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Summary 

The immune system is a complex network of cells and molecules working together 

with the purpose of fending off potentially harmful pathogens. CD4+ T cells take key 

roles within this network by orchestrating a multitude of its players. They recognise 

pathogen or self-derived peptides (p) bound to molecules of the major 

histocompatibility class II (MHC-II) through their T cell receptor (TCR). Cytokines 

secreted in response to recognition aid antibody production and cytotoxic T cell 

activity, both critical for anti-viral immunity. In this thesis, TCR/pMHC-II interactions 

were investigated using a range of functional and molecular approaches in order to 

gain valuable insight into the mechanisms underlying successful antigen recognition.  

To aid these investigations, a versatile, insect cell based expression system for HLA-

DR1 was successfully implemented to generate soluble protein for use in multimer 

stainings and biophysical assays. Two HLA-DR1 restricted peptides encoded within 

influenza heamagglutinin (HA) were confirmed as being highly conserved making 

them ideal targets for vaccine development and allowing identification of influenza 

specific CD4+ T cells. 

Furthermore, the various roles of peptide flanking residues (PFR) were investigated 

using two experimental models. In a HA derived peptide, C-terminal PFR proved 

essential for peptide binding stability to HLA-DR1 and in consequence, CD4+ T cell 

activation. Clonotyping of CD4+ T cells grown against peptides of varying PFR 

lengths showed that TCR gene selection was heavily influenced by PFR. A HIV gag24 

derived peptide displaying an unusual secondary structure within its N-terminal PFR 

gave further insight into how seemingly small modifications to PFR can have wide 

reaching impact on CD4+ T cell activation. Both studies highlighted the need for more 

in depths investigations into this emerging field and the wide reaching impacts of this 

inherent feature of MHC-II restricted peptides. 

Overall, the results in this thesis added novel insight into the mechanisms underlying 

TCR/pMHC-II interactions.  
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1. Introduction 

1.1. Overview of the immune system 

1.1.1.  The two arms of the immune system 

The immune system is a highly complex system of cells and molecules which all have 

their roles to play in order to protect us from pathogens, as well as eliminate cancerous 

cells, while avoiding autoimmune reactions. The immune system can be divided into the 

innate immune system, which recognises common patterns on pathogens and affected 

cells, and the adaptive immune system which is able to mount a highly specific response 

to any given pathogen. Players of both arms communicate and work together in order to 

fight off pathogens. Traditionally, innate and adaptive immunity have their own set of 

cells and molecules, however, more recent research shows that the boundaries between 

the two systems are more blurred than initially believed (Lanier 2013). For my 

introduction I will concentrate on the adaptive immune system. 

1.1.2.  Adaptive immune system 

The adaptive immune system consists of two major cell types, B lymphocytes (or B cells) 

and T lymphocytes or (T cells). During embryonic development, precursors of B 

lymphocytes establish themselves within the bone marrow where they develop into 

mature B cells which then will enter the blood stream. Precursor cells within the bone 

marrow replenish the B cell pool whenever needed (LeBien et al. 2008). B cells are 

characterised by the expression of the membrane bound B cell receptor (BCR). It consists 

of two heavy chains and two shorter light chains that assemble in a distinctive Y-shape. 
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The distal ends of the two arms are characterised through antigen binding sites that bind 

to the surface of pathogens e.g. viral capsid proteins. These antigen-binding sites contain 

so called complementarity determining regions, or CDR loops, which vary greatly 

between individual B cell clones and determine the three-dimensional surface epitope the 

BCR will bind to. The pathogen will then be taken up by the B cell via phagocytosis and 

degraded within lysosomes (Drake et al. 1997). B cells also produce a soluble form of the 

BCR called immunoglobulin (Ig) or antibody. Once secreted these Igs bind to the surface 

of the pathogens primarily via the CDR loops. Depending on the class of antibody 

produced by the B cell, Igs differ in their constant region that confers them specific 

functions. For example, IgG can bind to surface proteins of virus and neutralise them by 

inhibiting their ability to infect new host cells. During infection, B cells specific to the 

pathogen in question will develop into antibody producing plasma cells and expand 

rapidly in order to generate the amount of antibody needed to clear the pathogen. 

Following clearance, some B cells will remain as memory cells allowing the body to 

quickly secrete specific antibodies in case of a second infection with the same or highly 

similar pathogen. This process is part of how vaccinations confer protection against 

infectious disease (Pulendran and Ahmed 2011).  

T lymphocytes or T cells also express a surface antigen receptor called the T cell receptor 

or TCR. It resembles the short arm of the Y-shaped antibody with the highly variable 

CDR loops located at the distal end. In contrast to BCRs, TCRs only exist in membrane 

bound form. While BCRs and Igs bind to 3D epitopes on the surface of pathogens, TCRs 

bind to membrane ligands on other cells. The nature of these ligands vary depending of 

the subset of T cells. 
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1.2. T cell biology 

1.2.1. Overview of T cell subsets 

The TCR is a heterodimer consisting of either an α- and a β-chain (αβTCR) or a γ- and a 

δ-chain (γδTCR). While the majority of T lymphocytes in the peripheral blood express 

the αβTCR, γδT-cells are found in large proportions amongst tissue resident T cells (J. 

Zheng et al. 2013). Ligands for so called “conventional” αβT-cells are peptides bound to 

molecules of the major histocompatibility complex (MHC) class I or class II expressed at 

the surface of target cells. Unconventional T cells on the other hand include αβ- and γδT-

cells which recognise a plethora of other ligands such as CD1, HLA-E and other members 

of the non-classical MHC family (Godfrey et al. 2015). 

Conventional αβT-cells can be divided into CD4+ T-cells and CD8+ T cells depending on 

the expression of the corresponding co-receptor on their cell surface. As a general rule, 

CD8+ T cells recognise peptides 8 to 13 amino acid (aa) in length bound to MHC class I 

(MHC-I). Their main function is to recognise infected cells presenting pathogen derived 

peptides on their surface and induce cell death through the secretion of cytotoxic 

molecules thereby eliminating the pathogens within the target cell. CD4+ T cells recognise 

longer peptides of at least 9 aa in length bound to MHC-II (seeFigure 1.1). Their main 

function is the coordination of the immune response directly (through cell-cell 

interactions with antibody producing B-cells) and indirectly (through secretion of 

cytokines) and are therefore also called helper T cells. For my thesis I studied the 

interaction of CD4+ αβT-cells with pMHC-II and will therefore concentrate on these in 

this introduction. 
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Figure 1.1: TCRs bind pMHC via their CDR3 loops. MHC (shown in green and 

yellow) present peptides at the cell surface. T cells recognise pMHC through their TCR 

(shown in blue) which binds both MHC and peptide via 6 flexible CDR loops (coloured 

regions in cut-out). Co-receptors CD8 and CD4 expressed by T cells bind to MHC-I and 

MHC-II, respectively and strengthen the interaction (PDB: 1FYT). 

 

1.2.2. The T cell receptor 

Each chain of the TCR consists of several segments: constant (C), joining (J) and variable 

(V) region and, in the case of the β-chain, an additional diversity (D) diversity segment 

(See Figure 1.2). During T cell development these regions are assembled into their final 

form in a process called somatic recombination or V(D)J recombination. There are several 

gene segments encoding each of these regions: (Cα: 1, Jα: 61, Vα: 70-80, Cβ: 2, Jβ: 13, Dβ: 

2 and Vβ: 52. During V(D)J recombination one segment of each region is randomly 

selected and spliced together by a pair of enzymes called RAG1 and RAG2 (Figure 1.2) 

(Schatz and Ji 2011). This mix-and-match process leads to a vast number of possible TCR 

sequences particularly since each potential VαJα recombination can be paired with 

virtually any VβDβJβ recombination. However, this diversity is further increased by the 
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addition of random nucleotides (and as a result random non-germline amino acids in the 

final protein) at the junction between the V- and the J-region of the α-chain and the V-, 

D- and J-region of the β-chain (Bassing, Swat, and Alt 2002). It is estimated that 1015-

1020 different TCRs can be generated through this process however, only ~2x107 unique 

TCR sequences can be found in humans at any time (Miles, Brennan, and Burrows 2009) 

Crystallographic studies show that the correctly refolded TCR expressed at the cell 

surface can be divided into a constant and a variable domain consisting of the Cα-and Cβ-

regions and the VαJα- and VβDβJβ-regions, respectively (see Figure 1.2). Adjacent to 

the constant region is the short transmembrane tail that also constitutes the N-termini of 

both chains. The TCR is flanked by the CD3 complex consisting of CD3εδ, CD3εγ and 

C3ζζ, three transmembrane proteins playing an important role in TCR signalling (Alarcon 

et al. 2003). The variable domain constitutes the distal end of the TCR and contains six 

flexible CDR loops. Each chain encodes three of these: CDR1α, CDR2α, CDR3α, 

CDR1β, CDR2β and CDR3β. While the CDR1 and CDR2 loops of each chain are 

encoded entirely by germline DNA, the CDR3 loops are located at the junction of the Vα- 

and Jα-regions and Vβ-, Dβ- and Jβ-regions, respectively Figure 1.2). Due to the 

hypervariable nature of these junctions, CDR3 loops can vary greatly even between TCRs 

otherwise bearing the same VDJ recombination for both chains. Contacts between TCR 

and pMHC are mainly mediated through residues within or adjacent to the CDR loops of 

both chains (M G Rudolph, Stanfield, and Wilson 2006). 
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Figure 1.2: TCR gene segments are assembled through V(D)J recombination. (A) 

During T cell development, the V, J, D and C segments of each chain are assembled one 

after the other. Since one allele of each segment is chosen at random this creates an 

immense diversity of possible TCRs. In addition, random nucleotides are added at the 

junction of Vα and Jα sections and Vβ, Dβ and Jβ, respectively further increasing diversity. 

Rearranged DNA will be transcribed into mRNA and the translated and refolded protein 

transported to the cell surface. (B) Cartoon model the HA1.7 TCR (PDB code: 1FYT). 

CDR3 loops are highlighted by circles and segments are colour coded as follows: Vα: 

dark green; Jα: orange; Cα: dark blue; Vβ: light green, Dβ: red (part of CDR3β loop); Jβ: 

yellow; Cβ: light blue. 

 

1.2.3. MHC-I present peptides of short length 

The MHC-I heterodimer consists of an α-chain and a shorter β2m-chain. Together, β2m 

and the α3 form the constant part of the MHC-I while the α1- and α2-subunits form the 

peptide-binding groove. In contrast to MHC-II, it is closed at both ends inhibiting peptides 

to protrude from the groove and limiting their maximal length to ~14aa. Peptides bind 

through anchor residues located at or close to the first and last peptide position and a 

conserved network of interactions between MHC and peptide N- and C-terminus, 

B A 
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respectively. With increasing length, peptides will bulge out of the groove (Holland, Cole, 

and Godkin 2013). 

1.2.4. The MHC-II accommodates peptides of varying length 

The MHC-II heterodimer also consists of an α- and a β-chain which together form a 

constant and a variable region. Peptides bind within a dedicated groove in the variable 

region. This groove is made of a floor of β-sheets flanked by an α-helix on each side. In 

the case of MHC-II, the ends of the groove are open allowing the peptide to protrude from 

the groove. Pockets in the β-sheet floor accommodate residue side chains at certain 

positions of the peptide called anchor residues. The nature of the amino acids determines 

the properties (e.g. charge and size) of potential amino acids. Different MHC-II alleles 

mainly differ in composition of these pockets and therefore require different sets of 

anchor residues for peptides to bind. MHC II heterodimers can be divided into HLA-DP, 

HLA-DQ and HLA-DR (see Figure 1.3). The HLA-DP and HLADQ loci both encode 

one α- and on β-chain each. Depending on which alleles have been inherited on the 

maternal and paternal chromosomes, each person can express up to four different versions 

of HLA-DP and HLA-DQ. The HLA-DR locus on the other hand encodes one α-chain 

and up to four β-chains, depending on the individual’s haplotype. The three HLA-DRA 

genes encode the same peptide binding pockets and are therefore regarded as one. Thus, 

any one person can express up to four different HLA-DR molecules. In total, a person 

can express up to twelve different MHC-II heterodimers in addition to up to six possible 

MHC-I heterodimers (Shiina et al. 2009). This ensures that a wide variety of peptides can 

be presented to CD4+ T cells is therefore one of the key mechanisms of a successful 

immune response.  
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Various HLA alleles have been associated with a predisposition for certain diseases. 

Some examples include: Autoimmune thyroid disease (HLA-DR3), Behcet disease 

(HLA-B51), Celiac disease (HLA-DQ8), Rheumatoid arthritis (HLA-DR3) and Type 1 

diabetes (HLA-DR4, HLA-DR3) (Mackie et al. 2012; Shiina et al. 2009; C. Nguyen et al. 

2013). These disease associations underline the importance of studying TCR/pMHC 

interactions. 

 

 

Figure 1.3: Schematic overview of the HLA locus. 

 

Peptides bind to MHC-II in a flat and extended fashion (see Figure 1.4). In addition to 

the anchor residues, the MHC-II forms a series of H-bonds along the backbone of the 

peptide. Peptide residues located between the first and last anchor residue constitute the 

core of the peptide and are numbered from 1 to 9. Residues flanking this core on either 

side are called peptide flanking residues or region (PFR). N-terminal PFR are numbered 

in reverse order starting from P-1 while C-terminal PFR continue the numbering from 10 

onwards. Due to the open conformation of the peptide-binding groove PFR and therefore 
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peptides binding to MHC-II can vary greatly in length (more detail in Chapter 4). 

Therefore, the topology presented to the TCR differs considerable between pMHC-I 

(short, bulging peptide) and pMHC-II (long, extended peptide with variable flanks). 

 

 
 

 

Figure 1.4: MHC-II present peptides of different lengths in an extended fashion. (A) 

MHC-I binding grooves are closed on both sides causing longer peptides to bulge out of 

the peptide binding groove such as the EBV derived 13mer LPEP peptide presented by 

HLA-B3508 (PDB code: 1ZHL). (B) The open peptide binding groove of MHC-II allows 

peptides of the same length (13aa) to bind in a flat conformation such as the influenza 

derived PKY peptide presented by HLA-DR1. The 9mer core is highlighted in green and 

PFRs in red. (PDB code: 1FYT).  

 

1.2.5. General rules of TCR/pMHC-II interactions 

An ever-growing database of crystal structures of TCRs in complex with pMHC-II 

backed by additional biophysical data allows drawing of some general conclusions about 

TCR/pMHC-II interactions. These have been reviewed extensively by Rossjohn and 

colleagues and Rudolph and colleagues (Rossjohn et al. 2015; Rudolph, Stanfield, and 

Wilson 2006). 

Upon binding, the TCR is oriented in a roughly diagonal angle (varying between 37° and 

90°) above the peptide binding groove with the TCR α- and β-chains located above the 

N- and C-terminus of the peptide, respectively (Rossjohn et al. 2015). As a general rule, 
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CDR1 and CDR2 loops are responsible for most of the interactions between TCR and 

pMHC. Several investigations found that these interactions show a degree of conservation 

with certain residues within the MHC-II being contacted in most crystal structures solved 

to date. Similarly, certain positions within the CDR1 and CDR2 loops are more likely to 

contact the MHC and also show some degree of conservation. Since CDR1 and CDR2 

loops are entirely encoded by germline DNA, this bias is a sign of co-evolution between 

genes encoding TCR and MHC, respectively (Scott-Browne et al. 2011). The majority of 

contacts with the peptide is made by CDR3 loops. The inherent hyper variability of CDR3 

loops ensures that virtually every possible pMHC-II combination will be recognised by 

at least one TCR present in the body. Furthermore, comparing the structures of TCRs in 

their unbound and bound states, respectively, shows a certain degree of flexibility within 

all six CDR loops in general and the CDR3 loops in particular (Rossjohn et al. 2015).  

As their name indicates, CD4+ T cells also express the CD4 co-receptor which binds to 

pMHC-II on the target cell within its constant region and aids TCR/pMHC-II interactions. 

The crystal structure of free CD4 show that it consists of four domains. Until recently no 

structure of CD4 binding a TCR-pMHC complex has been solved most likely due to low 

affinity interactions between co-receptor and MHC. Affinity maturation of murine CD4 

however made it possible to generate a higher affinity mutation located within the distal 

D4 domain of CD4 (Wang et al. 2011). This made it possible to solve the structure of a 

TCR-pMHC-II-CD4 ternary complex showing that CD4 and TCR are building an arched 

conformation with the CD4 D4 domain interacting with the MHC-II α1 and β1 domains 

(Yin et al. 2011). Most interestingly, all MHC II residues contacted by CD4 are conserved 

across all human and most murine MHC-II alleles. Moreover, the space between CD4 

and MHC-II at the cell membrane (~70Å) is wide enough for all three CD3 molecules to 

fit into. Engagement of CD3 is crucial for TCR signalling and T cell activation. Thus, this 
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structure provides evidence supporting the hypothesis that the conserved docking mode 

is due to positioning of co-receptors although this has yet to be proven to be the case for 

CD8.  

Until recently, all structures solved support the binding mechanisms described above. 

However, Beringer and colleagues published the structures of two TCRs binding pMHC-

II in an orientation that was 180° reversed to what has been seen in any other structure so 

far (Beringer et al. 2015). This shows that TCR/pMHC interactions are most likely not 

restricted to what has been defined as the consensus. It also demonstrates the need for 

more ternary structures in order to gain better insight into the TCR/pMHC interactions.  

1.2.6. T cell development  

Once pre-cursor T cells leave the bone marrow they migrate to the thymus to undergo 

further development. At this stage they don’t express either co-receptor (CD4 or CD8) or 

TCR and are called double negative (TN) (Singer, Adoro, and Park 2008). First, the TCR 

β-gene locus undergoes recombination as described above. Once the β-chain is 

successfully assembled it associates with a pre-TCRα-chain forming a preTCR expressed 

at the cell surface where it co-locates with the CD3 complex. Expression of the preTCR 

induces the expression of both CD4 and CD8 co-receptors leading to double positive (DP) 

lymphocytes (Spits 2002). Signalling through the preTCR leads to recombination of the 

α-chain gene locus and generation of the final TCR (Michie and Zúñiga-Pflücker 2002). 

At this stage, T cells undergo a selection process during which they are presented with 

MHC class I and class II loaded with self-peptides. In order to represent the majority (but 

not all) possible self-pMHC T cells might encounter in the periphery, proteins from all 

tissues are temporarily expressed by epithelial cells in thymic medulla (Klein et al. 2009). 
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T cells failing to recognise any of these self-pMHC undergo apoptosis (death by neglect) 

while T cells recognising self-pMHC with high sensitivity are also deleted (negative 

selection). This process results in a T cell population expressing TCRs that bind self-

pMHC with moderate affinity (positive selection). They are therefore unlikely to cause 

autoimmune responses while still being able to recognise pathogenic peptides in the 

context of the HLA alleles expressed by the individual. During the selection process, one 

of the co-receptors (CD4 or CD8) will be downregulated mirroring the TCR’s preference 

for binding MHC-I or MHC-II and become single positive (SP) naïve T cells 

(Rothenberg, Moore, and Yui 2008). While the majority of our T-cells mature during 

childhood, the thymus remains active throughout life replenishing the pool of self-tolerant 

T cells as necessary. 

1.2.7. CD4+ T cell subsets and their function 

Upon leaving the thymus, naïve T cells will circulate within secondary lymphoid organs 

such as lymph nodes and the spleen. When professional antigen presenting cells (APCs) 

such as dendritic cells (DCs) or macrophages encounter and engulf pathogens they will 

present pathogen derived peptides on their MHC (1.2.4). These APC then migrate to 

lymph nodes where they present these pMHC to T cells for inspections. TCR recognition 

of any of these pMHC will lead to activation of the T cell in presence of co-stimulatory 

signals through molecules such as the CD28 receptor expressed on T cells. In addition, 

APCs and other cells activated during the primary immune response secrete stimulatory 

cytokines. The composition of these cytokines will not only aid T cell activation but also 

determine their differentiation into different subsets, each with their own markers and 

functions (Zhu and Paul 2010). Treg are responsible for down-regulating immune response 

both in autoimmune setting as well as following pathogen clearance. There are several 
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different TH subsets (see Table 1.1). Although each have their own function, there is a 

certain degree of overlap. TFH reside in germinal centres where they aid B cell maturations 

and antibody production (X. Zhang et al. 2013). TH17 are characterised through the 

expression of IL-17 and are implicated in inflammatory responses as well as clearance of 

bacterial infections (Korn et al. 2009).  TH1 and TH2 were the first CD4+ T cell subsets to 

be identified. Both stimulate antibody production in B cells. TH2 cells have been shown 

to interact with cells of the innate immune system such as eosinophils and macrophages 

and are generally involved in defence against extracellular pathogens (Zhu, Yamane, and 

Paul 2010). TH1 cells on the other hand are involved in the clearance of intracellular 

pathogens such as virus by stimulating cytotoxic CD8+ lymphocytes (CTLs). Their 

signature cytokine INF-γ leads to upregulation of MHC-II on non-professional antigen 

cells such as infected epithelial cells and is crucial in antiviral immune response (Szabo 

et al. 2003). Effective immune responses require a fine balance between these subsets and 

when disturbed can lead to failure of defence against pathogens. 

 

Subset Function Signature cytokines 

TH1 Stimulate CD8+ T cells 

Defence against intracellular pathogens 

IFNγ, TNFα 

TH2 Interact with innate immune system 

Defence against extracellular pathogens 

IL-2 

TH17 Involved in inflammatory response 

Defence against bacterial infections 

IL-17 

TFH Stimulate B cells to secrete antibodies IL-21 

 

Table 1.1: Function and signature cytokines of some TH subsets. 
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1.3. Antigen processing and pMHC generation 

1.3.1. MHC-I present peptides of endogenous origin 

As a general rule, MHC-I present peptides derived from endogenous proteins. As part of 

the continuous turnover of intracellular material, proteins will be degraded into peptides 

by the proteasome. Upon infection or following stress signals, additional proteases are 

expressed and added to form the immunoproteasome. Peptides are transported from the 

cytosol into the ER by the Transporter Associated with antigen Processing (TAP) 

complex. Nascent and empty pMHC-I are generated in the ER as well where they are 

stabilised by chaperon proteins. Upon binding of a suitable peptide, these dissociate and 

pMHC-I are transported to the cell surface ready for inspection by T cells (Pamer and 

Cresswell 1998). 

1.3.2. MHC-II mostly present peptides of exogenous origin 

As a general rule, CD4+ T cells recognise peptides from extracellular material. Once taken 

up by phagocytosis, proteins are broken down into peptides inside lysosomes. Nascent 

MHC-II are assembled within the endoplasmatic reticulum (ER) where they associate 

with a chaperon protein called invariant chain (Ii) (see Figure 1.5). Upon transfer into the 

Golgi apparatus they co-locate in so called MHC-II compartments (MIIC) where Ii is 

cleaved leaving only the class II-associated invariant-chain peptide (CLIP) in the MHC-

II binding groove (Riberdy et al. 1992). CLIP serves as placeholder peptide stabilising 

MHC-II. They are further stabilised by HLA-DM which binds MHC-II and facilitates the 

exchange of CLIP for pathogen derived peptides (Denzin and Cresswell 1995). This 

occurs at low pH (~pH 5) following fusing of MIIC with late endosomes. HLA-DM plays 

a crucial role in deciding which peptides will bind: only peptides with a strong enough 
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affinity will successfully displace CLIP in a process called peptide editing. Deficiencies 

in HLA-DM lead to a greatly altered peptidome presented by MHC-II (Kropshofer et al. 

1996).  

Proteases known to be involved in MHC-II antigen processing include cathepsin (Cat) B 

(cysteine peptidase with both endo- and exopeptidase activity), D (aspartic 

endopeptidase), E (aspartic endopeptidase), L (cysteine endopeptidase) and S (cysteine 

endopeptidase) as well as asparaginyl endopeptidase (AEP) (Lippolis et al. 2002; 

Delamarre et al. 2005; Mitrović et al. 2016; Benes, Vetvicka, and Fusek 2008; Chlabicz 

et al. 2012; Turk et al. 2012; Kirschke and Wiederanders 1994). While exopeptidase 

cleave residues from one of the termini, endopeptidases cleave non-terminal peptide 

bonds. Their exact roles in antigen presentation are still under investigation. Inhibition of 

Cat B leads to altered immune responses including a shift from TH2 responses to a TH1 

phenotype while Cat D and L were found to be crucial in digestion of the MHC-II 

associated Invariant chain (Ii; see below) (T. Zhang et al. 2000; Driessen, Lennon-

Duménil, and Ploegh 2001). Inhibition of Cat S has been found to reduce the amount of 

pMHC-II expressed at the cell surface and is upregulated in inflammatory conditions 

(Wiendl et al. 2003; Riese et al. 1996). Cat S has also been shown to be involved in Ii 

chain degradation (Riese et al. 1996). Another cathepsin involved in the processing of 

antigens such as the tetanus toxin is cathepsin E (Hewitt et al. 1997). Protein degradation 

by endoproteases is a well-regulated process that, when disturbed can lead to disease often 

associated with faulty MHC-II antigen presentation. 
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Figure 1.5: MHC-II antigen processing pathway. As a general rule, MHC-II present 

peptides from exogenous proteins degraded in phagosomes. Peptides are degraded by 

cathepsins before fusing with MHC-II containing compartments. Taken from Roche & 

Furuta 2015. 

 

1.3.3. The MHC-II antigen processing machinery produces nested sets of peptides 

Naturally processed peptides presented by MHC-II can be eluted from the surface of 

healthy cells and analysed by mass spectrometry (MS). The majority of eluted peptides 

are derived from self-proteins as expected in a healthy cell. More surprisingly, variants 

of the same peptide can be found in different lengths varying from 12-32aa (Chicz et al. 

1992). These groups of peptides are called nested sets and are characterised by an 

overlapping, shared sequence as shown in Table 1.2 HLA-DR4 bound peptides eluted 

from the cell surface. MHC-II antigen processing machinery produces nested sets of 
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peptides of varying length as shown by peptides eluted from MHC-II (adapted from Chicz 

et al., 1992). Shared core sequence underlined. (Lippolis et al. 2002). This shared 

sequence is several residues longer than the 9mer core, as defined by the anchor residues, 

and therefore includes PFR. Without solving the crystal structures of these peptides, it is 

difficult to predict which residues consititure the anchor residues and therefore where the 

9mer peptide core ends and PFR starts. For short peptides, the known anchor residue 

preferences of well-studied HLA alleles can aid the making of an educated guess of how 

the peptide binds backed up by online peptide binding algorithms such as NetPanMHCII 

(Andreatta et al. 2015). It is, however, possible that peptides contain more than one 

possible binding register. Most studies on T cells use peptides of set length for simplicity 

reasons. The impact of varying lengths peptides has not yet been investigated fully. 

 

Source protein Residues Sequence Length 

HLA-A2 28-50 VDDTQFVRFDSDAASQRMEPRAP 23 

 28-48 VDDTQFVRFDSDAASQRMEPR 21 

 28-47 VDDTQFVRFDSDAASQRMEPP 20 

 28-46 VDDTQFVRFDSDAASQRME 19 

 30-48       DTQFVRFDSDAASQRMEPR 19 

 31-49          TQFVRFDSDAASQRMEPRA 19 

 28-44 VDDTQFVRFDSDAASQR 17 

 31-47          TQFVRFDSDAASQRMEP 17 

 31-47          TQFVRFDSDAASQRM 15 

 31-42          TQFVRFDSDAAS 12 

 

Table 1.2 HLA-DR4 bound peptides eluted from the cell surface. MHC-II antigen 

processing machinery produces nested sets of peptides of varying length as shown by 

peptides eluted from MHC-II (adapted from Chicz et al., 1992). Shared core sequence 

underlined. 
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1.4. T cells in viral infections 

1.4.1. CD4+ T cells in influenza A infections 

CD4+ T cell play a major in protection against viral infections in general and influenza 

infections in particular. Thus, influenza derived, MHC-II restricted peptides provide an 

ideal experimental system for this thesis. The Influenza A virus is a RNA virus from the 

family of Orthomyxoviridae infecting a wide range of hosts including humans, birds, pigs 

and bats. Virus strains normally infecting animal hosts (mostly pigs and birds) occasional 

also infect humans in zoonotic infections. Humans can be infected by strains of the 

Influenza A, B and C genera. Influenza A strains are the most prevalent amongst humans 

where they infect organs of the respiratory tract such as the lungs and nasal epithelium 

causing coughing, sneezing and fever. Although most people will become infected with 

Influenza at some point in their life, it is estimated that only 75% will show symptoms 

(Hayward et al. 2014). In the remaining two thirds of cases, the immune system 

successfully has fought off the virus before symptoms manifest. Influenza viruses are in 

circulation all year round, although the majority of influenza associated illnesses occur in 

the colder months. Occasionally, particularly virulent strains can cause epidemics such 

the Spanish Flu in 1918 which is estimated to have killed 40 million people (“WHO | 

Influenza” 2004). Each year the WHO releases a list of the most prevalent strains in 

circulation in the coming winter season, which are then  included in various vaccines. 

Like most RNA virus, Influenza A has a high mutation rate and strains change over time 

which poses an enormous challenge to the immune system as mutations can alter both B 

and T cell epitopes (Nobusawa and Sato 2006). 

The Influenza virus enters host cells by first attaching to sialic acid on glycoproteins 

expressed on the cell surface via its hemagglutinin (HA) receptor (see Figure 1.6). Viral 
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particles are then taken up through phagocytosis. HA also mediates fusion of the virus 

and host cell membranes releasing the virus RNA into the cytosol. Once viral proteins 

have been translated by host ribosomes, new viral particles bud from the cell membrane 

under the help of viral neuraminidase (NA) (Samji 2009). Viral proteins will be degraded 

into peptides while inside endosomes and thereby enter the MHC-II antigen-processing 

pathway. CD4+ T cells recognising these pMHC-II play an important role in defence 

against the virus. Influenza-specific CD4+ T cells stimulate antibody production by 

plasma cells and are important in maintaining antibody titres in the long term, therefore 

contributing to a stable memory response (Sridhar et al. 2015). In line with this, CD4+ T 

cells aid generation of tissue resident memory CD8+ T cells further contributing to the 

memory response (Laidlaw et al. 2014). Studies in mice showed that depletion of either 

CD4+ or CD8+ T cells did not significantly decrease efficacy of the vaccines tested while 

only 50-60% of mice survived a virus challenge following depletion of both (Cox et al. 

2015; Guo et al. 2011). In another study, depletion of CD4+ T cells led to a delayed viral 

clearance and recruitment of memory CD8+ T cells resulting in increased mortality in 

mice (Doherty, Riberdy, and Belz 2000). Overall, CD4+ T cells play an important role in 

anti-influenza immunity.  
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Figure 1.6: Schematic overview of the Influenza A virus. Taken from Nelson & 

Holmes, 2007. 

 

1.4.2. CD4+ T cells in HIV infections 

CD4+ T cells also play an important role in HIV infections as they prime targets of the 

virus itself and have been shown to be crucial for controlling the infection. I also used an 

HIV derived peptide as an additional experimental system in this thesis. The Human 

immunodeficiency virus (HIV) is an RNA virus of the family of Retroveridae that causes 

acquired immunodeficiency syndrome (AIDS) (see Figure 1.7). In contrast to influenza 

which has been infecting humans for thousands of years (Suzuki and Nei 2002), the first 
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reported cases of AIDs occurred in the 1970’s and the HI virus was only discovered in 

1983 (F Barré-Sinoussi et al. 1983). The HIV-2 subtype is mostly confined to West Aftica 

while HIV-1 is the most prevalent and virulent subtype worldwide (Maartens et al. 2014). 

The HI virus is closely related to simian immunodeficiency virus (SIV) which is believed 

to be the origin of HIV following zoonotic infection (Keele et al. 2006). To date, 70 

million individuals have been infected with HIV and about half of these have died of 

acquired immunodeficiency syndrome (AIDS) (“WHO | HIV/AIDS” 2016). Due to recent 

advances in combination antiretroviral therapy (cART), AIDS can be reasonably well 

managed even though the infections remains chronic (Françoise Barré-Sinoussi, Ross, 

and Delfraissy 2013). The HIV virus is transmitted through bodily fluids and infects CD4+ 

T cells. Following attachment to the CD4 co-receptor and chemokine co-receptors CCR5 

or CXCR4 on the cell surface, the virus membrane fuses with the host cell membrane 

releasing its contents into the cytoplasm (Maartens et al. 2014). Following reverse 

transcription of the viral RNA in double stranded DNA (dsDNA), viral proteins are 

transcribed by the host cell and assembled into fresh viral particles which will bud from 

the cell surface. The viral capsid (CA) protein, gag p24, plays a crucial role in the 

assembly of the virus (Freed 1998). Following the acute phase characterised though rapid 

viral replication and unspecific symptoms such as sore throat and fever the infection 

progresses into the asymptomatic latent phase. The latter can span years before 

progressing into AIDS which is characterised through opportunistic infections which will 

eventually lead to death if not treated with cART (Coffin, Hughes, and Varmus 1997). 

The major cause of AIDS and susceptibility to opportunistic infections is the gradual loss 

of CD4+ T cells compromising the whole immune system. Interestingly, HIV specific 

CD4+ T cells are preferentially infected by the virus, further compromising anti-HIV 

responses (Douek et al. 2002). Nevertheless, gag p24 specific CD4+ T cells can be found 
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in all stages of infection and are associated with lower viral titres (Palmer, Boritz, and 

Wilson 2004; Christie et al. 1997; Rosenberg et al. 1997). Cytotoxic CD8+ T cell 

responses are equally important in reducing viremia, particularly in early stages of 

infection mainly through elimination of infected CD4+ T cells (Betts et al. 2001; Koup et 

al. 1994). The virus responds to pressure from the adaptive immune system by rapidly 

mutating and thereby generating so called escape variants where T cell epitopes are 

altered enough to escape recognition by T cells (Price et al. 1997). Although anti-HIV 

antibody responses can be detected in all stages of infection they seem to be unable to 

control viral replication, partly due to the loss of CD4+ T cell help and exhaustion of B 

cells (Moir and Fauci 2009). Overall, HIV undermines the immune system by infecting 

and eliminating one of its key players thereby underlining their importance within the 

immune system. 

 

Figure 1.7: Schematic overview of the HI virus. Adapted from Robinson, 2002. 
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1.5. Aims of this thesis 

CD4+ T cells play an important role on many levels of the anti-viral immune response. 

The key ability of CD4+ T cells to recognise intracellular infections through pathogen 

derived peptides presented on MHC-II is mediated through the TCR. Soluble pMHC and 

TCR are important tools for studying TCR/pMHC interactions. However, generating 

soluble MHC-II has proven to be more difficult compared to generation of their pMHC-

I counterparts. Despite recent advances, research into CD4+ T cell still lags behind 

research into CD8+ T cells.  

Therefore, the first aim of this thesis was to set up an insect cell based expression system 

for soluble MHC-II.   

Peptides bound to pMHC-II are known to contain different lenghts PFRs. However, rather 

little is known about the role of PFR on T cell activation. Several studies have shown that 

PFRs indeed play a very important role in T cell activation. Previous investigations in our 

lab have shown that PFRs in an influenza and a HIV-1 derived peptide, respectively, can 

have substantial effects on TCR/pMHC-II interactions. 

The second aim of this thesis was to investigate the impact of PFRs on T cell activation 

and peptide binding stability in these two experimental systems in more detail. 

CD4+ T cells play an important role in influenza infections. Monitoring of influenza 

specific populations can give valuable insight into CD4+ T cell mediated defence and aids 

the development of effective vaccines. However, so far only one HA derived, MHC-II 

restricted peptide has been studied in great detail.  

Thus, the third aim of this thesis. was to map conserved epitopes within the influenza 

heamagglutinin protein. 
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2. Methods and Materials 

2.1. Expression of HLA-DR1 in Sf9 cells 

2.1.1. Buffers, reagents and media 

PBS: Phosphate buffered saline (Oxoid). 

Elution buffer: 50 mM CAPS (Sigma-Aldrich®), pH 11.5. 

Neutralising buffer: 300 mM Sodium phosphate (Sigma-Aldrich®), pH 6. 

Storage buffer: PBS containing 0.02% sodium azide (Sigma-Aldrich®). 

Luria-Bertani (LB) medium: 10 g/L tryptone (Fisher Scientific), 5 g/L yeast extract 

(Fisher Scientific) and 5 g/L NaCl (Fisher Scientific).  

LB agar medium: 15 g/L agar bacteriological (Oxoid), 10 g/L tryptone (Fisher 

Scientific), 5g/L yeast extract (Fisher Scientific), 5 g/L NaCl (Fisher Scientific). 

TYP media: 16g/L tryptone (Fisher Scientific), 16g/L yeast extract (Fisher Scientific) 

and 5g/L potassium phosphate dibasic (Acros Organics). 

One Shot® (TOP10) E. coli (Lifetechnologies™) competent cells were used for DNA 

manipulation and amplification and grown in TYP medium.  

Complete SFM: Sf-900™ II SFM (Gibco®), 100IU/ml penicillin (Gibco®), 100µg/ml 

streptomycin (Gibco®).  
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Insect cell freezing buffer: 60% Sf-900 II SFM (Gibco®), 30%FBS (Gibco®), 

10%DMSO (Sigma-Aldrich®). 

2.1.2. Insect cell culture 

Sf9 cells for protein expression were kindly provided by Dr. Andreas Heil. Sf9 cells were 

maintained in suspension culture in Erlenmeyer flasks complete SFM media at 25-27 °C 

and 80rpm on an orbital shaker. Cells were monitored daily and cell concentration was 

kept at 0.5-4x106cells/ ml in order to maintain cell growth in the logarithmic phase. Sf9 

cells were frozen at 107cells/ml in insect cell freezing buffer and stored for 1 h at -20° C 

before being transferred to -80 °C for long term storage. For initiation of fresh cultures, 

one vial of frozen Sf9 cells was thawed at 37 °C and transferred into 10 ml of fresh 

complete SFM.  

2.1.3. Expression plasmids for expression of HLA-DR1 in Sf9 cells 

Sequences for the extracellular domains of HLA-DR1 (DRA*0101, residues 1-183 and 

DRB1*0101, residues 1-190) were obtained from Stern & Wiley 1992. The HLA-DR1α 

chain was further modified by adding a honey bee melitin leader sequence 

(MYIYADPSPA) to the N-terminus (Homa et al. 1995) and a fos leucine zipper sequence 

(Willcox et al. 1999) followed by a BirA biotinylation site to the C-terminus 

(O’Callaghan et al. 1999). The HLA-DR1β chain was further modified by adding a honey 

bee melitin leader sequence followed by the sequence of the CLIP peptide 

(MPVSKMRMATPLL) followed by a Thrombin cleavage site to the N-terminus and a 

jun leucine zipper sequence to the C-terminus (Willcox et al. 1999). Vectors encoding the 

modified HLA-DR1α chain and HLA-DR1β chains sequences were chemically 

synthesized by Genewiz and Geneart, respectively. Sequences were cloned and inserted 
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into BaculoDirectTM (LifeTechnologies) expression vectors as described below allowing 

the sequences to be expressed in insect cells. 

2.1.4. Cloning into BacucloDirectTM expression vectors 

First, the sequences were cut using an enzymatic digest (see 2.1.4.1) to separate the target 

sequences from the supplied vector. Following purification by gel electrophoresis, the 

target sequences were ligated into the pENTR11 entry vector (LifeTechnologies) (see 

2.1.4.2). Second, the target sequences were inserted into the BaculoDirectTM expression 

vectors using the site directed LR reaction (see 2.1.4.4).  

2.1.4.1. Enzymatic digestion 

Restriction endonucleases and buffers were purchased from Fermentas. 1000 ng of 

plasmid DNA were digested in 20 µl final volume containing no more than 10% of 

restriction enzyme. After 2 h incubation at 37 °C, digests were separated by gel 

electrophoresis on a 1% agarose gel. 

2.1.4.2. Agarose gel electrophoresis and ligation 

Restriction digests were prepared by adding 5 µl of loading dye (Bioline) and fragments 

were separated by gel electrophoresis for 50 minutes at 70 Volt on a 1% agarose 

(LifeTechnologies) gel in 100 ml of Tris-acetate-EDTA buffer containing 1x SYBR safe 

DNA gel stain (LifeTechnologies). Fragments were visualised using a transilluminator 

and sizes were estimated using a molecular weight marker (HyperLadder ITM, Bioline) 

loaded simultaneously as the samples. Fragments of interest were extracted using a 

scalpel and purified using the GelWizard Kit (Promega) following the manufacturer’s 

instructions. DNA concentrations were measures using Nanophotometer® by Implen. 
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T4 DNA ligase (New England Biolabs) was used to ligate inserts into 50 ng of the 

pENTR11 backbone at molecular ratios of backbone to insert of 1:1, 1:2 and 1:3 in DNA 

ligase (New England Biolabs) buffer in 10 µl final volume. Reactions were performed 

overnight at RT. 

2.1.4.3. Transforming competent bacteria cells and purifying plasmid DNA 

1 vial of 25 µl Top10 E.coli was thawed on ice for 5 min and 1 µl of the ligation mixture 

was added for 30min on ice. Cells were then heat shocked for 30 s at 42 °C before 

recovering 2 min on ice. 250 µl pre-warmed S.O.C. media (LifeTechnologies) was added 

and vials were incubated for 1h at 37 °C 220rpm in an orbital shaking incubator. 100 µl 

of culture was spread onto a pre-warmed LB agar plate containing 50 μg/ml kanamycin 

(Sigma-Aldrich®) and incubated overnight at 37 °C. Individual colonies were used to 

inoculate 12 ml of LB media containing 50 μg/ml kanamycin. Plasmid DNA was purified 

using the Zippy kit (Zymo Research) following manufacturer’s instructions. DNA 

concentration and purity was analysed using Nanophotometer® by Implen. Sequences 

were confirmed by automated DNA sequencing by Central Biotechnology Services 

(CBS). 

2.1.4.4. Cloning into BaculoDirectTM baculovirus expression vector 

Plasmid preparations that proved to contain the correct sequence were amplified again in 

Top10 E.coli as described above. Plasmid DNA was purified using the HiPure plasmid 

prep kit from LifeTechnologies in order to obtain ultra-pure DNA preparations to be used 

in subsequent steps. These pENTR11 entry clones were used to assemble recombinant 

baculovirus DNA using the BaculoDirectTM Expression kit (Invitrogen). This system is 

based on the Lambda site-specific recombination (LR) reaction. Both the gene of interest 
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cloned into pENTR11 and a negative selection cassette located on the linearized 

baculovirus DNA are flanked by homologous DNA sequences. In presence of the LR 

clonase enzyme the gene of interest is inserted into the Baculovirus backbone through 

homologous recombination thereby replacing the negative selection cassette. 10 μl of 

linearized Baculovirus DNA were combined with 100-300 ng of the entry clone in a final 

volume of 16 μl TE buffer provided with the kit. As positive control 100 ng of the 

pENTR-Cat plasmid provided with the kit were used. LR clonase II was thawed on ice 

and vortexed twice for 2 s before adding 4 μl to the DNA mix. As negative control, no 

enzyme was added. All mixtures were incubated at 25 °C for at least 1 h or overnight and 

stored at 4 °C.  

2.1.4.5. Verifying LR reaction 

In order to verify successful insertion of the gene of interest into the Baculovirus vector, 

polymerase chain reaction (PCR) was conducted. 1 μl of the LR reaction from 2.1.4.4 

was diluted 1:200 in water and 4 μl of this dilution were used in the PCR reaction. 4 μl 

sterile H2O were used as a negative control. The following primers were used: Polyhedrin 

Forward Primer (5΄-AAATGATAACCATCTCGC-3΄) binding to the polyhedron 

promotor located upstream of the gene of interest and V5 Reverse Primer (5΄-

ACCGAGGAGAGGGTTAGGGAT-3΄) binding to the V5 purification tag located 

downstream of the gene of interest. Primers were used at 200 nM final concentration. 

Deoxynucleoside triphosphates (LifeTechnologies) were used at 0.2 mM final 

concentration. 10 μl 5X Green GoTaq® Reaction Buffer (Promega) was added before 

adjusting final volume to 49.75 μl using sterile H2O. Finally, 0.25 μl GoTaq® DNA 

Polymerase (Promega) was added. PCR conditions recommended in the BaculoDirectTM 
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Expression kit manual were used. The PCR products were verified by gel electrophoresis 

on a 1% agarose gel. 

2.1.5. Transfection of Sf9 cells and generation of P1 viral stocks 

0.8x106 Sf9 cells were plated per well in 6-well tissue cultures plates and left to attach for 

15 min at RT before aspirating medium entirely. 2.5 ml plating media (15% complete 

SFM + 85% antibiotic free Sf-900™ II SFM (Gibco®)) was added to each well. 8 μl of 

Cellfectin II (InvotrogenTM) and 100 μl antibiotic free Sf-900™ II SFM (Gibco®) were 

combined in a 1.5 ml Eppendorf tube (mixture A). In a separate tube, 10 μl of each LR 

reaction including negative and positive controls were combined with 10 μl of antibiotic 

free Sf-900™ II SFM (Gibco®) (mixture B). For a mock transfection 10 μl of antibiotic 

free Sf-900™ II SFM (Gibco®) were used in place of the LR reaction. Mixtures A and B 

were combined, gently mixed by tapping and incubated 30 min at RT. Each transfection 

mixture was added dropwise to the corresponding well and incubated 3-5 h at 27 °C. 

Supernatants were aspirated entirely and 2 ml complete SFM containing 100μM 

ganciclovir (Source BioScience) were carefully added dropwise. Plates were placed in 

sealed plastic bags containing wet paper towels and incubated at 27 °C for 5 days. 

Supernatants from each well were collected and centrifuge at 4,000 rpm for 5min to 

remove cells before filtering supernatants. These P1 viral stocks were stored at 4 °C 

protected from light. 

2.1.6. Generating high titre viral stocks 

In order to amplify viral titres in a first step, Sf9 cells were seeded at 1.5x106 cells/ml in 

12 ml complete SFM containing 100 μM ganclicovir (Source BioScience) in Erlenmeyer 

flasks. 0.5 ml of P1 viral stocks were added to each flask and incubated at 27 °C and 80 
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rpm on an orbital shaker for 96 h. Cultures were centrifuged 5 min at 4000 rpm in a 

Hereaus Megefuge 16R with a Hereaus 75003629 rotor and supernatants were filtered 

into sterile tubes. P2 viral stocks were stored at 4° C protected from light. In order to 

obtain high titre viral stocks for protein expression Sf9 cells were seeded at 1.5x106 

cells/ml in 45 ml complete SFM containing no ganclicovir in Erlenmeyer flasks. 5 ml of 

P2 viral stocks were added and incubated at 27 °C and 80 rpm on and orbital shaker for 

96 h hours. P3 viral stocks were harvested and stores as described above. 

2.1.7. Isolating viral DNA for verification by PCR 

Aliquots 750 μl of either P2 or P3 viral stocks were taken in order to extract viral DNA 

for verification of sequences using PCR. 750 μl cold 20% PEG 8000 (Molecular 

Dimensions) in 1M NaCl (Fisher Scientific) were added and gently mixed. After 30min 

incubation at RT, samples were centrifuged for 10 min at 12,000 to 13,000 at RT and 

medium was aspirated. Pellets were resuspended in 100 μl of PBS containing 0.1% Triton 

X-100 (Sigma-Aldrich®) before adding 10 μl Proteinase K (LifeTechnologies) at 5-10 

mg/ml, mixing gently and incubating for 1 h at 50 °C. 110 μl of 

phenol:chloroform:isoamyl (25:24:1) (LifeTechnologies) were added and gently mixed. 

Samples were centrifuged for 5 min at 12,000 to 13,000 at RT and the aqueous phase was 

transferred to a fresh tube. The following reagents were added: 10 μl 3 M sodium acetate 

(Sigma-Aldrich®), 0.5 μl UltraPure Glycogen at 20 μg/μl (LifeTechnologies), 250 μl 

100% ethanol (Fisher Scientifics). Samples were incubated at 20° C for 20 min before 

centrifuging for 15 min at 1300 rpm in a Hereaus Megefuge 16R with a Hereaus 

75003629 rotor at 4 °C. Pellets were resuspended 500 μl 70% ethanol (Fisher Scientifics), 

centrifuged for 15 min at 13000 rpm in a Hereaus Megefuge 16R with a Hereaus 



31 
  

75003629 rotor at 4 °C and resuspended in 10 μl sterile H2O. PCR were conducted as 

described in 2.1.4.5. 

2.1.8. Measuring of viral titre of P3 baculoviral stocks 

Viral titres of P3 stocks were measured using the BacPAKTM Baculovirus Rapid Titre Kit 

(Clontech). This kit is based on the expression of the baculoviral protein gp64 on the 

surface of infected insect cells. Briefly, Sf9 cells were plated at 6.5x104 cells/well in a 96-

well plate and let to attach for 1h at 27 °C. Medium was aspirated carefully and 25 μl of 

viral stocks at three different dilutions (10-3, 10-4 and 10-5) were added in triplicates or 

quadruplicates. 25 μl of complete SFM was added as negative control and plates were 

incubated 1 h at 27 °C. Inoculum was carefully replaced by 50 μl Methyl Cellulose 

Overlay and plates were incubated wrapped in a moist paper towel in a sealed plastic bag 

at 27 °C for 43-47 h. 150 μl of ice cold paraformaldehyde was added to each well and 

incubated 10 min at RT before washing with 200 μl PBS 0.05% Tween 20. 50 μl of 

Normal Goat Serum was added and incubated 5 min at RT before adding 25 μl Mouse 

gp64 Antibody per well and incubating at 37 °C for 25min. Following another wash step 

50 μl of Goat Anti-mouse Antibody/HRP Conjugate was added and incubated 25 min at 

37 °C. Following a last wash step, 50 μl Blue Peroxidase Substrate was added and 

incubated 3 h at RT. Numbers of blue foci were counted using a microscope and averages 

were used to calculate the viral titre in infectious units (IFU) per ml P3 viral stocks. 

2.1.9. Co-infection of Sf9 insect cells with high titre baculoviral stocks and harvesting 

of secreted HLA-DR1 

Sf9 cells were added to fresh shaker flasks and topped up with fresh SFM-II media to 

yield final cell concentration of 2x106 cells/ml. High titre viral stocks were added and 
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incubated 96 h at 27 °C and 80 rpm on an orbital shaker. Co-infected cells cultures were 

centrifuged for 10 min at 4000 rpm in a Hereaus Megefuge 16R with a Hereaus 75003629 

rotor before filtering the supernatant at 0.33 µm into a sterile container. Harvested 

supernatants were concentrated using a viva flow 200 (polyethersulfone membrane) 

module to a volume of 50 ml. Further concentration to a volume of <1 ml was achieved 

using a 20 ml vivaspin column with a 10 kDa cut-off (Sartorious, France). 

2.1.10. Purification of secreted HLA-DR1CLIP from co-infected Sf9 insect cells 

Correctly refolded HLA-DR1CLIP was purified using an immunoaffnity column coated 

with the anti-HLA-DR antibody L243 (Brodsky 1984). Columns were equilibrated at RT 

for 1 h and washed with 5 ml PBS before applying samples. The collected flow through 

was collected and reapplied. This procedure was repeated a total of three times. 15 ml 

PBS was applied to wash the column until no more protein could be measured in the flow 

through. 10 ml of elution buffer was applied in order to elute the protein and immediately 

pH neutralised using an equal volume of neutralising buffer. The column was washed 

using 5 ml elution buffer before applying 5 ml storage buffer and storing the 

immunoaffinity column at 4° C. The eluate was concentrated using a vivaspin column 

and washed once using PBS. Protein purity was verified by Coomassie-stained SDS-

PAGE and protein concentration measured using Nanophotometer® by Implen. Correctly 

refolded HLA-DR1 was further purified by size exclusion chromatography using a 

superdex 200HR column (GE Health care, UK) and an ÄKTA FPLC in conjunction with 

Unicorn software. Protein purity was verified by Coomassie-stained SDS-PAGE and 

protein concentration measured using Nanophotometer® by Implen. 
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2.1.11. Thrombin cleavage and peptide exchange. 

Purified HLA-DR1CLIP was cleaved using a Thrombin cleavage kit (Millipore) by adding 

20 IU Thrombin/mg protein in 50 µl reaction buffer 10X and topping up with H2O to a 

final volume of 500 µl. Reactions were incubated 90min at room temperature before 

adding the serine protease inhibitor 4-(2-Aminoethyl)benzenesulfonyl fluoride 

hydrochloride (ABSF, Sigma-Aldrich®). 2 µl of peptide at 20 mg/ml was added and 

incubated overnight at room temperature. Excess unbound peptide was removed by size 

exclusion chromatography using a superdex 200HR column (GE Health care, UK) and 

an ÄKTA FPLC in conjunction with Unicorn software. Protein purity was verified by 

Coomassie-stained SDS-PAGE and protein concentration measured using 

Nanophotometer® by Implen. 

2.2. Manufacturing of soluble pMHC-II and TCR in E.coli 

2.2.1. Buffer, reagents and media 

Luria-Bertani (LB) medium: 10 g/L tryptone (Fisher Scientific), 5 g/L yeast extract 

(Fisher Scientific) and 5 g/L NaCl (Fisher Scientific). 

LB agar medium: 15 g/L agar bacteriological (Oxoid), 10 g/L tryptone (Fisher 

Scientific), 5 g/L yeast extract (Fisher Scientific), 5 g/L NaCl (Fisher Scientific). 

TYP media: 16g/L tryptone (Fisher Scientific), 16g/L yeast extract (Fisher Scientific) 

and 5g/L potassium phosphate dibasic (Acros organics). 

Lysis buffer: 10 mM Tris pH 8.1 (Fisher Scientific), 10 mM MgCl (Acros organics), 150 

mM NaCl (Fisher Scientific), 10% glycerol (Sigma-Aldrich®). 
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Triton wash buffer: 5% Triton x100 (Fisher Scientific), 500 mM TRIS pH8.1, 1M NaCl 

(Fisher Scientific) and 10mM EDTA (Sigma-Aldrich®) pH 8.1. 

Re-suspension buffer: 500 mM TRIS pH8.1and 10 mM EDTA (Sigma-Aldrich®) pH 

8.1. 

Urea buffer: 8 M Urea (Sigma-Aldrich®), 20 mM Tris pH 8.1 and 0.5 mM EDTA 

(Sigma-Aldrich®) pH 8.1. 

MHC-II refold buffer: 25% glycerol (≥99.9) (Fisher Scientific), 20 mM Tris pH8.1, 

1mM EDTA (Sigma-Aldrich®) pH 8.1, 0.74 g/L cysteamine, and 0.83 g/L cystamine. 

Guanidine buffer: 6M guanidine, 50 mM TRIS pH8.1, 100 mM NaCl (Fisher Scientific), 

2mM EDTA (Sigma-Aldrich®). 

TCR refold buffer: 2.5M Urea, 50 mM TRIS (pH8), 2mM EDTA, 0.74g/L cysteamine, 

and 0.83g/L cystamine. 

BIAcore Buffer: HBS-P+ buffer (10nM HEPES pH7.4, 150mM NaCl, 3mM EDTA 

(Sigma-Aldrich®) and 0.005% (v/v) Surfactant p20 by GE Healthcare). 

Peptide binding assay blocking buffer: PBS containing 3% Bovine serum albumin 

(BSA, Sigma-Aldrich®). 

Peptide binding buffer: 20 mM 2-(morpholino)ethane-sulfonic acid (MES, Sigma-

Aldrich®), 300 mM 3-[(3-cholamidopropyl)dimethylammonio]-1-pro- panesulfonate 

(CHAPS, Sigma-Aldrich®), 140 mM NaCl (Fisher Scientific), pH5. 
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Neutralising buffer: 1 M Tris (pH 8), 10% BSA (Sigma-Aldrich®), 1% Tween 20 

(Fisher scientific), 0.02% Sodium azide (Sigma-Aldrich®). 

Triton wash buffer: 5% Triton x100 (Fisher Scientific), 500 mM TRIS pH8.1, 1 M NaCl 

(Fisher Scientific) and 10 mM EDTA (Sigma-Aldrich®) pH 8.1. 

One Shot® (TOP10): E. coli (Invitrogen™) competent cells were used as host for DNA 

manipulation and grown in TYP medium. 

RosettaTM 2(DE3) pLysS: E. coli (Novagen®) competent cells were used for protein 

expression and grown in TYP medium. 

2.2.2. Generation of expression plasmids 

The extracellular domains of HLA-DR1 (residues 1-118 of DRA*0101 and residues 1-

190 of DRB*0101) were taken from published work (Stern and Wiley 1992). A 

biotinylation tag (GGGLNDIFEAQKIEWH (O’Callaghan et al. 1999) was added to the 

C-terminus of the HLA-DR1α chain. These sequences were previously inserted into the 

pGMT7 expression plasmid as described in 2.1.4.1 and 2.1.4.2. The pGMT7 plasmids 

allows the expression of genes of interest in E.coli as described in 2.2.3. It encodes an 

ampicillin resistance gene which allows transformed bacteria to grow in LB 

supplemented with 50 mg/L Carbenicillin (BiochemicalDIRECTTM). Sequences coding 

for the extracellular domains of the following TCRs specific for the H3N2 derived epitope 

HA306-318 were previously cloned into the pGMT7 expression plasmid as described in 

2.1.4.1 and 2.1.4.2: 2C5 (TRAV 23/ TRAJ33 and TRBV 28/ TRBJ 1-2), 3A (TRAV4/ 

TRAJ30 and TRBV28/ TRBJ1-1), F11 (TRAV8-4/ TRAJ30 and TRBV24-1/ TRBJ 1-2), 

HA1.7 (TRAV 8-4/ TRAJ 48 and TRVB 28/ TRBJ 1-2). The sequence of the extracellular 
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domains of the HA306-318 specific TCRs DC C8 (TRAV 8.4/ TRAJ9 and TRBV13 

/TRBJ2.3) and DC D10 (TRAV9.2/ TRAJ 23.1 and TRBV5/ TRBJ2.3) were obtained by 

RNA-extraction and cloned into pGMT7 as described in 2.1.4.1 and 2.1.4.2. All TCR 

sequences were engineered to encode an artificial inter-chain disulphide bond near the C-

terminus of each chain (Boulter et al. 2003). Sequences were confirmed by automated 

DNA sequencing by Central Biotechnology Services (CBS).  

2.2.3. Expression of MHC-II α- and β-chains in E.coli 

Transformation of DE3 E.coli “Rosetta” (LifeTechnologiesTM) was performed as 

described in 2.1.4.3 and grown over night on LB agar plates containing 50 μg/ ml 

Carbenicillin (BiochemicalDIRECTTM). In order to confirm the expression of the 

transfected vectors, single colonies were cultured in TYP media containing 50 μg/ ml 

Carbenicillin (BiochemicalDIRECTTM) at 37 °C and 220 rpm in an orbital shaking 

incubator to generate starter cutlures. Once optical density reached 0.4-0.6 expression of 

the transfected vector was induced in a 5-10 ml aliquot by addition of 0.5 mM Isopropyl 

ß-D-thio-galactoside, (IPTG, Fisher Scientific) for 3 h. 10-20 μl of culture with and 

without 0.5 mM IPGT were analysed by sodium dodecyl sulfate–polyacrylamide gel 

electrophoresis (SDS-PAGE) and Coomassie Blue staining using SimplyBlue™ 

SafeStain (Invitrogen™). The degree and purity of protein expression were determined 

by intensity of band observed. Remaining starter cultures were then added to 1L of TYP 

containing 50μg/ ml Carbenicillin (BiochemicalDIRECTTM) and cultured at 37 °C and 

220 rpm in an orbital shaking incubator until optical density reached 0.4-0.6 indicating 

the exponential growth phase of the DE3 E.coli. Expression of protein in the form of 

inclusion bodies was induced by the addition of 0.5 M IPTG for 3 h. Cells were harvested 

by centrifugation for 20 mins at 4000 rpm in a Sorvall Legend centrifuge with a Hereaus 
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6445 rotor. Pellets were resuspended in lysis buffer and sonicated for 30min on ice using 

a Sonopulse HD 2070 coupled to a MS73 probe (Bandelin, Germany) set to 60% power 

and using 2 s intervals before being incubated with 0.1g/L DNAse (Fisher Scientific) for 

30 min at RT. The suspension was then added to 100 ml wash buffer and centrifuged for 

20 min at 4 °C and 10000 rpm using an Evolution RC centrifuge in combination with a 

SLA-15000 rotor (Sorvall®). Pellets were resuspended in 100 ml wash buffer before 

centrifuging as before. Pellets were then treated with 100 ml re-suspension buffer and 

aliquot of 20 μl was taken before centrifuging as before. Pellets containing MHC-II 

inclusion bodies were resuspended in urea buffer. Inclusion body suspension were 

centrifuged for 30 min at 4000 rpm in a Sorvall Legend centrifuge with a Hereaus 6445 

rotor and pellets were discarded. MHC α- and β-chain inclusion bodies were treated with 

TDM-8 mixed bed resin beads (Sigma-Aldrich) in order to neutralise any free urea 

radicals. Inclusion bodies were filtered and further purified by ion exchange using a 5 ml 

Hi-Trap column (GE Healthcare, UK) using a ÄKTA FPLC (GE Healthcare, UK) and 

the Unicorn software (GE Healthcare, UK). This purification step was not necessary for 

TCR α- and β-chain inclusion bodies. Protein concentrations in the supernatant were 

measured using Nanophotometer® by Implen and protein quality was verified by SDS-

PAGE and Coomassie-staining as described above. 

2.2.4. Refolding, purification and biotinylation of pMHC-II complexes 

MHC-II refold buffer was prepared in advance and left to chill at 4 °C before adding 0.5 

mg/l peptide. 3-5 mg/l DR1α-chain and 3 mg/l DR1β-chain inclusion bodies were 

incubated at 37° C for 15 mins and added simultaneously and dropwise. Refolds were 

stirred for 1 h and incubated 72 h to 2 weeks at 4 °C. Refolds were then filtered using a 

cellulose nitrate membrane filter with 0.45 μm pore size (Fisher Scientific) before being 



38 
  

concentrated to a volume of 30-50 ml using a viva flow 200 module with polyethersulfone 

membrane (Sartorius, France). Concentrated refolds were then washed with PBS and 

further concentrated to a volume 700 μl using a vivaspin column with a 10kDa cut-off 

(Sartorius, Fracne). pMHC-II with a biotinylation tag at the C-terminus of the α-chain 

were biotyinlated by adding 100μl Biomix A (0.5 M Bicine Buffer, pH8.3), 100 μl Biomix 

B (100mM ATP, 100 mM MGo(Ac)2), 100μld-Biotin and 2 μl BirA enzyme (all reagents 

from Avadin) and incubating at RT overnight. Biotinylated pMHC-II were washed with 

PBS and concentrated to a volume of ≤1 ml. Both biotinylated and non-biotinylated 

pMHC-II were further purified by size exclusion on a superdex 200HR column (GE 

Healthcare, UK) using a ÄKTA FPLC (GE Healthcare, UK) and the Unicorn software 

(GE Healthcare, UK). Protein concentrations in the supernatant were measured using 

Nanophotometer® by Implen and protein quality was verified by SDS-PAGE and 

Coomassie-staining as described above. 

2.2.5. Biophysical analysis of pMHC-II-TCR interaction using surface plasmon 

resonance 

SPR experiments investigating pMHC-II-TCR interactions were conducted on a BIAcore 

3000 or T100® (GE Healthcare) using a CM5 sensor chip (GE Healthcare). In order to 

activate the sensor chip, its surface was exposed to an amine coupling solution (GE 

Healthcare) composed of 10 mM N-(3-dimethylaminopropyl)-N3-ethylcarbodiimide 

(EDC) and 400mM N-hydroxysuccinimide (NHS). Streptavidin (200 μg/ ml in 10 mM 

acetate pH 4.5 (Sigma-Aldrich®)) was covalently linked to the activated sensor chip 

surface of all four flow-cells until 5000 response units (RU) were achieved. In a last step, 

1 M ethanolamine hydrochloride (GE Healthcare) was used to deactivate remaining 

active groups left on the chip surface.  Streptavidin coated chips were loaded with 
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biotinylated pMHC molecules at a flow rate of 10 μl/min until 400-600 RUs were 

immobilised on each flow-cell. Anti-pan-HAL-DR L243 antibody injected at 30 µl/min. 

Results were analysed using BIAEvaluation 3.1. 

2.2.6. Peptide stability assay 

A 96-well microtiter plate was blocked with 250 µl blocking buffer for 3 h at 37 °C. Serial 

dilutions at three times the desired final concentration were prepared in peptide binding 

buffer. Half area EIA/RIA plates (Costar) were coated with 0.5 µg L243 per well in 50 µl 

peptide binding buffer. 150 µl of blocking buffer was transferred from the microtiter 

plates to L243 coated EIA/RIA plates. EIA/RIA plates were bashed dry and 0.05 µg HLA-

DR1BT-CLIP was added per well in 40 µl peptide binding buffer before adding 20 µl of 

diluted was added to each well. Microtiter and EIA/RIA plates were covered in tinfoil 

and incubated 15-24 h at 37 °C. L243 coated plate was emptied and washed once with 

PBS. 10 µl neutralising buffer was added to each well on the microtiter plate, contents 

were transferred onto L243 coated plate and incubated 1 h at 37 °C. Plates were emptied 

and washed 3 times with wash buffer and 4 times with PBS. 50 µl streptavidin-HRP 

(R&D Systems) diluted 1:40 in PBS were added and plates were incubated 20-30 min at 

room temperature in the dark. Plates were washed 3 times in wash buffer and 50 µl of 

chromogen solutions A and B (mixed 1:1) were added. Plates were incubated in the dark 

until fully developed. The reaction was stopped by adding 25 μl of stop solution (2N 

H2SO4, R&D Systems) per well. Plates were read at 450 nm and 570 nm (background 

noise reference) using an iMARKTM Microplate reader (Biorad). 
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2.3. Mammalian cell culture 

2.3.1. Buffer, reagents and media 

R0: RPMI-1640 medium (Gibco®), 100IU/ ml penicillin (LifeTechnologies), 100IU/ ml 

streptomycin (LifeTechnologies) and 2 mM L-glutamine (LifeTechnologies). 

R10: R0 medium supplemented with 10% heat inactivated foetal calf serum (FCS, 

Gibco®) 

R5: R0 medium supplemented with 5% FCS (Gibco®) 

R2: R0 medium supplemented with 2% FCS (Gibco®) 

AB media: R0 medium supplemented with 5% filtered human AB serum (Welsh Blood 

Transfusion Services, WBTS) 

T cell clone media: R0 supplemented with 10% FCS (Gibco®), 0.02M HEPES (Sigma), 

1mM Non-essential amino acids (Gibco®), 1mM Sodium pyruvate (Gibco®), 20IU/ ml 

human recombinant IL-2 (Proleukin®, University Hospital of Wales (UHW) pharmacy) 

Red blood cell (RBC) lysis buffer: 155 nM NH4Cl (Sigma-Aldrich®), 10 nM KHCO3 

(Fisher Scientific), 0.5 M EDTA (Sigma-Aldrich®), pH 7.2-7.4. 

Dextramer buffer: 0.05 M Tris-HCL, 15 mM NaN3, 1% bovine serum albumin, pH 7.2 

FACS buffer: PBS supplemented with 2% FCS (Gibco®). 



41 
  

2.3.2. Immortalized cell lines and CD4+ T cell clones 

An overview of the HLA-type of all cell lines used in this thesis is shown in Table 2.1. 

HOM-2: The human, homozygous B-LCL HOM-2 is derived from a HLA-DR1 

individual and was purchased from the European Collection of Cell Cultures (Public 

Health England (PHE)). It was maintained in R10 medium.  

CD4+ T cell clones specific for the HLA-DR1 restricted peptide HA306-318: CD4+ T 

cell clones 2C5 was provided by Professor Andrew Godkin while DC C8 and DC D10 

were provided by Garry Dolton. T cell clones were maintained in T cell clone medium 

and restimulated with allogeneic feeder cells every 2-4 weeks (see section 2.3.5). 
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Cell line /Donor HLA-A HLA-B HLA-C HLA-DR HLA-DP HLA-DQ 

HOM-2 03/03 27/27 01/01 01/01 n/a 05/05 

Donor 1 n/a n/a n/a 01/09 01/03 n/a 

Donor 2 03/11 07/35 n/a 01/15 05/06 n/a 

Donor 3 11/24 07/51 n/a 1/12 05/03 n/a 

 

Table 2.1: HLA type of LCL used in this thesis. HLA types of donors 1, 2 and 3 were 

determined by PCR by the Welsh Blood Transfusion Service. The HLA type of HOM-2 

was provided by the European Collection of Cell Cultures. 

2.3.3. Blood donors 

Buffy coats used to restimulated cell lines and T cell clones were obtained from the 

WBTS. Peripheral mononuclear cells (PBMC) used to generate CD4+ T cell lines were 

obtained from healthy, HLA-DR1 positive, laboratory staff following informed consent. 

2.3.4. Isolation of PBMCs from whole blood 

PBMCs were isolated from 50 ml buffy coats (originating from 500 ml blood from 

healthy blood donors) purchased from the WBTS or from 50 ml fresh blood collected by 

venepuncture into a FalconTM tube (BD Biosciences) containing heparin (LEO 

Laboratories Ltd) at a concentration of 100IU/ ml of blood. Buffy coats were diluted 1:1 

in PBS while fresh blood was processed neat. The blood was separated using Ficoll-

Hypaque (LymphoprepTM, Axis-Shield) density gradient centrifugation for 20 min at 

2000rpm in a Hereaus Megefuge 16R with a Hereaus 75003629 rotor) without breaks. 

The layer containing PBMCs was situated at the interface of the Ficoll-Hypaque (lower 

liquid layer) and the serum (upper liquid layer) and was aspirated carefully and transferred 
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into a fresh tube. Cells were then washed once in R0 before being treated with 5-10 ml of 

RBC lysis buffer. Cells were washed again in R0 before being resuspended in R0, R10 or 

AB media. 

2.3.5. Expansion of CD4+ T cell clones 

CD4+ T cell clones were restimulated every 2-4 weeks using allogeneic feeders. 106 CD4+ 

T cell clones were resuspended in 10-15 ml T cell clone media supplemented with 1μg/ 

ml PHA (Sigma) and 10-15x106 irradiated PBMCs from three different donors were 

added. Cells were incubated in T25 flasks for 7 days at 37 °C with half the media replaced 

on day 5. On day 7, CD4+ T cell clones were plated on a 24 well plate at a cell 

concentration of 3-4x106 cells/ ml in 2 ml T cell clone media/well. Cells were then 

incubated for a further 7 days with half the media replaced every 3-4 days. After 14 days, 

CD4+ T cell clones were ready to be used in in vitro assays. 

2.3.6. Generation of short term CD4+ T cell lines 

PBMCs from healthy, HLA-DR1+ volunteers were obtained as described in section 2.3.4. 

Cells were plated on round bottom 96 well plates at a concentration of 2x106 cells/ml in 

100 μl AB media per well. Peptides (Peptide Protein Research Ltd) were added at a final 

concentration of 1-10 μg/ml. Where peptide pools were used, the final concentration of 

each individual peptide in the mixture was 10 μg/ ml. Where appropriate, PHA (Sigma) 

was added at a concentration of 1 μg/ml as a positive control. Outer wells were filled with 

sterile PBS to avoid evaporation of media and were incubated at 37 °C. On day three10 

μl Cellkines (ck, Helvetica Healthcare) were added to each well. On day 6, 100 μl of AB 

media containing 40IU/ml IL-2 (Proleukin®, UHW pharmacy) were added per well. On 

day 9, half the media was replaced by fresh AB media containing 40 IU/ml IL-2 



44 
  

(Proleukin®, UHW pharmacy). This was repeated every 3-4 days when cells were 

cultured for more than 14 days. Cell lines were ready to be used in in vitro assays from 

day 12 to 14 onwards. 

2.3.7. Peptide titration assay 

CD4+ T cell clones were washed in R0 and rested in R2 overnight. APC were washed in 

R0 and 50x104 cells were added per well in a round bottom 96 well plate. Peptides were 

added at varying concentrations ranging from 10-9-10-3M and cells were incubated at 37 

°C for 1-2 h. CD4+ T cell clones were washed in R0 and 25x104 cells were added per well 

and plates were incubated overnight at 37 °C. 75 μl of the cell supernatant was collected 

and IFN-γ released in response to the peptide was measured in an ELISA as described in 

2.3.9. 

2.3.8. INFγ-ELISpot 

Cells from short term CD4+ T cell cultures were assayed for peptide responsive cells in 

an Interferon-γ Enzyme-Linked ImmunoSpot assay using the Human IFN-

γELISpotBASIC (ALP) kit (Mabtech, Sweden) following manufacturer’s instructions 

with slight modifications to the frequency of washing steps and incubation times. 

MultiScreenHTS IP Filter plates with a 0.45 μm pore size hydrophobic PVDF membrane 

(Merck Millipore) were pre-treated with 15 μl/well 70% ethanol (Fisher Scientifics) and 

washed twice with 150 μl/well. Capture antibody was diluted to 15 μg/ ml before coating 

plates with 50 μl/well and incubating over night at 4 °C. Wells were flicked empty and 

washed four times with 150 μl PBS and blocked by adding 100 μl AB media per well for 

1h at 37 °C. Short term cell lines were washed and 150,000 cells were split between two 

wells before adding peptide or peptide pool at 1-10 μg /ml to one of the wells. In cases 
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where antigen presenting cells (APC) were used, these were washed in R0, pulsed with 

peptide or peptide pools at 1-10 μg/ ml and washed three times in R0. 50,000 APC were 

added per well prior to adding short term cell lines. Where appropriate, PHA (Sigma) was 

added at a concentration of 1μg/ ml as a positive control. Plates were incubated 4-18 h at 

37 °C wrapped in tin foil. Plates were flicked empty and washed 5 times with 150 μl PBS 

per well. Detection antibody was diluted to 1 μg/ ml in PBS and 50 μl were added to each 

well. Plates were incubated 2 h at RT or 1 h at 37. Plates were flicked empty and washed 

4 times with 150 μl PBS per well. Streptavidin-ALP was diluted 1:1000 in PBS and 50 

μl were added per well. Plates were incubated at RT away from light for 30-60 min. AP 

Conjugate substrate (Biorad) was prepared according to manufacturer’s instructions. 

Plates were flicked empty and washed 4 time with 150 μl PBS per well. 100 μl of substrate 

solution were added to each well and incubated at RT away from light for at least 10 min 

or until spots appeared. Plates were washed extensively in tap water and left to dry. Spot 

forming units (SFU) per 100,000 PBMCs were determined using an AID EliSpot reader 

in conjunction with the AID EliSpot software. Dry plates were stored at RT protected 

from light. 

2.3.9. IFNγ-ELISA 

Cell supernatants were assayed for Interferon-γ secretion using the IFN-γ Duoset 

Enzyme-linked Immunosorbent assay (ELISA) kit (R&D Systems) following the 

manufacturer’s recommandations. All wash steps were performed using 300 μl wash 

buffer (0.05% Tween® 20 (Sigma Aldrich) in PBS) per well in conjunction with a 

MultiWash III plate washer (TriContinent). Briefly, 96 well half area EIA/RIA plates 

(Costar) were coated with 50 μl capture antibody per well at a concentration 4 μg/ml, 

sealed and incubated at 4 °C overnight. Following 3 wash steps the plates were blocked 
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with 1% BSA (Sigma-Aldrich®) in PBS, sealed and incubated 1 h at RT. Plates were 

washed three times and 50 μl of cell supernatant were added to each well. At the same 

time, IFN-γ standards provided with the kit were added at range of concentrations (1000 

pg/ml, 500 pg/ml, 250 pg/ml, 125 pg/ml, 62.5 pg/ml, 31.2 pg/ml, and 15.6 pg/ml). Plates 

were sealed and incubated 75 min at RT. Plates were then washed three times and 50 μl 

of detection antibody was added per well at a concentration of 200 ng/ml. Plates were 

sealed and incubated 75 min at RT before being washed three times. 50 μl of a 1 in 40 

dilution of streptavidin-HRP provided with the kit were added to each well. Plates were 

sealed and incubated 20 min at RT in the dark. Substrate solution was prepared by mixing 

colour reagent A (stabilised peroxide solution, R&D Systems) and colour reagent B 

(stabilised chromagen solution, R&D Systems) with the kit in a 1:1 ratio. Plates were 

washed and 50 μl of substrate solution were added to each well, keeping the plate away 

from direct light. Plates were sealed and incubated 10 min at RT in the dark or until no 

more colour change could be observed. The reaction was stopped by adding 25 μl of stop 

solution (2N H2SO4, R&D Systems) per well. Plates were read at 450 nm and 570 nm 

(background noise reference) using an iMARKTM Microplate reader (Biorad). 

2.3.10.  Multimerisation of pMCH-II 

Tetramerisation of pMHC-II was performed as previously published (Altman et al. 1996). 

1 μg of biotinylated pMHC-II were incubated with 1.5 μl streptavidin-PE 

(LifeTechnologies) for 20 min at 4 °C in the dark. This step was repeated 4 times in order 

to obtain a streptavidin-fluochrome ratio of 5:1. pMHC-II tetramers were then diluted in 

PBS to give a final concentration of 0.1 μg/μl and centrifuged for  1min at 16,000 rpm in 

VWR Microstar tabletop centrifuge in order to separate aggregates. 
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pMHC-II dextramers were assembled by incubating 1 µg biotinylated pMHC-II to 2 µl 

dextran-PE (Immudex) for 30 min on ice before topping up to a final volume of 10 µl 

with dextramer buffer. pMHC-II-dextramers were centrifuged for 1min at 16,000 rpm in 

VWR Microstar tabletop centrifuge in order to separate aggregates. 

2.3.11. pMHC-II dextramer staining of CD4+ T cell clones and CD4+ T cell lines 

Cells were pre-treated with PKI (protein kinase inhibitor Destatinib Axon Meddchem, 

Reston) at a final concentration of 50 nM for 30 min at 37 °C. 10 µl of pMHC-II tetramers 

or dextramers, respectively were added and incubated 20-30 min in the dark on ice. Cells 

were washed once in FACS buffer and once in PBS before adding LIVE/DEAD® Violet 

stain (LifeTechnologies) and incubated 5 min in the dark at room temperature. 

Appropriate surface stain antibodies (anti-CD14-PB (Biolegend), anti-CD19-PB 

(Biolegend), anti-CD3-PerCP (Miltenyi Biotec) and anti-CD4-APC 

(Miltenyi Biotec)) were added and incubated 20 min in the dark on ice. Cells were washed 

in FACS buffer prior to analysis by flow cytometry. Flow cytometric analysis was 

performed on a Canto BD FACSCanto™ II flow cytometer (BD Biosciences) and 

data was analysed using FlowJo (Tree Star Inc). Sorting of short term T cell lines was 

performed on a BD LSRFortessaTM. Cells were sorted directly into lysis buffer (Qiagen) 

and data was analysed using FlowJo (Tree Star Inc). 

2.3.12. Clonotyping of FAC sorted short term T cell lines 

2.3.12.1. Generation of cDNA 

Total RNA was sorted samples was extracted using the RNeasy kit (Qiagen) and cDNA 

was generated using the SMARTERTM kit (Clontech). Briefly, extracted mRNA was 
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incubated with Oligo-dT in a thermal cycler for 3 min at 72 °C  followed by 2 min at 42 

°C  to anneal the oligo-dT primer to the oligo-A tail of the mRNA. 8 µl master mix 

containing 4 µl 5X First Strand buffer, 0.5 µl 100 mM DTT, 1 µl 20 mM dNTP, 0.5 µl 

RNAse Inhibitor (20 U) and 2 µl SMARTScribe RT (100 I) and 1 µl oligo-A primer II 

were added. Tubes were incubated 90 min at 42 °C  followed by 10 min at 70 °C. 

2.3.12.2. Amplification of cDNA 

In a first PCR, the entire TCRVB region and part of the TCRCB region was amplified by 

mixing 2.5 µl of cDNA sample with 10 µl 5x Phusion® Green buffer, 0.5 µl 100 mM 

DMSO, 1  µl 20 mM dNTPs, 5  µl 10X Universal Primer A (forward primer), 1  µl Primer 

Cβ-R1 (reverse primer), 0.25  µl Phusion® HF DNA polymerase and topped up to 50  µl 

final volume with H20. Samples were incubated at 94° C for the initial denaturation 

followed by 30 cycles of 30 s at 94, 30 s at 63 and 3 min at 72 °C  before being incubated 

at 72 °C  for the final extension. 

In a second PCR, 2.5 µl of sample from the first PCR were mixed with the same reagents 

as stated above replacing the forward primer with 1 µl Primer A short and the reverse 

primer with Primer Cβ-R2. Samples were incubated at 94 °C for the initial denaturation 

followed by 30 cycles of 30 s at 94 °C, 30 s at 66 and 3 min at 72 °C  before being 

incubated at 72 °C  for the final extension. Samples were analysed by electrophoresis on 

a 1% agarose gel. Amplified samples of the expected size were extracted and purified 

using the PCR Clean-up kit (Clontech).  

2.3.12.3.  Sequencing of TCRB cDNA 

PCR products were cloned into a PCR-Blunt II-TOPO® vector using the Zero Blunt® 

TOPO® PCR cloning kit (LifeTechnologies) as described in. One Shot® TOP10 E.coli 
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(LifeTechnologies) were transformed as described in 2.1.4.3 and grown on LB-Agar 

plates containing 50 µg/ ml kanamycin. Individual colonies were screened by colony PCR 

by mixing each with 1 µl M13 forward primer, 1 µl M13 reverse primer and 23 µl 

DreamTaq® Green master mix and run on a thermocycler following manufacturer 

instructions. Positive colonies were sent off to be sequenced (Eurofins, Germany). 

2.4. Bioinformatical and statistical analysis 

2.4.1.1.  Analysis of sequenced TCRB cDNA 

Sequences were visualised using the BioEdit software 

(http://www.mbio.ncsu.edu/BioEdit/bioedit.htm) and V-, D-, J-segments were identified 

using IMGT/V-QUEST (http://www.imgt.org/IMGT_vquest). Frequency analysis was 

performed using Microsoft OfficeTM Excel. 

2.4.1.2. Analysis of influenza HA derived epitopes 

HA sequences of all identified H2N3 strains found on the Influenza Research Database 

(fludb.org) were aligned using the inbuilt multiple sequence aligned tool. Aligned 

sequences were visualised using either BioEdit or Jalview (www.jalview.org). Consensus 

sequence and Shannon entropies were calculated using BioEdit. Epitope conservation 

frequencies were calculated using the inbuilt tool on the Immune Epitope Databse 

(www.iedb.org) while conseration frequencies of individual residues were calculated 

using Microsoft OfficeTM Excel. 

http://www.mbio.ncsu.edu/BioEdit/bioedit.htm
http://www.imgt.org/IMGT_vquest
http://www.jalview.org/
http://www.iedb.org/
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2.4.1.3. Figures and other data analysis 

Figures were generated using Microsoft OfficeTM Excel unless otherwise mentioned. 

Pearson’s coefficients were calculated using Microsoft OfficeTM Excel. EC50 and IC50 

values were calculated using GraphPad Prism 5. Contact tables from crystal structures 

were generated using the CCP4 package. Figures visualising crystal structures were 

generated using the PyMOL software. 
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3. Manufacture of soluble MHC-II molecules in insect cells 

3.1. Background 

Investigating the nature of TCR recognition of pMHC-II is an important step towards 

understanding CD4+ T cells and their role in disease and vaccination. Soluble pMHC-II 

molecules are essential in these studies as they allow for detection of antigen specific 

CD4+ T cells by flow cytometry using fluorochrome-conjugated multimerized versions 

of pMHC-II. Furthermore, soluble pMHC-II is essential for studying biophysical 

properties of TCR-pMHC-II interactions using methods such as Surface Plasmon 

Resonance (SPR) and X-ray crystallography..  
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3.2. Introduction 

3.2.1. Limitations of bacterial and mammalian cell based expression systems  

Over-expression of soluble, functional proteins in cells is a well-established method of 

generating sufficient material for a wide range of applications. Generally, cellular 

expression systems can be divided into three categories: bacterial, mammalian cell and 

insect cell systems. All three have in common that the gene encoding the protein of 

interest has to be cloned into an expression vector which can then be transduced or 

transfected into the host cell prior to protein expression. 

Bacterial expression systems are the most widespread. Expression vectors are relatively 

easy to assemble and thanks to the wide range of bacteria strains commercially available, 

many proteins can be over-expressed. Most commonly E. coli strains modified for the 

specific requirements (mammalian proteins, toxic proteins, etc.) are used. Culturing E. 

coli is simple, economic and requires only basic laboratory equipment. On the other hand, 

non-bacterial proteins expressed in bacteria are often produced as non-refolded insoluble 

inclusions bodies and require artificial refolding in vitro. MHC-II α- and β-chains fall into 

this category (Frayser et al. 1999). This is a labour intensive process that often goes hand 

in hand with low yields of protein. Furthermore, bacteria are incapable of post-

translational modifications (PTMs) such as glycosylation which can be crucial for the 

function of certain proteins. 

Mammalian proteins expressed in mammalian cells are usually soluble, properly refolded 

and bear natural PTMs. For uses where PTMs are more of a hindrance, such as 

crystallographic studies, they can be removed using specific enzymes. However, handling 

of mammalian cell cultures requires more expertise and equipment than bacterial cells. 
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Namely, the culturing of mammalian cells in a CO2 infused incubator for protein 

expression on laboratory scale can be costly and challenging. Furthermore, yields can be 

small depending on the individual protein (Verma, Boleti, and George 1998). 

Despite recent advances, expression of pMHC-II in E. coli remains a slow and laborious 

process while mammalian cell expression systems are costly. Insect cell expression 

systems, on the other hand, are becoming increasingly easy to implement. Thus, it was 

attractive to establish an insect cell based expression system for generating soluble 

pMHC-II using a Baculovirus Expression Vector system (BEVS). 

3.2.2. BaculoDirectTM expression system 

Until recently, most BEVS relied on the generation of bacmids in competent E. coli under 

the control of a helper plasmid. This requires the selection of bacmids which have a 

successfully inserted the gene of interest (GOI). With the development of novel cloning 

techniques such as the Gateway® cloning technology, generation of Baculovirus 

expression vectors has been simplified. This cloning technology is based on the LR 

reaction used by phage Lambda to insert segments of its own genome into its bacterial 

host’s genome (Liang et al. 2015). The donor (i.e. phage DNA segment) is flanked by so 

called attL sites which are homologous to attR sites on the acceptor (i.e. bacterial DNA 

strand). In the presence of the LR ClonaseTM enzyme mix, these regions align and DNA 

strands in between are interchanged between donor and acceptor. The BaculoDirectTM 

expression system we used here to generate soluble pMHC utilises Gateway® technology 

to assemble the baculovirus expression vector in vitro (shown in Figure 3.1A). The so 

called entry clone serves as donor DNA and encodes the GOI flanked by attL sites. The 

entry clone is generated by inserting the GOI into the pENTR11 vector (available from 

LifeTechnologieTM) using standard restriction digestion and ligation technology. The 
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Baculovirus backbone (i.e. the acceptor) used in this system is based on the Autographa 

californica multiple nuclear polyhedrosis bacoluvirus (AcMNPV). As shown in Figure 

3.1B, modifications for heterologuous gene expression included replacing the viral 

polyhedrin gene with a Gateway® compatible negative selection cassette consisting of 

the Herpes simplex virus thymidine gene (HSV1 tk) under the control of an immediate-

early promotor (PIE) followed by a lacZ gene segment. This negative selection cassette is 

flanked by attR sites and replaced by the GOI during the LR reaction. During generation 

of high titre viral stocks, insect cells are cultured in the presence of gancliclor which 

allows the elimination of any insect cells transfected with vectors that have not undergone 

successful homologous recombination. This nucleoside analogue undergoes 

phosphorylation by HSVtk leading to its incorporation into DNA and inhibition of DNA 

replication (Godeau, Saucier, and Kourilsky 1992). Only cells carrying the desired 

expression vector replicate, generate new viral particles and express the GOI. As an 

additional negative selection mechanism, the BacoluDirectTM expression vector is 

linearized by restriction digestion with Bsu36 I. During homologous recombination, the 

vector becomes circular again through insertion of the GOI. The negative selection 

cassette is followed by a V5 epitope and a His-tag which can be used for purification of 

the protein encoded in the GOI.  

Following successful assembly of the bacmid and verification by PCR, it is transfected 

into insect cells using a lipid mediated method in order to generate a first generation of 

recombinant baculovirus called P1. This low titre virus is then used to generate higher 

titre stocks by successive transfection of insect cells. Once the titre of the desired 

generation of baculovirus (generally P3-P5) is determined it can be used to express the 

desired protein in insect cells.  
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Figure 3.1: The BaculoDirectTM expression system uses Gateway® technology. 

(A) The attL and attR sites on entry clone and BaculoDirectTM backbone, respectively 

are homologues. In the presence of LR Clonase II enzyme mix, the DNA strands in 

between the LR sites are swapped over generating the desired expression vector and a 

by-product. (B) The negative selection cassette on the BaculoDirectTM expression 

bacmid is flanked by attR sites. The cassette itself encodes the Herpex simplex virus 

thymidine kinase (HSV1 tk) and a lacZ gene. It also includes a Bsu36 I linearization 

site. Following the downstream attR site, a V5 epitope and His-tag are pre-encoded into 

the bacmid. The successfully inserted GOI is under the control of the strong baculoviral 

PPH promotor. Figure adapted from BaculoDirectTM Baculovirus Expression System 

(2010, LifeTechnologies). 

 

 

3.3.  MHC-II constructs used here 

The HLA-DR1α and HLA-DR1β constructs used here are shown in  

Figure 3.2. In order to facilitate secretion of HLA-DR1 molecules into insect cell culture 

medium, a honey bee melittin leader sequence (MYIYADPSPA) was added to the 5’ end 

of the DNA construct of both chains. Originating from another insect species (Apis 

melifica), this signal peptide targets the protein product to the secretory pathway 

following translation and has been shown to increase protein yield (Tessier et al. 1991). 

In order to facilitate assembly of both chains during expression in insect cells, one half of 

a leucine zipper was added to the α- and β-chain, respectively. This has been shown to 

increase stability of heterologous expressed proteins (Scott et al. 1996). In addition, the 

target sequence of the BirA enzyme (GLNDIFEAQKIEWHE) was added to the C-
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terminus of the α-chain to enable biotinylation of pMHC II monomers in order to use 

them in a variety of techniques such as surface plasmon resonance (SPR) and multimer 

staining of CD4+ T cells. While MHC II molecules have been shown to refold without a 

peptide in the binding groove, the addition of such increases their stability (H Kozono et 

al. 1994). Therefore, a CLIP sequence was added to the β-chain. This helps the generation 

of correctly refolded pMHC II molecules with a placeholder peptide in the binding 

groove. The CLIP peptide was followed by a Thrombin cleavage site (LVPRAGS 

(Waugh 2011)) allowing its removal and exchange with any peptide of interest binding 

to HLA-DR. The β-chain sequence was followed by the other half of the leucine zipper. 

Two separate β-chain constructs were designed encoding the HLA-DRB1*0101 and 

HLA-DRB1*0401 genes, respectively. Our laboratory routinely utilises 

immunoprecipitation to purify HLA-DR1, therefore, stop codons were added to all three 

constructs since the V5- and His-tags were not needed.  

 

 

Figure 3.2: Schematic overview of constructs used for expression of HLA-DR1 in 

insect cells. (Honey bee) melittin leader sequence: targeting of protein for secretory 

pathway. Leucine zipper: stabilizes facilitates assembly of DR1 α- and β-chain. BirA site: 

biotinylation site. CLIP: peptide in MHC II groove, placeholder for peptide of interest. 

Thrombin cleavage site: removal of CLIP peptide prior to peptide exchange. 
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3.4. Aims 

The first aim for this project was to generate baculovirus constructs encoding HLA-

DR1αtag and HLA-DR1β, respectively, using the BaculoDirectTM system and use them 

to generate high titre baculovirus stocks for heterologous protein expression in insect 

cells. 

The second aim was to over express soluble HLA-DR1CLIPtag in Sf9 insect cells and to 

purify them from the supernatant using immunoprecipitation.  

The third aim was to exchange the bound CLIP peptide from HLA-DR1tag with a 

peptide of interest and to validate it by staining antigen specific CD4+ T-cell clones with 

pMHC-II tetramer reagents.  
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3.5. Results 

3.5.1. Generation of BaculoDirectTM constructs 

Constructs for HLA-DR1αtag chain, HLA-DR1β and HLA-DR4β chains were cloned 

into the pENTR11 vector as described in Chapter 2.1.4 and verified by sequencing (full 

DNA and amino acid sequences shown in Supplementary figure S1 and 

Supplementary figure S2). The resulting entry vectors were then used to assemble the 

baculovirus expression vectors. An LR reaction was conducted using the generated 

pENTR11 plasmids as entry clones and the BaculoDirectTM linear DNA. As a positive 

control the pCat entry clone (provided with the BaculoDirectTM expression kit) was used 

while in the negative control the HLA-DR1β pENTR11 entry clone was used but 

replacing the LR enzyme mix by TE buffer. A PCR was performed as described in 2.1.4.5 

using a forward primer binding to the polyhedron promotor region and a reverse primer 

binding within the V5 tag. Electrophoresis showed that the LR reaction was successful 

for all three constructs (Figure 3.3). 
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Figure 3.3: Verifying LR reaction using PCR. PCR products were analysed on a 1% 

agarose gel. Negative: LR reaction where ddH2O was used instead of an entry vector. 

H2O control: PCR conducted with ddH2O instead of template DNA. Expected sizes of 

correct bands were: DR1αtag – 1040bp; DR1β – 1090bp, DR4β – 1090bp; pCat – 870bp. 

 

3.5.2. Generation of high titre viral stocks for protein expression 

The four baculovirus expression vectors generated in 3.5.1 were then used to generate 

baculoviral stocks. Sf9 cells (insect cell line derived from the fall army worm, Spodoptera 

frugiperda) were transfected as described in Chapter 2.1.5 and inspected daily under the 

microscope. However, no clear signs of infection were visible. Supernatants containing 

the P1 generation of baculoviral stocks were collected 72 h post transduction. P2 viral 

stocks were generated by seeding Sf9 cells in suspension culture with P1 viral stock and 

harvesting the supernatant after 96 h. A small sample of the P2 generation of each 

construct was taken and viral DNA was isolated as described in Chapter 2.1.7 and 

amplified by PCR. Sequencing confirmed the presence of each construct in the 

corresponding viral stocks. In order to generate stocks of larger volume and higher titre, 
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baculoviral stocks were amplified in several rounds by seeding increasing numbers of Sf9 

cells with viral stocks of the previous round (see Figure 3.4). 

Viral titres were measured in round three (P3 viral stocks) or higher. As described in 

Chapter 2.1.8, an ELISA based method detecting the presence of the viral gp64 protein 

on the surface of Sf9 cells was used in order to determine viral titres. Infected cells are 

visible as blue foci of infection (see Figure 3.4) and the viral titre of each tested stock can 

be calculated from the number of foci present. Titres are given as infectious units 

(IFU)/ml. 

During the generation of these constructs and high titre viral stocks, I began to focus on 

HLA-DR1 to characterise new hemagglutinin epitopes as part of chapter 6. Thus, insect 

cell expression of HLA-DR4 was halted to enable more resources to be directed towards 

the generation of soluble HLA-DR1 to complement my other research projects. 

 

Figure 3.4: Generation of high titre viral stocks and determination of viral titre. 
High titre viral stocks were generated by successive rounds of infection of Sf9 cells. Cells 

infected with baculovirus express gp64 on their cell surface (stained in blue) and form 

foci of infection. 
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3.5.3. Expression of HLA-DR1CLIPtag in insect cells and purification from cell 

supernatants  

As a first expression test, Sf9 cells were infected with equal amounts of HLA-DR1αtag 

and HLA-DR1β baculovirus. As a starting point a multiplicities of infection (MOI) of 0.5 

and 1 were chosen, i.e. one viral particle of each construct per two and one Sf9 cells, 

respectively, were added. This was lower than the 3-20 reported in literature (Quarsten et 

al. 2001; Radu et al. 1998). However, Zhan and colleagues showed that lower MOIs can 

lead to higher expression of protein (Y. H. Zhang, Enden, and Merchuk 2005). Cells were 

incubated for 72 h at 27 °C before harvesting supernatants.  

Half of each filtered supernatant (~25 ml) was directly applied to a protein A column 

coated with the pan-HLA-DR antibody L243. HLA-DR1CLIPtag monomers were eluted 

for each MOI (as described in Chapter 2.1.10) as shown in Figure 3.5 (red circles). The 

elution steps yielded ~85 µg (MOI 0.5) and ~60 µg (MOI 1) total. 

Loading 25ml of supernatant took 3-4 h. As it was planned to express HLA-DR1CLIPtag 

in Sf9 cultures up to 300 ml, loading neat supernatants was not a preferred option in the 

long term. Previous attempts of concentrating supernatants in spin filtration columns had 

failed as components of the insect cell media blocked the filter. Therefore, the remaining 

supernatants were diluted in 200 ml PBS and concentrated first using an ultrafiltration 

cassette followed by spin filtration columns. Diluting supernatants in PBS circumvented 

the problem of blocking the columns and allowed concentration down to ~1 ml final 

volume in the spin filtration columns. Concentrated supernatants were applied to L243 

columns and HLA-DR1CLIPtag monomers eluted as before (see Figure 3.5). The elution 

steps yielded ~500 µg (MOI 0.5) and ~184 µg (MOI 1) total, which was consistently 

higher than yields from non-concentrated supernatants.  
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Figure 3.5: Purification of HLA-DR1CLIPtag expressed in Sf9 cells. Samples at 

different stages of the purification process were analysed on SDS PAGE. Every sample 

was run both non reduced and reduced by the addition of DTT. Red circles indicate eluted 

HLA-DR1α- and β-chains. MOI: multiplicity of infection, conc. supern.: concentrated 

supernatants prior to loading onto L243 column, FT: flow through from L243 column, 

W: wash steps, E: Eluate.  
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3.5.4. Validation of HLA-DR1CLIPtag expressed in insect cells 

In order to assess whether the purified HLA-DR1CLIPtag were correctly refolded and 

functional, we decided to test for binding of L243 using SPR. L243 binds to the HLA-

DR1α-chain and relies on correct conformation of its epitope for binding (Gross et al. 

2006). The eluted HLA-DR1CLIPtag from the previous step were pooled and concentrated 

using a spin filtration column. Monomers were biotinylated and buffer exchanged into 

BIAcore buffer using size exclusion chromatography as described in Chapter 2.1.11. This 

had the additional advantage of eliminating any potential aggregates which would 

interfere with the SPR experiment. HLA-DR1CLIPtag was loaded onto a CM5 dextrose 

chip using a BIAcore 3000 instrument as described in Chapter 2. Additionally, HLA-

DR1PKY monomers refolded in E.coli (as described in Chapter 2.2.4) and HLA-DR4CLIP 

manufactured in mammalian cells (provided by Dr. Dave Cole) were loaded as positive 

controls. An irrelevant MHC-I (HLA-A2CLG) was also loaded as negative control. L243 

was then injected over the chip surface. Binding could be observed for all three HLA-DR 

monomers but not for HLA-A2 (see Figure 3.6).  

 

 

 

 

 

 



64 
  

 

 

Figure 3.6: Validation of HLA-DR1CLIPtag using SPR. Binding of L243 

antibody to HLA-A2CLG (shown in red), HLA-DR1CLIPtag (shown in pink), HLA-

DR1PKY (shown in green) and HLA-DR4CLIP (shown in blue) was tested using a 

biacore machine. A: Traces for all four monomers are shown. B: Traces for HLA-DR1 

monomers are shown after subtraction of reference i.e. HLA-A2CLG. 
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3.5.5. Exchange of bound CLIP peptide by peptides of interest and validation of pMHC-

II molecules 

The thrombin cleavage site located between the CLIP and the HLA-DR1α-chain allows 

the exchange of CLIP for any peptide of interest. Following proteolytic cleavage, the 

peptide of interest is added in excess to the mixture. As CLIP binds MHC-II monomers 

with low affinity it will be replaced by the peptide of interest. As recorded in the literature, 

20U Thrombin is commonly used per mg of MHC-II to be cleaved (Anders et al. 2011) 

(Pos et al. 2012). 

Thrombin cleavage was tested on some of the HLA-DR1CLIPtag expressed in insect cells 

using a Thrombin cleavage kit as described in Chapter 2.1.11. The cleavage reaction was 

stopped by adding ABSF (4-(2-Aminoethyl)benzenesulfonyl fluoride hydrochloride), an 

irreversible serine protease inhibitor at 1M. The HA306-318 peptide (PKYVKQNTLKLAT) 

derived from influenza hemagglutinin was used as peptide of interest and added over 

night in 46 times excess. As negative control, PKY was added to non-cleaved HLA-

DR1CLIPtag. Both monomers were purified using gel filtration in order to remove any 

unbound peptide and concentrated using a spin column. Tetramers were assembled and 

the HLA-DR1HA306-318 specific CD4+ T cell clone DC D10 was stained as described in 

Chapter 2.3.11. The non-cleaved HLA-DR1CLIPtag was used as a negative control. As 

shown in Figure 3.7, HLA-DR1HA306-318 successfully stained 2C5 as demonstrated in a 

shift of the MOI while HLA-DR1CLIPtag did not. 
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Figure 3.7: Validation of peptide exchange by tetramer staining of a CD4+ T cell 

clone. A: Gating strategy. B: Dot-plots showing CD4+ T cells stained using peptide 

exchanged HLA-DR1HA306-318 and HLA-DR1CLIP monomers. FMO (Fluorescence Minus 

One) to tetramer. C: Graph showing shift in MFI (Mean Fluoerescence Itensity). 

 

A 

B 

C 



67 
  

3.6. Discussion 

The ability to generate soluble pMHC-II molecules vastly facilitates investigations 

involving CD4+ T cells. Foremost, their use in pMHC-II multimer staining for analysis 

by flow cytometry allows the detection, dissection and monitoring of CD4+ T cell 

responses in disease settings and vaccine development (Kwok et al. 2002). As the varied 

roles of CD4+ T cells for successful vaccinations become more evident the need for tools 

to identify and monitor subpopulations increases. Recent developments in multimer 

staining techniques, such as dextramers and cross-linking antibody “boost” technology 

(Dolton et al. 2015; Tungatt et al. 2015), lead to a rapidly expanding field of possible 

applications of pMHC-II molecules.  

Several MHC-II alleles are associated with autoimmune diseases. HLA-DR4 confers an 

increased risk for rheumatoid arthritis (RA), while HLA-DR1 and HLA-DR10 do so to a 

lesser extent (Mackie et al. 2012). In the case of type 1 diabetes (T1D), HLA-DR4 and 

HLA-DR3 lead to increased risk in combination with certain HLA-DQ alleles (C. Nguyen 

et al. 2013). In both cases, conserved residues within the peptide binding groove allow 

the presentation of disease associated, MHC-II restricted epitopes (Miyadera and 

Tokunaga 2015).  These are only two examples where the ability to generate soluble 

pMHC-II molecules allows further study of disease as well as potential treatments.  

Due to their many interactions with other players of the immune system, CD4+ T cells are 

directly and indirectly involved in disease processes such as viral clearance and antibody 

production in viral infections (Cox et al. 2015). In the case of persistent viral infections 

such as hepatitis C virus (HCV) infections, HLA-DR3 and HLA-DR5 are associated with 

increased viral clearance and milder disease symptoms. HLA-DR4, HLA-DR7 and HLA-

DR15 on the other hand are associated with chronic infection (Thursz et al. 1999). Being 
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able to visualize peptide specific CD4+ T cells by flow cytometry also aids the study of 

infectious diseases. Again, being able to identify virus or even epitope specific CD4+ T 

cells and follow these subpopulations over the course of infection give valuable insight 

into how the immune system deals with viral pathogens. 

While it is possible to express other HLA-DR alleles in E. coli and refold in vitro (Chen 

et al. 2013), our own attempts have been unsuccessful (unpublished observations). 

Flexible expression systems like the one described here allow the generation of different 

alleles by simply exchanging the HLA-DRB1 gene within the β-chain construct and the 

thrombin cleavage site allows the pMHC-II molecules to be loaded with any peptide 

binding to the HLA-DR allele in question. Insect cell based expression systems offer 

advantages over bacterial expressions systems such as generation of readily refolded 

proteins while being easier to implement and use than mammalian expression systems. 

Several modifications to the MHC-II α- and β-chains have been shown to increase 

stability and secretion of monomers such as Leucine zippers (Scott et al. 1996), a 

cleavable CLIP linked to the HLA-DR1α-chain (Pos et al. 2012) and addition of a melittin 

leader sequence (Tessier et al. 1991). In this chapter I have successfully implemented an 

insect cell based expression system that combines all three approaches.  

Many of the more traditional baculovirus expression systems available commercially 

such as the BAC-to-BACTM system (InvitrogenTM) rely on bacmids being assembled in a 

bacterial system aided by a helper plasmid. This has the advantage of being able to 

generate baculoviral DNA stocks for transduction of insect cells whenever needed. In the 

BaculoDirectTM system used here, only enough linear baculovirus DNA for two 

transductions is provided per each LR reaction (five vials à one LR reaction are provided 
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per kit). On the other hand, the in vitro system used here is straight forward and less time 

consuming than the traditional approach.  

Purification of secreted HLA-DR1CLIPtag from insect cell supernatants presented the next 

hurdle in this process. Loading higher volumes of neat supernatant onto the L243 column 

would have resulted in a time consuming process. Concentrating supernatants not only 

speeded up this process but also resulted in higher yields of protein eluted. This could be 

due to the monomers being buffer exchanged into PBS leading to increased stability of 

monomers, the elimination of proteases as well as better binding of the protein to the 

L243 column.  

When expressing HLA-DR1 in Sf9 cells on a small scale, I noticed that a lower MOI of 

0.1 resulted in a higher yield than a MOI of 1. Of course, this observation would have to 

be confirmed by repeating the experiments while also testing higher MOIs. Nevertheless, 

this finding was in line with the literature (B. Nguyen et al. 1993; Y. H. Zhang, Enden, 

and Merchuk 2005; Kioukia et al. 1995). Higher MOIs lead to every cell being infected 

instantly by more than one viral particle once viral stock is added leading to rapid 

expression of the desired protein. While this might seem favourable, it also leads to faster 

exhaustion of the insect cell culture that will quickly be overwhelmed by the propagating 

viral infection. In addition, higher MOIs go hand in hand with larger volumes of viral 

stocks added to the cell cultures which results in larger amounts of spent media being 

added diluting out valuable nutrients and possible introducing toxic by-products. Lower 

MOIs, on the other hand, lead to only a certain percentage of the cell culture being 

infected at first which will then generate more viral particles leading to a successive 

propagation of infection. In the case of the expressing system used here, the successful 

expression of HLA-DR1CLIPtag relies on co-infection of each insect cell with at least one 
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baculoviral particle of each construct (i.e. HLA-DR1α-chain and HLA-DR1β-chain, 

respectively). Taken together, these two mechanisms lead to a delay in protein expression 

when using low MOIs. However, it also gives the insect cells more time to generate the 

HLA-DR1CLIPtag heterodimers before the cellular expression systems are fully hijacked 

by the baculovirus. This approach also reduces the volume of spent media being added to 

the insect cell culture prolonging the life span of the viral stock itself. As for every other 

protein, the optimal expression conditions including MOI depend on many factors and 

need to be adjusted following more in depth experiments than those I was able to conduct 

in the scope of this chapter. 

SPR experiments showed that HLA-DR1CLIPtag manufactured in Sf9 cells binds to L243 

as well as HLA-DR monomers produced using bacterial and mammalian expression 

systems. Furthermore, tetramer staining of HLA-DR1HA306-318 specific CD4+ T cells 

showed that exchanging CLIP for a peptide of interest (HA306-318) generated functional 

pMHC-II monomers. We have shown in our lab that multimer staining PBMCs can 

successfully identify even small percentages of cells specific for certain pMHC-IIs 

(Holland et al. 2015). As described above this presents an extremely valuable tool for 

studying CD4+ T cell responses in different diseases but can also be used as a diagnostic 

tool. In addition to multimer staining, soluble pMHC-II molecules can be used in 

biophysical investigations using a variety of methods such as SPR. This allows the more 

in depths analysis of TCR/pMHC-II interactions and can be used to modify either 

component of this interaction in order to strengthen it. 

In summary, I have implemented an insect cell based expression system for soluble HLA-

DR1 molecules that allows production of monomers suitable for biophysical and cellular 

analysis of TCR/pMHC-II interactions.    
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4. Peptide flanking residues length modulates CD4+ T cell recognition 

4.1. Background 

Peptides bound to MHC-II are characterised by different length peptide flanking regions 

(PFR) due to the ability of MHC-II to accommodate peptides that extend beyond the 

open-ended peptide-binding groove. These different length variants of peptides are then 

presented to the CD4+ T cell pool. It is well known that mutations within PFR can 

influence T cell activation and TCR binding. However, so far the impact of different 

length variations on T cell activation, peptide binding and TCR repertoire selection has 

not been studied in detail. 
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4.2. Introduction 

4.2.1. MHC II restricted epitopes vary in length  

Proteins entering the MHC-II antigen processing pathways are degraded in lysosomes 

into peptides by cathepsins before being loaded onto the MHC-II (see Chapter 1.3.3).  The 

peptide-binding groove of MHC-II molecules is open ended, allowing longer peptides to 

extend beyond the groove at both termini. In consequence, MHC-II are not limited to 

binding peptides of 9-13 aa as seen for MHC-I and can present peptides of at least 25 aa. 

Sequencing peptides eluted from MHC-II molecules revealed that these different length 

variants create so-called nested sets (Chicz et al. 1993; Lippolis et al. 2002). Aligning 

these peptides reveals a shared sequence, typically around 12 aa in length. The 9mer core 

encoding the anchor residues necessary to bind to the MHC-II is located within this shared 

sequence. Peptides are extended at either terminus, or indeed at both termini.  

Figure 4.1 shows an example of a nested set eluted from HLA-DR4.  

 

Source protein Residues Sequence Length 

HLA-A2 28-50 VDDTQFVRFDSDAASQRMEPRAP 23 

 28-48 VDDTQFVRFDSDAASQRMEPR 21 

 28-47 VDDTQFVRFDSDAASQRMEPP 20 

 28-46 VDDTQFVRFDSDAASQRME 19 

 30-48       DTQFVRFDSDAASQRMEPR 19 

 31-49          TQFVRFDSDAASQRMEPRA 19 

 28-44 VDDTQFVRFDSDAASQR 17 

 31-47          TQFVRFDSDAASQRMEP 17 

 31-47          TQFVRFDSDAASQRM 15 

 31-42          TQFVRFDSDAAS 12 

 

Figure 4.1: Nested set of a peptide eluted from HLA-DR4. Peptides are aligned 

according to their 12 aa overlap. Length of each peptide is given. Adapted from Chicz et 

al., 1993. 
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4.2.2. Role of PFR in CD4+ T cell activation, peptide binding stability and TCR gene 

selection 

Crystallographic and functional evidence collected so far suggest that the TCR primarily 

contacts residues located within P-1 and P10 of the peptide with the majority of contacts 

being made with the residues within the 9mer core (Jens Hennecke and Wiley 2002; 

Stepniak et al. 2005). However, changes in peptide flanking residues have been shown to 

influence CD4+ T cell activation. In one study, 65% of murine CD4+ T cell hybridomas 

raised against a hen egg lysozyme (HEL) derived peptide were dependent on the C-

terminal PFR (Carson et al. 1997). It was also found that PFR dependent and independent 

hybridomas showed distinct TCRB gene expression patterns suggesting that PFR can 

influence TCR gene selection. In a similar study, murine CD4+ T cell hybridomas were 

raised against a panel of nine hen egg lysozyme (HEL) and glutamate decarboxylase 

(GAD) derived peptides (Arnold et al. 2002). Depending on the peptide, between 12-

100% of hybridomas generated were dependant on PFR. While some peptides generated 

hybridomas dependent on P-1, others generated hybridomas dependent on P11. PFR 

dependent and independent hybridomas recognised wildtype peptides with equal 

sensitivity. It is also noteworthy, that mice immunised against whole HEL were used to 

generated hybridomas against HEL derived peptides, suggesting that PFR depending T 

cell are generated in vivo and are not just an artefact of in vitro methods.  

Sequencing of naturally processed peptide eluted from MHC-II molecules showed that 

C-terminal PFR are enriched in basic residues such as arginine and lysine, presumably 

reflecting a bias in the antigen processing machinery towards such peptides (Godkin et 

al. 2001). This study also showed that substitution of C-terminal PFR within the influenza 

heamagglutinin (HA) derived peptide HA306-318 by arginine lead to increased T cell 
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activation. The same substitution was subsequently found to increase TCR affinity as well 

as enhancing pMHC-tetramer staining of CD4+ T cells (Holland et al. 2015). Sequencing 

of CD4+ T cells against the wildtype as well as the modified version of this peptide 

showed an altered and narrowed TCRB repertoire in response to the modified peptide 

further proving a role of PFR in TCR gene selection (Cole et al. 2012).  

In addition to TCR activation and TCR gene selection, PFRs have also been shown to 

affect peptide binding stability. Removal of N-terminal PFR from a HEL derived peptide 

led to substantially lower half-life of murine I-Ak complexes (Lovitch, Pu, and Unanue 

2006). In a different study, the Brownian motion of the same peptides were measured 

(Haruo Kozono et al. 2015). Missing N-terminal PFR led a higher degree of motion within 

the peptide and the MHC than peptides with intact PFR leading to reduced binding 

stability. 

In vivo, CD4+ T cells are presented with different length variation of the same peptide 

that can differ in their PFR length. Individual T cell clonotypes are likely to preferably 

recognise certain variants over others. So far, only two studies investigated the impact of 

PFR on TCR repertoire selection. One study, mentioned above, investigated the effect aa 

substitutions within the C-terminal flanks (Cole et al. 2012) A second study showed that 

mutations within N-terminal PFR influences selection of TCRα-genes while C-terminal 

PFR influence selection of TCRβ-genes (Carson et al. 1997). 
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4.3. Aims 

Despite a growing base of knowledge about the impact of PFR on CD4+ T cell activation, 

peptide binding stability and TCR repertoire selection, there is still much to be discovered. 

Although several studies looked at the impact of a point mutation within the C-terminal 

PFR of the HA306-318 epitope, different length variants of this peptide have not been 

studied to date. For this chapter, a set of PFR length variants of HA306-318 was designed 

and used in a range of experimental approaches to dissect their role in CD4+ T cell 

biology. 

The first aim for this project was to investigate the impact of PFR length variants on T 

cell activation by testing CD4+ T cell clones for recognition of these variants. 

The second aim was to measure peptide binding stability of PFR length variants to HLA-

DR1 using a competitive binding assay. 

The third aim was to investigate the impact of PFR length variants on TCR repertoire 

selection by priming PBMCs with a selection of variants and clonotyping HA306-318 

specific CD4+ T cells. 
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4.4. Results 

4.4.1. Investigating influence of peptide flanking regions on CD4+ T cell activation 

In order to investigate the effect of PFR on CD4+ T cell activation, three CD4+ T cell 

clones were tested for their recognition of PFR variants of their cognate influenza 

hemagglutinin derived epitope, HA306-318 (PKYVKQNTLKLAT) (Lamb et al. 1982). 

Using the 9mer core as a starting point (shown in grey), a nested set of peptides was 

designed as shown in Table 4.1. First, the N-terminal PFR was extended one residue at a 

time (core + 1N, core + 2N, core + 3N). The same was done with the C-terminal PFR 

(core + 1C, core + 2C core + 3C). Finally, N-terminal and C-terminal PFR were extended 

simultaneously (core + 1N1C, core + 2N2C, core + 3N3C). The core + 2N2C variant 

corresponds to HA306-318. All ten peptides were tested for recognition by the CD4+ T cell 

clones in peptide titrations and INF-γ release was measured as described in Chapter 2.3.9. 

Figure 4.2 shows results for each clone. 
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Peptide sequence 

 

Description 

N-terminal  Core epitope C-terminal   

-3 -2 -1 1 2 3 4 5 6 7 8 9 10 11 12   

   Y V K Q N T L K L     core 

  K Y V K Q N T L K L     core + 1N 

 P K Y V K Q N T L K L     core + 2N 

C P K Y V K Q N T L K L     core + 3N 

   Y V K Q N T L K L A    core + 1C 

   Y V K Q N T L K L A T   core + 2C 

   Y V K Q N T L K L A T G  core + 3C 

  K Y V K Q N T L K L A    core + 1N1C 

 P K Y V K Q N T L K L A T   core + 2N2C 

C P K Y V K Q N T L K L A T G  core + 3N3C 

                 

Table 4.1: Nested set of peptides based on HA305-318. Starting with the 9mer core region, 

PFR were extended one residue at a time either at one terminus only or both termini at 

the same time. 
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Figure 4.2: Testing PFR length variants on three different CD4+ T cell clones. PFR 

variants were tested in peptide titrations. CD4+ T cell clones were incubated overnight 

with peptides at different concentrations in presence of HOM-2 cells. INFγ release was 

measured using ELISA. The 9mer core peptide is shown in grey, C-terminal PFR variants 

in shades of blue, N-terminal PFR variants in shades of red and NC-terminal variants in 

shades of green. Error bars show standard deviation.  
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None of the three clones tested recognised the 9mer core on its own or any of the N-

terminal PFR variants. 2C5 recognised all three of the C-terminal PFR variants as well as 

the both-sided ones. None of the N-terminal PFR variants were recognised. Similarly, DC 

C8 recognised all C-terminal as well as all both-sided PFR variants. However, C-terminal 

PFR variants were recognised at lower sensitivities. DC D10 also recognised all three 

both-sided PFR variants. Out of the three C-terminal PFR variants it recognised the core 

+ 3C variant but neither of the remaining two. 

Overall, addition of N-terminal PFR and absence of C-terminal PFR did not re-establish 

recognition. However, addition of C-terminal PFR in absence of N-terminal PFR re-

established recognition, although to varying degrees depending on the CD4+ T cell clone 

with 2C5 > DC C8 > DC D10. Addition of one PFR on both N- and C-termini at the same 

time (core + 1N1C) outperformed any C-terminal PFR variants. Recognition of the core 

+ 3N3C differed in the three clones, with 2C5 and DC D10 recognising it at lower 

sensitivities than core + 2N3C.  

4.4.2. Influence of peptide flanking regions on peptide binding to HLA-DR1 

In order to determine whether peptide binding strength to HLA-DR1 influenced peptide 

recognition, a competitive HLA-DR peptide binding assay based on the assay published 

by Godkin and colleagues (Godkin et al. 2001) was set up and optimised. The final 

protocol is described in Chapter 2.2.6. Briefly, HLA-DR1 refolded with a biotinylated 

CLIP peptide (BT-CLIP) was incubated overnight with competitor peptides at different 

concentrations before being transferred onto a microtiter plate coated with anti-pan-HLA-

DR L243. Since CLIP is known to bind with low affinity, it can be replaced by any higher 

avidity peptide. In order to facilitate this peptide exchange, it took place in acidic 

conditions (pH=5).  Any free peptide was washed off and remaining HLA-DR1BT-CLIP 
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was detected via ELISA. In wells in which the BT-CLIP peptide has successfully been 

replaced by the competitor peptide, no BT-CLIP will be left and therefore, none of the 

substrate will be converted by HRP-Streptavidin beyond background HRP background 

activity. This leads to low optical density (O.D.) readings for these wells. In wells in 

which BT-CLIP has not been replaced by the competitor peptide, the substrate will be 

converted leading to high OD readings. In all assays, the HLA-A2 restricted melanoma 

peptide ELA was used as negative control (Cole et al. 2010). All ten PFR variants were 

tested at a range of concentrations. Results are shown in Figure 4.3. 
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Figure 4.3: Testing PFR length variants in a competitive binding assay. Each peptide 

was tested for its ability to replace BT-CLIP in the HLA-DR1 binding groove at a range 

of concentrations. Absolute O.D. readings are shown. ELA (negative control) and core + 

2N2C are shown in each graph as reference. Error bars show standard deviation. 
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As expected, O.D. readings for ELA stayed high at all concentrations indicating that it 

was unable to replace BT-CLIP in the HLA-DR1 peptide-binding groove. The 9mer core 

behaved in a similar fashion indicating no binding to HLA-DR1. O.D. readings for C-

terminal PFR were lower at higher peptide concentrations compared to the negative 

control indicating successful binding to HLA-DR1. The N-terminal PFR, on the other 

hand, were incapable of replacing BT-CLIP as demonstrated by overall high O.D. 

readings at all concentrations tested. Core + 1N1C was capable of replacing BT-CLIP to 

a level similar as seen for the C-terminal PFR lengths variants. Core + 2N2C was capable 

of replacing BT-CLIP at lower concentrations than seen for any of the other PFR variants. 

Core + 3N3C outperformed core + 1N1C, but not core + 2N2C. 

In summary, the 9mer core on its own binds to HLA-DR1 too weakly to replace BT-CLIP 

in the peptide binding groove. Addition of C-terminal PFR increases peptides binding 

strength while N-terminal PFR had no influence. Addition of N- and C-terminal PFR 

simultaneously increased peptide binding strength.  

4.4.3. Influence of peptide binding strength on CD4+ T cell activation 

In order to investigate any relationship between peptide binding strength and CD4+ T cell 

activation, IC50 values were calculated for each of the PFR variants tested in the 

competitive peptide binding assay as well as EC50 values for all peptides tested in T cell 

activation assays. Table 4.2 shows the results for all three CD4+ T cell clones as well as 

the competitive peptide binding assay as log(IC50) and log(EC50), respectively.  
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Peptide 

log(IC50) log(EC50) 

Peptide 
binding assay 

T cell activation 

2C5 DC C8 DC D10 

core -0.504 n/a n/a n/a 

core + 1C -5.612 -6.745 -5.243 -5.737 

core + 2C -6.162 -7.483 -5.643 -5.814 

core +3C -5.556 -7.523 -4.345 -5.617 

core +1N n/a n/a n/a n/a 

core + 2N 3.591 n/a n/a n/a 

core + 3N 7.430 n/a n/a n/a 

core + 1N1C -5.995 -7.397 -8.12 -7.212 

core + 2N2C -7.778 -7.57 -8.906 -7.995 

core + 3N3C -6.669 -6.586 -8.757 -7.31 

ELA 0.510    

Spearman’s coefficient: 0.769 0.957 0.957 

 

Table 4.2:  Influence of peptide binding on CD4+ T cell activation. Log(IC50) values 

of the competitive peptide binding assay correspond to peptide concentrations needed to 

replace 50% of BT-CLIP. Log(EC50) values correspond to peptide concentrations needed 

to elicit 50% of maximal response by the three CD4+ T cell clones screened. Colour 

gradient ranges from green (low log(IC50)/ log(EC50)) to red (high log(IC50)/ log(EC50)). 

n/a: log(IC50)/ log(EC50) could not be determined. Spearman’s coefficients were 

calculated based on the log(EC50) values of each CD4+ T cell clone and log(IC50) values 

for each peptide. 

 

Low log(IC50) values indicate peptides binding strongly to HLA-DR1 as the BT-CLIP is 

replaced at low competitor peptide concentrations and are indicated in yellow to green 

shades. Similarly, low log(EC50) indicate peptides activating CD4+ T cells at low 

concentrations. In some cases, log(IC50) or log(EC50) values could not be calculated 

(indicted by n/a). This was the case where INF-γ release dropped to zero at high peptide 

concentrations (as observed for the core peptide) or could not be observed at all (as 

observed for the N-terminal PFR variants).  

As shown in Table 4.2, log(IC50) values and log(EC50) values follow a same pattern. The 

9mer core binds very poorly to HLA-DR1 while log(EC50) could not be calculated. As 
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expected, the HLA-A2 restricted ELA peptide also showed poor binding. Addition of C-

terminal led to log(IC50) values in the yellow to light green range with core + 2C being 

the best binder. This is mirrored in the log(EC50) values with the exception of the CD4+ 

T cell clone 2C5 where log(EC50) values for core + 2C and core + 3C were in the dark 

green range, i.e. at the lower end. Addition of N-terminal PFR variants led to log(IC50) 

values in the red range corresponding to weak binding to HLA-DR1. None of the N-

terminal PFR variants elicited any responses in CD4+ T cell clones and no log(EC50) 

values could be calculated. log(IC50) values for both-sided PFR variants were in the green 

to dark green range indicating good binding to HLA-DR1. Similarly, log(EC50) values 

were in the green to dark green range with the exception of core + 3N3C which was in 

the yellow range for 2C5. This was in line with the results of the T cell activation assay. 

Spearman’s coefficients were calculated in order to test whether the measured log(EC50) 

correlate with the log(IC50). This showed that the EC50s for all three clones indeed 

correlated with the log(IC50) of the corresponding peptides. This correlation was stronger 

for DC C8 and DC D10 than for 2C5.  

In summary, the strength of binding of each PFR variant correlated with its ability to elicit 

INF-γ release in the three CD4+ T cell clones tested indicating that T cell activation 

depends on peptide binding strength. 

4.4.4. HA PFRs influence TCR repertoire selection 

The three CD4+ T cell clones studied for this project were initially selected for their 

recognition of the core + 2N2C peptide i.e. HA306-318 (as was the case for the 2C5 clone) 

or a variant therefore i.e. HA306-318-11R (as was the case for the DC C8 and DC D10 clones). 

In vivo however, CD4+ T cells are presented with nested sets of peptides of varying PFR 

lengths. It has recently been shown that a point mutation in the C-terminal flank at 



85 
  

position 11 of HA306-318 (PKYVKQNTKLAR) alters TCR repertoire selection (Cole et 

al. 2012). However, the impact of PFR lengths variants of HA306-318on clonotype selection 

is currently unknown. This would provide new insight into the role of nested sets of 

peptides on protection against influenza and has wider implications for CD4 T-cell 

mediated immunity. 

In order to investigate the impact of PFR variants on the selection of a TCR repertoire, 

six PFR variants were chosen for further investigation: core, core + 1C, core + 3C, core 

+ 2N, core + 2N2C, core + 3N3C. The 9mer core was chosen to investigate TCR 

repertoire selection against the minimal binding epitope. Core + 1 and core + 3C were 

chosen since addition of C-terminal PFR re-establishes both T cell activation in the three 

T cell clones tested as well as peptide binding strength. Core + 2N was chosen to include 

one of the N-terminal PFR variants despite failure to activate the three T cell clones tested 

and poor binding to HLA-DR1. Core + 2N2C and core + 3N3C were chosen in order to 

investigate the impact of the addition of PFR at both termini. Short term T cell lines were 

grown against each of the six peptides using 5x106 PBMC to set up each line. In addition, 

one further line was grown without the addition of any peptide. On day 14 of culturing, 

all seven lines were FACS sorted using HLA-DR1core + 2N2C dextramers. Figure 4.4A 

shows the gating strategy used and Figure 4.4B shows dot plot diagrams from a subset 

of 100,000 cells of each short term T cell line. Supplementary Table S1 shows the total 

number of cells collected for each individual cell line.  
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Figure 4.4: Sorting short term T cell lines using dextramers.  A: Gating strategy 

demonstrated using the FMO control. B: Short term T cell lines set up using a selection 

of PFR variants were sorted using HLA-DR1HA306-318 dextramers on day 14 of culture. 

The no peptide control short term line was grown without adding peptide at day 0. 

Percentages of HLA-DR1HA306-318 dextramer positive CD4+ T cells are shown. Graphs 

represent a sample of 100,000 cells of each line. The remainder of each line was then used 

for FAC sorting. 

 

 

As shown in Figure 4.4B, HLA-DR1core + 2N2C specific cells could be identified in the 

short term T cell line grown in absence of any peptide. Since HLA-DR1core + 2N2C specific 

cells can be detected ex vivo (Holland et al. 2015), it is not surprising that some survived 

the 14 days culturing period and are still present within the line. As ex vivo responses 
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were not the focus of this study, these cells were not further analysed. The highest 

numbers of HLA-DR1core + 2N2C positive cells were detected in lines grown against core + 

1C and, not surprisingly, core + 2N2C, followed by core + 3C. The remaining lines 

yielded lower numbers of HLA-DR1core + 2N2C positive cells (seeSupplementary Table 

S1). The mRNA encoding the TCR Vβ sequences of sorted cells from each cell line was 

extracted and converted into cDNA using RT-PCR as described in Chapter 2.3.12. cDNA 

was cloned into a TOPO sequencing vector and transformed into Top10 E.coli. Between 

70 and 124 colonies were sequenced for each cell line (see Supplementary Table S1). 

Figure 4.5 shows a summary of all clonotypes that were identified in this study, while 

Figure 4.6 and Figure 4.7 show the TRB gene and CDR3β usage, respectively. Each PFR 

variant generated a different set of clonotypes. Comparing the TRB gene usage identified 

in each line (see Figure 4.7A) shows that each line displays its own, distinct pattern of 

clonotypes even though some TRB genes could be identified in more than one line (see 

Figure 4.7B). Figure 4.7 also demonstrates the CDR3β usage pattern was distinctly 

different for each line. Both core + 2N and core + 2N2C generated the most diverse 

CDR3β usage patterns.  

The TCRB gene usage for core + 2NC has been analysed previously using PBMCs from 

the same donor (Cole et al. 2012). Four of the ten clonotypes identified in this study, 

including the three most abundant ones, had been identified by Cole and colleagues, albeit 

at different frequencies (see Figure 4.5). One additional clonotype identified here encoded 

the same TRB-CDR3β combination as one of the clonotypes previously identified 

although in combination with a different TRJ segment. The remaining five clonotypes 

were unique to this study. However, three of these five unique clonotypes (30% of total) 

encoded the TRBV28.1 segment which had been identified in five of the thirteen 

clonotypes (38.46% of total) from the previous study albeit in combination with different 
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CDR3 loops and TRBJ segments. As a side note, the TCRβ-chain expressed by the 2C5 

CD4+ T cell clone used in this chapter was identified in the core + 2N2C line (indicted by 

*1) as was the TCRβ-chain expressed by another CD4+ T cell clone, 3A (indicated by *2), 

which has not been used in this chapter. Both clones were originally grown against core 

+ 2N2C, again using blood PBMCs from the same donor and also encode the 

aforementioned TRBV28.1 segment. This shows that the clonotyping data presented in 

this thesis matches previous data from the same donor. 

Looking at the clonotypes identified in the line grown against the 9mer core, the second 

most frequent clonotype was also identified for core + 2N2C albeit at lower frequencies 

(highlighted in bold). The other two clonotypes were unique to the 9mer core. Similarly, 

the line grown against core + 1C showed its second most frequent clonotype with core + 

2N2C. The remaining four clonotypes were unique to core + 1C. The line grown against 

core + 3C shared its most frequent clonotype with core + 2N2C while the remaining three 

clonotypes were unique. The line grown against core + 2N did not share any clonotypes 

with core + 2N2C. It did, however, share one clonotype with core + 3N3C. The remaining 

six and two clonotypes were unique to core + 2N and core + 3N3C, respectively.  

In summary, each PFR variant of HA306-318 generated a unique set of clonotypes. Short 

term CD4+ T cell lines grown against the 9mer core, core + 1C and core +3C shared one 

clonotype each with core + 2N2C. Lines against core + 2N and core + 3N3C did not share 

any clonotypes with core + 2N2C although, they shared one clonotype between them. 

These data support the idea that nested sets select a more heterogeneous CD4 T-cell pool 

than single peptides that could provide broader protection against variable pathogens. 
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TRBV CDR3β TRBJ 

Frequency in % 

 
Current 
study 

Cole et al 
(core + 2N2C) 

core

 

5.5 CASSGLGFNEKLFF 1.4 59.46  

28.1 CASGSQGNRFYEQYF 2.7 24.32  

5.5 CASSGLGFNEKLFF 2.4 16.22  

core + 1C 

 

5.1 CASSREGPPDTEAFF 1.1 64.08  

9.1 CASSMSPGPRESPLHF 1.6 33.01  

5.8 CASSRGLAGDQETQYF 2.5 1.94  

5.4 CASSREGPPDTEAFF 1.4 0.97  

core + 3C 

 

24.1 CATSDESYGYTF 1.2 66.67 1.96 

18.1 CASSTTTGSHPKTQYF 2.3 16.67  

21.1 CATSDESYGYTF 2.1 11.11  

12.3 CASSLSQGDQPQHF 1.5 5.56  

core + 2N 

 

14.1 CASSPWRDTEAFF 1.1 54.05  

4.3 CASARDRGFEQYF 2.7 10.81  

5.1 CASSLEGDTEAFF 1.1 8.11  

20.1 CSARGFEDSSGGELFF 2.2 8.11  

20.1 CSARDSYEQYF 2.7 8.11  

7.2 CASSPGAAGEQYF 1.5 5.41  

7.2 CASSLVGRQPVTYEQYF 2.7 2.70  

11.2 CASSLVGRQPVTYEQYF 2.7 2.70  

core + 2N2C 

 

24.1 CATSDESYGYTF 1.2 60.00 1.96 

9.1 CASSMSPGPRESPLHF 1.6 20.00 13.73 

4.1 CASSTDRGPYEQYF 2.7 5.45 1.96 

5.1 CASSLIGQTYQETQYF 2.5 3.64  

6.5 CASSYPSSGGAPQYF 2.3 1.82 25.49 
(TRBJ2.5) 28.1 CASSSSGRRGNTEAFF 1.1 1.82*2 

28.1 CASSLAPELAGYTF 1.2 1.82*1  

28.1 CASGSQGNRFYEQYF 2.7 1.82  

29.1 CSVEDPRTDYGYTF 1.2 1.82  

9.1 CASSREGPPDTEAFF 1.6 1.82  

core + 3N3C 

 

7.2 CASSPGAAGEQYF 2.7 71.43  

7.9 CASSFPAAGIGDTQYF 2.3 25.00  

7.2 CASSFPAAGIGDTQYF 2.7 3.57  

 

Figure 4.5: Clonotypic composition of CD4+ T cells expanded using different PFR 

variants. Short term CD4+ T cell lines were grown against each individual PFR variant 

and FACS sorted using HLA-DR1core + 2N2C (i.e. HLA-DR1HA306-318) dextramers. Percentages 

of each clonotype were calculated for each individual line. Percentages of clonotypes 

previously identified by Cole and colleagues are shown as well. Clonotypes present in 

core + 2N2C as well as in other lines are highlighted in bold (Cole et al. 2012). Clonotypes 

present in two different lines but not in core + 2N2C are underlined. *1 and *2 indicate 

the TRCβ-chain expressed by 2C5 and 3A, respectively.  
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Figure 4.6: TRBV and TRBJ usage in CD4+ T cells expanded using different PFR 

variants. Short term CD4+ T cell lines were grown against each individual PFR variant 

and FACS sorted using HLA-DR1core + 2N2C (i.e. HLA-DR1HA306-318) dextramers. A: TRB 

gene usage for each individual short term T cell line is shown. B: Only TRB genes found 

in more than one short term T cell line are shown. 
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Figure 4.7: CDR3β loop usage of CD4+ T cells expanded using different PFR 

variants. Each chart shows the CDR3β loops identified in short term T cell lines grown 

against individual PFR variants and FACS sorted using HLA-DR1core + 2N2C (ie. HLA-

DR1HA306-318) dextramers. 
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4.5. Discussion 

The aim for this chapter was to investigate the influence of peptide flanking residues on 

T cell activation, peptide stability and TCR repertoire selection. Testing ten PFR variants 

on three CD4+ T cell clones showed that addition of C-terminal PFR in absence of N-

terminal PFR re-established recognition. Addition of N-terminal PFR in absence of C-

terminal PFR, however, did not restore recognition. These results show that in the HA306-

318 system, C-terminal PFR are essential for T cell recognition. Although N-terminal PFR 

were non-essential for recognition, addition of PFR at both termini simultaneously 

improved recognition compared to addition of C-terminal PFR on their own. This 

suggests some sort of synergistic effect between both termini. Observations from the 

competitive peptide-binding assay mirrored these results suggesting that peptide binding 

strength influences CD4+ T cell recognition. Sant’Angelo and colleagues observed a 

similar effect in an I-Ab restricted peptide where addition of N-terminal PFR increased 

peptide stability to some degree whereas the addition of C-terminal greatly increased the 

stability and addition of PFR at both termini increased stability even further (Sant’Angelo 

et al. 2002). O’Brien and colleagues previously reported that longer peptides bind MHC-

II with stronger affinity using an in silico approach (O’Brien, Flower, and Feighery 2008). 

However, they were unable to detect any difference between both termini, suggesting that 

this phenomenon might only be visible in in vitro assays. From the data gathered in this 

study, no conclusions on the effect of PFR variants on TCR binding could be drawn. 

Initially, measuring the impact of PFR on TCR affinity using plasmon surface resonance 

(SPR) was an additional aim for this thesis. Initial experiments showed that variations in 

PFR lengths indeed impact TCR affinities. However, difficulties in generating enough 

soluble protein meant that these experiments remain the subject of future investigations.  
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So far, clonotyping studies have investigated at the impact of PFR by looking at amino 

acid substitutions (Cole et al. 2012; Carson et al. 1997). Here, the impact of different 

lengths variants was investigated. Expanding PBMCs with different PFR variants and 

clonotyping CD4+ T cells specific for the core + 2N2C peptide showed that each variant 

generated a different set of clonotypes. Apart from core + 2N, all variants generated 

narrower repertoires than core + 2N2C. The C-terminal variants each shared one 

clonotype with core + 2N2C at high frequencies. This shows that in the case of HA306-318, 

C-terminal PFR in absence of N-terminal PFR and core + 2N2C generate overlapping 

TCR repertoires suggesting that TRB gene selection is steered to a certain degree by C-

terminal PFR. Without further functional data, it is impossible to say whether these 

clonotypes depend on the presence of those C-terminal PFR in the same way the CD4+ T 

cell clones tested here did. Since C-terminal PFR have been shown to stabilize peptide 

binding in this system, it is entirely possible that their presence is enough for these C-

terminal PFR dependant clonotypes to expand. Cole and colleagues showed that a point 

mutation at the 1st and 2nd C-terminal PFR, respectively leads to a narrower and slightly 

altered although overlapping set of clonotypes proving that C-terminal PFR do play an 

important role in the selection of TCRB genes (Cole et al. 2012).  

N-terminal PFR in absence of their C-terminal counterparts however, generated a 

completely different TCR repertoire compared to core + 2N2C. Again, a certain degree 

of dependence on the C-terminal PFR by the clonotypes identified in the core + 2N2C is 

a likely explanation for this requiring further functional analysis. The low binding 

stability of N-terminal PFR presents another potential explanation for this shift in the 

TCR repertoire. Interestingly, core + 3N3C generated a different set of clonotypes to core 

+ 2N2C showing that extending peptides at both termini can alter the TCR repertoire 

significantly even if both peptides bind HLA-DR1 with similar stability. One clonotype 
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was shared between the 9mer core peptide and core + 2N2C suggesting that this clonotype 

is independent from any PFR. Carson and colleagues used a hen egg lysozyme derived 

peptide to show that C-terminal PFR influenced TCRB gene selection (Carson et al. 

1997). Crystallographic evidence shows that the vast majority of TCR bind pMHC at a 

roughly diagonal angle with the TCRα-chain located above the N-terminal end of the 

peptide and the TCRβ-chain above the C-terminus (Markus G Rudolph, Stanfield, and 

Wilson 2006; Rossjohn et al. 2015). Therefore, the β-chain is more likely to make contacts 

with the C-terminal end of the peptide and its PFR explaining the effect on TCR gene 

selection seen by Carson and colleagues. Within the scope of this study, we exclusively 

looked at TRBβ gene usage and also detected a bias towards two TCR recombination 

identified both for the C-terminal variants as well as core + 2C2N. 

Overall, the TCR repertoire against core + 2N2C identified here showed both similarities 

with and differences to the repertoire identified by Cole and colleagues. Some clonotypes 

were identified in both studies at different frequencies while others were unique to each 

study. Differences in the TCR repertoire are commonly seen following re-infection with 

heterogeneous pathogens (Sharma and Thomas 2014; Selin and Brehm 2007; A. T. Chen 

et al. 2012). The individual donating blood for this study has previously been vaccinated 

using the with the 2011/2012 trivalent influenza vaccine composed of the influenza A 

strains A/Perth/16/2009 (H3N2) and A/California/7/2009 (H1N1) as well as the influenza 

B strain B/Brisbane/60/2008. It is very likely that they had contact with heterogeneous 

influenza strains in the meantime particularly as they reported flu like symptoms some 

weeks before giving blood for this study. While shifts in the TCR repertoire are 

commonly seen, they are not always beneficial and can lead to pathology when effective 

clonotypes are eliminated from or diminish in frequency within the pool of CD4+ T cells 

(Sharma and Thomas 2014; A. T. Chen et al. 2012). 
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On the other hand, clonotyping results shown here revealed that different PFR variants 

lead to partially overlapping but different TCR repertoires thereby broadening the overall 

repertoire of CD4+ T cell capable of recognising certain epitopes. A broad TCR repertoire 

has been associated with increased protection against infections (Nikolich-Žugich, Slifka, 

and Messaoudi 2004; Messaoudi et al. 2002). Naturally processed peptides are 

characterised by varying lengths PFR which in vivo could contribute to the generation of 

a broad TCR repertoire. To prove this theory more clonotyping studies will be necessary 

including expansion of PBMCs against a cocktail of PFR variants. 

In summary, the results presented here show that in the HA306-318 system, CD4+ T cell 

activation is likely to be dependent on C-terminal PFR and governed by peptide binding 

stability. They also show that the CD4+ T cell repertoire of PBMCs raised against 

different PFR variants resulted in different but overlapping TCR repertoires. A broad 

TCR repertoire will be able to recognise and respond not only to naturally generated 

length variants of certain peptides but also heterologous sequences from different virus 

strains. The inherent cross-reactive nature of TCRs is used here to the advantage of the 

immune system. This advantage is particularly important in fast evolving pathogens such 

as influenza A and warrants the additional resources spent on generating many different 

clonotypes rather than a smaller set of only the most efficient ones.  

  



96 
  

5. Peptide flanking regions of an HIV derived HLA-DR1 epitope form 

an unusual hairpin conformation 

5.1. Chapter Background 

CD4+ T cell responses play a crucial role in the control of HIV infections and have been 

shown to delay the onset and progress of AIDS. The p24 Gag protein (gag24) constitutes 

the capsid protein of the virus and contains a highly conserved region which has been 

shown to induce strong CD4+ T cell responses. Here, the crystal structure of HLA-

DR1gag24, combined with functional assays, demonstrates the potential importance of 

secondary structure in the N-terminal PFR during CD4+ T cell antigen recognition. 
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5.2. Introduction 

5.2.1. Role of gag24 in HIV infections 

HIV infects CD4+ T cells via their CD4+ co-receptor and use them as host cells for their 

own reproduction. This loss of CD4+ T cells hampers both cytotoxic CD8+ T cell 

responses as well antibody production and eventually leads to AIDS, thereby highlighting 

the important role CD4+ T cells play in the immune system (Rosenberg et al. 1997). HIV 

specific CD4+ T cells appear to be preferentially targeted by the virus and have been 

shown to lose their ability to proliferate in response to viral infection (J. D. Wilson et al. 

2000; Douek et al. 2002). Nevertheless, CD4+ T cell responses against HIV are crucial 

for successful control of the virus despite their numbers diminishing early on in the 

disease progress. High numbers of CD4+ T cells specific for the viral gag24 protein have 

been shown to inversely correlate with lower viremia (Kaufmann et al. 2004). Patients 

defined as clinically non-progressors have been shown to exhibit robust anti-HIV CD4+ 

T cell responses indicating that CD4+ T cells can play an important role in slowing disease 

progress (Palmer, Boritz, and Wilson 2004). Early treatment with antiviral drugs aids 

maintenance of CD4+ T cell responses thereby also slowing down disease progress (B. D. 

Walker et al. 2000).  

5.2.2. The HIV gag24 protein as highly conserved CD4+ T cell antigen 

HIV hijacks the cellular translation machinery and uses it to generate viral proteins 

including the gag55 protein, a precursor protein important in formation of nascent virions 

(Freed 1998). Shortly after budding from the cell surface, gag55 is cleaved into four 

subunits by a virus-internal protease: the gag17 matrix protein (MA), the gag24 capsid 
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protein (CA), the gag7 nucleocapsid protein (NC) and gag6 (whose function has not been 

fully elucidated yet). Figure 5.1 shows a schematic overview of HIV highlighting gag24. 

HIV specific CD4+ T cell responses have been shown to be primarily directed against 

gag24 and Nef proteins as well as proteins encoded by the Pol gene (C. C. Wilson et al. 

2001; Kaufmann et al. 2004). The gag24 protein encodes a segment called the major 

homology region (MHR) involved in replication and assembly of nascent viral particles. 

It has been shown to be highly conserved across all retrovirus (Provitera et al. 2001; 

Mammano et al. 1994). Interestingly, it also encodes a potent CD4+ T cell epitope, 

DRFYKTLRAEQASA, which has been found to be presented by several MHC-II alleles 

including HLA-DR1 (Kaufmann et al. 2004; Scriba et al. 2005). The high conservancy 

of this gag24 peptide makes it a prime target for studying CD4+ T cell responses against 

HIV.  
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Figure 5.1: Schematic overview of the HI virus. Adapted from Robinson 2002. The 

gag24 capsid protein is encircled in red. 
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5.3. Aims 

Early HIV research concentrated on anti-viral CD8+ T cell and humoral responses. More 

recently, the importance of CD4+ T cells has been increasingly recognised. In addition, 

advances in expression systems suitable for soluble pMHC-II molecules enable 

researchers to use soluble pMHC-II for in depths investigation of CD4+ T cell responses 

(Scriba et al. 2005). Our lab has recently solved the structure of HLA-DR1gag24. Here, 

features observed in this structure have been investigated in more detail using modified 

peptides and testing them for recognition by CD4+ T cells. 

The first aim was to investigate potential TCR contact residues within the gag24 peptide 

by substituting selected residues with Alanine and testing them for recognition by a gag24 

specific CD4+ T cell clone. 

The second aim was to investigate the impact of PFR on CD4+ T cell activation using 

PFR length variants and testing them for recognition by HLA-DR1gag24 specific CD4+ T 

cell clones.  
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5.4. Results 

5.4.1. Overview of the HLA-DR1gag24 crystal structure 

We recently solved the crystal structure of HLA-DR1gag24 to 1.89 Å. (see Figure 5.2) 

(Cross 2016). Statistics of X-ray diffraction data collection and refinement statistics are 

shown in Supplementary Table S2. The resolution of 1.89Å allowed to analyse the 

structure in good detail. Following several rounds of refinements, the reliability factor (R 

factor) was 0.20, indicating that the refined structure fits well with the collected 

crystallographic data. The difference between R factor and Rfree factor (0.26) was 0.06, 

indicating that no major artificial adjustments have been introduced into the structure that 

do not fit with the collected crystallographic data. It shows a typical pMHC-II 

conformation with the peptide adopting a flat conformation within the peptide binding 

groove (see Figure 5.2). Electron density around the peptide was unambiguous with the 

exception of the C-terminal glutamic acid at position P11. Therefore, the position of the 

sidechain could not be determined with certainty. Figures including P11 show its modelled 

position based on the electron density available for the backbone and COOH terminus. 

As shown in Figure 5.2B, the gag24 peptide binds to HLA-DR1 using the usual anchor 

residues at position P1 (tyrosine), P4 (leucine), and P9 (alanine). As expected, these three 

residues point down and bind in pockets located within the β-sheet floor of the binding 

groove. Residues at positions P-3 (asparagine), P-1 (phenylalanine), P2 (lysine), P5 

(arginine), P7 (glutamate), P8 (glutamic acid) as well as the C-terminus, however, point 

upwards while residues in position P-2 (arginine), P3 (threonine), P6 (alanine), and P10 

(serine) point toward the walls of the peptide binding groove.  
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Figure 5.2: Overview of the HLA-DR1gag22 structure. A: Side view of HLA-DR1gag24 

as a whole. B: Detailed view of the gag24 peptide in the HLA-DR1 peptide binding 

groove.  HLA-DR1α-chain is shown in dark blue, HLA-DR1β-chain is shown in light 

blue. Peptide core is shown in grey while PFR are shown in dark green. 
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Figure 5.3: HLA-DR1gag24 topology as from a birds eye perspective. A: peptide shown 

in stick representation, MHC-II shown in cartoon representation. B: pMHC-II shown in 

surface representation. HLA-DR1α-chain is shown in dark blue, HLA-DR1β-chain is 

shown in light blue. Potential TCR contact residues are shown in red, remaining residues 

shown in grey.  
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5.4.2. Investigating crucial TCR contact positions within the gag24 peptide 

Figure 5.3 shows HLA-DR1gag24 from a birds-eye a perspective. The surface 

representation shown in Figure 5.3B is a visualisation of the topology that a TCR binding 

to HLA-DR1gag24 would encounter. This surface is created by the electron densities of all 

surface exposed residues. While the gag24 peptide binds in the flat fashion typical for 

MHC-II bound peptides, some residues are solvent exposed and protrude from the HLA-

DR1 peptide binding groove (highlighted in red in Figure 5.3). Crystal structures of 

TCR/pMHC complexes have shown that solvent exposed residues are preferentially 

contacted by TCRs (Rossjohn et al. 2015; Garcia, Teyton, and Wilson 1999).  

In order to investigate the role of these solvent exposed residues for CD4+ T cell 

activation, a set of alanine substitution mutations were designed (see Table 5.1). 

Although P3 was not highly solvent exposed it was included in this study as TCRs have 

been shown to make contacts with any residues between P-1 and P10 (O’Brien, Flower, 

and Feighery 2008; J Hennecke and Wiley 2001). For the same reason, P-3 was excluded 

despite it being solvent exposed. P6 already encoded an Alanine and therefore was not 

included. These peptides were tested for recognition by the CD4+ T cell clone Ox97 clone 

10 recognising the gag24 peptide in a peptide titration assay and INFγ release was 

measured as described in Chapter 2.3.7 and 2.3.9 (Scriba et al. 2005). Results are shown 

in Figure 5.4. 
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Peptide sequence Description 

N-terminal Core epitope C-terminal  

-3 -2 -1 1 2 3 4 5 6 7 8 9 10 11   

D R F Y K T L R A E Q A S Q  Core + 3N2C 

D R A Y K T L R A E Q A S Q  P-1Ala 

D R F Y A T L R A E Q A S Q  P2Ala 

D R F Y K A L R A E Q A S Q  P3Ala 

D R F Y K T L A A E Q A S Q  P5Ala 

D R F Y K T L R A A Q A S Q  P7Ala 

D R F Y K T L R A E A A S Q  P8Ala 

 

Table 5.1: Replacing potential TCR contact residues with alanine. Solvent exposed 

residues were replaced with alanine (highlighted in bold). The 9mer core is shown in grey, 

potential TCR contact positions are highlighted in red. 

 

 

Figure 5.4 Testing alanine substitutions along the gag24 backbone. Alanine mutations 

were tested in a peptide titration and INFγ release was measured. The wildtype peptide is 

shown in green. Error bars show standard deviation. 

 

Substituting P-1 or P3 by Alanine did not reduce recognition of the wildtype peptide 

indicating that these residues are no TCR contact residues. Any substitutions at positions 

P2, P5, P7 or P8 however, led to a complete failure of recognition. This all-or-nothing 
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response suggests that these peptide positions are essential for recognition by the Ox97 

clone 10 and possibly crucial TCR contact points. 

5.4.3. Structural analysis of the N-terminus of the gag24 peptide 

While the core of peptides bound to MHC-II adopts a flat, extended conformation due to 

its placement in the peptide binding groove, the extruding PFRs are a lot more flexible 

and can adopt a variety of conformations. In the HLA-DR1gag24 structure, the N-terminus 

forms a hook shape bending back on itself with P-2 constituting the apex of this bend (see 

Figure 5.5). Table 5.2 shows a summary of all peptide-MHC contacts made by PFR of 

the gag24 peptide structure (the full list of contacts is shown in Supplementary Table S3). 

P-2 stands out through the high number of contacts made by the arginine side chain with 

residues of the HLA-DR1α-chain including seven hydrogen bonds. The HLA-DR1α-

chain residues involved in these contacts are Arginineα50, Phenylalanineα51, Alanineα52 

and Serineα53. Figure 5.6A shows a selection of these peptide-MHC contacts. The side 

chain of AspartateP-3, on the other hand, is involved in a network of interactions with both 

PhenylalanineP-1 as well as LeucineP3. A selection of these is shown in Figure 5.6B. 

Together, these interactions hold the hooked shaped N-terminus in place. Due to the 

missing electron density for GlutamateP11, no conclusions about peptide-MHC and intra-

peptide contacts could be made for the C-terminus of the gag24 peptide. 
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Figure 5.5: The N-terminus of gag24 adopts a hook conformation. A: The gag24 N-

terminus from a bird’s-eye view. B: The gag24 N-terminus from a side view. Peptide core 

residues are shown in grey, PFR are shown in dark green. HLA-DR1α-chain shown in 

dark blue, HLA-DR1β-chain shown in light blue.  
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Figure 5.6: The N-terminal hook is held in place by a network of molecular bonds. 
A: Contacts made by arginine in P-2 with residues of the HLA-DR1α-chain holds this side 

chain in place. B: Aspartate in P-3 is held in place by a network if intra-peptide interactions 

with phenylalanine in position P-2 and leucine in position P2. Core residues are shown in 

grey, PFR are shown in dark green, HLA-DR1α-chain is shown in dark blue, HLA-DR1β-

chain is shown in light blue, van der Vaals interactions are shown in black and hydrogen 

bonds are shown in red. 
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Peptide residues MHC residues Contacts 

Position Aa code Chain Number Aa code VdW H-bonds both 

-3 ASP B 81 HIS 2 1 3 

   85 VAL 1  1 

    total: 3 1 4 

-2 ARG A 49 GLY 2  2 

   50 ARG 4 1 5 

   51 PHE 6 2 8 

   52 ALA 11 2 13 

   53 SER 6 2 8 

  B 85 VAL 2  2 

    total: 31 7 38 

-1 PHE A 53 SER 7  7 

   54 PHE 2  2 

   55 GLU 5  5 

  B 81 HIS 3  3 

   85 VAL 1  1 

    total: 18  18 

10 SER A 72 ILE 1  1 

   76 ARG 2  2 

  B 56 PRO 1  1 

   57 ASP 3  3 

   60 TYR 3  3 

    total: 10  10 

 

Table 5.2: Summary of PFR-MHC contacts within HLA-DR1gag24. Van der Waals 

(VdW) interactions and hydrogen bonds (H-bonds) between PFR of the gag 24 peptide 

and MHC residues are listed. No contacts for P11 are shown due to missing electron 

density. Chain A: HLA-DR1α-chain; chain B: HLA-DR1β-chain. 
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Peptide residues Peptide residues Contacts 

Position 

Aa 

code Position 

Aa 

code VdW H-bond both 

-3 ASP -2 ARG 11 3 14 

  -1 PHE 9 1 10 

  2 LYS 3 1 4 

   total: 23 5 28 

-2 ARG -3 ASP 11 3 14 

  -1 PHE 12 1 13 

  1 TYR 2  2 

   total: 26 3 29 

-1 PHE -3 ASP 9 1 10 

  -2 ARG 12 1 13 

  1 TYR 12 1 13 

  2 LYS 5  5 

   total: 38 3 41 

10 SER 8 GLN 1  1 

  9 ALA 12 1 13 

   total: 13 3 16 

 

Table 5.3: Summary of intra-peptide contacts within the gag24 peptide. Van der 

Waals (VdW) interactions and hydrogen bonds (H-bonds) made by PFR with any other 

peptide residues are listed. No contacts for P11 are shown due to missing electron density. 
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5.4.4. Investigating the impact of PFR on CD4+ T cell activation 

In order to investigate the hook shaped N-terminus and its impact on CD4+ T cell 

activation in more detail, a series of PFR variants were designed (see Table 5.4). Despite 

ill-defined structural data for the C-terminus of the gag24 peptide, C-terminal PFR were 

designed in order to gain more insight. Both sided PFR variants were designed in order 

to investigate the interplay of N- and C-terminal PFR. Peptides were tested for recognition 

by the sister clones Ox97 clone 10 and Ox97 clone 11 in a peptide titration and INFγ 

release was measured as described in Chapter 2.3.7 and 2.3.9. Both clones express the 

same TCR despite having been cloned independently. Results for both clones are shown 

in Figure 5.7. 

 

Peptide sequence 

 

Description 

N-terminal  Core epitope C-terminal  

-3 -2 -1 1 2 3 4 5 6 7 8 9 10 11   

   Y K T L R A E Q A    core 

   Y K T L R A E Q A S   core + 1C 

   Y K T L R A E Q A S Q  core + 2C 

  F Y K T L R A E Q A    core + 1N 

 R F Y K T L R A E Q A    core + 2N 

D R F Y K T L R A E Q A    core + 3N 

  F Y K T L R A E Q A S   core + 1N1C 

 R F Y K T L R A E Q A S Q  core + 2N2C 

D R F Y K T L R A E Q A S Q  core + 3N2C 

 

Table 5.4: Nested set of peptide based on gag24. Starting with the 9mer core region, 

PFR were extended one residue at a time either at one terminus only or both termini at 

the same time. 
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Figure 5.7: Testing PFR length variants on Ox97 clone 10 and clone 11. PFR variants 

were tested in peptide titrations. CD4+ T cell clones were incubated overnight with 

peptides at different concentrations in presence of HOM-2 cells. INFγ release was 

measured using ELISA. The 9mer core peptide is shown in grey, C-terminal PFR variants 

in shades of blue, N-terminal PFR variants in shades of red and NC-terminal variants in 

shades of green. Error bars show standard deviation. 

 

Both clones expanded very poorly in culture, therefore, the overall number of cells and 

range of concentration was reduced to 9,000 to 11,000 cells/well and 10-6 M to 10-9 M, 

respectively. Despite lower cell numbers, the quantity of IFNγ released in response to 

peptide was comparable what has been observed for other CD4+ T cell clones such as the 

0

500

1000

1500

2000

2500

3000

3500

-6 -7 -8 -9IN
Fγ

re
le

as
e

 in
 p

g/
m

l

Peptide concentration in log(M)

Testing PFR variants on Ox97 clone 10
core

core + 1C

core + 2C

core + 1N

core + 2N

core + 3N

core + 1N1C

core + 2N2C

core + 3N2C

0

500

1000

1500

2000

2500

3000

3500

-6 -7 -8 -9

IN
Fγ

re
le

as
e

 in
 p

g/
m

l

Peptide concentration in log(M)

Testing PFR variants on Ox97 clone 11
core

core + 1C

core + 2C

core + 1N

core + 2N

core + 3N

core + 1N1C

core + 2N2C

core + 3N2C



113 
  

HA306-318 specific CD4+ T cell clones used in Chapter 4.There was no measurable 

difference in the responses between Ox97 clone and Ox97 clone 11. The 9mer core did 

not elicit any responses even at high peptide concentration demonstrating an important 

role for the PFR during recognition. In support of this observation, the core + 1C as well 

as core + 1N1C were also poorly recognised at the concentrations tested. Addition of both 

C-terminal PFR (core + 2C), however, re-established recognition to the same level as the 

full length gag24 peptide (core + 3N2C). While addition of PhenylalineP-1 on its own 

(core + 1N) was not enough to re-establish recognition, addition of both ArginineP-2 and 

PhenylalanineP-1 (core + 2N) re-established recognition to the same level as seen for core+ 

3N2C. Interestingly, the further addition of AspartateP-3 (core + 3N) completely abolished 

recognition. Despite core + 2C and core + 2N both being recognised to the same level as 

the full-length gag24 peptide, core + 2N2C was not recognised at all. 

Due to the small range of concentrations used for this assay, no EC50 values could be 

determined. Table 5.5 shows IFNγ release measured at peptide concentrations of 10-6 M. 

 

peptide clone 10 clone 11 

core 0 0 

core + 1C 478 645 

core + 2C 3062 2916 

core + 1N 0 0 

core + 2N 2762 2734 

core + 3N 0 0 

core + 1N1C 401 455 

core + 2N2C 0 0 

core + 3N2C (wt) 2589 2743 

 

Table 5.5: Summary CD4+ T cell responses to PFR variants.  Maximum INFγ release 

at 10M-6 is shown. Colour gradient ranges from red (low INFγ release) to green (high 

IFNγ release). 
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In summary, addition of two C-terminal PFR to the 9mer core in absence of any N-

terminal PFR re-established recognition. In absence of C-terminal PFR, addition of one 

or three N-terminal PFR did not re-establish recognition, while the addition of two did 

not. Addition of PFR at both termini simultaneously required all three N-terminal and 

both C-terminal PFR in order to re-establish recognition. These findings demonstrate the 

critical role that PFRs play during CD4 T cell mediated antigen recognition, but also 

indicate that the PFRs do not act independently of each other. This observation is 

consistent with other studies from our laboratory showing that modifications to the 

peptide can have knock on effects at distal sites (Cole et al. 2010; Madura et al. 2015; 

Bianchi et al. 2016). This complex interplay suggests that the PFR are playing a dual role 

affecting both TCR binding and pMHC-II stability. A more thorough examination would 

be needed to deconvolute these roles and gain full insight into the mechanism(s) by which 

the PFRs can tune antigen recognition in this system.  

In order to investigate whether these observations were due to altered peptide stability, 

PFR variants were tested in a competitive peptide binding assay described in Chapter 

2.2.6 and Chapter 4. However, none of the tested peptides were able to replace the BT-

CLIP peptide. This could be partially explained with certain peptides coming out of 

solution in the acidic binding buffer (pH = 5) which had not been observed for any of the 

HA306-318 variants tested in Chapter 5.  
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5.5. Discussion 

The Gag24 peptide has not been studied in comparable detail as other CD4+ T cell 

epitopes such as HA306-318. Overall, the structure I generated was of high resolution 

(1.89Å) and good electron density was observed for the peptide except at position 11. The 

first aim of this chapter was to investigate any potential TCR contact residues. Due to the 

flat binding conformation adopted by peptides bound to MHC-II, TCR contacts are 

usually solvent exposed residues protruding above the walls of the peptide binding 

groove. Replacing suitable candidates by alanine and testing them for CD4+ T cell 

recognition identified P2, P5, P7 and P8 as potential crucial TCR contacts. This fits well 

with the crystal structure of HLA-DR1gag24 as these residues are all highly solvent 

exposed. T cell activation assays on their own are not sufficient to prove that these 

residues are directly contacted by the TCR. Further biophysical and structural 

investigations using HLA-DR1gag24 specific TCRs such as Ox97 will give more insight 

into TCR-peptide contacts. 

Unlike the core of the peptide, PFR can adopt different conformations without the spatial 

limitations of the peptide binding groove. They can extend away from the MHC or fold 

back to make additional contacts with the MHC and other peptide residues, respectively. 

The N-terminus of the gag24 peptide adopts a hook-like shape, presumably being held in 

place by intra-peptide interactions made by AspartateP-3 with PhenylalanineP-1 and 

LeucineP3, respectively. In addition, ArginineP-2 is held in place at the apex of the hook 

by an extensive network of interactions with the HLA-DR1-chain. Testing PFR variants 

for recognition gave some insight into the role these residues play in CD4+ T cell 

recognition. The presence of PhenylalineP-1 and ArginineP-2 in the absence of any C-

terminal PFR was sufficient to yield CD4+ T cell recognition to the same level as the full-



116 
  

length gag24 peptide. Assuming that ArginineP-2 engages in similar contact as seen in the 

HLA-DR1gag24 structure, this can be explained by ArginineP-2 successfully tethering the 

core + 2N peptide to HLA-DR1. This also shows that the missing P-3, P10 and P11 are 

unlikely to be critical TCR contact residues. Interestingly, additional extension of the N-

terminal by AspartateP-3 led to a complete loss of CD4+ T cell activation. Despite being 

located at the opposite end of the peptide binding groove, missing C-terminal PFR could 

have knock-on effects along the peptide preventing the hook from forming and forcing 

the N-terminus into a position unfavourable for TCR binding and CD4+ T cell 

recognition. This could be due to conformational changes within the peptide preventing 

PhenylalanineP-1 and LeucineP3 from making contacts with the AspartateP-3 side chain or 

even affecting TCR contacts within the peptide core. In the case of LeucineP3, a 

conformational change could have a double effect altering both a potential TCR contact 

residue preventing the N-terminus from adopting the hook like shape. Peptides missing 

PFR have been shown to exhibit increased motion (Haruo Kozono et al. 2015). The 

missing C-terminal PFR could increase the motion within the gag24 to a degree that 

prevents the formation of the hook and causes AspartateP-3 to interfere with TCR binding. 

Further biophysical and structural investigations into the different N-terminal PFR and 

their effect into will shed more light onto this phenomenon.  

In contrast, very little could be deducted about the C-terminal PFR of gag24 due to 

incomplete structural data. Presence of the full length terminus in absence of any N-

terminal PFR (core + 2C) was sufficient for CD4+ T cell recognition. Puzzlingly, the 

presence of two PFR at both termini (core + 2N2C) completely abolished CD4+ T cell 

recognition despite each extension by itself (core + 2N and core + 2C, respectively) being 

recognised just as well as the full length gag24 peptide. It is possible that the presence of 

two C-terminal PFR impacts the conformation of the N-terminus in absence of the 
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AspartateP-3 and therefore in absence of any stabilising effect of the hook-like 

conformation. This observation was in contrast with the HA306-318 system where addition 

of PFR at both termini had a synergistic effect on CD4+ T cell activation, presumably due 

to increased peptide stability (see Chapter 4). 

A similar hook shaped conformation has previously been observed in the C-terminal PFR 

of another HLA-DR1 restricted, gag24 derived epitope (Zavala-Ruiz et al. 2004). A 

glycine located at the apex of the hook generated a hinge along which the PFR could turn 

and form the loop. Replacing this glycine by a proline and thereby forcing the C-terminal 

PFR to follow the extended conformation of the core led to a complete loss of CD4+ T 

cell activation, confirming the important role secondary structures within MHC-II bound 

peptides can play (Norris et al. 2006). The N-terminal of the pMART-1 phosphopeptide 

bound to HLA-DR1 has also been shown to adopt a hook-like shape. In contrast to the 

gag24 derived peptides however, this bend was less acute causing the N-terminal residues 

to point upwards out of the groove rather than turning back in a hair-pin like structure (Li 

et al. 2010). Unlike the HLA-DR1gag24 structure presented here, removal of any N-

terminal PFR abolished CD4+ T cell recognition of the pMART-1 peptide. Removal of 

any C-terminal PFR in presence of N-terminal PFR, however, caused little impact on 

CD4+ T cell recognition again suggesting that the secondary structure of the N-terminus 

was crucial for CD4+ T cell recognition. 

In contrast to the majority of the HIV genome, the MHR of the gag24 protein has been 

shown to be highly conserved across all retrovirus (Mammano et al. 1994; Provitera et al. 

2001). In consequence, CD4+ T cell responses raised against the gag24 epitopes studied 

here will remain effective once other parts of the virus escape T cell immunity through 

mutation. This makes gag24 a prime target for both tracking anti-HIV responses 
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throughout different stages of infection as well as for vaccine research. The high 

conservancy of gag24 makes it a universal epitope across all HIV strains. Therefore, 

features identified as important for TCR recognition here, will be present irrespective of 

which HIV strain the epitope is derived from. 

In this chapter, the structure of HLA-DR1gag24 served as a basis for investigations into 

CD4+ T cell recognition of pMHC-II. Several solvent exposed residues were identified as 

potential TCR contact residues. Dissecting the role of individual residues within the hook-

shaped N-terminal PFR gave further insight into how residues outside the 9mer binding 

core can influence CD4+ T cell recognition. This is the third study showing that secondary 

structures within PFR can have major impact on CD4+ T cell recognition further 

confirming the important role PFR can play. This knowledge has implications for the 

design of peptide vaccines and pMHC-II multimer staining since even seemingly small 

changes to PFR can have major impact on CD4+ T cell recognition or TCR binding. 

Results presented here also generated a starting point for a range of further investigations 

based on the gag24 peptide. Repeating the functional assays using additional CD4+ T cell 

clones will broaden the insight into potential TCR contact residues and the role of PFR 

in CD4+ T cell recognition of this highly conserved peptide. SPR analysis of the alanine 

substitution peptides will give more insight into the importance of the here identified 

potential TCR contact residues for TCR binding. Additional SPR as well as structural 

analysis of selected PFR variants will add further knowledge about role of secondary 

structures within PFR. In summary, this study has added to our knowledge of PFR in 

CD4+ T cell immunity while also opening future avenues of investigation. 
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6. CD4+ T cell responses to influenza hemagglutinin 

6.1. Chapter Background 

CD4+ T cells play a crucial role in the anti-viral immune response by stimulating B cells 

to produce antibodies and cytotoxic T cells to eliminate infected host cells. In order to 

fulfil this role, CD4+ T cells must be able to specifically recognise the intracellular 

pathogens through their T cell receptor binding peptide fragments of virus proteins 

presented on MHC-II molecules on the surface of professional antigen presenting cells as 

well as infected host cells. Identifying which peptides are recognised enables us to study 

CD4+ T cell responses in more detail. For example, pMHC-II-multimer staining enables 

the visualisation of specific CD4+ T cell populations using flow cytometry in order to 

track them throughout an on-going infection or following vaccination.   
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6.2. Introduction 

6.2.1. Influenza hemagglutinin is an important target for CD4+ T cell responses 

Hemagglutinin (HA) plays a crucial role in the life cycle of the Influenza A virus by 

mediating its attachment to α(2,6) linked sialic acids on the surface of host cells. The 

substrate-binding site is located within the globular head domain (see Figure 6.1). 

Following uptake into the host cell the pH in virus containing endosomes is lowered in 

order to create an optimal milieu for host proteases. This change in pH however, also 

leads to a change in conformation within the HA protein resulting in the C-terminal fusion 

peptide to insert itself into the endosome membrane and ultimately, its fusion with the 

viral membrane envelope. Thus, the viral RNA is released into the cytoplasm (Samji 

2009; Das et al. 2010). HA is an important target for the immune system as well as for 

anti-viral drugs. Blocking of the sialic acid binding site by neutralising antibodies and 

small molecule inhibitors, respectively, prevent the virus from infecting host cells (Das 

et al. 2010). 

Viral proteins are degraded by host cell proteases and enter the MHC-II antigen 

presentation pathway. Despite the important role of CD4+ T cells in fighting influenza A 

infections, only few epitopes within the Influenza hemagglutinin have been characterised 

in detail. The best characterised MHC-II restricted epitope in the HA308-316 epitope (Lamb 

and Green 1983) (see Chapter 4 for more details). To date, 415 MHC-II restricted HA 

epitopes are registered in the Immune Epitope Database (IEDB) (Vita et al. 2015). On 

closer inspection, the majority of these are identical or of overlapping sequences, stem 

from different strains showing point mutations within the sequence or have been shown 

to bind to more than one HLA allele.  
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Figure 6.1: Influenza hemagglutinin consists of two subunits, HA1 and HA2. (A) 

HA1 forms both the globular head domain (coloured red in the cartoon representation), 

and the fusion peptide (coloured in blue). HA2 forms the stalk or stem domain (coloured 

in green). PDB code: 4O5N (B) Schematic overview of both HA subunits. Taken from 

Pica & Palese 2013; Nelson & Holmes 2007. 

 

6.2.2. Epitope mapping using overlapping peptide libraries 

Well characterised HA epitopes play an important role in monitoring and studying 

Influenza infections in general and for vaccine studies in particular. Investigating CD4+ 

T cell responses against specific epitopes using functional assays such as ELISPot or 

intracellular cytokine staining (ICS) as well as monitoring CD4+ T cell populations using 

multimer staining and flow cytometry can give valuable insight into anti-viral responses 

A 

B 
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(Long et al. 2013). Different approaches allow the identification of T cell epitopes. 

Bioinformatic methods rely on the prediction of potential epitopes based on either peptide 

binding patterns i.e. known anchor residues for certain HLA alleles or proteolytic 

cleavage sites (Mettu, Charles, and Landry 2016). Eluting peptides from MHC-II and 

identifying their sequence through mass spectrometry is another option and allows for the 

identification of different length variants at the same time (Lippolis et al. 2002; Godkin 

et al. 1998; Strug et al. 2008). The most established method, however, is based on dividing 

the sequence of the antigen of interest into overlapping peptides of defined length. These 

can then be tested for T cell recognition by measuring cytokine production in response to 

peptide stimulations as well as by multimer staining. In order to keep the size of these 

assays reasonable, peptides are usually combined in a more manageable number of pools. 

Once responses against certain pools have been detected, peptides are tested for individual 

responses (Fiore-Gartland et al. 2016). 
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6.3. Aims 

Gelder and colleagues identified five regions within the HA protein from a H3N2 strain 

which elicited strong responses in HLA-DR1+ individuals (C. M. Gelder et al. 1995). 

These regions span over 40aa in lengths. For this chapter of my thesis I set out to further 

characterise peptides within these regions using overlapping peptide libraries and to test 

their HLA-DR1 restriction. 

The first aim was to identify peptides within these five regions using overlapping peptide 

libraries and testing peripheral blood mononucleated cells (PBMCs) from three healthy 

donors for responses. 

The second aim was to confirm the HLA-DR1 restriction of the peptides identified in the 

first step.  

The third aim was to investigate the conservancy of these potential new epitopes in 

comparison with the well characterised HA306-318 epitope. 
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6.4. Results 

6.4.1. Identifying potential epitopes using overlappoing peptides 

Gelder and colleagues studied responses against HA peptide pools as well as individual 

peptides and compared them against the HLA-type of their donors. They identified five 

regions which consistently elicited responses in HLA-DR1+ individuals using peptides 

from the H3N2 strain A/Beijing/32/92 (C. M. Gelder et al. 1995). The three healthy 

donors I used for this study were vaccinated with the 2011/2012 trivalent influenza 

vaccine which contained the influenza A strains A/Perth/16/2009 (H3N2) and 

A/California/7/2009 (H1N1) as well as the influenza B strain B/Brisbane/60/2008. The 

first step was to find the equivalent regions within the A/Perth/16/2009 strain (shown in  

Table 6.1) using the sequence provided in the NCBI protein database (accession number 

AHX37629.1).  Peptides were arranged in a matrix and sorted into 10 pools as shown 

Figure 6.2B.  
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 Peptide sequence 

 

Position 

Region 1 CYPYDVPDYASLRSLVASSGTLEFNNESFNWT 113-144 

Pep  1 CYPYDVPDYASLRSLV 113-128 

Pep  2            DVPDYASLRSLVASSG 117-132 

Pep  3                       YASLRSLVASSGTLEF 121-136 

Pep  4                                  RSLVASSGTLEFNNES 125-140 

Pep  5                                            ASSGTLEFNNESFNWT 129-144 

   

Region 2 LIGKTNEKFHQIEKEFSEVEGRIQDLEKYVED 400-431 

Pep  6 LIGKTNEKFHQIEKEF 400-415 

Pep  7           TNEKFHQIEKEFSEVE 404-419 

Pep  8                      FHQIEKEFSEVEGRIQ 408-423 

Pep  9                                     EKEFSEVEGRIQDLEK 412-427 

Pep 10                                               SEVEGRIQDLEKYVED 416-431 

   

Region 3 HHPGTDKDQIFLYAQASGRITVSTKRSQQTVS 199-230 

Pep 11 HHPGTDKDQIFLYAQA 199-214 

Pep 12            TDKDQIFLYAQASGRI 203-218 

Pep 13                       QIFLYAQASGRITVST 207-222 

Pep 14                                YAQASGRITVSTKRSQ 211-226 

Pep 15                                            SGRITVSTKRSQQTVS 215-230 

   

Region 4 QDLEKYVEDTKIDLWSYNAELLVALENQHTID 423-454 

Pep 16 QDLEKYVEDTKIDLWS 423-438 

Pep 17            KYVEDTKIDLWSYNAE 427-442 

Pep 18                       DTKIDLWSYNAELLVA 431-446 

Pep 19                                DLWSYNAELLVALENQ 435-450 

Pep 20                                           YNAELLVALENQHTID 439-454 

   

Region 5 QNVNRITYGACPRYVKQNTLATGMRNVPEKQT 311-342 

Pep 21 QNVNRITYGACPRYVK 311-326 

Pep 22            RITYGACPRYVKQNTL 315-330 

Pep 23                     GACPRYVKQNTLATGM 319-334 

Pep 24                                RYVKQNTLATGMRNVP 323-338 

Pep 25                                           QNTLATGMRNVPEKQT 327-342 

 

 

Table 6.1: Sequences of overlapping peptide libraries used in this study. The full 

sequence of each region is shown as well as each individual peptide. Peptides are 16aa 

long with a 4aa overlap. Positions are taken from NCBI database (accession number: 

AHX37629.1). 
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Short-term T cell lines were generated against each peptide pool and tested in an IFN-γ 

ELISpot on day 12-16 as described in Chapter 2.3.8. As a positive control, short term cell 

lines were set up against the HA306-318 epitope and tested in an ELISpot alongside. All 

lines were set up in triplicate which were then combined prior to the ELISpot assay and 

split across two wells. One well was stimulated over night with the same peptide pool as 

the line was set up with initially, while the other well was left unstimulated in order to 

measure background. Peptide pools which generated at least 20 responses i.e. 20 spot 

forming cells (SFC) per 100,000 PBMCs (after subtraction of background) and at least a 

50% increase in responses compared to background were considered as a positive 

response. Figure 6.2A shows an example of one of these assays. Here, peptide pools 1, 

3, 4, 6 and 9 generated positive responses as did the positive control peptide HA306-318. 

Since each peptide is present in two pools, potential hits can be identified as both pools 

containing the peptide will generate a positive response as demonstrated in Figure 6.2B. 

In this case, peptides 12, 13, 14, 16, 18 and 19 were identified as potential hits.  
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Peptide pool matrix 

 Pool 1 Pool 2 Pool 3 Pool 4 Pool 5 

Pool 6 1 2 3 4 5 

Pool 7 6 7 8 9 10 

Pool 8 11 12 13 14 15 

Pool 9 16 17 18 19 20 

Pool 10 21 22 23 24 25 

 

Figure 6.2: Measuring CD4+ T cell responses against overlapping peptide pools. (A) 

ELISpot results of one assay (Donor 3 - Round 2) are shown. Responses against 

individual peptide pools shown in blue. Responses against the control peptide (PKY) are 

shown in green. The red dotted line indicates the minimum threshold of 20 SFC per 

100,000 PBMCs. (B) Peptides 1-25 were sorted into ten peptide pools with each peptide 

present in two pools. Positive hits from the assay shown in (A) are highlighted in light 

blue. Potential new epitopes would cause both pools to elicit a response and are therefore 

located at the intersection of two pools (highlighted in blue).  

 

This was repeated twice for each donor and results are shown in Table 6.2A. Since the 

aim was to identify epitopes restricted to HLA-DR1, peptides pools eliciting responses 

across all donors i.e. at least once in each donor where of most interest. Table 6.2B shows 

the peptide pool matrix with potential new epitopes highlighted in blue. Peptides 12, 13 

and 14 all are located within region 3 while peptides 17, 18 and 19 are located within 

region 4. 
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Peptide pool matrix 

 Pool 1 Pool 2 Pool 3 Pool 4 Pool 5 

Pool 6 1 2 3 4 5 

Pool 7 6 7 8 9 10 

Pool 8 11 12 13 14 15 

Pool 9 16 17 18 19 20 

Pool 10 21 22 23 24 25 

 

Table 6.2: Summary of two rounds of testing overlapping peptide pools on all three 

donors. (A) Positive responses are highlighted in light blue. Percentages of positive 

responses for each pool are shown and highlighted in different shades of green. Absolute 

responses are shown in Supplementary Table S 5. (B) Pools which elicited positive 

responses in at least 50% of cases and at least once in each donor are highlighted in light 

blue. Potential epitopes are highlighted in blue. 

 

As evident from Table 6.2, there was great variability between individual assays. The 

two pools that elicited the most consistent responses across all three donors were pools 4 

(100% positive responses) and 9 (83.33% positive responses), pinpointing peptide 19 as 

potential hit. HA306-318 also generated positive responses in 83.33% of cases. However, 

peptide pool 3 also generated positive responses at least once in each donor. Therefore, 

peptide 18 was also considered as a potential hit. Each peptide was then tested 

 Donor 1 Donor 2  Donor 3  

Round 1 2 1 2 1 2 
% positive 
responses 

Pool 1       50.00 
Pool 2       50.00 
Pool 3       50.00 
Pool 4       100.00 
Pool 5       50.00 
Pool 6       50.00 
Pool 7       0.00 

Pool 8       50.00 
Pool 9       83.33 
Pool 10       33.33 

HA306-318       83.33 

A 

B 
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individually to remove any bias from HLA-II binding competition between different 

peptide.  

 

 

Figure 6.3: Measuring CD4+ T cell responses against single peptides. ELISpot results 

of one assay (Donor 3 - Round 3) are shown. Responses against individual peptides shown 

in blue. Responses against the control peptide (PKY) are shown in green. The red dotted 

line indicates the minimum threshold of 20 SFC per 100,000 PBMCs.  

 

 

Figure 6.3 shows the results of an IFN-γ ELISpot using PBMCs from donor 3 testing each 

individual peptide. As predicted from data gained testing peptide pools using PBMCs 

from the same donor (see Figure 6.2) peptides 3, 16, 18 and 19 elicited positive responses. 

However, 20 and 23 also elicited responses as predicted by combining data from all three 

donors (see Table 6.2). Peptides 13 and 20 also elicited responses which could not have 

been predicted from testing peptide pools on this donor. When looking at data from testing 

peptides pools on donor 1 and 2 however, peptide 13 did appear as potential hit in round 

2 for each donor (in both cases both pool 3 and 8 elicited positive responses). Other hits 

such as peptide 4 (predicted from testing pools on donor 3, see Figure 6.2) and peptides 
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21 and 24 (predicted from combining data from all three donors, see Table 6.2) did not 

elicit responses when testing single peptides in donor 3 on this occasion. 

 

  Donor 1 Donor 2 Donor 3  

Round 1 2 3 1 2 3 1 2 3 % positive responses 

R
e

gi
o

n
 1

 

Peptide 1          33.33 

Peptide 2          44.44 

Peptide 3          88.89 

Peptide 4          22.22 

Peptide 5          0.00 

R
e

gi
o

n
 2

 

Peptide 6          11.11 

Peptide 7          0.00 

Peptide 8          22.22 

Peptide 9          0.00 

Peptide 10          0.00 

R
e

gi
o

n
 3

 

Peptide 11          0.00 

Peptide 12          44.44 

Peptide 13          66.67 

Peptide 14          11.11 

Peptide 15          11.11 

R
e

gi
o

n
 4

 

Peptide 16          44.44 

Peptide 17          22.22 

Peptide 18          88.89 

Peptide 19          66.67 

Peptide 20          44.44 

R
e

gi
o

n
 5

 

Peptide 21          22.22 

Peptide 22          55.56 

Peptide 23          66.67 

Peptide 24          11.11 

Peptide 25          0.00 

 HA306-318          88.89 

  

Table 6.3: Summary of three rounds of testing single peptides on all three donors. 

Positive responses are highlighted in light blue. Percentages of positive responses for each 

pool are shown and highlighted in different shades of green. Absolute responses are 

shown in Supplementary Table S 6.  
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Table 6.3 shows results of IFN-γ ELISpots screening all 25 individual peptides on all 

three donors. In order to be considered a potential HLA-DR1 restricted hit, peptides were 

identified which generated positive responses in at least 5 out of the 9 assays in total 

(corresponding of at least 50% positive responses overall) and in 2 out of 3 rounds for 

each donor. 

Peptide 3 consistently generated positive responses across all three donors (88.89% 

positive responses).  Overall, region 2 only elicited sporadic responses in donor 3 with 

peptide 8 being a potential hit. However, no responses were observed for the other two 

donors. Peptide 13 was a potential hit for donors 1 and 3 but only elicited one positive 

response in donor 2 and was therefore dismissed. Peptide 18 generated responses in 

88.89% of cases across all three donors. Interestingly, peptide 19, which overlaps peptide 

18 by 12 aa, elicited positive responses in donor 2 and 3 (100% postive responses) but 

not donor 1.  

While peptide 22 generated consistent responses in donor 1 and 2 but not donor 3, its 

overlapping neighbour, peptide 23, generated consistent responses across all three donors 

(66.67% positive responses). At first, this was not surprising since peptide 23 contains 

the full sequence of the HA306-318 homologue. However, at this point it was realised that 

one amino acid within region 5 had been left out when ordering the peptide library. 

Peptides 20-25 should span the following sequence: 

QNVNRITYGACPRYVKQNTKLATGMRNVPEKQT. Yet, Lysine331 (highlighted in 

red) was missing in region 5 of the overlapping peptide library and therefore in peptides 

22 to 25. 

Based on these results peptides 3 and 18 were taken forward further for more detailed 

analysis. Although peptide 19 did not elicit any responses in donor 1, it was taken further 
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as well due to its overlap with peptide 18. Region 5 was eliminated from further 

experiments due to the missing Lysine in position 331. This decision resulted in peptide 

23 being left out from further analysis.  

6.4.2. HLA-DR restriction of novel epitopes as registered on the IEDB 

The Immune Epitope Database (IEDB) was searched in order to verify whether previous 

studies had identified any regions that included peptides 3, 18 and 19 as CD4 T-cell 

targets.  

Table 6.4 summarizes these findings. In order not to simplify the search, the “search for 

substrings” option were used which only shows results for peptides that span the query 

sequences in part or whole. Any sequences homologues and overlapping sequences that 

do not include the whole of the query sequence were ignored.  

Searching for the peptide sequence of peptide 3 (YASLRSLVASSGTLEF) revealed that 

this peptide had been used in 5 other studies in addition to the paper published by Gelder 

and colleagues which formed the basis for this study. One of these was a follow-up study 

looking at HLA-DR7 restriction of the some of the peptides used in their original study 

(C. Gelder et al. 1998). Here, they showed that peptide 3 binds to HLA-DR7 although it 

did not elicit responses in an INF-γ ELISpot. Two successive papers describe a CD4+ T 

cell clone recognising a longer version of this this epitope, however, HLA-restriction was 

not investigated (Lamb et al. 1982; Lamb and Green 1983). The most recent study used 

a shortened version of peptide 3 in a vaccine study in H2d BALB/c mice (Valkenburg et 

al. 2014).  

When searching for the peptide sequence spanned by the overlapping peptides 18 and 19 

(DTKIDLWSYNAELLVALENQ) on the IEDB, 8 additional studies were identified. 
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Again, this peptide was used in the follow-up study by Gelder and colleagues (C. Gelder 

et al. 1998). Here, they confirmed recognition of this peptide by HLA-DR15+ and HLA-

DR7+ donors, respectively. It was also shown to bind to HLA-DR13 in addition to HLA-

DR7. Three additional studies looked at shorter versions of this epitopes recognised by 

murine T cells (Staneková et al. 2013; Ishizuka et al. 2009; Jackson, Drummer, and 

Brown 1994). A forth study looking at T cell responses in mice found no responses 

against peptide 3  (Crowe et al. 2006). In an unpublished study, Harndahl and colleagues 

identified a 9mer peptide within peptide 18 (IEDB Reference ID: 1019353) as potentially 

binding to the MHC I allele HLA-B39 using a previously published peptide binding assay 

(Sylvester-Hvid et al. 2002). One study by Babon and colleagues identified an 17mer 

sequence located within peptide 18/19 as novel epitope using an approach similar to the 

one used here which was based on overlapping peptides and detection of CD4+ T cell 

responses based on INF-γ ELISpots (Babon et al. 2009). In a further unpublished study, 

Yang and colleagues identified a 14mer epitope (IEDB Reference ID: 113533) as being 

HLA-DR15 restricted using a tetramer guided epitope mapping strategy previously 

published by the same group (Novak et al. 2001). Interestingly they also identified a H1 

derived sequence homologue as being both HLA-DR1 and HLA-DR15 restricted (Yang 

et al. 2013).  

In summary, peptide 3 has been shown to bind to HLA-DR7. Peptide 18/19 was identified 

as being HLA-DR7 and HLA-DR15 restricted while a H1 sequence homologue was 

identified as being HLA-DR1 and HLA-DR15 restricted. All three donors used for this 

present study are HLA-DR1+. While Donor 2 is also HLA-DR15+ which could explain 

the robust recognition of peptides 18 and 19, neither of the other two donors were positive 

for HLA-DR7 or HLA-DR15. However, peptides can be presented by more than one HLA 

alleles depending on their anchor residues. The best studied example is HA306-318 which 
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is known to be recognised in the context of HLA-DR1, HLA-DR4, HLA-DR5 and HLA-

DR15 (Woody et al. 1982; Z. L. Zheng et al. 1991; P. A. Roche et al. 1990)  It is therefore 

entirely possible that peptide 18 is also HLA-DR1 restricted. In order to confirm this I 

tested all three peptides for their HLA-DR1 restriction using antibody blocking assays 

and HLA-DR1 homozygous antigen presenting cells. 
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Peptide 3: YASLRSLVASSGTLEF 

IEDB ID Sequence 
MHC 

restriction 
Reference 

 

10850 

DYASLRSLVASSGTLEFINE

GFNWTGVTQNGGSSAC 
MHC-II Lamb et al. 1982 

  MHC-II Lamb et al. 1983 

73443 YASLRSLVASSGTLEF MHC-II Gelder et al. 1995 

  HLA-DR7 Gelder et al. 1998 

7431 
CYPYDVPDYASLRSLVASS

GTLEFINEDFNWT 
MHC-II Gelder et al. 1995 

73442 YASLRSLVASSGTLE negative Crowe et al. 2006 

226494 LRSLVASSG 
H2-d (murine 

class II) 
Valkenburg et al. 2014 

Peptide 18/19: DTKIDLWSYNAELLVALENQ 

IEDB ID Sequence 
MHC 

restriction 
Reference 

1055 AELLVALEN 

H2-IAd 

(murine class 

II) 

Staneková et al. 2013; 

Jackson et al. 1994 

31200 KIDLWSYNAELLVALE Negative Gelder et al. 1995 

  
HLA-DR7 

HLA-DR15 
Gelder et al. 1998 

50489 
QDLEKYVEDTKIDLWSYNA

ELLVALENQHTIDLTDS 
MHC-II Gelder et al. 1995 

62653 SYNAELLVAL 

H2d  

(murine class 

I) 

Saikh et al. 1995 

  

H2-Kd 

(murine class 

II) 

Staneková et al. 2013 

1035198 DTKIDLWSYNAELLV Negative Crowe et al. 2006 

1035199 LWSYNAELLVALENQ Negative Crowe et al. 2006 

113533 IDLWSYNAELLVAL HLA-DR15 
Young et al. 

(unpublished) 

124892 YNAELLVAL HLA-B39 
Harndahl et al. 

(unpublished) 

129078 KIDLWSYNAELLVALEN n/a Babon et al. 2009 

179692 WSYNAELLVA 
HLA-A2 

HLA-A68 
Ishizuka et al. 2009 

 Sequence homologue   

188707 LDIWTYNAELLVLLENERTL HLA-DR15 Yang et al. 2013 

 

Table 6.4: HLA restrictions of peptides 3 and peptide 18/19 identified by previous 

studies. Sequences of peptides 3 and 18, respectively were used as search queries on the 

IEDB. Only sequences spanning at least part of the peptides were included with exception 

of regions 2 and 4 identified in the original study by Gelder and colleagues (C. M. Gelder 

et al. 1995). Differences in homologous sequences highlighted in red. 
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6.4.3. Confirming HLA-DR1 restriction of new epitopes 

In order to confirm that peptides 3, 18 and 19 were recognised in the context of HLA-

DR1, short term T cell lines were tested against two different lines of antigen presenting 

cells. HOM-2 is a B-LCL from a donor homozygous for HLA-DR1 and does not express 

any other HLA-DR alleles. Only peptides binding to HLA-DR1 will be presented by 

HOM-2 cells and therefore elicit higher responses than unpulsed HOM-2. Short term T 

cell lines were added, incubated overnight and the INF-γ ELISpot developed the 

following day. In the same experiment the pan-HLA-DR antibody L243 was used to block 

presentation through any HLA-DR allele. L243 was added to T cell lines prior to adding 

peptide. 

6.4.3.1. Optimising ELISpot protocol in order to reduce alloresponses  

Previous experiments demonstrated that incubating ELISPot plates overnight resulted in 

high responses against unpulsed HOM/2 cells (data not shown). Thus short incubation 

times were used prior to developing the IFN-γ ELISpot. Figure 6.4 shows the results of 

testing different time points on two different donors. In both cases a short term T cell line 

against HA306-318 was used as this epitope is known to be presented by HLA-DR1. 
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Figure 6.4: Assessing responses against HOM-2 cells at different time points. T cell 

lines from two different donors recognising the HA306-318 epitope were used. Responses 

against peptide only were measured (shown in dark blue) as well as responses against 

HOM-2 cells following incubation with peptide (shown in purple and brown, 

respectively). Control responses against unpulsed HOM-2 were measures as well (shown 

in green and yellow, respectively). 

 

For Donor 1, responses against unpulsed HOM-2 cells stayed low across all four time 

points. From 4 h onwards, responses against peptide pulsed HOM-2 cells were 

substantially higher than against unpulsed HOM-2 cells. Positive responses against 

peptide only were only detected after 6 h. For donor 3, some responses against unpulsed 

HOM-2 were observed at 3 h followed by with a decrease at 4 h and 5 h. At 6 h, responses 

against unpulsed HOM-2 cells were at their highest. At the 4 h and 5 h time points, 
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responses against peptide pulsed HOM-2 were significantly higher than against unpulsed 

HOM-2 with a less pronounced difference at 6 h. Similarly to donor 1,positive responses 

against peptide only were observed from 5 h onwards and stayed lower than responses 

against peptide pulsed HOM-2.  

In summary, an incubation time of 6 h seemed ideal for donor 1 as alloresponses against 

HOM-2 were still low while responses against peptide only were detectable. For donor 3, 

5 h were a better incubation time as alloresponses against HOM-2 seemed to surge at 6 

h. In both donors, responses against peptide pulsed HOM-2 cells were significantly higher 

than against peptide only and were detected earlier on. This confirms that HOM-2 are 

well suited as antigen presenting cells and elicit stronger responses than antigen 

presenting cells still present in the short term T cell lines after 12 days or more in culture.  

6.4.3.2. Confirming HLA-DR1 restriction using optimised ELISpot 

protocol 

Based on these results, short term T cell lines grown against peptides 3, 18 and 19 were 

tested for their HLA-DR1 restriction using an incubation time of 5 h for all three donors. 

Results are shown in Figure 6.5. 
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Figure 6.5: Testing HLA-DR1 restriction of novel epitopes using a shorter 

incubation time of 5h. Positive responses to individual peptides were measured as before 

(shown in dark blue). The anti-pan-MHC-II antibody L243 was added to short term T cell 

lines or HOM-2 cells prior to adding peptide (shown in red and yellow, respectively). 

CD4+ T cells lines were added to peptide pulsed HOM-2 cells (shown in purple). HOM-
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2 cells that had not been incubated with peptide were added as negative control (shown 

in green).  

 

Looking at responses against across all donors, HA306-318 showed an HLA-DR1 restricted 

pattern in all three donors. Responses against peptide only as well as peptide pulsed 

HOM-2 cells decreased upon addition of L243 and responses against peptide pulsed 

HOM-2 were markedly higher than against unpulsed HOM-2 cells. When peptide only 

was used, peptide 3 induced responses above threshold in donor 2 but not donor 1 and 3. 

However, in all three donors, responses against peptide pulsed HOM-2 were higher than 

against unpulsed and dropped upon addition of L243, indicating HLA-DR1 restriction. 

Peptide 18 did not induce any responses above threshold in donor 1. In donor 2 and 3, 

however, it showed a similar profile as peptide 3, indicating HLA-DR1 restriction. 

Peptide 19 did not show any HLA-DR1 restricted pattern in any of the three donors. 

In summary, HLA-DR1 restriction of peptides 3 and 18 was confirmed. Peptide 19 on the 

other hand did not appear to be HLA-DR1 restricted. In an attempt to confirm these 

results, all three peptides were tested alongside HA306-318 in a competitive HLA-DR1 

binding assay as described in Chapter 2. However, none of the three novel epitopes were 

able to replace the biotinylated CLIP peptide (data not shown). However, this was also 

observed for the HLA-DR1 restricted HIV gag24 peptide and its variants in a previous 

assay (as described in Chapter 5) and therefore did not rule out HLA-DR1 restriction.  

6.4.4. Identifying the 9mer binding core. 

We routinely generate soluble MHC for bioinformatic analysis, multimer staining and 

crystallographic studies. Solving the crystal structure p-MHC-II can confirm HLA 

restriction and identify the 9mer core epitope. Soluble HLA-DR1peptide3 and HLA-
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DR1peptide 18 were refolded and purified as described in Chapter 2.2.4. Both complexes 

refolded in a manner seen for other HLA-DR1 restricted peptides. Figure 6.6A shows a 

SDS PAGE following immunoprecipitation using an L243 coated protein A column 

which specifically binds correctly refolded HLA-DR monomers. Figure 6.6B shows A 

SDS PAGE following further purification through size exclusion using a gel filtration 

column. Crystal trays were set up for each complex using two different crystallisation 

screens routinely used for crystallisation of pMHC molecules (Bulek et al. 2012; Newman 

et al. 2005). However, neither screen resulted in crystals. Using crystals from a different 

HLA-DR1 complex as crystallisation seeds did not produce crystals either. This does not 

contradict any of the results described above as not every pMHC complex forms crystals 

within the first few trials.  
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Figure 6.6: Refolding peptide 3 and peptide 18 bound to HLA-DR1. Molecular 

weights are given in kDa. A: SDS PAGE following purification using L243 antibody 

column. Red circles indicate HLA-DR1 bands. FT: flow through; W: wash; E: Eluate; M: 

Marker. B: SDS PAGE following purification of gel filtration column. 

6.4.5. Assessing conservancy of peptides 3 and 18 

As one of the external proteins, HA is a prime target of both neutralising antibodies and 

T cell mediated immunity and therefore under pressure to mutate in an attempt to evade 

the immune response. As shown in Figure 6.7, peptides 3 is located within the globular 

head domain while peptides 18 and 19 and HA306-318 are located in the stem of the HA 

protein. In comparison to the globular head domain, the stem shows a higher degree of 

conservancy, probably due to its crucial role in fusing the viral and endosomal membranes 

(Lee et al. 2013). Mutations within functionally important regions of the protein are likely 

to compromise the virus’ ability to infect host cells and are therefore eliminated through 

natural selection. Furthermore, T cell epitopes located within conserved regions play an 

important role in inducing protection against infection with heterologous Influenza A 

strains (Alam and Sant 2011). Thus, investigations were performed to assess the degree 

of conservancy of peptides 3, 18 and as well as HA306-318.  
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Figure 6.7: Highlighting positions of peptides within influenza HA. Peptide 3 (shown 

in read) is located in the globular head domain. Peptide 18 (shown in blue) is located in 

the stem domain while HA306-318 (shown in green) forms part of the fusion peptide. 

 

Working datasets were generated of all complete or near-complete HA sequences from 

H3N2 influenza strains available on the Influenza Research Database (fludb.org). At the 

time of writing, there were 4999 sequences available. Using the inbuilt multiple sequence 

alignment tool, all sequences were aligned generating the resulting output file for any 

following analysis. Using BioEdit a consensus sequence was generated. Table 6.5 shows 
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the sequences of peptides 3, 18 and HA306-318 aligned with the consensus sequence. While 

peptides 3 and 18 match the consensus sequence to 100%, HA306-318 deviates by one 

amino acid: the Lysine in position 307 of the consensus sequence is replaced by an 

Arginine.  

Using the epitope conservancy tool available on the IEDB website, the frequency of 

sequences encoding exactly the same sequences as peptides 3, 18 and HA306-318. Out of 

the 4999 sequences, 92.38% and 96.20% matched peptides 3 and 18 to 100%, 

respectively. HA306-318 however, only matched 2.5% of all sequences rising to 57.83% for 

the consensus sequence. Conservancies of each individual aa ranged from 98.06% to 

100% for peptide 3 and from 99.06% to 99.98% for peptide 18. In the case of HA306-318, 

conservancies ranged from 2.56% to 99.96% with the lowest conservancy being observed 

for the Lysine at position 307. When looking at the consensus sequences, conservancies 

ranged from 61.55% to 99.96% with the value for Threonine313 rising to 99.84%. All 

values are shown in Supplementary Table S 7, Supplementary Table S 8 and 

Supplementary Table S 9. 

Peptide 3:                 

Peptide sequence Y A S L R S L V A S S G T L E F 

Consensus: Y A S L R S L V A S S G T L E F 

                 

peptide 18:                 

Peptide sequence D T K I D L W S Y N A E L L V A 

consensus D T K I D L W S Y N A E L L V A 

                 

HA306-318:                 

Peptide sequence P K Y V K Q N T L K L A T    

consensus P R Y V K Q N T L K L A T    

 

Table 6.5: Comparing peptide sequences with the consensus sequence. Differences 

are highlighted in red. 
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Shannon entropies were also calculated for all three peptides using BioEdit. Shannon 

entropies reflect the degree of conservancy of each position of the peptide. High entropy 

values indicate low degrees of conservancy while low entropies indicate high 

conservancy at a given position. Figure 6.8 shows Shannon entropies for all three 

peptides. Absolute values are shown in Supplementary Table S 7, Supplementary 

Table S 8 and Supplementary Table S 9. Again, peptides 3 and 18 showed higher 

conservancies overall (i.e. lower Shannon entropies) than HA306-318. Although two 

positions within peptide 3 are 100% conserved and therefore have a Shannon entropy 

value of 0, peptide 18 is more conserved overall i.e. maximal Shannon entropies are lower 

than for peptide 3.  

 

 

Figure 6.8: Shannon entropies of peptides 3, 18 and HA306-318. Shannon entropies 

are given for each position within the individual peptide. Peptide 3 is shown in red, 

peptide 18 is shown in blue and HA306-318 is shown in green. 

 

In order to generate a more visual representation of the conservancy of each positions, 

sequences logos were generated for all three peptides using the WebLogo online tool from 
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the University of Berkeley, shown in Figure 6.9 (Crooks et al. 2004). WebLogos were 

generated using the aligned sequence data from multiple sequences, in this case the 4999 

H3 sequences identified previously. The height of each letter is proportionate to its 

frequency across all sequences. WebLogos for peptide 3, 18 and HA306-318 are shown in 

Figure 6.9. Again, peptides 3 and 18 were highly conserved across all positions. HA306-

318 on the other hand showed some degree of variation positions 311 and 312. Despite 

Glutamic Acid and Asparagine still being the most prevalent at their respective positions, 

their main alternatives, Histidine and Serine are clearly visible. The empty space above 

the most prevalent amino acids (Glutamic Acid and Asparagine, respectively) indicates 

that there is even more variation although none of these additional alternative aa are 

prevalent enough to generate their own letter in the WebLogo.  

In summary, peptides 3 and 18 are highly conserved while HA306-318 shows some degree 

of variation in general and around the centre of the peptide, particularly. 
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Figure 6.9: Sequence logos of peptides 3, 18 and HA306-318. Conservancies are 

calculated using all HA3 sequences from multiple alignment. The height of the letter 

corresponds to its conservancy across all sequences. Colours indicate physical properties 

of amino acids (acidic, polar in green; basic, polar in pink; positively charged in blue; 

negatively charged in red; hydrophobic in black).  
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6.5. Discussion 

The aim for this chapter was to identify HLA-DR1 restricted epitopes within the five 

regions of HA previously identified by Gelder and colleagues. Overlapping peptides 

libraries were used in order to identify any positive hits. Each peptide was present in 2 

different pools, allowing its identification when both pools elicited positive responses. 

Using this approach peptides 18and 19 were identified as potential hits (see Table 6.2). 

Single peptides were then used to set up short-term T cell lines. Interestingly, this 

approach identified peptides 3, 18 and 23 as positive hits in all three donors, as well as 

peptide 19 in donor 2 and 3 (see Table 6.3). Peptides 3 and 23 were not identified using 

peptide pools. Peptides 18 and 19, were identified using both approaches. This could be 

due to certain peptides within a pool binding to MHC-II more strongly than others, 

therefore “blocking” access for the lower binders. Another explanation are antagonistic 

peptides which downregulate T cell responses thereby inhibiting responses against other 

peptides within the same pool. The inter-assay variabilities observed in both approaches 

are a common feature when screening overlapping peptides and has been observed in 

other experiments. Repeating the screens in several donors allows for the detection of 

overall trends and therefore the successful identification of candidate peptides. This 

identified peptides 3, 18 and 19 as potentially HLA-DR1 restricted epitopes.  

Protein regions in HA that include peptides 3 and 18, defined here, have been previously 

identified in a number of different studies, confirming their relevance during CD4+ T cell 

mediated anti-influenza responses. However, none of these previous studies have 

identified either of the peptides as being HLA-DR1 restricted (see  

Table 6.4). During my first attempt to confirm their HLA-DR1 restriction, the main 

obstacle were high responses against the HLA-DR1 homozygous HOM-2 BLCLs 
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masking any increase in responses against peptide pulsed versus unpulsed HOM-2 (see 

Figure 6.5). Using a shorter incubation time resolved this problem. Using this approach, 

the HLA-DR1 restriction of peptides 3 and 18 was confirmed. Peptide 18 has also been 

found to bind HLA-DR7 and HLA-DR15 in other studies, making it a potentially 

universal epitope (see 

Table 6.4). It shares this feature with HA306-318 which also has been describes to bind 

multiple HLA-DR alleles. Due to differences in the peptide binding pockets, HLA 

preferentially bind and present different peptides. However, many peptides have been 

shown to encode anchor residues suitable for more than one HLA allele (Z. L. Zheng et 

al. 1991). 

T cell responses against conserved epitopes play an important role in cross-protection 

against other strains of the same pathogen, an important feature for successful vaccines 

protective against multiple strains (Alam and Sant 2011). Considering the overall 

variability of H3N2 strains, their high conservancy makes peptides 3 and 18 attractive 

candidates for vaccine development. Conserved peptides are also highly important for 

diagnostic tools such as pMHC-II multimer staining. Being able to identify and track T 

cell populations raised against different strains allows to dissect the bigger picture of anti-

Influenza T cell responses. Peptides 3 and 18 are highly conserved across all positions 

while HA306-318 shows some variation in sequence, particularly at positions 311 and 312. 

Looking at the structure of the HA1.7 TCR bound to HLA-DR1HA306-318, both positions 

of the peptide are contacted by the TCR (J. Hennecke et al. 2000). Any mutations at these 

positions could potentially impact TCR binding and as a result T cell recognition leading 

to the virus escaping the immune response as long as the function of the HA protein is 

not compromised. The lower conservation at positions 311 and 312 indicate a certain 

degree of pressure on the virus to mutate these positions in order to escape. Judging from 
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the high conservation across peptides 3 and 18, this evolutionary pressure was not 

observed. This could be due to both sequences being crucial for the functioning of the 

protein. Any mutations could compromise the virus and are therefore eliminated through 

natural selection. Mutation studies investigating the impact of such substitutions are 

possible but require resources we do not have access to in our group. Another explanation 

would be that peptides 3 and 18 are not naturally processed and presented to CD4+ T cells. 

Testing short term T cell lines grown against each peptide and tested for recognition of 

whole protein processed by antigen presenting cells would provide an answer to this. 

Unfortunately, these experiments were no possible within the scope of my PhD. 

In summary, two potential candidate epitopes within the influenza hemagglutinin protein 

were identified, confirming findings by other groups. In addition, their HLA-DR1 

restriction was confirmed. Being highly conserved across all H3N2, they potentially play 

an important role in cross-strain protection and therefore have important applications in 

vaccine development and diagnostics. Once confirmed to be processed and presented 

naturally at the cell surface, these two epitopes will be useful tools in dissecting the role 

of CD4+ T cells in influenza A infections.  
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7. Discussion 

CD4+ T cells are at the heart of the immune system. They recognise peptides bound to 

MHC-II molecules on the cell surface of antigen presenting cells. When activated CD4+ 

T cells orchestrate other players of the immune system.  Despite growing knowledge on 

TCR/pMHC-II interactions, some caveats remain, particularly concerning peptide-

flanking residues.  The work presented in this thesis contributes to closing this gap. In 

chapter 3, an insect cell based expression system for HLA-DR1 was established and 

optimised. Baculovirus expression vectors for both HLA-DR1α-chain and HLA-DR1β-

chain were successfully assembled and co-expressed in Sf9 cells. Correctly refolded 

HLA-DR1CLIP was purified from the supernatant of these cells using immunoprecipitation 

and size exclusion chromatography. Following successful cleavage of the CLIP peptide, 

and exchange for HA306-318 peptide the refolded protein was confirmed as being functional 

bu pHLA-II tetramer staining of a cognate CD4+ T cell clone. Having no prior experience 

with insect cells, this project presented a steep but gratifying learning curve. Insect cell 

expression systems are already used for generating various MHC-II alleles (Pos et al. 

2012; Quarsten et al. 2001). The approach developed here combines several useful 

features of other expression systems such as a leucine zipper to enhance chain pairing and 

the cleavable CLIP and the mellitin leader sequence (Scott et al. 1996; Pos et al. 2012; 

Tessier et al. 1991) allowing easy exchange with a peptide of interest. Easy to use and 

straight forward expression systems like the one implemented here will greatly help the 

advancement of research into CD4+ T cells. 

Chapter 4 dissected the role of peptide flanking regions using the well-studied influenza 

HA306-318 peptide as an experimental system. Using a nested set of PFR variants, their 

impact of these on CD4+ T cell activation, peptide binding stability and TRB gene 
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selection was investigated. C-terminal PFR proved to be crucial for activation of CD4+ T 

cells clones specific for the HA306-318 peptide. Stabilizing effects of the C-terminal PFR 

are most likely the underlying cause for this phenomenon. TRB clonotyping showed that 

each individual PFR variant selected a very different set of TCR clonotypes. The results 

add valuable knowledge to the diverse roles of PFR heterogeneity in CD4+ T cell 

immunity. Since naturally processed peptides exhibit different length PFR, their impact 

on TCR clonotype selection might be of importance for vaccine development. While other 

studies primarily investigated the effects of amino acid substitutions or complete removal 

of PFR, this study presented here concentrated on effects of altering the length of PFR 

(Arnold et al. 2002; Godkin et al. 2001; Holland et al. 2015). The two other studies 

investigating the impact of PFR on TCR gene selection confirm our observation that 

changes in PFR lead to a change in TRB repertoire selection (Carson et al. 1997; Cole et 

al. 2012). Again, these studies investigated the effects of single amino acid substitutions. 

The effects of different length PFR as shown here, had not been previously investigated. 

Differences in PFR occur naturally as a result of the MHC-II antigen processing 

machinery. The results presented in this chapter suggest that PFR and their impact on 

CD4+ T cell activation are an inherent feature of CD4+ T cell immunity and should be 

investigated into more detail. 

In chapter 5, a recently solved structure of a HIV gag24 derived peptide presented by 

HLA-DR1 was used to predict and confirm potential TCR contact residues within the 

peptide using alanine substitution variants. These findings have wide reaching impact due 

to this epitope being highly conserved across all lentivirus and therefore likely to be 

present in most HLA-DR1+ HIV+ patients (Mammano et al. 1994; Provitera et al. 2001). 

This feature also makes in an interesting target for vaccine development. Next, the role 

of the PFR in this experimental system was dissected, particularly the hook-shaped N-
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terminal PFR. The interplay between both termini appeared to be more complex than 

what had been observed in the HA306-318 experimental system described chapter 4. 

However, my data confirmed the importance of secondary structures observed within 

peptide bound to MHC-II seen in other experimental systems (Norris et al. 2006; Zavala-

Ruiz et al. 2004; Li et al. 2010). With the growing database of pMHC-II structures, such 

observations are likely to become more common, particularly for longer peptides. Based 

on these observations and the other two examples, it is probable that secondary structure 

are an inherent and import feature of PFR. Mutations within PFR could lead to a change 

in the secondary structure, thereby abrogating CD4+ T cell recognition, by altering TCR 

contacts or peptide-MHC-II binding, in a novel way. 

In chapter 6, potential epitopes within regions of influenza A HA which had been 

previously identified to elicit responses in HLA-DR1+ individuals, were mapped and 

analysed in further detail. Using PBMCs of three HLA-DR1+ volunteers who had been 

recently immunized with the trivalent influenza vaccine, three potential epitopes were 

identified. All three peptides had been identified in other studies, confirming these results 

Next, the HLA-DR1 restriction of two of these epitopes was confirmed using a HLA-

DR1 homozygous cell line as APC in conjunction with a blocking antibody. Using 

bioinformatical tools, it was shown that these peptides are highly conserved across all 

H3N2 strains, making them potentially interesting targets for vaccines. Efforts to develop 

universal vaccines concentrate on generating broad neutralising antibodies against the 

conserved stalk region of the HA protein and would likely be able to induce CD4+ T cell 

responses against epitopes located within the stalks such as peptide 18 identified here 

(Khanna et al. 2014; Hashem 2015). Identifying novel epitopes aid the study of anti-viral 

CD4+ T cell responses by looking at a broader range of epitopes (Long et al. 2013).  
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7.1. Future considerations 

7.1.1. The importance of being able generate soluble pMHC-II of various HLA alleles 

Despite having successfully expressed and purified HLA-DR1 using Sf9 cells, there is 

still room for further optimization of this system. Further experiments using a wider range 

of MOIs would help maximise yield by determining the optimal amount of virus to be 

used. Our current set-up allows for expression in multiple of 300 ml cultures 

simultaneously. Once the expression conditions for these bigger scale cultures are 

optimised, purification methods would have to be adjusted accordingly. While we are 

having great success with our current L243 coated protein A columns, an FPLC based 

system would save time and effort. This additional purification step using 

immunoprecipitation greatly improved our in-house protocol for refolding pMHC-II from 

inclusion bodies. Proteins expressed in E. coli are better suited for crystal studies due to 

their lack of post-translational modifications. Therefore, further optimisations of the 

insect cell expression system became less urgent. Nevertheless, this system provides a 

number of advantages for the production of soluble pMHC-II for multimer staining, as 

detailed below. 

Various MHC-II alleles have been associated with increased risk for certain diseases or 

protection thereof (Mackie et al. 2012; Koeleman et al. 2004; Thursz et al. 1999). Being 

able to quickly and easily generate soluble pMHC-II for multimer staining would greatly 

facilitate research into the involvement of such alleles in different disease settings. HLA-

DR alleles express the same or at least a highly similar α-chain. The mix-and-match 

approach used in the insect cell based expression system for HLA-DR1 in chapter 3 is 

easily adaptable by simply swapping the HLA-DR1β baculoviral construct for the β-chain 

of choice. In fact, the baculoviral vector encoding the HLA-DR4β-chain has already been 
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generated and resulting HLA-DR4 monomers await testing by SPR based experiments 

using HLA-DR4 restricted TCRs. Since L243 binds to the HLA-DRα-chain, it can be 

used for the purification of any HLA-DR heterodimer.  Similarly, any other human and 

murine MHC-II allele could be expressed by assembling expression vectors for the 

according α- and β-chains. However, these alleles would require a different purification 

approach, possibly using cleavable purification tags such as the V5- and His-tags already 

encoded in the BaculoDirectTM system used here. Being able to cleave the covalently 

linked CLIP peptide and replacing it with any peptide of interest further increases the 

potential applications for this system.  

7.1.2. Further investigations into the role of PFR for CD4+ T cell immunity 

The study presented in Chapter 4 dissected the role of PFR by using nested sets of 

peptides differing in the length. It would be interesting to repeat this using different 

experimental models. It would also be interesting to measure changes in TCR affinity to 

different PFR variants using SPR. This route of investigation was started during the final 

months of this PhD. Preliminary results showed that TCRs bind PFR variants with 

different affinities. However, due to time constraints, these experiments have not been 

completed. pMHC multimer staining of CD4+ T cells using PFR variants could also give 

more insight into their effect on TCR/pMHC-II interactions. In addition, solving the 

crystal structures of TCRs in complex with these PFR variants bound to HLA-DR1 to 

determine how TCRs adapt to the new challenge of altered PFR.  

The clonotyping study also opened up several new avenues of investigation. It would be 

interesting to study the clonotypes generated by the different PFR variants in more details 

to answer some of the following questions: Are clonotypes generated against the C-

terminal variants capable of recognising N-terminal variants and vice versa? Do 
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clonotypes generated against C-terminal PFR preferentially contact C-terminal residues 

of the peptide and vice versa? Are clonotypes generated against the 9mer core peptide 

still dependant on PFR? Further functional, biophysical and structural studies would 

answer these questions. Repeating the clonotyping study using a cocktail of PFR variants 

would simulate an in vivo situation where nested sets of peptide are presented 

simultaneously would give. 

Despite HA306-318 being a popular experimental system, no nested sets of naturally 

processed peptides has been characterised to date for this protein.  In order to do fill this 

caveat, such an experiment has recently been started by eluting peptides off the surface 

of the HLA-DR1+ homozygous HOM-2 cell line pulsed with HA protein from the 

influenza A X-31 strain commonly used in laboratory research. These peptides await 

sequencing. Once naturally processed PFR variants have been identified, it would be 

informative to repeat this study in order to gain more insight into CD4+ T cell responses 

against naturally occurring PFR variants. 

7.1.2.1. Further investigations into the secondary structure within PFR  

Based on the results of the alanine scan on the gag24 peptide, a number of potential TCR 

contact residues were identified. Further investigations using SPR and structural analysis 

of the Ox97 TCR in complex with HLA-DR1gag24 will confirm these results. It would be 

useful to generate additional HLA-DR1gag24 specific CD4+ T cell clones in order to 

identify patterns in CD4+ T cell recognition of this highly conserved peptide. Clonotypic 

analysis of lines grown against PFR variants would give more insight into the impact of 

PFR on TCR gene selection.  
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The observation of the hook like secondary structure adopted by the N-terminal PFR 

opens up a plethora of possible future investigations. The competitive peptide-binding 

assay did not generate any data for this experimental system. It would be useful to try out 

other approaches in order generate data on how disruption of these secondary structures 

influences peptide binding stability. For example, a cell based competitive peptide 

binding assay such as the one by described by Weenink and colleagues (Weenink, 

Milburn, and Gautam 1997). Here, APCs were incubated in presence of both BT-CLIP 

and competitor peptides. Binding of the competitor peptide was assessed by flow 

cytometry following staining with fluorochrome-labelled streptavidin. Although similar 

to the competitive assay used in this thesis, it does not rely on the solubility of peptides 

at low pH. Measuring changes in TCR affinity for different PFR variants will give more 

information about the impact of missing PFR on CD4+ T cell interactions. As for HA306-

318, some soluble TCRs and pMHC-II have already been generated for this purpose. 

Again, these experiments have not been completed due to time constraints. In conjunction 

with solving the structure of these variants bound to HLA-DR1gag24 in presence or absence 

of the Ox97 TCR, these data would generate a fuller picture of the impact of secondary 

structures in MHC-II restricted peptides.  

7.1.2.2. Confirming natural processing of conserved HA peptides 

The two HLA-DR1 restricted peptides 3 and 18 are both highly conserved and therefore 

interesting targets for the development of a universal vaccine. However, they would need 

to be naturally processed in order to function as such. Further experiments using APCs 

pulsed with whole HA protein and testing them for recognition by CD4+ T cells raised 

against each peptide would give answers. Tracking epitope 3 and 18 specific CD4+ T cells 

throughout Influenza A infections or following vaccination using pMHC-II multimers 
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would give more insight into anti-influenza A CD4+ T cell responses in particular and 

anti-viral CD4+ T cell responses in general.  
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7.2. Concluding remarks 

The focus of this thesis can be summarised under the topic of dissecting TCR/pMHC-II 

interactions. Future studies of this kind will greatly benefit from versatile manufacturing 

systems for soluble pMHC-II such as the insect cell based system described here. The 

confirmation of the HLA-DR1 restriction of two potential HA derived epitopes opens 

new avenues of research into CD4+ T cell mediated, anti-influenza immunity. Identifying 

and tracking specific CD4+ T cell responses against multiple epitopes will broaden our 

understanding of the complex dynamics underlying our immune system. The complex 

and crucial roles of PFR have become evident in both studies looking at their impact on 

CD4+ T cell activation. Their role in stabilising the HA306-318 peptide in the peptide-

binding groove might appear simple but has wide reaching impact for TCR gene 

selection. The impact of secondary structure elements such as formed by the N-terminus 

of the gag24 peptide illustrates how seemingly small variations in PFR length can abolish 

CD4+ T cell recognition. Both studies underline the need for more in-depth investigations 

into PFR as inherent features in pMHC-II recognition. 

In summary, this thesis has added novel knowledge to our understanding of CD4+ T cells 

as key players in the immune system, in particular the important role of PFR in antigen 

recognition while opening new avenues of research.  
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Supplementary Figures and Tables 

  1 M  Y  I  Y  A  D  P  S  P  A  M  I  K  E  E  H  V  I  I  Q   
  1 ATGTACATCTACGCTGATCCCAGCCCCGCCATGATCAAGGAGGAGCACGTCATCATCCAG 

 
 21 A  E  F  Y  L  N  P  D  Q  S  G  E  F  M  F  D  F  D  G  D   
 61 GCCGAGTTCTATCTCAACCCCGACCAATCCGGCGAGTTTATGTTCGACTTCGACGGCGAT 

 
 41 E  I  F  H  V  D  M  A  K  K  E  T  V  W  R  L  E  E  F  G   
121 GAGATCTTCCACGTGGACATGGCTAAGAAGGAGACCGTCTGGCGCCTCGAAGAGTTCGGC 

 61 R  F  A  S  F  E  A  Q  G  A  L  A  N  I  A  V  D  K  A  N   
181 CGCTTCGCCAGCTTTGAGGCTCAGGGCGCTCTGGCTAACATCGCCGTCGATAAGGCCAAC 

 
 81 L  E  I  M  T  K  R  S  N  Y  T  P  I  T  N  V  P  P  E  V   
241 CTGGAGATCATGACCAAGCGCTCCAACTACACCCCCATCACCAACGTGCCCCCCGAGGTC 

 
101 T  V  L  T  N  S  P  V  E  L  R  E  P  N  V  L  I  C  F  I   
301 ACCGTGCTGACCAACTCCCCTGTGGAGCTGCGCGAACCCAACGTCCTGATCTGCTTCATC 

 
121 D  K  F  T  P  P  V  V  N  V  T  W  L  R  N  G  K  P  V  T   
361 GACAAGTTCACTCCCCCCGTGGTCAACGTGACTTGGCTGCGCAACGGCAAACCCGTGACC 

 

141 T  G  V  S  E  T  V  F  L  P  R  E  D  H  L  F  R  K  F  H   
421 ACCGGTGTCTCCGAGACCGTGTTCCTGCCCCGCGAGGATCACCTCTTCCGTAAGTTCCAC 

 
161 Y  L  P  F  L  P  S  T  E  D  V  Y  D  C  R  V  E  H  W  G   
481 TACCTCCCCTTCCTGCCCTCCACCGAGGACGTCTACGACTGTCGCGTCGAACACTGGGGC 

 
181 L  D  E  P  L  L  K  H  W  E  F  D  A  E  S  A  Q  S  K  V   
541 CTCGACGAGCCTCTGCTGAAGCACTGGGAGTTCGACGCTGAGAGCGCCCAATCCAAGGTC 

 
201 D  G  G  G  G  G  L  T  D  T  L  Q  A  E  T  D  Q  L  E  D   
601 GACGGTGGCGGTGGCGGTCTGACTGACACCCTCCAGGCCGAGACCGATCAGCTGGAAGAC 

 
221 K  K  S  A  L  Q  T  E  I  A  N  L  L  K  E  K  E  K  L  E   
661 AAAAAGTCCGCCCTCCAGACTGAGATCGCCAACCTCCTCAAGGAGAAGGAGAAACTGGAG 

 
241 F  I  L  A  A  Y  G  G  S  G  G  S  G  L  N  D  I  F  E  A   
721 TTCATCCTGGCTGCTTATGGCGGTTCCGGTGGCAGCGGTCTGAACGACATCTTCGAGGCC 

 
261 Q  K  I  E  W  H  E  *  *   
781 CAGAAGATCGAATGGCACGAGTAATAA 

 

Supplementary figure S1: Sequence of HLA-DR1αtag construct. Mellitin tag 

sequence is highlighted in blue, HLA-DR1α chain in grey, connecting peptide in yellow, 

leucine zipper in purple, linker peptide in red and biotinylation sequence in pink. 
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  1 M  Y  I  Y  A  D  P  S  P  A  M  P  V  S  K  M  R  M  A  T   
  1 ATGTACATCTACGCTGATCCCTCCCCCGCTATGCCCGTGTCCAAGATGCGTATGGCTACC 

 
 21 P  L  L  G  G  S  G  G  S  L  V  P  R  G  S  G  G  S  G  G   
 61 CCCCTGCTGGGCGGTTCCGGTGGTTCTCTGGTGCCTCGTGGTTCTGGTGGTTCCGGCGGT 

 
 41 S  G  D  T  R  P  R  F  L  W  Q  L  K  F  E  C  H  F  F  N   
121 TCAGGCGACACCCGTCCCCGTTTCTTGTGGCAGCTGAAGTTCGAGTGCCACTTCTTCAAC 

 
 61 G  T  E  R  V  R  L  L  E  R  C  I  Y  N  Q  E  E  S  V  R   
181 GGCACCGAGCGTGTGCGTCTGCTCGAGCGTTGCATCTACAACCAGGAAGAGTCCGTCCGT 

 
 81 F  D  S  D  V  G  E  Y  R  A  V  T  E  L  G  R  P  D  A  E   
241 TTCGACTCCGACGTGGGCGAGTACCGTGCTGTGACCGAGCTGGGTCGTCCCGACGCTGAG 

 
101 Y  W  N  S  Q  K  D  L  L  E  Q  R  R  A  A  V  D  T  Y  C   
301 TACTGGAACTCCCAGAAGGACTTGCTCGAACAGCGTCGTGCTGCTGTGGACACCTACTGC 

 
121 R  H  N  Y  G  V  G  E  S  F  T  V  Q  R  R  V  E  P  K  V   
361 CGTCACAACTACGGTGTCGGCGAGTCCTTCACCGTGCAGCGTCGCGTCGAGCCCAAGGTC 

 

141 T  V  Y  P  S  K  T  Q  P  L  Q  H  H  N  L  L  V  C  S  V   
421 ACCGTGTACCCCTCCAAGACCCAGCCCCTGCAGCACCACAACCTGCTCGTGTGCTCCGTG 

 
161 S  G  F  Y  P  G  S  I  E  V  R  W  F  R  N  G  Q  E  E  K   
481 TCCGGTTTCTACCCCGGTTCCATCGAAGTGCGTTGGTTCCGTAACGGTCAAGAAGAGAAG 

 
181 A  G  V  V  S  T  G  L  I  Q  N  G  D  W  T  F  Q  T  L  V   
541 GCTGGCGTCGTGTCCACCGGCCTGATCCAGAACGGCGACTGGACCTTCCAGACCCTGGTC 

 
201 M  L  E  T  V  P  R  S  G  E  V  Y  T  C  Q  V  E  H  P  S   
601 ATGCTGGAAACCGTGCCCCGTTCCGGCGAGGTGTACACTTGCCAGGTCGAGCACCCCTCC 

 
221 V  T  S  P  L  T  V  E  W  R  A  E  S  A  Q  S  K  V  D  G   
661 GTGACCTCCCCCCTGACCGTGGAATGGCGTGCTGAGTCCGCTCAGTCCAAGGTGGACGGT 

 
241 G  G  G  G  R  I  A  R  L  E  E  K  V  K  T  L  K  A  Q  N   
721 GGTGGTGGCGGTCGTATCGCTCGTCTGGAAGAGAAGGTCAAGACCCTGAAGGCTCAGAAC 

 
261 S  E  L  A  S  T  A  N  M  L  R  E  Q  V  A  Q  L  K  Q  K   
781 TCCGAGCTGGCTTCCACCGCTAACATGCTGCGCGAGCAGGTCGCCCAGCTGAAGCAAAAG 

 
281 V  M  N  Y  *  *   
841 GTCATGAACTACTAATAA 

 

Supplementary figure S2: Sequence of HLA-DR1β construct. Mellitin tag sequence 

is highlighted in blue, CLIP in green, Thrombin cleavage site in light blue, linker peptides 

in red, HLA-DR1β chain in grey, connecting peptide in yellow and leucine zipper in 

purple. 
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T cell line Total number of cells sorted Number of colonies sequenced 

no peptide 153 n/a 

core 260 76 

core + 1C 857 118 

core + 3C 358 525 

core + 2N 107 74 

core + 2N2C 1272 124 

core +3N3C 137 63 

   

Supplementary Table S1: Total number of cell sorted for each short term T cell line. 

Numbers correspond to cells collected from all PBMCs in each cell line. 

 

 

 

Refinement statistics: 

Resolution (Å) 1.89 

No reflections used 35543 

No reflections in Rfree set 1775 

Rcrys (no cut-off) (%) 0.20 

Rfree 0.26 

 

Supplementary Table S2: X-ray data diffraction data acquisition and refinement 

statistics of HLA-DR1gag24. 
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Peptide residues MHC residues Contacts 

Position  Aa code  Atom  Chain  Position  Aa code  Atom  Distance Type 

-3 ASP CB  B 81 HIS CE1 3.86 VdW 

  O      CE1 3.64 VdW 

  O      NE2 3.92 HB 

  O   B 85 VAL CG2 3.64 VdW 

-2 ARG NH2 A 49 GLY C   3.88 VdW 

  NH2    O   2.98 VdW 

  CZ  A 50 ARG O   3.89 VdW 

  NH1    C   3.86 VdW 

  NH1    O   3.21 VdW 

  NH2    C   3.8 VdW 

  NH2    O   3.81 HB 

  CB  A 51 PHE O   3.71 VdW 

  CD     O   3.91 VdW 

  NE     O   3.68 HB 

  CZ     C   3.71 VdW 

  CZ     O   3.71 VdW 

  NH1    C   3.94 VdW 

  NH1    O   3.88 HB 

  NH2    C   3.87 VdW 

  NE  A 52 ALA O   3.87 HB 

  NE     C   3.68 VdW 

  NE     CA  3.92 VdW 

  CZ     O   3.71 VdW 

  CZ     C   3.89 VdW 

  CZ     N   3.87 VdW 

  NH2    O   2.83 VdW 

  NH2    C   3.41 VdW 

  NH2    N   3.64 HB 

  NH2    CA  3.93 VdW 

  O      CB  3.7 VdW 

  O      C   3.77 VdW 

  O      CA  3.49 VdW 

  CD  A 53 SER OG  3.75 VdW 

  NE     CB  3.84 VdW 

  NE     OG  2.66 VdW 

  NE     N   3.89 HB 

  CZ     OG  3.24 VdW 

  NH2    OG  3.04 VdW 

  O      N   3.04 VdW 

  O      O   3.64 HB 

  C   B 85 VAL CG1 3.97 VdW 

  O      CG1 3.43 VdW 

-1 PHE CA  A 53 SER O   3.35 VdW 

  CE1    CB  3.86 VdW 
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  CZ     CB  3.66 VdW 

  CE2    CB  3.67 VdW 

  CD2    CB  3.88 VdW 

  CD2    C   3.94 VdW 

  C      O   3.69 VdW 

  CD2 A 54 PHE CA  3.94 VdW 

  CD2    N   3.8 VdW 

  CE2 A 55 GLU CD  3.78 VdW 

  CE2    OE1 3.46 VdW 

  CE2    CG  3.93 VdW 

  CD2    OE1 3.93 VdW 

  CD2    CG  3.8 VdW 

  O   B 81 HIS CE1 3.87 VdW 

  O      NE2 2.83 VdW 

  O      CD2 3.66 VdW 

  O   B 85 VAL CG2 3.68 VdW 

1 TYR OH  A 31 ILE CD1 3.78 VdW 

  OH     CG2 3.97 VdW 

  CG  A 32 PHE CE1 3.97 VdW 

  CD2    CE1 3.89 VdW 

  CE2 A 52 ALA CB  3.71 VdW 

  N   A 53 SER O   3.01 VdW 

  CD2    O   3.93 VdW 

  CB  A 54 PHE CD1 3.77 VdW 

  O      CE1 3.85 VdW 

  O      CD1 3.55 VdW 

  CA  B 82 ASN OD1 3.35 VdW 

  CD1    CG  3.68 VdW 

  CD1    OD1 3.68 VdW 

  CE1    O   3.8 VdW 

  C      OD1 3.55 VdW 

  CZ  B 85 VAL CG1 3.86 VdW 

  CE2    CG1 3.66 VdW 

  CD2    CG1 3.83 VdW 

  OH  B 86 GLY N   3.73 HB 

  OH     CA  3.44 VdW 

  OH  B 89 PHE CE1 3.99 VdW 

  OH     CZ  3.81 VdW 

2 LYS O   A 24 PHE CZ  3.56 VdW 

  O   B 78 TYR CD1 3.42 VdW 

  O      CE1 3.09 VdW 

  CG  B 81 HIS NE2 3.68 VdW 

  CG     CD2 3.5 VdW 

  CE     CE1 3.73 VdW 

  CE     NE2 3.58 VdW 

  N   B 82 ASN CG  3.66 VdW 
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  N      OD1 2.82 VdW 

  N      ND2 3.72 HB 

  CA     OD1 3.86 VdW 

  CB     OD1 3.99 VdW 

  O      CG  3.9 VdW 

  O      OD1 3.93 HB 

  O      ND2 3.03 VdW 

3 THR CA  A 9 GLN OE1 3.69 VdW 

  CG2    NE2 3.72 VdW 

  C      OE1 3.76 VdW 

  OG1 A 22 PHE CZ  3.95 VdW 

  OG1 A 54 PHE CE1 3.18 VdW 

  OG1    CZ  3.15 VdW 

  CG2 A 62 ASN ND2 3.69 VdW 

4 LEU N   A 9 GLN NE2 3.87 HB 

  N      OE1 2.96 VdW 

  N      CD  3.82 VdW 

  CA     OE1 3.89 VdW 

  CB     OE1 3.81 VdW 

  O      NE2 3.23 VdW 

  O   A 62 ASN CG  3.97 VdW 

  O      ND2 2.99 VdW 

  CB  B 13 PHE CD1 3.97 VdW 

  CD2    CD1 3.49 VdW 

  CD2    CE1 3.96 VdW 

  O      CZ  3.82 VdW 

  O      CE2 3.66 VdW 

  CD1 B 70 GLN NE2 3.56 VdW 

  CG  B 71 ARG NH1 3.89 VdW 

  N   B 78 TYR CD1 3.83 VdW 

  N      CE1 3.41 VdW 

  CB     CE1 3.87 VdW 

  CB     CZ  3.96 VdW 

  CD1    CG  3.94 VdW 

  CD2    CE2 3.62 VdW 

  CD2    CD2 3.61 VdW 

5 ARG CA  A 62 ASN OD1 3.59 VdW 

  C      OD1 3.81 VdW 

  C   B 71 ARG NH2 3.79 VdW 

  O      CZ  3.5 VdW 

  O      NH1 3.58 HB 

  O      NH2 2.57 VdW 

6 ALA N   A 62 ASN CG  3.55 VdW 

  N      OD1 3.05 VdW 

  N      ND2 3.53 HB 

  CA     OD1 3.99 VdW 
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  CB     CG  3.73 VdW 

  CB     OD1 3.69 VdW 

  CB     ND2 3.9 VdW 

  CB  A 65 VAL CB  3.97 VdW 

  CB     CG1 3.56 VdW 

  C      CG1 3.93 VdW 

  O      CG1 3.67 VdW 

  CB  A 66 ASP OD1 3.71 VdW 

  CA  B 11 LEU CD2 3.92 VdW 

  CA     CD2 3.92 VdW 

  CB     CD2 3.55 VdW 

  CB     CD2 3.55 VdW 

7 GLU C   A 65 VAL CG1 3.87 VdW 

  O      CG1 3.75 VdW 

  C   A 69 ASN ND2 3.86 VdW 

  O      CG  3.8 VdW 

  O      OD1 3.98 HB 

  O      ND2 2.77 VdW 

  CB  B 61 TRP NE1 3.63 VdW 

  CB     CE2 3.88 VdW 

  O      CZ2 3.73 VdW 

  CG  B 67 LEU CD1 3.4 VdW 

  CG     CD2 3.61 VdW 

  CD     CD1 3.79 VdW 

  OE2    CD1 3.89 VdW 

8 GLN CA  A 69 ASN OD1 3.79 VdW 

  C      OD1 3.8 VdW 

  O   B 60 TYR CE2 3.66 VdW 

  O      CD2 3.97 VdW 

  C   B 61 TRP NE1 3.8 VdW 

  O      CD1 3.82 VdW 

  O      NE1 2.8 VdW 

  O      CE2 3.68 VdW 

  O      CZ2 3.89 VdW 

9 ALA N   A 69 ASN CG  3.57 VdW 

  N      OD1 2.87 VdW 

  N      ND2 3.72 HB 

  CA     OD1 3.66 VdW 

  CB     CG  3.66 VdW 

  CB     OD1 3.28 VdW 

  CB  A 73 MET CE  3.74 VdW 

  CA  B 57 ASP OD1 3.69 VdW 

  CB     OD1 3.49 VdW 

  C      OD1 3.86 VdW 

  CA  B 61 TRP CZ2 3.96 VdW 

10 SER O   A 72 ILE CG2 3.54 VdW 
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  C   A 76 ARG NH2 3.98 VdW 

  O      NH2 2.93 VdW 

  CB  B 56 PRO O   3.55 VdW 

  N   B 57 ASP OD1 3.06 VdW 

  CA     OD1 3.92 VdW 

  CB     OD1 3.66 VdW 

  N   B 60 TYR CD2 3.79 VdW 

  CA     CD2 3.84 VdW 

  CB     CB  3.9 VdW 

11 GLN CB  A 72 ILE CG1 3.86 VdW 

  CB     CG2 3.79 VdW 

  CB     CD1 3.79 VdW 

  NE2    CG2 3.66 VdW 

  O      CD1 3.73 VdW 

  NE2 A 76 ARG NE  3.34 VdW 

  NE2    CZ  3.92 VdW 

  NE2    NH2 3.56 HB 

 

Supplementary Table S3: List of all peptide-MHC contacts made within HLA-

DR1gag24. Chain A: HLA-DR1α-chain; chain B: HLA-DR1β-chain; VdW: Van der 

Waals; HB: Hydrogen bond. 

 

  



184 
  

Peptide residues Peptide residues Contacts 

Position  Aa code  Atom  Position  Aa code  Atom  Distance Type 

-3 ASP N -2 ARG N 3.51 VdW 

  CA   N 2.47 HB 

     CA 3.88 VdW 

  CB   N 3.55 VdW 

     N 3.63 VdW 

     C 3.72 VdW 

     N 3.03 HB 

     CA 3.89 VdW 

  C   C 3.42 VdW 

     N 1.34 PB 

     CA 2.48 VdW 

     CB 3.66 VdW 

  O   C 3.59 VdW 

     N 2.26 HB 

     CA 2.83 VdW 

   -1 PHE N 3.92 VdW 

  OD   CG 3.89 VdW 

     CD 3.66 VdW 

     N 2.7 HB 

     CA 3.39 VdW 

     CB 3.21 VdW 

     C 3.98 VdW 

     O 3.64 VdW 

     N 3.44 VdW 

     N 3.68 VdW 

  CG 2 LYS NZ 3.57 VdW 

     NZ 3.6 VdW 

  OD   CE 3.94 VdW 

     NZ 3.13 HB 

-2 ARG N -3 ASP CG 3.63 VdW 

     OD 3.03 HB 

     N 3.51 VdW 

     CA 2.47 VdW 

     CB 3.55 VdW 

     C 1.34 PB 

     O 2.26 HB 

  CA   OD 3.89 VdW 

     CA 3.88 VdW 

     C 2.48 VdW 

     O 2.83 VdW 

     C 3.66 VdW 

  C   OD 3.72 VdW 

     C 3.42 VdW 

     O 3.59 VdW 
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   -1 PHE N 2.86 VdW 

     N 2.5 VdW 

     CA 3.88 VdW 

  CB   N 3.63 VdW 

  CG   N 3.83 VdW 

     CD 3.99 VdW 

     N 1.35 PB 

     CA 2.47 VdW 

     CB 3.71 VdW 

     C 3.24 VdW 

     O 3.75 VdW 

  O   N 2.26 HB 

     CA 2.83 VdW 

     C 3.44 VdW 

   1 TYR N 3.97 VdW 

     N 3.76 VdW 

-1 PHE  3 ASP CG 3.92 VdW 

     OD 2.7 HB 

     C 3.44 VdW 

     O 3.68 VdW 

  CA   OD 3.39 VdW 

     OD 3.21 VdW 

  CG   OD 3.89 VdW 

  CD   OD 3.66 VdW 

     OD 3.98 VdW 

     OD 3.64 VdW 

  N -2 ARG CG 3.83 VdW 

     C 1.35 PB 

     O 2.26 HB 

     N 2.86 VdW 

     CA 2.5 VdW 

     CB 3.63 VdW 

     C 2.47 VdW 

     O 2.83 VdW 

     CA 3.88 VdW 

     C 3.71 VdW 

     C 3.99 VdW 

     C 3.24 VdW 

     O 3.44 VdW 

     C 3.75 VdW 

   1 TYR N 3.47 VdW 

     N 2.4 VdW 

     CA 3.77 VdW 

  CB   O 3.91 VdW 

     N 3.37 VdW 

  C   O 3.14 VdW 
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     N 1.33 PB 

     CA 2.43 VdW 

     CB 3.74 VdW 

     C 2.91 VdW 

  O   O 3.46 VdW 

     N 2.25 HB 

     CA 2.76 VdW 

     C 2.98 VdW 

   2 LYS NZ 3.89 VdW 

     N 3.82 VdW 

     CE 3.8 VdW 

     CD 3.78 VdW 

     N 3.48 VdW 

1 TYR N -2 ARG C 3.97 VdW 

     O 3.76 VdW 

   -1 PHE N 3.47 VdW 

     CA 2.4 VdW 

     CB 3.37 VdW 

     C 1.33 PB 

     O 2.25 HB 

  CA   CA 3.77 VdW 

     C 2.43 VdW 

     O 2.76 VdW 

  CB   C 3.74 VdW 

  C   C 2.91 VdW 

     O 2.98 VdW 

  O   CB 3.91 VdW 

     C 3.14 VdW 

     O 3.46 VdW 

     C 3.82 VdW 

     O 3.48 VdW 

  N 1 TYR O 2.24 HB 

     N 3.51 VdW 

     CA 2.41 VdW 

     CB 3.32 VdW 

     C 1.32 PB 

   2 LYS N 3.51 VdW 

     CA 3.81 VdW 

     N 2.41 VdW 

     N 3.32 VdW 

     CB 3.63 VdW 

     CA 2.44 VdW 

     C 3.36 VdW 

     O 3.77 VdW 

     CG 3.93 VdW 

     CD 3.86 VdW 
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     N 1.32 VdW 

     CA 2.79 VdW 

     C 3.66 VdW 

     CD 3.89 VdW 

     N 2.24 HB 

   3 THR N 3.59 VdW 

2 LYS CE -3 ASP OD 3.94 VdW 

  NZ   CG 3.57 VdW 

     OD 3.6 VdW 

     OD 3.13 HB 

   -1 PHE O 3.78 VdW 

     O 3.8 VdW 

     CB 3.89 VdW 

  CA 1 TYR O 2.79 VdW 

     CA 3.81 VdW 

     C 2.44 VdW 

  CB   C 3.63 VdW 

  CG   C 3.93 VdW 

  CD   O 3.89 VdW 

     C 3.86 VdW 

  C   O 3.66 VdW 

     C 3.36 VdW 

  O   C 3.77 VdW 

   3 THR N 2.43 VdW 

     CA 3.84 VdW 

     N 3.25 VdW 

     C 3.28 VdW 

     O 3.82 VdW 

     N 1.34 PB 

     CA 2.49 VdW 

     CB 3.67 VdW 

     OG 3.88 VdW 

     C 3.56 VdW 

     N 2.27 HB 

     CA 2.88 VdW 

   4 LEU N 3.99 VdW 

     N 3.89 VdW 

3 THR N 2 LYS CB 3.25 VdW 

     CA 2.43 VdW 

     C 1.34 PB 

     O 2.27 HB 

     N 3.59 VdW 

     CA 3.84 VdW 

     C 2.49 VdW 

     O 2.88 VdW 

  CB   C 3.67 VdW 
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  OG   C 3.88 VdW 

     C 3.28 VdW 

     O 3.56 VdW 

     C 3.82 VdW 

   4 LEU N 3.42 VdW 

  CA   CA 3.78 VdW 

     N 2.45 VdW 

     N 3.48 VdW 

  CG   C 3.89 VdW 

     O 3.43 VdW 

     N 3.54 VdW 

  C   C 3.02 VdW 

     O 3.45 VdW 

     CA 2.41 VdW 

     N 1.33 PB 

     CB 3.66 VdW 

  O   C 3.1 VdW 

     O 3.79 VdW 

     CA 2.69 VdW 

     N 2.21 HB 

   5 ARG N 3.76 VdW 

     N 3.4 HB 

4 LEU N 2 LYS C 3.99 VdW 

     O 3.89 VdW 

   3 THR CG 3.54 VdW 

     C 1.33 PB 

     O 2.21 HB 

     N 3.42 VdW 

     CA 2.45 VdW 

     CB 3.48 VdW 

     C 2.41 VdW 

     O 2.69 HB 

     CA 3.78 VdW 

     C 3.66 VdW 

     CG 3.89 VdW 

     C 3.02 VdW 

     O 3.1 VdW 

     CG 3.43 VdW 

     C 3.45 VdW 

     O 3.79 VdW 

  N 5 ARG N 3.5 VdW 

  CA   N 2.46 VdW 

     CA 3.84 VdW 

  CB   N 3.43 VdW 

  CG   N 3.98 VdW 

  C   N 1.32 PB 
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     CA 2.42 VdW 

     CB 3.68 VdW 

     C 3.16 VdW 

     O 3.43 VdW 

  O   N 2.23 HB 

     CA 2.69 VdW 

     C 3.14 VdW 

     O 3.6 VdW 

   6 ALA N 3.69 VdW 

5 ARG N 3 THR C 3.76 VdW 

     O 3.4 HB 

   4 LEU C 1.32 PB 

     O 2.23 HB 

     CA 2.46 VdW 

     N 3.5 VdW 

     CG 3.98 VdW 

     CB 3.43 VdW 

  CA   C 2.42 VdW 

     O 2.69 VdW 

     CA 3.84 VdW 

  CB   C 3.68 VdW 

     C 3.16 VdW 

     O 3.14 VdW 

     C 3.43 VdW 

     O 3.6 VdW 

   6 ALA N 3.64 VdW 

     N 2.45 VdW 

     CA 3.86 VdW 

     N 3.27 VdW 

  CG   N 3.68 VdW 

  C   O 3.39 VdW 

     CB 3.72 VdW 

     N 1.33 PB 

     CA 2.47 VdW 

     C 3.1 VdW 

  O   O 3.76 VdW 

     N 2.24 HB 

     CA 2.79 VdW 

     C 3.21 VdW 

   7 GLU OE 3.7 VdW 

  CD   OE 3.8 VdW 

  NE   OE 2.86 HB 

  CZ   OE 3.2 VdW 

  NH   OE 3.12 HB 

     N 3.75 VdW 

6 ALA N 4 LEU O 3.69 VdW 
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   5 ARG N 3.64 VdW 

     CA 2.45 VdW 

     CB 3.27 VdW 

     CG 3.68 VdW 

     C 1.33 PB 

     O 2.24 HB 

  CA   CA 3.86 VdW 

     C 2.47 VdW 

     O 2.79 VdW 

  CB   C 3.72 VdW 

  C   C 3.1 VdW 

     O 3.21 VdW 

  O   C 3.39 VdW 

     O 3.76 VdW 

   7 GLU N 3.53 VdW 

     N 2.46 VdW 

     CA 3.81 VdW 

     N 3.36 VdW 

     N 1.32 VdW 

     CA 2.41 VdW 

     CB 3.58 VdW 

     C 3.33 VdW 

     O 3.75 VdW 

     N 2.23 HB 

     CA 2.72 VdW 

     C 3.49 VdW 

     OE 3.95 VdW 

   8 GLN N 3.99 VdW 

7 GLU N 5 ARG O 3.75 VdW 

     NE 2.86 HB 

     CZ 3.2 VdW 

     CG 3.7 VdW 

     CD 3.8 VdW 

     NH 3.12 HB 

   6 ALA O 2.23 HB 

     CB 3.36 VdW 

     N 3.53 VdW 

     CA 2.46 VdW 

     C 1.32 PB 

  CA   O 2.72 VdW 

     CA 3.81 VdW 

     C 2.41 VdW 

  CB   C 3.58 VdW 

  OE   O 3.95 VdW 

  C   O 3.49 VdW 

     C 3.33 VdW 
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     C 3.75 VdW 

   8 GLN N 3.61 VdW 

     N 2.43 VdW 

     CA 3.82 VdW 

     N 3.27 VdW 

  OE   N 3.83 VdW 

     CB 3.73 VdW 

     C 3.04 VdW 

     O 3.34 VdW 

     N 1.33 VdW 

     CA 2.46 VdW 

  O   C 3.06 VdW 

     O 3.55 VdW 

     N 2.24 HB 

     CA 2.81 VdW 

   9 ALA N 3.83 VdW 

     N 3.43 VdW 

8 GLN N 6 ALA O 3.99 VdW 

   7 GLU OE 3.83 VdW 

     N 3.61 VdW 

     CA 2.43 VdW 

     CB 3.27 VdW 

     C 1.33 PB 

     O 2.24 HB 

     CA 3.82 VdW 

     C 2.46 VdW 

     O 2.81 VdW 

     C 3.73 VdW 

     C 3.04 VdW 

     O 3.06 VdW 

     C 3.34 VdW 

     O 3.55 VdW 

   9 ALA N 3.5 VdW 

  CA   N 2.4 VdW 

     CA 3.77 VdW 

  CB   N 3.37 VdW 

  C   N 1.33 PB 

     CA 2.42 VdW 

     CB 3.69 VdW 

     C 3.06 VdW 

     O 3.11 VdW 

  O   N 2.25 HB 

     CA 2.75 VdW 

     C 3.12 VdW 

     O 3.31 HB 

   10 SER N 3.94 VdW 
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9 ALA  7 GLU C 3.83 VdW 

     O 3.43 VdW 

  N 8 GLN CB 3.37 VdW 

     C 1.33 PB 

     O 2.25 HB 

     N 3.5 VdW 

     CA 2.4 VdW 

  CA   C 2.42 VdW 

     O 2.75 VdW 

     CA 3.77 VdW 

  CB   C 3.69 VdW 

     C 3.06 VdW 

     O 3.12 VdW 

     C 3.11 VdW 

     O 3.31 VdW 

   10 SER N 3.63 VdW 

     N 2.43 VdW 

     CA 3.8 VdW 

     N 3.1 VdW 

     N 1.33 VdW 

     CA 2.42 VdW 

     CB 3.66 VdW 

     C 3 VdW 

     O 3.35 VdW 

     N 2.23 HB 

     CA 2.78 VdW 

     C 3.06 VdW 

     O 3.64 VdW 

  C 11 GLN N 3.81 VdW 

  O   N 3.45 VdW 

10 SER N 8 GLN O 3.94 VdW 

   9 ALA N 3.63 VdW 

     CA 2.43 VdW 

     CB 3.1 VdW 

     C 1.33 VdW 

     O 2.23 HB 

     CA 3.8 VdW 

     C 2.42 VdW 

     O 2.78 VdW 

     C 3.66 VdW 

     C 3 VdW 

     O 3.06 VdW 

     C 3.35 VdW 

     O 3.64 VdW 

  N 11 GLN N 3.49 VdW 

  CA   N 2.43 VdW 
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     CA 3.88 VdW 

  CB   N 3.35 VdW 

  OG   N 3.12 HB 

     OE 3.65 VdW 

  C   N 1.34 PB 

     CA 2.55 VdW 

     CB 3.07 VdW 

     C 3.53 VdW 

     CG 3.89 VdW 

     CD 3.61 VdW 

     OE 3.28 VdW 

  O   N 2.26 HB 

     CA 2.98 VdW 

     CB 2.85 VdW 

     CG 3.43 VdW 

     CD 2.97 VdW 

     OE 2.95 VdW 

     NE 3.49 VdW 

11 GLN N 9 ALA C 3.81 VdW 

     O 3.45 VdW 

   10 SER N 3.49 VdW 

     CA 2.43 VdW 

     CB 3.35 VdW 

     OG 3.12 HB 

     C 1.34  

     O 2.26 HB 

  CA   CA 3.88 VdW 

     C 2.55 VdW 

     O 2.98 VdW 

  CB   C 3.07 VdW 

     O 2.85 VdW 

  CG   C 3.89 VdW 

     O 3.43 VdW 

  CD   C 3.61 VdW 

     O 2.97 VdW 

  OE   OG 3.65 VdW 

     C 3.28 VdW 

     O 2.95 VdW 

  NE   O 3.49 VdW 

  C   C 3.53 VdW 

 

Supplementary Table S4: Intrapeptide contacts within the gag24 peptide. VdW: Van 

der Waals; HB: Hydrogen bond. PB: peptide bond. 

 



194 
  

 

 

 

 

 

 

 

 Donor 1 Donor 2  Donor 3 

% positive responses 
 Round Round Round 

 1 2 1 2 1 2 

Pool 1 81  4 13 70 51 50.00 
Pool 2 127 231  175   50.00 

Pool 3  182  65  98 50.00 

Pool 4 252 130 179 152 103 95 100.00 
Pool 5 103 59  33 9  50.00 
Pool 6 266 133    50 50.00 
Pool 7  3     0.00 

Pool 8  222 36 39  6 50.00 
Pool 9 45 45 105 70  86 83.33 
Pool 10 29  103    33.33 

HA306-318 182 202 304 352  211 83.33 
 

Supplementary Table S 5: Absolute values of INF-γ ELISpots on all three donors 

using peptides pool. Numbers are given in SFC per 100,000 PBMCs. 
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  Donor 1 Donor 2 Donor 3  

  Round Round Round % positive  
responses   1 2 3 1 2 3 1 2 3 

R
e

gi
o

n
 1

 
Peptide 1 40 47   49      16   33.33 

Peptide 2 8 4 112   118 38    336 44.44 

Peptide 3 28 124 280 25 347 23   172 317 88.89 

Peptide 4 29 5 14 7 36     11 22.22 

Peptide 5   3  4      10 0.00 

R
e

gi
o

n
 2

 

Peptide 6   9     3 8 15 21   11.11 

Peptide 7 3   19  8   12   0.00 

Peptide 8 3 5      24 32   22.22 

Peptide 9 8   3 15       0.00 

Peptide 10 7     7       0.00 

R
e

gi
o

n
 3

 

Peptide 11             4     0.00 

Peptide 12 203 479 246   305 5      44.44 

Peptide 13 40 45 25 20 121 12   81 37 66.67 

Peptide 14 4 11  57   16    11.11 

Peptide 15 1   23 4       11.11 

R
e

gi
o

n
 4

 

Peptide 16   116 15 12   232   85 39 44.44 

Peptide 17      7 166 44    22.22 

Peptide 18 28 140  108 149 61 29 24 139 88.89 

Peptide 19 3 20 20 148 601 247 55 306 186 66.67 

Peptide 20   233 25   188    17 43 44.44 

R
e

gi
o

n
 5

 

Peptide 21   51           24   22.22 

Peptide 22   31 23   279 195   11 28 55.56 

Peptide 23 16 21 72 113 3 63   36 258 66.67 

Peptide 24 5 32 5   12       11.11 

Peptide 25 0 1 11          0.00 

 HA306-318   118 100 44 390 137 21 294 358 88.89 

 

Supplementary Table S 6: Absolute values of IFN-γ ELISpots on all three donors 

using single peptides. Numbers are given in SFC per 100,000 PBMCs. 
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Peptide 3 

 

Overall conservancy: 92.38% (4618/4999)  

 
Shannon 
entropy 

Conservancy Consensus sequence 

Tyr121 0.0456 99.22% Tyr 

Ala122 0.1603 96.66% Ala 

Ser123 0.0201 99.74% Ser 

Leu124 0.0076 99.92% Leu 

Arg125 0.0112 99.86% Arg 

Ser126 0.0000 100.00% Ser 

Leu127 0.0106 99.86% Leu 

Val128 0.0988 98.06% Val 

Ala129 0.0035 99.96% Ala 

Ser130 0.0460 99.28% Ser 

Ser131 0.0073 99.92% Ser 

Gly132 0.0000 100.00% Gly 

Thr133 0.0218 99.72% Thr 

Leu134 0.0065 99.92% Leu 

Glu135 0.0038 99.96% Glu 

Phe136 0.0000 100.00% Phe 

 

Supplementary Table S 7: Conservancy and Shannon entropies for peptide 3. 

Positions numbered according to the HA sequence of A/Perth/16/2009 (H3N2). Overall 

conservancy reflects the proportion of H3N2 strains matching the full sequence of peptide 

3 to 100%. Shannon entropies reflect the overall variation at any given position. 

Conservancy values for individual positions reflect the proportion of H3N2 strains 

matching this individual residue.  
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Peptide 18 

 

Overall conservancy: 96.20% (4759/4999)  

 Shannon entropy Conservancy Consensus sequence 

Asp431 0.0038 99.96% Asp 

Thr432 0.0234 99.72% Thr 

Lys433 0.0057 99.94% Lys 

Ile434 0.0570 99.12% Ile 

Asp435 0.0054 99.94% Asp 

Leu436 0.0144 99.82% Leu 

Trp437 0.0073 99.92% Trp 

Ser438 0.0057 99.94% Ser 

Tyr439 0.0019 99.98% Tyr 

Arg440 0.0242 99.70% Arg 

Ala441 0.0299 99.60% Ala 

Glu442 0.0606 99.06% Glu 

Leu443 0.0380 99.50% Leu 

Leu444 0.0157 99.78% Leu 

Val445 0.0098 99.88% Val 

Ala446 0.0277 99.64% Ala 

 

Supplementary Table S 8: Conservancy and Shannon entropies for peptide 18. 

Positions numbered according to the HA sequence of A/Perth/16/2009 (H3N2). Overall 

conservancy reflects the proportion of H3N2 strains matching the full sequence of peptide 

18 to 100%. Shannon entropies reflect the overall variation at any given position. 

Conservancy values for individual positions reflect the proportion of H3N2 strains 

matching this individual residue.  
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HA306-318 
Overall conservancy: 2.5% (125/4999) 

Overall conservancy (consensus): 57.83% (2891/4999) 

 Shannon entropy Conservancy Consensus sequence 
Conservancy 
(consensus) 

Phe306 0.0121 99.86% Phe  

Lys307 0.1281 2.56% Arg 97.34% 

Tyr308 0.0090 99.90% Tyr  

Val309 0.0497 99.20% Val  

Lys301 0.0179 99.78% Lys  

Gln311 0.3865 87.14% Gln  

Asp312 0.7207 61.33% Asp  

Thr313 0.0141 99.84% Thr  

Leu314 0.0035 99.96% Leu  

Lys315 0.0090 99.90% Lys  

Leu316 0.0054 99.94% Leu  

Ala317 0.0051 99.94% Ala  

Thr318 0.0073 99.92% Thr 
 

 

Supplementary Table S 9: Conservancy and Shannon entropies for HA306-318. 

Positions for HA306-318 are numbered according to HA sequence of the Influenza 

A/Texas/1/77 (H3N2) strain. Overall conservancy reflects the proportion of H3N2 strains 

matching the full of HA306-318 to 100%. Overall conservancy of the consensus sequence 

reflects the proportions of H3N2 strains matching the full consensus sequence to 100%. 

Shannon entropies reflect the overall variation at any given position. Conservancy values 

for individual positions reflect the proportion of H3N2 strains matching this individual 

residue. Differences in the consensus sequence highlighted in red. 

 

 


