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Dipolar polaritons in microcavity-embedded coupled quantum wells in electric and magnetic fields
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We present a microscopic calculation of spatially indirect exciton states in semiconductor coupled quantum
wells and polaritons formed from their coupling to the optical mode of a microcavity. We include the presence of
electric and magnetic fields applied perpendicular to the quantum well plane. Our model predicts the existence
of polaritons that are in the strong-coupling regime and at the same time possess a large static dipole moment.
We demonstrate, in particular, that a magnetic field can compensate for the reduction in light-matter coupling
that occurs when an electric field impresses a dipole moment on the polariton.
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I. INTRODUCTION

Exciton polaritons in microcavities in the strong-coupling
regime have been studied intensively in recent years [1]. They
are realized by placing semiconductor quantum wells (QWs) at
the antinode position of a resonant electromagnetic field inside
a cavity. Notable advances include the observation of phe-
nomena such as polariton Bose-Einstein condensation [2,3],
superfluidity [4], and the formation of quantum vortices [5].
A number of applications were developed, such as electrically
pumped room-temperature polariton lasers [6,7] and optical
logic devices [8].

Spatially indirect excitons, formed from an electron and a
hole separated into adjacent coupled quantum wells (CQWs)
by an external bias, are also an attractive system for
study [9,10]. This is due to the possibility to control the
exciton properties by varying the applied electric field [11].
Macroscopic charge separation causes indirect excitons to
have a built-in static dipole moment. This enhances the
exciton-exciton interaction strength, leading to a lumines-
cence blueshift [12]. The blueshift provides a probe of the
exciton density, and it was used to study exciton phase
transitions [13,14]. The static dipole moment also facilitates
electrostatic [15–18] and optical [19,20] control of exciton
transport, and it was exploited for the development of excitonic
devices [21].

Recently, CQWs were embedded in a planar Bragg-mirror
microcavity to create polaritons with a large dipole moment
typical for indirect excitons [22]. Usually, an indirect exciton is
only weakly coupled to light due to the reduced overlap of the
electron and hole wave functions. However, when asymmetric
CQWs are used, the electric field can be chosen such that the
indirect exciton, the direct exciton, and the cavity mode are
brought into resonance, resulting in a strongly coupled three-
level system. Such hybrid quasiparticles, called dipolaritons,
present a system with a greater flexibility of control and new
possible applications compared to regular polaritons formed
from direct excitons. Proposed applications include THz
emission [23,24], tunable single-photon emission [25], optical
parametric oscillators [26,27], quantum logic gates [28], and
the creation of indirect exciton [29] and dipolariton [30]
Bose-Einstein condensates. Other theoretical studies have
focused on the dipolariton-dipolariton interaction, taking into
account exchange effects between the excitons [31] and
the applied electric-field dependence of the dipolariton spin
interaction [32]. Dipolaritons were also realized in wide single

QWs embedded in a dielectric waveguide [33]. In that work,
excitons under bias acquire a static dipole moment because the
large QW width permits substantial charge separation. At the
same time, excitons remain strongly coupled to light due to the
absence of a potential barrier separating electrons and holes,
so that their wave functions can have a sufficient overlap.

Applying a magnetic field offers an extra degree of control
over excitonic systems as it modifies the properties of excitons
and, consequently, those of exciton polaritons. Experiments
have demonstrated continuous tuning from the weak- to
the strong-coupling regime and control of the vacuum Rabi
splitting by varying magnetic field [34–36]. A magnetic field
can suppress the polariton relaxation bottleneck as it enhances
the polariton-phonon scattering rates [37]. The magnetic-field
dependence of the polariton lasing threshold was also inves-
tigated [38]. However, all these works focused on polaritons
without a static dipole moment. Magneto-dipolaritons present
an intriguing new system that, to the best of our knowledge, has
not yet been studied. In addition to the possibility to fabricate
structures with different optical resonances and different QW
and barrier widths, the combination of both electric and
magnetic fields as controllable parameters realizes a highly
nontrivial system with a rich physics to explore. This opens an
avenue for new theoretical and experimental investigations.

The subject of this paper is a rigorous calculation of
exciton-polariton states in microcavity-embedded CQWs and
an examination of their dependence on electric and magnetic
fields. We show that the magnetic field enhances the exciton-
photon coupling and can effectively compensate for the
darkening associated with the direct-indirect exciton crossover.
This allows polaritons in the strongly coupled regime to have
a large static dipole moment that is comparable to the center-
to-center distance of the CQWs. We use the multi-sublevel
approach (MSLA) recently introduced in Ref. [39]. The main
benefit of this approach is that we solve precisely the exciton
Schrödinger equation in three dimensions. In Ref. [40], we
used this method to calculate the electric- and magnetic-field
dependence of the lifetime, Bohr radius, dipole moment,
binding energy, and effective mass of CQW excitons. We found
that these properties strongly depend on the direct-indirect
exciton crossover, which occurs for a changing electric and/or
magnetic field. Such a dependence cannot be captured by any
two-dimensional (2D) approximations of the exciton that were
used by many authors; see, e.g., Refs. [41–44]. The same
method was used to describe the effect of barrier width on the

2469-9950/2016/94(12)/125310(9) 125310-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.94.125310


J. WILKES AND E. A. MULJAROV PHYSICAL REVIEW B 94, 125310 (2016)

CQW excitons in an electric field [45]. In Ref. [46], the MSLA
was extended to describe dipolaritons. However, this was done
without including the influence of an applied magnetic field,
which is the main focus of the present paper.

In Sec. II, we describe our method of solving the coupled
Schrödinger and Maxwell’s wave equations used to model
polaritons in microcavity-embedded CQWs. Results from the
application of our model to a realistic structure are presented
in Sec. III. A summary and conclusions are given in Sec. IV.
Appendixes A–C contain derivations of the results used and
provide details of the numerical procedure.

II. COUPLED MAXWELL’s AND MATERIAL EQUATIONS

A microscopic approach to light-matter interaction is used
to describe the coupling of QW excitons and cavity photons.
The problem entails solving Maxwell’s wave equation for the
light field E, given by

∇2E = 1

c2

∂2

∂t2
(εbE + 4πP), (1)

where P is the exciton macroscopic polarization and εb(z)
is the low-frequency background dielectric constant of the
heterostructure. We split out the time dependence of the fields,
E = Eω(R,z)e−iωt and P = Pω(R,z)e−iωt , and for the planar
heterostructures considered here we separate the coordinates
that are perpendicular and parallel to the QW plane (z and R,
respectively) using the factorization

Eω(R,z) = ê E(z)eiK·R. (2)

Here, K is the in-plane wave vector and ω is the frequency
of light. For s-polarized light, the unit vector of the light
polarization ê is normal to the growth axis. The macroscopic
polarization Pω is linked via an equation

Pω(R,z) =
∫

Y (R,ρ,ze,zh)M(r) dr (3)

to the microscopic exciton polarization Y , which in turn
satisfies an inhomogeneous Schrödinger equation [47]

(Ĥ − �ω − iγ )Y (R,ρ,ze,zh) = M(r) · Eω(R,z). (4)

Here, Ĥ is the full Hamiltonian of a CQW exciton in external
fields [40], M(r) is the optical transition dipole moment,
r = (ρ,ze − zh) is the electron-hole relative coordinate, with
ρ being that in the plane of the QW, and ze (h) is the electron
(hole) coordinate in the growth direction. The transition dipole
moment is assumed to be isotropic in the QW plane, and
its magnitude is assumed to have the form M(r) = μcvδ(r)
in the point-dipole approximation so that z = ze = zh in the
right-hand side of Eq. (4). Here, μcv = edcv is the conduction-
to valence-band dipole matrix element. A phenomenological
damping constant γ is used to describe nonradiative losses.

Introducing the excitonic nonlocal susceptibility χ (z,z′) of
the CQW structure, defined by

Pω(R,z) =
∫

χ (z,z′)Eω(R,z′)dz′, (5)

we arrive at the integrodifferential wave equation for the
amplitude E(z) of the light field:(
K2 − ∂2

∂z2

)
E(z) = ω2

c2

[
εb(z)E(z) + 4π

∫
χ (z,z′)E(z′) dz′

]
,

(6)

where K = |K|. The excitonic susceptibility χ (z,z′) is found
by solving Eq. (4) for Y , with the help of the spectral repre-
sentation of the Green’s function, as detailed in Appendix A.
It is then expressed as a sum over all quantized exciton states,

χ (z,z′) = μ2
cv�ω

∑
ν

ϕνK(0,z,z)ϕ∗
νK(0,z′,z′)

(EνK − iγ )(EνK − iγ − �ω)
, (7)

in which EνK is the eigenenergy and ϕνK(ρ,ze,zh) the wave
function describing the internal structure of the exciton state
ν with momentum K. They satisfy a Schrödinger equation
Ĥ K

x ϕνK = EνKϕνK, in which Ĥ K
x (ρ,ze,zh) is the exciton

reduced Hamiltonian obtained from the full Hamiltonian
Ĥ (re,rh) by making a unitary transformation to split out the
exciton relative and center-of-mass motion [41]. Here, re,h

are the three-dimensional (3D) electron and hole coordinates.
For the present case of external static electric and magnetic
fields applied perpendicular to the CQW structure, this
transformation is done by a factorization

�νK(re,rh) = exp

(
i

[
K + e

�c
A(ρ)

]
· R

)
ϕνK(ρ,ze,zh) (8)

of the full exciton wave function satisfying the full Schrödinger
equation Ĥ�νK = EνK�νK. Here, A is the vector potential of
magnetic field B. Since B is applied along the growth direction,
the symmetric gauge A(ρ) = 1

2 B × ρ can be used.
In the effective-mass approximation, the reduced Hamilto-

nian for an exciton in static electric and magnetic fields applied
perpendicular to the QW plane has the form [40]

Ĥ K
x (ρ,ze,zh) = Ĥ⊥

e (ze) + Ĥ⊥
h (zh) + ŴK

B (ρ) + Eg + VC(r),

(9)

in which

Ĥ⊥
e,h(z) = −�

2

2

∂

∂z

1

m⊥
e,h(z)

∂

∂z
+ Ue,h(z), (10)

ŴK
B (ρ) = − �

2

2μ
∇2 − ie�

�c
A(ρ) · ∇ + e2

2μc2
A2(ρ)

+ K2

2M
+ 2e

Mc
K · A(ρ), (11)

Eg is the band gap, and VC(r) = −e2/(εQWr) is the Coulomb
interaction, with the dielectric constant of the QW layers εQW

and r = |r| =
√

ρ2 + (ze − zh)2. Here M = m
||
e + m

||
h, 1/μ =

1/m
||
e + 1/m

||
h, and 1/� = 1/m

||
e − 1/m

||
h, in which we neglect

any z dependence of the in-plane electron and hole effective
masses m

||
e,h. This is justified by low mass contrast in the

heterostructures treated here and a minor contribution of the
electron and hole wave functions outside the well regions.
For the band gap Eg and in-plane masses m

||
e,h, the values for

the QW layers are used. The confinement and the external bias
are included in the potentials Ue,h(z) = V

QW
e,h (z) ± eFz, where
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F is the electric field. The perpendicular masses m⊥
e,h(z) are

layer-dependent step functions, as are the QW confinement
potentials V

QW
e,h (z).

To obtain the eigenstates contributing to Eq. (7), we
employ the MSLA developed in Refs. [39,40]. Due to the
high exciton mass M (which further increases in an applied
magnetic field [40]) and small values of the photon momentum
K involved, any K dependence of the exciton states can
be neglected in the polariton problem treated here. In the
MSLA, the wave function describing the internal structure
of the exciton, i.e., the solution of the Hamiltonian Eq. (9),
is expanded into the basis of Coulomb-uncorrelated electron-
hole pair states,

ϕν0(ρ,ze,zh) =
∑

n

�n(ze,zh)φ(ν)
n (ρ)eimφ, (12)

where we have used the polar coordinates ρ = (ρ,φ) and
introduced the exciton angular momentum m. Note that
only optically active states with m = 0 contribute to the
polariton problem. Each basis function �n(ze,zh) is the
product of single-particle electron and hole wave functions,
which themselves are eigenstates of the perpendicular motion
Hamiltonians Eq. (10). The radial components of the wave
function φ(ν)

n (ρ) are calculated using a matrix generalization of
the shooting method with Numerov’s algorithm incorporated
into the finite-difference scheme. Full details can be found in
Ref. [40].

The excitonic susceptibility then takes the form

χ (z,z′) =
N∑

n,m=1

�n(z,z)�m(z′,z′)χnm (13)

with a matrix

χnm = �ωμ2
cv

Nex∑
ν=1

φ(ν)
n (0)φ(ν)

m (0)

(Eν0 − iγ )(Eν0 − iγ − �ω)
. (14)

In the practical implementation of the method, we first solve
one-dimensional Schrödinger equations for the electron and
hole with the Hamiltonians Eq. (10), and we find a set
of N basis functions �n(ze,zh) determining the size of the
matrix χnm. We then solve the exciton Schrödinger equation in
external electric and magnetic fields, finding Nex lowest states,
in this way calculating φ(ν)

n (ρ) and the exciton energies Eν0

determining the matrix χnm. Typically, N ranges between 4 and
16 and Nex between 10 and 200, depending on the external field
values. Next, for the known excitonic susceptibility χ (z,z′),
given in the form of a factorizable kernel [Eq. (13)], the
wave equation [Eq. (6)] allows a semianalytic exact solution,
in the form of exponentials with amplitudes determined by
the Fourier transforms of the basis functions �n(z,z) as
detailed in Appendix B. In particular, we determine a 2 × 2
scattering matrix of the active layer containing the CQWs,
which consists of the transmission and reflection coefficients
for left and right propagating waves. The scattering matrix of
the optically active layer is then incorporated into the standard
procedure of the scattering matrix calculation [48], giving the
optical response of the full system of CQWs embedded in the
microcavity.

TABLE I. Parameters of the model. m0 is the free electron mass.

εQW Permittivity in QWs 12
Band gap of left QW 1.392 eV

Eg Band gap of right QW 1.373 eV
Band gap of barrier 1.473 eV

m⊥
e (z) Electron mass in left QW 0.0630m0

Electron mass in right QW 0.0622m0

Electron mass in barrier 0.0665m0

m⊥
h (z) Hole mass in QWs 0.338m0

Hole mass in barrier 0.34m0

Mx In-plane exciton mass 0.22m0

μ In-plane reduced exciton mass 0.040m0

dcv Dipole matrix element 0.6 nm
γ Damping constant 0.2 meV

III. APPLICATION TO InGaAs
MICROCAVITY-EMBEDDED ASYMMETRIC CQWs

We consider InGaAs asymmetric CQWs inside a micro-
cavity that were studied in Ref. [22]. The left and right
InxGa1−xAs QWs have indium content x = 0.08 and 0.1,
respectively. Table I gives a list of the parameters used. All
material parameters except εQW and γ are taken the same as
in Ref. [39]. For εQW, the low-temperature GaAs permittivity
given in Ref. [49] was used due to the low indium content in the
structure. γ is a fitting parameter chosen such that the polariton
linewidths are similar to those observed in experiments. We
note that our approach can also be used to model the recently
observed waveguide dipolaritons [33]. This will be the subject
of future work, and it is not explored in detail here. Figure 1(a)
shows the permittivity of the treated microcavity structure as a
function of coordinate z. The microcavity consists of 17 and 21
pairs of alternating GaAs and InGaAs λ/4 layers forming the
distributed Bragg reflectors (DBRs). Four pairs of asymmetric
CQWs are placed at the antinode positions of the resonant
optical mode in a 5λ/2 cavity. The reflectivity spectrum of
the bare cavity (without CQWs) is shown in Fig. 1(b). A dip
in reflectivity occurs at the cavity mode, shown in detail by
the inset in Fig. 1(b). The cavity mode has a full width at
half-maximum of 0.1 meV giving a Q factor of ≈14 000.

An example of the full reflectivity spectrum including the
light-matter interaction in the CQWs is shown by the grayscale
in Fig. 1(c) as a function of in-plane wave vector K = |K|
for F = 20 kV/cm and B = 10 T. The dips in reflectivity
are the lowest three polariton branches. The red dashed lines
show the dispersion of the lowest two exciton states for
these values of the field, and the blue dotted line is the bare
cavity mode. Anticrossings of a few meV are typical for the
strong-coupling regime. The solid green line shows a parabola
fitted to the bottom of the polariton ground-state dispersion,
Efit(K) = Efit(0) + αK2. This is used to extract the polariton
effective mass defined as m∗ = �

2/(2α). The effective mass
is useful, for example, to identify the critical temperature for
Bose-Einstein condensation.

The magnetoexciton energies are shown by red circles
in Fig. 2(a) as a function of electric field F , for magnetic
field B = 2 T. The circle area is proportional to the exciton
oscillator strength. Bright direct excitons have an energy that
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FIG. 1. (a) The spatial profile of the permittivity in the considered
sample, having four pairs of InGaAs CQWs located at the antinode
positions of the resonant cavity mode in a 5λ/2 cavity surrounded by
two DBRs formed from 17 and 21 pairs of GaAs/InGaAs layers. (b)
Reflectivity spectrum of the cavity in the absence of light-matter
coupling. The inset shows a magnification of the cavity mode.
(c) In-plane wave-vector dependence of the reflectivity spectrum.
The bare cavity mode and the exciton dispersion are shown by the
dashed blue and dotted red lines, respectively. The solid green line is
a parabolic fit to the bottom of the polariton ground-state dispersion.

changes slowly with F . In contrast, dark indirect excitons
quickly decrease in energy with increasing F due to their large
dipole moment, which is oriented to screen the electric field.
The indirect exciton energy shift is approximately −edzF ,
where dz ≈ 14 nm is the center-to-center distance of the QWs.
Around F = 15 kV/cm, there is an anticrossing between
direct and indirect states. Correspondingly, there is a crossover
of the ground state from a direct to an indirect exciton with
increasing F . In Fig. 2(b), the same quantities are shown
but as a function of magnetic field with F = 20 kV/cm. The
diamagnetic shift of the exciton ground state is seen. Also, the
brightness increases with B. This is due to the magnetic field
shrinking the in-plane part of the exciton wave function—an
effect arising from tightening of the electron and hole cyclotron
orbits. The shrinkage increases the overlap of electron and hole
wave functions and thus enhances the coupling to light.

The grayscale in Figs. 2(a) and 2(b) shows the corre-
sponding dependence of the structure’s reflectivity spectrum.
The displacement of the polariton states from the cavity
mode (shown by the blue dashed line) indicates the strength
of the polariton effect. Exciton states with large oscillator

FIG. 2. Polariton reflectivity spectrum (grayscale) for (a) the
electric field dependence with B = 2 T and (b) the magnetic field
dependence with F = 20 kV/cm. Exciton states are shown by circles
with area proportional to the oscillator strength. The cavity mode is
shown by the blue dashed line. The lowest three polariton states are
labeled.

strength or those that are close in energy to the cavity mode
significantly modify the reflectivity. The results presented
in Fig. 2 can be summarized as follows. Increasing electric
field causes the direct-to-indirect crossover of the exciton
ground state [39] and impresses a dipole moment upon the
exciton part of the polariton. However, it comes at the cost of
reducing the exciton brightness, and eventually it leads to the
successive disappearance of the lowest polariton branches. The
magnetic field has the reverse effect and enhances the coupling
strength. It can also induce an inverse, indirect-to-direct
exciton crossover that diminishes the dipole moment [40].
Both electric and magnetic fields provide a means to tune the
exciton energy with respect to the cavity mode.

We examine the field dependencies further in Fig. 3. For the
lowest three polariton states, which are labeled in Figs. 2(a)
and 2(b), we identify the polariton energy as the location of
the minimum in the reflectivity spectrum. These energies are
plotted in Figs. 3(a) and 3(e). To extract the properties of each
state, we evaluate the microscopic polarization Y and define
the polariton brightness F and dipole moment D, as in [46],
by

F = 1

N

∣∣∣∣
∫

Y (R,0,z,z) dz

∣∣∣∣
2

, (15)

D = 1

N

∫∫∫
|Y (R,ρ,ze,zh)|2(ze − zh)dρ dzedzh, (16)

N =
∫∫∫

|Y (R,ρ,ze,zh)|2dρ dzedzh, (17)
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FIG. 3. Energy (a,e), brightness (b,f), static dipole moment (c,g),
and effective mass (d,h) of the lowest three polariton states as a
function of F with B = 2 T (a–d) and as a function of B with F =
20 kV/cm (e–h). The states in (a–d) and (e–h) correspond to those
labeled in Figs. 2(a) and 2(b), respectively. The dotted lines in (c) and
(g) are the maximum nominal dipole moment [46].

where N is a normalizing constant. Note that the above
quantities do not depend on R due to the modulus of Y (see
the explicit form of Y in Appendix A). F , shown in Figs. 3(b)
and 3(f), measures the contribution of the cavity photon and
increases with the electron-hole overlap integral. D, shown
in Figs. 3(c) and 3(g), is the sum of the dipole moments
of all exciton states included in the summation in Eq. (14),
each weighted by their contribution to the total polariton wave
function. The left (right) panels in Fig. 3 correspond to the
upper (lower) panel in Fig. 2.

Figure 3 shows that the model predicts the existence of
dipolaritons characterized by a static dipole length that can
be comparable to the nominal center-to-center distance of the
CQWs. Moreover, fields F and B provide a way to tune the
dipole moments. Oscillations of the brightness [Figs. 3(b)
and 3(f)] and dipole moment [Figs. 3(c) and 3(g)] are seen
when changing either the electric or magnetic field. Such a

dependence can be explained in terms of the anticrossings
between different polariton branches. Similar to indirect
excitons, the electric field causes an energy shift of dipolaritons
that depends linearly on the dipole moment (approximately
−eDF ). Conversely, the dipole moment is approximately
proportional to the energy gradient −∂E/∂F (here E is the
exciton energy). The intricate anticrossings between polariton
branches, which originate from anticrossings between the
different direct and indirect exciton states, cause variations in
this gradient [see Figs. 2(a) and 3(a)]. Oscillations in the dipole
moment are therefore ascribed to ∂E/∂F oscillating in F and
B. In comparing Figs. 3(b) and 3(c) [or Figs. 3(f) and 3(g)], we
see that any increase in the dipole length is accompanied by a
decrease in brightness. This happens as the exciton part of the
polariton transforms from a bright direct to a dark indirect state.

In Figs. 3(d) and 3(h), we show the electric- and magnetic-
field dependence of the polariton effective mass, m∗. This was
determined by fitting a parabola to the polariton dispersion
around K = 0, as illustrated in Fig. 1(c). The dependence of
m∗ on F and B can be understood using a simple coupled
oscillator model. The dispersion and, in turn, the mass of
the polariton are approximated by diagonalizing a 2 × 2
Hamiltonian whose diagonal elements are the dispersionless
exciton and the parabolic dispersion of the cavity photon.
The off-diagonal elements are a coupling constant. In this
approach, one finds that m∗ decreases sharply with increasing
coupling and that the dependence on the coupling constant
is much greater when the exciton energy is below the cavity
mode. This accounts for some of the main features of the lower
polariton effective mass seen in Figs. 3(d) and 3(h). Indeed,
comparing with Figs. 3(b) and 3(f), we see that an increase
in brightness, which corresponds to an increase in coupling
strength, sharply decreases m∗. The lower bound for m∗ is the
mass of the cavity photon, the dispersion of which is shown
by the blue parabola in Fig. 1(c).

The combination of fields allows us to tune the polariton
mass over two orders of magnitude. Figures 3(f), 3(g),
and 3(h) show that in the limit of high electric and magnetic
fields (F = 20 kV/cm and B = 10 T), the polariton ground
state acquires a substantial dipole moment (≈5 nm) while
remaining comparably bright, and it has an effective mass
less than 10−5m0. This particular realization of magneto-
dipolaritons, whose dispersion is shown in Fig. 1(c), offers
favorable conditions for low condensation threshold and strong
polariton-polariton interactions that can be used to probe
many-body interactions.

We now explore the properties of magneto-dipolaritons in
a fixed energy scheme. F and B are increased simultaneously
so that the diamagnetic shift of the exciton ground state is
compensated for by the electric field. This is approximately
achieved with an electric field that is linear in B, going from
F = 13 kV/cm at B = 0 up to F = 23 kV/cm at B = 10 T.
The resulting energy of the exciton ground state is shown
by red circles in Fig. 4(a) and is practically constant. We then
used cavity modes with different detunings � from the exciton
ground state. The grayscale in Fig. 4(a) shows the reflectivity
spectrum for the case of � = 0, and the cavity mode is shown
by the blue dashed line.

Increasing the electric field reduces the spatial overlap of
electron and hole wave functions and darkens the polariton
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FIG. 4. (a) Reflectivity spectrum (grayscale), exciton energy (red
circles with area proportional to oscillator strength), and cavity mode
for zero detuning (blue dashed line). Brightness (b) and dipole
moment (c) of the polariton ground state for various detunings of
the cavity mode from the exciton ground state, as given.

state. In the fixed energy scheme, this is compensated for by the
magnetic field, which shrinks the radius of the exciton wave
function in the QW plane. The brightness of the polariton
ground state is shown in Fig. 4(b). We see only a weak
dependence on the fields. In contrast, the dipole moment
of the polariton ground state, shown in Fig. 4(c), increases
substantially due to the increasing electric field. For example,
with � = 0 the dipole moment is increased threefold at the
rather minor sacrifice of about a 15% decrease in brightness.
The magnetic field can therefore be used to create polaritons
that are both bright and have a large static dipole moment.

IV. CONCLUSION

We implemented a microscopic calculation of exciton-
polariton states in microcavity-embedded CQWs in the
presence of external electric and magnetic fields oriented
perpendicular to the QW plane. We evaluated the energy,
brightness, dipole moment, and effective mass of the lowest
three polariton states. We found a tradeoff between the
brightness and the dipole moment, as increasing the latter
reduces the exciton oscillator strength, which in turn depends
on the electron-hole overlap. However, the reduction of the
polariton brightness caused by an electric-field-induced dipole
moment can be compensated by a magnetic field, which
shrinks the exciton wave function in the QW plane. As as result,
a polariton with a substantial dipole moment can be formed
in the strong-coupling regime, also showing a significantly

reduced polariton effective mass, close to the mass of the
cavity photon.
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APPENDIX A: EXCITONIC SUSCEPTIBILITY

Here we derive the expression for the excitonic suscepti-
bility Eq. (7) using the spectral representation of the exciton
Green’s function (GF) G(R,ρ,ze,zh; R′,ρ ′,z′

e,z
′
h). The latter

satisfies an equation

(Ĥ−�ω−iγ )G = δ(R−R′)δ(ρ − ρ ′)δ(ze − z′
e)δ(zh − z′

h).

(A1)

Then the solution of the material equation (4) can be expressed
as a convolution with the GF,

Y (R,ρ,ze,zh) =
∫

dr′
∫

dR′
∫

dz′M(r′) · Eω(R′,z′)

×G(R,ρ,ze,zh; R′,ρ ′,z′
e,z

′
h). (A2)

Using an isotropic distribution in the QW plane of the transition
dipole moment, we note that M is proportional to the
polarization vector ê. Then having M(r) = êμcvδ(r) in the
point-dipole approximation and taking the light field in the
form of Eq. (2), the microscopic polarization reduces to

Y (R,ρ,ze,zh) = μcv

∫
dR′

∫
dz′eiK·R′E(z′)

×G(R,ρ,ze,zh; R′,0,z′,z′). (A3)

Now, using the spectral representation of the GF,

G = 1

S

∑
K

gK(R,ρ)g∗
K(R′,ρ ′)

×
∑

ν

ϕνK(ρ,ze,zh)ϕ∗
νK(ρ ′,z′

e,z
′
h)

EνK − �ω − iγ
, (A4)

where

gK(R,ρ) = exp

(
i

[
K + e

�c
A(ρ)

]
· R

)
(A5)

and S is the QW normalization area, we obtain

Y (R,ρ,ze,zh) = μcvgK(R,ρ)

×
∑

ν

ϕνK(ρ,ze,zh)

EνK−�ω−iγ

∫
ϕ∗

νK(0,z′,z′)E(z′)dz′.

(A6)

Using the definition of the excitonic susceptibility, Eq. (5), we
then obtain

χω(z,z′) = μ2
cv

∑
ν

ϕνK(0,z,z)ϕ∗
νK(0,z′,z′)

EνK − �ω − iγ
, (A7)
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where the dependence on light frequency is explicitly indi-
cated. This series summation, as well as the representation
Eq. (A4) of the exciton GF itself, has known convergence is-
sues [50] in two and three dimensions, which can be eliminated
by subtracting the zero-frequency value, already included in
the static dielectric constant εb(z). The susceptibility is then
redefined as

χ (z,z′) = χω(z,z′) − χ0(z,z′), (A8)

leading to the expression given in Eq. (7).

APPENDIX B: SCATTERING MATRIX FOR THE
ACTIVE CQW LAYERS

We first simplify the wave equation, Eq. (6), by introducing
Q(z,z′) defined as

Q(z,z′) = −4π
ω2

c2
χ (z,z′) =

∑
n,m

�n(z,z)�m(z′,z′)Qnm,

(B1)
where

Qnm = −4π
ω2

c2
χnm, (B2)

with χnm given by Eq. (14). Maxwell’s wave equation then
takes the form(

∂2

∂z2
+ q2

)
E(z) =

∫ ∞

−∞
Q(z,z′)E(z′) dz′, (B3)

where q2 = εbω
2/c2 − K2. Equation (B3) can be solved with

the help of the free-space GF G(z,z′), which satisfies(
∂2

∂z2
+ q2

)
G(z,z′) = δ(z − z′) (B4)

and for outgoing boundary conditions has the following form:

G(z,z′) = eiq|z−z′ |

2iq
. (B5)

Then, the solution to Eq. (B3) satisfies an integral equation,

E(z) = A+eiqz + A−e−iqz (B6)

+
∫ ∞

−∞
dz′

∫ ∞

−∞
dz′′ G(z,z′)Q(z′,z′′)E(z′′).

Next, we introduce

Xn =
∫ ∞

−∞
E(z)�n(z,z) dz, (B7)

so that Eq. (B6) becomes

E(z) = A+eiqz + A−e−iqz

+
∑
n,m

∫ ∞

−∞
dz′ G(z,z′)�n(z′,z′)QnmXm. (B8)

After multiplying Eq. (B8) by �n(z,z) and integrating over z,
one gets

Xn = A+�̃n(q) + A−�̃n(−q) +
∑
m,l

GnmQmlXl, (B9)

where

�̃n(q) =
∫ ∞

−∞
eiqz�n(z,z) dz (B10)

and

Gnm =
∫ ∞

−∞
dz

∫ ∞

−∞
dz′ G(z,z′)�n(z,z)�m(z′,z′). (B11)

By introducing the matrix V , given by

Vnm =
∑

l

GnlQlm, (B12)

Eq. (B9) reduces to the following linear system:∑
m

(δnm − Vnm)Xm = A+�̃n(q) + A−�̃n(−q). (B13)

Equation (B13) is solved for the vector X, using specific
boundary conditions imposed by A+ and A−. We first consider
the case of an incident wave traveling in the positive z-direction
(A+ = 1 and A− = 0) and find, using the asymptotics at
z → ±∞ of the last term in Eq. (B8),∫ ∞

−∞
dz′ G(z,z′)�n(z′,z′) = e±iqz�̃n(∓q)

2iq
, (B14)

the transmission and reflection coefficients, T+ and R+,
respectively. These are

T+ = 1

2iq

∑
n,m

�̃n(−q)QnmX+
m + 1, (B15)

R+ = 1

2iq

∑
n,m

�̃n(+q)QnmX+
m, (B16)

where X+
n satisfies∑

m

(δnm − Vnm)X+
m = �̃n(q). (B17)

Using A+ = 0 and A− = 1, we then treat a wave traveling in
the negative z-direction and find the transmission and reflection
coefficients, T− and R−, respectively. These are

T− = 1

2iq

∑
n,m

�̃n(+q)QnmX−
m + 1, (B18)

R− = 1

2iq

∑
n,m

�̃n(−q)QnmX−
m, (B19)

where X−
n satisfies∑

m

(δnm − Vnm)X−
m = �̃n(−q). (B20)

The scattering matrix of the active region is then constructed
as

S(CQW) =
(

T+ R−
R+ T−

)
. (B21)

In conjunction with the scattering matrices of each layer of
the DBRs and the cavity, the total scattering matrix, which
describes the optical response of the entire structure, is formed
following Ref. [48].
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APPENDIX C: COMPUTATIONAL ALGORITHM

Here, we summarize the technical implementation of
the calculation of S(CQW). Prior calculation of the ba-
sis of pair states �n(ze,zh) and the in-plane exciton
wave functions φ(ν)

n (ρ) is assumed (see Refs. [39,40]
for details).

(i) For each electric field, the matrix Gnm is cal-
culated via Eq. (B11). Due to the form of the GF
Eq. (B5), which depends on z − z′ only, the integral is
a convolution and may be optimized using a fast Fourier
transform.

(ii) The Fourier transforms �̃n(±q) in Eq. (B10) are
evaluated.

(iii) For each photon energy and electric and magnetic field,
the matrix Qnm is calculated using Eqs. (B2) and (14). Here,
a sufficiently large number of exciton states must be included
so that the summation converges with respect to ν. In practice,
up to 200 states may be required. Calculating these states is
the main computational cost of the process.

(iv) The linear systems for X+
n and X−

n given by Eq. (B17)
and Eq. (B20), respectively, are solved and the matrix S(CQW)

is evaluated via Eqs. (B15), (B16), (B18), and (B19).

[1] I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299 (2013).
[2] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun,

J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre,
J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S.
Dang, Nature (London) 443, 409 (2006).

[3] R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, Science
316, 1007 (2007).

[4] A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. d. Valle,
M. D. Martin, A. Lemaitre, J. Bloch, D. N. Krizhanovskii, M.
S. Skolnick, C. Tejedor, and L. Vina, Nature (London) 457, 291
(2009).

[5] K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I.
Carusotto, R. Andre, L. S. Dang, and B. Deveaud-Pledran, Nat.
Phys. 4, 706 (2008).

[6] S. Christopoulos, G. Baldassarri Hger von Hgersthal, A. J. D.
Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G.
Christmann, R. Butte, E. Feltin, J.-F. Carlin, and N. Grandjean,
Phys. Rev. Lett. 98, 126405 (2007).

[7] P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari,
and A. Das, Phys. Rev. Lett. 112, 236802 (2014).

[8] D. Ballarini, M. De. Giorgi, E. Cancellieri, R. Houdre, E.
Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto,
Nat. Commun. 4, 1778 (2013).

[9] L. V. Butov, A. C. Gossard, and D. S. Chemla, Nature (London)
418, 751 (2002).

[10] L. V. Butov, J. Exp. Theor. Phys. 122, 434 (2016).
[11] L. V. Butov, A. Imamoglu, A. V. Mintsev, K. L. Campman, and

A. C. Gossard, Phys. Rev. B 59, 1625 (1999).
[12] V. Negoita, D. W. Snoke, and K. Eberl, Phys. Rev. B 61, 2779

(2000).
[13] B. Laikhtman and R. Rapaport, Europhys. Lett. 87, 27010

(2009).
[14] K. Cohen, Y. Shilo, K. West, L. Pfeiffer, and R. Rapaport, Nano

Lett. 16, 3726 (2016).
[15] A. G. Winbow, J. R. Leonard, M. Remeika, Y. Y. Kuznetsova,

A. A. High, A. T. Hammack, L. V. Butov, J. Wilkes, A. A.
Guenther, A. L. Ivanov, M. Hanson, and A. C. Gossard, Phys.
Rev. Lett. 106, 196806 (2011).

[16] J. R. Leonard, M. Remeika, M. K. Chu, Y. Y. Kuznetsova,
A. A. High, L. V. Butov, J. Wilkes, M. Hanson, and A. C.
Gossard, Appl. Phys. Lett. 100, 231106 (2012).

[17] C. J. Dorow, Y. Y. Kuznetsova, J. R. Leonard, M. K. Chu, L. V.
Butov, J. Wilkes, M. Hanson, and A. C. Gossard, Appl. Phys.
Lett. 108, 073502 (2016).

[18] G. J. Schinner, J. Repp, E. Schubert, A. K. Rai, D. Reuter,
A. D. Wieck, A. O. Govorov, A. W. Holleitner, and J. P. Kotthaus,
Phys. Rev. Lett. 110, 127403 (2013).

[19] M. Alloing, A. Lemaitre, E. Galopin, and F. Dubin, Sci. Rep. 3,
1578 (2013).

[20] A. T. Hammack, M. Griswold, L. V. Butov, L. E. Smallwood,
A. L. Ivanov, and A. C. Gossard, Phys. Rev. Lett. 96, 227402
(2006).

[21] P. Andreakou, S. V. Poltavtsev, J. R. Leonard, E. V. Calman, M.
Remeika, Y. Y. Kuznetsova, L. V. Butov, J. Wilkes, M. Hanson,
and A. C. Gossard, Appl. Phys. Lett. 104, 091101 (2014).

[22] P. Cristofolini, G. Christmann, S. I. Tsintzos, G. Deligeorgis,
G. Konstantinidis, Z. Hatzopoulos, P. G. Savvidis, and J. J.
Baumberg, Science 336, 704 (2012).

[23] O. Kyriienko, A. V. Kavokin, and I. A. Shelykh, Phys. Rev. Lett.
111, 176401 (2013).

[24] J. Li, S. Duan, and W. Zhang, Europhys. Lett. 108, 67010
(2014).

[25] O. Kyriienko, I. A. Shelykh, and T. C. H. Liew, Phys. Rev. A
90, 033807 (2014).

[26] P. I. Khadzhi and O. F. Vasilieva, JETP Lett. 102, 665 (2015).
[27] P. I. Khadzhi, O. F. Vasilieva, and I. V. Belousov, Opt. Spectrosc.

120, 760 (2016).
[28] O. Kyriienko and T. C. H. Liew, Phys. Rev. B 93, 035301 (2016).
[29] V. Shahnazaryan, O. Kyriienko, and I. A. Shelykh, Phys. Rev. B

91, 085302 (2015).
[30] J.-J. Su, N. Y. Kim, Y. Yamamoto, and A. H. MacDonald, Phys.

Rev. Lett. 112, 116401 (2014).
[31] T. Byrnes, G. V. Kolmakov, R. Ya. Kezerashvili, and Y.

Yamamoto, Phys. Rev. B 90, 125314 (2014).
[32] A. V. Nalitov, D. D. Solnyshkov, N. A. Gippius, and G.

Malpuech, Phys. Rev. B 90, 235304 (2014).
[33] I. Rosenberg, Y. Mazuz-Harpaz, R. Rapaport, K. West, and L.

Pfeiffer, Phys. Rev. B 93, 195151 (2016).
[34] J. Tignon, P. Voisin, C. Delalande, M. Voos, R. Houdre, U.

Oesterle, and R. P. Stanley, Phys. Rev. Lett. 74, 3967 (1995).
[35] T. A. Fisher, A. M. Afshar, M. S. Skolnick, D. M. Whittaker,

and J. S. Roberts, Phys. Rev. B 53, R10469 (1996).
[36] B. Pietka, D. Zygmunt, M. Krol, M. R. Molas, A. A. L. Nicolet,

F. Morier-Genoud, J. Szczytko, J. Lusakowski, P. Zieba, I. Tralle,
P. Stepnicki, M. Matuszewski, M. Potemski, and B. Deveaud,
Phys. Rev. B 91, 075309 (2015).

[37] P. Bhattacharya, A. Das, S. Bhowmick, M. Jankowski, and C.
Lee, Appl. Phys. Lett. 100, 171106 (2012).

125310-8

http://dx.doi.org/10.1103/RevModPhys.85.299
http://dx.doi.org/10.1103/RevModPhys.85.299
http://dx.doi.org/10.1103/RevModPhys.85.299
http://dx.doi.org/10.1103/RevModPhys.85.299
http://dx.doi.org/10.1038/nature05131
http://dx.doi.org/10.1038/nature05131
http://dx.doi.org/10.1038/nature05131
http://dx.doi.org/10.1038/nature05131
http://dx.doi.org/10.1126/science.1140990
http://dx.doi.org/10.1126/science.1140990
http://dx.doi.org/10.1126/science.1140990
http://dx.doi.org/10.1126/science.1140990
http://dx.doi.org/10.1038/nature07640
http://dx.doi.org/10.1038/nature07640
http://dx.doi.org/10.1038/nature07640
http://dx.doi.org/10.1038/nature07640
http://dx.doi.org/10.1038/nphys1051
http://dx.doi.org/10.1038/nphys1051
http://dx.doi.org/10.1038/nphys1051
http://dx.doi.org/10.1038/nphys1051
http://dx.doi.org/10.1103/PhysRevLett.98.126405
http://dx.doi.org/10.1103/PhysRevLett.98.126405
http://dx.doi.org/10.1103/PhysRevLett.98.126405
http://dx.doi.org/10.1103/PhysRevLett.98.126405
http://dx.doi.org/10.1103/PhysRevLett.112.236802
http://dx.doi.org/10.1103/PhysRevLett.112.236802
http://dx.doi.org/10.1103/PhysRevLett.112.236802
http://dx.doi.org/10.1103/PhysRevLett.112.236802
http://dx.doi.org/10.1038/ncomms2734
http://dx.doi.org/10.1038/ncomms2734
http://dx.doi.org/10.1038/ncomms2734
http://dx.doi.org/10.1038/ncomms2734
http://dx.doi.org/10.1038/nature00943
http://dx.doi.org/10.1038/nature00943
http://dx.doi.org/10.1038/nature00943
http://dx.doi.org/10.1038/nature00943
http://dx.doi.org/10.1134/S1063776116030031
http://dx.doi.org/10.1134/S1063776116030031
http://dx.doi.org/10.1134/S1063776116030031
http://dx.doi.org/10.1134/S1063776116030031
http://dx.doi.org/10.1103/PhysRevB.59.1625
http://dx.doi.org/10.1103/PhysRevB.59.1625
http://dx.doi.org/10.1103/PhysRevB.59.1625
http://dx.doi.org/10.1103/PhysRevB.59.1625
http://dx.doi.org/10.1103/PhysRevB.61.2779
http://dx.doi.org/10.1103/PhysRevB.61.2779
http://dx.doi.org/10.1103/PhysRevB.61.2779
http://dx.doi.org/10.1103/PhysRevB.61.2779
http://dx.doi.org/10.1209/0295-5075/87/27010
http://dx.doi.org/10.1209/0295-5075/87/27010
http://dx.doi.org/10.1209/0295-5075/87/27010
http://dx.doi.org/10.1209/0295-5075/87/27010
http://dx.doi.org/10.1021/acs.nanolett.6b01061
http://dx.doi.org/10.1021/acs.nanolett.6b01061
http://dx.doi.org/10.1021/acs.nanolett.6b01061
http://dx.doi.org/10.1021/acs.nanolett.6b01061
http://dx.doi.org/10.1103/PhysRevLett.106.196806
http://dx.doi.org/10.1103/PhysRevLett.106.196806
http://dx.doi.org/10.1103/PhysRevLett.106.196806
http://dx.doi.org/10.1103/PhysRevLett.106.196806
http://dx.doi.org/10.1063/1.4722938
http://dx.doi.org/10.1063/1.4722938
http://dx.doi.org/10.1063/1.4722938
http://dx.doi.org/10.1063/1.4722938
http://dx.doi.org/10.1063/1.4942204
http://dx.doi.org/10.1063/1.4942204
http://dx.doi.org/10.1063/1.4942204
http://dx.doi.org/10.1063/1.4942204
http://dx.doi.org/10.1103/PhysRevLett.110.127403
http://dx.doi.org/10.1103/PhysRevLett.110.127403
http://dx.doi.org/10.1103/PhysRevLett.110.127403
http://dx.doi.org/10.1103/PhysRevLett.110.127403
http://dx.doi.org/10.1038/srep01578
http://dx.doi.org/10.1038/srep01578
http://dx.doi.org/10.1038/srep01578
http://dx.doi.org/10.1038/srep01578
http://dx.doi.org/10.1103/PhysRevLett.96.227402
http://dx.doi.org/10.1103/PhysRevLett.96.227402
http://dx.doi.org/10.1103/PhysRevLett.96.227402
http://dx.doi.org/10.1103/PhysRevLett.96.227402
http://dx.doi.org/10.1063/1.4866855
http://dx.doi.org/10.1063/1.4866855
http://dx.doi.org/10.1063/1.4866855
http://dx.doi.org/10.1063/1.4866855
http://dx.doi.org/10.1126/science.1219010
http://dx.doi.org/10.1126/science.1219010
http://dx.doi.org/10.1126/science.1219010
http://dx.doi.org/10.1126/science.1219010
http://dx.doi.org/10.1103/PhysRevLett.111.176401
http://dx.doi.org/10.1103/PhysRevLett.111.176401
http://dx.doi.org/10.1103/PhysRevLett.111.176401
http://dx.doi.org/10.1103/PhysRevLett.111.176401
http://dx.doi.org/10.1209/0295-5075/108/67010
http://dx.doi.org/10.1209/0295-5075/108/67010
http://dx.doi.org/10.1209/0295-5075/108/67010
http://dx.doi.org/10.1209/0295-5075/108/67010
http://dx.doi.org/10.1103/PhysRevA.90.033807
http://dx.doi.org/10.1103/PhysRevA.90.033807
http://dx.doi.org/10.1103/PhysRevA.90.033807
http://dx.doi.org/10.1103/PhysRevA.90.033807
http://dx.doi.org/10.1134/S0021364015210055
http://dx.doi.org/10.1134/S0021364015210055
http://dx.doi.org/10.1134/S0021364015210055
http://dx.doi.org/10.1134/S0021364015210055
http://dx.doi.org/10.1134/S0030400X16050131
http://dx.doi.org/10.1134/S0030400X16050131
http://dx.doi.org/10.1134/S0030400X16050131
http://dx.doi.org/10.1134/S0030400X16050131
http://dx.doi.org/10.1103/PhysRevB.93.035301
http://dx.doi.org/10.1103/PhysRevB.93.035301
http://dx.doi.org/10.1103/PhysRevB.93.035301
http://dx.doi.org/10.1103/PhysRevB.93.035301
http://dx.doi.org/10.1103/PhysRevB.91.085302
http://dx.doi.org/10.1103/PhysRevB.91.085302
http://dx.doi.org/10.1103/PhysRevB.91.085302
http://dx.doi.org/10.1103/PhysRevB.91.085302
http://dx.doi.org/10.1103/PhysRevLett.112.116401
http://dx.doi.org/10.1103/PhysRevLett.112.116401
http://dx.doi.org/10.1103/PhysRevLett.112.116401
http://dx.doi.org/10.1103/PhysRevLett.112.116401
http://dx.doi.org/10.1103/PhysRevB.90.125314
http://dx.doi.org/10.1103/PhysRevB.90.125314
http://dx.doi.org/10.1103/PhysRevB.90.125314
http://dx.doi.org/10.1103/PhysRevB.90.125314
http://dx.doi.org/10.1103/PhysRevB.90.235304
http://dx.doi.org/10.1103/PhysRevB.90.235304
http://dx.doi.org/10.1103/PhysRevB.90.235304
http://dx.doi.org/10.1103/PhysRevB.90.235304
http://dx.doi.org/10.1103/PhysRevB.93.195151
http://dx.doi.org/10.1103/PhysRevB.93.195151
http://dx.doi.org/10.1103/PhysRevB.93.195151
http://dx.doi.org/10.1103/PhysRevB.93.195151
http://dx.doi.org/10.1103/PhysRevLett.74.3967
http://dx.doi.org/10.1103/PhysRevLett.74.3967
http://dx.doi.org/10.1103/PhysRevLett.74.3967
http://dx.doi.org/10.1103/PhysRevLett.74.3967
http://dx.doi.org/10.1103/PhysRevB.53.R10469
http://dx.doi.org/10.1103/PhysRevB.53.R10469
http://dx.doi.org/10.1103/PhysRevB.53.R10469
http://dx.doi.org/10.1103/PhysRevB.53.R10469
http://dx.doi.org/10.1103/PhysRevB.91.075309
http://dx.doi.org/10.1103/PhysRevB.91.075309
http://dx.doi.org/10.1103/PhysRevB.91.075309
http://dx.doi.org/10.1103/PhysRevB.91.075309
http://dx.doi.org/10.1063/1.4707155
http://dx.doi.org/10.1063/1.4707155
http://dx.doi.org/10.1063/1.4707155
http://dx.doi.org/10.1063/1.4707155


DIPOLAR POLARITONS IN MICROCAVITY-EMBEDDED . . . PHYSICAL REVIEW B 94, 125310 (2016)

[38] V. P. Kochereshko, M. V. Durnev, L. Besombes, H. Mariette,
V. F. Sapega, A. Axitopoulos, I. G. Savenko, T. C. H. Liew, I.
A. Shelykh, A. V. Platonov, S. I. Tsintzos, Z. Hatzopoulos, P.
Lagoudakis, P. G. Savvidis, C. Schneider, M. Amthor, C. Met-
zger, M. Kamp, S. Hoefling, and A. Kavokin, arXiv:1309.6983.

[39] K. Sivalertporn, L. Mouchliadis, A. L. Ivanov, R. Philp, and
E. A. Muljarov, Phys. Rev. B 85, 045207 (2012).

[40] J. Wilkes and E. A. Muljarov, New J. Phys. 18, 023032 (2016).
[41] Yu. E. Lozovik and A. M. Ruvinskii, JETP 85, 979 (1997).
[42] P. I. Arseev and A. B. Dzyubenko, JETP 87, 200 (1998).
[43] F. Grasselli, A. Bertoni, and G. Goldoni, J. Chem. Phys. 142,

034701 (2015).

[44] F. Grasselli, A. Bertoni, and G. Goldoni, Phys. Rev. B 93, 195310
(2016).

[45] K. Sivalertporn, Phys. Lett. A 380, 1990 (2016).
[46] K. Sivalertporn and E. A. Muljarov, Phys. Rev. Lett. 115, 077401

(2015).
[47] A. Stahl and I. Balslev, Electrodynamics of the Semiconductor

Band Edge (Springer-Verlag, Berlin, 1987).
[48] D. Y. K. Ko and J. C. Inkson, Phys. Rev. B 38, 9945

(1988).
[49] I. Strzalkowski, S. Joshi, and C. R. Crowell, Appl. Phys. Lett.

28, 350 (1976).
[50] R. Zimmermann, Phys. Status Solidi B 135, 681 (1986).

125310-9

http://arxiv.org/abs/arXiv:1309.6983
http://dx.doi.org/10.1103/PhysRevB.85.045207
http://dx.doi.org/10.1103/PhysRevB.85.045207
http://dx.doi.org/10.1103/PhysRevB.85.045207
http://dx.doi.org/10.1103/PhysRevB.85.045207
http://dx.doi.org/10.1088/1367-2630/18/2/023032
http://dx.doi.org/10.1088/1367-2630/18/2/023032
http://dx.doi.org/10.1088/1367-2630/18/2/023032
http://dx.doi.org/10.1088/1367-2630/18/2/023032
http://dx.doi.org/10.1134/1.558404
http://dx.doi.org/10.1134/1.558404
http://dx.doi.org/10.1134/1.558404
http://dx.doi.org/10.1134/1.558404
http://dx.doi.org/10.1134/1.558641
http://dx.doi.org/10.1134/1.558641
http://dx.doi.org/10.1134/1.558641
http://dx.doi.org/10.1134/1.558641
http://dx.doi.org/10.1063/1.4905483
http://dx.doi.org/10.1063/1.4905483
http://dx.doi.org/10.1063/1.4905483
http://dx.doi.org/10.1063/1.4905483
http://dx.doi.org/10.1103/PhysRevB.93.195310
http://dx.doi.org/10.1103/PhysRevB.93.195310
http://dx.doi.org/10.1103/PhysRevB.93.195310
http://dx.doi.org/10.1103/PhysRevB.93.195310
http://dx.doi.org/10.1016/j.physleta.2016.04.002
http://dx.doi.org/10.1016/j.physleta.2016.04.002
http://dx.doi.org/10.1016/j.physleta.2016.04.002
http://dx.doi.org/10.1016/j.physleta.2016.04.002
http://dx.doi.org/10.1103/PhysRevLett.115.077401
http://dx.doi.org/10.1103/PhysRevLett.115.077401
http://dx.doi.org/10.1103/PhysRevLett.115.077401
http://dx.doi.org/10.1103/PhysRevLett.115.077401
http://dx.doi.org/10.1103/PhysRevB.38.9945
http://dx.doi.org/10.1103/PhysRevB.38.9945
http://dx.doi.org/10.1103/PhysRevB.38.9945
http://dx.doi.org/10.1103/PhysRevB.38.9945
http://dx.doi.org/10.1063/1.88755
http://dx.doi.org/10.1063/1.88755
http://dx.doi.org/10.1063/1.88755
http://dx.doi.org/10.1063/1.88755
http://dx.doi.org/10.1002/pssb.2221350227
http://dx.doi.org/10.1002/pssb.2221350227
http://dx.doi.org/10.1002/pssb.2221350227
http://dx.doi.org/10.1002/pssb.2221350227



