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Schizophrenia is a debilitating psychiatric condition often associated with poor quality of life 

and decreased life expectancy. Lack of progress in improving treatment outcomes has been 

attributed to limited knowledge of the underlying biology, although large-scale genomic 

studies have begun to provide such insight. We report the largest single cohort genome-wide 

association study of schizophrenia (11,260 cases and 24,542 controls) and through meta-

analysis with existing data we identify 50 novel GWAS loci. Using gene-wide association 

statistics we implicate an additional set of 22 novel associations that map onto a single gene. 

We show for the first time that the common variant association signal is highly enriched 

among genes that are intolerant to loss of function mutations and that variants in these genes 

persist in the population despite the low fecundity associated with the disorder through the 

process of background selection. Associations point to novel areas of biology (e.g. 

metabotropic GABA-B signalling and acetyl cholinesterase), reinforce those implicated in 

earlier GWAS studies (e.g. calcium channel function), converge with earlier rare variants 

studies (e.g. NRXN1, GABAergic signalling), identify novel overlaps with autism (e.g. 

RBFOX1, FOXP1, FOXG1), and support early controversial candidate gene hypotheses (e.g. 

ERBB4 implicating neuregulin signalling). We also demonstrate the involvement of six 

independent central nervous system functional gene sets in schizophrenia pathophysiology. 

These findings provide novel insights into the biology and genetic architecture of 

schizophrenia, highlight the importance of mutation intolerant genes and suggest a 

mechanism by which common risk variants are maintained in the population.   
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Schizophrenia is characterised by psychosis and negative symptoms such as social and 

emotional withdrawal. While onset of psychosis typically does not occur until late 

adolescence or early adult life, there is strong evidence from clinical and epidemiological 

studies that schizophrenia reflects a disturbance of neurodevelopment
1
.  It confers substantial 

mortality and morbidity, with a mean reduction in life expectancy of 15-30 years
2,3

. Although 

recovery is possible, most patients have poor social and functional outcomes
4
. No substantial 

improvements in outcomes have emerged since the advent of antipsychotic medication in the 

mid-20th century, a fact that has been attributed to a lack of knowledge of pathophysiology
1
.  

Schizophrenia is both highly heritable and polygenic, with risk ascribed to variants spanning 

the full spectrum of population frequencies
5-7

. The relative contributions of alleles of various 

frequencies is not fully resolved, but recent studies estimate that common alleles, captured by 

genome-wide association study (GWAS) arrays, capture between a third and a half of the 

genetic variance in liability
8
. There has been a long-standing debate, from an evolutionary 

standpoint, as to how common risk alleles might be maintained in the population, particularly 

given the early mortality and decreased fecundity associated with schizophrenia
9
. Various 

hypotheses have been proposed including compensatory advantage (balancing selection), 

whereby schizophrenia alleles confer reproductive advantages in particular contexts
10,11

; 

hitchhiking, whereby risk alleles are maintained by their linkage to positively selected 

alleles
12

; or contrasting theories that attribute these effects to rare variants and gene-

environment interaction
13

. Addressing these competing hypotheses is now tractable given 

advances from recent studies of common genetic variation in schizophrenia.  

The largest published schizophrenia GWAS, that from the Schizophrenia Working Group of 

the Psychiatric Genomics Consortium (PGC), identified 108 genome-wide significant loci 

and unequivocally demonstrated the value of increasing sample sizes for discovery in 

schizophrenia GWAS
5
. Here, we report by far the largest ancestrally and phenotypically 
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homogeneous GWAS study of schizophrenia to date (N=11 260 cases, 24,542 controls). We 

combine these new data with the previous published GWAS to identify novel facets of 

genetic architecture and biology, and demonstrate that the evolutionary process of 

background selection can contribute to the maintenance of risk alleles in the population. 

 

RESULTS 

GWAS and Meta-analysis 

We obtained genome-wide genotype information for the largest single-country study of 

schizophrenia (CLOZUK) based on 15,000 cases from the UK, 96% of whom were taking 

clozapine, an antipsychotic for treatment-resistant schizophrenia. Control datasets with UK 

ancestry were obtained from public repositories or through collaboration. To maximise 

homogeneity beyond that conferred by our ascertainment strategy, we set stringent thresholds 

for inclusion based on genotype-derived ancestry, resulting in a final CLOZUK GWAS of 

11,260 cases and 24,542 controls (5,220 cases and 18,823 controls not in previous 

schizophrenia GWAS - Methods; Figure S1; Figure S2). 

The CLOZUK GWAS analysis (λGC=1.281, λ1000=1.018) yielded 18 genome-wide significant 

(GWS=p<5x10
-8

) independent loci, four of which are novel (Extended Data Table 1; 

Figure S3; Figure S4). The CLOZUK SNP-based heritability (h
2

SNP) on the liability scale 

was 0.29 (assuming 1% prevalence; see Extended Data Table 2 for a range of plausible 

prevalences) using linkage-disequilibrium score regression (LDSR)
14

. We demonstrate 

common genetic architecture between the CLOZUK and the independent PGC sample 

(excluding all CLOZUK samples) by showing high genetic correlation (95%), sign test 

enrichment (99% of PGC GWS SNPs show the same direction of effect in CLOZUK: 
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p=2.04x10
-21

) and strong polygenic risk score overlap (p<1x10
-300

) – see Methods and 

Extended Data Table 3 and 4. 

Having demonstrated high genetic correlation between datasets, we performed meta-analysis 

of the CLOZUK and the independent PGC dataset, excluding related and overlapping 

samples (total 40,675 cases and 64,643 controls, λGC=1.586, λ1000=1.012; Figure S5). We 

identified 177 independently associated SNPs (Extended Data Table 5) that map to 143 

independent loci (Figure 1, Extended Data Table 6, Methods). Overall, the association 

signal at the majority of previously identified loci strengthened in the meta-analysis (Figure 

S6), although 14 of the PGC loci were no longer genome-wide significant (Extended Data 

Table 7). Of the 52 loci not identified by the PGC, two have been reported as genome-wide 

significant in other studies: ZEB2
15

 and a locus on chromosome 8 (38.0-38.3 MB)
16

. Thus we 

identify 50 novel genetic loci for schizophrenia (Extended Data Tables 6 and 8).  

 

Gene-based analysis 

To exploit the additional information provided by multiple sub-genome-wide significant SNP 

associations within single genes, we undertook gene-wide analyses using MAGMA
17

 

(Methods). In the full meta-analytic dataset, excluding the extended Major 

Histocompatibility region (xMHC) due to its complex LD structure, we identified 535 

genome-wide significant genes (p<2.5x10
-6

), 240 of which did not co-localize with a 

genome-wide significant SNP locus from either the present meta-analysis or the PGC study
5
 

(Extended Data Table 9). We then used the full genome-wide gene-based results to (i) 

investigate genetic architecture (ii) highlight single gene loci and (iii) conduct hypothesis and 

data-driven systems genomic analyses in schizophrenia. 
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Mutation intolerant genes  

Recent studies have shown that mutation intolerant genes capture much of the rare variant 

architecture of neurodevelopmental disorders such as autism, intellectual disability and 

developmental delay
18-20

. Work in parallel to the present study has shown that this extends to 

rare variants in schizophrenia (Singh et al, submitted). To investigate whether this holds for 

common variation, we analysed the set of loss-of-function (LoF) intolerant genes as defined 

by the Exome Aggregation Consortium (ExAC)
21

, using their preferred gene-level constraint 

metric, pLI ≥ 0.9 (probability of being LoF intolerant). Using gene set analysis in MAGMA, 

we found LoF intolerant genes (N=3230) were highly significantly enriched for 

schizophrenia common variant associations in comparison with all other genes (p=4.1x10
-16

).  

To quantify the contribution of SNPs within LoF intolerant genes to schizophrenia SNP-

based heritability (h
2

SNP) we conducted heritability analyses using partitioned LDSR
22

 

(Extended Data Table 10). Overall, genic SNPs account for 64% of h
2

SNP, a 1.23-fold 

enrichment (compared to that expected from SNP content) whereas non-genic SNPs were 

depleted for SNP heritability content (h
2

SNP=33%; enrichment=0.69). Consistent with the 

analysis using MAGMA, h
2

SNP was highly significantly enriched in LoF intolerant genes 

(2.01-fold; p=2.78x10
-24

). Common variation in LoF intolerant genes explained 30% of all 

h
2

SNP (equating to 47% of all genic h
2

SNP) despite containing only 15% of all SNP content 

(29% of the total genic SNP content).  In contrast, genes classed as non-LoF intolerant 

(pLI<0.9) were significantly depleted for h
2

SNP relative to their SNP content (0.90-fold; 

p=5.86x10
-3

), although in absolute terms, SNPs in these genes accounted for 34% of h
2

SNP. A 

finer scale analysis of the relationship between LoF intolerance scores and enrichment for 

association showed that enrichment is restricted to genes with a pLI score above 0.9 (Figure 

S7).  
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Common risk alleles maintained by background selection 

Our novel finding that LoF intolerant genes, which by definition are under strong selective 

pressure, are enriched for common schizophrenia risk variants raises the question of how 

such alleles are maintained in the population. While the contribution of ultra rare variation in 

mutation intolerant genes to disorders associated with low fecundity can be accounted for by 

de novo mutation
23,24

, this cannot explain the persistence of common alleles. To address this 

question, we used partitioned LDSR to test the relationship between schizophrenia associated 

alleles and SNP-based signatures of natural selection. These included measures of positive 

selection, background selection, and Neanderthal introgression. We examined the heritability 

of SNPs after thresholding them at extreme values for these metrics (top 2%, 1% and 0.5%), 

while adjusting for baseline annotation sets including LoF intolerant genes (Methods).  

We observed strong evidence for schizophrenia h
2

SNP enrichment in SNPs under background 

selection (BGS), which was consistent across all the thresholds we examined (Table 1). We 

also found a significant and consistent depletion of h
2

SNP in SNPs subject to positive selection 

as indexed by the CLR statistic. These two results are mutually consistent, as the calculation 

of the CLR statistic explicitly controls for B-statistic values
25

. This suggests that SNPs under 

positive selection, but under weak or no BGS, are depleted for association with 

schizophrenia. No significant relationship between h
2

SNP and other positive selection or 

Neanderthal introgression measures was found after correction for multiple testing (Table 1).  

To explicitly test the association of SNPs under background selection in LoF intolerant genes, 

we binned the B-statistic into four categories of increasing score, assigned SNPs in these bins 

to a LoF intolerant set, an “all other” genes set or a non-genic set (Figure S8). The lower 

boundary of the top bin (B-statistic >0.75) corresponds approximately to the top 2% BGS 

threshold in Table 1 and is equivalent to a reduction in effective population size estimated at 

each SNP of 75% or more
26

. We found significant heritability enrichment across all B-

. CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/068593doi: bioRxiv preprint first posted online Aug. 9, 2016; 

http://dx.doi.org/10.1101/068593
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

statistic intervals in LoF intolerant genes which increased progressively with higher B-

statistic scores. We also found enrichment for SNPs under BGS pressure in genes that are not 

LoF intolerant, although this was restricted to the highest B-statistic bin. There was no 

notable enrichment in any B-statistic intervals for non-genic regions. 

 

Notable single gene associations 

In considering the novel GWAS loci and gene-based results from the meta-analysis we 

highlight the subset of the findings most likely pointing to single genes, given the difficulties 

in accurately locating causal genes for complex disorders in a GWAS framework
27

. These 

single gene associations were defined as GWAS SNP loci that span only a single gene +/- 

20kb (N=22, 44% of novel loci, Extended Data Table 6) or MAGMA associated genes that 

were at least 100kb from any other genome-wide significant gene (N=76, Extended Data 

Table 9). We acknowledge this does not imply that these are inevitably the pathogenic genes 

but their likelihood of being so is higher than that for genes in multigenic loci.  

Details of the findings we consider most noteworthy are provided in Table 2. These results 

provide novel potential insights into schizophrenia pathogenesis as well as supporting 

existing hypotheses.  To our knowledge we provide the first genome-wide significant 

findings supporting GABA involvement in schizophrenia pathogenesis through both SNP-

based GWAS (GABBR2) and gene-based analysis (SLC6A11). Previous association studies 

have implicated calcium and cholinergic signalling involvement in schizophrenia
5,8

; we 

extend these findings by demonstrating association with an L-type calcium channel gene 

(CACNA1D) and with the acetyl cholinesterase gene (ACHE), a novel potential therapeutic 

target in schizophrenia which has also recently been implicated in autism through de novo 

mutation analysis
28

. We provide the first common variant support for NRXN1, previously 
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implicated by single-gene copy number variation (CNV) in schizophrenia, autism and 

intellectual disability
28,29

 and we also highlight the involvement of other genes that increase 

risk across neurodevelopmental disorders including RBFOX1. Finally we find evidence for 

association for two genes whose functions are intimately linked to two of the most prominent 

genes from schizophrenia candidate gene era, PDE4B, a DISC1 interactor
30

, and ERBB4 a 

binding partner of neuregulin1 (NRG1)
31

.   

 

Systems genomics  

We undertook gene set analysis in MAGMA to gain insights into the biological systems 

underpinning schizophrenia. To maximise power we restricted our primary analysis to 134 

gene sets we have previously postulated to be of likely relevance to the disorder on the basis 

of their involvement in the central nervous system, and which we subsequently showed 

effectively capture the excess CNV burden in schizophrenia
32

 (Extended Data Table 11). 

The set span subcellular neuronal function; neuronal cell physiology; cellular, brain region 

and fiber tract morphology; learning; behavior; and brain development, 
32

. In a GWAS 

context, we now show that collectively, this set captures a disproportionately high proportion 

of h
2

SNP (30% of total heritability; enrichment =1.63; 46% of genic heritability; Extended 

Data Table 10). 

Of the 134 sets, 54 were nominally significant of which 12 survived multiple-testing 

correction (family-wise error rate (FWER) p-value < 0.05, Extended Data Table 11). 

Stepwise conditional analysis, adjusting sequentially for the more strongly associated gene 

sets, resulted in six gene sets that were independently associated with schizophrenia (Table 3 

and Data Supplement).  These gene sets extend from low-level molecular and sub-cellular 

processes to broad behavioural phenotypes. The most strongly associated gene set is 
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constituted by the targets of the Fragile X Mental Retardation Protein (FMRP)
33

. FMRP is a 

neuronal RNA-binding protein that interacts with polyribosomal mRNAs (the 842 target 

transcripts of this gene set
33

) and is thought to act by inhibiting translation of target mRNAs, 

including many transcripts of pre- and post-synaptic proteins. The FMRP target set has been 

shown to be enriched for rare mutational burden in de novo exome sequencing studies of 

autism
34

 and intellectual disability
35

. In schizophrenia studies, it has also been shown to be 

nominally significantly enriched for association signal in sequencing studies
8,35

 and in 

GWAS
5,8

 but only inconsistently in studies of copy number variation
32,36

. However, in none 

of these studies was enrichment at levels of significance that would be equivalent to genome 

wide significance (i.e. survive correction for a comprehensive testing of gene-sets in public 

databases). Thus we provide the most robust evidence to date for the involvement of this gene 

set in schizophrenia.  

We highlight another five gene sets that are independently associated with schizophrenia. 

Three of these derive from the Mouse Genome Informatics database
37

 and relate to 

behavioural and neurophysiological correlates of learning; Abnormal Behaviour 

(MP:0004924), Abnormal Nervous System Electrophysiology (MP:0002272) and Abnormal 

Long Term Potentiation (MP:0002207). We note that two of these gene sets (MP:0004924 

and MP:0002207) were among the five most enriched of 134 gene sets tested in a recent 

schizophrenia CNV analysis
32

. The remaining two independently associated genes sets were 

voltage-gated calcium channel complexes
38

 and  the 5-HT2C receptor complex
39

. The calcium 

channel finding confirms extensive evidence from common and rare variant studies 

implicating calcium channel genes in schizophrenia
5,8

, including a novel GWAS locus in 

CACNA1D identified in our meta-analysis. Whilst there is less convergent evidence in 

support of the involvement of the 5-HT2C receptor complex in schizophrenia, the fact that we 

identify independent association for this gene set implicates these genes in schizophrenia 
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pathophysiolology and potentially rejuvenates a previous avenue of 5-HT2C ligand 

therapeutic endeavour in schizophrenia research
40

.  However we interpret this result with 

caution given the small size of this gene set and the fact that a number of its genes encode 

synaptic proteins that are structurally related to other receptor complexes
39

, not only 5-HT2C.  

 

Systems genomics and mutation intolerant genes 

Together, LoF intolerant genes and the conditionally independent (“significant”) CNS-related 

gene sets together account for 39% of schizophrenia SNP-based heritability, equating to 61% 

of genic heritability (Figure 2A; Extended Data Table 10). This is likely to be an 

underestimation of the true effect of these gene sets since distal non-genic regulatory 

elements (not included in this analysis) will add to the heritability explained by these genes. 

In examining the relationship between the two gene sets (Figure 2A), genes belonging to 

both categories were the most highly enriched (2.6-fold; p=7.90x10
-15

), although LoF 

intolerant genes that were not annotated to our significant CNS gene sets still displayed 

robust enrichment for SNP-based heritability (1.74-fold; p=9.77x10
-10

), while genes that were 

in the significant CNS gene sets but had pLI<0.9 showed more modest enrichment (1.39-fold; 

p= 6.05x10
-4

). Notably genes outside these categories showed a depletion in heritability 

relative to their SNP content (enrichment=0.79, p=1.82x10
-7

). 

This general pattern remained when we focussed on the six significant CNS gene sets 

individually, in that the enrichment in these gene sets derives primarily from their intersection 

with LoF intolerant genes (Figure 2B). Indeed, only the targets of FMRP showed significant 

enrichment for SNPs in genes that are not LoF intolerant (2.06-fold; p=4.23x10
-5

).  
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Data-driven gene set analysis  

To set the systems genomics results in context, we undertook a purely data-driven analysis of 

a larger comprehensive annotation of gene sets from multiple public databases, totalling 

6,677 gene sets (Methods, Extended Data Table 12). The LoF intolerant gene set was the 

most strongly enriched followed by the two strongest associated functional gene sets we had 

specified in our CNS gene set analysis (FMRP targets and MGI Abnormal Behaviour genes). 

The other three gene sets that survive FWER correction and conditional analyses are calcium 

ion import (GO:0070509), membrane depolarisation during action potential (GO:0086010) 

and synaptic transmission (GO:0007268). These sets show a marked functional and genic 

overlap with the independently associated sets from our primary CNS systems genomic 

analysis. Indeed if we repeat the data-driven comprehensive gene set analysis whilst adjusting 

for the six independently associated CNS gene sets, then the only surviving enrichment term 

is the LoF intolerant genes. These results are consistent with those from CNV analysis
32

 in 

that they do not support annotations other than those related to CNS function, and 

demonstrate that hypothesis based analysis to maximise power does not substantially impact 

on the overall pattern of results. 

 

DISCUSSION 

In the largest genetic study of schizophrenia to date, we identify 50 novel genomic loci and a 

further 22 gene-wide associations that map onto to a single gene. We also explore the 

genomic architecture of, and the evolutionary pressures on, common variant associations to 

the disorder, and conduct extensive gene-based and systems genomic analyses. As discussed 

above and in table 1, novel findings point to GABAegic and cholinergic transmission as 

relevant to the aetiopathogenesis of schizophrenia.  We widen the array of calcium channel 

. CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/068593doi: bioRxiv preprint first posted online Aug. 9, 2016; 

http://dx.doi.org/10.1101/068593
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

receptors implicated in the disorder, and identify associations that support historical candidate 

gene networks that have been the subject of intensive functional investigation, but which 

have remained controversial in the absence of support from large scale genome-wide studies 

(PDE4B, ERBB4). We demonstrate congruence between common variant implicated genes 

and multiple rare variant associations to neurodevelopmental disorders, including NRXN1, 

RBFOX1, and FOXG1 indicating that studies of the impact of rare mutations in these genes 

are likely to be relevant to schizophrenia pathogenesis more widely. Systems genomic 

analysis highlights six gene sets that are independently associated with schizophrenia, and 

point to molecular, physiological and behavioural pathways involved in schizophrenia 

pathogenesis. We also provide the first support at a genome-wide significant equivalent level 

implicating targets of FMRP in the disorder.  

Our study provides the first evidence linking common variation in loss-of-function intolerant 

genes to risk of developing schizophrenia and demonstrates that these genes account for a 

substantial proportion (30%) of schizophrenia SNP-based heritability. Our findings underline 

the importance and value of well-curated catalogues of human genetic diversity and indicate 

that such resources have relevance for common variation and common disease. The Exome 

Aggregation Consortium
21

 reported that pLI score is positively correlated with gene 

expression across tissues, and this is also true for brain expression
41

. Furthermore high pLI 

genes have more protein-protein interaction partners, and pathways with the highest median 

pLI scores are ‘hub’ processes such as spliceosome and proteasome
21

. This evidence points to 

LoF intolerant genes being involved in core biological processes and presumably explains 

why they are under strong selective pressure. Given mutation intolerance and high selection 

pressure, our finding that common schizophrenia risk variants are enriched in loss-of-function 

intolerant genes appears paradoxical. However, we also present novel evidence that the major 
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mechanism responsible for the persistence of common schizophrenia variation, both in LoF 

intolerant genes and across the genome, is background selection (BGS). 

Selection against deleterious variants (purifying selection) is the main driver of genomic 

conservation over evolutionary timescales
42

. Regions of the genome under strong purifying 

selection constitute around 8% of the human genome
43

, and primarily include sequences 

which are important functionally and associated with fitness and survival
44

. BGS is a 

consequence of purifying selection occurring in regions of low recombination
45,46

. In such 

regions, selection against strongly deleterious variants causes whole haplotypes to be 

removed from the gene pool, which reduces genetic diversity at the locus in a manner 

equivalent to a reduction in effective population size
47

. This has the effect of impairing the 

efficiency of the selective process, allowing alleles with neutral or small deleterious effects 

that are not on haplotypes carrying strongly deleterious variants to rise in frequency by 

drift
45

. Our finding that schizophrenia-associated common SNPs are associated with high 

levels of BGS suggests a mechanism by which such variants, even if they are mildly 

deleterious, can be maintained in the population. The pruning of haplotypes carrying strongly 

deleterious mutations, which is expected to be particularly intense in LoF intolerant genes
21

, 

would allow these variants to persist in the population for as long as they reside on a 

haplotype free of these mutations. High LD additionally inhibits their amalgamation or 

replacement by recombination
45,48

. Such mechanisms of selection at linked sites have been 

shown to be compatible with the current knowledge about the genomic architecture of 

complex human traits
49

 and to influence phenotypes in model organisms, including gene 

expression
50

. 

We did not find enrichment for any measure of positive selection or Neanderthal 

introgression. A recent study explained a negative correlation between schizophrenia 

associations and metrics indicative of a Neanderthal selective sweep as evidence for positive 
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selection or polygenic adaptation in schizophrenia
12

. We do not replicate this correlation in 

our model, which addresses the contribution of BGS, and hence our results are not consistent 

with large contributions of positive selection to the genetic architecture of schizophrenia 

(Table 1). Indeed positive selection is not widespread in humans, as reported by other studies 

that explicitly considered or accounted for BGS
25,51

. Polygenic adaptation, the co-occurrence 

of many subtle allele frequency shifts at loci influencing complex traits
52

, though an 

intriguing possibility, has not been implicated in psychiatric phenotypes, including 

schizophrenia, in recent analyses
53,54

.  In contrast, BGS has been proposed as a mechanism 

driving Human-Neanderthal incompatibilities, as regions with higher estimated B-statistics 

have lower estimated Neanderthal introgression
55

. We therefore conclude that the bulk of the 

BGS signal we obtain is unlikely to be influenced by positive selection
26

 and that previous 

results linking positive selection and genetic variation in schizophrenia are likely to have 

been confounded by failure to control for BGS
46

. 

In summary, we demonstrate the capacity and continued importance of improving the power 

of genome-wide association studies for answering fundamental questions about the nature of 

schizophrenia. We identify large numbers of novel associations that both suggest novel, and 

support established, hypotheses about the biology of schizophrenia. We show convergence of 

risk variants on mutation intolerant genes, and identify background selection as the main 

mechanism by which common schizophrenia-related variation is maintained in the 

population.   
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METHODS 

Case sample collection 

We collected blood samples from those with treatment-resistant schizophrenia (TRS) in the 

UK through the mandatory clozapine blood-monitoring system for those taking clozapine, an 

antipsychotic licensed for TRS. Following national research ethics approval and in line with 

UK Human Tissue Act regulations we worked in partnership with the commercial companies 

that manufacture and monitor clozapine in the UK. We ascertained anonymous aliquots of the 

blood samples collected as part of the regular blood monitoring that takes place whilst taking 

clozapine due to a rare haematological adverse effect, agranulocytosis. The CLOZUK1 

sample was assembled in collaboration with Novartis (Basel, Switzerland). The company, 

through their proprietary Clozaril® Patient Monitoring Service (CPMS), provided whole-

blood samples and anonymised phenotypic information for 6,882 individuals with TRS (5528 

cases post-QC), which were included in the in a recent schizophrenia GWAS by the PGC
5
. 

The CLOZUK2 sample, previously unreported, was assembled in collaboration with the other 

major company involved in the supply and monitoring of clozapine in the UK, Leyden Delta 

(Nijmegen, Netherlands). The company, through their proprietary Zaponex® Treatment 

Access System (ZTAS), provided whole-blood samples and anonymised phenotypic 

information for 7,417 of those taking clozapine (4973 cases post-QC). Both Clozaril® and 

Zaponex® are bioequivalent brands of clozapine licensed in the UK
56

.  

We restricted the CLOZUK1 and CLOZUK2 samples to those with a clinician reported 

diagnosis of treatment-resistant schizophrenia. The UK National Institute for Health and Care 

Excellence (NICE) advise prescription of clozapine is reserved for those with schizophrenia 

in whom two trials of antipsychotics have failed (including one second-generation 

antipsychotic)
57

 which mirrors the criteria for licensed use of clozapine. The sole alternative 
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licensed indication for clozapine in the UK is for the management of resistant psychosis in 

Parkinson’s disease (PD)
58

 and, although this is a rare indication, we excluded PD patients 

(n=8) from the case dataset. We also excluded those with off-license indications, which 

included those with alternative clinician diagnoses of bipolar affective disorder and 

personality disorders (n=56). Together with the clinical guidelines outlined, these exclusions 

ensure that CLOZUK1 and CLOZUK2 samples are from those patients that conform to a 

clinical description of TRS. We have reported the use of CLOZUK1 as a schizophrenia 

dataset in previous publications
5,7,59,60

 and have presented evidence to support the use of 

TRS-defined individuals as valid schizophrenia samples
32

, which we have updated and 

present in Supplementary Note 1, including validation of a clinician diagnosis of TRS 

against research diagnostic criteria for schizophrenia.  

In addition we also included in our analysis a more conventional cohort of UK-based patients 

with schizophrenia (CardiffCOGS). Recruitment was via secondary care, mainly outpatient, 

NHS mental health services in Wales and England. These patients were not exclusively 

taking clozapine at the time of their recruitment. All cases underwent a SCAN interview
61

 

and case note review followed by consensus research diagnostic procedures and were 

included if they had a DSM-IV schizophrenia or schizoaffective disorder-depressive type 

diagnosis, as previously reported
7
. The CardiffCOGS samples were recruited and genotyped 

in two waves: CardiffCOGS1 (512 cases, included in a previous GWAS
5
) and CardiffCOGS2 

(247 cases).  

Genotyping for these case samples was performed by the Broad Institute (Massachusetts, 

USA) for the CLOZUK1 sample and CardiffCOGS1 cases, using Illumina 

HumanOmniExpress-12 and OmniExpressExome-8 chips as described elsewhere
7
. The 

CardiffCOGS2 cases and the CLOZUK2 sample were genotyped by deCODE Genetics 

(Reykjavík, Iceland), using Illumina HumanOmniExpress-12 chips. 
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As all of these samples are intrinsically related and their recruitment and genotyping 

conforms to clinical and technical standards, thus we have combined them and used the term 

“CLOZUK” throughout this manuscript to describe the schizophrenia case dataset.  

 

Control sample collection 

Control samples were collected from publicly available sources (EGA) or through 

collaboration with the holders of the datasets. Individual datasets were curated using the same 

procedures as the case-only datasets. In order to maximize the numbers of individuals that 

could be effectively included in the GWAS without introducing confounders, these datasets 

were chosen on the basis of having recruited individuals with self-reported UK ancestry 

(either exclusively or primarily) and having been genotyped on Illumina chips. A 

summarized view of all the datasets included in the GWAS is provided in Supplementary 

Note 2, which includes further details of the control datasets. 

 

Genotype quality-control (QC) 

Given the many data sources used and the variety of genotyping chips available, a stringent 

quality control (allowing only 2% of missing SNP and individual data) was performed 

separately in each individual dataset, using PLINK v1.9
62

 and following standard 

procedures
63

. To facilitate merging and to avoid common sources of batch effects
64

, all SNPs 

in each dataset were also aligned to the plus strand of the human genome (build 37p13), 

removing strand-ambiguous markers in the process. As most control datasets lacked any 

markers in the X and Y chromosomes, or in the mitochondrial DNA, every SNP from these 

regions was discarded in the combined genotype data. The final merge of all case and control 

datasets left 203,436 overlapping autosomal SNPs. 
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All individuals were imputed simultaneously in the Cardiff University high-performance 

computing cluster RAVEN
65

, using the SHAPEIT/IMPUTE2 algorithms
66,67

. As reference 

panels, a combination of the 1000 Genomes phase 3 (1KGPp3) and UK10K datasets was 

used, as this has previously been shown to increase the accuracy of imputation for individuals 

of British ancestry, particularly for rare variants
68

.  

After imputation, a principal component analysis (PCA) of common variants (MAF higher 

than 5%) was carried out to obtain a general summary of the population structure of the 

sample, using the EIGENSOFT v6 toolset
69

. A plot of the first two PCs showed the existence 

of a large fraction of cases (~20%) with no overlapping controls (Figure S1, A). A 

comparison with the 1KGPp3 dataset, performed using PCA and ADMIXTURE
70

 estimates, 

showed that most of these cases were similar in genetic ancestry to non-European individuals, 

namely from the East Asian or West African superpopulations (Figure S1, B). In order to 

ameliorate population stratification in the association analysis
71

, all individuals not falling 

into an area delimited by the mean and 3 standard deviations of the two first principal 

components of the control samples were excluded from further analyses (Figure S1, C). By 

repeating PCA only on the selected individuals, no outliers could be detected in the first two 

principal components, and ADMIXTURE plots were homogenised as well (Figure S2).  

The CLOZUK sample was further pruned by removing all individuals with inbreeding 

coefficients (F) higher than 0.2, and leaving only a random member of each pair with a 

relatedness coefficient (�̂�) higher than 0.2. Furthermore, to ensure the independence of our 

analyses with previous GWAS conducted by the Schizophrenia Working Group of the PGC, 

relatedness coefficients of CLOZUK individuals were also calculated with all the individual 

datasets included in the latest PGC GWAS
5
 following approval by the Consortium. Detected 

genetic relatives (or duplicates) were excluded in CLOZUK in the same way as intra-

population relatives. After this imputation and curation process, 35,802 samples (11,260 
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cases and 24,542 controls) with 9.65 million imputed markers (INFO>0.3 and MAF>0.001) 

remained in the CLOZUK dataset. 

 

GWAS and reporting of independently-associated regions 

The CLOZUK schizophrenia GWAS was performed using logistic regression with 

imputation probabilities (“dosages”) adjusted for 11 PCA covariates. These covariates were 

chosen as those nominally significant (p < 0.05) in a logistic regression for association with 

the phenotype
72

. To avoid overburdening the GWAS power by adding too many covariates to 

the regression model
73

, only the first twenty PCs were considered and tested for inclusion, as 

higher numbers of PCs only become useful for the analysis of populations that bear strong 

signatures of complex admixture
74

. The final set of covariates included the first five PCs (as 

recommended for most GWAS approaches
75

) and PCs 6, 9, 11, 12, 13 and 19. Quantile-

quantile (QQ) and Manhattan plots are shown in Figure S3 and S4. 

In order to identify independent signals among the regression results, signals were 

amalgamated into putative associated loci using the same two-step strategy and parameters as 

PGC (Extended Data Table 1). In this procedure, regular LD-clumping is performed (r
2
 = 

0.1, p < 1x10
-4

; window size <3 Mb) in order to obtain independent index-SNPs. Afterwards 

loci were defined for each index SNP as the genomic region which contains all other imputed 

SNPs within an r
2
≥0.6. To avoid inflating the number of signals in gene-dense regions or in 

those with complex LD, all loci within 250kb of each other were annealed. 

 

Meta-analysis with PGC 

A total of 6,040 cases and 5,719 controls from CLOZUK were included in the recent PGC 

study
5
. We reanalysed the PGC data after excluding all these cases and controls, obtaining a 
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sample termed ‘INDEPENDENT PGC’ (29,415 cases and 40,101 controls). Adding the 

summary statistics from this independent sample to the CLOZUK GWAS results allowed for 

a combined analysis of 40,675 cases and 64,643 controls (without duplicates or related 

samples). This meta-analysis was performed using the fixed-effects procedure in METAL
76

 

with weights derived from standard errors. For consistency with the PGC analysis, additional 

filters (INFO>0.6 and MAF>0.01) were applied to the CLOZUK and INDEPENDENT PGC 

summary statistics, leaving 8 million markers in the final meta-analysis results. QQ and 

Manhattan plots are shown in Figure S5 and Figure 2. The same procedure as above was 

used in order to report independent loci from this analysis (Extended Data Table 5, 

Extended Data Table 6). As raw PGC genotypes were not available for the LD-clumping 

procedure, 1KGPp3 was used as a reference. 

 

Estimation and assessment of a polygenic signal 

Association signals caused by the vast polygenicity underlying complex traits can be hard to 

distinguish from confounders related to sample relatedness and population stratification. In 

order to effectively disentangle this issue, we used the software LD-Score v1.0 to analyse the 

summary statistics of the CLOZUK GWAS, and estimate the contribution of confounding 

biases to our results by LDSR
14

. An LD-reference was generated using 1KGPp3 using the 

standard parameters implemented in the software. In order to improve accuracy, indels were 

discarded and markers used in this procedure were restricted to those with INFO>0.9 and 

MAF>0.01, a total of 5.16 million SNPs. The resulting LD-score intercept was 1.085±0.010, 

which compared to a mean χ
2
 of 1.417 indicates a polygenic signal contribution of at least 

80%. This is in line with other well-powered GWAS studies of complex human traits
14

, 

including schizophrenia
5
. SNP-based heritability (h

2
SNP) in our datasets (CLOZUK, 

INDEPENDENT PGC and the CLOZUK+PGC meta-analysis) was also calculated in this 
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analysis, and transformed to a liability scale using a population prevalence of 1% (registry-

based lifetime prevalence
77

). For reference and compatibility with epidemiological studies of 

schizophrenia, prevalence estimates of 0.7% (lifetime morbid risk
78

) and 0.4% (point 

prevalence
78

) were used for additional liability-scale h
2

SNP calculations (Extended Data 

Table 2). 

We also used LD-Score to compare the genetic architecture of CLOZUK and 

INDEPENDENT PGC, by calculating the correlation of their summary statistics
79

. A genetic 

correlation coefficient of 0.9541±0.0297 was obtained, with a p-value of 6.63x10
-227

. There 

were 76 independent SNPs at a genome-wide significant (GWS) level in the 

INDEPENDENT PGC dataset after excluding the extended major histocompatibility complex 

region (xMHC). Using binomial sign tests based on clumped subsets of SNPs we found all 

but 1 (98.6%) of the 76 GWS SNPs from the INDEPENDENT PGC were associated with the 

same direction of effect in the CLOZUK sample, a result highly unlikely to reflect chance
80

 

(p=2.04x10
-21

, Extended Data Table 3). Even of those with an association p-value less than 

10
-4

 in the INDEPENDENT PGC sample, 82% showed enrichment in the CLOZUK cases 

(p=3.44x10
-113

), confirming very large numbers of true associations will be discovered 

amongst these SNPs with increased sample sizes. Additionally, the new sample introduced in 

this study (CLOZUK2) was compared by the same methods with the independent PGC 

dataset and showed results consistent with the full CLOZUK analysis, providing molecular 

validation of this sample as a schizophrenia sample (Extended Data Table 3). 

We went on to conduct polygenic risk score analysis. Polygenic scores for CLOZUK were 

generated from INDEPENDENT PGC as a training set, using the same parameters for risk 

profile score (RPS) analysis in PGC
5
, arriving at a high-confidence set of SNPs for RPS 

estimation by removing the xMHC region, indels, and applying INFO>0.9 and MAF>0.1 cut-

offs. Scores were generated from the imputation dosage data, using a range of p-value 

. CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/068593doi: bioRxiv preprint first posted online Aug. 9, 2016; 

http://dx.doi.org/10.1101/068593
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

 

thresholds for SNP inclusion
81

 (5x10
-8

, 1x10
-5

, 0.001, 0.05 and 0.5). In this way, we can 

assess the presence of a progressively increasing signal-to-noise ratio in relation to the 

number of markers included
82

. As in the PGC study, we find the best p-value threshold for 

discrimination to be 0.05 and report highly significant polygenic overlap between the 

INDEPENDENT PGC and CLOZUK samples (p<1x10
-300

, r
2
=0.12, Extended Data Table 

4), confirming the validity of combining the datasets. For comparison with other studies we 

also report polygenic variance on the liability scale
83

, which amounted to 5.7% for CLOZUK 

at the 0.05 p-value threshold (Extended Data Table 4). As in the PGC study the limited r
2
 

and AUC in this analysis restricts the current clinical utility of these scores in schizophrenia. 

 

Gene set analysis 

In order to assess the enrichment of sets of functionally related genes, we used MAGMA 

v1.03
84

 on the CLOZUK+PGC meta-analysis summary statistics, after excluding the xMHC 

region. First, gene-wide p-values were calculated by combining the p-values of all SNPs 

inside genes after accounting for linkage disequilibrium (LD) and outliers. This was 

performed allowing for a window of 35 kb upstream and 10 kb downstream of each gene in 

order to capture the signal of nearby SNPs that could fall in regulatory regions
85,86

. Next we 

calculated competitive gene set p-values on the gene-wide p-values after accounting for gene 

size, gene set density and LD between genes. For multiple testing correction in each gene set 

collection, a FWER
87

 was computed using 100,000 re-samplings.  

We performed sequential analyses using three approaches: 

1. Loss-of-function intolerant genes: We tested the enrichment of the loss-of-function (LoF) 

intolerant genes described by ExAC 
21

. This set comprises all genes defined in the ExAC 

database
88

 as having a probability of LoF-intolerance (pLI) statistic higher than 90%. While 
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these genes do not form part of cohesive biological processes or phenotypes, they have been 

previously found to be highly expressed across tissues and developmental stages
21

. Also, they 

are enriched for hub proteins
89

, which makes them interesting candidates for involvement in 

the “evolutionary canalisation” processes that have been proposed to lead to pleiotropic, 

complex disorders
90

. 

2. CNS-related genes: These gene sets were compiled in our recent study
32

, and include 134 

gene sets related to different to aspects of central nervous system function and development. 

These include, among others, gene sets which have been implicated in schizophrenia by at 

least two independent large-scale sequencing studies
8,35

: targets of the fragile-X mental 

retardation protein (FMRP
33

), constituents of the N-methyl-D-aspartate receptor (NMDAR
91

) 

and activity-regulated cytoskeleton-associated protein complexes (ARC
92,93

), as well as CNS 

and behavioural gene sets from the Mouse Genome Informatics database version 6 

(http://www.informatics.jax.org) 
37.  

3. Data-driven: The final systems genomic analysis was designed as an “agnostic” approach, 

and thus a large number of gene sets from different public sources was included, which 

summed to a total of 6,677 sets. Gene set sources were selected to encompass a 

comprehensive collection of biochemical pathways and gene regulatory interaction networks, 

not necessarily conceptually related to psychiatric disorders. Similar approaches have been 

successful elsewhere
86,94

. In building this analytic approach, the LoF intolerant gene set and 

all sets in the CNS-related collection were used. Additionally, 2,693 gene sets with direct 

experimental evidence and a size of 10-200 genes
86

 were extracted from the Gene Ontology 

(GO
95

) database release 01/02/2016; 1,787 gene sets were extracted from the 4
th

 ontology 

level of the Mouse Genome Informatics database version 6; 1,585 gene sets were extracted 

from REACTOME
96

 version 55; 290 gene sets were extracted from KEGG
97

 release 04/2015; 

and 187 gene sets were extracted from OMIM
98

 release 01/02/2016.  
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Detailed results of the analyses of the CNS-related and data-driven collection are given in 

Extended Data Table 11 and Extended Data Table 12. Reported numbers of genes in each 

gene set are those with available data in the meta-analysis. This may differ from the original 

gene set description as some genic regions (such as those in the X chromosome) had null or 

poor SNP coverage. The gene content of the CNS-related gene sets that survive conditional 

analysis (“significant”) is given in MAGMA format in the Data Supplement. 

 

Partitioned heritability analysis of gene sets 

It is known that the power of a gene set analysis is closely related to the total heritability of 

the phenotype and the specific heritability attributable to the tested gene set
99

. In order to 

assess the heritability explained by the genes carried forward after the main gene set analysis, 

LD-Score was again used to compute a partitioned heritability estimate of CLOZUK+PGC 

using the gene sets as SNP annotations. As in the MAGMA analysis, the xMHC region was 

excluded from the summary statistics. These were also trimmed to contain no indels, and only 

markers with INFO > 0.9 and MAF > 0.01, for a total of 4.64 million SNPs. As a recognised 

caveat of this procedure is that model misspecification can inflate the partitioned heritability 

estimates
22

, all gene sets were annotated twice: Once using their exact genomic coordinates 

(extracted from the NCBI RefSeq database
100

) and another with regulatory regions taken into 

account using the same upstream/downstream windows as in the MAGMA analyses. 

Additionally, all SNPs not directly covered by our gene sets of interest were explicitly 

included into other annotations (“non-genic”, “genic but not LoF-intolerant”) based on their 

genomic location. Finally, the “baseline” set of 53 annotations from Finucane et al. 2015
22

, 

which recapitulates important molecular properties such as presence of enhancers or 

phylogenetic conservation, was also incorporated in the model. All of these annotations were 

then tested jointly for heritability enrichment. We note that using exact genic coordinates or 

. CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/068593doi: bioRxiv preprint first posted online Aug. 9, 2016; 

http://dx.doi.org/10.1101/068593
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

 

adding regulatory regions made little difference to the estimated enrichment of our gene sets, 

and thus throughout the manuscript we report the latter for consistency with the MAGMA 

gene set analysis (Figure 2; Extended Data Table 10).   

 

Natural selection analyses 

We aimed to explore the hypothesis that some form of natural selection is linked to the 

maintenance of common genetic risk in schizophrenia
101-103

. In order to do this, for all SNPs 

included in the CLOZUK+PGC meta-analysis summary statistics, we obtained four different 

genome-wide metrics of positive selection (iHS
104

, XP-EEH
105

,  CMS
106

 and CLR
25

), one of 

background selection (B-statistic
26

, post-processed by Huber et al. 2016
25

) and one of 

Neanderthal introgression (average posterior probability LA
107

). The use of different statistics 

is motivated by the fact that each of them is tailored to detect a particular selective process 

that acted on a particular timeframe (see Vitti et al. 2013
51

 for a review). For example, iHS 

and CMS are based on the inference of abnormally long haplotypes, and thus are better 

powered to detect recent selective sweeps that occurred during the last ~30,000 years
108

, such 

as those linked to lactose tolerance or pathogen response
106

. On the other hand, CLR 

incorporates information about the spatial pattern of genomic variability (the site frequency 

spectrum
109

), and corrects explicitly for evidences of background selection, thus being able to 

detect signals from 60,000 to 240,000 years ago
25

. The B-statistic uses phylogenetic 

information from other primates (chimpanzee, gorilla, orang-utan and rhesus macaque) in 

order to infer the reduction in allelic diversity that exists in humans as a consequence of 

purifying selection on linked sites over evolutionary timeframes
48

. As the effects of 

background selection on large genomic regions can mimic those of positive selection
46

, it is 

possible that the B-statistic might amalgamate both, though the rather large diversity 

reduction that it infers for the human genome as a whole suggests any bias due to positive 
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selection is likely to be minor
44

. Finally, XP-EEH is a haplotype-based statistic which 

compares two population samples, and thus its power is increased for alleles that have 

suffered differential selective pressures since those populations diverged
105

. Though 

methodologically different, LA has a similar rationale by comparing human and Neanderthal 

genomes
107

, in order to infer the probability of each human haplotype to have been the result 

of an admixture event with Neanderthals. 

For this work, CLR, CMS, B-statistic and LA were retrieved directly from their published 

references, and lifted over to GRC37 genomic coordinates if required using the ENSEMBL 

LiftOver tool
110,111

. As the available genome-wide measures of iHS and XP-EEH were based 

on HapMap3 data
112

, both statistics were re-calculated with the HAPBIN
113

 software directly 

on the EUR superpopulation of the 1KGPp3 dataset, with the AFR superpopulation used as 

the second population for XP-EEH. Taking advantage of the fine-scale genomic resolution of 

these statistics (between 1-10 kb), all SNP positions present in CLOZUK+PGC were 

assigned a value for each measure, either directly (if the position existed in the lifted-over 

data) or by linear interpolation. To simplify the interpretation of our results, all measures 

were transformed before further analyses to a common scale, in which larger values indicate 

stronger effect of selection or increased probability of introgression. 

Heritability enrichment of these statistics was tested by the LD-Score partitioned heritability 

procedure. We derived binary annotations from the natural selection metrics by 

dichotomising at extreme cut-offs defined by the top 2%, 1% and 0.5% of the values of each 

metric in the full set of SNPs. This approach is widely used in evolutionary genomics, due to 

the difficulty of setting specific thresholds to define regions under selection
25,51

. Consistent 

with the previously described LDSR partitioned heritability protocol, enrichment was 

estimated for all binary annotations after controlling for 3 main categories of our set-based 

analysis (“non-genic”, “genic” and “genic LoF-intolerant”) and the 53 “baseline” categories 
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of Finucane et al. 2015
22

. We note that the LD-Score software allows use of an extension of 

the partitioned heritability framework to test the metrics as fully quantitative annotations. 

Results of this analysis replicated those reported here (data not shown), though it did not 

constitute our main approach as methodological details on this feature of LDSR are yet to be 

published. 
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Top 2% of scores  

(genome-wide) 

Top 1% of scores  

(genome-wide) 

Top 0.5% of scores  

(genome-wide) 

Metric Ref. Enrichment 
2-sided 

p-value 
Enrichment 

2-sided 

p-value 
Enrichment 

2-sided 

p-value 

Background Selection (B-statistic)  26 2.0612 0.0008 2.6477 1.2721x10
-4

 2.8073 1.0226x10
-4

 

Positive selection (CLR)  25 0.6069 0.0506 0.3154 1.1349x10
-5 0.2382 1.1120x10

-4
 

Positive selection (CMS)  106 0.1703 0.0036 0.1902 0.0489 -0.0108 0.0736 

Positive selection (XP-EEH)  105 0.9918 0.9824 0.6211 0.4882 -0.0018 0.1666 

Positive selection (iHS)  104 0.8593 0.7095 0.7649 0.6992 1.3686 0.7130 

Neanderthal posterior probability (LA)  107 0.7465 0.2175 0.7895 0.4930 0.9067 0.8428 

 

Table 1. Heritability analysis of natural selection metrics.  

Partitioned LDSR regression results for SNPs thresholded by extreme values (defined as top percentiles vs all other SNPs) of each natural 

selection metric. All tests have been adjusted for 56 "baseline" annotations, which include categories such as “LoF-intolerant” and “conserved” 

(see Methods). Negative enrichments should be considered zero (no contribution to h
2

SNP by these SNPs). Underlined values indicate results 

surviving correction after adjusting for all tests (Bonferroni α= 0.05/18= 0.0028). Reference numbers for each metric indicate references in the 

main text. 
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Table 2. Genes with pre-existing genetic and functional hypotheses in schizophrenia or related neurodevelopmental disorders. Additional details 

an Extended Data Table 6 and Extended Data Table 9. 

Genes implicated by ‘single gene’ GWAS locus (locus overlaps with only one gene boundary (+/- 20kb)) 

Gene OR P value Comment 

GABBR2 0.92 1.02x10
-9

 
Encodes GABA-B receptor 2, a metabotropic G-protein coupled receptor. This is the first direct association of a GABA 

receptor gene in schizophrenia GWAS. Ionotropic GABA-A receptor complexes have recently been implicated at a pathway 

level in a schizophrenia CNV study
32

 

PDE4B 0.95 3.35x10
-8

 
An enzyme involved in cAMP signalling and an interactor of DISC1. Translocations of both genes have been implicated in 

multiple psychiatric disorders
30,114

. 

CACNA1D 1.07 1.38x10
-8

 
A voltage gated, L-type calcium channel sub-unit that is implicated in dopamine neuron pathology in Parkinson’s disease

115
 . 

There are four L-type alpha sub-units and this is the second to be associated with schizophrenia. The other, CACNA1C, is an 

established candidate gene (p=5.6x10
-20

 in this meta-analysis). 

RBFOX1 0.92 1.44x10
-8

 

Encodes FOX1, a neuronal RNA binding protein and splicing factor implicated in autism and neurodevelopment
116

. A number 

of additional novel loci highlight genes involved in transcription including FOXP1 and FOXG1, both of which have also been 

implicated in autism spectrum disorders and in regulating GABAergic/glutamatergic signalling
117-119

. In addition ASCL1 (a 

single gene locus in both GWAS and gene-wide analysis is a novel transcription factor gene which is involved in neuronal cell 

differentiation
120

. 

Genes implicated by gene-based analysis (no other genome-wide significant gene within 100kb) 

Gene P Value Comment 

ACHE 1.8x10
-6

 

Encodes acetyl cholinesterase (AChE) which hydrolyzes and inactivates the neurotransmitter acetylcholine. AChE inhibitors 

are used to treat cognitive impairment in dementia and have shown limited symptomatic benefits as adjunctive agents in 

schizophrenia trials
121,122

. Recently identified as enriched for de novo mutations in ASD
28

. We also implicate other cholinergic 

genes in the gene-based analysis: CHRNA3/CHRNA5/CHRNB4 (p values <7.6x10
-7

), CHRM4 (p=1.7x10
-12

); as well as GWAS 

analyses: CHRNA2 (p= 7.6x10
-12

) and CHRM3 (p=4.7x10
-10

). 

NRXN1 6.6x10
-7

 
The first genome-wide significant common variant finding for this gene. NRXN1 has been robustly implicated in schizophrenia 

pathogenesis by single-gene copy number variation analysis
29

. 

ERBB4 1.3x10
-7

 
A member of the tyrosine kinase receptor family that binds and is activated by the schizophrenia candidate gene neuregulin1 

(NRG1)
123

. 

SLC6A11 1.3x10
-6

 

Encodes a sodium-dependent GABA transporter, providing further support GABA involvement in schizophrenia pathogenesis.  

Another implicated gene, CLCN3, encodes a voltage-gated chloride channel involved in transmitter loading of GABAergic 

synapse vesicles.  SLC6A11 is one of two major GABA transporters in the brain, rare variants in which have been implicated 

in epilepsy, ID, and stereotypic behaviour
124,125

. 
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Gene Set 
Number of 

genes 

Enrichment 

p value (FWER) 

Conditional 

p value 

Targets of FMRP
33

 798 1x10
-5

 1.9x10
-8

 

Abnormal Behaviour 

(MP:0004924) 
1939 1.8x10

-4
 1.4x10

-5
 

5-HT2C receptor complex
39

 16 0.029 0.001 

Abnormal Nervous System 

Electrophysiology 

(MP:0002272) 

201 0.003 0.002 

Voltage-gated calcium 

channel complexes
38

 
196 0.011 0.016 

Abnormal Long Term 

Potentiation (MP:0002207) 
142 0.030 0.031 

     

Table 3. Functional gene set analysis highlights six independent gene sets associated 

with schizophrenia 

 

FMRP: Fragile X Mental Retardation Protein. 

MP refers to Mammalian Phenotype Ontology term of the MGI: Mouse Genome Informatics 

(http://www.informatics.jax.org)
37

, from which gene sets were derived. 

FWER: Westfall-Young family-wise error rate, as implemented in MAGMA
17,87

. 

Conditional p value refers to stepwise conditional analysis that adjusts sequentially for 

‘stronger’ associated gene sets. 
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Figure 1. Manhattan plot of schizophrenia GWAS associations from the meta-analysis of CLOZUK and an independent PGC dataset 

(N=105,318; 40,675 cases and 64,643 controls).  
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Figure 2. Partitioned heritability analysis of gene sets in schizophrenia. A: Heritability of 

genomic partitions and the six conditionally independent (“significant”) gene sets (Table 3). 

Radius of each segment indicates the degree of enrichment, while the arc (angle of each slice) 

indicates the percentage of total SNP-based heritability explained. No relative enrichment or 

depletion (enrichment=1) is shown by the dashed red line. B: Heritability of the significant 

CNS gene sets dissected by their overlap with LoF-intolerant genes. Asterisks indicate the 

significance of each heritability enrichment (* <= 0.05; ** <= 0.01; *** <= 0.001).  
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