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A B S T R A C T

The number of resting state functional connectivity MRI studies continues to expand at a rapid rate along with
the options for data processing. Of the processing options, few have generated as much controversy as global
signal regression and the subsequent observation of negative correlations (anti-correlations). This debate has
motivated new processing strategies and advancement in the field, but has also generated significant confusion
and contradictory guidelines. In this article, we work towards a consensus regarding global signal regression.
We highlight several points of agreement including the fact that there is not a single “right” way to process
resting state data that reveals the “true” nature of the brain. Although further work is needed, different
processing approaches likely reveal complementary insights about the brain's functional organisation.

1. Introduction

The global signal in neuroimaging can be defined as the time series
of signal intensity averaged across all brain voxels. Because most
imaging studies are interested in region-specific changes in brain
activity and because non-neuronal sources can contribute to the global
signal (Birn et al., 2006; Glover et al., 2000; Wise et al., 2004), various
methods have been used to correct for global signal changes. Global
signal regression (GSR) is the removal of the global signal from the
time series of each voxel through linear regression. This procedure was
originally developed for and applied to task-based fMRI data (Aguirre
et al., 1998; Macey et al., 2004; Zarahn et al., 1997). However its
greatest use, and greatest controversy, has come with the advent of
resting state functional connectivity MRI.

A landmark study in 2005, building upon earlier work (Fransson,
2005; Greicius et al., 2003), used resting fMRI data to show that the
brain was organised into two diametrically opposed, widely distributed
networks (Fox et al., 2005). Spontaneous fluctuations in the default
mode network were anti-correlated (negatively correlated) with fluc-
tuations in the task positive network. This formed an appealing
narrative as these networks were routinely modulated in opposite
directions by task paradigms (Fox et al., 2005; Raichle et al., 2001).
However, the impact of global signal regression on these anti-corre-

lated networks was not addressed.
In 2009, two papers examined this issue, but gave opposite

recommendations as to whether GSR should be used in the processing
of resting state functional connectivity data (Fox et al., 2009; Murphy
et al., 2009). Murphy et al. was the first to show that GSR mathema-
tically mandates the presence of anti-correlations. Because anti-corre-
lations following GSR could be an artefact of the processing technique,
Murphy et al. concluded that GSR should not be used. Fox et al.
replicated these results including the mathematical mandate; however
also found that several characteristics of anti-correlated networks could
not be attributed to GSR. Because GSR enhanced the detection of
system-specific correlations and improved the correspondence between
resting-state correlations and anatomy, they concluded that GSR can
be beneficial (Fox et al., 2009).

Since this time many studies have tried to determine whether GSR
is beneficial or detrimental for processing and interpreting resting state
functional connectivity data. Several alternatives to GSR that attempt
to correct for global variance but avoid the “mathematical mandate”
have also been proposed. However, often the point of the argument is
missed; it is about how to interpret correlation values after pre-
processing in a particular way. Without an accepted gold standard,
this literature has continued to produce contradictory conclusions and
recommendations. Researchers are left in a difficult position regarding
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whether to utilize GSR or not. As authors of two of the early papers that
came to conflicting conclusions, we have chosen to work together to
review the data relevant to this question, highlight points of agreement,
and come to a consensus regarding GSR.

2. Global Signal Regression

2.1. What is the global signal?

Resting state correlation distributions are heavily skewed towards
positive values when no pre-processing is performed (Chai et al., 2011;
Fox et al., 2009; He and Liu, 2011; Keller et al., 2013; Murphy et al.,
2009). Furthermore, nearly all voxels show statistically significant
correlation with the global signal (Fox et al., 2009). This suggests that
there is some component in the timeseries that is common to all voxels,
thus is global. Whether such a global signal arises from common neural
fluctuations or from fluctuations in a confounder that has a global effect
(e.g. arterial CO2) is difficult if not impossible to assess based on fMRI
data alone.

The fMRI signal is based on the blood oxygenation level dependent
(BOLD) contrast. Rather than being a direct measure of neural activity,
BOLD signals are a complex interaction of metabolism (CMRO2),
blood flow (CBF) and blood volume (CBV). Any phenomenon that
affects the balance between these 3 parameters will cause changes in
resting-state BOLD signals that may be spuriously correlated across
regions. Many resting-state fMRI confounds are global in nature,
arising from motion, cardiac and respiratory cycles, arterial CO2

concentration, blood pressure/cerebral autoregulation and vasomotion
(Murphy et al., 2013). Variance related to these processes will be
reflected in the global signal; for example, low-frequency respiratory
volume and cardiac rate regressors display significant shared variance
with the global signal (Chang and Glover, 2009), as do motion
parameters (Power et al., 2014). GSR reduces BOLD spectral power,
with Zhu and colleagues concluding that a large portion of resting
signals can be attributed to the vascular effects (Zhu et al., 2015).
Therefore, removal of the global signal variance from all voxel time-
series using regression (i.e., GSR), can, at least partially, remove these
unwanted global confounds.

However, in addition to these non-neuronal confounds, the global
signal also includes fluctuations in neuronal activity. When noise
signals are low, the global signal resembles the time course of the
largest cluster in the brain, which in real data is the DMN (Chen et al.,
2012). However, when noise signals are high, this may not be the case
(Fox et al., 2009). Comparisons with spontaneous fluctuations in LFPs
from a single cortical site in monkeys show positive correlation with
fMRI signals over nearly the entire cerebral cortex, demonstrating that
the global signal is tightly coupled to underlying neural activity
(Schoelvinck et al., 2010). Further evidence that the global signal has
a neural component is demonstrated by the negative correlation
between its amplitude and EEG vigilance measures across subjects
(Wong et al., 2013). Changes in the global signal amplitude between an
eyes-open and eyes-closed condition are associated with changes in
EEG vigilance (Wong et al., 2015). Ingestion of caffeine significantly
decreases global signal amplitude and increases EEG measures of
vigilance (Wong et al., 2012). Furthermore, physiological effects such
as changes in arterial CO2 can influence neural activity globally (Driver
et al., 2016).

Therefore, although the global signal reflects non-neuronal con-
founds in the data, it also likely includes a neuronal component whose
relative contribution may be dependent on the brain region and dataset
in question (Fox et al., 2009; Wong et al., 2012). Whether removing
this signal through GSR is good or bad depends on the scientific
question and must be considered when interpreting the results. How
global neural components interact with focal resting neural activity
should be investigated for a full understanding of brain function.

2.2. What does GSR do?

GSR uses linear regression to remove shared variance between the
global signal and the time course of each individual voxel. Mathematic
details regarding the precise algebraic operation performed by GSR and
the resulting effect of GSR on residual correlation values has been
published previously (Fox et al., 2009; Murphy et al., 2009). The
algebraic consequence of GSR is that, for any seed, the mean value of
voxel-on-seed beta coefficients over the whole brain is exactly zero and
the distribution of Pearson correlations over the brain becomes
approximately zero centered. In other words, GSR shifts the distribu-
tion of functional connectivity values from being predominantly
positive to both positive and negative in any given subject. To the
extent that this shift shares similar spatial topography across subjects,
these negative correlations can appear as significant anti-correlations
in group-level analyses.

2.3. Are there benefits to global signal regression?

Global signal regression can improve the specificity of positive
correlations (Fox et al., 2009; Weissenbacher et al., 2009), improve the
correspondence to anatomical connectivity (Fox et al., 2009), and help
remove non-neuronal sources of global variance such as respiration
(Birn, 2012) and movement (Power et al., 2014; Yan et al., 2013). As
such, there is a reasonable motivation for using GSR as a pre-
processing technique. However, this does not mean that GSR is the
best or only approach for achieving these benefits. For example, one
study found that anatomical specificity was better using alternatives to
GSR (Chai et al., 2011). Similarly, GSR may make correlation estimates
more susceptible to motion (Jo et al., 2013) and treating head motion
as a global confound may not be appropriate (Spisak et al., 2014).

The impact of GSR on test-retest reliability appears to be mixed.
Including GSR reduced test-retest reliability in older adults (Guo et al.,
2012) and showed a lower proportion of reliable connections in both
young and old groups (Song et al., 2012). However GSR increased
consistency of functional connections within-subject across scans
(Song et al., 2012) and had a negligible effect on the temporal reliability
in the language network (Zhu et al., 2014). Test-retest reliability of
graph theoretical measures can be decreased (Liang et al., 2012),
increased (Braun et al., 2011), or unaffected by GSR (Andellini et al.,
2015). Reliability of ReHo measures is reportedly decreased (Zuo et al.,
2012). Finally, using GSR on arterial spin labelling data improves
temporal SNR and test-retest stability of CBF measurements (Wang,
2012).

Whether GSR helps or hurts detection of brain behaviour relation-
ships has also depended on the study. Including GSR led to stronger
relationships between connectivity and cognitive function (Hampson
et al., 2010), helped identify face sensitive areas within the FFA
(Kruschwitz et al., 2015) and was useful in predicting symptoms from
focal brain lesions (Boes et al., 2015). In contrast, GSR hurt the ability
to find relationships between connectivity and behaviour in Autism
Spectrum Disorder (Gotts et al., 2013).

It should be noted that, although GSR is mainly used as a means for
reducing artefacts, there are cases where GSR may be useful for other
reasons. Zero-centring is often used as a strategy in analyses of
correlated variables in other areas of research, for example, in the
study of gene co-expression patterns (Langfelder and Horvath, 2007).

2.4. Can global signal regression introduce spurious anti-
correlations?

Multiple modelling studies have shown that global signal regression
can introduce “artefactual” anti-correlations that were not originally
present in the modelled data (Anderson et al., 2010; Murphy et al.,
2009; Saad et al., 2012). Anderson et al. demonstrated that anti-
correlations are introduced during GSR for any two networks as a
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linear function of their size (Anderson et al., 2010). Simulating a group
comparison study using 3 ROIs, Saad et al. showed that GSR alters
local and long-range correlations, leading to group differences in
regions that were not modelled to have any (Saad et al., 2012). The
degree to which these modelling results using a small number of
regions applies to human BOLD data with presumably higher dimen-
sionality is unclear.

2.5. Does global signal regression introduce spurious anti-
correlations in real data?

Although spurious anti-correlations are clearly present in modelling
studies, it is unclear which, if any, anti-correlations observed in human
fMRI data are also spurious. This question is difficult to answer as there
is not a clear gold standard with which to compare results. As such,
studies that have tried to address this have often come to different
conclusions. Anti-correlation with the orbits when the soft tissue is
included in the global signal is taken as evidence that artefactual anti-
correlation can be present in human data (Anderson et al., 2010).
Similarly, several studies have observed anti-correlations only when
GSR is applied (Ibinson et al., 2015; Weissenbacher et al., 2009).
However other studies have found anti-correlations without GSR,
suggesting that they may not depend on this pre-processing step. For
example, anti-correlations can be seen with physiological noise correc-
tion (Chang and Glover, 2009), component based noise reduction (Chai
et al., 2011), or ingestion of caffeine (Wong et al., 2013).

Studies have tried to determine the existence of anti-correlated
networks with complementary techniques. Both positive and negative
correlations were shown to have neurophysiological correlates as
measured by ECoG (Keller et al., 2013). However, GSR resulted in
some BOLD anti-correlations that were not present in the ECoG data.
Anti-correlations in a well characterised frontolimbic circuit between
infralimbic cortex and amygdale were observed in awake rats both with
and without GSR, however the relationship was absent in anaesthetised
rats even after GSR (Liang et al., 2011). The anaesthesia weakened the
positive correlations and abolished the negative correlations suggesting
that the anti-correlations found in the awake rats were not solely due to
the GSR pre-processing step.

2.6. How does GSR influence other resting state measures?

The effects of GSR on graph theoretical measures and regional
homogeneity have been investigated; however without a gold-standard
it is difficult to know whether these effects are positive or negative.
Significant differences in global network metrics (Liang et al., 2012)
and local graph metrics (Borchardt et al., 2016) can be impacted by
GSR. When GSR is implemented, heritability estimates of graph
theoretical measure (mean clustering coefficient, modularity, rich-club
coefficient, global efficiency, small-worldness) are substantially re-
duced (Sinclair et al., 2015). Since GSR alters network topology in
the left histogram tail (most negative correlations) with clustering
coefficient and assortativity converging to zero, networks constructed
from the absolute value of the correlations coefficient are compromised
following GSR (Schwarz and McGonigle, 2010). ReHo values are
reduced by GSR but the spatial distribution is unchanged (Qing
et al., 2013). Reproducible differences in ReHo between eyes open
and eyes closed conditions exist in areas that differ depending on
whether GSR was used or not.

2.7. Are there alternatives to GSR?

Given that removal of global sources of variance seems to have
some value, but GSR itself introduces interpretive complexity, many
alternatives to GSR have been proposed that circumvent that “math-
ematical mandate”. These techniques aim to remove common fluctua-
tions that arise from uninteresting sources, such as physiological noise,

to better focus on fluctuations related to region-specific changes in
neural activity. When using these techniques, it is important to
remember that all pre-processing approaches change the resulting
correlation structure to some extent and it's difficult to know whether
this is beneficial or detrimental.One technique is to record physiologi-
cal signals simultaneously to acquiring resting state fMRI data, and
then remove the related variance (Birn, 2012; Murphy et al., 2013).
Motion confounds can be estimated and removed from the data itself
(Friston et al., 1996). Cardiac and respiratory noise can be removed
using techniques such as RETROICOR (Glover et al., 2000), RVT (Birn
et al., 2006), heart rate (Shmueli et al., 2007) and end-tidal CO2

correction (Murphy et al., 2013; Wise et al., 2004).
When physiological data is not recorded alongside MRI data, there

are still alternatives to GSR that can be performed using the MRI data
alone. One can regress out timecourses based on non-grey matter
signals (Behzadi et al., 2007; Chai et al., 2011; Weissenbacher et al.,
2009) or decompose the data into signal and noise components using
ICA (Griffanti et al., 2014; Perlbarg et al., 2007). Similarly, one can use
partial correlation between different regions to remove sources of
shared variance (Zhang et al., 2008). Using the global signal itself to
estimate subject-specific respiratory and cardiac response functions
has also been proposed (Falahpour et al., 2013).

More complex data-based alternatives to GSR have also been
proposed. A random subspace method for functional connectivity
(RSMFC) was developed that estimated partial correlation between a
seed region and each target brain voxel using multiple subsets of
randomly sample voxels (Chen et al., 2013). A data-driven noise
correction method termed APPLECOR (Affine Parameterization of
Physiological Large-scale Error CORrection) models spatially-common
physiological noise as a linear combination of an additive term and a
mean-dependent multiplicative term (Marx et al., 2012). A method
based on the phase-shifting of soft tissue signals, such as those from
the eyes, (PSTcor) was proposed (Anderson et al., 2010). These
complex techniques all have some theoretical and practical advantages
compared to GSR and can produce different results. However, they also
have a downside, namely that their effect on the data is less intuitive
and less investigated compared to the simpler GSR method.

Other methods have tried to determine when GSR is suitable. A
measure was developed, entitled the Impact of the Global Average on
Functional Connectivity (IGAFC), that provides a threshold at which
the impact of regressing-out the global signal would be large enough to
introduce spurious anti-correlations (Carbonell et al., 2013). A com-
plementary study showed that an adaptive thresholding of correlation
values improves reliability, mainly by accounting for the global signal
variance (Gorgolewski et al., 2012). Using a framework to characterise
the properties of the global signal, it was demonstrated that a
proportion of the global signal can be viewed as an additive confound
that increases with mean BOLD amplitude, therefore can be minimised
(He and Liu, 2011).

Recently, many reviewers encourage repeating analyses with and
without GSR, to ensure that results (especially anti-correlations) are
not due solely to GSR pre-processing. In general, this practice can aid
in result interpretation. However, results using alternative approaches
for removing the global signal are usually quite similar (Boes et al.,
2015; Chai et al., 2011), while results that use no correction for global
signal fluctuations can be quite different (Fox et al., 2009; Gotts et al.,
2013; Murphy et al., 2009; Saad et al., 2012; Wong et al., 2012). In this
latter case, a failure to reproduce results without some type of global
signal correction does not mean the results are an “artefact”. Rather, it
means that some correction for global signal fluctuations was necessary
to produce the finding of interest, and attempts to replicate the finding
may also benefit from global signal correction.
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3. Points of agreement

3.1. Should I use global signal regression?

Different processing techniques likely produce different comple-
mentary insights into the brain's functional organization, none of
which has a monopoly on truth. For example, if one is trying to predict
the response of different brain regions to a task, GSR appears useful as
it correctly predicts the spatial distribution of relative increases or
decreases in activity. However if one is trying to predict the electro-
physiological relationship between regions measured with implanted
electrodes in the setting of large global (and neuronal) fluctuations in
arousal, analyzing the data without global signal regression may prove
more accurate. The “correct” approach is the one that proves most
useful for predicting the feature of interest.

A simple analogy is analysing the ripples on a pond on a windy day.
If the goal is to determine which direction the wind is blowing, one
needs to analyse the data with global fluctuations included. If one is
trying to determine the location of a small pebble thrown into the pond,
regressing out common fluctuations may be critical. Neither analysis is
a more accurate representation of the “true” nature of the pond.
Rather, if applied and interpreted correctly, they provide complemen-
tary information.

Another, perhaps closer analogy comes from analysis of EEG data
routinely used in clinical practice to detect and localize seizures. EEG
potentials can be displayed with respect to an average reference (i.e. the
global signal), but can also be displayed with respect to neighbouring
electrodes or even a reference electrode attached to the ear. The
“correct” EEG montage is the one the best allows a clinician to see
an epileptiform discharge, and EEG data is often viewed in multiple
different ways to best achieve this goal.

3.2. Consensus statements and recommendations

Here, we have attempted to produce some consensus statements
and recommendations to help researchers decide if GSR is appropriate
in the context of their specific experimental hypotheses.

1. Correction for global signal fluctuations with any technique includ-
ing GSR has a significant impact on resting state functional
connectivity results. Methods must be clearly described and results
interpreted in the context of the method applied.

2. The mathematics of global signal regression (GSR) mandate that
functional connectivity analyses performed using this processing
step show both positive and negative values that average to zero
across all voxels in a single subject.

3. GSR can introduce “artefactual” anti-correlations into simulated
data that did not originally consist of modelled anti-correlations. By
extension, anti-correlations observed in human fcMRI data after
GSR could be “artefactual” in a similar sense. Whether certain
human fcMRI anti-correlations ARE “artefactual” in this sense is a
separate question and difficult to test without a “gold standard”.

4. The mathematics of GSR does not mandate the specific spatial
distribution of anti-correlation, the consistency of anti-correlations
across a group, or the existence of statistically significant anti-
correlations after group-level random effects analysis. As such, there
are examples where resting state connectivity data processed with
GSR do not show significant anti-correlations.

5. Several advantages of GSR have been reported including closer
relationship to DTI-based anatomy, better delineation of subcortical
nuclei, improved specificity of positive correlations, and removal of
motion, cardiac and respiratory signals known to correlate with the
global signal.

6. Several alternatives to GSR have been proposed that technically
avoid the above “mathematical mandate” whilst aiming to remove
the uninteresting contributions to common fluctuations. However,

all pre-processing methods change the correlation structure to some
extent. Technically avoiding the mathematical mandate does not
mean that interpretation problems are avoided.

7. The global signal is composed of both neural and non-neural signals.
This fact should be taken into account when interpreting results.

8. GSR should be used with care when comparing groups with different
noise characteristics or varying neural network structures. GSR can
have differential effects on the groups, removing noise with varying
success or spreading nodal changes throughout the entire network.

3.3. Summary

In summary, including global signal regression in the processing of
resting state functional connectivity data is not inherently right or
wrong. Whether GSR is a useful processing step likely depends on the
scientific question one seeks to address. Results must be interpreted
properly within the context of the pre-processing method applied and
different methods may provide complementary insights into the brain's
functional organization.
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