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Abstract: An in vitro plasmid scission assay (PSA), the cell apoptosis assay, and ICP-MS, 

were employed to study the oxidative potentials and trace element compositions of the airborne 

particulate matter (PM) in Beijing during a one year-long field campaign from June 2010 to June 

2011. The cell damages induced by PM reveled by the cell apoptosis assay showed a similar 

variation pattern to the DNA damages obtained by PSA, verifying the feasibility of the PSA in 

analyzing the oxidative capacity of PM samples. The PSA experiments showed that the particle-

induced DNA damage was highest in summer, followed by spring, winter and autumn in 

descending order. The percentages of the oxidative damages to plasmid DNA induced by the water-

soluble fractions of PM under the particle doses from 10 to 250 μg/ml were generally lower than 

45%, with some values peaking at above 50%. The peak values were frequently present in late 

spring (i.e. April and May) and early summer (i.e. June) but they were scarcely observed in other 

seasons. These peak values were mostly associated with haze days or the days with low wind speed 

(less than 4 m/s), indicating that the PM samples during haze had higher oxidative potential than 

those during non-haze periods. The oxidative potential induced by the water-soluble fraction of 

the PM displayed a significant positive correlation with the concentrations of the water-soluble 

elements Cd, Cs, Pb, Rb, Zn, Be and Bi, demonstrating that the particle-induced oxidative 

potentials were mainly sourced from these elements. The exposure risk represented by the mass 

concentration of these elements in unit volume of atmosphere was higher in summer and winter, 

and lower in autumn and spring. The haze day PM samples not only had higher level of oxidative 

potentials but also had higher concentrations of water-soluble elements. 

Keywords: particulate matter (PM), plasmid scission assay (PSA), oxidative potential, haze, 

water-soluble element, Beijing 
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1 Introduction  

Beijing, a metropolitan city with a population of over 20 million individuals, has suffered 

serious air pollution in recent years. The daily PM2.5 mass concentration could be as high as 993 

μg/m³ (Beijing Environmental Monitoring Station data, 2013/1/12, Xizhimen North monitoring 

point). Haze and fog weather enhanced the air pollution, which has caused wide public concerns. 

Although the air quality in Beijing during the Olympic Summer Games 2008 had been clearly 

improved (Okuda et al., 2011; Schleicher et al., 2012; Shang et al., 2013), the PM2.5 mass 

concentration in Beijing air remained at high levels after the Games (Okuda et al., 2011; Sun et al., 

2014). The compositions and types of PM2.5 particles have become more complex and are 

characterized by a predominance of fine and ultrafine, secondary particles, compared to the periods 

before the Olympic Summer Games (Zhang et al., 2013; Huang et al., 2014; Shen et al., 2016), 

which may facilitate more serious health issues. Epidemiological investigations have shown the 

adverse health effects of airborne PM2.5 in Beijing in recent years (Maynarda et al., 2010; Shang et 

al., 2013). However, toxicological investigations of the full-year airborne PM2.5 samples in Beijing 

are rarely seen in the literature. Therefore, elucidating the oxidative potential and components of 

full-year Beijing airborne PM2.5 is important for identifying the seasonal variation and reason of 

particle-induced damages to human health. 

Airborne particulate matter, as an important pollutant of urban atmosphere, has been related 

to morbidity and mortality (Ostro et al., 2006; Xu et al., 2013). The fine particles can cause asthma, 

lung function decline, and respiratory inflammation, affect the cardiovascular, nervous, and 

immune systems, and may eventually induce cancer (Zhang et al., 2003; Lin et al., 2007; Crabbe, 

2012; Hoek et al., 2013; Kheirbek et al., 2013). However, the biological mechanisms underlying 

the adverse health effects of airborne PM2.5 remain unclear. A widely accepted hypothesis is that 



 

oxidative damage originates from the surface of airborne particles (Ambroża et al., 2000; Li et al., 

1997; Shao et al., 2007); that is, bioavailable ionizable trace metals on airborne particles could 

catalyze oxidants that could damage DNA (Costa et al., 1997; Gene et al., 2012; Carville et al., 

2013). A human molecular epidemiology study has also demonstrated the important role of 

oxidative damage at the metabolic pathway by which such damage occurs from PAHs in the coal-

burning emissions (Lan et al., 2004). Currently, many methods are being employed to assess the 

oxidative potential of atmospheric particles, such as the Ames test (Ames et al., 1973), 

micronucleus experiments (Kirsch-Volders, 1997), chromosome aberration tests (Ishidate et al., 

1998), and comet assay (Tice et al., 2000). However, most of these methods are only qualitative 

techniques. Some other semi-quantitative or quantitative methods are more popular, including 

DTT-driven assay (Carville et al., 2013), and ascorbic acid assay (Gene et al., 2012). In recent 

years, many researchers have used the plasmid scission assay (PSA), also known as the plasmid 

DNA assay, to study the oxidative potential of atmospheric particulates (Greenwell et al., 2003; 

Shi et al., 2004; Shao et al., 2007). This method has been shown to be a simple, rapid, and highly 

sensitive technique to detect oxidative potential, and it allows a semi-quantitative assessment of 

DNA damage induced by atmospheric PM (Shao et al., 2007). 

In this paper, we use the PSA to assess the oxidative potential of the full-year (one per week) 

24-hours samples of airborne particles collected in Beijing from June 2010 to June 2011. The cell 

apoptosis assay was also used to cross check a few samples to verify the feasibility of the PSA. 

The inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze the chemical 

compositions of the PM samples. The oxidative potential of whole particulate matter and water-

soluble fractions were analyzed to investigate the sources of the oxidative potential. The 

meteorological conditions were correlated with particle oxidative potential.  
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2 Material and methods 

2.1 Sampling 

The PM samples were collected on the campus of the China University of Geoscience in 

Beijing, which represents an urban residential location. The sampling site is located at the east 

entrance of the university with a distance of approximately 10 m from a major road (Xueyuan Road) 

(Shen et al., 2016). As the sampling site is surrounded by trees and shielded by a 2 m high wall to 

the road, it cannot be classified as a traffic site but represents a “blocked residential site” . The 

sampler inlet tubes were installed at a height of 1.5 m above ground, which is a typical height for 

human exposure. 

Two high volume samplers (Digital DHA-80, Hegnau, Switzerland) were used to collect PM 

samples automatically. The samplers were operated 24 hours a day (00:00–24:00). Quartz fiber 

filters (Munktell T293, Falun, Sweden) with 150 mm diameters were used as the collection 

substrate. Blank field samples from both samplers were collected every second week. The sampling 

period lasted for one year, from 25th June 2010 to 17th June 2011. The meteorological parameters, 

including temperature, relative humidity, wind direction and speed, and visibility, were recorded 

during the sampling period (Shen et al. 2016). 

All filters from one of the samplers were weighed before and after sampling using an analytical 

balance (Mettler Analysenwaage AE240, reading precision 0.1 mg) after equilibration for 48 h in 

a conditioned room (temperature 20±1C and relative humidity 40±5%). Filter aliquots from the 

second sampler were investigated for oxidative potential. All loaded filters were stored at -20°C 

before analysis and during transportation. 

In this paper, after considering the meteorological conditions and average mass concentrations 

of PM in each season in Beijing, we randomly selected 1 PM sample per week for the whole year 



 

collection (weekday, non-rainy weather, and enough sample load) from June 2010 to June 2011. 

Altogether, 48 samples were selected for PSA analysis. The specific sampling information is shown 

in Table 1.  

It should be noted that in our sampling campaign, due to a re-evaluation of the measurement 

data, it was found that PM4 was collected rather than PM2.5. During the whole campaign the actual 

sampling flow of ambient air was 167 instead of 500 l/min as a default setting due to an airflow 

shortcut from the interior of the sampler. As a consequence to the changed flow volume, the cut 

off of the sampler (original setting: 2.5 μm) had to be recalculated following the impactor design 

theory (Gussman, 1969; Marple and Liu, 1974). It was found that particles smaller than 4 μm (i.e., 

PM4) were collected onto the filters. The recalculation detail can be found in Shen et al. (2016). 

However, a comparison of results of oxidative potentials and the trace element compositions 

obtained from the current study was not significantly different from those found for PM2.5 samples 

during 2010-2011 (Sun et al., 2014). ICP-MS analysis on the size-segregated airborne particles 

collected during the 2010-2011 haze episodes has shown that the water-soluble trace elements As, 

Cd, Cr, Cu, Mn, Ni, Pb, Se, Tl, and Zn were mainly concentrated in the fine particle size of 0.32–

1.8 μm (Figure 3 in Sun et al., 2014) which allow us to have similar mass concentrations of trace 

metals in both PM4 and PM2.5. Similar conclusion has been obtained by Duan et al. (2014) who 

have found that the most analyzed heavy metals such as Pb, Cd, Zn, V, Mn and Cu exist in coarse 

and accumulation modes, with the particle size being mostly smaller than 4 μm. Sun et al. (2014) 

also showed that the DNA damages of different size-segregated airborne particles smaller than 5.6 

μm were not very different. All of these facts demonstrate that the trace element compositions and 

oxidative potentials of the PM smaller than 4 μm are not significantly different from those of the 

PM2.5. 
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2.2 Plasmid scission assay 

Plasmid scission assay (PSA) is an in vitro method for studying the oxidative damage that free 

radicals induced by the trace metals carried by particles can cause in supercoiled DNA (Greenwell 

et al., 2003; Shi et al., 2004; Lu et al., 2007). The initial effect of oxidative damage causes DNA 

to relax, and further damage causes the DNA to become linearized. The undamaged supercoiled 

DNA, damaged relaxed DNA, and damaged linearized DNA can be separated by electrophoresis 

in an agarose gel; then, sensitive densitometry can be used to quantify the proportions of these 

different forms of DNA. The oxidative potential is expressed by the percentage of relaxed and 

linearized DNA in the total DNA.  

The plasmid DNA assay was conducted in accordance with the methods reported previously 

(Merolla et al., 2005; Chuang et al., 2011, 2013; Reche et al., 2012). A part of the sample-loaded 

quartz filter was cut, and assuming a uniform deposition of PM on the filters, the deposited PM 

mass was determined by weighing the filters gravimetrically. Then, the sample was placed in a 

clean centrifuge tube (Scientific Industries, Vortex-Genie 2) with HPLC-grade water to reach a 

whole particle concentration of 250 µg/ml. Particle suspensions  were obtained by considerable 

shaking in a vortex mixer for 20 h to separate the particles as much as possible from the filter. An 

aliquot of the particle suspension was taken and saved in a refrigerator as the whole particle 

suspension. The remaining suspension was centrifuged with a speed of 13000 r/min for 80min, and 

the supernatant was saved as the water-soluble fraction. Both the prepared whole particle 

suspension and water-soluble fractions were incubated in chromatographically pure water at 

different concentrations for PSA. All samples were confected into a final volume of 43 μl, with 

each containing 2 μl φX174 RF DNA (Promega, London, UK). Each resulting suspension was 

gently shaken in a vortex mixer (to ensure maximum mixing of the sample and to avoid 

sedimentation) for 6 h at room temperature. Before loading onto the electrophoresis tank, 7 μl 



 

bromophenol blue dye (Promega, London, UK) was added to each sample. Gels, comprised of 0.6% 

agarose and 0.25% ethidium bromide, were run in 1% TBE buffer at an electrophoretic voltage of 

30V for 16h at room temperature. The finished gels were photographed, and densitometric analysis 

was performed using the GeneTools program (Syngene Systems, UK). A semi-quantitative 

protocol was established to measure the relative proportion of the damaged DNA (relaxed and 

linearized) in each lane of the gel (in terms of a percentage of the total DNA in each lane). The 

DNA damage percentage induced by airborne particles was calculated by subtracting the damage 

caused by the negative control (chromatographically pure water). In our experiment, five dosage 

levels were used by dilution, including 50 μg/ml, 100 μg/ml, 150 μg/ml, 200 μg/ml, and 250 μg/ml, 

a total 240 (48 samples times 5 dosages is 240; 4 for each dosage) analysis were performed. The 

damage percentages of different particles under these dosages were compared, and higher damage 

percentage represents higher oxidative potential. To guarantee the accuracy of the experiment 

result, we did the PSA experiment using a blank quartz fiber filter, the oxidative potential was 

below 10% (9.4%), so we consider the quartz filter doesn’t influence the experimental results of 

the oxidative potentials. To test the reliability of the experiment, we selected three samples and did 

PSA twice in five dosages; the result showed that it is below 20% (Table S1).  

2.3 Cell apoptosis 

To verify the variation of results of PSA, we selected five samples (sampling date: 2010.6.28, 

2010.7.12, 2010.7.26, 2011.4.15, 2011.5.20) for cell apoptosis assay. Because the sample 

quantities are limited, we diluted the samples to lower dosages (6.25 μg/mL, 12.5 μg/mL, 25 μg/mL 

and 50 μg/mL) to see the variation regularity.  

Phosphatidylserine (PS) is on the internal surface of living cell membrane, PS turns from 

inside to outside of the membrane when apoptosis occurs. Annexin V, whose molecular weight is 

around 35-36 kD, combines with PS after high affinity on it. So to test apoptosis, we use Annexin 
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V to distinguish apoptotic cells and viable cells. Then fluorescence microscope or flow cytometry 

is used to observe it. But it is impossible for Annexin V to distinguish the non-viable cells 

overturned by PS. Propidium Iodide (PI) is a kind of nucleic acid dye which is unable to pass 

through the membrane of viable and apoptosis cells, but it can pass through the membrane of non-

viable cells and combine with DNA, PI can be excited by certain wavelength and emits red 

fluorescence. So Annexin V and PI are used together to distinguish viable, apoptosis and nonviable 

cells. 

We use human lung cancer cell A549 (Cell Culture Center, Institute of Basic Medical Science 

Chinese, Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical 

College), Apoptosis Assays Kit (Nanjing Jiancheng Bioengineering Institute), DMEM-F12 serum-

free media (GIBCO, USA), FASCailbur Flow Cytometry (FCM) (BD, USA), CO2 Incubator 

(Sanyo, Japan), Clean Bench (Baker, German), 5840R refrigerated centrifuge (Eppendorf, German) 

in cell apoptosis assay. 

Firstly digest and adjust the cell density of A549 cells which are in well-grow exponential 

phase to 5×104/mL, then inoculate onto 6 wells plate (2 ml/well), cultivate in incubators with 37℃ 

and 5% CO2 for 24 h. Secondly remove the cell supernatant, gently wash cells one or two times by 

PBS, then add in samples, the final concentration is 6.25, 12.5, 25 and 50 μg/mL respectively, go 

on cultivating for 24 h. Then follow the steps of Apoptosis Assays Kit, digest cells with 0.25% 

trypsin, and blow it into a single cell suspension after collect cells. Collect cells after centrifuge for 

10 min in 1000 rpm. Add 1 ml cool PBS, gently shaking to suspend cells. Remove the supernatant 

after centrifuge for 10 min in 1000 rpm, 4C. Repeat previous two steps. Then re-suspend cells in 

200 μl binding buffer. Add 10 μl Annexin V-FITC, mix gently, keep out of sun and incubate for 

15 min at room temperature or 30 min at 4 °C. Add 300 μl binding buffer and 5 μl PI, test for 1 h. 



 

At last computer-based analysis was carried out using BD FASCailbur (USA). 

2.4 ICP-MS analysis 

This study used a high-resolution inductively coupled plasma mass spectrometry (ICP-MS, 

Elan DCR-e, PerkinElmer Ltd.) for the analysis of trace elements from the PM with the detection 

limit being 1 ppt~1 ppb (10-12~10-9). The procedure used was based on Shao et al. (2013). Water-

soluble elements were obtained by directly analyzing the water-soluble fractions of the PM samples 

that were previously obtained by centrifugation in the PSA. The elements in the bulk samples were 

obtained by digesting and analyzing the whole particle solutions of each PM samples previously 

prepared during the PSA analysis. In this study, 44 trace elements were analyzed and the results 

were reported as μg/g, in which the water-soluble elements were reported as a concentration of the 

element in its water-soluble form in intact PM.  

3 Results 

3.1 Overall variation in the oxidative potential of the water-soluble fraction of PM 

To analyze the overall variation in the oxidative potential of the water-soluble fraction of PM, 

all 48 samples were analyzed using the PSA, and the results are included in the Table S2. Figure 1 

shows that the damage to plasmid DNA induced by the water-soluble fraction of the PM generally 

varied from 17% (e.g. 2010-10-11 sample at the 50 μg/ml dosage) to 97.2% (e.g. 2010-6-25 sample 

at the 250 μg/ml dosage). For each sample, there is also an overall positive dose-response 

relationship. It is interesting that the relatively small variation of the average DNA damages 

between 20% and 45% was accompanied by a number of peak values (higher than 50%). These 

peak values were frequently present in April and sometimes in May and June, but they were 

scarcely observed in the other months.  
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To analyze the seasonal variation of the water-soluble fraction of PM, we use the box-plot to 

show the seasonal variation of oxidative potential under the particle dose of 150 μg/ml (Figure 2). 

We consider March, April and May as spring, June, July and August as summer, September, 

October and November as autumn, and December, January and February as winter. The values in 

the box represent 50% of the samples falling into this value range. The black coarse lines in the 

box represent average values, the normal data range is between the top edge and bottom edge. It 

can be seen from Figure 2 that the median of oxidative potential in summer was the highest, 

followed by spring, winter and autumn. We arrange the interquartile range value in ascending order: 

winter, autumn, spring and summer. Figure 2 also showed that the data in winter were more 

concentrated while the data in summer were more dispersed. There is no outlier in these data. 

3.2 Effects of PM on lung cell apoptosis 

To verify the dose-response relationships for the oxidative potential of PM obtained by the 

PSA, we have selected a few samples to do the lung cell apoptosis assay. In the experiment, the 

model of cell apoptosis was set up by exposing the lung epithelial cells A549 to selected PM, and 

AnnexinV-FITC/PI and flow cytometry (FCM) were employed to observe the effect of PM on 

alveolar epithelial cells. A total of 5 PM samples were analyzed by the cell apoptosis assay. The 

results were included in Table S3. 

Table S3 showed that the cell apoptosis percentages induced by soluble fraction of PM 

samples increases as the particle dosage increases from 6.25 g/ml to 12.5 g/ml, 25 g/ml, 50 

g/ml, indicating a clear positive dose-response relationship. Figure 3 is the scatter plot showing 

the relationship between the cell damages at the dose of 25 g/ml and the DNA damage at the dose 

of 150 g/ml and it can be seen that two of them have a clear positive correlation. This result 

supports the variation in the oxidative potential of PM obtained by the PSA method. 



 

3.3 Contents of water-soluble elements in the PM collected for the whole year 

An ICP-MS was used to detect the content of water-soluble elements in the PM samples and 

the results were reported in μg/g by weight in the PM (Table S4). For the total water-soluble 

elements (TWSE), the PM in summer had the highest level (17114 μg/g), followed by those in 

spring (12380 μg/g), autumn (9873 μg/g), winter (9342 μg/g). The total elemental content of 

particle samples on July 21st 2010 (No. 4) was the highest (17296 μg/g), while that on June 1st 

2011 (No. 40) was the lowest (240 μg/g).  

For the individual elements, the highest content of all the samples appeared on Zn, with the 

range from 89.2 g/g to 13548 g/g, followed by Mn with the range from 62 g/g to 1936 g/g, 

and Cu, Ba, Pb and Sr in descending order (Figure 4). Therefore, Zn, Mn, Cu, Ba, Pb and Sr were 

the most abundant water-soluble metals in the PM samples.  

4. Discussion 

4.1 Comparison between the oxidative potential of the intact whole particles and their water-

soluble fractions 

To study the sources of oxidative potential of Beijing airborne particles, the oxidative 

potential of the 12 whole particle suspensions of the PM samples were compared with the results 

from the corresponding water-soluble fractions (Table S2). It can be observed that, for most 

samples, the DNA damage values induced by the water-soluble fraction of PM occupied 60% 

to 100% of the DNA damages induced by their corresponding intact whole particles. These 

results indicated that the oxidative capacity of airborne particles collected in Beijing was mainly 

derived from their water-soluble fractions. Previous studies have revealed that the oxidative 

potential of atmospheric particles mainly came from the water-soluble fraction (Donaldson et 

al., 1997; Li et al., 1997; Adamson et al., 2000; Ambroża et al., 2000; Valavanidis et al., 2000; 
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Reche et al., 2012; Wang et al., 2013), although Ghio et al. (1999), Imrich et al. (2000), Soukup 

and Becker (2001) showed that the insoluble fraction of atmospheric particles causes the 

biological responses of alveolar macrophages. In the investigations of oxidative potential of 

the PM10 samples of Beijing, Macao and Lanzhou indicated that the water-soluble fraction 

induced oxidative damages similar to the intact whole particle sample (Zhong et al., 2010; Shao 

et al., 2007, 2013; Xiao et al., 2013). Similar conclusions were obtained for UK particulate matter 

(Merolla and Richard, 2005; Moreno et al., 2004; Koshy et al., 2008; Reche et al., 2012), which 

also argued that the oxidative potential of inhalable particles was mainly sourced from their 

water-soluble fractions. 

4.2 Correlation between particle-induced DNA damages and contents of water-soluble trace 

elements 

To examine the most probable source of the particle-induced oxidative capacities of the 

PM samples, the DNA damage percentages from particle doses of 250 μg/ml were correlated 

with corresponding contents of the water-soluble elements in the PM. The Pearson correlation 

coefficients are provided in Table 2. The sample number n=43 (five samples of the whole 48 

samples were consumed by the PSA experiment and 43 were left for the ICP-MS analysis), a 

threshold correlation coefficient is 0.30 at the 95% confidence level.  

According to the correlation coefficients shown in Table 2, the particle-induced oxidative 

potential displayed a significant positive correlation with the total water-soluble metal contents 

with a Pearson correlation coefficient of 0.33, implying that the oxidative capacity of the PM 

was derived mainly from its water-soluble trace elements, although the DNA damage may be 

induced by the water-soluble organic compounds as reported by Wei et al. (2009) and Liu et 

al. (2014). This finding is in accordance with other reports for PM10 and PM2.5 from Beijing 



 

(Shao et al., 2007, Sun et al., 2014) and studies of particulate matter in the UK (Moreno et al., 

2004; Merolla and Richards, 2005; Reche et al., 2012).  

The individual water-soluble trace metals Cd, Cs, Pb, Rb, Zn, Be and Bi exhibited 

significant positive correlations with the oxidative capacity, indicating that these elements in 

their water-soluble state were the components that were most likely associated with the DNA 

damages. Co, Ga and Hr exhibited significant negative correlations with the oxidative capacity.  

Many studies have shown that soluble trace metal components produce reactive oxygen 

species (ROS), which can induce oxidative stress and inflammation in the lungs and respiratory 

tract (See et al., 2007; Distefano et al., 2009; Vidrio et al., 2009; Zhong et al., 2010). The U.S. 

Environmental Protection Agency (EPA) defines Zn and Pb as toxic elements (EPA/635/R-

05/002. 2005). Zn is regarded as a bioreactive element (Adamson et al., 2000). Other studies 

have also indicated that Zn is likely to be a major element associated with the particle-induced 

plasmid DNA damage (Greenwell et al., 2003; Lu et al., 2006; Shao et al., 2007; Nagy et al., 

2012); this finding is consistent with the results presented in our study.  

Some previous studies have shown that trace metal pollutants, such as Cr, Zn, Pb, and Mn, 

can be produced from industrial sources (Querol et al., 2006; Liu et al., 2010). Tang and Huang 

(2004) found that high levels of As, Cu, Sb, Se, Zn and Pb might be sourced from the 

combustion of different types of coal. Most recent investigation by Shao et al. (2016) 

demonstrated that the water-soluble As, Cd, Ge, Mn, Ni, Pb, Sb, Se, Tl, and Zn in their water-

soluble states were present in the coal burning-derived PM10. Duan et al. (2014) found that Pb, 

Cd, and Zn show mostly in accumulation mode, V, Mn and Cu exist mostly in both coarse and 

accumulation modes, and Ni and Cr exist in all of the three modes in haze episode in Beijing. 
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4.3 Oxidative potential of the PM samples of haze days 

The five haze episodes (Sample 2010.7.26, 2010.10.11, 2011.2.20, 2011.4.15, 2011.4. 29) 

were characterized by low wind speeds (generally less than 4 m/s) and reduced visibility (less than 

10 km). Their particle-induced DNA damages were all above 60% at the 150 μg/ml dosage level. 

Table S4 also showed that the PM collected on these haze days were also associated with high level 

of water-soluble elements contents. This result indicated that the haze weather could facilitate the 

accumulation of toxic components in airborne particles and could induce a higher oxidative 

potential. Similar results have been obtained in the research conducted by Sun et al. (2014), who 

also concluded that the oxidative capacities were markedly elevated during the haze days.  

The results in Figure 1 also suggest a gradual increasing trend in the oxidative potential of the 

water-soluble fraction of PM during a haze episode. To further illustrate this phenomenon, we 

selected five continuous days from a haze episode for PSA analysis. The five samples in Figure 5 

represent a continuous period of haze days from 2010-9-12 to 2010-9-16, characterized by 

decreasing visibility from 23.5, 19.6, and 7.3 km to 3.8 and 4.6 km. As the visibility decreases, the 

particle-induced DNA damages increased until attaining the highest value. During these days, the 

wind speed remained low, ranging from 2 to 4 m/s, and the relative humidity remained high, with 

levels of 56%, 60%, 62%, 70%, and 79% in ascending order for these sequential days. This 

observation means that conditions with low wind speed and high relative humidity favor the 

formation of haze and also the accumulation of toxic components, thus promoting more particle-

induced DNA damages. These results are consistent with studies previously conducted in Lanzhou 

and Beijing (Shao et al., 2007; Xiao et al., 2013). 



 

4.4 Relationship between the meteorological conditions and the particle-induced plasmid 

damage 

Correlations between meteorological conditions, such as temperature, relative humidity, wind 

speed, and atmospheric pressure, and the particle-induced plasmid damages were analyzed in this 

study. The particle-induced plasmid damages were positively correlated to average temperature 

with a correlation coefficient r = 0.35, which is higher than the threshold coefficient ra (n = 48, 

when a is 0.05, ra = 0.28). The particle-induced plasmid damages were negatively correlated with 

atmospheric pressure, with a correlation coefficient of r = -0.3. It is also interesting to note that the 

contents of the total water-soluble Ni, Cu, Cd in the PM also had a positive correlation with the 

average air temperature, with a correlation coefficient higher than 0.30 (n = 43, when a is 0.05, ra 

= 0.30). These facts are in consistency with the high oxidative potential of the PM samples in 

summer and late spring. During haze episodes, as discussed previously, conditions with low wind 

speed and high relative humidity could favor the formation of haze and accumulation of toxic trace 

elements, and thus the higher oxidative potential of particles. 

Many previous studies have discussed the effect of the seasonal variation on particle pollution-

related mortality and morbidity and suggested that higher temperature would significantly enhance 

the health effects of PM exposure and result in a stronger PM effect on daily mortality (Katsouyanni 

et al., 1993, 2001; Ren et al., 2006; Qian et al., 2008). It has been noticed in Beijing (Li et al., 

2013b) and Tianjin (Li et al., 2011, 2013a) that adverse effects were strongest in summer compared 

to the other seasons. The positive association between the higher particle-induced oxidative 

potential of PM and the higher air temperature may explain why temperature would enhance the 

PM health effect. 



 

17 

 

4.5 Exposure risk of metals in atmosphere in Beijing 

The correlation between the water-soluble elemental contents and the oxidative DNA 

damages of the water-soluble fraction (Table 2) revealed that the total water-soluble elements 

(TWSE), together with the individual elements Be, Bi, Cd, Cs, Pb, Rb, Zn, and Y, were positively 

associated with the oxidative potentials of PM. In consideration of this, we use the mass 

concentrations of the TWSE and these individual elements (we called them positively correlated 

water-soluble elements, simplified as PCWSE) to represent the health risk levels of PM Exposure. 

The mass concentrations of elements in atmosphere (ng/m3) were obtained by multiplying the mass 

concentration of particles in the atmosphere (μg/m3) with the content of water-soluble elements in 

particles (μg/g) (Table S5).  

Both the total mass concentrations of the PCWSE and the TWSE showed the same trending 

during our sampling period from June 2010 to June 2011 (Figure 6). The peak mass values of the 

PCWSE and the TWSE were present on day 2010.10.8 (78.8405 and 97.0663 ng/m3, respectively) 

in summer and day 2011.4.29 (59.4325 and 73.5536 ng/m3, respectively) in spring. These mass 

values in days 2010.7.26, 2011.2.3, 2011.2.20, 2011.5.23 were also relatively high. In 

consideration of seasonal variations, the average mass concentrations of both the PCWSE and the 

TWSE were the higher in summer and winter, and lower in autumn and spring (Figure S1). In 

conclusion, the exposure risk was the high in summer and winter in Beijing. 

5 Conclusions 

1)  The cell apoptosis assay showed the positive dose-response relationship similar to the PSA 

results. A similar pattern exists between the cell damages and the DNA damages, verifying the 

feasibility of the PSA in analyzing the oxidative capacity of PM samples. 



 

2) There was a seasonal variation in oxidative potential of both the intact whole particles and 

their water-soluble fractions of PM. The average DNA damages induced by the water-soluble 

fractions of PM were highest in summer, followed by spring, autumn and winter in descending 

order.  

3) The relatively smooth variation of the particle-induced DNA damages was accompanied 

by a number of peak values (higher than 50%). The peak values were frequently present in late 

spring and early summer and they were mostly associated with haze days and the days with low 

wind speed (less than 4 m/s), indicating that the PM samples during haze had higher oxidative 

potential than during non-haze periods. 

4) The oxidative potentials displayed a significant positive correlation with the total water-

soluble element concentrations, implying that the oxidative potentials were mainly sourced from 

the water-soluble elements, in which the water-soluble Cd, Cs, Pb, Rb, Zn, Be and Bi were most 

likely responsible for the DNA damage.  

5) Correlations between meteorological conditions and the particle-induced DNA damages 

showed that the oxidative potentials were positively correlated to average relative humidity and 

average temperature, and was negatively correlated to daily average wind speed. 

6) The exposure risk represented by the mass concentration of water-soluble elements in unit 

volume of atmosphere in Beijing was the higher in summer and winter, and lower in autumn and 

spring. 
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Figure 1 The particle-induced DNA damages by water-soluble fraction of PM in Beijing from June 2010 to June 2011 
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Figure 2 The seasonal distribution of oxidative capacity under 150 μg/ml of samples. The values in the box represent 50% of the samples falling 

into this value range. The black coarse lines in the box represent average values and the normal data range is between the top edge and bottom edge. 
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Figure 3 The relationship between the cell damages at the dose of 25 μg/ml and the DNA damage at the dose of 150 μg/ml 
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Figure 4 Average contents of the individual water-soluble elements in PM in four seasons
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Figure 5 Diagram showing correlation between visibility and particle-induced DNA damages of 5 continuous 

days during a haze episode 
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Figure 6 The overall mass concentrations of the elements with positive correlations with DNA damages (Cd, Cs, Pb, Rb, Zn, Be, Bi) and the mass 

concentrations of the total water-soluble elements in atmosphere 
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Table1 Sample information 

Date 
Average 

Temperature(℃) 

RH 

(%) 

WS 

(m/s) 

Weather 

Condition 

Mass concentration 

(µg/m³) 
Date 

Average 

Temperature(℃) 
RH (%) 

WS 

(m/s) 

Weather 

Condition 

Mass concentration 

(µg/m³) 

2010.6.25 26 58 2.1 sunny 112.0 2010.12.21 7.7 23 1.3 fog 290.3 

2010.6.28 28 49 2.5 haze 98.7 2010.12.24 5.8 26 2.9 sunny 43.5 

2010.7.7 28.1 77 2.2 sunny 57.4 2011.1.9 6.2 27 8.0 sunny 24.7 

2010.7.12 23.1 85 1.6 cloudy 56.2 2011.1.23 -4.7 24 7.2 sunny 35.0 

2010.7.21 29.6 33 2.2 sunny 51.9 2011.2.3 1.9 35 2.9 sunny 85.6 

2010.7.26 31.1 24 2.0 haze 121.7 2011.2.6 5.5 50 3.1 cloudy 40.1 

2010.8.5 27.2 38 5.7 cloudy 39.3 2011.2.18 2.8 51 2.4 sunny 289.1 

2010.8.8 25.9 43 2.2 sunny 65.9 2011.2.20 4.5 21 1.3 haze 204.7 

2010.8.19 24.7 62 2.1 cloudy 68.5 2011.3.10 10 35 2.9 sunny 52.2 

2010.8.22 19.9 33 3.1 sunny 59.8 2011.3.12 10.9 41 1.4 cloudy 178.1 

2010.9.5 18.7 25 1.9 cloudy 93.1 2011.3.20 8.7 16 3.2 cloudy 190.1 

2010.9.10 17.8 35 1.6 sunny 83.3 2011.3.24 7.4 30 7.8 sunny 29.4 

2010.9.19 15.8 27 1.9 cloudy 44.1 2011.4.14 22.8 17 4.0 sunny 215.2 

2010.9.23 11.9 79 2.8 sunny 43.0 2011.4.15 21.3 41 5.5 haze 182.9 

2010.10.8 8.8 59 1.4 haze 259.0 2011.4.28 18.4 61 2.5 sunny 79.6 

2010.10.11 12.3 85 3.8 sunny 23.4 2011.4.29 17.4 27 2.4 haze 120.2 

2010.10.22 6 36 1.3 cloudy 126.2 2011.5.6 20.3 55 3.9 sunny 26.0 

2010.10.25 7.7 54 7.1 sunny 25.6 2011.5.9 18.9 28 3.1 cloudy 38.2 

2010.11.5 5.8 54 1.9 sunny 96.4 2011.5.20 18.3 39 4.6 cloudy 54.9 

2010.11.10 6.2 63 1.5 cloudy 105.7 2011.5.23 22.5 31 3.6 sunny 88.0 

2010.11.19 3.5 32 2.0 fog 248.0 2011.6.1 26.5 34 3.4 sunny 38.8 

2010.11.22 3.4 34 1.6 sunny 51.5 2011.6.2 27.7 45 3.7 cloudy 85.8 

2010.12.5 -6.6 27 5.6 cloudy 74.1 2011.6.13 28.2 62 2.5 sunny 69.3 

2010.12.7 -5.2 48 3.1 sunny 43.7 2011.6.17 26 66 2.1 cloudy 76.0 

RH: relative humidity, WS: wind speed 



 

Table 2 Correlation between the water-soluble elemental contents and the oxidative DNA damages of the 

water-soluble fraction under 250 μg/ml  

 Li Be Sc Ti V Mn Cr Co Ni 

DNA 

damages 
0.17 0.43 -0.13 -0.11 0.11 0.18 0.22 -0.37 0.01 

 Cu Zn Ga Rb Y Nb Mo Cd Sb 

DNA 

damages 
0.09 0.41 -0.61 0.35 0.50 -0.27 -0.18 0.46 0.11 

 Cs Ba La Ce Pr Nd Sm Eu Gd 

DNA 

damages 
0.40 0.09 0.08 0.04 -0.02 -0.05 0.21 -0.08 0.02 

 Tb Dy Ho Er Tm Yb Lu W Tl 

DNA 

damages 
0.26 0.07 -0.21 -0.12 -0.02 -0.05 -0.13 -0.21 0.18 

 Pb Bi Th U Sr In Zr Hr Total 

DNA 

damages 
0.40 0.33 -0.07 -0.11 0.07 0.25 0.07 -0.31 0.33 

The elements with bold font represent that these elements are significantly correlated with the oxidative potentials of particles. 

(A threshold correlation coefficient is 0.30 at the 95% confidence level) 


