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ABSTRACT 275 

Recent increasing evidence supports a role for neuronal type signaling in bone. Specifically glutamate 

receptors have been found in cells responsible for bone remodeling, namely the osteoblasts and the 

osteoclasts. While most studies have focused on ionotropic glutamate receptors, the relevance of the 

metabotropic glutamate signaling in bone is poorly understood. Specifically type 1 metabotropic 

glutamate (mGlu1) receptors are expressed in bone, but the effect of its ablation on skeletal 

development has never been investigated. Here we report that Grm1crv4/crv4 mice, homozygous for an 

inactivating mutation of the mGlu1 receptor, and mainly characterized by ataxia and renal 

dysfunction, exhibit decreased body weight, bone length and bone mineral density compared to wild 

type (WT) animals. Blood analyses of the affected mice demonstrate the absence of changes in 

circulating factors, such as vitamin D and PTH, suggesting renal damage is not the main culprit of 

the skeletal phenotype. Cultures of osteoblasts lacking functional mGlu1 receptors exhibit less 

homogeneous collagen deposition than WT cells, and present increased expression of osteocalcin, a 

marker of osteoblast maturation. These data suggest that the skeletal damage is directly linked to the 

absence of the receptor, which in turn leads to osteoblasts dysfunction and earlier maturation. 

Accordingly, skeletal histomorphology of Grm1crv4/crv4 mice suggests that the absence of the 

mGlu1 receptor causes enhanced bone maturation, resulting in premature fusion of the growth plate and 

shortened long bones, and further slowdown of bone apposition rate compared to the WT mice. 

In summary, this work reveals novel functions of mGlu1 receptors in the bone and indicates that in 

osteoblasts mGlu1 receptors are necessary for production of normal bone matrix, longitudinal bone 

growth, and normal skeletal development. 

 

Key words: mGlu1 receptor, Grm1crv4 mouse, bone mineralization, skeletal defect, ataxia, SCAR13  
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1. Introduction 

The metabotropic glutamate (mGlu) receptors belong to family C G-protein coupled receptors. mGlu 

receptors are a heterogeneous subfamily with different subtypes and are divided into three groups 

based on sequence homology and signal transduction pathways. Group I consists of the mGlu1 and 

mGlu5 receptors, coded by the Grm1 and the Grm5 genes, respectively. mGlu1 receptor is primarily 

coupled to Gq/G11 protein and its activation stimulates phospholipase C β (PLC β) with the ensuing 

formation of the intracellular second messengers, inositol-1,4,5-trisphosphate (Ins-1,4,5-P3) and 

diacylglycerol (DAG) (reviewed in [1]). In turn, Ins-1,4,5-P3 production leads to the release of Ca2+ 

from intracellular stores, whereas DAG activates protein kinase C. The mGlu1 receptor is present in 

a number of key central nervous system (CNS) structures including the hippocampus, cortex, 

thalamus and cerebellum [2]. The receptor plays an important role in neuronal cells by triggering 

various signaling pathways that modulate neuron excitability, synaptic plasticity, and mechanisms of 

feedback regulation of neurotransmitter release [1, 3]. mGlu1 receptor is also expressed in non-

neuronal tissues, e.g. skin, pancreas, liver, heart, retina and bone [4-9]. In the kidney, mGlu1 receptors 

are present particularly in glomerular podocytes, where they play an important role in podocyte 

signaling and glomerular intercellular communication [8, 10]. 

The implication of the glutamate signaling pathways in bone mass regulation has been studied 

extensively during the past years. Accumulating evidence supports the expression in bone cells of all 

functional elements of glutamate signaling [11-15], particularly in cells responsible for bone 

remodeling, such as osteoblasts and osteoclasts. In addition, osteoblasts have been found to be able 

to release and recycle glutamate using mechanisms identical to those of neuronal cells [16, 17]. 

Finally, functional mGlu1 receptor has been detected in primary culture of rat femoral osteoblasts, as 

demonstrated by the fact that its activation leads to an elevation of intracellular Ca2+ levels [4]. 

We previously described a mouse carrying a spontaneous recessive mutation in the Grm1 gene 

(crv4)[18]. The crv4 germline mutation affects constitutively all tissues and gives rise to a complex 

phenotype, mainly characterized by ataxia and tremor due to impaired cerebellar activities, renal 
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dysfunction, and kyphoscoliosis particularly evident in female mice [8, 18, 19]. 

As for the skeletal phenotype, it could be an indirect consequence of neuronal and renal changes, or 

it can be directly caused by Grm1 expression absence in bone cells. 

Based on the evidence that mGlu receptors are expressed in bone, we hypothesized that absence of 

Grm1 expression from osteoblasts could lead to impaired glutamate signaling and consequently to 

pathological changes in bone remodelling. Therefore, the aim of the current study was to conduct a 

detailed analysis of the skeletal phenotype of the Grm1crv4 mice. To determine the impact of mGlu1 

receptors absence on the skeletal phenotype in vivo, we analysed body weights and lengths of affected 

and wild type animals, and carried out bone histomorphology and blood biochemical analyses. The 

direct effects of constitutive Grm1 from osteoblasts were determined in vitro, in osteoblasts isolated 

from mice lacking Grm1, and from wild-type control animals. The results suggest that absence of 

mGlu1 receptor from osteoblasts directly contributes to the skeletal abnormalities present in 

Grm1crv4/crv4 mice. 

 

2. Materials and methods 

2.1 Animal model and ethics statement 

The crv4 mutation is a spontaneous recessive mutation occurred in the BALB/c/Pas inbred strain that 

disrupts the Grm1 splicing and causes absence of the mGlu1 receptor protein [18]. Affected 

(Grm1crv4/crv4) and control (Grm1+/+) mice are maintained on the same genetic background by 

intercrossing Grm1crv4/+ mice at the animal facility of the IRCCS San Martino-IST (Genoa, Italy). 

Mice are given free access to water. Normal chow food is placed on the floor to ensure that all mice 

are fed in equal measure. To obtain the genotype of the mouse progeny, DNA was extracted from ear 

clippings according to the manufacturer's protocol (KAPA Mouse Genotyping Kits, Kapa 

Biosystems, Woburn, MA, USA) and amplified via polymerase chain reaction (PCR) using specific 

primers as previously described [20]. In this study a total of 52 Grm1crv4/crv4, 42 Grm1crv4/+, and 52 

Grm1+/+ (WT) mice were used, with an equal number of females and males per genotype. 
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All procedures involving animals were performed in the respect of the National and International 

current regulations (D.lvo 27/01/1992, n° 116, European Economic Community Council Directive 

86/609, OJL 358, Dec. 1, 1987) and were reviewed and approved by the licensing and Ethical 

Committee of the IRCCS-AOU San Martino-IST National Cancer Research Institute, Genoa, Italy, 

and by the Italian Ministry of Health. 

2.2 Mouse body weight and body length measurements 

Body weights and lengths of 10 males and 10 females WT and Grm1crv4/crv4 were measured at 24 

weeks of age. Body length was determined by measuring nasal-to-anal distance using a caliper 

immediately after the mice were killed before organ collection. 

2.3 X-ray analysis, imaging techniques and image processing 

Hind limbs of 12 to 28 weeks old sex- and genotype- matched mice were analysed. Mouse hind limbs 

were X-rayed and bone length and density were measured using the Bruker In-Vivo FX PRO imaging 

system (Foley et al, application note, in preparation and [21]). Briefly, the X-ray energy was 

calibrated to 12.85 – 13.03 Kev, thus the X-ray quantum efficiency is maximal at energy levels 

between 10 and 15 Kev [22]. Imaging and image processing were performed via Carestream (Bruker) 

Molecular Imaging Software v5.0.2. The software interface enables estimation of bone mineral 

density in a certain region of interest (ROI) selected by the user from the X-ray image [22]. The X-

ray images were processed with the Carestream software, rotated and mirrored, so that the femoral 

axis was as horizontal as possible and the images had the same orientation (the condyle on the left 

hand side and the femoral head on the right hand side). A standard size ROI was selected in the most 

cylindrical region of the bone. Bone length and surface density were calculated with the same tool. 

Femur length was measured by drawing a straight horizontal line from the most exterior point of the 

femoral head, to the most exterior point of the condylar extremity. The tibia was measured in a 

comparable manner. 

2.4 Bone histomorphometry 

Histomorphology of the hind limbs of 12 and 24 weeks old mice (N = 3 per genotype) was analysed 
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by hematoxylin and eosin (H&E) staining. The femora were isolated and immersed in 342 mM 

EDTA, 7.2 pH for 21 days. Following demineralization, the tissue was paraffin-embedded and 5 µm 

thick sections were mounted on Plysine microscope slides. Sections were subjected to H&E staining 

and toluidine blue staining, performed with an R.A. LAMB Histomate and the slides were mounted 

with DPX. 

2.5 Histomorphometric analysis of bone formation 

To assess bone formation indices, mice received two intra-peritoneal injections of calcein (10 mg/kg 

dissolved in 2% Na2HCO3 in PBS) (Sigma Chemical Company, St. Louis, USA) 14 and 3 days before 

sacrifice. Calcein double labelling was quantified in methylmethacrylate embedded sections. Femora 

from WT and Grm1crv4/crv4 mice were recovered and infiltrated with the light-curing resin Technovit 

7200VLC (Kulzer, Wehrheim, Germany) for 21 days under vacuum with resin replaced every 7 days. 

Samples were polymerized by the EXAKT 520 polymerization system (EXAKT Wehrheim, Bio-

Optica, Italy) with curing performed with 450 nm light at temperature bellow 40°C. The specimens 

were then prepared to be cut, according to the precision paralleling-guide procedure protocol, using 

the precision presses Exakt 401 and 402 Vacuum Adhesive Press (EXAKT Wehrheim, Bio-Optica, 

Italy). Sections were cut using the EXAKT 310 CP cutting unit (EXAKT Wehrheim, Bio-Optica, 

Italy). Obtained sections were approximately of 150 µm in thickness. Sections were then grinded to 

20–30 µm thickness using the EXAKT 400 CS micro grinding unit (EXAKT Wehrheim, Bio-Optica, 

Italy). Sections were stained with Stevenel’s/Van Gieson. For all processed samples, images were 

taken using Axiovert 200M microscope (Zeiss, Germany) [23]. Mineralizing surface (MS) and 

mineral apposition rate (MAR, μm/d) were measured from unstained sections, and bone formation 

rate was calculated (BFR=MS/BS ∗ MAR, μm2/μm3/d)[24]. 

2.6 Immunohistochemistry and immunocytochemistry 

For immunohistochemistry (IHC), tibia recovered from 4 weeks old Grm1crv4/crv4 and WT mice were 

fixed in 4% formaldehyde/phosphate-buffered saline. Paraffin-embedded sections were decalcified 

(HCl 37% / Formic acid 85% /distilled water), dewaxed and incubated with the following primary 
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antibodies: rabbit anti-mGlu1 receptor, NB300-123 NOVUS; rabbit anti-collagen I, ab292 ABCAM. 

Then IHC was performed using super picture HRP polymer conjugated broad spectrum detection kit 

(Invitrogen), diaminobenzidine (DAKO). Sections were counterstained with Brilliant cresyl blue 

(BCB). Then IHC was performed using super picture HRP polymer conjugated broad spectrum 

detection kit (Invitrogen), diaminobenzidine (DAKO). Sections were counterstained with Brilliant 

cresyl blue (BCB). Double immunofluorescence staining was performed using mouse femur frozen 

tissue sections fixed in cold acetone. In brief, after blocking with BSA 1%, the tissue was incubated 

with the primary antibodies as follows: mouse anti-RUNX2 (Abcam), rabbit anti-mGlu1 receptor, 

(Novus Biologicals), and rat anti-CD68 (Serotec), followed by fluorescently labeled secondary 

antibodies Alexa Fluor 488 donkey anti-rabbit IgG, Alexa Fluor 488 goat anti-mouse IgG, Alexa 

Fluor 546 goat anti-mouse IgG, and Alexa Fluor 546 anti- rat IgG (Molecular Probes). For osteoblasts 

and osteoclasts count, experiments were conducted on 3 mice replicates WT and Grm1crv4/crv4, taking 

2 bone diaphysis and 2 epiphysis for each condition, and using 10 ROIs for each image. 

For immunocytochemistry, the cells fixed in acetone were incubated with the primary antibody, a 

rabbit anti-collagen I (ab292 ABCAM), and Alexa Fluor 546 goat anti-rabbit IgG highly cross 

adsorbed (Invitrogen) as a secondary rhodamine-labelled antibody. 

Images were acquired using a Zeiss Axioscope 40FL microscope, equipped with AxioCam MRc5 

digital videocamera and immunofluorescence apparatus and AxioVision software 4.3 (Carl Zeiss 

SpA, Arese, Mi, Italy). 

2.7 ALP and TRACP staining 

The activity staining of alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRACP) 

was carried out separately on mouse femur frozen tissue sections using a commercially available kit 

(Takara Bio) in which chromogenic substrates for alkaline phosphatase, an enzyme marker of 

osteoblasts, and tartrate-resistant acid phosphatase, an enzyme marker of osteoclasts, are used. 

Briefly, after fixation with 45% citrate buffer and 10% acetone, the enzyme substrates were added on 

separate slides and incubated at 37°C.  
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2.8 Blood and Serum Biochemistry 

Blood samples were obtained from each mouse through retro-orbital veins. Baseline serum 

parameters were evaluated in 20 weeks old WT and Grm1crv4/crv4 mice. Murine C-terminal 

telopeptides of collagen type I (CTX-I) were determined in serum by using the commercial kit Ratlaps 

EIA (Immunodiagnostic systems Ltd, Frankfurt am Maim, Germany). 1,25-Dihydroxy Vitamin D 

was purified and determined in serum by using the IDS 1,25-Dihydroxy Vitamin D 

(Immunodiagnostic systems Ltd) commercial kit. Parathyroid hormone (PTH) was measured by the 

Mouse PTH 1-84 ELISA Kit (Immutopics, San Clemente, CA, USA). Calcium and phosphate were 

determined in plasma by using a COBAS C600 (Roche, Milan, Italy) analyzer. 

2.9 Osteoblast cultures and treatments 

Primary osteoblasts were isolated from 4 weeks old mice of the three genotypes (WT, Grm1crv4/+ and 

Grm1crv4/crv4), according to a well-established procedure [25]. Briefly, calvaria were removed, parietal 

bones were cut in two halves, and subjected to four sequential digestion steps (15 min each, at 37 °C) 

in PBS with 0.05 % CollagenaseP (Roche) and 0.1 % Trypsin (Thermo Fisher Scientific, MA, USA). 

Cells from the first digestion were discarded, cells from the 2nd to the 4th digestion were placed in 

alpha-MEM medium (Thermo Fisher Scientific) supplemented with 10 % FBS and 1 % 

streptomycin/penicillin, 50 μg/mL ascorbic acid and 3 mM glycerol 2-phosphate disodium salt 

hydrate (Sigma- Aldrich, Milan, Italy). After 24 h medium was changed, thereafter, medium was 

changed every other day. When cells reached confluence, they were trypsinised and seeded at a 

density of 10,000 cells/cm2 to get second passage cells. Cells were monitored daily to assess 

morphology, and experiments performed after 10 days of cultures. Notably, mGlu1 receptor 

expression is retained by WT cells (RT–PCR method described in the Supporting information and 

results shown in Supplementary figure 4). Cell viability was assessed by Trypan blue uptake (Trypan 

Blue Solution, Sigma-Aldrich) in three wells per genotype after 24, 48 and 72 hours after plating. In 

order to assess DNA synthesis and cell proliferation, BrdU incorporation was measured using the 

BrdU cell Proliferation assay kit (Cell Signaling Technology, Danvers, Massachusetts, USA) 
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according to the manufacturer's instructions. Twenty-four hours after plating, BrdU reagent was 

added to the wells and incubated for 24 h, 48 h or 72 h. Three wells per genotype per time point were 

analysed. 

Pharmacological inhibition of mGlu1 receptors in osteoblasts was also performed. Osteoblasts 

isolated from WT animals were treated with 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate 

ethyl ester (CPCCOEt)(Hello-bio, Portishead, Bristol, UK), a known selective mGlu1 receptor 

antagonist [20], at a final concentration of 10 μM in 0.01% DMSO or with vehicle (DMSO 0.01%) 

only. Treatment was repeated on alternate days for a total of 10 days, when osteoblasts reached 

confluence. All experiments were performed in triplicate. 

2.10 Real-time Quantitative Reverse Transcriptase-Polymerase Chain Reaction (qRT-PCR) assay 

Total RNA was extracted using Trizol (Invitrogen) from osteoblasts kept in culture for 10 days, as 

described above. cDNA was prepared from 3µg RNA using the iScript Select cDNA Synthesis Kit 

and oligo(dt)20 primers (Bio-Rad, Segrate, Milan, Italy). Gene expression levels were quantified 

using gene-specific primers (Supplementary file). Real Time RT-PCR was run with iQ Sybr Green 

Supermix (Bio-Rad) on a MyIQ instrument (Bio-Rad) and data were analysed by the IQ5 Bio-Rad 

Software. 

The relative expression levels of mRNA from Grm1crv4/crv4 osteoblast cells were calculated using the 

ΔΔCt method [26] normalizing to Gapdh and relative to WT cells. Three replica per mouse, and three 

mice per genotype were analysed. 

Analogously, the relative expression levels of mRNA from CPCCOEt treated osteoblast cells were 

obtained using the ΔΔCt method [26] normalizing to Gapdh and relative to DMSO treated cells. 

2.11 Alizarin red staining and extraction methods 

Alizarin red staining solution (1 mg/mL, pH 5.5, Sigma-Aldrich) was added to ethanol-fixed 

osteoblasts then cells were destained by 5% perchloric acid. Optical density of the supernatant was 

evaluated by spectrophotometry at 450 nm. To normalize, Yanus Green Whole-cell Stain was added 

for 10min followed by Elution buffer and absorbance was read at 615nm. All experiments were 
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carried out using 3 replicates per each treatment. 

2.12 ALP activity 

To evaluate ALP activity in cultured cells, the medium was removed, the wells rinsed once with PBS, 

and 0.2 ml p-nitrophenyl phosphate (pNPP) (Sigma-Aldrich) was added to the wells and incubated 

for 30 seconds at room temperature in the dark. The reaction was stopped by the addition of 3 N 

NaOH and the sample was analyzed at 405 nm by the GloMax-Multi Detection System (Promega, 

Madison, WI, USA). The amount of protein was determined using a Pierce BCA Protein Assay kit 

(Thermo-Fischer Scientific), and the absorbance was read at 560 nm with the GloMax-Multi 

Detection System. ALP activity was defined by dividing the values from the pNPP assay by the values 

from BCA total protein to represent normalized alkaline phosphatase activity per unit total protein. 

2.13 Sirius Red staining 

Osteoblast cells were fixed in 4 % paraformaldehyde, then Sirius red solution (Polysciences, inc, 

Warrington, PA, USA) was added and washed with tap water after 1 hour incubation. Cells were 

destained by NaOH 0.1M. Optical density of the supernatant was evaluated by spectrophotometry at 

540 nm wavelength. To normalize, Yanus Green Whole-cell Stain (Fisher Scientific, Rodano Milan, 

Italy) was added for 10min followed by Elution buffer and absorbance was read at 595 nm. All 

experiments were carried out using 3 replicates per each mouse, and three mice per genotype. 

2.14 Statistics 

Analysis of variance (ANOVA) was used for continuous, normally-distributed variables; Tukey post-

hoc test was used to determine significance between multiple groups. Comparisons between two 

groups were carried out using an unpaired, two-tailed Student’s t test. The Kruskal Wallis 

nonparametric test was used when the normality assumption was violated, in which case the 

Wilcoxon-Mann-Whitney test was used for pairwise comparisons. Between subjects t-test using 

Levine’s test for equality of variances was used to assess differences in bone parameters. For all 

statistical analyses, a p-value less than 0.05 was considered to be statistically significant. 
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3. Results 

3.1 Grm1crv4/crv4 mice exhibit impaired skeletal development in vivo compared to WT animals 

The body weight of homozygous mutant mice was reduced with respect to that of WT mice of about 

25%. Analogously, body length of Grm1crv4/crv4 mice was about 10% shorter than that of WT mice. 

Heterozygous Grm1crv4/+ did not exhibit any differences in weight or length compared to that of WT 

animals (Figure 1 A-C, Supplementary table 1 and Supplementary table 2). 

Analysis performed on sex-matched WT, Grm1crv4/+ and Grm1crv4/crv4 mice of pooled ages (12 – 28 

weeks) showed a statistically significant decrease of femoral length both in female and in male 

Grm1crv4/crv4 mice when compared to WT females and males (Figure 1D). Femur length of 

Grm1crv4/crv4 female and male mice was shorter also with respect to heterozygous Grm1crv4/+ female 

and male counterparts (Figure 1D). Tibial length of the homozygous mutant female and male mice 

was shorter than that of WT females and WT males, respectively, the difference being statistically 

significant only in female animals (Figure 1D). Femoral length and tibia length of heterozygous 

Grm1crv4/+ mice did not differ statistically from those of WT animals. Indeed, anterior-posterior 

femoral width was reduced in female and not in male Grm1crv4/crv4 mice relative to heterozygous and 

WT animals (Supplementary Figure 1A, 1B). 

Bone mineral density of male Grm1crv4/crv4 mice showed a statistically significant reduction when 

compared to WT and Grm1crv4/+ mice (Figure 1E). Similarly, bone surface density of male 

Grm1crv4/crv4 mice was significantly reduced with respect to that of WT and of Grm1crv4/+ mice (Figure 

1E). In the female animals no difference in bone mineral density and bone surface density could be 

detected when mice of pooled ages (12 – 28 weeks) were analysed (Supplementary Figure 1C, 1D). 

When only animals of 24 weeks of age were considered, a statistically significant reduction in bone 

mineral density of female Grm1crv4/crv4 with respect to WT mice and, accordingly, bone surface 

density in Grm1crv4/crv4 with respect to WT mice was observed (Figure 1E). There was no statistically 

significant difference of either bone mineral density or surface density between heterozygous 

Grm1crv4/+ and WT mice (not shown). 
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Levine’s test for equality of variances showed no statistically significant difference in tibia length 

(mm) (t(4) = 2.026, p = 0.113), bone mineral density (g/cm3) (t(4) = 0.961, p = 0.391) and bone 

surface density (g/cm2) (t(3) = 1.744, p = 180) of WT male mice of 12 and 20 weeks age. Similarly, 

no statistically significant difference was detected in tibia length (mm) (t(4) = 0.210, p = 0.844), bone 

mineral density (g/cm3) (t(4) = 1.273, p = 0.272) and bone surface density (g/cm2) (t(4) = 1.626, p = 

0.179) of WT female mice of 12 and 24 weeks old. 

All together, these observations indicate growth retardation and bone mineralization defects in 

Grm1crv4/crv4 mice, which were not present in heterozygous Grm1crv4/+ animals. 

 

H&E staining of the hind limbs of 12 weeks old WT mice (Supplementary Figure 2A-C) and 

Grm1crv4/crv4 mice (Supplementary Figure 2D-F) showed that the growth plate in the distal epiphysis 

of the femora was active at this age. However, when observing the 24 weeks old Grm1crv4/crv4 mice 

(Figure 2A and Supplementary Figure 2J-L), it was noted that the process by which chondrocytes are 

embedded into calcified matrix was completed and thereby the growth plate transformed into 

epiphyseal line, whereas in the 24 weeks WT mice epiphysis (Figure 2A and Supplementary Figure 

2G-I) secondary ossification centers were still present, osteoblasts were still invading the cartilage 

matrix, causing ossification, indicating that the epiphyseal line has not yet fused. Thus, longitudinal 

bone growth is still an on-going process in 24 weeks old WT mice, while in the 24 weeks old 

Grm1crv4/crv4 mice the growth plate fused, ceasing the longitudinal bone growth. Overall, these data 

suggest that bone growth terminates earlier in the Grm1crv4/crv4 than in the WT mice. 

We wondered if this observation was associated to an imbalance in the number of 

osteoblasts/osteoclasts in the mutated bone tissues. By using enzymatic histochemistry we evaluated 

the presence of ALP-positive osteoblasts and TRACP-positive osteoclasts at bone epiphysis of WT 

and Grm1crv4/crv4 mice. This double staining analysis did not reveal any difference in number and/or 

distribution of osteoblasts and osteoclasts in the mutated with respect to the WT tissues (Figure 2B).  
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Indeed, we performed double immunofluorescence analyses with antibodies specific for Runx2, as 

marker for osteoblasts, and the mGlu1 receptor in diaphysis (Figure 3A-C). As expected, Runx2 and 

mGluR1 double positive cells were clearly observable in the wild type tissues and absent in the 

mutated bone. To note, no difference in the number of osteoblasts (Runx2-positive cells) was 

observable between mutated and wild type tissues. We than analysed bone epiphysis of WT and 

mutated mice by double immunofluorescence using antibodies specific for the osteoclast marker, 

CD68, and for the mGlu1 receptor (Figure 2D-G). No difference in the number of osteoclasts (CD68-

positive cells) was observable between mutated and wild type tissues. Of note, a few CD68-

expressing osteoclasts also expressed mGlu1 receptors (Figure 2E). 

We next carried out histomorphometry on toluidine blue-stained bone sections from 6-week-old wild 

type and Grm1crv4/crv4 mice (Figure 4A-B). Here, we observed a moderate enrichment of the bone 

surface and of the trabecular number in the mutated relative to wild type animals. 

We than investigated whether the bone formation could be different in the affected animals (Figure 

4C-D). By 20 weeks, MAR and BFR/BS were both significantly decreased (MAR: 34%; BFR/BS: 

40%) in the femora of Grm1crv4/crv4 compared to those from WT mice. 

 

 

3.2 No evident serum biochemical alterations are present in the Grm1crv4/crv4 mice 

Giving the renal impairment observed in Grm1crv4/crv4 mice [8], we measured a series of circulating 

markers to assess whether systemic effects could account for the skeletal observed abnormalities in 

these mice. Serum analyses of 10 animals of 24-weeks old, sex-matched WT and 10 Grm1crv4/crv4 

mice demonstrated comparable serum levels of Calcium, Phosphorus, Magnesium and 1,25-

dihydroxyvitamin D (Table1) therefore excluding any renal involvement in the observed phenotypic 

changes seen in mutant mice. In addition, serum levels of CTX (Table1) were also comparable 

between WT and Grm1crv4/crv4. Due to renal dysfunction, it might have been possible that serum 
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calcium and 1,25-dihydroxyvitamin D levels were being maintained by elevated PTH, which would 

have skeletal effects. We thus evaluated serum PTH level in 10 WT and 10 Grm1crv4/crv4 mice and no 

statistically significant difference was evidenced (Supplementary figure 3). 

 

 

3.3 Absence of mGlu1 receptor impairs osteoblast differentiation and mineralization in vitro 

To test whether decreased bone formation was directly caused by absence of mGlu1 receptor in 

osteoblasts, we studied the effects of genetic inactivation of mGlu1 receptor on osteoblast 

differentiation and mineralization in vitro. Expression of mGlu1 receptor was confirmed in WT, but 

not in Grm1crv4/crv4 mouse tibia osteoblasts (Supporting information, Supplementary figure 4). 

Osteoblasts obtained from WT and Grm1crv4/crv4 showed similar level of cell survival and proliferation 

rate (Supplementary figure 5), however osteoblasts obtained from mutant mice showed impaired 

mineralization, compared to that observed in WT mouse osteoblasts (Figure 5). Alizarin staining of 

the bone matrix demonstrated that the matrix mineralization was abundant in WT cells while it 

significantly decreased in heterozygous Grm1crv4/+ cells (p<0.05), and was almost completely absent 

in Grm1crv4/crv4 cells (p<0.01) (Figure 5A-B). Accordingly, ALP activity was strongly reduced in 

Grm1crv4/crv4 cells with respect to WT cells (p<0.05) (Figure 3C). 

As collagen is the major matrix component released from osteoblasts, we examined the possibility 

that the quantity of collagen released from Grm1crv4/crv4 mice osteoblasts was reduced with respect to 

the quantity released from WT cells. To this purpose, we first evaluated the SiriusRed staining, which 

specifically stains for collagen regardless of its different isoforms, and did not detect statistically 

significant differences between WT and mutated cells (Figure 5D). We then examined the expression 

of type I collagen, the prevalent component of bone matrix in homeostatic conditions, and found an 

abnormal distribution of type I collagen in the matrix of the mutant as compared to the WT cells 

(Figure 5E). Specifically, osteoblasts derived from Grm1crv4/crv4 mice showed a more scattered 

collagen distribution and less nodular appearance than those obtained from WT animals. 
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Next, to confirm a direct role of mGlu1 receptors in osteoblasts mineralization, we assessed the ability 

of WT osteoblasts to form mineralized matrix in the presence of a selective non-competitive 

antagonist of mGlu1 receptor, CPCCOEt. Matrix mineralization observed in treated mouse WT 

osteoblasts was significantly decreased compared to that seen in the presence of DMSO vehicle 

(p<0.01) and to that of untreated control cells (p<0.05). No statistically significant difference between 

untreated osteoblast control and DMSO-treated osteoblastic cells was observed (Figure 5F-G). 

Furthermore, qRT-PCR revealed a reduction of Collagen type 1 expression in osteoblasts treated with 

CPCCOEt when compared to control cells (p<0.05) (Figure 5H), confirming that mGlu1 receptor 

activity is required for osteoblast homeostasis. Finally, we performed real-time qRT-PCR to evaluate 

whether any differences were present in the expression of collagen type 1, collagen type 3, and the 

osteoblast markers Runx2, Osterix (Sp7) and Osteocalcin (Bglap) at mRNA level (Figure 6). No 

differences were evident except for osteocalcin, which was significantly more expressed in 

osteoblasts of Grm1crv4/crv4 with respect to WT cells. 

 

 

4. Discussion 

While it is well known that glutamate signaling pathways play a major role in the regulation of bone 

formation and dynamics, most studies have focused on ionotropic glutamate receptors. In contrast, 

the relevance of metabotropic glutamate signaling on bone mass regulation has not been investigated. 

In humans, GRM1 inactivating mutations lead to a form of recessive ataxia known as SCAR13 and, 

thus far, all patients reported to be affected by SCAR13 exhibit below the normal range head 

circumference and weight, both at birth and later during infancy; indeed, they show short stature in 

adult age (143-154 cm) [27, 28]. Consistent with these findings, previously we have shown that mice 

in which Grm1 is mutated exhibit cerebellar ataxia, impaired gait, kyphoskolyosis and reduced body 

weight and length compared to WT animals [18]. While the skeletal phenotype could be the direct 

consequence of both neuronal and renal abnormalities seen in these mice, as the bone is equipped 



16 

 

 

with all functional elements of the glutamate signaling, we hypothesized that the GRM1 ablation 

could account for the skeletal phenotype both seen in SCAR13 patients and in Grm1crv4/crv4 mice. To 

test this hypothesis directly, we carried out a detailed characterisation of the skeletal phenotype of the 

Grm1crv4/crv4 mice, specifically directed at testing the contribution that mGlu1 receptor makes to 

osteoblast function. 

In adult female and male Grm1crv4/crv4 mice we mainly observed reduced femoral length, reduced bone 

mineral density and bone surface density when compared to age-matched WT animals. Differences 

in bone mineral and bone surface density were predominantly visible in older mice, suggesting that 

the observed reduction in bone mass is age-related. Accordingly, Grm1crv4/crv4 mice exhibited reduced 

mineralization and bone apposition rates compared to WT mice at 24 weeks of age. 

Unlike in humans, in rodents the longitudinal bone growth continues even after they reach sexual 

maturity [29]. When analysing the morphology of the 12 and 24 weeks bone in Grm1crv4/crv4 and WT 

mice, it was discovered that the growth plate, still very much active in both genotypes at 12 weeks of 

age, at 24 weeks of age in Grm1crv4/crv4 mice the transformation of the growth plate into epiphyseal 

line was already completed while longitudinal bone growth in WT mice has still not ceased. 

Histomorphometry of the tibia from Grm1crv4/crv4 mice indicated a slight increase of bone surface and 

trabecular number compared to WT mice at 6 weeks of age, features suggestive of enhanced bone 

maturation at this age. We performed toluidine blue staining to distinguish in epiphyseal plate 

metachromatic cartilage (blue dark border) from trabecular bone tissue; these data suggest that the 

absence of the mGlu1 receptor causes a premature cessation of the epiphyseal plate in the Grm1crv4/crv4 

mice, with subsequent reduction of bone length in the Grm1crv4/crv4 compared to the WT mice. 

It is well acknowledged that renal damage interferes with bone apposition, resulting in reduction of 

bone density and diameter. In particular, blood and urine sampled from patients with chronic renal 

failure present elevated levels of serum phosphorus and decreased levels of Ca2+ and vitamin D, 

feature markers that indicate the onset of bone dystrophy [30]. Of note, the Grm1crv4/crv4 mice exhibit 

an impaired renal function [8], which is also necessary for the preservation of bone integrity. 
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However, blood analyses performed in the Grm1crv4/crv4 mice indicated normal levels of Ca2+, Pi, 

vitamin D, and Mg compared to WT animals, thus excluding that the skeletal defects shown by the 

Grm1crv4/crv4 mice could be the direct consequence of their renal phenotype. Furthermore, by showing 

similar levels of PTH in mutant and WT mice, we can rule out the influence of this hormone on serum 

calcium and 1,25-dihydroxyvitamin D levels. 

Motor impairment could instead interfere with bone apposition and with the remodelling cycle, and 

could hypothetically account for the observed skeletal phenotype. However, at 21 days of age 

Grm1crv4/crv4 mice already exhibited reduced body weight and length as compared to WT mice (data 

not shown). At this developmental stage, the skeletal tissue cannot be affected by the ataxic 

behaviour. Therefore, a direct role of motor impairment at the origin of the Grm1crv4/crv4 skeletal 

phenotype seems to be unlikely. Indeed, normal serum CTX levels in Grm1crv4/crv4 mice suggest that 

increased bone turnover was not a major cause for the skeletal phenotype of mutant mice. 

Finally, we tested if a decreased activity of bone-forming osteoblasts is responsible for low bone mass 

in Grm1crv4/crv4 mice. 

By in vitro experiments we showed that osteoblasts obtained from Grm1crv4/crv4 mice have the same 

survival and proliferation rate as the WT cells.  Indeed, no differences in number and distribution of 

osteoblast cells were evident at the epiphysis of Grm1crv4/crv4 with respect to WT animals. 

Noteworthy, osteoblasts obtained from mutated mice have a reduced ability to form mineralized 

matrix, when compared to WT cells. In addition, mineralized matrix production by WT osteoblasts 

was impaired when these cells were treated with a mGlu1 receptor specific inhibitor. 

Differences between WT and Grm1crv4/crv4 mice in collagen release from osteoblasts cultures were 

not evident. At RNA level, collagen 1 and 3, the most expressed collagens in the bone matrix, do not 

seem to be more expressed in osteoblasts culture from WT than in Grm1crv4/crv4 mice cells, but  

immunostaining showed differences in collagen type I distribution, and a reduced production of 

collagen I was detected after mGlu1 receptor blockade by CPCCOEt. This first confirms that mGlu1 

receptor activity is required for osteoblast functioning, and suggests that congenital absence of the 
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receptor might induce compensatory mechanisms. Actually, osteoblast cells obtained from 

Grm1crv4/crv4 mice express higher levels of osteocalcin than those obtained from WT animals, 

suggesting a different maturation pattern. Indeed, osteocalcin is a marker of late osteoblast 

differentiation [31], which supports a more rapid maturation of mutated cells, and is in line with the 

observed premature cessation of the epiphyseal plate in the Grm1crv4/crv4 mice in vivo. 

Overall, our studies show that the impaired bone formation in the Grm1crv4/crv4 mice is most likely 

explained by osteoblast malfunction. This finding is in agreement with the findings reported 

previously on the ability of osteoblasts to release and recycle glutamate [16, 17]. 

In the central nervous system, the mGlu1 receptor is primarily coupled to Gq/G11 protein and its 

activation leads to IP3 formation and releases of Ca2+ from intracellular stores (reviewed in [1]). In 

primary culture of rat femoral osteoblasts, it has been suggested that activation mGlu1 receptors is 

linked to an elevation of intracellular Ca2+ levels [4]. Molecular mechanisms regulating intracellular 

calcium homeostasis are fundamental for adequate osteoblast function and differentiation. In the 

nervous system and in other non-neural tissues Group-I mGlu receptors also signal via activation of 

the MAPK and PI3K pathways and ERK1/ERK2 [1], all of which are known important factors 

contributing to osteoblast function, as evidenced by fact that their genetic inactivation inhibits 

osteoblast differentiation [32]. Thus, activation of mGlu1 receptor in bone could also lead to 

activation of these signaling pathways and therefore play a crucial role in bone biology. Impairment 

of this process could contribute to the observed skeletal phenotype in patients affected by GRM1 

inactivating mutations and in Grm1crv4/crv4 mice. 

Finally, mGlu receptors are reported to have a role also in the control of neuroendocrine function 

[33], including modulatory effects on pituitary function [34]. 

Thus, inactivation of mGlu1 receptor may have many different effects in different tissues and organs, 

including bone, nervous system, kidney, which may contribute together to the complex phenotype 

observed in the Grm1crv4 mice. 
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5. Conclusions 

In summary, this work reveals a novel role for metabotropic glutamatergic signaling in bone. We 

show here that in the absence of mGlu1 receptors bone growth is altered, and that osteoblasts mGlu1 

receptors are necessary for skeletal development, longitudinal bone growth and production of normal 

bone matrix. Further experimental work will be necessary to clarify the mechanisms linking mGlu1 

receptors and bone physiology and to clarify to what extent mGlu1 receptors may contribute to bone 

formation and maintenance. 
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Figure 1. Grm1crv4/crv4 mice exhibit reduced body size, shorter femur length and tibia length, reduced 

bone mineral density and reduced surface density compared to WT mice. (A) Images of Grm1crv4/crv4 

(right) and wt (left) adult male mice from the same progeny. (B) Body weight and (C) body length 

are presented as mean±SEM of 20 animals (10 females and 10 males) for each genotype. (D) Femur 

length of females and males, and tibial length of females and males are presented as mean±SD of 

mice of pooled ages (12 – 28 weeks). (E) bone mineral density (BMD) and bone surface density 

(BSD) in males (male mice of pooled ages, 12 – 28 weeks) and in females (female mice of 24 weeks 

of age). Data are presented as mean±SD. p<0.05 (*); p<0.01 (**). 

Figure 2. A. Haematoxylin and eosin (H&E) staining performed on 24 weeks old WT and 

Grm1crv4/crv4 mice. Staining of the hind limbs of 24 weeks old WT mice (right) show that longitudinal 

bone growth is still an on-going process in these mice, with secondary ossification centers present in 

the epiphysis. However, when observing the age-matched Grm1crv4/crv4 mice (left) it was noted that 

the growth plate fused ceasing the longitudinal bone growth in these mice, there do not appear to be 

any secondary ossification centers present in the epiphysis of these animals. Images of the growth 

plate/epiphyseal line were taken at x20 magnification and the scale bars represent 1mm. DC, 

differentiated chondrocytes; OM, ossified matrix, PC, proliferative chondrocytes, SOC, secondary 

ossification centres. B. Labeling of ALP and TRAP in WT and Grm1crv4/crv4 epiphysis bone mice by 

enzymatic histochemistry. Arrows in the left panel indicate ALP-positive cells, osteoblasts. Arrows 

in the right panel indicate TRACP-positive cells, osteoclasts. The inset images were taken at 40X 

magnification and the scale bars represent 50μm. 
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Figure 3. Osteoblasts and osteoclasts in bone tissue of WT and Grm1crv4/crv4 mice A-B. 

Immunofluorescence shows expression of the mGlu1 receptor (green) and Runx2 (red), a marker for 

osteoblasts, in the bone diaphysis of a wild-type (A) and of a Grm1crv4/crv4 (B) mouse. Runx2-

expressing osteoblasts are observable in both WT and mutated tissues (arrows). Green-red double 

stained cells, indicating the presence of mGlu1 receptor-expressing osteoblasts, are observable in the 

WT tissue and absent in the mutated mouse bone tissue. C. Number of osteoblasts per bone surface 

in WT and mutated bone tissues are presented as mean±SD. D-F. Immunofluorescence shows 

expression of the mGlu1 receptor (green) and CD68 (red), a marker for osteoclasts, in the bone 

epiphysis of a WT (D-E) and of a Grm1crv4/crv4 (F) mouse. CD68-expressing osteoclasts are observable 

in both WT and mutated tissues (arrows). Few green-red double stained cells, indicating the presence 

of mGlu1 receptor-expressing osteoclasts, are observable in the WT tissue and absent in the mutated 

mouse bone tissue. G. Number of osteoclasts per bone surface in WT and mutated bone tissues are 

presented as mean±SD. The inset images were taken at 50X magnification and the scale bars represent 

50µm. 

Figure 4. Static and dynamic histomorphometry of WT and Grm1crv4/crv4 bone tissues. (A) Toluidine 

blue-stained sections from tibiae of 6-week-old female mice. Scale bar, 200 μm. (B) Analysis of 

relative bone volume (BV/TV) and trabecular number (Tb.N) is shown. All values are mean ± SEM 

from three mice per group at 6 weeks of age. (C) Representative calcein-labeled sections of femur 

bone from WT and Grm1crv4/crv4 male mice. Images were taken at x200 magnification. (D) Mineral 

apposition rate (MAR) and bone formation rate (BFR/BS) calculated from calcein double labelling 

are shown in WT and Grm1crv4/crv4 mice. Bone formation rate is the amount of mineralised bone 

formed per unit of time per unit of bone surface. All values are mean ± SEM from three mice per 

group at 24 weeks of age. p<0.05 (*) ; p<0.01 (**). 

Figure 5. Mineralization matrix defects are seen in mice lacking mGlu1 receptor. A. Light 

microscopy images of alizarin red staining of primary osteoblasts obtained from WT, Grm1crv4/+ and 

Grm1crv4/crv4 mice and (B) quantification of alizarin extracted from primary cells. C. ALP activity is 
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reduced in Grm1crv4/crv4 mice with respect to WT mice. D. Content of collagen measured by SiriusRed 

assay and normalized by Janus Green. E. Collagen I expression in primary osteoblasts obtained from 

WT and Grm1crv4/crv4 mice. Scale bar 50 µm. Magnification: 40X. F. Light microscopy images of 

alizarin red staining of primary osteoblasts obtained from WT mice, cultured with CPCCOEt, DMSO 

and control (CTRL) and (G) quantification of alizarin red extracted from primary cells. H. Collagen 

I mRNA expression of primary osteoblasts of WT mouse treated with CPCCOEt or DMSO (vehicle 

control). Bars are means ± SD. p<0.05 (*); p<0.01 (**). 

Figure 6. Results of real-time qRT-PCR obtained from osteoblast cultures. 

 
 


