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We derive the correct analytical mode normalization for periodic structures at
normal incidence and use it to approximate the dependence of the resonance shift
on the refractive index in a sensing volume by first-order perturbation theory de-
rived from the resonant state expansion. Furthermore, we show how to calculate
optical resonances from the scattering matrix efficiently, and discuss in detail our
results for an array of rod antennas.

1 Periodic systems

1.1 Wave equation

This section is devoted to review Maxwell’s equations in linear media and the derivation of
the wave equation. The curl Maxwell’s equations in cgs units and in frequency domain are
as follows:

∇×E = ik0µH , ∇×H = −ik0εE +
4π

c
j . (S1)

In these equations and the following sections, a time dependence exp(−iωt) is assumed, and
k0 = ω/c is the vacuum wavenumber. Applying the curl operator to the first equation results
for µ = 1 in the following wave equation:

L(ω)E ≡ −∇×∇×E + k2
0εE = −ik0

4π

c
j . (S2)

We introduced here the operator L denoting the differential operator of the wave equation
as a function of frequency ω.

1.2 Bloch’s theorem

For periodic systems, we may use Bloch’s theorem, and define k dependent electric and
magnetic fields as well as currents as

E(k, r) = eik·rEk(r) , (S3a)

H(k, r) = eik·rHk(r) , (S3b)

j(k, r) = eik·rjk(r) . (S3c)

In this case, the wave vector k resides in the first Brillouin zone, and Ek, Hk, and jk denote
functions depending on k and having the periodicity of the system. For the sake of simplicity
and due to its high relevance, we will consider below only the case k = 0, which corresponds
to normal incidence. The more general case with arbitrary k will be discussed in future work.
Henceforth, we will omit the subscript k.
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1.3 Reciprocal lattice

If we consider periodic systems, the permittivity obeys the following relation:

ε(r + A) = ε(r) . (S4)

In the two-dimensional periodic case, the vector A can be defined as A = A1a1 +A2a2, with
Aα being integer multiples of the period Pα in direction α, and aα denoting a normalized basis
vector in the direction of periodicity. Without the loss of generality, we assume a1 and a2

to be vectors perpendicular to the z axis. Note that, in general, the directions of periodicity
can be non-orthogonal, i.e., aα · aβ 6= δαβ. For such a two-dimensional lattice, there exists a
reciprocal lattice with reciprocal lattice vectors G = G1g1 +G2g2, where Gα = 2πgα/Pα for
gα ∈ Z. In this case, the normalized basis vectors gα fulfill the relation gα · aβ = δαβ.

1.4 Homogeneous layers

In the case that ε is isotropic and spatially independent in a slab or half-space, we can derive
a general solution of equation (S2) in that region by a decomposition in plane waves. In a
periodic system,

Ehom(r;ω) =
∑
G,p

a
(p)
G (ω)E

(p)
G (ω)eiG·r+iκG(ω)z , (S5)

where G denotes reciprocal lattice vectors. The vector E
(p)
G defines the polarization state

and is independent of r. There are two orthogonal polarization states for each G, indicated
by the superscript p. The orthogonal polarization basis can be chosen linearly (i.e., s for
senkrecht and p for parallel) polarized, which we will do in the following. The polarization
vector for a given G must satisfy the divergence equation:

∇ ·E(p)
G eiG·r+iκGz = 0 . (S6)

While the lateral wave vector components G of the plane wave solutions can be considered
as a set of parameters, the z component directly follows from equation (S2) for j = 0:

κG = ±
√
εk2

0 −G2 . (S7)

The sign before the square root depends on the direction of propagation or decay of the
corresponding solution of Maxwell’s equations.

In the next sections, we will use the following orthogonality relation for linearly polarized
solutions in homogeneous space. Integrating over one unit cell U with area Su straight-
forwardly results in∫

U

dxdyE
(p)
G ·E

(p′)
G′ eiG·reiG

′·r = SuE
(p)
G ·E

(p′)
G′ δG,−G′δp,p′ . (S8)

2 Eigenstates and their normalization

It has been shown for single spherical particles and cylindrical structures as well as homo-
geneous waveguide layers [1–6] how the Green’s dyadic of L can be expanded in terms of
eigenstates Em with complex eigenfrequencies ωm, which for outgoing boundary conditions
satisfy

L(ωm)Em = 0 . (S9)

For this purpose, a method has been developed to assign the proper weight to each eigen-
function, i.e., to carry out a correct mode normalization. In contrast to other methods [7–9],
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the approach is fully analytical and does not involve any far-field approximations. Here, we
extend this method to periodic systems.

The Green’s dyadic of a periodic system satisfies the following equation:

L(ω)G(r, r′;ω) =
∑
A

1̂δ(r− r′ −A) . (S10)

The summation on the right hand side is understood to run over all lattice vectors A. In
order to expand the Green’s dyadic in terms of eigenstates, we may first make an analytical
continuation to the complex ω plane, on which the eigenstates denote a countable number
of simple poles of G. Except for the poles, the Green’s dyadic remains finite over the whole
complex frequency plane and vanishes for |ω| → ∞ when limiting the spatial regions to
the periodic structure [1], i.e., when excluding homogenous layers on top and on bottom of
a periodic stack of layers, where the fields can diverge for |ω| → ∞ due to the outgoing
boundary conditions. We will focus now on such inner regions, including the interfaces to
the outer homogeneous half-spaces. In contrast to aperiodic systems, the Green’s dyadic
exhibits discontinuities due to the Rayleigh anomalies [5]. Hence, in combination with the
Mittag-Leffler theorem [10], we can expand the Green’s dyadic locally as

G(r, r′;ω) =
∑
m

Rm(r, r′)

ω − ωm
+ ∆G(r, r′;ω) , (S11)

where R is a tensor that has yet to be determined, and the influence of the Rayleigh anomaly
can be written as [5]

∆G(r, r′;ω) =
1

2πi

∑
m

0∫
−∞

dζ
∆Gm(r, r′; ζ)

ω − cm − iζ
, (S12)

with ∆Gm(r, r′; ζ) = limδ→0 G(r, r′; cm+δ+iζ)−G(r, r′; cm−δ+iζ). Here, cm denotes branch
points due to the Rayleigh anomalies on the real frequency axis.

We proceed as in [3, 4, 6] and introduce an analytical continuation Ẽm(r;ω) of Em(r)
around ωm with

lim
ω→ωm

Ẽm(r;ω) = Em(r) , (S13)

which is defined as a solution of the following differential equation:

L(ω)Ẽm(r, ω) =
ω2 − ω2

m

c2
σm(r) . (S14)

In this case, σm(r) is an arbitrary periodic source vanishing outside the periodic structure.
The solution of equation (S14) can be obtained by convoluting the Green’s dyadic with

the source term. Using our ansatz defined in equation (S11), we obtain:

Ẽm(r;ω) =
∑
m′

1

c2

ω2 − ω2
m

ω − ωm′

∫
V

dV ′Rm′(r, r′) · σm(r′)

+
∑
m′

ω2 − ω2
m

2πic2

cm∫
cm−i∞

dω′
∫
V

dV ′
∆Gm′(r, r′;ω′)

ω − ω′
· σm(r′) .

(S15)

Taking the limit ω → ωm, it is obvious that all terms with ωm′ 6= ωm as well as all contri-
butions from the Rayleigh anomalies will vanish. Therefore, the integral in the first line of
equation (S15) must result for m = m′ in a term proportional to Em, leading to the following
ansatz for Rm:

Rm(r, r′) = c2Em(r)⊗ Fm(r′)

2ωm
. (S16)
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This ansatz requires that ∫
V

dV Fm(r) · σm(r) = 1 , (S17)

where V is a volume limited to one unit cell in the periodic directions and sufficiently large
to include all non-zero regions of σm in the aperiodic directions. The symbol ⊗ denotes the
vector direct product. The relation is not valid for poles at ω = 0, i.e., static modes, which
are necessary for a complete set of resonant states, but can be omitted for the perturbation
theory that we develop here.

In the case that two modes are degenerate, we may chose appropriate source terms σm,
which ensure that

∫
V dV Fm(r) · σm′(r) = δmm′ for the degenerate modes. Furthermore,

considering reciprocity, it directly follows that Fm = Em. In summary, the general eigentstate
decomposition of the Green’s dyadic yields for reciprocal periodic systems at normal incidence

G(r, r′;ω)=c2
∑
m

Em(r)⊗Em(r′)

2ωm (ω − ωm)
+ ∆G(r, r′;ω) . (S18)

We can now derive the proper normalization of the modes by following the procedure
described in [1–6]. Let us consider equation (S14) and expand the differential equation for
small deviations from ωm using ω = ωm + ∆ω. Thus, the differential equation yields:

2ωm
c2

∆ωσm +
∆ω2

c2
σm = −∇×∇×

[
Em + Ẽ′m∆ω +O(∆ω2)

]
+

+

[
ω2
m

c2
ε(r;ωm) +

∂
(
ω2ε
)

c2∂ω

∣∣∣∣∣
ωm

∆ω +O(∆ω2)

] [
Em + Ẽ′m∆ω +O(∆ω2)

]
.

(S19)

Note that we have used equation (S13) to evaluate the zeroth order of the Taylor expansion of
Ẽm, while Ẽ′m denotes the first order derivative of Ẽm with respect to ω at ωm. Sorting this
equation by powers of ∆ω up to linear order results in the following independent equations:

−∇×∇×Em +
ω2
m

c2
ε(r;ωm)Em = 0 , (S20)

−∇×∇× Ẽ′m +
ω2
m

c2
ε(r;ωm)Ẽ′m +

∂
(
ω2ε
)

c2∂ω

∣∣∣∣∣
ωm

Em =
2ωm
c2

σm . (S21)

The first equation is simply the eigenvalue equation for Em and ωm. Multiplying the second
equation from the left with Em and the first equation with Ẽ′m and subtracting one from the
other results in

−Em ·
(
∇×∇× Ẽ′m

)
+ Ẽ′m · (∇×∇×Em) +Em ·

∂
(
ω2ε
)

c2∂ω

∣∣∣∣∣
ωm

Em =
2ωm
c2

Em · σm . (S22)

Integration over a volume V large enough to span over one unit cell as well as the whole
structure of interest yields in combination with equation (S17):

c2

2ωm

∫
V

dV

[
−Em ·

(
∇×∇× Ẽ′m

)
+ Ẽ′m ·(∇×∇×Em) + Em ·

∂
(
ω2ε
)

c2∂ω

∣∣∣∣∣
ωm

Em

]
= 1 .

(S23)
In the third term of the integral, the derivative of ω2ε with respect to ω can be transformed
into a derivative with respect to ω2 to absorb the prefactor c2/2ωm. The first two terms can
be converted into a surface integral using vector identities. In combination with the diver-
gence condition of the electric field in homogeneous space, we thus obtain the normalization
condition

Im + Sm = 1 , (S24)
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where the contributions Im and Sm are given by

Im =

∫
V

dV Em ·
∂(ω2ε)

∂(ω2)

∣∣∣∣
ωm

Em , (S25)

Sm =
c2

2ωm

∮
∂V

dS
(
Em ·∂sẼ′m−Ẽ′m ·∂sEm

)
. (S26)

Here, ∂V denotes the surface of V, and ∂s is the derivative in the direction of the surface
normal. A great simplification occurs due to V spanning over one unit cell, because in
this case, the surface integral vanishes in all periodic directions. Thus, for periodic stacks
of layers, we only have to deal with the top and bottom surfaces in the superstrate and
substrate, respectively.

Equation (S26) contains the yet unknown Ẽ′m. As the non-vanishing aperiodic contri-
butions of surface ∂V are in the exterior regions of our system, where Ẽm is a solution of
homogeneous space that obeys the continuity conditions at the outermost interfaces as well
as outgoing boundary conditions to the far field, we can decompose it in the outer regions
(denoted by r>) into a plane wave basis:

Ẽm(rν>;ω) =
∑
G,p

ã
(p,ν)
m,G(ω)E

(p,ν)
G (ω)︸ ︷︷ ︸

≡E(p,ν)
m,G (ω)

eiG·r
ν
>+iκνG(ω)∆z︸ ︷︷ ︸
≡ψνG(rν>;ω)

. (S27)

By ∆z, we denote here the distance to the plane, on which the expansion coefficients ã
(p,ν)
m,G

are defined, with ∆z > 0 specifying points in space that are further away from the periodic
structure. The superscript ν indicates whether we consider the expansion in the top or

bottom half-space. The frequency-dependent polarization vectors E
(p,ν)
G are normalized such

that
SuE

(p,ν)
G (ωm) ·E(p,ν)

−G (ωm) = 1 . (S28)

Note that the frequency dependence of the polarization vector E
(p,ν)
G in equation (S27) follows

from equation (S6) and the frequency dependence of κνG for a non-vanishing z component of

E
(p,ν)
G . Therefore, in p polarization, we have to account for the frequency dependence, while

in s polarization, we can choose E
(s,ν)
G such that it does not depend on ω due to its zero z

component.
From equation (S27), we can now derive Ẽ′m by differentiating with respect to ω at ωm:

Ẽ′m =
∑
G,p

∂E
(p,ν)
m,G

∂ω

∣∣∣∣
ωm

ψνG(rν>;ωm) + E
(p,ν)
m,G(ωm)

∂ψνG
∂ω

∣∣∣∣
ωm

. (S29)

As E
(p,ν)
m,G is independent of rν>, the integrand of the surface term in equation (S26) yields

Em ·∂sẼ′m−Ẽ′m ·∂sEm =
∑

G,G′,p,p′

E
(p,ν)
m,G(ωm)·

∂E
(p′,ν)
m,G′

∂ω

∣∣∣∣
ωm

(
ψνG

∂ψνG′

∂s
− ψνG′

∂ψνG
∂s

)

+E
(p,ν)
m,G(ωm)·E(p′,ν)

m,G′ (ωm)

(
ψνG

∂2ψνG′

∂s∂ω

∣∣∣∣
ωm

−
∂ψνG
∂s

∂ψνG′

∂ω

∣∣∣∣
ωm

)
.

(S30)

If we assume that the outermost surface of the normalization volume towards the upper
and lower half-spaces is a plane normal to the z direction, then we can use the orthogonality
relation defined in equation (S8) to simplify the evaluation of the surface integration in
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equation (S26). Let Sν be the surface to the top and bottom half-spaces. Then, due to
κνG = κν−G as well as the orthogonality of plane waves,∫

Sν

dS

(
ψνG

∂ψνG′

∂s
− ψνG′

∂ψνG
∂s

)
= i[κνG(ωm)− κνG′(ωm)]

∫
Sν

dSψνGψ
ν
G′

= i[κνG(ωm)− κνG′(ωm)]SuδG,−G′ = 0 ,

(S31)

and∫
Sν

dS

(
ψνG

∂2ψνG′

∂s∂ω

∣∣∣∣
ωm

−
∂ψνG
∂s

∂ψνG′

∂ω

∣∣∣∣
ωm

)
=

=

∫
Sν

dSψνGψ
ν
G′

(
i
∂κνG′

∂ω

∣∣∣∣
ωm

−∆zκG′
∂κνG′

∂ω

∣∣∣∣
ωm

+ ∆zκG
∂κνG′

∂ω

∣∣∣∣
ωm

)
= iSu

∂κνG
∂ω

∣∣∣∣
ωm

δG,−G′ ,

(S32)

so that we obtain:

Sνm ≡
c2

2ωm

∫
Sν

dS
(
Em ·∂sẼ′m−Ẽ′m ·∂sEm

)
=

ic2

2ωm

∑
G,p

∂κνG
∂ω

∣∣∣∣
ωm

a
(p,ν)
m,−Ga

(p,ν)
m,G . (S33)

Here, we have introduced the abbreviation a
(p,ν)
m,G ≡ ã

(p,ν)
m,G(ωm). Thus, in summary,

Sm = Stop
m + Sbot

m , (S34)

where the superscripts denote the corresponding contributions from the top and bottom
half-spaces, respectively.

Note that using equation (S7) for calculating the derivative of κνG with respect to ω, it is
straight-forward to obtain equation (5) of the main manuscript from equation (S33) and to
also show that for evanescently decaying channels, the normalization via finite volume and
surface term is equivalent to a normalization by evaluating the volume integral over the whole
space without any surface term.

In numerical calculations, the normalization according to equation (S24), with volume
and surface terms defined by equations (S25) and (S34), can be carried out with the help of
the orthogonality relation (S8). This relation allows to calculate the plane wave expansion on
the outer surface of V. In the case of the Fourier modal method [11,12], which we used here,
the expansion coefficient for the surface term (S34) can be even derived as a direct output
of the calculation, so that one only has to evaluate the volume term (S25) by numerical
integration to obtain the correct analytical mode normalization.

3 Generalization of the normalization condition

So far, we have assumed a special outermost surface that is a plane normal to the z axis.
However, it is straight-forward to show that the normalization can be carried out for any
arbitrarily shaped outer surface that spans over one unit cell and covers a finite volume of
normalization. For this purpose, consider equation (S22) and integrate it over a volume Vh

that is completely located in the exterior homogeneous space, where σm = 0. We can then
derive with some vector identities:

Ih
m ≡

∫
Vh

dV Em ·
∂(ω2ε)

∂(ω2)

∣∣∣∣
ωm

Em = − c2

2ωm

∮
∂Vh

dS
(
Em ·∂sẼ′m−Ẽ′m ·∂sEm

)
. (S35)
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We will now assume that ∂Vh is composed of a flat surface ∂Vz that is a plane normal to
the z axis, as well as some remaining surface ∂V ′. The remaining surface consists of the
boundaries of one unit cell as well as an arbitrarily shaped surface S ′ to the exterior regions.
For the flat surface, we have shown above that the surface integral over one unit cell results
in equation (S33). Furthermore, due to periodicity, all contributions to ∂V ′ that belong to
the boundaries of the unit cell cancel out each other. Accounting for the direction of the
surface normals, we deduce that

Ih
m = Sνm − S′m , (S36)

where S′m is the surface integral over the surface S ′. Equation (S36) thus provides a relation
for the contribution of an arbitrary surface using that of a known flat surface Sνm as well
as the integral Ih

m over the part of the volume that is bound between these surfaces while
spanning over one unit cell. Inserting Sνm from equation (S36) in equations (S34) and (S24),
we see that Ih

m accounts for the deviation in the normalization volume, while S′m provides
the modified surface contribution.

Furthermore, when substituting Em in the volume term Ih
m by Ẽm(rν>;ωm) as defined in

equation (S27), we deduce from equation (S36) in combination with equation (S33) that the
surface contribution S′m only depends on the known modal expansion of the fields, which is

given by the expansion coefficients a
(p,ν)
m,G. This is a non-trivial finding, as Ẽ′m might possess

some additional contributions that depend on the actual choice of σm. In equation (S27),

such additional contributions are present due to the frequency dependence of ã
(p,ν)
m,G and enter

the surface integral in equation (S26) in form of the first-order frequency derivative evaluated
at ωm. However, when calculating S′m on an arbitrary surface spanning over one unit cell,
we see that the surface integral with the additional contributions must equal zero.

This can be also shown in a direct manner due to the fact that, in the exterior, the
additional contributions appear as a linear combination of plane waves that are solutions of
the source-free wave equation in homogeneous space. If EA and EB denote two solutions of
the wave equation in the exterior homogeneous space, then the following relation holds in the
exterior:

EA · L(ω)EB −EA · L(ω)EB = −EA · (∇×∇×EB) + EB · (∇×∇×EA) = 0 . (S37)

Integrating this equation over a volume in homogeneous space, and using the same vector
identities as in the derivation of equation (S26), we see that, on the one hand, for any closed
surface in homogeneous space,∮

dS(EA · ∂sEB −EB · ∂sEA) = 0 . (S38)

On the other hand, from equation (S31), we can now deduce that integrating the same
function only over a plane normal to the z axis equals zero as well. Consequently, for the
closed surface ∂Vh that is composed of such a plane as well as the boundaries of the unit cell
and a remaining surface S ′, we see that the surface integral over S ′ must vanish.

Hence, for the analytical continuation of the resonant field distribution Em in the exterior
homogeneous space, we can introduce the regularized field

E(reg)
m (rν>;ω) =

∑
G,p

a
(p,ν)
m,GE

(p,ν)
G (ωm) eiG·r

ν
>+iκνG(ω)∆z (S39)

when calculating Ẽ′m in equation (S24). This regularized field only depends on the expansion

coefficients a
(p,ν)
m,G of the resonant fields, thus reducing the surface integral in equation (S26)

to expressions that are based on the solution of equation (S9). Thus, we obtain the following
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normalization condition:

1 =

∫
V

dV Em ·
∂(ω2ε)

∂(ω2)

∣∣∣∣
ωm

Em

︸ ︷︷ ︸
=Im

+
c2

2ωm

∮
∂V

dS

(
Em ·

∂2E
(reg)
m

∂s∂ω

∣∣∣∣∣
ωm

− ∂E
(reg)
m

∂ω

∣∣∣∣∣
ωm

· ∂Em
∂s

)
︸ ︷︷ ︸

=Sm

, (S40)

where Sm immediately results in equation (S34) when using the expansion defined in equa-
tion (S39).

Let us now review the above derivations and examine their generality. First of all, equa-
tions (S24) to (S26) simply state that for any optical system, the normalization contains a
volume and a surface contribution. This is always valid, independently of the underlying ge-
ometry. The periodic structure comes into play when evaluating the expansion of the fields in
the exterior, see equation (S27). This results in the special form of the surface contributions
given in equations (S33) and (S34). For other geometries as those described in [1–6], the final
surface contribution in the analytical normalization relation might differ, but the principles
of its derivation are the same and based on equations (S24) to (S26).

In the case of single particles, for instance, the outgoing solutions can be expanded in
terms of vector spherical harmonics [13], for which the radial dependence of the fields can be
separated as a function fλ(kr) with k =

√
εω/c. As shown in [4], using that ωm∂ωfλ(kr) =

r∂rfλ(kr) for a non-dispersive material in the exterior, we obtain the following analytical
surface term:

Sm =
c2

2ω2
m

∮
∂V

dS

(
Em ·

∂

∂s
r
∂Em
∂r
− r∂Em

∂r
· ∂Em
∂s

)
. (S41)

Here, as in the case of the periodic arrays, the starting point of the derivation is equa-
tion (S26). As equation (S26) contains Ẽ′m, which might have contributions that cannot be
directly derived from the resonant field distribution Em, it is necessary to proof that these
additional contributions provide a zero in the surface term. Above, the proof has been carried
out exemplarily for one- and two-dimensional periodic arrays, with the result being summa-
rized in equations (S39) and (S40), but the steps are the same for other geometries when
using an appropriate set of basis states in the homogeneous exterior space, such as the vector
spherical harmonics for single particles. Thus, one can define regularized fields that are based
only on the resonant field distribution Em.

Compared to the periodic structures, the derivation of the mode normalization for spher-
ical geometries (as well as for the homogeneous slabs and the cylindrical structures discussed
in [3, 5]) with a non-dispersive material in the exterior is simplified due to the absence of
Rayleigh anomalies as well as the fact that we can find a simple relation to transform the
frequency derivative in equation (S26) into a spatial derivative. Therefore, the present deriva-
tion of the correct analytical mode normalization provides a non-trivial modification of the
previous normalization procedures described in [1–6]. It is worth mentioning that the pre-
vious formulations already included dispersive materials, while the current formulation with
equation (S34) additionally allows for considering lossless dispersive materials in the exterior
domain (i.e., in the case that we are far enough away from poles in the material to neglect
losses, but close enough so that dispersion is important).

4 Resonant state expansion

Let us now follow [1–5] in order to derive the resonant state expansion for a perturbed
system of periodic nanoantennas, in which the permittivity deviates from the original one
by a ∆ε(r;ω). The modified system exhibits eigenstates Eµ and eigenfrequencies ωµ, which
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obey the following differential equation:

L∆ε(ωµ)Eµ =

[
L(ωµ) +

ω2
µ

c2
∆ε(r;ωµ)

]
Eµ = 0 . (S42)

Next, we can expand the Green’s dyadic of L in its eigenstates and understand −∆ε(r;ωµ)Eµ
as a source term for the unperturbed wave equation. With the ansatz Eµ =

∑
m bmEm + ∆Eµ,

where ∆Eµ accounts for the influence of the Rayleigh anomalies, it is thus possible to set
up a system of equations that can be solved for the expansion coefficients bm and reso-
nance frequencies ωµ. It is worth mentioning that using the Green’s dyadic as defined in
equation (S18), the system of equations depends in general non-linearly on ωµ, so that the
derivation of non-trivial solutions is rather complicated. In the standard formulation of the
resonant state expansion [1–5], assuming non-dispersive materials, it is possible to reformu-
late the Green’s dyadic using the sum rule

∑
mEm(r) ⊗ Em(r′)/ωm = 0 in order to obtain

a linear eigenvalue problem for eigenvalues ωµ and eigenvectors consisting of the expansion
coefficients bm. For dispersive materials, this approach is no longer applicable. Recently,
the formulation of the resonant state expansion has been extended to dispersive materials
described by a Drude-Lorentz model [14]. Especially for large perturbations and in the case
that the poles of the Drude-Lorentz model are close to resonances of our unperturbed system,
such an extension is necessary to determine the resonances of the perturbed system correctly.
However, for small perturbations, we may simply use the Green’s dyadic of equation (S18),
which yields:

Eµ=
∑
m

Em(r)

∫
V

dV ′
−ω2

µ

2ωm(ωµ − ωm)
Em(r′)·∆ε(r′;ωµ)Eµ(r′)

−
∫
V

dV ′∆G(r, r′;ωµ)
ω2
µ

c2
∆ε(r′;ωµ)Eµ(r′) .

(S43)

Our goal is now to derive an equation valid to describe small perturbations, for which the
eigenstates of the original system can be assumed also as the eigenstates of the perturbed
system, i.e., Eµ ≈ Em. Such an approximation is justified, whenever we expect small changes
∆ω = ωµ−ωm in resonance frequency and the criterion

∫
V dV Em ·∆εEm′ ωm/(ωm−ωm′)� 1

is fulfilled ∀m′ 6= m in V. This means that the applicability of the first-order perturbation
theory has to be checked carefully in cases where we have close-by resonances or where we
obtain huge resonant field enhancements in the unperturbed system, e.g., for gap antennas.
Whenever the aforementioned criterion is fulfilled, equation (S43) simplifies to

2ωm(ωµ − ωm) + ω2
µI
V
m[∆ε(r;ωµ)] = 0 , (S44)

with

IVm[ϕ(r;ω)] =

∫
V

dVEm(r) · ϕ(r;ω)Em(r) , (S45)

where ϕ is a placeholder for a tensor with a specific dependence on frequency and position.
Equation (S44) is a transcendental equation for the approximate resonance frequency ωµ
of the perturbed system. Its solutions can be easily derived up to machine precision using
standard numerical procedures such as the Newton method. In the case that ∆ε does not
depend on frequency, we can even derive a closed expression for the approximate resonance
frequency ωµ:

ωµ ≈
ωm

IVm(∆ε)

(√
1 + 2IVm(∆ε)− 1

)
. (S46)
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If the perturbation ∆ε depends only weakly on the frequency, it is also possible to derive
a closed expression by using ∆ε(r;ω) ≈ ∆ε(r;ωm) + ∆ε′∆ω, where ∆ε′ is the first order
derivative of ∆ε with respect to ω evaluated at ωm. Then, by neglecting all higher than
linear orders in ∆ω, we can derive from equation (S44) that

∆ω ≈ −ωmIVm[∆ε(r;ωm)]

2 + 2IVm[∆ε(r;ωm)] + IVm(∆ε′)ωm
. (S47)

Considering that ∆ε is zero except for a volume T , in which it should be a constant scalar,
we obtain for ∆ε→ 0 either from equation (S46) or (S47):

∂ωm
∂ε

= −ωm
2

∫
T

dVE2
m(r) . (S48)

In this case, the derivative on the left hand side is understood at ∆ε = 0, i.e., ∆ω ≈
∆ε∂ωm/∂ε, so that the right hand side has to be calculated for the unperturbed system.
Reformulating this equation in terms of the refractive index n in T , this results in equation (3):

∂ωm
∂n

= −ωmn
∫
T

dVE2
m(r) . (S49)

Note that this equation can be used independently of the underlying geometry, provided that
the modes are normalized correctly. The final result of the analytical normalization differs
between different geometries, see [1–6]. For one- and two-dimensional periodic structures,
we have derived here the correct analytical normalization, with the final result provided in
equation (S34) and summarized in equation (3) of the main manuscript.

5 Relation to Purcell effect

We would like to emphasize that the correct mode normalization is also crucial for calcu-
lating the coupling of single emitters with nanoantennas. In the weak coupling regime, this
interaction is described by the so-called Purcell factor [15], which states that the spontaneous
emission rate of a dipole of frequency ωd ≈ Re(ωm) is approximately enhanced by

F =
6πc3Qm
ω3

dVm
, (S50)

where Qm = |Re(ωm)/2Im(ωm)| is the quality factor of the resonance and Vm is the corre-
sponding mode volume. As shown in [6], when reformulating the denominator on resonance
as ω2

dRe(ωmVm), this equation is still valid in the single mode approximation for the reso-
nances of nanoantennas, provided that we normalize the resonant field distributions correctly
and redefine the mode volume as

1

Vm
= [ed ·Em(rd)]2 . (S51)

In this case, rd is the position of the dipole, and ed is the corresponding unit vector of its
polarization. If the orientation of the dipole is not fixed, e.g., due to a random orientation of
the dipole, we will have to average over the different orientations of the dipole. In particular,
we may average over dipoles with polarization along the basis vectors ex, ey, and ez, resulting
in the averaged Purcell factor

〈F 〉 =
Fx + Fy + Fz

3
=

2πc3Qm
ω3

[
(ex ·Em)2+(ey ·Em)2+(ez ·Em)2

]
=

2πc3Qm
ω3

E2
m . (S52)
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With this result, we may now define the averaged mode volume as follows:

〈Vm〉 =
3

E2
m

. (S53)

Thus, using this locally defined averaged mode volume, equation (S49) can be written as

∂ωm
∂n

= −ωmn
∫
T

dV
3

〈Vm〉
, (S54)

and the figure of merit (FOM) defined in equation (8) of the main manuscript becomes

FOM =

∣∣∣∣ 1

Im(ωm)

∂ωm
∂n

∣∣∣∣ ≈ ∣∣∣∣6n ∫
T

dV
Qm
〈Vm〉

∣∣∣∣ . (S55)

Hence, the FOM is proportional to the Purcell factor. Physically, it is clear that a high
quality factor as well as a small mode volume is superior for increasing the spontaneous
emission rate of a dipole, because it means that the lifetime of the resonance as the time of
interaction between dipole and resonance is large and the local field is strongly enhanced. As
the Purcell effect reflects the action of the nanoantenna on the dipole, it is not surprising due
to reciprocity that the impact of the induced dipoles in the surrounding of a nanoantenna
is strongest for the same conditions, i.e., the sensing performance is best for large field
enhancements and high quality factors.

6 Derivation of eigenmodes

We are using a scattering matrix approach based on the Fourier modal method with matched
coordinates [12, 16] in order to calculate the optical properties of the periodic nanoanten-
nas numerically. The eigenmodes can be derived from the scattering matrix by different
techniques [17, 18]. We are using here a modification of the resonant approximation scheme
described in [18]. The ansatz is to approximate the scattering matrix S by a background
term plus a finite number of poles for the resonances:

S(ω) = SBG(ω) + L(ωI − Ωp)
−1R . (S56)

In this case, the background term SBG(ω) should be assumed to change only slowly with
ω. Furthermore, Ωp is a diagonal matrix containing the finite complex poles ωm, I is a
unit matrix of the same size, and matrices L and R are constructed from the frequency
independent resonant output and input vectors, respectively, associated with each mode [17].
Therefore, for the dimensions of S and Ωp, dimS ≥ dim Ωp.

Differentiating the approximate scattering matrix of equation (S56) with respect to ω
yields:

S′(ω) ≈ −L(ωI − Ωp)
−2R . (S57)

Note that the derivative of the background term has been neglected, as it should vary only
slowly with ω. Multiplying equation (S56) with the inverse of equation (S57) results in[

S′(ω)
]−1

S(ω) ≈ R−1(ωI − Ωp)R . (S58)

This approximation is valid when being close enough to the poles so that the background
contribution becomes negligible. Thus, one obtains a simple eigenvalue equation with ω−ωm
as eigenfrequencies and the column vectors of R−1 as eigenvectors of [S′(ω)]−1 S(ω) in the
case that dimS = dim Ωp. If dimS > dim Ωp, we can use the same projection techniques as
described in the appendix of [18] to construct an eigenvalue equation of smaller dimension.
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For this purpose, let us assume that S′ has not full rank, or that at least some singular
values are close to zero. Then, we can make a singular value decomposition of S′ such that

S′ = UΣV † , (S59)

where Σ is a diagonal matrix with the singular values on its diagonal, and U and V are unitary
matrices. We can construct an approximate form of S′ by omitting all singular values smaller
than a certain threshold and removing the corresponding columns in U and V . With these
reduced matrices Σr, Ur, and Vr,

S′ ≈ UrΣrV
†
r , (S60)

and we can derive an approximate eigenvalue problem for the poles with dim Ωp as

(ωI − Ωp)v = Σ−1
r U †rSVrv . (S61)

The poles can then be found iteratively by starting with a guess value ω0
m, calculating

the eigenvalues ω0
m − ω1

m, and using the frequency ω1
m for the next iteration. The procedure

stops, when |ωjm − ωj+1
m | becomes sufficiently small.

In contrast to [18], we do not use here the second-order derivative of equation (S56),
but rely on the assumption that we are close enough to the important poles with our guess
values. While the second-order derivative scheme of [18] may be more accurate far away from
the poles, it requires the numerically expensive calculation of the second-order derivative of
the scattering matrix. According to our experience, especially for two-dimensional periodic
systems, it is therefore more efficient to use our modification with first-order derivative or
a combination of both schemes, where the second-order derivative is only calculated in the
initial steps when the current value ωjm is further away from an actual pole ωm.

7 Rod antenna system

The perturbation theory developed above is mathematically exact, but the outgoing bound-
ary conditions require investigating certain geometries, for which the homogeneous top and
bottom half-spaces provide some constraints. We would like to investigate now in detail, how
the thickness of the cover layer influences the results, and how this affects a direct comparison
with experimental results.

7.1 Measurements

For the comparison of our theory to experiment, we fabricated 100× 100 µm2 sized arrays of
nanoantennas, on a 10 × 10 × 0.5 mm3 glass slide. The structures with a length of 340 nm,
a width of 60 nm, and a periodicity of 700 nm in each direction, were defined by a standard
electron-beam lithography process with positive resist (PMMA), followed by evaporation of
a 2 nm Cr adhesion layer and a 40 nm film of gold. A subsequent lift-off procedure removed
the unexposed resist and thus the gold in the areas around the structures.

Measurements were carried out using a custom-made microfluidic silicone cell, which
features a 50 µm thick channel with inlet and outlet tubing. A constant flow of analyte
solution (pure water, ethanol and propanol) was ensured by placing a reservoir above and
the outlet in a beaker below the cell.

Transmittance spectra were recorded every 30 s for 10 min per analyte, using a Fourier-
transform infrared spectrometer, extended by an infrared microscope. An infrared polarizer
set the polarization of the incident light, and an aperture confined the beam to the structured
area. Reference measurements for normalization were taken prior to every single sample mea-
surement at a point next to the gold nanoantennas, i.e., through cell, analyte, and substrate.
Averaged spectra are shown in figure S1 on the right.
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To evaluate the shift of the resonance, we fitted a Fano lineshape to 1−T , where T denotes
the measured transmittance. The corresponding complex resonance frequencies are 194.4 −
14.7i (±0.1) THz for water, 192.8−14.8i (±0.1) THz for ethanol, and 191.8−14.7i (±0.1) THz
for propanol. The refractive indices have been extracted from Kedenburg et al. (water,
ethanol) and Moutzouris et al. (propanol) [19, 20]. Thus, we can estimate the change of the
real part of the resonance frequency per refractive index unit (RIU) as −45 (±5) THz/RIU
(from water to ethanol) and −50 (±10) THz/RIU (from ethanol to propanol).

7.2 Comparison

Figure S1 shows numerical (a) and experimental (b) transmittance spectra for the periodic
array of rod antennas and different materials in the cover layer. The incident electric field
is linearly polarized along the long antenna axis. Blue color denotes water in the cover layer
(n = 1.3183 at 195 THz), red is ethanol (n = 1.3539 at 193 THz), and black is propanol
(n = 1.3738 at 192 THz). The cover layer thickness is several microns in experiment. In the
numerical calculations, we either consider a cover layer of 650 nm thickness (thick lines) as
in the main manuscript, or an infinite cover layer (thin lines), which cannot be used in the
perturbation equation (S49). The difference in transmittance is small for these two numerical
scenarios.
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Figure S1: Numerical calculations (a) and experimental results (b) of the transmittance in the
case of a periodic array of gold rod antennas for a normally incident plane wave polarized linearly
along the long antenna axis. Colors denote different materials in the cover layer: water (blue, solid),
ethanol (red, dashed), and propanol (black, dashed-dotted). Thick lines in the left panel depict the
transmittance for a cover layer of 650 nm thickness, while thin lines have been obtained for an infinite
half-space as cover layer. The thickness of the cover layer in experiment is several microns.

We observe in experiment and theory a reasonable agreement, but the spectral shift is
smaller in experiment. There is also a difference in magnitude and linewidth between the
experimental and the numerical results. This is a typical phenomenon and mostly originates
in inhomogeneities due to fabrication tolerances in experiment. Furthermore, the fabricated
antennas may exhibit a slightly different shape than the perfect cuboid of the numerical
calculations, leading to different resonance linewidth and frequencies as well as modified
near-field distributions. Another reason for deviations are pollutions of the liquids resulting
in slightly different refractive indices.

To check the fitting procedure with the Fano lineshape, we applied this procedure to
extract also the resonance positions from the numerically calculated spectra for 650 nm cover
layer thickness, which provides some estimate of the accuracy of this procedure. The derived
resonance frequencies are 190.7 − 13.8i (±0.2) THz for water, 188.1 − 13.7i (±0.2) THz for
ethanol, and 186.6− 13.7i (±0.2) THz for propanol. The exact resonance frequencies directly
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derived from Maxwell’s equations are 191.0 − 15.4iTHz for water, 188.5 − 15.4iTHz for
ethanol, and 187.2 − 15.3iTHz for propanol. Hence, there is a deviation between the exact
resonance frequencies and the fitted values that is larger than the tolerances of ±0.2 THz
provided from the fitting procedure. Although the resonance frequency shift per refractive
index unit of roughly−73 THz/RIU derived from this fitting procedure is close to the−70 THz
of the exact calculation, the results indicate an additional systematic error that might be
due to a more complicated background contribution in the Fano lineshape due to close-by
resonances. Therefore, it is in general difficult to estimate the resonance frequency shift per
refractive index units from experimental and numerical spectra. However, it is reasonable to
expect a qualitative agreement between experiment and theory in the sense that a sensitive
resonance in theoretical calculations can be expected to be also very sensitive in experiments.

7.3 Cover layer thickness

It is clear that our system with 650 nm cover layer is not equivalent to the experimental
realization with several microns thickness. The experimental measurements using the Fano
fit to determine the shift of the resonance position indicate smaller absolute values than the
theoretical values of the perturbation theory. In order to get a better understanding of the
influence of the cover layer, we thoroughly investigated the resonance frequency and linewidth
in dependence of the cover layer thickness and studied also the corresponding behavior of the
shifts predicted from equation (S49), see figure S2.
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Figure S2: (a) Dependence of resonance position (black) and resonance linewidth (blue) on the
thickness of the cover layer. Dashed lines denote an infinite thickness. We observe a strong shift
for small thicknesses, after which the resonance position and linewidth start to oscillate around the
values for infinite thickness due to constructive and destructive interference in the cover layer. For
large thickness around 1.5 µm, influences of Fabry-Perot modes become visible, resulting in much
stronger deviations. (b) Corresponding resonance shifts per refractive index unit as predicted from
equation (S49) for small changes of the refractive index in the cover layer.

The resonance frequency (black, diamonds) and the resonance linewidth (blue, circles) in
figure S2a have been derived for water cover layers between 0 µm and 2 µm thickness (solid
lines) as well as for an infinite cover layer (dashed lines). For thicknesses below 1.5 µm, the
resonance frequency and linewidth oscillate around the results for the infinite cover layer.
At larger thicknesses, the deviations become significant. The reason is the formation of
Fabry-Perot modes in the cover layer, which couple to the plasmonic modes. As the quality
factor for these Fabry-Perot modes is rather low due to the small index contrast between air
and the cover layer, this coupling results in an increase of the resonant linewidth (see blue
line with circle), accompanied by a drift of the resonance frequency to lower values (black
diamonds). Note that there are no Fabry-Perot modes formed in experiment, as the top

14



surface is rather rough and scatters light in all directions, countervailing the constructive
interference of multiple reflections at the top and bottom interfaces.

The corresponding predictions of the perturbation equation (S49) can be seen in fig-
ure S2b. Evidently, there are similar fluctuations as in the case of the resonance frequen-
cies, which become larger for larger thicknesses. In principle, any resonance shift between
−50 THz and −120 THz is possible in that thickness range. For the main manuscript, we have
not selected the thickness with the best agreement to the experiment, because firstly, we do
not want to raise expectations that the perturbation theory cannot fulfill due to the above
mentioned deviations between theory and experiment. Secondly, the calculation of the field
distributions becomes more memory consuming for larger cover layer thicknesses, thus being
less efficient. Thirdly, the onset of the Fabry-Perot modes is even at smaller thicknesses for
the other examples in the main manuscript. Therefore, we selected the 650 nm thickness, as
it is thick enough to cover the near-field region and thin enough to avoid Fabry-Perot modes.
Moreover, it provides us for all examples a resonance frequency that is similar to the system
with infinite cover layer thickness.
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(b)    650 nm cover layer thickness
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Figure S3: Refractive index dependence of the exact resonance frequency (black circles) and the
resonance linewidth (blue squares) in comparison with the resonance frequency (black sold lines) and
the resonance linewidth (blue dashed lines) of the perturbation theory as defined in equation (S46)
(thin lines) as well as the linear equation (S49) (thick lines) for a cover layer thickness of (a) 300 nm
and (b) 650 nm.

Finally, we investigate also the exact dependence of resonance frequency and linewidth
for larger ranges of refractive indices between n = 1.31 and n = 3 for different cover layer
thicknesses and compare it to the linear dependence obtained from the perturbation theory.
As it can be seen in figure S3, the exact results exhibit a linear dependence on the refractive
index for small deviations from n = 1.31 for the cover layer thicknesses of (a) 300 nm (b) and
650 nm, which is reproduced well by the perturbation theory. Note that thin lines correspond
to the more precise formulation of equation (S46), whereas thick lines have been calculated
by the linearized formulation of equation (S49). Further away from n = 1.31, we observe
a quadratic deviation of the exact results from the perturbation theory. Except for the
resonance linewidth in figure S3b, the deviation is negligible up to n ≈ 1.7. Regarding the
resonance linewidth in figure S3b, the initial slope of the exact results and the perturbation
theory is close to zero, indicating an extremal situation, in which the quadratic dependence
becomes dominant. The extremal situation can be also seen in figure S2a, where we see
that the resonance linewidth is close to a maximum at a water layer thickness of 650 nm.
Therefore, we are in the situation of a minimum quality factor, and any structural deviation
must immediately result in a reduction of the linewidth. Finally, it is worth mentioning that
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the approximate equation (S46) provides a better agreement with the exact result than the
linearized equation (S49), especially when considering the resonance linewidth in figure S3a.

References

[1] E. A. Muljarov, W. Langbein, and R. Zimmermann, Brillouin-Wigner perturbation theory in
open electromagnetic systems, Europhys. Lett. 92, 50010 (2010).

[2] M. B. Doost, W. Langbein, and E. A. Muljarov, Resonant-state expansion applied to planar
open optical systems, Phys. Rev. A 85, 023835 (2012).

[3] M. B. Doost, W. Langbein, and E. A. Muljarov, Resonant state expansion applied to two-
dimensional open optical systems, Phys. Rev. A 87, 043827 (2013).

[4] M. B. Doost, W. Langbein, and E. A. Muljarov, Resonant-state expansion applied to three-
dimensional open optical systems, Phys. Rev. A 90, 013834 (2014).

[5] L. J. Armitage, M. B. Doost, W. Langbein, and E. A. Muljarov, Resonant-state expansion
applied to planar waveguides, Phys. Rev. A 89, 053832 (2014).

[6] E. A. Muljarov and W. Langbein, Exact mode volume and Purcell factor of open optical systems,
arXiv:1409.6877v3 [cond-mat.mes-hall] (2014).

[7] H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, Time-independent pertur-
bation for leaking electromagnetic modes in open systems with application to resonances in
microdroplets, Phys. Rev. A 41, 5187–5198 (1990).

[8] C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, Theory of the spontaneous optical
emission of nanosize photonic and plasmon resonators, Phys. Rev. Lett. 110, 237401 (2013).

[9] Q. Bai, M. Perrin, C. Sauvan, J. P. Hugonin, and P. Lalanne, Efficient and intuitive method
for the analysis of light scattering by a resonant nanostructure, Opt. Express 21, 27371–27382
(2013).

[10] G. B. Arfken and H. J. Weber, Mathematical methods for physicists, Elsevier, London, 6th
edition, 2011.

[11] T. Weiss, G. Granet, N. A. Gippius, S. G. Tikhodeev, and H. Giessen, Matched coordinates and
adaptive spatial resolution in the Fourier modal method, Opt. Express 17, 8051–8061 (2009).

[12] S. Essig and K. Busch, Generation of adaptive coordinates and their use in the Fourier modal
method, Opt. Express 18, 23258–23274 (2010).
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