performance, so when the total supply chain inventory related cost is of concern an altruistic 

retailer should adopt the POUT/PFG policy. By optimizing the supply chain inventory cost, 

there will also be reductions in both nervousness and supply chain capacity costs. However, 

when the manufacturer’s capacity cost is of primary importance, POUT/MMSE is 

recommended.  

6. Managerial implications 

We have analyzed an innovative adaptation to an MRP system, the POUT replenishment 

policy, and accounted for its future impact on the call-off orders via the PFG mechanism. 

These techniques are suitable for scheduling high volume items. The POUT policy is closely 

related to the OUT policy that is readily available native in many MRP systems. The 

POUT/PFG policy can be incorporated into an ERP system by custom-coding user defined 

macros.  

An established MRP system is needed to implement these techniques. We have 

noticed in many cases MRP systems are not always: fully implemented, used consistently, or 

without data accuracy issues. Thus, there may be some work required to get an MRP ready 

for implementation of the POUT/PFG technique. Furthermore, in addition to the usual 

decisions regarding forecast method and parameter selection, an additional choice for the 

value of iT  is required. We have found that longer lead-times need, and higher volumes 

support, the use of larger values of iT . In practice we have found a simulation of the 

POUT/PFG method, with real demand data and lead-times, in an off-line spreadsheet, is a 

good way to select iT . 

The POUT/PFG leads to a smoother call-off order and more accurate future order 

forecasts, not only reducing the variability but also increasing the predictability, of the 
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supplier’s workload. Suppliers receive more stable demand reducing their need for inventory, 

burst capacity, and expedient transportation. The stable demand also makes it easier for 

suppliers to schedule maintenance. Better maintenance improves up-time and reduces costs. 

Over time, a better commercial relationship is created, resulting in better negotiations during 

contract renewal. 

7. Concluding remarks  

We have jointly considered the MRP nervousness and bullwhip problems which were 

previously treated as separate issues in the literature. We analyzed two methods of generating 

order call-offs and two methods of creating order forecasts. We developed a new measure of 

MRP nervousness based on a geometrically weighted sum of order forecast errors. While it is 

known that the POUT replenishment policy can reduce the order variability at the retailer, we 

revealed that it also reduces the manufacturer’s MRP nervousness. This is consistent with the 

intuition that smoother orders are easier to forecast. Accounting for the future consequences 

of the POUT policy with the PFG mechanism further improves the accuracy of the future 

guidance. By tuning the feedback controller, iT , it is always possible to avoid the bullwhip 

effect at both echelons. 

Our analysis reveals that when the retailer adopts either of the POUT strategies, the 

manufacturer can reduce MRP nervousness and inventory costs, as well as reducing the 

capacity costs at each echelon. We reveal that the MRP nervousness, the inventory variance 

at the manufacturer and the order variance at both echelons are all commingled and affected 

by iT  which can be selected to minimize a range of cost functions.  

Our analysis recommends the: OUT/MMSE policy when the retailer’s inventory cost 

is of sole concern; POUT/MMSE policy when the manufacturer’s capacity cost is the only 

concern; and the POUT/PFG policy when the supply chain is concerned with inventory costs 
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and MRP nervousness. Our proposed strategies are easy to understand and–since they do not 

require a change in the commercial relationship–are relatively easy to implement in practice.  

The implications of Corollary 1 are that our POUT/PFG policy means the 

manufacturer requires less safety stock than the OUT/MMSE policy, Brown (1962). By 

Grasso and Taylor (1984), who demonstrated that safety stock is more efficient than safety 

lead-times at reducing nervousness, we conjecture that our POUT/PFG policy is also more 

effective than using safety lead-times to reduce nervousness. However, the comparison 

between our POUT/PFG policy and the frozen period and lot sizing solutions to the MRP 

nervousness is not practical as our model does not consider these factors. Future research 

could be directed towards these areas. The performance of the POUT/PFG mechanism in 

more realistic supply chain settings (for example in divergent supply chains, over more 

echelons, or with stochastic lead times) could be investigated. The impact of more realistic 

modeling assumptions (for example real demand data, capacity constraints, or promotions) 

could be studied. Here a simulation or system dynamics approach might be useful.  
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Appendix I. List of nomenclature 

tP  Manufacturer’s production order quantity at time t. 

tO  Retailer’s order quantity at time t. 

,
ˆ

t t jO   j-period ahead forecast of the retailer’s orders. 

tD  End customer demand at time t. 

,
ˆ

t t jD   Demand forecast, made at time t, of demand in period t+j. 

  Auto-regressive demand correlation 

tNS  Net stock at time t. 

tRNS  Retailer’s net stock at time t. 

tMNS  Manufacturer’s net stock at time t. 

pT  Retailer’s lead-time. 

sT  Manufacturer’s lead-time. 

iT  Proportional feedback controller. 

*

iT  Optimal proportional feedback controller. 

A  Nervousness in the POUT/MMSE strategy. 

,1A  Nervousness in the OUT/MMSE strategy. 

B  Nervousness in the POUT/PFG strategy. 

 j  The variance of the j-step ahead order forecast error. 

w  A weighting factor that determines how quickly the variance of the future order 

forecast error decays away in the nervousness measure. 

OJ   Retailer’s capacity cost. 

RNSJ  Retailer’s inventory cost. 

PJ   Manufacturer’s capacity cost. 

MNSJ  Manufacturer’s inventory cost. 

SOJ  Supply chain capacity related cost SO O PJ J J  . 

SNSJ  Supply chain inventory related cost SNS RNS MNSJ J J  . 

SJ  Total supply chain cost S SO SNSJ J J  . 

 

Appendix II. Measuring the accuracy of the future order stream 

The call-off order in (1) generated by the POUT policy is 
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      1
1 , 1 1, , 1, 11 1
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O O D D D D D T         

        . (A1) 

Letting 0   in (6), then the AR(1) demand becomes 
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Using (8), (9) and (A2) in (A1), tO  can be written as 
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where    1
1 1pT

  


   . Substituting (A3) into itself recursively yields 
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The variance of tO  is derived by finding the expected value of the square of (A4),  
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When demand is i.i.d., the variance of the retailer’s orders reduces to  2 2 2 1O iT   .  

In Scenario A, the order forecast error is 
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[ ]A j , the variance of the j period ahead order forecast error in Scenario A is 
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and the nervousness of Scenario A is 
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For Scenario B, we may rewrite the future forecasted order as 
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Assuming 0TNS  , substituting (8), (9) and (A2) into (A9) yields  
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Both tO  and ,
ˆ

t j tO  can be written as 1 0 1 1 2 2t j t t tO             , the form of an 

 ARMA 1,j    process. The coefficients in ,
ˆ

t j tO   and tO  are summarized in Table A3. 
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Table A3. The coefficients of ,
ˆ

t j tO   

The coefficients 
i  for i j  in ,

ˆ
t j tO  and 

tO  are identical. Note that the order error 

can be converted into an MA( 1j  ) process where only 1 1,  ,  ,  t t t j      have an influence 

on the forecasted order error. The forecast error in Scenario B is  
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Then [ ]B j , can be obtained by taking the expectation of (A11) 
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which is increasing in j. Finally, the accuracy of the POUT/PFG future order stream is given 

by 
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Appendix III. The variance of the manufacturer’s net stock 

Combining (27) and (28), we have 
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From (A4) and the information in Table A3, we may also obtain  
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Using (A15), we can find 
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Based on (A4), we calculate 
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Using (A16) and (A17) in (A14), we can derive 
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Substituting (A18) into itself recursively shows the net stock series is an MA process 
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and the variance of net stock level in the manufacturer for the POUT/PGF scenario becomes 
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Following the same procedure, we can transform the POUT/MMSE net stock time 

series into 
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For the POUT/MMSE strategy, the manufacturer’s net stock variance is 
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It is clear to see from (A20) and (A22) that 
2 2 .

B AMNS MNS   The net stock variance maintained 

by the OUT/MMSE policy can be derived from (A22) by setting 1iT  , 
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Appendix IV. Proof that 
1 1iT     enables 

2 2

O D   for 0 1   and 
0

pT   

From (33), if 
1 1iT    , the effect of pT  disappears as (33) reduces to 

  2 22 1O    , (A24) 

which is the same as the demand variance, see (7). Thus, 
2 2

O D   for any demand 

correlation   and for all lead-times pT .  

When 
1 1iT     and 0 1  , it is easy to ascertain from (33) that the retailer’s 

order variance is decreasing in pT . As 0

pT   the order variance at 0pT   is a maximum. 

When 0pT  , (33) simplifies to 
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As 0.5 iT   is required for stability, (A25) is always less than the demand variance when 

1 1iT     for positive  . 


