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Abstract  1	
  
Background: Cognitive control has been linked to both the microstructure of individual 2	
  
tracts and the structure of whole-brain networks, but their relative contributions in health 3	
  
and disease remain unclear.  4	
  
Objective: To determine the contribution of both localised white matter tract damage and 5	
  
disruption of global network architecture to cognitive control, in older age and Mild 6	
  
Cognitive Impairment (MCI). 7	
  
Methods: 25 patients with MCI and 20 age, sex and intelligence-matched healthy 8	
  
volunteers were investigated with 3 Tesla structural magnetic resonance imaging (MRI). 9	
  
Cognitive control and episodic memory were evaluated with established tests. Structural 10	
  
network graphs were constructed from diffusion MRI-based whole-brain tractography. 11	
  
Their global measures were calculated using graph theory. Regression models utilized 12	
  
both global network metrics and microstructure of specific connections, known to be 13	
  
critical for each domain, to predict cognitive scores.  14	
  
Results: Global efficiency and the mean clustering coefficient of networks were reduced 15	
  
in MCI. Cognitive control was associated with global network topology. Episodic 16	
  
memory, in contrast, correlated with individual temporal tracts only. Relationships 17	
  
between cognitive control and network topology were attenuated by addition of single 18	
  
tract measures to regression models, consistent with a partial mediation effect. The 19	
  
mediation effect was stronger in MCI than healthy volunteers, explaining 23-36% of the 20	
  
effect of cingulum microstructure on cognitive control performance. Network clustering 21	
  
was a significant mediator in the relationship between tract microstructure and cognitive 22	
  
control in both groups.  23	
  
Conclusions: The status of critical connections and large-scale network topology are both 24	
  
important for maintenance of cognitive control in MCI. Mediation via large-scale 25	
  
networks is more important in patients with MCI than healthy volunteers. This effect is 26	
  
domain-specific, and true for cognitive control but not for episodic memory. 27	
  
Interventions to improve cognitive control will need to address both dysfunction of local 28	
  
circuitry and global network architecture to be maximally effective. 29	
  
 30	
  
 31	
  
 32	
  
Keywords 33	
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 1	
  
 2	
  
1. Introduction  3	
  
 4	
  
Cognitive or executive control describes the marshalling of cognitive resources in the 5	
  
face of complex or competing demands (Shenhav et al., 2013). Impairment of control is 6	
  
an important feature of dementia (Royall et al., 1998) and is associated with changes in 7	
  
brain structure. We have previously shown that alterations in a single portion of the 8	
  
anterior cingulum bundle predict variation of cognitive control in healthy older people 9	
  
(Metzler-Baddeley et al., 2012a). This observation fits with a key role for the dorsal 10	
  
anterior cingulate cortex (Shenhav et al., 2013). However, this is only one node of a 11	
  
widely distributed network that is activated by control tasks (Cole and Schneider, 2007). 12	
  
Alterations in brain structure occur at multiple levels with aging and early 13	
  
neurodegeneration. An alternative viewpoint, therefore, is that performance might depend 14	
  
on emergent properties of the whole network rather than any single tract. The relationship 15	
  
between alterations at the level of tracts and whole networks, and their relative 16	
  
contribution to cognitive performance in aging and neurologic disease, are not known.  17	
  
  18	
  
Cognitive control and episodic memory have traditionally been associated with structures 19	
  
in the prefrontal cortex and medial temporal lobe, respectively (Gläscher et al., 2012; 20	
  
Alexander et al., 2007). This anatomical parcellation of function extends to key white 21	
  
matter connections. Cognitive control is exquisitely sensitive to microstructural 22	
  
differences in subsets of pathways within the cingulum bundle, including those likely to 23	
  
terminate in the dorsal anterior cingulate cortex (Metzler-Baddeley et al., 2012a). It is 24	
  
not, however, associated with variations in fornix microstructure, the principal correlate 25	
  
of verbal recall (Metzler-Baddeley et al., 2011). In Mild Cognitive Impairment (MCI), 26	
  
the prodromal stage of Alzheimer’s disease, microstructure is compromised in the fornix 27	
  
and other temporal tracts and residual memory performance remains dependent on 28	
  
temporal lobe connections (Metzler-Baddeley et al., 2012b). Performance, therefore, has 29	
  
been linked with relative specificity to microstructure of white matter connections within 30	
  
relevant networks.  31	
  
 32	
  
Graph theory provides a means to derive properties of the brain’s global ‘connectome’, 33	
  
such as measures of efficiency of network structure and clustering of network nodes 34	
  
(Rubinov and Sporns, 2012). Global efficiency is inversely related to topological distance 35	
  
between nodes and is typically interpreted as a measure of the capacity for parallel 36	
  
information transfer and integrated processing (Bullmore and Sporns, 2012). The 37	
  
clustering coefficient is a measure more weighted to the local environment of each node, 38	
  
as it quantifies the extent to which neighbouring nodes are connected to each other 39	
  
(Bullmore and Sporns, 2009). Reduced efficiency of network structure has been 40	
  
demonstrated in Alzheimer’s disease and linked to performance in both memory and 41	
  
executive tasks (Lo et al., 2010; Reijmer et al., 2013). In MCI, similar alterations in 42	
  
structural network topology have been observed, though findings at this early stage of 43	
  
neurodegeneration are less consistent (Bai et al., 2012; Shu et al., 2012). 44	
  
  45	
  
Previous neuroimaging studies have generally not considered both ‘local’ (nodes and 46	
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connections) and ‘global’ (network topology) measures together. To date, diffusion MRI 1	
  
studies have tended to focus either on detailed tract reconstructions or whole-brain 2	
  
approaches. It remains unclear how microstructural changes in single tracts relate to 3	
  
global network topology, and how important such a pathway of effect might be in 4	
  
cognitive function and dysfunction. This is a particularly relevant question for cognitive 5	
  
control. The cingulate cortex and its connections harbour critical functional 6	
  
specialisation, but the cingulum also provides a pathway of communication across large-7	
  
scale networks whose topology might also relate to cognition. 8	
  
 9	
  
The interplay between local tracts and global network properties – and the spatial scale of 10	
  
organisation that is most relevant to performance – have important implications for 11	
  
treatment. Treatments based on noninvasive stimulation could target specific local 12	
  
alterations in function, or the restoration of more widespread patterns of network 13	
  
structure and function. For example, transcranial magnetic stimulation has been shown to 14	
  
normalise functional connectivity in depression (Liston et al., 2014), and transcranial 15	
  
direct current stimulation also influences resting-state networks (Peña-Gómez et al., 16	
  
2012). This study combined investigation of critical tracts with global properties of 17	
  
structural networks. We determined whether network topology was altered in MCI and 18	
  
whether such alterations were an independent factor in cognitive performance. Mediation 19	
  
analyses were used to test the hypothesis that relationships between tract microstructure 20	
  
and cognition were mediated by alterations in global network topology.  21	
  
 22	
  
 23	
  
2. Material and Methods  24	
  
 25	
  
2.1 Participants  26	
  
25 patients with MCI were recruited from the Cardiff Memory Clinic. Standardised 27	
  
assessment included clinical history, ascertainment of vascular risk status, neurological 28	
  
examination, basic haematology and biochemistry investigations, neuroimaging with CT 29	
  
or MRI and cognitive screening with the Addenbrooke’s Cognitive Examination (Mioshi 30	
  
et al., 2006). Diagnosis of MCI was based on established current criteria (Albert et al., 31	
  
2011). Objective memory impairment was confirmed by a score of > 1.5 SDs below age-32	
  
matched controls on either the Addenbrooke’s verbal memory subscore or the visual 33	
  
memory test from the Repeatable Battery for the Assessment of Neurological Status. All 34	
  
patients had a Mini-Mental State Examination score of  ≥ 24 (mean 26, SD 1.7) and a 35	
  
Clinical Dementia Rating of 0.5. Seven patients had additional evidence of executive 36	
  
dysfunction (multidomain MCI), others had pure amnestic MCI. Consecutive patients, 37	
  
who were eligible and willing to take part, were recruited and assessed by a single 38	
  
neurologist (MJO).  39	
  
 40	
  
The 20 healthy control participants were drawn from 46 individuals between the ages of 41	
  
53 and 93 years, recruited for an aging study (Metzler-Baddeley et al., 2011). Among the 42	
  
46 elderly participants, one withdrew and another did not complete the study due to ill 43	
  
health. One participant was excluded because of subsequent diagnosis of Parkinson’s 44	
  
disease. Structural MRI scans (fluid-attenuated inversion recovery and T1-weighted) 45	
  
were inspected for overt pathology: three participants were excluded because of extensive 46	
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white matter hyperintensities suggestive of significant cerebral small vessel disease 1	
  
(Fazekas grade 3) (Fazekas et al., 1993), and one participant was excluded due to severe 2	
  
motion artifact. From remaining 39 subjects, a matched control group was sampled. The 3	
  
control sample were matched for age and premorbid IQ using data from the National 4	
  
Adult Reading Test-Revised (NART-R), an accepted measure of premorbid IQ. Age and 5	
  
NART-R only were used to select this group and to prevent bias, selection was performed 6	
  
blind to cognitive, clinical and MRI data. Participants older than 65 years (the MCI group 7	
  
were all over 65) and with a verbal IQ not exceeding 2 SDs above the average patient IQ 8	
  
in the NART-R provided a matched sample of 20 healthy control participants.  9	
  
 10	
  
Exclusion criteria for both groups were: a history of neurological disease or mental 11	
  
disorders (clinical disorders or acute medical conditions/physical disorders, as defined by 12	
  
DSM-IV-TR), including past history of moderate to severe head injury, prior or current 13	
  
drug or alcohol abuse, previous large-artery stroke or cerebral hemorrhage, known 14	
  
cervical, peripheral or coronary artery disease, structural heart disease or heart failure, 15	
  
and contraindications to MRI. Anxiety or antidepressant use was not an exclusion 16	
  
criterion, unless an individual met criteria for major depression. No patient with MCI met 17	
  
diagnostic criteria or had characteristic clinical features to suggest other degenerative 18	
  
disorders. An additional exclusion criterion for healthy participants was the past or 19	
  
current presence of subjective memory symptoms.  20	
  
 21	
  
Ethical approval for the study was provided by the South East Wales Research Ethics 22	
  
Committee. All participants provided informed consent in accordance with the 23	
  
Declaration of Helsinki.  24	
  
 25	
  
2.2 Cognitive assessment  26	
  
Neuropsychological assessment was performed over two 1.5-hour testing sessions. 27	
  
Cognitive control was assessed with tasks that required the maintenance of a task set 28	
  
under speeded response conditions: attention switching was examined using alternation 29	
  
between letters and digits with a Verbal Trails Test. The Stroop Color-Word test was 30	
  
used to assess the suppression of response incongruent information (Trenerry et al., 31	
  
1989). Verbal generation and fluency were measured with the verbal fluency tests from 32	
  
the D-KEFS for letters F, A and S and for the categories of animals and boys’ names. 33	
  
Motor planning skills based on spatial rules were assessed with the Tower of London test 34	
  
from the Delis and Kaplan Executive Function System battery (D-KEFS). The Digit 35	
  
Symbol Substitution test from the WAIS-III provided a measure of focused attention and 36	
  
psychomotor performance.  37	
  
 38	
  
Free recall was assessed with the Free and Cued Selective Reminding Test (Grober et al., 39	
  
1997). Additionally, the face recognition test from the Camden Recognition Memory 40	
  
Test (CRMT) was performed.  41	
  
 42	
  
2.3 MRI acquisition  43	
  
Diffusion-weighted MRI data were acquired using a 3T GE HDx MRI system (General 44	
  
Electric) with a twice-refocused spin-echo echo planar imaging sequence, providing 45	
  
whole oblique axial (parallel to the commissural plane) brain coverage (60 slices, 2.4 mm 46	
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thickness, field of view 23 cm, acquisition matrix 96 x 96). Acquisition was peripherally 1	
  
gated to the cardiac cycle. TE (echo delay time) was 87 ms and parallel imaging (array 2	
  
spatial sensitivity encoding (ASSET) factor 2) was used. The b-value was 1,200 s/mm2. 3	
  
Data were acquired with diffusion encoded along 30 isotropically distributed directions 4	
  
and 3 non-diffusion-weighted scans, according to an optimised gradient vector scheme 5	
  
(Jones et al., 1999). Acquisition time was approximately 13 min.  6	
  
 7	
  
T1-weighted structural MRI data were acquired using a 3D fast spoiled gradient recalled 8	
  
(FSPGR) echo sequence (matrix of 256 × 256 × 176, field of view of 256 × 256 × 176 9	
  
mm, resulting in isotropic 1 mm resolution). The timing parameters were TR/TE/TI = 10	
  
7.9/3.0/450ms, and the flip angle was 20°. 11	
  
  12	
  
2.4 Image processing and tractography  13	
  
The acquired diffusion-weighted images were corrected for distortion and motion 14	
  
artefacts with reorientation of encoding vectors (Leemans and Jones, 2009) and 15	
  
modulation of the signal intensity by the Jacobian determinant of the transformation 16	
  
(Jones and Cercignani, 2010). The free-water elimination approach was used to correct 17	
  
for atrophy-related partial volume effects due to CSF contamination (Pasternak et al., 18	
  
2009; Berlot et al, 2014).  19	
  
 20	
  
Whole-brain tractography was performed using ExploreDTI (www.exploreDTI.com) and 21	
  
a diffusion tensor model using every voxel as a seed point. A deterministic tracking 22	
  
algorithm estimated the principal diffusion orientation at each seed point and propagated 23	
  
in 0.5 mm steps along this direction. The fibre orientation was then estimated at the new 24	
  
location and tracking moved a further 0.5 mm along the direction that subtended the 25	
  
minimum change of principal direction. A streamline was traced until fractional 26	
  
anisotropy fell below 0.15 or the change in direction exceeded 60°.  27	
  
 28	
  
Three-dimensional reconstructions of the cingulum and of temporal association tracts 29	
  
were derived. Detailed reconstruction algorithms and linked reproducibility data, 30	
  
showing good reproducibility, have been described previously (Metzler-Baddeley et al., 31	
  
2011, 2012a, 2012b). 32	
  
  33	
  
Whole brain volume, normalised for head size, was estimated with SIENAX (Smith et 34	
  
al., 2002), part of FSL (FMRIB Software Library, http://www.fmrib.ox.ac.uk/fsl/,Version 35	
  
5.0). White matter lesions were segmented and their total volume quantified using a 36	
  
multispectral image-processing tool, MCMxxxVI (Hernandez et al., 2010).  37	
  
 38	
  
2.5 Network construction and graph theory-based analysis  39	
  
Whole-brain tract reconstructions were transformed into Montreal Neurological Institute 40	
  
(MNI) space within ExploreDTI, using a non-rigid transformation utilizing B-splines. 41	
  
Grey matter was then parcellated into 90 cortical and subcortical regions, 45 for each 42	
  
hemisphere, using the automated anatomical labeling (AAL) atlas (Figure 1). Each region 43	
  
was used to define a node of a network graph. Edges were defined by tractography 44	
  
streamlines connecting any pair of nodes. An edge was defined as present between two 45	
  
nodes if a streamline was reconstructed with start and end points in each. Networks were 46	
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weighted by the number of reconstructed streamlines.  1	
  
 2	
  
Network metrics were computed using Brain Connectivity Toolbox 3	
  
(https://sites.google.com/site/bctnet) (Rubinov and Sporns, 2010). We investigated 4	
  
measures of global and local network architecture: global efficiency, mean clustering 5	
  
coefficient and small-worldness.  6	
  
 7	
  
2.6 Statistical analysis  8	
  
Global efficiency, clustering coefficient and small-worldness were compared between 9	
  
MCI and control groups using unpaired t-tests. Associations with cognitive scores were 10	
  
computed in each group separately using Pearson’s product-moment correlation 11	
  
coefficients. Bonferroni correction for multiple comparisons was applied based on the 12	
  
number of network measures. Cognitive measures tend to be strongly correlated with 13	
  
each other and in these circumstances Bonferroni correction is vastly over-conservative, 14	
  
so correction was not applied for the number of cognitive measures. Partial correlation 15	
  
coefficients were calculated accounting for potential confounding variables: age, gender, 16	
  
education (in years), total brain volume and total white matter lesion volume. 17	
  
 18	
  
Linear regression models were constructed for Category Fluency and Digit Symbol 19	
  
Substitution task performance to investigate mediation effects. Measures of tract 20	
  
microstructure that were used were based on previously determined associations between 21	
  
Category Fluency and Digit Symbol Substitution, and the microstructure of cingulum 22	
  
segments: left anterior fractional anisotropy in controls, and left posterior mean 23	
  
diffusivity in MCI. These associations were identified in a previous analysis of the same 24	
  
dataset (based on diffusion MRI but not including network graph or graph theory 25	
  
measures), detailed in Metzler-Baddeley et al. (2012a). Separate models were constructed 26	
  
that included: i) tract microstructure alone; or ii) both tract microstructure and a single 27	
  
network measure. Thus, the relationships between tract microstructure and cognition, and 28	
  
network topology and cognition were established, and the influence of tract 29	
  
microstructure on cognition while controlling for network topology was assessed. The 30	
  
mediation effect was assessed as a decrease in the value of the standardised regression 31	
  
coefficients (β) for the association between cingulum microstructure and cognition after 32	
  
inclusion of a network measure in the model.  Estimates of direct and indirect causal 33	
  
effects were obtained from the models using the non-parametric bootstrapping approach, 34	
  
and the proportion mediated by the network measure was estimated (Imai et al., 2010). 35	
  
This approach allowed measurement of a partial mediation effect and was not aimed at 36	
  
showing full mediation (where inclusion of a mediator leads to a measured association 37	
  
between two factors falling to zero). To test specificity of the investigated relationships 38	
  
for cognitive control, a similar analysis was performed for episodic memory: parallel 39	
  
regression models were constructed with free recall as the dependent variable and fornix 40	
  
tissue volume fraction as the relevant single-tract measure (Metzler-Baddeley et al., 41	
  
2012b). 42	
  
  43	
  
Structural equation modelling was performed within the statistical software package R 44	
  
(www.r-project.org), using an approach analogous to previous studies (Lawrence et al., 45	
  
2014; Knopman et al., 2015). Tract and network measures were tested for interaction in 46	
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each model. No significant interaction was found; therefore interaction terms were not 1	
  
included in final models. For terms in all models, variance inflation factors indicated no 2	
  
significant multicollinearity (variance inflation factors < 3). 3	
  
  4	
  
 5	
  
3. Results  6	
  
 7	
  
3.1 Group comparisons  8	
  
Demographic, cognitive and general MRI measures for the groups are provided in Table 9	
  
1. Structural networks of both healthy older adults and patients with MCI exhibited 10	
  
small-world topology. There was no difference in small-worldness between groups. In 11	
  
contrast, both global efficiency and mean clustering coefficient were reduced in MCI. On 12	
  
the basis of group differences, global efficiency and mean clustering coefficient were 13	
  
taken forward to analysis of relationships with cognition (leading to Bonferroni-corrected 14	
  
significance equivalent to uncorrected p < .025).  15	
  
 16	
  
3.2 Relationship between network metrics and cognitive scores  17	
  
In MCI, both global efficiency and mean clustering coefficient were associated with 18	
  
cognitive control (Tables 2 and 3). In contrast, there were no relationships between global 19	
  
network measures and episodic memory performance. Measures of network topology 20	
  
were not correlated with cognitive scores in control participants.  21	
  
 22	
  
3.3 Cognitive control, global network properties and individual tract structure  23	
  
In MCI, the inclusion of global network properties led to an attenuation of the 24	
  
relationship between single tract microstructure and cognition (Tables 4 and 5). For 25	
  
Category Fluency, both left posterior cingulum microstructure and mean clustering 26	
  
coefficient were significant independent predictors (Table 5). 27	
  
  28	
  
Figure 2 displays path diagrams of the mediation analysis. The magnitudes of mediation 29	
  
effects are summarized in Figure 3. The proportion of the effect of cingulum 30	
  
microstructure on cognitive scores, mediated by global efficiency, varied from 22-35% 31	
  
(Figure 3). In patients, the mediation effect was strongest for the relationship between left 32	
  
posterior cingulum and Category Fluency, 31% of which was explained by global 33	
  
efficiency (p = .12) and 36% by mean clustering coefficient (p = .02). Mean clustering 34	
  
coefficient was also a significant partial mediator of the link between left anterior 35	
  
cingulum and Category Fluency in controls (19% of variance due to mediation effect, p = 36	
  
.04). Mediation effects of network topology were not demonstrated for episodic memory 37	
  
and the association between fornix structure and free recall, in either of the two groups 38	
  
(Table 6, Figure 3).  39	
  
 40	
  
4. Discussion  41	
  
 42	
  
MCI is often considered a prodrome of dementia. We showed previously that 43	
  
microstructure is altered in white matter tracts in MCI and that alterations in specific 44	
  
tracts relate to specific aspects of the cognitive deficit. The present analysis demonstrates 45	
  
that global properties of the structural connectome are also altered. Patients with MCI had 46	
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reduced global efficiency and mean clustering coefficient, in comparison with matched 1	
  
controls. While whole-brain network measures were not related to episodic memory, 2	
  
measures of network efficiency and clustering were related to cognitive control in MCI. 3	
  
This was the case despite the fact that episodic memory deficits were the most consistent, 4	
  
indeed defining feature of the MCI group. Episodic memory impairment was a 5	
  
prerequisite for the diagnosis while only seven patients with MCI displayed additional 6	
  
executive deficits. This result suggests that global networks are perturbed in MCI, but are 7	
  
not critical to the core deficit in episodic memory, which relates to damage within the 8	
  
relatively narrow and circumscribed extended hippocampal network. 9	
  
  10	
  
A relationship between network efficiency and executive function has been described in 11	
  
Alzheimer’s disease (Reijmer et al., 2013), but also in other brain disorders such as 12	
  
traumatic brain injury (Caeyenberghs et al., 2012), small-vessel disease (Lawrence et al., 13	
  
2014) and cerebral amyloid angiopathy (Reijmer et al., 2015). In patients with small-14	
  
vessel disease and cerebral amyloid angiopathy, network measures were related only to 15	
  
executive function, but not memory performance. However, in these diseases episodic 16	
  
memory deficits are mild or absent, so this dissociation might have been explained by a 17	
  
lack of variance in memory scores. In the present study, conversely, episodic memory 18	
  
was impaired to a greater extent, and more consistently, than cognitive control. This 19	
  
dissociation therefore is more likely to reflect the functional anatomy of cognitive control 20	
  
and episodic memory in the brain and the dependence of cognitive control on a more 21	
  
diffuse network. Further, when correlations were controlled for the volume of white 22	
  
matter lesions, as well as other potential confounders, the pattern of associations 23	
  
remained consistent, and in some cases became stronger, indicating that small vessel 24	
  
disease did not account for the associations observed in this study. Mediation analyses 25	
  
suggested that the relationship between cingulum microstructure and cognitive control 26	
  
was partly mediated by global network topology, while no such link was observed for the 27	
  
relationship between fornix structure and episodic memory. These findings further 28	
  
underline a qualitatively different relationship between tracts and cognitive function for 29	
  
cognitive control and episodic memory. 30	
  
  31	
  
One intriguing parallel to the pattern of results is that pathological processes also vary in 32	
  
whether they target local structures or more global infrastructure. For example, amyloid 33	
  
and tau pathologies have strong local predilections, at least early in the course of disease. 34	
  
Microvascular disease, on the other hand, leads to diffuse alterations in white matter 35	
  
microstructure so, potentially, it could have a general effect on network efficiency 36	
  
(Lawrence et al., 2014). One strength of the approach taken is that it provides a way to 37	
  
understand how coexistent pathologies could interact. For example, localised 38	
  
neurodegeneration and network-wide effects of diffuse microvascular disease could act 39	
  
synergistically to impair cognitive or executive control.  40	
  
 41	
  
However, the contrasting relationships of network topology to episodic memory and 42	
  
cognitive control might also be related to methodology used. One possibility is that 43	
  
episodic memory depends on a network that more heavily involves subcortical structures 44	
  
and connections, particularly in the diencephalon, and that in turn topology of these 45	
  
networks is not strongly represented in whole-brain network metrics, constructed using 46	
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current methods. Parcellation of nodes might be more effective for networks that involve 1	
  
multiple neocortical regions, such as those involved in cognitive control, than for 2	
  
networks with fine-grained subcortical anatomy. The AAL atlas used, as well as 3	
  
alternative parcellation techniques, do not include the mammillary bodies, for example, 4	
  
which are crucial structures within the extended hippocampal network involved in 5	
  
episodic memory. 6	
  
 7	
  
The pattern of results suggests that damage to a tract such as the cingulum can degrade 8	
  
cognitive performance through two distinct roles of this tract – as a conduit for 9	
  
communication of specific information within a dedicated network for cognitive control, 10	
  
and as a more generic “backbone” for communication across global brain networks. 11	
  
Previous work has shown that hub regions such as the anterior and posterior cingulate 12	
  
cortices, and their connections, might be important not only because they harbour critical 13	
  
functional specialisations but also because they mediate connectivity across the structural 14	
  
network more broadly including, for example, in the case of the posterior cingulate 15	
  
cortex, tuning network metastability (Leech and Sharp, 2014).  16	
  
 17	
  
A limitation of this study, common to studies based on tractography, is the risk of false 18	
  
positive and false negative connections. Weighting of network edges by the total number 19	
  
of reconstructed streamlines should reduce the impact of anatomically spurious edges as, 20	
  
in general, only a few outlier streamlines will run between regions that do not have a true 21	
  
connection. The choice of method for weighting edges is a controversial aspect of the 22	
  
application of graph theory to structural networks. Number of streamlines was used to 23	
  
offer consistency with previous studies and to avoid using microstructural measures 24	
  
known to be abnormal in MCI, but the effect of different weighting approaches has not 25	
  
been investigated in detail. Cognitive control is multifaceted and a number of measures 26	
  
provide overlapping insights into these processes. The Bonferroni method is highly over-27	
  
conservative in the presence of multiple inter-correlated measures. Correction was 28	
  
therefore applied for number of network measures but not for number of cognitive 29	
  
measures, so that the risk of false positive correlations may not be completely eliminated 30	
  
in the regression analyses. Similarly, a large number of mediation models could have 31	
  
been constructed based on different measures. To minimise the risk of mediation 32	
  
emerging by chance, we selected the two measures most consistently associated with 33	
  
cognition in regression analysis (Tables 2 and 3). In addition, a limitation of the 34	
  
mediation analysis performed is that we cannot make definite conclusions on the 35	
  
direction of the effect. Even though it seems less biologically plausible, our results do not 36	
  
exclude the possibility of cingulum microstructure mediating the effect of network 37	
  
topology on cognition.  38	
  
 39	
  
Further insight into the dynamics of the relationship between ‘local’ and ‘global’ disease-40	
  
related alterations could be gained by observing our population in a longitudinal setting, 41	
  
or additionally including a group of patients with more severe cognitive impairment. The 42	
  
current study does not extend to brain function, inferred from functional MRI data. It is 43	
  
possible that the topology of structural networks will not be entirely reflected by 44	
  
functional networks, which differ in being dynamic over short time scales. Finally, the 45	
  
interplay between ‘local’ and ‘global’ structural and functional changes might be of 46	
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interest beyond cognitive function. Functional variation within the cingulate cortex and 1	
  
the large-scale networks might be related to the expression of specific clinical 2	
  
phenotypes, rather than disease-related alterations, such as the occurrence of 3	
  
hyperarousal, anxiety or hallucinations in neurodegenerative disorders (Franciotti et al., 4	
  
2015). A similar approach could be used to test this hypothesis in Alzheimer’s disease 5	
  
and other neurodegenerative disorders. 6	
  
 7	
  
Potential treatments such as transcranial magnetic stimulation or direct current 8	
  
stimulation have largely been thought of in terms of localised effects on function. 9	
  
However, a number of studies show that treatment delivered locally can have effects on 10	
  
global network topology and dynamics (Polanía et al., 2011; Shafi et al., 2014). In 11	
  
principle, these wider effects could also be harnessed to restore network function. Our 12	
  
results suggest that for some functions – such as cognitive control – the ideal strategy 13	
  
may involve targeting both local and global alterations in brain structure and function.  14	
  
 15	
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9. Figure Legends 1	
  
 2	
  
Figure 1. Overview of methods. After preprocessing each diffusion tensor imaging 3	
  
dataset (A), whole-brain tractography was performed (B). Cingulum segments of interest 4	
  
were reconstructed (C) – left anterior in healthy elderly (yellow), left posterior in patients 5	
  
with mild cognitive impairment (red). Whole-brain tractograms were coregistered to the 6	
  
automated anatomical labeling atlas template (D), consisting of 90 regions corresponding 7	
  
to nodes of the network. The number of reconstructed streamlines between any two 8	
  
regions of the template was used to weight network edges, resulting in a 90 x 90 9	
  
weighted adjacency matrix (E). Measures of network topology were computed for 10	
  
individual brain networks (F). Tract and network measures were assessed as predictors of 11	
  
cognitive control performance (G). Age, gender, educational attainment, brain volume 12	
  
and volume of white matter hyperintensities were used as covariates. 13	
  
 14	
  
 15	
  
Figure 2. Mediation models for the effect of global efficiency and mean clustering 16	
  
coefficient in healthy volunteers (A) and patients with MCI (B). Diagrams present 17	
  
standardised regression coefficients for each path in the model; coefficients after the slash 18	
  
show path values adjusted for the mediation effect. Coefficients in bold correspond to 19	
  
significant associations (p < .05). p values stand for significance of combined models. 20	
  
The proportion of the effect of tract microstructure (fractional anisotropy – FA; mean 21	
  
diffusivity – MD; tissue volume fraction – f), mediated by the measure of network 22	
  
topology, is displayed as percentage with parenthetical p value, corresponding to the 23	
  
significance of the mediation effect.  24	
  
 25	
  
 26	
  
Figure 3. Proportion of the effect explained by mediation. The proportion of the effect 27	
  
of cingulum microstructure on cognition mediated by network topology in controls and 28	
  
patients with MCI. Error bars correspond to the interquartile range. 29	
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Table 1. Demographic data and group comparison of cognitive scores, MRI 1	
  
measures and measures of network topology. Data are shown as mean (SD). A cube 2	
  
root transform was applied to white matter lesion volume. Significant differences (p < 3	
  
.05) are highlighted in bold.  4	
  
MCI – Mild Cognitive Impairment; NART-R – National Adult Reading Test-Revised; 5	
  
FCSRT – Free and Cued Selective Reminding Test; CRMT – Camden Recognition 6	
  
Memory Test; NBV – normalised brain volume; WML – white matter lesion  7	
  
 8	
  

 Controls MCI t statistic (df); p  
Age (yrs.) 74.0 (6.5) 76.8 (7.3) 1.3 (43); .19 
Education (yrs.) 15 (3) 14 (4) 1.8 (43); .08 
NART-R IQ 120 (9) 115 (11) 1.8 (43); .08 
Percentage females 50% 44%  
    
Cognitive measures    
Category fluency 39.5 (10.9) 25.6 (7.9) 4.9 (41); <.001 
Verbal fluency 43.2 (13.1) 35.9 (11.3) 1.9 (41); .067 
Digit Symbol Substitution 56.5 (18.6) 34.8 (11.9) 4.6 (40); <.001 
Stroop suppression 93.4 (19.1) 57.4 (28.2) 4.7 (40); <.001 
Tower of London rule 
violations 

1.2 (1.7) 5.8 (4.5) 4.2 (41); <.001 

Trails switching 74.0 (31.6) 105.4 (50.7) 2.4 (42); .021 
FCSRT free recall 29.3 (8.4) 12.1 (9.7) 6.2 (42); <.001 
CRMT face recognition 23.4 (2.8) 20.0 (3.4) 3.6 (41); <.001 
    
MRI – general measures    
NBV (ml) 1,451.4 (57.4) 1,421.7 (57.4) 1.7 (43); .091 
WML volume (cm) 15.6 (6.7) 19.6 (10.3) 1.5 (41); .15 
    
Structural network properties    
Global efficiency 0.0260 (0.0021) 0.0239 (0.0036) 2.6 (39.6); .014 
Mean clustering coefficient 18.1 (1.9) 16.7 (2.3) 2.2 (43); .037 
Small-worldness 1.90 (0.26) 1.95 (.28) 0.63 (43); .53 
  9	
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 1	
  
Table 2. Univariate relationship between network topology and cognition in patients 2	
  
with MCI and healthy elderly. Pearson product-moment correlations (r) of cognitive 3	
  
scores with global efficiency (Eglob) and mean clustering coefficient (C), with 4	
  
parenthetical p values. Coefficients shown in bold reach significance after Bonferroni 5	
  
correction for number of network measures (uncorrected p < .025), but not number of 6	
  
cognitive tests. 7	
  
 8	
  

 MCI Controls 
Eglob C  

 
Eglob C 

r (p) 
Cognitive control     
Category fluency .56 (.005) .61 (.002) .34 (.14) .20 (.39) 
Verbal fluency .17 (.43) .33 (.12) .00 (.99) -.04 (.87) 
Digit Symbol Substitution .48 (.022) .40 (.06) .29 (.23) .14 (.55) 
Stroop suppression .46 (.025) .21 (.32) .26 (.29) .24 (.33) 
Tower of London rule violations -.04 (.86) -.12 (.57) -.04 (.88) .04 (.88) 
Trails switching -.17 (.44) -.42 (.041) -.20 (.40) -.28 (.24) 
Memory     
FCSRT free recall .28 (.19) .32 (.13) .16 (.51) .00 (.99) 
CRMT face recognition .40 (.05) .08 (.71) .16 (.51) .01 (.96) 
 9	
  
Table 3. Relationship between network topology and cognition in patients with MCI 10	
  
and healthy elderly, adjusting for covariates. Partial correlation coefficients (r) of 11	
  
cognitive scores with global efficiency (Eglob) and mean clustering coefficient (C), 12	
  
covarying for age, gender, education, normalised brain volume and total volume of white 13	
  
matter hyperintensities, with parenthetical p values. Coefficients shown in bold reach 14	
  
significance after Bonferroni correction for number of network measures (uncorrected p 15	
  
< .025), but not number of cognitive tests. 16	
  
 17	
  

 MCI Controls 
Eglob C  

 
Eglob C 

r (p) 
Cognitive control     
Category fluency .41 (.13) .64 (.011) .23 (.46) .28 (.35) 
Verbal fluency .34 (.22) .42 (.12) .02 (.96) .01 (.96) 
Digit Symbol Substitution .73 (.002) .49 (.06) .27 (.38) .15 (.62) 
Stroop suppression .64 (.010) .26 (.34) .37 (.21) .24 (.42) 
Tower of London rule violations -.10 (.74) -.23 (.41) .10 (.74) .05 (.86) 
Trails switching -.04 (.89) -.53 (.041) -.22 (.46) -.33 (.28) 
Memory     
FCSRT free recall .51 (.05) .47 (.07) .03 (.93) .01 (.96) 
CRMT face recognition .29 (.29) -.02 (.95) .22 (.46) -.24 (.42) 
 18	
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Table 4. Regression models for measures of cognitive control in healthy elderly. 1	
  
Models with fractional anisotropy of the left anterior cingulum (1), and additionally a 2	
  
network measure (2) as predictors. Displayed are standardised regression coefficients (β) 3	
  
with parenthetical p values. 4	
  
Eglob – global efficiency; C – mean clustering coefficient. 5	
  
 6	
  
 Model 1: 

Cingulum 
 

 

Model 2: 
Network 
measure 

Cingulum  
 
β (p) 

Category Fluency .63 
(.003) 

 
 

.52 
(.022) 

Eglob .29 
(.11) 

.60 
(.003) 

C .23 
(.21) 

.64 
(.002) 

Digit Symbol  Eglob .25 
(.23) 

.50 
(.026) 

C .17 
(.43) 

.53 
(.023) 

 7	
  
 8	
  
Table 5. Regression models for measures of cognitive control in MCI. Models with 9	
  
mean diffusivity of the left posterior cingulum (1), and additionally a network measure 10	
  
(2) as predictors. Displayed are standardised regression coefficients (β) with parenthetical 11	
  
p values. 12	
  
Eglob – global efficiency; C – mean clustering coefficient. 13	
  
 14	
  
 Model 1: 

Cingulum  
 

 

Model 2: 
Network 
measure 

Cingulum 
 
β (p)  

Category Fluency -.66 
(.001) 

 
 

-.52 
(.016) 

Eglob .32 
(.15) 

-.47 
(.037) 

C .42 
(.020) 

-.49 
(.008) 

Digit Symbol  Eglob .33 
(.17) 

-.33 
(.18) 

C .25 
(.25) 

-.42 
(.058) 
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 1	
  
Table 6. Regression models for free recall in healthy elderly and MCI. Models with 2	
  
fornix volume fraction (1), and fornix volume fraction and a network measure (2) as 3	
  
predictors. Displayed are standardised regression coefficients (β) with parenthetical p 4	
  
values. 5	
  
Eglob – global efficiency; C – mean  clustering coefficient 6	
  
 7	
  
 8	
  
 Model 1: 

Fornix  
 

 

Model 2: 
Network 
measure 

Fornix 
 
β (p) 

Healthy elderly .63 
(.003) 

 
 

.39 
(.058) 

Eglob -.11 
(.58) 

.68 
(.004) 

C -.29 
(.15) 

.75 
(.001) 

MCI  Eglob .09 
(.71) 

.34 
(.17) 

C .24 
(.25) 

.33 
(.11) 
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