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ABSTRACT

Mantle convection models are computational models that utilise the equa-

tions defining the convective processes taking place in a terrestrial planet’s

mantle. Mantle circulation models (MCMs) are a subclass of mantle convec-

tion models that constrain mantle flow by imposing a boundary condition

that uses plate reconstructions. Time dependent assimilation of plate ve-

locities generates structures within the mantle that have been shown to

correspond with present day Earth observations. Inferences of past mantle

structures in MCMs are however more difficult due to the lack of initial con-

dition for models. Without access to an initial condition for MCMs, pseudo

initial conditions are used in MCM studies. MCMs therefore contain some

error due to this uncertainty in initial condition. This thesis addresses the un-

certainties in MCMs caused by the lack of knowledge of the initial condition,

and attempts to improve the initial condition for Earth models.

Utilising perturbed twin experiments we show that assimilating plate

reconstructions deters any chaotic growth over the assimilation period, min-

imising the influence of the initial condition at present day.

We also investigate and utilise advanced assimilation techniques that

constrain mantle flow back in time, using a method known as an adjoint.

Running a series of synthetic test cases using the adjoint we determine its

efficiencies and effectiveness at constraining initial condition estimates. We

find the adjoint is an excellent method for reconstructing initial conditions.

Using the adjoint, we conclude by running high resolution MCMs to

construct initial conditions for differing viscosities, and compare these to the
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standard method of obtaining an initial condition in MCM studies. We find

that this yields mantle flow patterns markedly different from past studies,

implying the adjoint can provide an alternate perspective for past mantle

flow studies.
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CHAPTER 1

INTRODUCTION

The planet we call home, Earth, is comprised of many complex systems
that have arisen over the course of its existence. This body of work aims to
contribute new understanding to one of these systems, mantle dynamics. In
this introductory chapter we shall provide the context for our interest in this
topic, together with the relevance of the subject to the larger research field.
Before delving into the current state of mantle dynamics in particular, we
begin with a brief primer on our planetary body of interest, Earth.

1.1 Earth

Earth formed from the coalescence of dust into small bodies - planetesimals,
in the accretionary disk left after the formation of the Sun around 5 billion
years ago. Eventually these pieces became large enough to exert their own
gravity field. These planetesimals continued to gather together, experiencing
ever more violent collisions as the sizes grew, resulting in the large molten
mass of a planetary body we know as Earth. The densest materials in the
volume sank and settled at the centre forming the metal core, whilst the
lighter materials remained separate from this and began to cool forming the
mantle. On top of this formed the crust, created from the cooled rock at the
surface; the hardened exterior skin of our planetary body.

At present day these three layers remain: the crust, the mantle and the
core. Of course as our understanding of the processes has grown, so too have
further categories been made to accommodate the differences observed in
these layers. In fig. 1.1 we see a cross section through Earth showcasing in
detail these layers.
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Fig. 1.1 The internal structure of Earth. Figure from
http://pubs.usgs.gov/gip/dynamic/inside.html

1.1.1 The crust

The crust, the outermost layer and end product of differentiation of mantle
convection constitutes less than half a percent of the total mass of the planet.
Of the total radius of Earth (≈ 6371 km), the crust extends 5 km to 50 km
from the surface. The differences in crustal depth are attributed to the two
different types of crust observed; continental and oceanic. Continental crust
is the long lasting crust with a typical age of 2000 Myr. Due to these extreme
ages, the continental crust has seen a range of geological processes and are
an excellent source for understanding the planet’s history. Oceanic crust
is the crust formed at mid ocean ridges (MORs). This crust is denser than
the continental crust and continues cooling after its formation, eventually
becoming dense enough that it is recycled back into the mantle. Due to this
fact, oceanic crust is many orders younger than the continental crust with
typical ages of 80 Myr.

The process of creation and destruction of oceanic crust is part of a larger
system known as plate tectonics. As the crust and the uppermost mantle
form a mechanically strong outermost shell for Earth (approximately the top
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Fig. 1.2 The tectonic plates of Earth. Red arrows denote the di-
rection of motion for the plate at the boundary. Figure from
http://pubs.usgs.gov/gip/dynamic/slabs.html

100 km of Earth’s radius), they can be grouped together as a single region.
This region is known as the lithosphere, and it is here where plate tectonics
occurs. Put simply, the idea of plate tectonics is that the lithosphere is split
into a series of plates which are carried across the surface. This results in
ever changing positions of the continents as they move together to form
‘supercontinents’, before breaking apart once more. The current arrangement
of tectonic plates for Earth can be seen in fig. 1.2.

Where two or more plates meet is known as a plate boundary, and these
can be categorised into three types.

1. Divergent - These boundaries are where two plates are moving away
from one another and lithosphere is created. As these plates separate,
hot material from below rises to the surface and cools generating new
plate material. Divergent boundaries are most common at the MORs
such as in the Atlantic.

2. Convergent - Plates that move towards each other form convergent
boundaries, resulting in the loss of lithospheric material. Most often
this occurs at the interface where oceanic and continental plates meet,
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an example being where the Nazca and South American plates collide.
Here the cooler, less buoyant oceanic material is forced down under the
continental material in a process known as subduction. Alternatively
two continental plates can collide, typically as a result of the end of
oceanic plate subduction. An example of this would be the collision
between the Eurasian and Indian plates following the closing of the
Tethys ocean between them. In both instances, the collision of two
plates results in significant surface expressions such as the Himalayas
and the Andes.

3. Conservative - Named as such due to the fact that lithospheric material
is neither destroyed (convergent) nor created (divergent). Instead, at
this type of boundary the plates move parallel to one another, with the
frictional forces between them a common source of earthquakes, with
an example being the San Andreas Fault on the west coast of the USA.

As mentioned, these plates (consisting of the crust and uppermost mantle)
sit on the underlying mantle, with the spreading and subduction of material
from the lithosphere part of the large convective cells of mantle convection.

1.1.2 The mantle

The mantle extends from below the crust to a depth of 3480 km from Earth’s
centre, making up 84% of its volume and consisting of ≈ 70% the mass. As
there is no direct way to observe the mantle we rely on indirect observations
to determine its structure and composition. Seismology, geodesy, numerical
models, geochemistry and mineral physics experiments are all branches of
Earth science that allow us to probe the mantle.

Analysis from these data sources reveals that the mantle is not a sin-
gle uniform region but can be broadly broken down into the upper and
lower mantle. The upper mantle is characterised by much less viscous flow
(O(1021)Pa s), whilst the lower mantle is much stiffer being orders of mag-
nitude more viscous. Such high viscosities mean that at human timescales
the mantle appears as a solid volume, however the mantle is deforming by a
process of viscous creep. When viewed over geological timescales, the man-
tle is a highly convective body with a Rayleigh number (a non-dimensional
measure of the strength of convection in a fluid) O(109). This translates to
typical flow speeds of 5 cm yr−1 to 10 cm yr−1 with the convective cells that
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Volume fraction (%)

Fig. 1.3 The main mineralogical components of Earth’s mantle for a pyrolitic
mantle composition (Px – pyroxenes, Mw – magnesiowustite, Ca-pv – cal-
sium silicate perovskite). Figure from Karato (2008).

form mantle convection linking with the plate tectonic boundaries (Davies
1999).

The upper mantle, as previously discussed, is linked with the crust at
shallow depths forming the lithosphere. Directly below this is a region
referred to as the asthenosphere, the very mobile layer which the lithosphere
moves over. Beneath the asthenosphere, in the lower part of the upper
mantle, we begin to see the effects of phase changes in the minerals, with two
significant phase change boundaries located at 410 km and 660 km depth.
These changes in mineral structure have been imaged by seismology, and
replicated in lab experiments and are known to result in both density, and
endothermic and exothermic changes as the minerals transition. Due to these
phase changes, the region between 410 km and 660 km is typically referred
to as the transition zone (Kennett and Bunge 2008).
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Below this depth is the lower mantle, which is more homogenous than the
region above it. There is however a final phase change boundary located near
the base of mantle around 2700 km depth, as well as potentially chemically
distinct reservoirs. Figure 1.3 highlights the main mineralogical phases in
Earth for a single chemical composition model of the mantle, where we see
the effects of the phase change boundaries at the various depths (Karato
2008).

Despite the major differences observed and expected in the mantle being
radial due to increases in temperature and pressure, we also see lateral
variations. These variations are linked with the convective cells of the mantle
with the cold downwelling, and hot upwelling material resulting in lateral
differences in densities and viscosities (Schubert et al. 2001).

The mantle is heated both internally from radiogenic decay and from
the core beneath it. The internal heat is generated by the decay of a number
of radioactive isotopes (predominantly isotopes of uranium, thorium and
potassium), with half lives of the order 1 Ga to 10 Ga. Due to this radioactive
decay, the total heat production of the Earth is decreasing. Roughly 3 billion
years ago heat production was double the present rate, with the result that
convection will have slowed over this period (Davies 1999).

At the mantle’s base the interface with the core is known as the core-
mantle boundary (CMB). It is near the CMB that seismological observations
have picked out both Large Low Shear Velocity Provinces (LLSVPs) and ultra
low velocity zones (ULVZ) rising off of the boundary (Garnero et al. 2016).

1.1.3 The core

The core occupies the region from Earth’s centre to the CMB at 3480 km,
making up the last 16 and 30% of the volume and mass respectively. It
can be further separated into an inner and outer core, which are solid and
liquid respectively as revealed by seismic studies. Because of the significant
differences in outer core and mantle viscosities, the CMB is one of the most
dramatic boundaries in Earth. The boundary between the inner and outer
core, known as the inner core boundary (ICB), is located around 1200 km
from the centre. This is thought to be expanding due to the solidifying of the
outer core (Alfè et al. 2002).

The core plays a crucial role in the habitability of Earth thanks to the
vigorous convection in the liquid outer core. This convection generates the
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magnetic field that shields the surface from the charged particles of the solar
winds and cosmic rays. This magnetic field has been observed to have flipped
several times through Earth history as evidenced by the alternating magnetic
pattern in the rock record. This observation can be used in reconstructing the
plate tectonic movements (Müller et al. 2016).

1.1.4 Geodynamics

Geodynamics is the study of the dynamics of the mantle. Very simply it is
concerned with understanding the driving force in the system, with the hot
material rising and cold material sinking in the volume, not unlike the move-
ment of material in a lava lamp. This process however is linked together
with many other processes including: the rheological makeup of the mate-
rial, changes in phases as materials experience different temperatures and
pressures at depth, the chemical composition of materials and the coupling
to surface processes like plate tectonics.

The mantle is a system with numerous complexities, with an active and
exciting research field attempting to understand the processes that occur
under our feet. To this end, investigations to improve the understanding
of mantle processes occur with knowledge obtained through a number of
avenues: from mineral physics based lab experiments, seismology, geodesy,
geochemistry, and numerical modelling. In this work we take a particular
interest in the computational experiments. These allow us, providing the
underlying mathematical model is adequately defined, to explore mantle
convection problems in detail and for a large parameter space. The only
constraint on these models being the availability of computational resources.

Mantle convection models rely on describing the mantle as a fluid, with
an appropriate equation set being outlined in Mckenzie et al. (1974), with the
system being defined by the conservation equations for mass, momentum
and energy. A number of sophisticated models have been developed that
solve these equations and the many complexities predicted in both two-
dimensions (with many recent models outlined in the benchmarking paper
of Tosi et al. (2015)), and in three-dimensions. Particularly useful are the
models which solve the equations in a spherical volume that attempt to
capture the global effects of mantle convection. Models such as TERRA
(Baumgardner 1985), CitcomS (Zhong et al. 2000; Tan et al. 2006), StagYY
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(Tackley 2008) and ASPECT (Kronbichler et al. 2012) fall into this class of
global mantle models.

These mantle convection models are like any other mathematical model;
by providing an initial condition together with boundary conditions, the
governing equations can be solved through time for a chosen numerical
method. Results from these convection models are related back to the obser-
vations from other branches of Earth sciences, and it is the research linking
the models and observations that we shall move on to explore in greater
detail.

1.2 The present understanding in mantle dynam-

ics

As we have previously mentioned, the mantle makes up 84% of Earth’s
volume, yet there are a number of areas of uncertainty in our understanding
of this domain.

Despite being beneath the surface of Earth, thanks to seismic tomography
we are able to image the many structures within the mantle. In brief, seismic
tomography collates the seismic wave data and inverts this data to create a
three dimensional image of the seismic velocities of Earth (see Liu and Gu
(2012) for a comprehensive review). As these seismic waves are sensitive to
the elastic properties of the medium they are travelling through, differences
in density and temperature will affect the speed of the wave as it passes
through the region. This in essence allows us to see the current convective
structures in the mantle and reveals a great number of features that would
otherwise be obscured from observation.

In fig. 1.4 we see some of the features imaged by one such shear wave to-
mography model, S40RTS (Ritsema et al. 2011). In this image the red regions
correspond to seismically slower than average features. The large nature of
these two slower than averages volumes, occupying an area consisting of
30% of the CMB and extending up to 1200 km above the CMB, has led rise
to the term LLSVP when referring to them in the literature. A recent review
into reconciling these observed features with our current understanding of
mantle processes is available in Garnero et al. (2016).

There are currently many open questions regarding the LLSVPs in geo-
dynamics, with possibly the most prominent one being whether they are
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Fig. 1.4 A global view of shear wave seismic velocity perturbations (dVs) in
the S40RTS model (Ritsema et al. 2011), focused on the Atlantic (left) and
Pacific (right). Images include a radial surface located at 2800 km with the
±1 % dVs isosurface, with positive anomalies not shown above 500 km depth
and negative anomalies not shown above 1000 km depth.

thermal upwellings or thermo-chemically dense piles that have gathered in
the region (see Davies et al. (2015a) and Deschamps et al. (2015) for two re-
cent reviews). For purely thermal iso-chemical upwellings, it is not expected
that these would be single, large ‘megaplumes’ as suggested in Thompson
and Tackley (1998), but rather collections of finer plumes, which due to res-
olution limitations in the tomography are imaged as single large features
(Schuberth et al. 2009a; Bull et al. 2009). While it has been argued that large
thermo-chemical piles are not required for reconciling with the observed
LLSVPs (Davies et al. 2012; Glišović and Forte 2015), a number of studies
advocate the presence of thermo-chemical piles (McNamara and Zhong 2005;
Bull et al. 2014). If these are thermo-chemical features, then their formation
is also open for debate; they may be from a primordial reservoir, having
formed from a differentiation event (Tolstikhin et al. 2006; Labrosse et al.
2007); or the material that they consist of has accumulated over time (Hirose
et al. 1999; Brandenburg and van Keken 2007).

Further to these arguments for different makeups of these LLSVPs are a
number of other open questions that can be explained by either a thermal or
thermo-chemical explanation for LLSVPs. The longevity of the two masses
as two distinct bodies has been investigated through the use of mantle cir-
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culation models, and the likelihood of whether they could be created from
a single large body (McNamara and Zhong 2005; Bower et al. 2013; Bull
et al. 2014). Meanwhile the shape of the LLSVPs has been shown to be in-
fluenced by the plate motion reconstructions and the initial condition that
is used (Zhang et al. 2010; Shephard et al. 2012a). We note that the plate
reconstructions prior to 150 Ma are less well constrained due to the lack of
paleomagnetic data, as there is little oceanic crust older which has not been
subducted (Torsvik et al. 2008; Seton et al. 2012; Müller et al. 2016). This
introduces some uncertainty in the results from studies that use plate recon-
structions that extend beyond the Cretaceous period. Further linked to the
nature of the LLSVPs structure is the question of any correlation between the
large igneous provinces (LIPs) and volcanic hotspot locations at Earth’s sur-
face to the LLSVPs. Various studies have put forward arguments that these
surface features are preferentially located above the margins of the LLSVPs
(reinforcing an argument for a thermo-chemical composition) (Torsvik et al.
2006; Steinberger and Torsvik 2012), or that there is no preference to being
located above their margins, and therefore not strengthening the case for
thermo-chemical LLSVPs (Austermann et al. 2014; Davies et al. 2015b).

Also unveiled by seismic tomography is the presence of long since sub-
ducted material at both the plate boundaries and deeper into the mantle
(denoted by the blue features of fig. 1.4). Subducted material is observed as a
faster than average seismic feature, being colder denser material. These cold,
narrow structures have been traced from the present day convergence zones
of plate boundaries to a range of depths in the mantle; in some instances
extending down to near to the CMB (van der Hilst et al. 1997), while in others
it is seen to stagnate at the mid mantle phase transitions (Li et al. 2008; Fukao
et al. 2009). The mixed observations of how subducted material transitions
through the mantle emphasises that there are extra complexities within the
mantle. Specific subduction studies have linked these differing types of
subduction behaviour to the relationship between the age of the overriding
and subducting plates (Garel et al. 2014).

Observations of Earth’s gravity field equally highlight the structures seen
in tomographic images, with gravity anomalies highlighting the varied dis-
tribution of mass in the mantle. Recent global gravity data obtained from
the ESA satellite mission, GOCE (Johannessen et al. 2003), has been used by
Panet et al. (2014) to construct maps of global gravitational gradients which
match the features identified in tomography models. An expression of the
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observed differences is to the dynamic topography (i.e. flow induced topog-
raphy) of the crust; in essence a buoyant feature in the mantle will deflect the
boundaries near it, either up or down depending on whether it is positively
or negatively buoyant. Dynamic topography is used to describe the anoma-
lous elevations observed that are not caused by isostasy. An example of this
would be the positively buoyant African superswell (Lithgow-Bertelloni and
Silver 1998), or the negatively buoyant western North Atlantic due to the
previously subducted Farallon slab (Conrad et al. 2004) .

From data sources like the geoid it is possible to infer the complex rheo-
logical structure of Earth. While there is consensus on the overall average
viscosity value across the mantle, O(1021)Pa s (Haskell 1937), geoid data im-
plies that the mantle also contains radial viscosity contrasts. While the long
wavelength sensitivity of the geoid is more attuned to large features and the
viscosity changes of the lower mantle, at finer length scales the presence of
upper mantle material such as subducted plates is recognised within the data
(Hager 1984; Panasyuk and Hager 2000; Forte and Mitrovica 2001; Rudolph
et al. 2015). A number of studies have inverted geoid datasets to yield a
radial profile for the viscosity structure of the mantle (Hager et al. 1985; Forte
and Peltier 1991; Mitrovica and Forte 2004; Rudolph et al. 2015). Laterally,
the mantle is also expected to have viscosity contrasts, though the effects of
datasets such as the geoid are not significant (Moucha et al. 2007). A recent
review collating current knowledge from both experimental and geophys-
ical observations can be found in King (2016). Mantle convection models
have also been conducted that cover the whole gamut of radial and lateral
viscosities observed, with a variety of different rheologies seeing matches
to present day observations (Bunge et al. 1996; Tackley 1996; Zhong et al.
2000; Glišović and Forte 2015). These various matches to observations, lead
to further questions on our understanding of mantle rheology.

Considering the wealth of active areas of study in geodynamics, it is clear
that a number of these research areas can be improved through better under-
standing of both the present, and the past, mantle flow. Gaining knowledge
from the past mantle however is difficult as we recall that mathematical mod-
els need both initial and boundary conditions. Whilst we know our boundary
conditions fairly well due to progress in plate reconstructions (Müller et al.
(2016) for a review), we simply do not know what the initial condition for
the past mantle flow is. Therefore any models of the mantle and conclusions
made are borne from of an unknown and so must contain some error. It
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has been shown that the assimilation of plate reconstructions constrains,
and in fact helps, generate a mantle flow at present day that matches what
others have observed (Bunge et al. 2002). Such methods however, cannot
help estimations of the mantle flow at the models beginning. This initial
condition issue has not gone unnoticed, and several attempts to address this
problem through the use of various techniques have been made (Conrad
and Gurnis 2003; Bunge et al. 2003; Liu et al. 2008; Ismail-Zadeh et al. 2009;
Spasojevic et al. 2009; Shephard et al. 2010; Horbach et al. 2014; Glišović and
Forte 2014).

Recognising the advantage of constraining our estimates of past mantle
flow, and the initial conditions for mantle convection models, to addressing
the current questions in geodynamics we can now begin to focus our research.
To this end, we consider these questions when framing the work to be
conducted in this thesis.

How accurate are our current methods of calculating mantle flow?

First, we must consider how accurate our current methods of mantle mod-
elling are and is there any sensitivity to how these models are initiated.
Having established this we can then go on to consider our second question:

In what ways can we better constrain our understanding of past mantle
flow?

As we have outlined, there are numerous present day observations of the
convective flow in the mantle, yet standard methods do not allow us to use
this information to better understand mantle flow in the past. We therefore
endeavour to investigate potential methods to overcome this disconnect, and
that allow us to feed our extensive present day knowledge into our mantle
models to infer past flow. By investigating such methods we then turn our
attention to attempt to address some of these issues with our third question:

Are these methods an improvement over current techniques in helping un-
derstand current questions in geodynamics?

By developing a method that utilises the wealth of data available to us for
present day mantle observations, we have to ask does such a method have
any merit compared to standard mantle modelling practices.
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1.3 Thesis outline

The body of work presented in this thesis follows a natural path towards
addressing these questions raised. While each chapter forms a part of the
larger narrative of this thesis, each is self contained and can be read indepen-
dently of one another. There is therefore some small repetition as methods
are outlined in each chapter.

To begin, in Chapter 2 we present an introduction to the methods that
form the background of mantle convection and mantle circulation modelling.
We detail the equations that govern the dynamics of the mantle, together with
the computational code used to model this system, TERRA. A discussion of
how these models can be related to Earth, through the use of data assimilation
of reconstructions of past plate motions to generate structures similar to Earth;
as well as what and how we can convert and compare the final output from
these models in order to validate results. We conclude our introduction to
mantle modelling by presenting an example of a typical mantle model. This
is started from a guessed initial condition and then progressed to present day,
whilst assimilating 200 Myr of plate motion histories. The final output from
this model is then compared to a tomographic model noting the similarities
and differences between them.

Following this introduction to mantle modelling, in Chapter 3 we begin by
investigating how discrepancies in the mantle modelling process may affect
the final outputs, with an aim to address our first question of how accurate
current methods are. Previous work has shown that even small differences
in the initial condition for a mantle convection model can influence the
final solution due to the chaotic nature of convection. We therefore look to
apply the theory of error growth to models that assimilate a known surface
boundary condition, such as you might find with plate reconstructions, in
order to test whether this constrains the error growth from differing initial
conditions.

Having demonstrated that through assimilating a known surface bound-
ary we can constrain the error growths from differing initial conditions, we
address our second question regarding how to constrain our understandings
of past mantle flow, by investigating how the initial condition itself can
be constrained. To this end, in Chapter 4 we discuss potential methods of
incorporating the wealth of Earth observations available, in order to achieve
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a more informed initial condition for our models. We present in detail the
concept of an adjoint model, a method that assimilates known present day
information, and how it can be implemented into the forward modelling
process employed thus far in this thesis. A detailed guide on the computa-
tional process is discussed, as no such source of information is available in
the current literature. With the adjoint method implemented in TERRA, we
finish this chapter with a small synthetic test case in order to verify that the
iterative forward-adjoint process can reconstruct past mantle structure.

With the positive results obtained for our forward-adjoint test case, in
Chapter 5 we begin a more robust profiling of the method. While some
pieces of the adjoint method for mantle convection have been looked at in
other studies, we look to build on this work in this chapter through the use
of additional tests that use synthetic data. Due to the computational expense
required to run forward-adjoint models, we look at potential places where
efficiencies can be made in the method that do not alter the convergence of
solutions. We also use the availability of 200 Myr of plate reconstructions
together with the forward-adjoint method to determine over what time
intervals the method performs to an acceptable standard.

With our aim to improve the initial condition of mantle models relevant to
Earth, incorporating real Earth data when performing the adjoint calculation
is a necessity. Therefore, we move on from our synthetic models of the
previous chapter and look to incorporate shear wave tomography in our
models in Chapter 6. Because of the resolution differences between mantle
models and tomographic models in this chapter we investigate differing
methods of comparing these two datasets, looking in detail how this affects
the convergence of any solutions.

We conclude our research in Chapter 7, where we look to combine all the
information we have found thus far in this thesis, and by applying it to high
resolution forward-adjoint models, observe any differences between adjoint
derived initial conditions and classic initial conditions. To understand how
the two types of initial conditions alter mantle flow patterns, we construct
MCMs with different viscosities that use these two types of initial condition.
By monitoring the two different models we hope we can answer the final
question of whether the adjoint method improves our understanding of
Earth based problems.
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The final chapter in this work (Conclusions), summarises the main re-
sults of the thesis, reviewing these in the context of the plan lain out in the
introduction.

At the end of the thesis are a number of appendices that include: a
glossary of common terms (Appendix A); a detailed derivation of the adjoint
equations for incompressible flow (Appendix B), together with the adjoint
equations for compressible flow (which are not considered in this thesis), as
well as musings on how the adjoint method may be used for thermochemical
models.

All code advancements from the base TERRA code required for this
thesis, including the implementation of the adjoint equations and workflow
as outlined in chapter 4, and code required to run the twin experiments of
chapter 3 have been implemented myself.



CHAPTER 2

METHOD - MANTLE MODELLING, DATA ASSIMILA-

TION & TERRA

2.1 Introduction

Before presenting the findings of this thesis, we will first give a short overview
detailing the methodology involved in modelling the mantle convection both
in general, and how this can be related to the case of convection in the Earth.
First we will present a brief outline of the mathematical equations that define
convection, leading into the details of the computational code used in this
study. Following this an outline of how we relate our models to the Earth
by conditioning the models with plate reconstructions, together with how
we can then validate our results to the Earth is described. To finish we then
present an example of a mantle model from start to finish, to allow the reader
to view the entire process.

2.2 Mantle convection modelling - The numerical

formulation

The mathematical formulation for mantle convection involves the equations
for conservation of mass, momentum and energy prescribed in a spherical
shell with an upper boundary S and lower boundary C with the mantle
contained in the volume V with boundaries ∂V = S ∪ C. As the convection
is time dependent, the equations apply over a time interval I = (t0, t1). So
for x ∈ V, t ∈ I the following equations prescribe mantle flow (Jarvis and
Mckenzie 1980).
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Firstly mass conservation is ensured by

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

where u denotes the fluid velocity and ρ the density. The time dependency in
this equation can be set to zero. This is because changes in the mantle density
over short time scales are represented as seismic waves, and so are not
considered a solution to the equation on the time scale of mantle convection.
Thus we arrive at the anelastic approximation for the conservation of mass:

∇ · (ρu) = 0. (2.2)

Conservation of momentum ensures the balance of the buoyancy and
viscous forces present in the mantle. This is described mathematically as

∇ · σ + ∆ρg = 0, (2.3)

with ∆ρ being any density anomalies and g the gravitational acceleration. σ

denotes the stress tensor which can be broken down to the deviatoric and
non-deviatoric stresses

σ = τ − PI. (2.4)

P is the non hydrostatic pressure giving the non-deviatoric stress and τ is
the deviatoric stress relating the stress field to the velocity, which assuming a
Newtonian fluid the constitutive equation is

τ = η

{
∇u + (∇u)T − 2

3
I(∇ · u)

}
(2.5)

where η is the dynamic viscosity. With both eqs. (2.4) and (2.5) we can then
expand the general definition of our momentum equation eq. (2.3) to obtain

∇ ·
(

η

{
∇u + (∇u)T − 2

3
I(∇ · u)

})
−∇P + ∆ρg = 0 (2.6)

Equation (2.6) then relates the balance of forces (reading from left to right)
between viscosity, pressure and buoyancy.

Considering the conservation of energy in the system introduces the
time dependency in the mathematical formulation of mantle convection.
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Conservation of energy is described as

∂T
∂t

+ u · ∇T + γT∇ · u − 1
ρcV

(τ : ∇u +∇ · (k∇T))− H = 0, (2.7)

where T is the temperature, γ is the Grüneisen parameter, k is thermal
conductivity, H is radiogenic heat production and cV is the specific heat at
constant volume.

Equations (2.2), (2.6) and (2.7) are therefore our set of equations that
describe compressible mantle flow.

Furthermore there are some simplifications which can be made to our full
set of compressible equations, which we will briefly detail also.

If we assume that the mantle is incompressible, that is the volume does
not change with changes in pressure and temperature, then the divergence
of the velocity can be set to zero such that

∇ · u = 0. (2.8)

We see this term appear a number of times across our compressible equations
eqs. (2.2), (2.6) and (2.7), all of which vanish under this assumption.

Furthermore we can employ a number of equation of state approxima-
tions. If we assume a Boussinesq equation of state then we have

∆ρ = αρ(Tav − T), (2.9)

where α is the coefficient of thermal expansion and Tav the reference radial
temperature profile, which then assumes that density is held constant other
than in the buoyancy term of the momentum equation.

We can therefore obtain the simplified set of equations eq. (2.10) for
mantle convection

∇ · u = 0 (2.10a)

∇ ·
(

η{∇u + (∇u)T}
)
−∇P + αρ(Tav − T)g = 0 (2.10b)

∂T
∂t

+ u∇ · T − κ∇2T − H = 0, (2.10c)

where κ = k/cVρ denotes thermal diffusivity. Assumptions on the viscosity
structure of the mantle (such as thermal, radial or constant) can vary the
level of complexity of the system of equations needing to be solved.
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Of course initial (eq. (2.14)), and boundary (eqs. (2.11) to (2.13)), con-
ditions are required in order to obtain a particular solution using these
equations. The mantle has two boundaries: at the bottom where it contacts
the outer core C, and at the top where the surface touches the crust S. Since
the length scales of the crust are small compared to the mantle we typi-
cally include this as a part of the mantle in our models and assume the top
boundary is at the surface or the Earth.

For the velocity field at the CMB, a good approximation of the flow
behaviour is to assume there is no shear stress; this is due to the very low
viscosity of the liquid metal in the outer core. Therefore we prescribe a free-
slip boundary condition (eq. (2.11a)), which sets the tangential component of
the shear stresses to zero,
((

∇u(x, t) + (∇u(x, t))T − 2
3

I(∇ · u(x, t))
)
· n(x)

)

tan
= 0 x ∈ C, t ∈ I

(2.11a)

where n is the normal vector. At the surface boundary we can apply the
same boundary condition. However, we can also make use of the knowledge
of plate motion histories as a kinematic boundary condition to allow our
models to better capture Earth dynamics. To do this we assign the relevant
tangential velocities described in a plate motion model, uP at the surface
boundary,

u(x, t) = uP(x, t) x ∈ S, t ∈ I (2.11b)

We also apply the no-penetration condition on the flow to ensure there is no
radial flow at either boundary,

u(x, t) · n(x) = 0 x ∈ ∂V, t ∈ I. (2.11c)

In reality the situation is slightly more complex, as the boundary is not fixed
but also allows vertical movement (for example the building of mountain
ranges show this). However, due to the length scales of our models (O ∼
3000 km) we ignore this.
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For the pressure field, due to the gradient of P we prescribe the following
boundary condition at the surface

P(x, t) = 0, x ∈ S, t ∈ I. (2.12)

For the temperature field we assign a value at the two boundaries S and
C;

T(x, t) = TS(x, t) x ∈ S, t ∈ I (2.13a)

T(x, t) = TC(x, t) x ∈ C, t ∈ I (2.13b)

together with an initial condition that we prescribe for the whole temperature
field

T(x, t0) = T0(x) x ∈ V. (2.14)

It is in (2.14) that the main obstacle in mantle convection codes is found,
as there are simply no measurements for the temperature structure of the
mantle back through time (Bunge et al. 2003).

2.3 TERRA, a three-dimensional, spherical man-

tle convection code

2.3.1 Background

A number of codes exist that solve the system of equations governing mantle
convection; such as CitcomS (Zhong et al. 2000; Tan et al. 2006) , ASPECT
(Kronbichler et al. 2012), StagYY (Tackley 2008). The code that will be used
for this project is TERRA, which was originally the work of Baumgardner
(1985).

Since its inception it has seen many noticeable improvements. The first
main improvement was being parallelised (Bunge and Baumgardner 1995),
overcoming the limitations of single processor machines. Sharing the prob-
lems over many processors results in improved computational speed for
problems at more realistic resolutions with greater accuracy.

Following this, variable viscosity (both temperature and pressure depen-
dent) was introduced into the code (Yang 1997) Due to the inferences from
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many areas of earth science on the structure of the mantle, this was a crucial
addition.

The assimilation of plate motion history models as a kinematic surface
boundary condition has also been incorporated into TERRA (Bunge et al.
1998). Whilst this does not account for lithospheric deformation, it nonethe-
less allows a generic convection model to accurately recreate the large scale
tectonic features that have formed the unique structure of Earth’s mantle.
Models using these boundary conditions are referred to as mantle circulation
models as opposed to mantle convection models.

Finally, tracer particles which allow models to consider thermo-chemical
convection in the mantle are also available (Stegman et al. 2002). This allows
investigations into the geochemical nature of the mantle to be undertaken;
an area that is currently of significant debate.

TERRA has been benchmarked to ensure accuracy (Davies et al. 2013).
These improvements leave TERRA as a highly capable mantle convection
code, that can approach any number of current problems in the geodynamics
community.

2.3.2 The TERRA grid

The TERRA grid has remained unchanged since its inception. Within this
thesis we concern ourselves only with the main details of the grid structure
to aid understanding the scalability and increase of resolution and demands
of the code. A full description of the grids discretisation and indexing may
be found in both Baumgardner (1983) and Baumgardner and Frederickson
(1985).

An ideal grid for a given computation would consist of as near to equal
area as possible discretisation of the domain. In TERRA the sphere is initially
discretised by projecting a regular icosahedron onto the sphere such that the
twelve vertices of the icosahedron define the base grid constructed of twenty
equal triangles; i.e. fig. 2.1a. These twenty triangles can also be thought of
as ten diamonds, with each diamond containing one of the triangles with
a vertex located at one of the poles. With this simple grid in place, further
refinements to the grid are easily achieved by joining the midpoints of the
sides of each triangle with geodesic arcs, creating four smaller triangles. This
process of refinement can be be repeated to obtain any resolution and allows
the grid to remain virtually uniform irrespective of how fine the resolution.
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(a) mt = 1 (b) mt = 2 (c) mt = 4

(d) mt = 8 (e) mt = 16 (f) mt = 32

Fig. 2.1 (a) The TERRA grid created from projecting an icosahedron onto a
sphere. (b)-(f) successive refinements for mt.

Also an advantage for this type of grid discretisation is that it does not suffer
from an over sampling of points on the poles that can occur with rectangular
grids projected onto the sphere.

The parameter that defines the number of refinements to the basic grid is
known in TERRA as mt = 2k, k ∈ N; an example of the first few refinements
can be seen in fig. 2.1.

To extend the mesh radially so that it encompasses the three dimensional
domain of the sphere we simply repeat the spherical mesh at different radii
from a central coordinate. The result is a volume discretised by cells that are
triangular prisms that have spherical ends.

The choice in how many radial layers to use is dictated by the parameter
nr. The choice in nr however, should ideally create finite element cells that
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Fig. 2.2 Aspect ratio of finite element cells vs. inner/outer radius ratio rb/rt
for different nr/mt values, where mt = 512. The ratio rb/rt ≈ 0.546 for the
Earth is highlighted. Reproduced from Yang (1997).

have an aspect ratio as near to 1 as possible as discussed in Yang (1997).
Figure 2.2 shows various choices of nr for different factors of mt. From this it
can be seen that the ideal choice of nr for the Earth to achieve an aspect ratio
of 1 would be nr = 1

2 mt.
With both choices in mt and nr defined the number of nodes can be

found. Each shell contains 10mt2 + 2 nodes and nr + 1 radial layers of shells.
Table 2.1 shows how an increase in mt translates to both the total size of the
problem being solved and the refinement in the resolution of the grid.

2.3.3 Computational requirements

The computational resources required by TERRA depend on a number of
factors. The number of processes required for a model depends on the value
given by the following formula:

# proc =

(
mt
nt

)2 10
nd

(2.15)

where mt = 2m, nt = 2n with m ≥ n; m, n ∈ N and nd = 5 or 10. nt, is the
number of grid intervals along the edge of a local subdomain (a division of
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mt # global nodes Average lateral spacing (km) Radial spacing
Surface CMB (km)

16 23,058 479.4 261.9 361.2
32 174,114 239.8 131.0 180.6
64 1,351,746 119.9 65.6 90.3

128 10,649,730 59.9 32.7 45.2
256 84,541,698 30.0 16.4 22.6
512 673,710,594 15.0 8.2 11.3

1024 5,379,195,906 7.5 4.1 5.6

Table 2.1 Growth and refinement of the TERRA mesh used when modelling
the Earth

each diamond) and nd, the number of diamonds from which subdomains
will be mapped onto the processors.

Problems for mt ≤ 64 therefore can take between 1 and 16 processes to
run, amounts that are not uncommon in current desktop hardware. These
problems therefore run with relative ease locally, whereas these values were
at the limit of computational power when TERRA was first introduced
(Baumgardner 1985). Current global mantle models typically run at resolu-
tions that translate to a TERRA mt values in the range of 256 ≤ mt ≤ 512
(Schuberth et al. 2009b; Davies et al. 2012; Bower et al. 2013). Models achiev-
ing a resolution of this order will typically require from 128 to 512 processors,
and so currently require high power computing (HPC) resources.

Of course running at these high resolutions does come with some restric-
tions. The Courant-Friedrichs-Lewy (CFL) condition limits the time stepping
of the model such that the flow speed does not exceed half a grid cell per
time step to prevent calculations from becoming unstable. Since the size of
the cells reduces as the grid is refined, this has a secondary effect of reducing
the length of each time step to ensure the CFL condition is held. Therefore a
single increase in mt will result in requiring 23 (since each grid cell is halved
in size in three dimensions) ×2 (since the time step is halved) longer to run.

Another effect of refining the grid is that the total number of data points
increases by the same 23 value. This can put a strain on storage if not careful,
as coupled with the longer run times the increased storage requirement for
one step in resolution can quickly swamp disk space with 10 GB to 1000 GB
of output data.



2.3 TERRA, a three-dimensional, spherical mantle convection code | 25

However, despite these negatives there are obvious benefits to the in-
creased resolution. First and foremost, the finer resolution allows mantle
features to be resolved to a much finer degree; far beyond any tomographic
models. The finer grid spacing also allows reference viscosities much closer
to those predicted for the Earth to be prescribed, as well as more complex
radial and lateral viscosity profiles to be set.

2.3.4 HPC Wales

As discussed previously, high resolution MCM models will require the use
of HPC facilities in order to perform the computations. For this project we
make use of the HPC Wales computing facility, which is Wales’ national
supercomputing service provider. It is host to the UK’s largest distributed
general purpose supercomputing network, a 17,000 core, 320 Tflop capacity
system.

The system consists of the main two large computer hubs in South Wales,
together with a number of Tier 1 and Tier 2 sites at Universities and business
centres across Wales. These hubs are all connected by a dedicated network
featuring a 10 GBit/sec link between the main hubs, and 1 GBit/sec and
100MBit/sec links connecting the lesser sites.

This project predominantly makes use of the computing resources avail-
able on the flagship hub systems; located in Cardiff and Swansea.

2.3.5 Solution scheme

With the equation set (e.g. eq. (2.10) for incompressible flow) defined, the
basic strategy for solving the set of equations as computed in TERRA is:

1. Compute the pressure field from the density and temperature fields
via the equation of state

2. Solve the equations for conservation of mass and conservation of mo-
mentum simultaneously for u and P.

3. Solve equation for conservation of energy for the rate of change of T.

4. Take a time step and update the density and temperature fields.

A detailed explanation on the technical setup of TERRA is beyond the
scope of this work, whilst being covered extensively in other work so is not



2.4 Data assimilation of plate motion histories | 26

included here. If the reader requires further information on topics including;
the underlying indexing of the numerical grid; a derivation of the discretised
Galerkin finite element formulation; the computational operators in terms
of the finite element shape functions; a detailed description of the solution
strategies; an explanation of the time stepping strategies employed; how
parallelisation of the problem translates to the TERRA grid; then they are
encouraged to consult the theses of both Baumgardner (1985) and Davies
(2008, Appendix E).

2.4 Data assimilation of plate motion histories

In the mathematical outline for mantle convection in section 2.2 we detailed
that the surface boundary condition for the velocity can be prescribed as
plate motion histories (eq. (2.11b)) by means of data assimilation. By assim-
ilating the tectonic reconstructions of Earths surface, a convection model
can replicate features across the mantle that are seen in seismic tomography
observations (Bunge and Davies 2001; Bunge et al. 2002; McNamara and
Zhong 2005; Shephard et al. 2012a). These range across all the main features
seen in the mantle; the Large Low Shear Velocity Provinces (LLSVPs), sub-
ducting and subducted slabs (e.g. Farallon) and a range of mantle plumes
and hotspots.

Plate motions are incorporated into TERRA by assigning values at the
surface layer of the computational grid, applied in discrete stages. TERRA
has two ways of handling the plate velocities. The first is by breaking the
plate reconstruction into a number of plate stages based upon important
geological changes. One such plate reconstruction used in TERRA is the
Lithgow-Bertelloni and Richards (1998) plate reconstruction that was used in
Bunge et al. (1998). This reconstruction consists of 11 discrete plate stages
spanning 120 Myr, where each stage consists of a discrete number of plates
with their motions defined by a rotation vector and its magnitude. A caveat
of this setup is the large time period between plate stages (O ∼15 Myr) can
result in large jumps in plate boundaries instantaneously when plate stages
update. This can be countered by linearly interpolating between plate stage
rotation poles of successive plate stages. An unwanted effect of interpolating
is the plate boundaries can become ill defined, with the expected sharp edged
boundaries between plates becoming broad regions.
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Alternative to this, the plate reconstruction velocities used in TERRA can
be uniquely defined at each grid point using the GPlates package, an open-
source, interactive tool for plate reconstructions (Boyden et al. 2011; Cannon
et al. 2014). GPlates allows the user to construct plate motion models that
contain evolving and intersecting plate boundaries which separate Earth’s
surface into discrete plates throughout the geological time frame (Gurnis
et al. 2012; Seton et al. 2012; Zahirovic et al. 2015). An advantage of this setup
is that the plate stages are defined by default over a regular and finer time
period (1 Myr intervals) with no issues with plate boundaries as velocities
are assigned to each node. Plate files generated in this way however, lack
the portability of the previous method. This is because since the plate files
are assigned at each node, a change in the model discretisation (changing nt
or nd, whilst keeping mt the same) which changes the number of processes
used, will require a new set of plate files regardless of keeping the resolution
fixed. This therefore requires a non-trivial amount of disk space to store each
set of plate files (4 GB for a 200 Myr mt = 256 model). The number of files
can create issues interacting with them using a command line interface.

Since the aim of this study is to improve the TERRA models predictions of
the Earth, the choice of plate reconstruction is key, and next we shall discuss
the choice of plate reconstruction used in this work.

2.4.1 The Seton et al. (2012) plate reconstruction

The plate motion model of Seton et al. (2012) is a global set of continuously
closing topological plate polygons with the associated plate boundaries and
velocities, based on the method outlined by Gurnis et al. (2012); spanning
from the breakup of Pangea (200 Ma) to present day (fig. 2.3).

Briefly, the model uses plate motions found from reconstructing the
spreading history of the seafloor using gravity and magnetic anomaly data
to construct seafloor spreading isochrons for each major oceanic plate. To
account for oceanic crust from plates that has since been subducted over the
200 Myr, evidence of subduction, slab windows and anomalous volcanism
from onshore geology, and the rules of plate tectonics is used in line with
the approach of Muller et al. (2008). Finally the model utilises a hybrid
absolute reference frame; for 100 Ma to present the reference frame is based
on a moving Indian/Atlantic hotspot model (O’Neill et al. 2005), and for
the 200 Ma to 100 Ma period a true-polar wander corrected paleomagnetic
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Fig. 2.3 Snapshots of the plate tectonic reconstruction from Seton et al. (2012).
Coastlines (black), ridges and transform faults (blue) and subduction zones
(red) are included for geographic reference.
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Fig. 2.4 Global plate RMS velocities of the Seton et al. (2012) plate motion
model.

model is used (Steinberger and Torsvik 2008). Combining all this results in
a set of dynamically closed plate polygons spaced at 1 Myr intervals which
continually evolve thanks to the computed dynamic plate boundaries. For a
full detailed explanation on the data methods used to construct this model
the reader is encouraged to read Seton et al. (2012).

Having a reconstruction extending back to the Jurassic is advantageous
compared to previous models that only extended to the Cretaceous period
(Lithgow-Bertelloni and Richards 1998). Previous studies (Bunge et al. 2002)
found that whilst upper mantle features are replicated well; the shorter
length plate reconstructions failed to generate structures seen in the deepest
regions of the mantle (below 1500 km).

Figure 2.4 shows the root mean square (RMS) velocities for the entirety
of the Seton plate model. Mantle circulation models can run at a differing
convective vigour compared to the actual pace of Earth due to scalings
of certain parameters. It is worthwhile to account for this when applying
the plates as a boundary condition to ensure a smooth transition from the
boundary layer to the volume below. This can be achieved by applying a
scaling factor to the plate velocities. The scaling factor α is obtained using
the plate model RMS velocity, Vp and the underlying RMS velocity of the
TERRA model, Vm such that

α =
Vp

Vm
.
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Fig. 2.5 Global view of shear wave seismic velocity perturbations (dVs)in
S40RTS focused on (left to right) Asia; Africa; Pacific. Images include a radial
surface located at 2800 km with ±1 % isosurfaces clipped above 2000 km
depth.

If for instance the convective vigour of the underlying model was one
order of magnitude slower than predicted for Earth, then α = 10. Applying
this would result in the plate boundary conditions being slowed by a factor
of ten, with the model running for ten times the length; which in the case
of the Seton et al. (2012) plate model would result in the model running for
2000 Myr.

2.5 Model validation

In order to learn from the outputs of numerical models, it is worthwhile
employing some form of validation for the model. The availability of global
seismic tomography for both S wave (Becker and Boschi 2002; Ritsema et al.
2004; Simmons et al. 2010; Ritsema et al. 2011) and P wave (Li et al. 2008)
velocities allows the best insight into Earth’s interior. These tomographic
datasets reveal a wealth of detail on the mantle’s present day internal struc-
ture. The main fast and slow anomalies as seen in the S40RTS model can
be seen in fig. 2.5. The work of Schuberth et al. (2009b) and Schuberth et al.
(2009a) present an excellent workflow for making the comparison of TERRA
outputs to seismic tomography studies such as these.

From TERRA the modelled fields output are of pressure and temperature
(P, T), and so can not be immediately compared to the tomographic models.
These fields can be converted to elastic parameters by the way of mineral
physics derived lookup tables (Stixrude and Lithgow-Bertelloni 2011). These



2.5 Model validation | 31

tables take account of the sensitivities of the seismic velocities to the range
of parameters from temperature and pressure, to the phase changes present
at various depths in the mantle. Furthermore, these conversions can be
extended to account for a composition field (X), included from a thermo-
chemical convection model, though this is beyond the scope of this work.

These seismic velocity fields are not entirely compatible with the tomog-
raphy studies since the coverage of seismic observations is not uniform;
depending on the uneven geographic coverage (few seismic stations based
in the oceans, less robust coverage in poorer countries); the parameterisation
for the tomography model; and the damping and smoothing effects of the
tomographic inversion (Ritsema et al. 2007). The difference in resolution be-
tween modelled and observed seismic velocities has been made by a number
of studies (Mégnin et al. 1997; Ritsema et al. 2007; Schuberth et al. 2009a;
Bull et al. 2009). Because of this when we compare our models to tomog-
raphy we will endeavour to account for this bias by applying the relevant
resolution filter R. The effect of these filters are two fold; firstly the data will
be smoothed, and secondly any structure in the data above the maximum
spherical harmonic degree of the resolution filter will be removed since this
is the highest power wavelength in the respective model.

Currently such a filter is only available for the shear wave tomography
model S20RTS (Ritsema et al. 2004), and its successor S40RTS (Ritsema et al.
2011) which has a higher spatial resolution due to being derived from a
dataset that is an order of magnitude greater. These filters do not however,
account for any systematic errors in the tomography model such as anoma-
lous crustal corrections, or the effects of anisotropy (Ritsema et al. 2011).
Therefore quantitive comparisons between TERRA and tomography can
only be made with these models.

The typical workflow to compare to tomography would be as follows:

1. Run TERRA model to present day assimilating plate motion histories,
outputting pressure and temperature fields (P, T).

2. Convert the output TERRA fields to seismic velocities Vs using the
lookup tables of Stixrude and Lithgow-Bertelloni (2011).

3. Filter these velocities using the appropriate resolution filter R.

4. Compare the filtered model output of TERRA R(Vs) to the observed
tomography model R(Vs).
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Fig. 2.6 Contour plots of the respective velocity fields for the (P, T) lookup
tables of Stixrude and Lithgow-Bertelloni (2011).

Of course this does not render the other seismic properties such as Vp redun-
dant and when appropriate we would consider these.

2.5.1 Converting velocities to temperature structures

Whilst having the output from our TERRA model in the form of a velocity
structure is useful, there may be occasions when we would like to take a
velocity field and use it as a basis for a temperature structure in our models.
To do this we would need to convert the velocities back into a temperature
profile. We can see from the visualisation of the (P, T) lookup tables in fig. 2.6,
that the mappings (P, T) 7→ Vp and (P, T) 7→ Vs are non-unique. This means
that for a given velocity value, there are multiple points on the surface that
could correspond to it.

As the mappings are non-unique we simply cannot reverse our conver-
sion using an inversion of the same lookup tables. Instead we will briefly
investigate a simple one-dimensional conversion with depth such as in Bull
et al. (2010) for deriving the temperature field. This conversion utilises the
equation

T = Tre f −
1
α

R
(

δVs

Vs

)
(2.16)

where Tre f is the reference temperature for a given layer, α is the coefficient
of thermal expansion, R = δ log ρ/δ log Vs is a density-velocity scaling rela-
tionship derived from mineral physics studies, and δVs/Vs is the horizontal
shear velocity perturbation.
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Fig. 2.7 Various choices for the depth dependent velocity-density scaling
parameter R.
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We see in eq. (2.16) that the controlling parameter for the conversion is
R, which dictates the amplitude of the perturbation applied to the radial
average temperature. Values for R recommended in previous studies lie in
the range −0.2 ≤ R ≤ 0.4 with the depth profiles shown in fig. 2.7a (cases
1-4). For the top 200 km these four cases assume R = 0 under the assumption
that compositional differences are likely to cancel out the observed high-
velocity anomalies (Jordan 1978; Forte et al. 1995). We supplement the R
values taken from the case studies with an R value calculated using δ log ρ

and δ log Vs values from an MCM run. As can be seen in fig. 2.7b this derived
value of R shows variation in the first 200 km where the previous case studies
assume R = 0. Beyond this the calculated R shows minor variation with
depth apart from a few outlying extreme values. We also test a second
choice for this calculated R which has these extreme values replaced with
the average value of the two adjacent layers. We define a value as extreme if
|R(r)− R(r − 1)| > 0.4 and |R(r + 1)− R(r)| > 0.4, where r is the current
radial layer. Finally we have case 5 which is a fixed value of 0.5, which
loosely corresponds to the average value of the variable values.

To test the seven choices for the R parameter, we take the final output
from an MCM and perform the conversion Tpre 7→ Vs 7→ Tpost. Furthermore
we perform the conversion using two different choices for the reference
temperature Tre f . Our two choices are; one the radial average temperature
for each layer from the end final output of our MCM calculation (fig. 2.8a);
the other using the reference temperature calculated for the underling model
based on its boundary temperature and assumed equation of state (fig. 2.8b).
For these fourteen cases we compare the post conversion temperature,Tpost,
to the temperature prior to applying the conversion, Tpre, and calculate a
volume averaged L2 norm for the whole mantle, the upper mantle (0 km to
660 km) and the lower mantle (660 km to 2890 km).

We present the resulting norms for the differences in fig. 2.8. It can
immediately be seen that using the radial average temperature profile results
is a better fit to Tpre in all seven cases, and so we will only consider these. The
effect of the extreme values present in the variable case are apparent with
the upper mantle norm (and by extension whole mantle norm) over twice
as large as the next nearest test case. By filtering out the extreme values of
the variable case we see that the norm values are brought in line with other
studies.
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Fig. 2.8 L2 norm of the difference between the temperature profile from a
MCM before and after applying the conversion Tpre 7→ Vs 7→ Tpost (up-
per/lower mantle is calculated for layers above/below 660 km).
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We see that the choice of whether R = 0 or not in the uppermost 200 km
does not have a noticeable effect on the upper mantle norms, as cases 1-4
(R = 0) and the limited variable case (R ̸= 0) have almost identical norm
values. It is also possible that the slightly negative values of R around 500 km
in the limited variable case are also erroneous as the best match is case 3
where R = 0.2.

In the lower mantle we see that all the case study values of R do not
help us accurately perform the mapping Tpre 7→ Vs 7→ Tpost with all of them
performing worse than our variable case. In particular the negative values
in case 4 have a noticeably detrimental effect, being the only case where the
lower mantle norm is worse than the upper mantle norm. We also see that
the fixed value of 0.5 in case 5 yields an almost identical match to the limited
variable case. From this we conclude that, at least in this example, that the
values of R recommended from previous studies provide a weaker signal
for the temperature structure than required. Furthermore we see that the
extreme values in the variable case do not have as large an effect on the lower
mantle norm, outperforming all the case studies also.

Overall we see that for this self consistent test case of the Tpre 7→ Vs 7→
Tpost mapping process, that using a limited variable R value determined
internally provides the best results in virtually all regions.

2.6 Examples of TERRA models

2.6.1 Setup

To finish we present an example of a mantle circulation model. The model
presented herein assumes incompressibility together with the Boussinesq
approximation to obtain eq. (2.10). We define the model resolution such that
we have an average grid spacing of 22 km.

The model parameters are detailed in table 2.2, with a viscosity profile
that varies radially as follows:

η(r) =





100η0 r ≤ 100 km

η0 100 km < r ≤ 660 km

100η0 r > 660 km.
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Parameter Value Units

Surface temperature TS 300 K
CMB temperature TC 3000 K
Internal heating rate H 6 × 10−12 W kg−1

Reference viscosity η0 1 × 1021 Pa s
Density ρ 4500 kg m−3

Thermal expansivity α 2.5 × 10−5 K−1

Thermal conductivity k 4 W m−1 K−1

Specific heat capacity cV 1134 J kg−1 K−1

Rayleigh number RaH ≈1 × 108 –

Table 2.2 Model parameters

At the surface we assimilate the 200 Myr plate reconstruction of Seton et al.
(2012).

Before assimilating the plate reconstruction we first need to generate
an initial condition for our first plate stage. Whilst TERRA can generate a
number of spherical harmonic based initial conditions for the temperature
field, these would not represent a realistic starting point for the model; as we
could begin subducting material as described in the reconstruction, into a
region that our initial condition has set as positively buoyant.

To remedy this we take a two step initialisation phase. First we run a
mantle convection model with the surface boundary set as free-slip from
a spherical harmonic initial condition. We run this until the mantle is well
mixed and nominally reached a thermal steady state. At this point the oldest
plate stage is then assigned as the surface boundary condition, and run for a
length of time corresponding to 50 Myr after accounting for any RMS velocity
scaling. This allows the features of the oldest stage to be conditioned into
the mantle, with spreading ridges and subducting regions having the appro-
priate temperature material underneath them. Whilst this is by no means
a perfect method of generating an initial condition, it does allow models
to evolve more smoothly as sharp changes between differing temperature
structures are not imposed. With this constructed initial condition, the plates
are then applied and run from the oldest plate stage to present day.

At the models conclusion the temperature structure is output, together
with seismic structure based on the lookup tables of Stixrude and Lithgow-
Bertelloni (2011) which assume a pyrolitic compositional mantle.
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Fig. 2.9 Global view of lateral temperature variations centred on (clockwise
from top left) −90°; 0°; 90°; 180°. Images include a radial surface located at
2800 km with ±400 K isosurfaces and present day surface topography.

2.6.2 Results

In fig. 2.9 we present the present day temperature structure with the radial
average temperature subtracted from the field. This allows us to highlight
the hotter and colder than average features of the volume.

The spreading ridges located in the Pacific and Atlantic are depicted
by the 400 K isosurface located at the surface. The Pacific spreading ridge
appears much wider compared to the atlantic, which can be attributed to the
much faster spreading rate here. Looking deeper towards the CMB, we can
see a number of plume like features depicted by the hot isosurface located in
two main groups. Some of these plumes can be seen to extend almost the
entire radial distance of the volume, predominantly in the regions beneath
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Fig. 2.10 View of (a) TERRA average temperatures, (b) converted shear wave
velocity perturbations, (c) converted shear wave velocity perturbations after
applying the corresponding resolution filter, (d) S40RTS velocity pertur-
bations focused on the Atlantic seismic anomaly. Images include a radial
surface located at 2800 km with ±400 K isosurface for temperature and ±1 %
isosurface for seismic velocities.

spreading ridges. These two clusters are located in the general regions where
we observe seismically slow regions in tomography models.

Looking at the −400 K isosurface we see many structures consisting of
lines of cold material that are sinking. These features line up with the sub-
ducting regions on the Earth’s surface, for example the continuous region
lining up with the western edge of the Americas. Looking towards central
and eastern Asia we can see a much larger volume of colder than average ma-
terial; hinting towards the greater amount of subduction that has occurred in
the region, with major events such as the closing of the Tethys and migration
of the Indian subcontinent into Asia.
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Fig. 2.11 View of (a) TERRA average temperatures, (b) converted shear wave
velocity perturbations, (c) converted shear wave velocity perturbations after
applying the corresponding resolution filter, (d) S40RTS velocity pertur-
bations focused on the Pacific seismic anomaly. Images include a radial
surface located at 2800 km with ±400 K isosurface for temperature and ±1 %
isosurface for seismic velocities.

Moving on to compare our models to the tomography model of S40RTS
we present views of; lateral temperature variations; lateral seismic velocity
variations; lateral seismic velocity variations after applying the resolution
filter of S40RTS; the S40RTS model in figs. 2.10 and 2.11.

The first point to note is the striking similarity between the temperature
and unfiltered seismics. We can also see how the resolution of features
captured in the numeric model compare to the tomography, with boundaries
and features much sharper for the same velocity. With the filter applied
we can directly compare our modelled output to the tomography. Despite
some discrepencies, the -1% isosurface located under Africa is remarkably
similar with the same NW-SE direction, and covers a similar region of slower
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than average perturbations. In the Pacific however, we do not see the same
dense collection of the -1% isosurface but rather a web of slower features
that extends further west and north.

Over the entire volume the 1% isosurface which corresponds to the sub-
ducting material is more substantial in the TERRA output compared to
S40RTS, but overall appears in the same regions in both.

Whilst this is by no means an exhaustive analysis between the modelled
output and observed, this does allow the reader to view the merits of such
an approach to modelling mantle convection.

2.7 Conclusion

In this chapter we have outlined the mathematical formulation and com-
putational code TERRA which solves the equations for mantle convection.
Following that we briefly discussed the assimilation of plate reconstructions
to condition our models to the Earth and how these results can be compared
to present day datasets of the Earth. Lastly we showed a typical TERRA
simulation setup and the results obtained, together with how they compare
to the tomographic dataset S40RTS.

Now the reader has an understanding of the base methodology behind
mantle convection modelling we will begin to investigate the overarching
problem being addressed in this thesis, the importance of accurate knowledge
of the initial condition.



CHAPTER 3

INVESTIGATING THE LYAPUNOV TIME FOR MANTLE

CIRCULATION MODELS

Abstract

Mantle convection models are an effective method for helping to test and
develop theories for geological observations. However, as with any model
an initial condition is required to begin a calculation and this is inherently
unknown for the instance of Earth modelling. It has been suggested that as
convection in the mantle is chaotic, small differences in the initial condition
have a significant influence on the final mantle structure, with a ’limit of
predictability’ timeframe being in place. In this work we conclude that
by having knowledge of the surface boundary condition (such as plate
reconstructions) the limit of predictability for mantle convection models can
be extended to much greater timeframes than previously thought.

3.1 Introduction

Earth’s mantle has a dominant role in Earth dynamics due to its influence
on surface processes such as plate tectonics. The mantle makes up ≈ 84%
of Earth’s volume , as well as ≈ 68% of its mass yet direct observations are
difficult due to the presence of the crust and so understanding it is crucial
for a variety of disciplines in Earth science. Earth’s mantle although solid,
convects by a means of viscous creep at a rate of 1 cm yr−1 to 10 cm yr−1, with
a Rayleigh number (the measure of convective vigour of a system) of 106 to
108 (Schubert et al. 2001). Since over geological timescales we can consider
the mantle to a be a readily convecting volume, it can be modelled as a fluid
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dynamical system (Mckenzie et al. 1974). Key to solving this mathematical
problem then is knowledge of the systems boundary and initial conditions.
As Earth’s mantle structure is not known in the past this is something that
Geodynamiscists can only make assumptions at when conducting their
models, although efforts are being made to constrain this uncertainty using
complex techniques that hope to bridge this gap in knowledge (Bunge et al.
2003; Atkins et al. 2016). However, we note that due to the high Rayleigh
number predicted for the mantle, we have a system that is chaotic in nature
(Stewart and Turcotte 1989).

The idea of chaos in a dynamical system is simple; a small change in
the systems conditions leads to unpredictable changes in the system such
that they appear random in nature. For mantle models, this in essence
corresponds to the idea that two mantle models started from a similar initial
condition can and will diverge over time such that they are two uncorrelated
mantles. This clearly creates an elephant in the room situation for research
in modelling the mantle’s evolution if even a slight variation in the starting
condition can completely change the final result.

This presence of chaos in dynamical systems has been studied across
a variety of numerical fields, with the earliest research being undertaken
by Lorenz (1965), where the author looked at initial condition error growth
for atmospheric models. This study of initial condition error growth was
extended to mantle convection models in Bello et al. (2014). For an error on
an initial condition of ≤ 5%, they showed that results from mantle models
can only be reliably extended over a period of 95 Myr, beyond this time
chaotic growth of differences in the system overwhelm the results. This
time period would limit mantle convection models to within the breakup of
Pangea to present day. However, plate reconstructions have been produced
based on a variety of Earth observations that extend far beyond this window
from the Cenozoic, with more recent studies even reaching into the Paleozoic
(Lithgow-Bertelloni and Richards 1998; Seton et al. 2012; Müller et al. 2016).
Such plate reconstructions have been used in mantle convection models as a
surface boundary condition in many studies (Zhong et al. 2000; Bunge et al.
2002; Davies et al. 2012) to great effect. These studies and more have used
these reconstructions in models that run far beyond the recommended 95 Myr
limit, to generate mantle structures that correlate with other present day
observations from studies in seismic tomography for instance (Schuberth et
al. 2009b). This suggests that it is possible to extend this limit on predictability
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for mantle models when we consider the assimilation of a known surface
boundary condition.

Several previous studies have discussed the implications of the upper
boundary of mantle convection models on the overall dynamical structure of
the system. Both Tan et al. (2002) and Davies (2005) note how the presence of
material subducted from the surface can organise the deep mantle plumes
away from these locations, fixing plumes locations into a steady state pattern.

In this chapter we will endeavour to determine what effect, if any, assimi-
lating a known surface boundary condition has on the limit of predictability,
building on the method as lain out by Bello et al. (2014). Work into determin-
ing what effect this may have has already been touched upon by Colli et al.
(2015). Further to this, we shall also break the problem of error growth down
and investigate what effect the different heating modes present in Earth’s
mantle have on error growth.

3.2 Method

3.2.1 Numerical methodology

Our method closely follows that of Bello et al. (2014) and Colli et al. (2015)
by applying the twin experiment method (Lorenz 1965) to mantle circulation
models.

The twin experiment method utilises a reference model T and a second
model that is perturbed by some degree from the reference, Tp. These two
models are integrated forwards in time, and the differences between the
two models as time progresses is used to calculate the Lyapunov exponent
λ, a measure of the convergence or divergence of the dynamical system
being analysed (Benettin et al. 1980). Knowing the value of λ we can then
determine the Lyapunov time τ = 1/λ, from which we infer the length of
time before two initially similar temperature fields will have diverged to a
point such that their solutions are uncorrelated.

For our investigations, T is taken from a quasi-steady thermal state man-
tle convection calculation, whilst the perturbed twin Tp has uniformly dis-
tributed random perturbations applied to this temperature field. The magni-
tude of the applied perturbations is up to ±1% of the average temperature
for the given layer in the volume. We monitor the error, E(t), between the
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two models through time by

E(t) =
∫

VΩ

|Tp(x, t)− T(x, t)|
T(x, t)

dx
VΩ

. (3.1)

The error E(t) is related to the Lyapunov exponent λ by

E(t) ≈ E(0) exp(λt), (3.2)

where E(0) is the initial temperature difference. From this we see that the
errors are expected to change exponentially, though the direction of change
in mantle convection models has been shown to depend on the surface
boundary conditions (Colli et al. 2015). Colli et al. (2015) show that by
assimilating surface velocities in both the reference and perturbed models
the diverging of the two cases is limited, and in fact can converge to within
small errors of one another which we shall investigate further here also.

Mantle circulation models are carried out using an adapted version of the
three-dimensional finite element code TERRA (Baumgardner 1985; Bunge
et al. 1996), on a mesh with 10 million finite elements, which corresponds to
an average grid spacing of 50 km. TERRA solves the equations governing
conservation of mass, momentum and energy (eq. (3.3)) for an incompressible
fluid;

∇ · u = 0 (3.3a)

∇ ·
{

η(∇u + (∇u)T)
}
−∇P + αρ(Tav − T)g = 0 (3.3b)

∂T
∂t

+ u · ∇T = κ∇2T + H, (3.3c)

where η is the dynamic viscosity, α is the coefficient of thermal expansion,
ρ the reference density, Tav the radial temperature profile, g gravitational
acceleration, κ is the thermal diffusivity and H is radiogenic heat production.

3.2.2 Model configuration

Our model setup closely mirrors that of previous studies, with our models
being incompressible, using the Boussinesq approximation such that density
differences are neglected except in the buoyancy term. For our investigations
we look at two viscosity profiles, one isoviscous, the other with a layered
viscosity profile. For the radially varying profile, we prescribe a three layered
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Parameter Value Units

Surface temperature TS 300 K
CMB temperature TC 3000 K
Internal heating rate H 4 × 10−12 W kg−1

Reference viscosity η0 3 × 1022 Pa s
Density ρ 4500 kg m−3

Thermal expansivity α 2.5 × 10−5 K−1

Thermal conductivity k 4 W m−1 K−1

Thermal diffusivity κ 1 × 10−6 m2 s−1

Specific heat capacity CV 1000 J kg−1 K−1

Table 3.1 Model parameters used in this study.

mantle with ×100η0 in the uppermost 100 km to mimic the effects of a litho-
sphere; an upper mantle with the viscosity equal to the reference viscosity
η0; a stiffer lower mantle where the viscosity increases up to ×30η0 between
800 km to 1000 km. Having the viscosity transition for the lower mantle at
this depth falls in line with the recent observations of Rudolph et al. (2015).
Other key model parameters are outlined in table 3.1.

A free slip boundary condition is defined at the CMB, while the sur-
face boundary condition for the perturbed twin are either prescribed by
assimilating the reference models surface velocities or allowed to be free slip.

We will further break down the investigation by looking at the effects
different heating modes have on the error growth. To achieve this we will
look at purely basally heated, purely internally heated and mixed heating
models.

To aid in the comparisons we define the Rayleigh number, a non-dimensional
value which quantifies the convective vigour of the system, which for a
basally heated volume is defined as

Rab =
αρ∆TD3g

κη
,

where D is our mantle radius and ∆T the total temperature contrast. We
also define a second Rayleigh number which is appropriate for an internally
heated volume that is defined as

RaH =
αρ2HD5g

kκη
.
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Fig. 3.1 The error growth experienced by isoviscous models heated by var-
ious heating modes. The inverse of the gradient of each curve gives the
respective Lyapunov time τ for each case.

Using the values used in this study gives our models Rayleigh numbers
Rab ≈ 5 × 106 and RaH ≈ 9 × 107, meaning we expect the vigour of convec-
tion in our models to be below what is expected for Earth. Because of this we
scale the timescales of our models to allow a similar amount of convection to
occur in the models presented here.

3.3 Results

3.3.1 Isoviscous models

The first set of results are for the isoviscous models using the three different
choices in heating mode. In fig. 3.1 we see that the free slip models all
show a very similar evolution. The models first experience a short period of
decreasing errors, where the smallest perturbations are removed by diffusion
effects as observed by Bello et al. (2014). This is followed by a large growth
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in the errors before saturating around 2 × 10−2. These free slip models all
yield a Lyapunov time around 30 Myr.

In comparison, the evolutions of the various heating modes when coupled
with an assimilated surface boundary condition show a contrasting picture.
Each model experiences the same familiar pattern of error evolution, though
over a much longer time frame compared to the free slip cases. Each model
shows a much longer and greater period of decreasing errors before the
errors rise to saturation. In fig. 3.1a we see that while the assimilated case
has not reached a saturation level, the Lyapunov time of its error growth
far exceeds that of the free slip case with τ = 575 Myr. Both the internally
heated (fig. 3.1b) and the mixed heating (fig. 3.1c) models do reach saturation,
though at levels still below the free slip counterparts and with much larger
Lyapunov times to match.

3.3.2 Layered viscosity

Here the error growth is noticeably different from the isoviscous cases when
assimilating surface velocities, as shown in fig. 3.2. Whilst the free slip model
errors saturate around 2 × 10−2 as in the isoviscous case, we observe that
there are two distinct Lyaypunov times for each heating mode. These arise
from the layers of the mantle present here, and the respective time scales of
convection in the layers. Studies into the Lyapunov times of atmospheric
models determine these the short and long scale Lyapunov times to be
associated with short and long scale flow respectively (Boffetta et al. 1998).
When considering this feature in our mantle models we view the shorter
Lyapunov times as being associated with the lower viscosity upper mantle,
where the growth of errors are less impeded by viscous flow. The other
Lyapunov times meanwhile correspond to the more viscous lower mantle
which slows error growth, yielding a correspondingly longer value for τ.

With a layered mantle, we see that incorporating a known surface bound-
ary condition has a noticeable effect on the resulting Lyapunov times. Each
case has an early period of error reduction beyond the expected window
attributed to diffusion of the smallest perturbations. Because of this we
conclude that the long scale Lyapunov times, associated with the long scale
flow, are in fact negative when assimilating the surface boundary condition.
Furthermore the second Lyapunov times, relating to short scale flow, all far



3.3 Results | 49

0 200 400 600 800 1000

Time (Myr)

10−4

10−3

10−2

10−1

Er
ro

r

τ1 = 21 Myr

τ2 = 235 Myr

τ1
τ2 = 4200 Myr

(a) Basal heating

0 200 400 600 800 1000

Time (Myr)

10−4

10−3

10−2

10−1

Er
ro

r

τ1 = 17 Myr

τ2 = 350 Myr

τ1

τ2 = 704 Myr

(b) Internal heating

0 200 400 600 800 1000

Time (Myr)

10−4

10−3

10−2

10−1

Er
ro

r

τ1 = 17 Myr

τ2 = 133 Myr

τ1 τ2 = 1326 Myr

(c) Mixed heating

Free slip surface
Assimilated surface

Fig. 3.2 As fig. 3.1 but for models with a layered viscosity profile.

exceed that of the length of mantle overturn; further supporting the case that
assimilating surface boundaries is an adequate constraint on error growth.

In fig. 3.3 the pointwise temperature difference between the perturbed
and reference models (Tp − T) is presented for the final time of the mixed
heating models. Both models have a negative average value, for free slip
this is −38 K and −0.1 K for the assimilated case. Similarly the median value
for both cases is negative. The skew of the pointwise difference towards
negative values implies that more regions of the perturbed model are colder
than the reference model. As the initial perturbations applied were a normal
distribution of hotter and colder temperatures over the whole volume we
conclude that this skew is indeed due to the divergence of the two twin
cases. The spread of the data is also noticeably different for the two surface
boundary conditions, with the standard deviation for the two cases being 308
for free slip, and 20 for assimilated. This difference in standard deviations
highlights the ability to constrain error growth using an assimilated surface.
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Fig. 3.3 Histograms of the temperature difference Tp − T at each grid point
at the end of the mixed heating, layered viscosity cases.

3.3.3 Isolating the source of error growth for assimilated sur-

face boundary conditions

Following on from our range of cases investigating the effect of heating
mode and viscosity structure on the error growths of model, these final tests
aim to shed light on the long term error growth of models from two of the
main parts of the model; namely the effect of buoyancy and assimilating
the surface boundary. To achieve this we ran two further cases for both
the isoviscous and layered viscosity mixed heating models; one where we
replaced the assimilated surface by a rigid surface (hereafter referred to as
R+B) which could be run much longer than our assimilated period, and
the other that has the assimilated surface boundary condition but without
buoyancy forces (A-B).

The results for these models are shown in fig. 3.4. The most obvious
observation is that the models with an assimilated surface and buoyancy
forces (A+B) behave differently depending on the viscosity structure. We
attribute this to the lack of viscous layers in the isoviscous model allowing
errors to convect through the volume more readily, while when layered the
viscosity impedes the growth of errors due to the two length scales of errors
as discussed previously. The Lyapunov times for R+B models is slightly
shorter in both instances compared to A+B with τ = 200 Myr for isovicsous
R+B and τ = 2500 Myr for the layered viscosity A+B case.

Meanwhile the A-B models rather unsurprisingly see very large (isovis-
cous) or negative (layered viscosity) Lyapunov times. The driving forces
of the assimilated surface on these models are clearly shown here to be the
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Fig. 3.4 The error growth experienced by isoviscous and layered viscosity
models with a mixed heating mode and various physical parameterisation
setup.

source impeding error growth. Of final note, the small oscillation of the
isoviscous A-B case is of little relevance as the error values are at a scale that
corresponds to only single digit differences in temperature across the whole
volume.

3.4 Discussion

The method of twin experiments clearly shows how different physical setups
and parameterisations can alter the error growth of convection models.

Our results show general agreement with those of Colli et al. (2015).
Assimilating a surface boundary significantly alters the error growth of a
mantle convection model compared to when the surface boundary condition
is taken as free slip as in Bello et al. (2014). We see that regardless of model
setup that a free slip boundary condition sees error growth over short time
spans. This agrees with the assessment of Bello et al. (2014) in that a purely
free slip model, with no knowledge of the models time evolution (from
sources such as plate reconstructions) will significantly limit the time frame
in which meaningful conclusions can be drawn.

Looking at the error growth in our assimilated surface models we do, in
comparison to the free slip cases, observe significant variation in Lyapunov
times. We see that the influence of internal or basal heating on the error
growths in models is dependent on the rheological structure of the volume.
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For the isoviscous cases, basal heating yields the longest Lyapunov time
(τ = 575 Myr). The longer Lyapunov time for the basally heated case can
be explained by the presence of large thermal upwellings in the initial state,
which even after experiencing a perturbation are still the dominant driving
force in the mantle volume. For the internally heated case, large thermal
plumes are not the dominant feature due to the lack of a lower thermal
boundary layer (Hüttig and Breuer 2011). Coupled with the models higher
Rayleigh number this results in a more complex time-dependent pattern com-
pared to the basally heated model, with the convection cells being typically
half the size of basally heated models (Wolstencroft et al. 2009; Deschamps
et al. 2010). The mixed heating model sits between the Lyapunov times of
the two end member heating modes.

Meanwhile when the model contains a layered viscosity profile, more typ-
ical of what would be expected in Earth, we see the negative Lyapunov times
for a significant period of the calculations (between 10 and 20% of the model
timespan). The differences between heating modes are less pronounced
with only the internal heating mode showing any real error growth. As
previously discussed we attribute this to the different length scales present
in the layered viscosity models. Small scale errors applied to the perturbed
model grow rapidly in the upper mantle of the internally heated case, with
their effects limited by the higher viscosity in the rest of the volume. As the
basally heated model is heated purely from the base of the volume, small
scale perturbations do not grow in the lower viscosity region as readily as
when internal heating is present.

Considering this we conclude that the internal heating has a much more
pronounced effect on error growth, due in no small part to the fact that it is
present across the whole mantle volume and so any any small deviation in
the temperature field will be greatly influenced by this. In comparison the
effect of a small deviation in the temperature field when in the presence of
the large convecting plume features associated with basal heating will very
quickly be smeared out.

There is a however a noticeable difference from the results observed here
and those of Colli et al. (2015), with the development of error growth and
reduction taking noticeably different paths. In their study they perform
similar error analysis on internally and mixed heating models, and record
consistent negative Lyapunov times across both isoviscous and three layered
viscosity models. The internal heating rate Rayleigh number for the models
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in their study, RaH = 2.4 × 107, is over a factor of three lower than in this
study. This difference in Rayleigh number can account for some of this
difference as Bello et al. (2014) have shown that increasing the Rayleigh
number reduces the resulting Lyapunov time of the model. A further reason
for the difference could be the difference in initial error perturbation applied
to the perturbed twin. In this study the initial perturbation results in a
discrepancy of ≈ 1 × 10−3, while in Colli et al. (2015) the initial perturbations
create a discrepancy ≈ 8 × 10−3. Subsequent error reductions they observe
end at values still above those observed for the layered cases in this study.
Considering this, we do not believe our results represent a significantly
different conclusion from Colli et al. (2015) in that assimilating the surface
boundary greatly reduces the effect of the chaotic drift from the reference
model.

The knowledge that assimilation techniques can overcome the effects
of initial errors has been known for some time with various studies that
have used long timescale plate reconstructions in their studies observing
excellent matches to other present day observations. This is corroborated
by the results of the calculations that do not include the effects of buoyancy
forces as the assimilation of the surface boundary in this situation results in
negative Lyapunov times. Considering this we note that a number of studies
(e.g. Schuberth et al. (2009a) and Davies et al. (2012)) have found that with
the appropriate parameter setup, after an assimilation period over 100 Myr
or more the present day structure can yield an excellent match to deep Earth
seismic structures.

Knowing that mantle circulation models converge to a solution without
seeing error growth due to the assimilated surface boundary is of limited use
in studies looking at past mantle flow however. As an example, studies that
look at the long term stability of the large low shear velocity provinces (Zhang
et al. 2010; Bower et al. 2013; Bull et al. 2014) would see limited benefits from
the conclusions of this study. This is because even with the reduction in
errors over the entire calculation, the choice of the initial condition will
have an influence at the models initiation that cannot be overcome by these
assimilation methods.

This initial condition issue is being overcome by various techniques,
including variational data assimilation techniques (Bunge et al. 2003; Liu and
Gurnis 2008). This method relies on iterating a convection model forward and
backwards in time and so the results of this study on error growth suggest
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that this technique can be used without fear of errors being introduced.
This corroborates the results of Vynnytska and Bunge (2014), where they
applied a free slip and an assimilated surface to variational data assimilation
models. They found that their results show convergence for assimilated
surface conditions and diverged for the free slip case. Our results together
with those of others all clearly point to data assimilation of the surface
boundary significantly reducing the divergence of solutions compared to
free slip models.

3.5 Conclusion

In this study we have built on previous work investigating the Lyapunov
times for mantle convection models. We have shown that irrespective of vis-
cosity profile or heating mode, assimilating known surface velocities greatly
increases the Lyapunov time of a calculation far beyond the timescales of
plate reconstructions. The implications of this is that results from mantle
models that incorporate a known surface velocity can be trusted over much
longer timescales. With this knowledge it is possible to place greater confi-
dence in techniques that project present day mantle structure back in time
by variational assimilation techniques. Given the lack of certainty of the
initial condition for mantle convection models it is a natural step to go on to
investigating the framework of such methods to determine their robustness
towards the initial condition problem.

In our work we have not considered the effects of compressibility nor
temperature dependent rheologies. Both of these would be expected to fur-
ther alter the Lyapunov time as the errors introduced in the twin experiment
method would influence the evolution of these two physical properties. Fur-
ther studies should be conducted investigating these properties as both are
expected for Earth’s mantle.

Taking the knowledge that the assimilation of a known surface boundary
reduces the sensitivity of models to the initial condition we turn our attention
to improving the initial condition. In the next chapter we will look in detail
at the methods of performing such a feat.



CHAPTER 4

METHOD - ADJOINT MODELS & TERRA

4.1 Introduction

During the derivation for the equations of mantle convection in Chapter 2, we
showed that the models require an initial condition. We recall that to obtain
this initial condition, we rather arbitrarily precondition the thermal structure
by running the oldest plate stage for an extended length of time (typically
O ∼ 100 Myr). We also saw that the application of a plate motion history
model, to create what we call a mantle circulation model (MCM) (Bunge et al.
1998), allows our models to match the general large scale features observed
in Earth.

Whilst MCMs generate outputs that can draw good comparisons to
present day observations (Bunge et al. 2002), we have seen in Chapter 3
the effect that small scale perturbations can have over the time scale of a
typical mantle circulation model. The work of Bello et al. (2014) presented the
idea that the choice in initial condition can alter the final outcome. While the
work presented here as well as in Colli et al. (2015) show that by assimilating
a plate reconstruction the growth of errors is limited and can, instead of
diverging, show a converging solution.

Despite these results, there is still an accuracy issue present at the calcula-
tions initiation and early evolution. With this in mind, we cannot disregard
the importance of our initial condition when hoping to investigate the long
term evolution of the mantle. Because of this we now look to implement op-
timisation techniques that allow known data to be incorporated into models
to improve forecasting by minimising the errors.

As we have discussed, information of Earth in the past is extremely
limited, whereas at present day we have copious amounts of information
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ranging from; the geoid, seismic tomography, topography, heat flow values
and more. However, this is of no use in our mantle models as none of this
information is carried back into the past. The only data assimilation that
does influence a model is the plate motion histories that we can apply as a
boundary condition. Although these also suffer from the same drawback as
they are explicitly assimilated forwards in time, and so again, information
only influences the future structure.

With all of this in mind it is clear that a method that uses this information
and propagates its information backwards in time could provide a new
avenue of exploring past mantle evolution. We will now turn to look at the
methods available to achieve this goal, before developing our chosen method
and applying it to improve our initial conditions in a rigorous manner;
leaving behind the ad-hoc constructions that have been the norm previously.

4.2 Inverse theory for mantle convection

Early attempts at using present day information to infer prior Earth prop-
erties were performed by Steinberger and O’Connell (1997) to investigate
true polar wander. They performed their investigation by taking present day
shear wave velocity heterogeneities, converting these to density anomalies
and using this as an initial condition. Their model was then run backwards
in time by reversing the time stepping such that the energy equation runs
backwards. Such a method is known as ‘backwards advection’ (BAD). The
issue with the BAD method is that the thermal diffusion, ∇2T, becomes
unstable when run in reverse. To take account of this the authors ignored
the diffusive term in their calculations, while limiting their calculations to
64 Myr. Furthermore, in Steinberger and O’Connell (1998) the authors look
at the errors associated with running BAD models. They conclude that
outside of the thermal boundary layers, the effects of thermal diffusion are
not pronounced since advection, not diffusion, is the main method of heat
transportation. In both Steinberger and O’Connell (1997) and Conrad and
Gurnis (2003) calculations are limited by the effects of diffusion, limiting
reliable calculations to ∼ 75 Myr when looking across the whole mantle.

In order to overcome the effects of the diffusive term in a time reversed
calculation, geodynamicists have looked to other fluid mechanical branches
to borrow techniques they use for inverse problems. In meteorology, Ta-



4.2 Inverse theory for mantle convection | 57

lagrand and Courtier (1987) and Courtier and Talagrand (1987) apply a
variational method (VAR) to incorporate present observations into their mod-
els to predict the initial state consistent with those present day observations.
This method of variational assimilation of observations is also known as an
adjoint, and involves formulating a complementary set of equations for the
forward model, known as the adjoint equations. The method attempts to
minimise the distance between the modelled and observed fields of interest
(i.e. temperature for the mantle) by determining the ‘gradient of the misfit’
between these fields with respect to the initial condition of the model. A
correction to the initial condition is then applied by a descent algorithm to
minimise the distances at the final stage, with the whole process continuing
iteratively to determine the initial condition that minimises the gradient.
Courtier and Talagrand (1987) found that implementing this variational
method in their models produced results consistent with meteorology, and
produced non obvious, yet useful results from the assimilated observations.

Similar methods have been employed across a number of branches in
other geoscience disciplines, including mantle dynamics beginning with
Bunge et al. (2003). In mantle dynamics, the VAR method has been split
into two categories depending on how it is applied; either solving an adjoint
energy solution, or solving the adjoint for the full system of equations.

The simpler method involves computing an adjoint solution to the energy
equation, as this is the only equation that is time dependent. Ismail-Zadeh et
al. (2004) investigated using the adjoint energy equation on a cuboid domain
to investigate the ability to reconstruct mantle plumes, determining that the
adjoint method produced much smaller errors compared to the BAD method.
Further work using an adjoint solution for the energy equation include; Liu
et al. (2008) to investigate the subduction history of the Farallon slab back
to ∼ 100 Ma, Shephard et al. (2010) and Shephard et al. (2012b) where the
influence of dynamic topography on the drainage of water in South America
was tested. These three studies utilised regional three-dimensional regions
and incorporated present day seismic tomography as their observed field.

The more complex application of the VAR method involves solving all
three of the forward equations backwards in time using their complementary
adjoint equations. This is the method outlined by Bunge et al. (2003), where
the authors solved the system of equations on a global domain over 100 Myr.
Here they attempted to reconstruct an initial condition for a synthetically
calculated observed state. They equally found their VAR solutions to be
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vastly superior to BAD solutions when comparing the RMS of temperature
residuals between the modelled and observed fields. In Horbach et al. (2014)
the full adjoint equations are once more tested, and the authors found that
regardless of the initial guess for the initial condition, that given a prescribed
surface velocity boundary condition the VAR method would yield the same
best guess initial condition. Vynnytska and Bunge (2014) established the
link to convergence for a VAR model if the models are run with assimilated
surface veloctity boundary conditions. The difference between these two
VAR method formulations means that the approach that only calculates
the adjoint solution for the energy equation is much less computationally
expensive, as it does not involve solving the Stokes equation.

Another method for solving our inverse problem is through the quasi-
reversibility (QRV) method (Lattès and Lions 1969). This method involves
introducing an additional term into the backwards energy equation, which
allows the problem to be well-posed. This additional term consists of a higher
order derivative on the temperature field together with a small regularisation
parameter to ensure the term is small in comparison to the other terms. The
inclusion of this extra term also requires extra boundary conditions to allow
the problem to be solved. Solutions of this QRV energy equation are stable
and can converge to the forward energy equations solution in certain spaces.
Ismail-Zadeh et al. (2007) analyse the QRV method to both BAD and VAR
finding that the BAD method only produces accurate reconstructions in
advection dominated regions, whereas both VAR and QRV yield results
everywhere. Furthermore, they find that regardless of method used, the time
interval over which we can accurately reconstruct past mantle structures are
limited by the characteristic thermal diffusion time t ≈ D2/κ, where D is the
characteristic length of a feature, and κ the thermal diffusivity. This system
is again simpler to solve than the full adjoint system, as again no solution
is required for the Stokes system in the backwards calculation. Beyond the
cartesian box synthetic tests of Ismail-Zadeh et al. (2007), Glišović and Forte
(2014) employ the QRV method in three-dimensional spherical geometry
to reconstruct the past 65 Myr mantle history to investigate the dynamics
of deep mantle structures over that time period. They found good match
between their final modelled and observed states, with errors between the
two states falling within 10%.

Developing the QRV method into numerical codes, in comparison to
both VAR (broadly the same as the forward code) and BAD (altering the
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sign/omitting terms in the energy equation), requires significant changes to
existing numerical codes to incorporate it into a forward-inverse workflow.
With this in mind, we elect to develop the variational method for solving the
inverse problem. We will focus on the full adjoint system, as whilst the ad-
joint energy only method is computationally simpler, it ignores a significant
portion of the problem by discounting the mass and momentum equations.
In the following section we shall outline the equations and workflow for the
full adjoint equations for mantle convection.

4.3 The full adjoint equations for mantle convec-

tion

We recall from section 2.2 that the equations for incompressible mantle
convection are;

∇ · u = 0 (4.1a)

∇ ·
(

η{∇u + (∇u)T}
)
−∇P + αρ(Tav − T)g = 0 (4.1b)

∂T
∂t

+ u · ∇T − κ∇2T − H = 0, (4.1c)

with boundary conditions on the velocity field

utan(x, t) = uP(x, t) x ∈ S, t ∈ I (4.2a)
((

∇u(x, t) + (∇u(x, t))T)
)
· n(x)

)
tan

= 0 x ∈ C, t ∈ I (4.2b)

u(x, t) · n(x) = 0 x ∈ ∂V, t ∈ I, (4.2c)

pressure field
P(x, t) = 0 x ∈ S, t ∈ I, (4.3)

and temperature field

T(x, t) = TS(x, t) x ∈ S, t ∈ I (4.4a)

T(x, t) = TC(x, t) x ∈ C, t ∈ I; (4.4b)

together with the initial condition for the temperature

T(x, t0) = T0(x) x ∈ V. (4.5)
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It is from this set of equations that the set of adjoint equations used in this
work are formulated. As previously mentioned the full set of adjoint equa-
tions for mantle convection have been derived using Lagrangian multipliers
(Bunge et al. 2003; Vynnytska and Bunge 2014) and more recently using an
operator approach in Hilbert spaces for both incompressible (Horbach et al.
2014) and compressible (Ghelichkhan and Bunge 2016) mantle convection.
While the full derivation of the adjoint equations for incompressible flow
is not presented here, the derivation as detailed in Horbach et al. (2014) is
reproduced in appendix B.

We will present the results of this derivation now, including the required
boundary and initial conditions. For a more complete understanding of the
assumptions taken in the formulation of the adjoint system, including to see
where the adjoint equation boundary conditions stem from, the reader is
encouraged to look through the derivation.

The complementary set of adjoint equations for incompressible mantle
convection are as follows

∇ · φ = 0 (4.6a)

∇ ·
(

η{∇φ + (∇φ)T}
)
−∇ψ + τ∇T = 0 (4.6b)

∂τ

∂t
+ u · ∇τ + κ∇2τ + αρg · φ = ∂Tχ(T), (4.6c)

where φ can be seen as the adjoint velocity, ψ the adjoint pressure and τ the
adjoint temperature. ∂Tχ(T) = (Tt − Tm)δ(t− t1) is the gradient of the misfit
function χ, where Tm is the temperature structure from a mantle model and Tt

the true temperature state inferred from sources such as seismic tomography.
Equation (4.6) has its own boundary conditions; for the adjoint velocity

field

φtan(x, t) = 0, x ∈ S, t ∈ I (4.7a)
((

∇φ(x, t) + (∇φ(x, t))T
)
· n(x)

)
tan

= 0, x ∈ C, t ∈ I (4.7b)

φ(x, t) · n(x) = 0, x ∈ ∂V, t ∈ I, (4.7c)

the adjoint pressure field

ψ(x, t) = 0, x ∈ ∂V, t ∈ I, (4.8)



4.3 The full adjoint equations for mantle convection | 61

the adjoint temperature field

τ(x, t) = 0, x ∈ ∂V, t ∈ I. (4.9)

We also impose an initial condition for the adjoint temperature structure

τ(x, t1) = 0, x ∈ V. (4.10)

The similarities between the forward and adjoint systems are readily
apparent. First the mass equation for both forward (eq. (4.1a)), and adjoint
(eq. (4.6a)) are identical.

For eqs. (4.1b) and (4.6b), the momentum equations, we again note that
the first two terms are identical. The term analogous to the buoyancy term in
the forward equation is present in the adjoint energy equation, and instead a
term that couples the adjoint equations to the forward equations through the
use of the forward temperature field is involved in this equation.

The two energy equations (eqs. (4.1c) and (4.6c)) also display considerable
similarity. We note that the sign of the adjoint diffusion term is reversed,
which allows the adjoint energy equations solution to remain stable through
the backwards time integration. There is also the presence of the forward
velocity field u in the second term, further coupling the adjoint equations to
the forward equations. The fourth term here can be viewed as a ‘buoyancy
like’ term, whilst on the right hand side of the equation we have the term
∂Tχ(T). This can be interpreted as a forcing term involving the residual of
the present day modelled and true temperature states, and in essence applies
this residual as an initial condition on the adjoint calculation.

The boundary conditions on the forward and adjoint equations also
show a striking similarity. For the velocity field we assume the same free
slip on the CMB boundary (eq. (4.7b)), no-penetration condition at both
boundaries (eq. (4.7c)), while for the surface we assume that there are no
errors in our plate motion history model from the forward model and so
set these velocities to zero for the adjoint calculation (eq. (4.7a)). Similarly
for the adjoint temperature field, we assume that our fixed boundary values
from the forward model are perfect and therefore as we have no errors to
minimise on the boundary, set these to zero (eq. (4.9)).

The overall similarity between the forward and adjoint equations means
that implementing the adjoint equations in a mantle convection code is
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fairly straightforward. Of course the presence of terms from the solution of
the forward equations in the adjoint equations means that the two systems
are intimately linked. This means that we are required to run a forward
calculation, saving the velocity and temperature fields as we go for use in the
following adjoint calculation. As this method looks to minimise the errors
on the temperature field we look to perform successive forward-adjoint
calculations to achieve this.

With the adjoint equations derived, we can now look to implement them
into an iteration scheme for solving the coupled forward-adjoint system
within the TERRA framework.

For the remainder of this thesis we shall adopt certain notation for vari-
ables to denote iteration numbers, the time point in the calculation, and the
source of the data. The convention for indexing of variables ·nm is as follows;
superscripts denote the iteration number of the forward-adjoint calculation
with n ∈ N1 and N denoting the final, optimal iteration; subscripts mean-
while denote the initial m = 0 or final m = 1 point in time of the model
relative to the forward calculation. That is to say m = 0 refers to some point
in the past from present day, regardless of whether discussing forward or
adjoint variables. Surplus to this subscripts may also take the letter m or t;
where m refers to the model data source obtained from a forward calculation;
and t refers to the external true data source which is used as the target field.

4.4 The adjoint implementation in TERRA

A general overview of the necessary workflow when running a forward-
adjoint is shown in fig. 4.1. We see that in essence an iteration can be broken
down into four stages; a forward calculation, computation of the residual,
the adjoint calculation, and updating the initial condition. We will now
proceed to go into depth how each step is handled within TERRA, as simply
implementing the adjoint equations is only half the battle to achieving a
successful forward-adjoint iteration scheme.

Performing the forward-adjoint also requires many different outputs of
data for use at different points of the calculation. Table 4.1 outlines the
different I/O files that are required, and during the following discussion it is
highlighted when each file type is used.
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Fig. 4.1 The generic adjoint workflow

Type Full filename structure # outputs
per iteration

Adjoint
files a-files

a<casenum>.<adj_iter>_<dump_number>.<nproc> 100 to 10 000

Backward
files b-files

b<casenum>.<adj_iter>_<nproc> 1

Difference
files d-files

d<casenum>.<adj_iter>_t<endpoint>.<nproc> 2/3

Endpoint
files e-files

e<casenum>.<adj_iter>_t<endpoint>.<nproc> 2

Residual
files r-files

r<casenum>.<adj_iter>_<nproc> 1

True files
t-files

t<casenum>_t<endpoint>.<nproc> none

Table 4.1 Summary of different input and output files used during a forward-
adjoint iteration



4.4 The adjoint implementation in TERRA | 64

4.4.1 The forward model

To begin a new forward-adjoint calculation we initialise a TERRA forward
model with some temperature field T1

0 . This temperature field is saved in
what TERRA calls e-files, as it will be used later when updating the initial
temperature field. This is then run forward to present day like a normal
circulation model using eq. (4.1) together with plate motion histories. Extra
to the standard MCM setup, at the end of each time step the following
additional information is also output:

• The three-dimensional velocity field u which is required in eq. (4.6c)

• The one-dimensional temperature field T which is needed in eq. (4.6b)

• The length of the current time step and the current age of the model
at that point. This is because the adjoint model must progress back to
the starting age at the same rate as the forward model progressed such
that the u and T fields are used at the same point in the adjoint. From
this it can be deduced that an adjoint calculation will contain the same
number of iterations as the forward calculation that came before it.

At the upper limit, during a standard circulation run a TERRA run could
be outputting up to two hundred data files in ascii format containing velocity,
temperature, pressure and other parameters totalling ≈ 100 GB at mt = 256.
For the forward-adjoint calculation the number of outputs required extends
from the thousands to tens of thousands. Outputting u and T at this rate puts
a substantial strain on storage space on a system, and so requires this data
to be output in binary to be as lean on space as possible (outputting files as
binary saves between a factor of 4 to 8 on disk space). These files are referred
to in TERRA as a-files. At mt = 128 a single time step of a-files requires ≈
0.36 GB of storage, while at mt = 256 we require ≈ 3 GB. A 200 Myr mantle
circulation calculation typically takes ∼5000 time steps at mt = 128, and
∼10 000 at mt = 256. Therefore we require ≈ 2 TB or 30 TB of disk space
respectively for storage of a single iteration.

4.4.2 Mismatch calculation

At the completion of the forward iteration we now have the temperature
profile Tn

1 = Tn
m. which is output to a second set of e-files. Of course, we
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also need our true data source Tt to calculate the residual. At this point the
temperature field Tt is read in from an external file, typically a temperature
field which is contained in what we call t-files.

As the forward-adjoint method can be used with any data source, so
long as the mismatch calculation is sufficiently thought out, there are many
potential options to use as the present day observation data (e.g. geoid, heat
flux, seismic tomography). For this body of work we interest ourselves in two
different sources for Tt. The first uses a temperature profile from a second
independently run MCM calculation which then follows the iteration outline
of fig. 4.1. Alternatively we may use a temperature structure derived from
seismic tomography. When using seismic tomography as our data source we
need to account for the resolution smearing that is present in the tomography
in our model temperature Tm, and so extend our workflow to accommodate
this. An outline of this expanded workflow can be seen in fig. 4.2, with the
details of the new mismatch workflow as follows.

1. Convert the TERRA temperature Tn
1 to seismic velocities Vn

s,1 using
the (P, T) lookup tables of Stixrude and Lithgow-Bertelloni (2011) (see
section 2.5)

2. Filter these velocities to account for first, the model parametrisation,
and secondly the uneven geographic data coverage and the damping
and smoothing applied in the tomographic inversion. As previously
discussed (section 2.5) such a resolution filter is currently only available
for the S-wave tomography models of S40RTS (Ritsema et al. 2011) and
its lower resolution predecessor, S20RTS (Ritsema et al. 2004).

3. With both R(Vn
s,1) and R(Vs,t) (where R denotes the resolution matrix

of the tomography) we then convert these back to a temperature field.
For this we use a one-dimensional conversion with depth using the
equation

T = Tre f −
1
α

R
(

δVs

Vs

)
(4.11)

where Tre f is the reference mean temperature for a given layer taken
from the circulation model, α is the coefficient of thermal expansion,
δVs/Vs is the horizontal shear velocity perturbation. The value R =

δ log ρ/δ log Vs a density-velocity scaling relationship which controls
the amplitude of the perturbation applied to the radial average tempera-
ture. Its value may be derived from mineral physics or can be calculated
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Fig. 4.2 The adjoint workflow using seismic data as the data source

dynamically from the proceeding MCM run (see section 2.5.1). A more
complex conversion would be to use the same (P, T) lookup tables to
map back from the seismic velocities to a temperature field. However,
as previously discussed, as the mapping (P, T) 7→ V is non-unique the
inverse is not straight-forward to calculate.

With both a temperature profile for the forward model Tn
1 = Tn

m and
the true data source temperature profile Tt now available, the misfit for the
current iteration, χn can be computed by

χn = Tt − Tn
m. (4.12)

The difference between the two sets of data is then output to d-files, and
we compute L2 norms of the difference, the difference in the upper mantle,
and the difference in the lower mantle. If the L2 norm of the whole domain
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difference falls below some user determined threshold then the forward-
adjoint iteration is considered converged. One final adjoint calculation is
run and the initial condition that results from this is considered the optimal
initial condition.

If we do not fall below this threshold then the iterations are not terminated
and another forward calculation will follow the next adjoint iteration.

4.4.3 The adjoint model

At the start of the adjoint model the residual temperature field contained
in the d-files is read in, as through the forcing term in eq. (4.6c) it is in
essence used as the initial condition of the adjoint backward integration,
together with the imposed temperature boundaries eq. (4.9). The age of the
model and current time step length is then set to match that of the final
iteration of the forward model and the adjoint calculation is carried out using
eq. (4.6) and the matching a-files. Each time step length is set according to the
corresponding forward time step length.

Once the adjoint model has progressed back to t0, the adjoint calculation
is completed and the adjoint solution is output to b-files.

4.4.4 Updating the initial condition

With the gradient of the cost function obtained we look to update our initial
temperature profile Tn+1

0 using a conjugate gradient approach (Fletcher and
Reeves 1964). The first step involves

pn =





τn
0 if n = 1

τn
0 +

( ||τn
0 ||

||pn−1||

)
pn−1 if n > 1

(4.13)

where pn is a scaled vector of our adjoint solution which is written out to
r-files.

With our scaled solution, the initial condition temperature field can be
updated with the field obtained from from our adjoint integration by

Tn+1
0 = Tn

0 + δn pn. (4.14)
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Here δn ≤ 1 and is a damping factor which can be determined as a fixed
value; by a simple function; or by more sophisticated methods, such as by a
gradient function (Ismail-Zadeh et al. 2004).

The difference between Tn+1
0 and Tn

0 is output to d-files at this point
together with L2 norms of the whole, upper and lower mantle differences.
Additionally if we are running a synthetic test case we output an additional
set of d-files and norms for the difference between Tn+1

0 and Tt,0, the initial
condition of our true synthetic model.

Our new temperature field Tn+1
0 is then written to a new set of e-files

ready for use in the n + 1 forward calculation.

4.5 A 10 Myr forward-adjoint test case

To conclude this chapter we will look at a synthetic example of a forward-
adjoint calculation in order to validate the robustness of the method. To
perform a synthetic test we will make use of a separate mantle circulation
model that has been run in the standard MCM method for 200 Myr. We will
then take as our true data source Tt the final output temperature field from
this model. Since we are using an MCM as our true data source, we also
have access to the temperature field for the whole of the MCM model in the
past. As a consequence of this, when we run the forward-adjoint model over
a given time period, we can compare the forward-adjoints optimal initial
condition temperature field TN

0 to that of the MCM model at the same point
in time Tt,0.

For our test case we ran an incompressible with radial viscosity model
at a resolution of mt = 128. The model parameters used are outlined in
table 4.2. The radial viscosity profile for the model is determined as follows:

η(r) =





50η0 r ≤ 100 km

η0 100 km < r ≤ 660 km

30η0 r > 660 km

For this investigation we will look at setting the length of the forward-
adjoint model t0 to 10 Myr of plate motion histories. Calculations were
terminated early if the residual L2 norm of the calculations at t1 fell below
the value of 30 K. The temperature profile for T1

0 is taken as a tetrahedral
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Parameter Value Units

Surface temperature TS 300 K
CMB temperature TC 3000 K
Internal heating rate H 4 × 10−12 W kg−1

Reference viscosity η0 3 × 1022 Pa s
Density ρ 4500 kg m−3

Thermal expansivity α 2.5 × 10−5 K−1

Thermal conductivity κ 4 W m−1 K−1

Specific heat capacity CV 1000 J kg−1 K−1

Rayleigh number RaH ≈2.5 × 106 –

Table 4.2 Model parameters

spherical harmonic temperature perturbation on top of a 1D temperature
profile.

4.5.1 Results

In fig. 4.3 we plot the temperature residuals norms for both Tt,1 − Tn
1 and

Tt,0 − Tn
0 for the 10 Myr calculation. Our test case shows excellent conver-

gence at t1 as can be seen from fig. 4.3b, where after 5 iterations the residual
had already fallen by over 90% of the first iterations value. By the sixth
iteration the convergence had reached such a point that the iterations were
terminated as we had fallen below our predefined convergence limit. Due
to this surprisingly excellent convergence rate, the calculation was then
restarted in order to determine what value the residuals might converge to.
It can be seen that by the 10th iteration, the temperature residual values had
settled with the whole mantle residual remaining around 10 K. However,
beyond the fifteenth iteration, there is a suggestion that the solution is be-
ginning to diverge, which we believe to be down to an over correction of
features. Despite this we still see our temperature residual remaining below
our initial 30 K termination point.

From fig. 4.3 we see that the upper mantle sees less convergence compared
to the lower mantle. This can be attributed to the fact that lithospheric
features in our model are more difficult to resolve at the models resolution.
Also as the thermal boundary layer makes up a larger percentage of the
upper mantle volume compared to in the lower mantle, any differences in the
residual temperatures due to the boundary layer will be more pronounced
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Fig. 4.3 L2 norms for the residual temperature at t1 and t0 for successive
forward-adjoint iterations

here. Subducted material collecting into the lower mantle as driven by the
plate motion history could also attribute to this difference, since there will
be a greater amount of features that are controlled by our surface boundary
condition being driven into the mantle.

Figure 4.3a shows the temperature residual Tt,0 − Tn
0 norms. We see that

in comparison to the t1 residuals the t0 total mantle norm does not show the
same rate of convergence. In the lower mantle we can see that our updated
initial conditions continually converge towards the true initial condition
state. The limiting factor on the whole mantle convergence is clearly based
in the upper mantle reconstruction.

Figure 4.4 present snapshots of the temperature difference between the
true and predicted initial state from near both boundary layers together with
the mid mantle at t0. Snapshots are for the differences following; the first
iteration, the original termination point - iteration 5, the iteration from where
the residuals settle down - iteration 10.

Looking in detail at the 180 km depth of our model we see in fig. 4.4a
that following the initial iteration we have matched very little of the upper
mantle structure. The differences between the sixth and eleventh iteration
reflect the overall reduction in the norms at these iterations, but the regions of
greatest mismatch are at the spreading ridges in both instances. We see that
the slower spreading ridges such as in the Atlantic show a smaller positive
anomaly region. The rest of the upper mantle region shows slight negative
deviation from the true model.
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Fig. 4.4 Horizontal maps of the temperature difference Tt − Tm from forward-
adjoint model at various depths at t0. Positive differences highlight regions
that need to be hotter to match the true state, and negative differences regions
that need to be cooler to match. Current coastlines (black) and tectonic
boundaries (blue) and subduction zones (red) are included for reference.

We see the best match between the true data source and our model at the
mid mantle at 1445 km. This is not unexpected as away from the thermal
boundary layers the effects of diffusion, which cause the most issues in the
inverse calculations, are much less pronounced. We see again that following
our first iteration from the simple spherical harmonic initial temperature
condition that the first iterations calculated initial condition contains lots
of errors compared to our true data source (fig. 4.4a). By the time of the
sixth iteration however, (fig. 4.4b), we can see that the only differences in the
initial conditions are below the main subduction regions in Asia, and to a
lesser extend the west coast of the Americas. By the completion of the tenth
iteration, the temperature differences between T11

0 and Tt,0 are negligible.
In the lowermost mantle boundary, due to our short plate motion histories

we fail to generate any meaningful structures by the conclusion of the first
forward-adjoint calculation. But similar to the mid mantle, by the sixth
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iteration the mismatch, with exceptions of the regions affected by subduction
(around western America and central and eastern Asia), we see minimal
deviation from zero temperature difference. This shows how the sensitivity
of our calculated ideal initial condition to the starting initial condition is
quickly resolved after only a few iterations. Again however, the initial
conditions contain some significant mismatches even by the end of the tenth
iteration, which again must be attributed to the location being located so
near to the boundary of our domain.

4.6 Conclusion

Here we have validated the forward-adjoint iteration scheme against a
known initial condition, such that we can be confident that the model works
as hoped. At these short time scales, the rate of convergence is very pro-
nounced as the initial forward model does not run long enough to generate
any features even in the mid mantle; and so even two forward-adjoint itera-
tions appear to yield incredible improvements. Extending the time scale of
the model back further in time we would expect this rapid rate of conver-
gence in the first few iterations to be somewhat negated by the model having
enough time to generate some mid to deep mantle structures.

Furthermore for this 10 Myr forward-adjoint model, a single iteration ran
for approximately 30 min. Each iteration took approximately 110 time steps
and required on average 41 GB of storage for the full forward model a-files.
From this we can determine that each time step requires roughly 370 MB at
mt = 128; which when looking at longer timescale models of over 1000 time
steps would equate to over 400 GB of storage for a single forward-adjoint
iteration.

As we look to extend our models further back in time we can expect the
trends shown in this synthetic case to be less pronounced and will have to
account for the strain placed on storage space. To this end, we will continue
the investigation of the outlined method in the following chapter.



CHAPTER 5

PROFILING THE ROBUSTNESS, EFFICIENCY AND LIM-

ITS OF THE FORWARD-ADJOINT MODEL

Abstract

Knowledge of Earth’s mantle into the past is inherently unknown. This lack
of knowledge presents problems in many areas of Earth science, including in
mantle circulation modelling (MCM). As a mathematical model of mantle
convection, MCMs require boundary and initial conditions. While boundary
conditions are readily available from sources such as plate reconstructions
for the upper surface, and as free slip at the core-mantle boundary (CMB),
the initial condition is not known. MCM have historically ’created’ an initial
condition using long ’spin up’ processes using the oldest available plate
reconstruction period available. Whilst these do yield good results when
models are run to present day, it is difficult to infer with any confidence
results from early in a models history. Techniques to overcome this problem
are now being studied in Geodynamics, such as by assimilating the known
internal structure of Earth at present day backwards in time. This is done
using an iterative process known as the forward-adjoint method, which
while an efficient means of solving the inverse problem still strains all but
the most cutting edge computational systems. In this chapter we endeavour
to profile the effectiveness of this method using synthetic test cases as our
known data source. We conclude that savings in terms of computational
expense for forward-adjoint models can be achieved by streamlining the
time stepping of the calculation, as well as determining the most efficient
method of updating initial conditions in the iterative scheme. Finally we
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determine that a realistic limit of the time interval the method can be run
over lies around 50 Myr.

5.1 Introduction

The adjoint method has been shown to be an excellent method of assimilating
information in order to minimise the misfit between observed and predicted
fields in a number of numerical modelling disciplines from meteorology
(Courtier and Talagrand 1987) to seismology (Tarantola 1984) to oceanog-
raphy (Menemenlis and Wunsch 1997). It has also been shown that this
technique can be extended to address the problem of having an incomplete
picture of Earth’s mantle structure in the past (Bunge et al. 2003).

The adjoint method for mantle circulation models (MCMs) has previ-
ously been utilised using both synthetic (Bunge et al. 2003) and tomography
derived (Horbach et al. 2014) true state forward-adjoint mantle models. Fur-
ther studies using a simplified adjoint calculation have also been conducted
(Ismail-Zadeh et al. 2004; Liu et al. 2008; Spasojevic et al. 2009), which use a
subset of the full adjoint equations. In all of these studies, the interval over
which the forward-adjoint iterations were ran spanned from 40 Ma to 100 Ma
until present day. A possible reason for shorter timescale calculations could
be due to hardware limits, as a high resolution forward-adjoint calculation
requires in excess of 10 TB of hard disk storage for a single iteration running
over a 40 Myr time interval, and takes several days to weeks of runtime
(Horbach et al. 2014).

For an adjoint system using the full set of adjoint equations very little
literature exists defining how reliable results are further back in time. Vynnyt-
ska and Bunge (2014) attempt to quantify this question of convergence using
a two-dimensional forward adjoint model which did use the full system of
adjoint equations. In this study the authors determined that knowledge of
the surface boundary condition is crucial in order for the solution to converge
to a unique initial condition, a result that they attribute to the uniqueness
theorem of Serrin (1959). This states that two incompressible Stokes flows
are equivalent given they have the same initial and boundary conditions.
Their models investigated adjoint models running up to one-third of the
transit time of mantle material, where they observed consistent converge
for various time intervals up to this limit. Here we will look to expand on
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the method of Vynnytska and Bunge (2014), by running a range of adjoint
calculations and comparing them to a synthetic known mantle state.

Equally, the forward-adjoint formulation has a number of parameters
that have not been tested for their influence on the convergence of the final
solution. One source that has been investigated is the effect that the choice in
first guess initial condition has on the solution convergence. Horbach et al.
(2014) found that regardless of this first guess, from a one-dimensional tem-
perature profile to unlikely temperature structures derived from tomography,
all forward-adjoint models converge to the same global minimum.

Very low resolution investigations have also been made with a com-
pressible forward-adjoint model by Ghelichkhan and Bunge (2016). In their
study they compare a compressible and incompressible adjoint model to a
compressible ‘true’ state reference. They found that due to the formulation
of the compressible adjoint equations, there are only small differences be-
tween the incompressible and compressible adjoint solutions to the reference
temperature field.

With the results of Vynnytska and Bunge (2014), Horbach et al. (2014),
and Ghelichkhan and Bunge (2016) already found, we look to extend the
investigation of the forward-adjoint method to cover more of the parameters
that may control the convergence of solutions. In doing so we hope to under-
stand better how the method can be altered to yield more efficient compute
times and storage requirements without compromising the convergence.

We organise this chapter as follows: firstly we present the method used to
solve the forward-adjoint system, including the equations, solution scheme
and model setup. Then by computing synthetic initial and final states from
a mantle circulation model to use as a benchmark for our forward-adjoint
models, we investigate the effects on convergence of altering components of
the forward-adjoint model. We will first investigate the role of the forward
time step lengths on convergence; following this we will look at altering δ,
the fraction used to update our initial state; finally with the availability of
plate reconstructions that extend over 200 Myr we look at varying the time
period over which the calculation is run to provide an upper bound on the
time interval that can be used with this method.
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5.2 Method

5.2.1 Numerical methodology

Mantle circulation models are carried out using an adapted version of the
three-dimensional finite element code TERRA (Baumgardner 1985; Bunge
et al. 1997), which solves the equations governing conservation of mass,
momentum and energy (eq. (5.1)) for an incompressible fluid

∇ · u = 0 (5.1a)

∇ ·
{

η(∇u + (∇u)T)
}
−∇P + αρ(Tav − T)g = 0 (5.1b)

∂T
∂t

+ u · ∇T − κ∇2T − H = 0 (5.1c)

and the adjoint equations governing conservation of mass, momentum and
energy (eq. (5.2)) for an incompressible fluid

∇ · φ = 0 (5.2a)

∇ ·
(

η{∇φ + (∇φ)T}
)
−∇ψ + τ∇T = 0 (5.2b)

∂τ

∂t
+ u · ∇τ + κ∇2τ + αρg · φ = ∂Tχ(T). (5.2c)

Here η is the dynamic viscosity, α is the coefficient of thermal expansion,
ρ the reference density, Tav the radial temperature profile, g gravitational
acceleration, κ is the thermal diffusivity and H is radiogenic heat production.
∂Tχ(T) = (Tt − Tm)δ(t − t1) is the gradient of the misfit function χ that
relates the observed model temperature Tm to the observed true temperature
Tt. φ, ψ and τ are the adjoint compliments to the forward terms u, P and T.

These two sets of equations (eqs. (5.1) and (5.2)) are run together in an
iterative loop with the temperature profile at t0 updated using a conjugate
gradient method (Fletcher and Reeves 1964),

Tn+1
0 = Tn

0 + δnτn
0 . (5.3)

Here δ is damping factor which is ≤ 1, the value of which can be varied over
the calculation. Figure 5.1 outlines the full iteration loop, and is cycled over
until the misfit at t1 falls below a pre determined level, or the total number
of iterations is exceeded.
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0

Update the initial
temperature profile

Fig. 5.1 The forward-adjoint workflow

5.2.2 Model configuration

All test cases were modelled as an incompressible fluid on a mesh with 10
million finite elements, which corresponds to an average grid spacing of
50 km. The viscosity profile employed in our models varies as a function of
depth (r) only according to the function

η(r) =





100η0 r ≤ 100 km

η0 100 km < r ≤ 660 km

30η0 r > 660 km.

Other key model parameters are outlined in table 5.1.
A free slip boundary condition is defined at the CMB, whereas surface

velocities are prescribed using the plate motion reconstruction of Seton et
al. (2012), with the velocities scaled to match the convective vigour of the
underlying convection model. The surface velocities are assimilated in 1 Myr
intervals over the course of our forward model calculations.
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Parameter Value Units

Surface temperature TS 300 K
CMB temperature TC 3000 K
Internal heating rate H 4 × 10−12 W kg−1

Reference viscosity η0 3 × 1022 Pa s
Density ρ 4500 kg m−3

Thermal expansivity α 2.5 × 10−5 K−1

Thermal conductivity k 4 W m−1 K−1

Thermal diffusivity κ 1 × 10−6 m2 s−1

Specific heat capacity CV 1000 J kg−1 K−1

Basally heated Rayleigh
number Rab ≈ 5 × 106 –

Internally heated Rayleigh
number RaH ≈ 9 × 107 –

Table 5.1 Model parameters

The Rayleigh number, the non-dimensional value which quantifies the
convective vigour of the system that is basally heated is defined as

Rab =
αρ∆TD3g

κη
,

where D is the mantle radius and ∆T the total temperature contrast. As our
models also contain internal heating we define a second Rayleigh number
for an internally heated volume which is defined as

RaH =
αρ2HD5g

kκη
.

Using the values used in this study this gives our models a Rayleigh numbers
Rab ≈ 5 × 106 and RaH ≈ 9 × 107, meaning we expect the vigour of convec-
tion in our models to be slightly below what is expected for Earth. Because
of this we scale the timescales of our models to allow a similar amount of
convection to occur in the models presented here. All times used are after
accounting for this scaling.

For our study into the limits, robustness and efficiencies of the forward-
adjoint method we use a synthetically generated temperature field for our
true data source, similar to the method used in Bunge et al. (2003). To gener-
ate this synthetic data source we begin with a mantle convection calculation
(free-slip as the surface boundary condition) and run this until it has reached
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a quasi-steady thermal state, such that the surface heat flux is fairly constant.
Once this state has been reached the convecting mantle volume is condi-
tioned with the oldest available plate motion stage to introduce the tectonic
features of the stage. This is achieved by continuing the calculation for ≈
50 Myr with the oldest plate stage, introducing the temperature and density
anomalies in the upper to mid mantle from the plate stage. Following this
setup we then run our reference model through to present day, recording the
mantle structure at 10 Myr intervals. This is done so that as well as having a
present day mantle structure to use directly in our adjoint calculation, we
can compare the calculated initial stage mantle structure from our adjoint
calculation to the synthetic case.

The main metric we use to compare different cases is the L2 norm of the
mismatch at t0 and t1. This gives us a measure of the distance between the
modelled Tm, and true Tt, temperature fields, with lower values reflecting a
smaller distance between the two fields.

For the different parameters we investigate in this study unless otherwise
stated we use as default; a time stepping mechanism that is allowed to evolve
freely, and a delta value of δ = 0.8 in eq. (5.3).

We conclude by outlining the motivation and setup for each each of the
different cases we considered in this work.

5.2.3 Altering the forward time step mechanism

Our first investigation concerns the time stepping mechanism of the for-
ward calculation. We see from eq. (5.2) that the adjoint equations require
knowledge of the forward iterations temperature and velocity values. This
coupling of the two equations results in the adjoint calculation having to
take the exact same time steps back in time as the freely evolving forward
calculations time steps. The storage of the u and T arrays at each time step
requires, depending on resolution, 0.4 GB to 3 GB of temporary storage for
each time step. As calculations grow into the thousands of time steps, this
can begin to push practical limits of storage available.

To this end, we hope that by constraining the forward time steps evolution
we can achieve practical gains in terms of storage space and runtime without
compromising the convergence of our solutions.

In its current implementation in TERRA, time stepping is performed
using a second order Runge-Kutta scheme. The length of each time step
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is adjusted as the calculation evolves, such that only one iteration of the
code’s multigrid algorithm is required to maintain the residual error in the
solving of the momentum equation below a specified level. Furthermore,
the length of each time step is bounded from above in order to ensure the
Courant-Friedrichs-Lewy (CFL) condition is not violated. The time step is
also controlled by the presence of any unstable temperature values for nodes
located at the boundaries. The net result is a time step which will increase
×1.1 if all tolerances are reached or ×0.8 if one or more tolerances are not met.
This method of time step evolution is the same as the one used in previous
chapters as well as in our test case in section 4.5.

In order to investigate the effect that changing the time step evolution
has on the convergence of the forward-adjoint we shall conduct two syn-
thetic tests which cover 10 Myr and 40 Myr of Earth history respectively. We
consider three methods of time step evolution:

• Free - This is the classic time step as found in TERRA and described
above.

• Upwards - This limits the time step by taking the maximum value out
of the previous and current time step values; this has the net effect
of allowing the time step to increase when the tolerances are met but
never decrease in value.

• Forced - In this implementation the time step is hard coded to the CFL
limit apart from the first ten time steps of each 1 myr plate stage in
order to allow the code to handle the change of plate boundaries.

5.2.4 Varying the choice of δ for the Tn+1
0 update

At the end of a forward-adjoint iteration we update the initial condition
guess by

Tn+1
0 = Tn

0 + δnτn (5.4)

where δ is the damping factor that controls the influence of the adjoint
temperature in the update process. A well chosen function for determining δ

could have a significant effect on the rate of convergence of our solutions,
resulting in fewer forward-adjoint iterations required to reach satisfactory
results. This of course would have the additional benefit of less total storage
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required, as well as shorter run times; both valuable when considering
calculations run on large HPC systems.

In order to understand how the choice of δ affects the convergence of
our forward-adjoint solution, we will conduct a series of synthetic forward-
adjoint models running over a time period of both 10 Myr and 40 Myr. By
running our tests using synthetic data we are able to directly compare the
accuracy of our predicted initial condition for the different cases. For both of
these time spans we consider the following for our choices for δ:

• δ = 1 - A value where we apply the whole minimised adjoint field.

• δ = 0.8 - A second fixed value addition of the adjoint field.

• δ = 1 − 0.02n - A simple decreasing function that ranges from 1 to 0.8
over the 20 iterations. Here n corresponds to the iteration number.

• δ =
1

n + n0
- A decreasing function for δ as used in Liu and Gurnis

(2008), where we choose n0 = 0. Again n corresponds to the iteration
number.

• δ = min
{

1
1 + n

,
||χn||
||τn

0 ||

}
- Here δ is determined based on the gradient

method as in Ismail-Zadeh et al. (2004). n once more corresponds
to the iteration number, χn the misfit between the true and model
temperatures for the current iteration, and τn

0 the adjoint temperature
at t0.

5.2.5 Varying the time interval of the forward-adjoint calcu-

lation

For our final investigation we shall look at how the time interval we run
our forward-adjoint model over affects the residuals between the modelled
and true temperature fields. As previously discussed, previous studies that
looked at 3D forward-adjoint simulations ran over a time interval of 40 Myr
to 100 Myr. Both Liu et al. (2008) and Bunge et al. (2003) ran adjoint models
that extended back to 100 Myr, with the latter running a global model using
the full adjoint system of equations. Bunge et al. (2003) ran their calculation
for 100 forward-adjoint iterations and saw a reduction of 90% at t1 and 50%
at t0. For our study we do not attempt to run for as many iterations due to
the limits of the computational resource available for this work.
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With the availability of plate reconstructions that extend back to the
early Jurassic (Seton et al. 2012), we can therefore conduct forward-adjoint
calculations over a time period of twice that of other studies. In doing so
we hope to determine at what point, if any, information is not significantly
propagated back in time using an adjoint calculation. We will run several
cases covering a range of intervals; 10 Myr, 20 Myr, 40 Myr, 80 Myr, 120 Myr,
160 Myr and 200 Myr. As in our other test cases we will start all our models
from the same 1D temperature structure.

5.3 Results

5.3.1 Altering the forward time step mechanism for the for-

ward adjoint calculation

Figures 5.2 and 5.3 show the results for the different methods of controlling
the forward time step for both the 10 Myr and 40 Myr calculations. For the
10 Myr (figs. 5.2a and 5.2b) calculation the t0 profiles all display the same
convergence to a minimum around 55 K globally before a small uplift in the
norms is observed. At t1 the choice of time step method does have some
influence on the convergence, however these differences are O ∼1 K.

For the 40 Myr calculation we again see that the convergence of the dif-
ferent solutions very closely match each other both at t0 and at t1, as can be
seen in figs. 5.3a and 5.3b. Similar to the 10 Myr calculation we see in fig. 5.3b
that in the later iterations there is some variation in the L2 norms O ∼10 K,
although there is no noticeable favoured implementation. We also note that
the minimum norm values at both end points are higher than those observed
in the 10 Myr calculation. Finally we do not observe the small divergence of
the L2 norms in the later iterations at t0.

As the aim of our testing of different time step controls is to maximise
savings in storage and runtime without compromising our solutions we also
present figures for both storage and runtime for each iteration. At 0.36 GB
per time step at this resolution we see in figs. 5.2c and 5.3c that over the
10 Myr and 40 Myr calculations we require a fairly uniform amount of stor-
age for each iteration of roughly 40 GB and 160 GB respectively. In both
length calculations we see that the initial iteration shows a much higher stor-
age requirement for the first iteration for the free and upwards methods. We
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Fig. 5.2 Various line graphs for a 10 Myr synthetic forward-adjoint calculation
with varying methods of time step evolution. (a) and (b) show the L2 norms
at both end members plotted on semi log axis. (c) displays the total hard
disk storage required for information for each iteration. (d) is the total
computation time required for each iteration with the average denoted by
the dotted lines.

can interpret this as an effect of our choice of initial condition being a 1D tem-
perature profile. As there is no information of the internal structure a freely
evolving model will progress slowly as thermal structures are introduced
into the model, which will limit the time step growth as the model copes
with these structures. The forced time step method on the other hand ignores
this and progresses at full pace, hence the smaller storage requirement in the
first iteration. By the start of the second iteration some thermal structures
have been introduced into all the test cases and so we see the similar storage
requirement across all cases.

Turning to the runtime for our cases figs. 5.2d and 5.3d we see that
the upwards time step performs best on average over both time intervals.
Perhaps surprisingly, the forced time step does not outperform the others,
and in the 10 Myr case we also see it perform noticeable worse for a period.
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Fig. 5.3 As fig. 5.2 but for the 40 Myr synthetic forward-adjoint calculations.

We attribute this to the case ignoring any difficult to solve regions in the
volume, therefore requiring extra multigrid cycles in order to satisfy the
convergence tolerances of the code.

5.3.2 Varying the choice of δ for the Tn+1
0 update

The temperature residuals for all cases for various choices in δ are presented
in fig. 5.4 and fig. 5.5. Regardless of calculation time period we see that the
choices in δ can be split into two separate groups based on their convergence.

The first group contains the linear choices of δ. Focusing on the 10 Myr
results first we see that the three cases can be characterised by a very similar
convergence rate at t1, fig. 5.4b, with each reaching a minimum norm value
∼10 K to 20 K for the misfit between the modelled and observed temperature
field. While at t1 we see some differences between these three choices of δ

even early on, with δ = 0.8 showing the best convergence, at t0 all three cases
show very similar convergence until iteration 10. Beyond this point δ = 1
begins to quickly diverge, and our linear function show similar, but less
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Fig. 5.4 Logarithmic plot of L2 norms for the residual temperature at t0 and
t1 for different δ implementations in a 10 Myr synthetic forward-adjoint.
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pronounced behaviour. All three cases obtain a minimum of ∼50 K to 60 K.
We can see from figs. 5.4c and 5.4e that this divergence of our misfit at t0 is
only observed in the upper mantle, with δ = 0.8 actually being marginally
worse that the other two choices in the lower mantle up until iteration 17.
This is an unexpected result, which we attribute to the build up of an over
correction of features located at the near surface, introduced by these choices
of δ. The difference between the upper and lower mantle is not observed
at t1 however, as over the 10 Myr of forward model there is time to remove
some of this over correction.

The second group contains the non-linear choices for δ. Both of these
choices show a monotonically decreasing norm residual across both end
points, a feature not shared by the first group. Whilst this may suggest
a more stable convergence rate, we do see however that it is taking 20+
iterations for this group to begin falling below the minimum levels obtained
by the first group. Across both the upper and lower mantle at t1 they only
just start to outperform the three choices from the linear group, namely
δ = 1. At t0 we do not see the same divergence in the upper mantle due
to over correction, but the minimum values after 20 iterations still fail to
match the early norm levels of the linear δ group. We also see that δ = 1/n
is consistently below the more complex non-linear function. From further
investigation of this we found that the gradient determined by ||χn||/||τn

0 ||
was larger than 1/1 + n at all but the last two iterations. Because of this, the
choice in δ was taken as the fraction 1

1+n < 1
n and so explains the poorer

convergence rate compared to the other non-linear choice.
For the 40 Myr calculations (fig. 5.5) the differences are less pronounced,

but results still fall into the same two groups. We observe that at t1 for four
out of the five choices of δ, the temperature residuals continue to decrease
across the 20 iterations obtaining a minimum value ranging from 30 K to 70 K
at the twentieth iteration. The exception is δ = 1 which begins to show a
diverging final stage misfit from the twelfth iteration onwards. The minimum
value obtained by this choice is worse than the other linear functions at this
point, showing no advantage to this choice in δ. In contrast to the 10 Myr
calculations, the best observed choice at t1 is δ = 1 − 0.02n, which shows a
much more stable convergence compared to the next nearest which shows
an oscillating norm value. From fig. 5.5f we see that this oscillation for the
0.8 choice is actually from contributions in the lower mantle.
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Fig. 5.5 Logarithmic plot of L2 norms for the residual temperature at t0 and
t1 for different δ implementations in a 40 Myr synthetic forward-adjoint.
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The picture at t0 is much less diverse, with the values at each iteration for
the differing choices of δ falling into the two previously mentioned groups
of linear and non-linear (fig. 5.5a). All the values show a monotonically
decreasing residual, though the non-linear choices are decreasing by only a
few K over the last ten iterations. The minimum values obtained range over
a region of 160 K to 220 K. As expected the upper mantle norms are worse
than the lower mantle (figs. 5.5c and 5.5e); however, we do not see the same
behaviour as we did for the 10 Myr runs where some of the choices for δ

would begin to diverge as the iterations continued. This is attributed to the
t0 predicted field not being over corrected as less information is available
to update the initial condition as the length of the calculation time span is
extended.

5.3.3 Varying the time interval of the forward-adjoint calcu-

lation

The temperature residuals at both t0 and t1 for these models are presented
in fig. 5.6. The first feature we notice from the t1 residual norms is that
following the first forward calculation we see a range of values for the dif-
ferent length calculations. This is unsurprisingly arranged in order with the
shortest test case showing the greatest difference from the reference state, to
the full 200 Myr model which has a residual norm nearly half of the worst.
We attribute this difference to the vastly different length assimilation times
of our models, as having a long period of surface boundary conditions has
previously been shown to provide a good match to present day observations
(Bunge et al. 2002). Looking beyond the first iteration we see that by the end
of the second forward iteration that the shorter length models are already
displaying the best match to the observed mantle field, and by the fifth itera-
tion the models have reordered completely in terms of best match. Over the
course of the twenty iterations we see very small reductions in the residuals
of the longest length calculations whereas the short time scale models show
an excellent match. We also observe that all the models ≤80 Myr show con-
tinuing convergence while those ≥120 Myr appear to reach their minimums
and oscillating about a final value.

Looking at the temperature residuals observed at t0 between the pre-
dicted initial condition and the reference we see a vastly contrasting picture.
Figure 5.6a shows that all models >40 Myr achieve their minimum misfit
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Fig. 5.6 Logarithmic plot of various L2 norms for the residual temperatures
of forward-adjoint models run over differing time intervals as a function of
forward-adjoint iterations.
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following three forward-adjoint iterations before seeing their norms steadily
climb. For iteration 1 with our 1D radial temperature field, we see that the
longest calculations, 200 Myr and 160 Myr, have a smaller misfit compared
to the other cases. This could stem from the total length of the plate recon-
struction model available to us together with how the reference model was
calculated. We recall that the reference model is created by conditioning a
plain mantle volume with the oldest plate stage for up to 50 Myr before the
sequential assimilation of the full plate reconstruction. The reduced misfit
values for the 200 Myr and 160 Myr for T1

0 suggests that the standard method
of setup for a forward model, as used for the reference state, provides a
mantle volume that is still fairly heterogenous.

Unlike the t1 residuals, we see that the t0 residuals are not arranged from
shortest to longest assimilation periods. While 10 Myr, 20 Myr and 40 Myr
are arranged in order, the next best fitting model is the 200 Myr and 80 Myr
respectively with the 120 Myr calculation showing the worst misfit values
across the whole calculation. As expected we see better convergence in the
lower mantle (figs. 5.6e and 5.6f) compared to the upper mantle (figs. 5.6c
and 5.6d), although both regions do show the same overall convergence
behaviour.

To further aid our understanding of our results, in fig. 5.7 we present
snapshots of some of the adjoint derived initial conditions for a number
of total forward-adjoint iterations together with the reference model which
we hope to match with. The excellent convergence of the misfit observed
previously for the 10 Myr calculation is apparent here with minimal visual
difference by the fifth iteration. The reconstructed initial condition displays
the same subducting features together with similar lithospheric thickening.
Further iterations show very little change in the features despite further
decrease in the residuals.

The selected snapshots at 40 Myr show a good match from the fifth itera-
tion with an improving picture in the subsequent images. The region located
at 90° east shows a less accurate match though we conclude that the broad
structure is correct. At 80 Myr we see similarly that the eastern side of our
cross sections again appear to be less accurate to our observed state.

As we look towards our longer time spanning cases we see the power
of features introduced in the first few iterations are very low and broad in
comparison to the shorter cases. This is particularly pronounced between
120 Myr and 160 Myr where the former shows more defined features com-
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Fig. 5.7 Cross section plots through the equator at t0 for various time intervals
forward-adjoint calculations. A range of iterations are shown together with
the expected ‘true’ mantle structure taken from a separate MCM calculation.
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pared to the latter. Considering this together with the knowledge that the
120 Myr case showed the worst match to the reference state, we conclude
that by having less pronounced features in the longer cases results in less
dramatic shifts from the observed state and hence the observed anomalous
ordering in the t0 residuals.

5.4 Discussion

By conducting synthetic tests of the forward-adjoint method we have been
able to constrain a number of parameters that can help improve the efficiency
of models.

While considering how best to conserve storage and runtime we have
seen that all our choices for time step method had no noticeable effect on the
converge rate. This allows us to view the three choices in mechanism equally
without fear of compromising our solution.

There is no noticeable best choice for storage savings, as all mechanisms
require the same storage requirements outside of the first iteration where
forcing the time step works best. While at higher resolution calculations this
difference would grow, considering this trade off with the potential caveats
of this mechanisms runtime, it is not obvious that the forced time step is
superior.

We also note that there is an anomalous value from the free time step
calculation at iteration seven in the 10 Myr. This corresponds to when the
calculation was terminated prematurely, and so had to be restarted, which
caused a duplication of some output files. This value is therefore not indica-
tive of any greater issue with the free time step.

For the runtime required for each of our six test cases we see the only
real difference between the three types of time step control; the upwards
method shows to be on average quicker than both forced and free methods
for both calculation lengths. As previously mentioned, the region where the
runtimes of the forced calculation are noticeably longer due to the nature of
forcing the time step, helps us to discredit this as a possible choice. Given
that over a short time interval, low resolution calculation this resulted in
nearly a ×2 slow down of calculation, the magnified affect of this in more
complex calculations would be very disadvantageous.
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Therefore from our three options conclude that the upwards time step is
the best of the mechanisms tested. We can see that choosing the freely evolv-
ing time step as in a standard TERRA calculation has no noticeably benefits
over the upwards mechanism in terms of storage, runtime or convergence of
our forward-adjoint. While before hand one might have made an argument
that due to the iterative nature of the forward-adjoint method we can force
the time step to save time and space, we see that in actuality only small gains
are made in terms of storage (O ∼25 GB); although at the next increment
of resolution we would extrapolate this to correspond to a 250 GB saving at
the first iteration. The upwards time step meanwhile does not compromise
on convergences, is no worse or better than the other methods in terms of
storage, and consistently shows the best runtimes of the methods tested.

For our choice in δ we have observed that the more sophisticated choices
used in some studies that looked at forward-adjoint models (Liu et al. 2008;
Ismail-Zadeh et al. 2004), while achieving a monotonically decreasing resid-
ual, do not achieve the best convergence of residuals in our tests. The simple
fixed value < 1 as used in Bunge et al. (2003) shows excellent convergence at
both t0 and t1 for both length calculations. We do however note that there is
some oscillation for these fixed values which does not occur when using the
simple function 1 − 0.02n. The strictly monotonically decreasing nature of
the non-linear functions is an undoubtably attractive feature in a numerical
model, and as computational power increases these methods would be pref-
erential. Due to the computational limits imposed at present, we believe a
choice of δ = 0.8 or δ = 1 − 0.02n can be considered the preferred factor to
use for updating our initial condition temperature field.

The varying length time interval forward-adjoint models provide ex-
cellent insight into the limits of the method. We conclude that for models
extending up to at least 40 Myr we can expect excellent convergence at t1

and the features present at t0 can be taken as accurate. For models between
80 Myr and 120 Myr while we would expect to see a converging present day
residual we do not observe a similar convergence at t0 and in fact observe
some defined features which are not present in our reference model. Models
longer that 120 Myr require many more forward-adjoint iterations to intro-
duce meaningful mantle structures, with our snapshots showing minimal
downwelling features compared to upwellings, with predominantly broad
scale deep mantle features being the main reconstructed features.
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However, the difference between converging residuals at t1 compared
to at t0 leads us to conclude that results from longer spanning models must
be taken with caution as even here in our relatively simple synthetic tests
discrepancies exist across the whole volume. We again recall that in Bunge
et al. (2003), their 100 Myr forward-adjoint models presented showed an
excellent match to the true state after running for 100 iterations. While we
cannot discount that a factor of five increase in iterations here could yield
similar results, the practicality of solving this many iterations makes solving
100 iterations unrealistic. Furthermore, there is of course less certainty in the
‘true’ state we are comparing to at 200 Ma to 120 Ma and so this raises the
question of how bad a match these models are.

In spite of this, even if we can only reliably use deep mantle features
generated from the adjoint method, this is not without its uses in Earth
sciences. Deep Earth mantle structure have been shown to have a large
influence on surface dynamics (Lithgow-Bertelloni and Silver 1998) and the
long term nature of deep Earth features such as the Large Low Shear Velocity
Provinces (LLSVP) has been the focus of recent studies (Zhang et al. 2010;
Bower et al. 2013).

We note that a simpler model utilising a ‘backwards in time’ calculation
that only reverses the time dependent terms of the governing equations
(eq. (5.1)) and ignores the diffusive term performed calculations back from
75 Ma to 126 Ma before drawing conclusions (Conrad and Gurnis 2003). In
their study however, the authors observe that instabilities in the thermal
boundary layers make it difficult for this method to accurately reconstruct
the present day structures the model began with. Due to this, we conclude
that the method used in our study is superior to these methods even if run
over shorter time frames due to the lack of instabilities in the boundary
layers.

This investigation into adjoints run over different time intervals is more
intriguing when considering previous work that looks at error growth in
mantle models, which look to determine a ‘limit of predictability’ (Chapter 3
as well as Bello et al. (2014) and Colli et al. (2015)). Results from these studies
suggest at their most conservative estimates, a limit of predictability of
95 Myr (Bello et al. 2014) without an assimilated surface boundary condition.
With an assimilated surface it is suggested that solutions will evolve towards
a single solution, which corroborates the theorem of Serrin (1959) which
states that two incompressible viscous bodies are equivalent given their
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boundary conditions are the same. Ismail-Zadeh et al. (2007) meanwhile
determine that the adjoint solution is limited by the characteristic thermal
diffusion time, which for large features (>100 km) suggests a limit over
300 Myr, and less than 5 Myr for fine features (<10 km). This falls in line with
what we have seen here, with the large scale features being predicted for all
time scales (given sufficient iterations) and finer features not captured (such
as in the upper mantle).

We therefore conclude that despite being within the limit of predictability
for this class of models, it is the thermal diffusion time which is limiting our
adjoint predictions.

5.5 Conclusion

We have investigated a number of parameters that can be varied in the
full forward-adjoint system for mantle convection. A minimum number of
modelling assumptions have been made in our investigation here and so
our results are relatively straightforward to interpret. In order to optimise
the runtime and storage requirements of the forward-adjoint calculation
one should consider using a gentle forcing of the time step mechanism, as
doing so sees moderate improvements in terms of calculation speed whilst
not compromising on the misfit convergences. Furthermore whilst complex
non-linear choices can be made for the choice of δ, the factor that controls
the amplitude of the adjoint solution used to update the initial condition,
simple linear functions can achieve a minimum residual value in far fewer
iterations. Despite this effect diminishing over longer timescales, the linear
functions still perform best and so we consider these the optimum choice for
our forward-adjoint models moving forward. In this work we shall remain
with the choice of δ = 0.8.

Results from investigating varying the time interval that the forward-
adjoint calculations are run over suggest that drawing conclusions of fine
features should be done with caution for longer calculations, though initial
conditions derived in this manner still may present a better educated guess
than currently employed in the geodynamics community. The effect using
these adjoint derived initial conditions have on the final output compared to
current methods when conducting whole Earth investigations using mantle
models is an open question that could readily be investigated further. As an
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example, the effects on dynamic topography over recent Earth history is one
avenue of investigation that could benefit from these adjoint derived initial
conditions.

With these results, together with those of Horbach et al. (2014), Vynnytska
and Bunge (2014), and Ghelichkhan and Bunge (2016) which also investigate
some of the parameters involved in running adjoint models, future adjoint
model based investigations can be focused on applying the method to real
world scenarios using the wealth of present day information available. With
this in mind, we turn our attention to using the forward-adjoint method
together with a true data source based on Earth observations. In the next
chapter we shall attempt to better understand how the introduction of a
more complex data source may affect solutions.



CHAPTER 6

INVESTIGATING THE EFFECTS OF TOMOGRAPHIC FIL-

TERING IN ADJOINT MANTLE MODELS

Abstract

Due to the time dependent nature of mantle flow, together with the non-
linear equations that govern mantle convection, reconstruction of past mantle
flow is non-trivial. The adjoint method has been shown to be a powerful
inverse method of determining past mantle flow on Earth. Through running
the adjoint together with forward models in an iterative process, information
from present day observations can be incorporated into the inverse model to
give a more comprehensive understanding of past mantle structure. In this
study we build on previous work that looks at the viability and constraints
of running adjoint models and attempt to better understand how best to in-
corporate data from seismic tomography. As seismic tomography is spatially
less well resolved compared to even very low resolution mantle circulation
models, previous forward modelling studies have made use of the resolu-
tion filters for tomographic models. These account for the spatial resolution
of the tomography models and allow more like for like comparisons to be
made. By applying these filters to the forward model as part of our iterative
scheme before comparing to the corresponding tomography model, we find
that this does not result in a converging solution. Instead we find that no
extra steps need to be applied to the forward model before comparing to
tomographic sources. This allows the forward-adjoint method to be used
with any tomography model, not just those with available filters.
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6.1 Introduction

The adjoint method has been shown to be an excellent process to help address
the time dependent nature of mantle dynamics (Chapter 5, Bunge et al. (2003),
Horbach et al. (2014), and Vynnytska and Bunge (2014)). Forward-adjoint
models work by comparing a mantle circulation model (MCM) end member
temperature field to a known true data source, and using any differences
between these to improve the initial condition in an iterative process.

So far in this work we have only considered synthetic tests of the method
that use plate reconstructions to create the ‘true’ data source. While these
are useful to investigate the accuracy of the method, their larger applications
to Earth problems is limited. Considering this we therefore look to employ
present day observations of mantle structure as the true data source.

Seismic imaging of Earth’s interior reveals a wealth of information on
structures in the mantle including two distinct types of seismic features. The
first are a series of positive seismic anomalies, which correspond to structures
that are colder than average (Grand et al. 1997; van der Hilst et al. 1997),
which have been shown to be relics from previously subducted slabs (Bunge
et al. 1998; Bunge and Davies 2001).

The second obvious feature in shear wave tomographic models is the
presence of two, distinct negative seismic anomalies present in the deep
mantle (Garnero and McNamara 2008). These two Large Low Shear Velocity
Provinces (LLSVPs) occupy separate hemispheres (Becker and Boschi 2002;
Simmons et al. 2010; Ritsema et al. 2011; Koelemeijer et al. 2016) beneath
Africa and the Pacific respectively (an example is shown of the -0.6% dVs

velocity perturbation in fig. 6.1a), covering approximately 30% of the core-
mantle boundary, with their structure being imaged rising over 1000 km
above the core-mantle boundary (Tanaka et al. 2009; French and Romanowicz
2015) (as shown in figs. 6.1b and 6.1c).

However, despite these many studies and more providing detailed analy-
sis of features seen in tomographic models, and how these relate to thermal
or chemical features within the mantle, this information is of limited use
when trying to construct a picture of the mantle in Earth’s history. Due to
the non-linear, time dependent nature of the equations that govern mantle
convection (Mckenzie et al. 1974; Jarvis and Mckenzie 1980), it is non-trivial
to project present day information back in time. Conrad and Gurnis (2003)
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(a) Contours at 2800 km

(b) Cross section (A) through African
LLSVP

(c) Cross section (B) through the Pa-
cific LLSVP

Fig. 6.1 Seismic tomography data for the LLSVPs. The -0.6% dVs contours are
shown for the S40RTS (blue), S20RTS (orange) tomography models. Coast-
lines (grey) are included for reference, the dashed black line denotes the
660 km depth boundary.

attempted such a feat by reversing the time dependency of their mantle
convection model, and removing the term that governs thermal diffusion,
as the diffusive term is unstable when run backwards. While the authors
managed to draw some conclusions of dynamic topography in the Cenozoic,
their models were also plagued by thermal instabilities from the models
boundary layers.

The adjoint method in comparison is a more systematic method of as-
similating present day information to reconstruct the unknown past mantle
(Bunge et al. 2003; Ismail-Zadeh et al. 2004; Liu and Gurnis 2008). These class
of models assimilate present day information by calculating the mismatch
between a modelled mantle and an observed mantle before solving a new
set of equations that can be thought of as a complimentary, inverse set to the
standard forward equations. Some studies have attempted to use present day
knowledge to build a picture of the past mantle on a specific region using
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adjoint ‘lite’ models (Spasojevic et al. 2009; Liu et al. 2008; Shephard et al.
2010). These models only consider an adjoint energy in their formulation,
as opposed to the full set that include adjoint mass, momentum and energy
equations such as in Horbach et al. (2014).

The final class of models that attempt the problem of predicting past
mantle information from present day knowledge utilise what is known as
a quasi-reversibility method (QRV) (Ismail-Zadeh et al. 2007; Glišović and
Forte 2014).

Each of these studies incorporates their chosen tomographic model as
their present day mantle structures without accounting for the spatial res-
olution of the models (Ritsema et al. 2007). As tomographic models are
dependent on the data from which they are derived they contain bias to their
spatial resolution due to the location of receiver stations (Bunge and Davies
2001); the parameterisation for the tomography model; and the damping and
smoothing effects of the tomographic inversion (Ritsema et al. 2007).

Ritsema et al. (2007) and Schuberth et al. (2009a) applied the resolution
filter to a variety of end member mantles derived from forward mantle
models and note that in doing so creates a change in the geographical pattern
of features in the modelled velocity fields, as well as a reduction in the power
of the features. These studies along with others (Mégnin et al. 1997; Bull et al.
2009) show how a straight comparison of geodynamic models of Earth to
observations can yield unclear, and misleading results. Figure 6.2 shows an
example of an end member from a MCM temperature field, together with
its shear wave velocity structure both before and after applying a resolution
filter. The change in shape and power of features is apparent comparing
the two MCM velocity fields to the tomographic model. We see for instance
that while the velocity field derived from our temperature field contains a
number of positive seismic anomalies not present in the tomographic model,
the filtered velocity field contains a number of these features more in line
with the tomography.

With the knowledge that comparisons between modelled temperature
fields and tomographically derived fields can lead to misleading conclusions
we pose the question; should the mismatch calculation of the forward-adjoint
method include the resolution matrix of tomography models before calculat-
ing said mismatch? In this study we aim to answer this question by applying
the forward-adjoint method to a shear wave velocity tomography model that
has an associated resolution matrix available. We will do this by investigat-
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Fig. 6.2 View of (a) TERRA average temperatures, (b) converted shear wave
velocity perturbations, (c) converted shear wave velocity perturbations after
applying the corresponding resolution filter, (d) S40RTS velocity pertur-
bations focused on the Atlantic seismic anomaly. Images include a radial
surface located at 2800 km with ±400 K isosurface for temperature and ±1 %
isosurface for seismic velocities. The differences between before (b) and
after (c) applying the resolution filter for S40RTS are clear, with (c) showing
features more reflective of S40RTS (d).
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ing a variety of different methods of comparing the MCM derived fields to
the observed tomographic fields.

6.2 Method

6.2.1 Numerical methodology

Forward-adjoint mantle circulation models are carried out using the three-
dimensional finite element code TERRA (Baumgardner 1985; Bunge et al.
1997), which has been adapted to perform the forward-adjoint calculation.
TERRA solves the following equations, which govern conservation of mass,
momentum and energy (Mckenzie et al. 1974) (eq. (6.1)) for an incompressible
fluid

∇ · u = 0 (6.1a)

∇ ·
{

η(∇u + (∇u)T)
}
−∇P + αρ(Tav − T)g = 0 (6.1b)

∂T
∂t

+ u · ∇T − κ∇2T − H = 0 (6.1c)

together with the analogous adjoint equations for mass, momentum and
energy (Bunge et al. 2003) (eq. (6.2)) for an incompressible fluid

∇ · φ = 0 (6.2a)

∇ ·
(

η{∇φ + (∇φ)T}
)
−∇ψ + τ∇T = 0 (6.2b)

∂τ

∂t
+ u · ∇τ + κ∇2τ + αρg · φ = ∂Tχ(T). (6.2c)

For these equations η is the dynamic viscosity, α is the coefficient of thermal
expansion, ρ the reference density, Tav the radial temperature profile, g grav-
itational acceleration, κ is the thermal diffusivity and H is radiogenic heat
production. ∂Tχ(T) = (Tt − Tm)δ(t− t1) is the gradient of the misfit function
χ that relates the model temperature Tm to the observed true temperature
Tt. φ, ψ and τ can be viewed as the adjoint compliments to the forward u, P
and T.

These two sets of equations (eqs. (6.1) and (6.2)) are run together in an
iterative loop until the misfit at t1 (present day) falls below a pre determined
level, or the total number of iterations is exceeded.
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When discussing temperature and velocity variables in the forward-
adjoint calculation we utilise the following notation. For a variable, ·nm,
superscripts denote the iteration number of the forward-adjoint calculation
with n ∈ N1; subscripts meanwhile denote the initial m = 0 or final m = 1
point in time of the model relative to the forward calculation. That is to
say m = 0 refers to some point in the past from present day, regardless of
whether discussing forward or adjoint variables.

For our investigation we use the shear wave seismic tomography models
S20RTS (Ritsema et al. 2004) and S40RTS (Ritsema et al. 2011) as our true
data source Tt. We have chosen these models as the resolution matrix R that
accounts for the regional variation in coverage of the seismic observations
present in the tomography models, are readily available for these models
(Ritsema et al. 2007). With R, we can apply a filter to our forward model ob-
servations to provide a better comparison to the corresponding tomography
model (Schuberth et al. 2009a). A caveat of this is that the two tomography
models we are using only display features up to a spherical harmonic degree
of 20 and 40 which corresponds to a lateral resolution ≥1000 km or ≥500 km
respectively. This differs greatly from the average lateral resolution of 50 km
for the mantle circulation models used here. Because of this resolution differ-
ence, we shall investigate the effect comparing two data sources of different
resolution has on the efficiency of the adjoint method by adjusting how the
present day mismatch is calculated.

In order to convolve our modelled mantle structures with the resolution
matrix R we must convert the temperature field at the end of the forward
calculation Tn

1 to shear wave seismic velocities. The conversion from T 7→ Vs

can be performed using using lookup tables derived from mineral physics,
as such conversions have been shown to allow a more direct comparison to
tomographic models (Schuberth et al. 2009b). Using the (T, P) fields from t1

of the forward model we can therefore calculate seismic velocities Vs, using
the lookup tables of Stixrude and Lithgow-Bertelloni (2011). As these models
are isochemical we assume a pyrolitic composition for this conversion. This
velocity field can then be convolved with R to achieve a velocity profile that
has amplitudes comparable to that of the tomographic data source.

With Vs data for both the model and true source we also need to consider
how to convert the seismic velocities to the temperature fields, Tm and Tt, as
this is what is used in the adjoint calculation. To obtain a temperature field
from the velocity field is non trivial as the mapping T 7→ Vs is non-unique,
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Fig. 6.3 The forward-adjoint workflow, with the different paths to determin-
ing Tm used in this study denoted.

so there is no unique inverse mapping. Therefore, for the reverse conversion
we simplify the problem and utilise a radial conversion using the equation

T = Tre f −
1
α

R
(

δVs

Vs

)
, (6.3)

where Tre f is the average temperature for a given layer from the forward
model, α is the coefficient of thermal expansion, R can vary with depth (as
has been done in other studies (Bull et al. 2010)) though we take this as a
fixed value of 0.5 based on previous results (see section 2.5.1), and δVs/Vs is
the horizontal shear velocity perturbation at each point.

As previously discussed the tomographic models differ in resolution to
the convection model, and so as well as using the resolution matrix as part
of the workflow to determine Tm, we will also conduct calculations that do
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not utilise this. Finally as the conversion Vs 7→ T is an imperfect mapping,
we consider a third case that does not perform the mapping to Vs on the way
to determining Tm.

We therefore shall conduct three calculations that consider paths for de-
termining the model data source Tn

m used in the mismatch, with the different
paths outlined in fig. 6.3. For the first we use the Tn

1 temperature profile such
that Tn

1 7→ Tn
m, hereafter referred as TT. The second path we use involves

converting the final temperature to shear wave velocities and then using the
conversion of eq. (6.3) back to a temperature field, Tn

1 7→ Vn
s,1 7→ Tn

m, TVT.
The final path we consider also takes account of the resolution filtering of
R such that Tn

1 7→ Vn
s,1 7→ R(Vn

s,1) 7→ Tn
m, which we abbreviate as TVRT.

For all these paths, to determine the true data source Tt we take the shear
wave velocities from the tomographic model, which in essence have the
resolution filter applied as they are direct observations, and convert these to
a temperature field such that R(Vs,t) 7→ Tt.

Figures showing the temperature derived structure for S40RTS are shown
in fig. 6.4. The upper mantle is characterised by strong colder than average
temperature broadly beneath the continents. Just above the core-mantle
boundary we see the two large thermal anomalies that are associated with
LLSVP structures identified in various tomography studies (Lekic et al. 2012).
It is an open question as to whether these are purely thermal or thermo-
chemical in nature (Tackley 1998; Karato and Karki 2001; Davies et al. 2012;
Tackley 2012), though as previously stated, for this study we assume an
isochemical mantle.

We shall utilise both the S20RTS and S40RTS models for our true data
source together with their corresponding resolution matrix for all these given
scenarios to give a total of six different cases.

In order to monitor the difference between our modelled and true data
sources we calculate the L2 norm of the mismatch. This gives us a measure
of the distance between the modelled Tm, and true Tt, temperature fields,
with lower values reflecting a smaller distance between the two fields.

6.2.2 Model setup

All cases are modelled as an incompressible fluid on a mesh with 10 million
finite elements; this corresponds to an average grid spacing of 50 km. The
viscosity employed in our models varies as a function of depth (r) only
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(a) Equatorial cross section
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(c) 2800 km
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Fig. 6.4 Absolute temperature equatorial cross section through the mantle,
and the average temperature layers at 180 km and 2800 km for the thermal
structure derived from S40RTS. Present day plate boundaries (black) and
coastlines (grey).

according to the function

η(r) =





100η0 r ≤ 100 km

η0 100 km < r ≤ 660 km

30η0 r > 660 km.

The other other key model parameters are detailed in table 6.1.
For the boundary conditions for the forward models we apply a free

slip boundary condition at the CMB, while surface velocities are prescribed
for the forward calculation using the plate motion reconstruction of Seton
et al. (2012), with velocities scaled to match the convective vigour of the
underlying convection model. Models are run over a time interval of 10 Myr.
This choice is based on previous results (Chapter 5), which have shown that
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Parameter Value Units

Surface temperature TS 300 K
CMB temperature TC 3000 K
Internal heating rate H 4 × 10−12 W kg−1

Reference viscosity η0 3 × 1022 Pa s
Density ρ 4500 kg m−3

Thermal expansivity α 2.5 × 10−5 K−1

Thermal conductivity k 4 W m−1 K−1

Thermal diffusivity κ 1 × 10−6 m2 s−1

Specific heat capacity CV 1000 J kg−1 K−1

Basally heated Rayleigh
number Rab ≈ 5 × 106 –

Internally heated Rayleigh
number RaH ≈ 9 × 107 –

Table 6.1 Model parameters

the adjoint method converges quickly yielding excellent results over this
timeframe.

The Rayleigh number, the non-dimensional value which quantifies the
convective vigour of the system that is basally heated is defined as

Rab =
αρ∆TD3g

κη
,

where D is the mantle radius and ∆T the total temperature contrast. As our
models also contain internal heating we define a second Rayleigh number
for an internally heated volume which is defined as

RaH =
αρ2HD5g

kκη
.

Using the values used in this study this gives our models Rayleigh numbers
Rab ≈ 5 × 106 and RaH ≈ 9 × 107, meaning we expect the vigour of convec-
tion in our models to be slightly below what is expected for Earth. Because
of this we scale the timescales of our models to allow a similar amount of
convection to occur in the models presented here. All times used are after
accounting for this scaling.

As the choice of starting initial condition for forward-adjoint calcula-
tions have been shown to not affect the convergence of the solution scheme
(Horbach et al. 2014), for T1

0 we prescribe a 1D radial temperature profile.
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Fig. 6.5 L2 norms for the residual temperature at t1 between Tm and Tt for
the whole mantle, and broken down into the contributions above (upper
mantle) and below (lower mantle) 660 km. Dashed lines denote models using
the S40RTS model for Tt, solid lines the S20RTS model. Here it can be seen
that cases that do not utilise the resolution matrix show convergence, while
also observing that the model mismatch is much lower in the lower mantle
compared to the upper mantle.

6.3 Results

The measure of the mismatch between the modelled and true data source is
shown for our test cases in fig. 6.5. We see that using either S20RTS or S40RTS
has no bearing on the temperature residuals despite the improvements in
data coverage of S40RTS. In fact at each iteration, the different Tt sources
follow identical courses of convergence, or for TVRT, divergence.

The TT and TVT cases follow a similar rate of convergence however
TVRT displays a strictly diverging residual. Looking in more detail between
the upper (fig. 6.5b) and the lower (fig. 6.5b) mismatch, the lower mantle
residuals are a factor of two smaller than the upper mantle norms. This
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Fig. 6.6 L2 norms for the residual temperature at t0 between the current Tn
0 ,

and previous Tn−1
0 iterations temperature field for the whole, upper and

lower mantle. Dashed lines denote models using the S40RTS model for
Tt, solid lines the S20RTS model. Beyond the fifth iteration the difference
between successive updated initial conditions is ≈ 20 K for cases that show
convergence suggesting some small scale oscillations between iterations.

is not unexpected as it is questionable whether high velocity anomalies
in the uppermost mantle are purely thermal in nature or compositionally
influenced (Forte et al. 1995). It has also been observed in other adjoint
studies (Chapter 5 and Horbach et al. (2014)) that the mismatch in the upper
mantle is less well constrained by this method, again due to crustal features.
In the lower mantle, the lowest mismatch values are within 30 K by the end
of the calculation, showing a three fold reduction from the first iteration. We
also note that following only one iteration, the mismatch falls by almost half
for the converging cases.

Plotted in fig. 6.6 is the difference between the previous and current
iterations’ initial condition temperature field. The same trends between
S20RTS and S40RTS are observed, with the TT and TVT cases showing more
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incremental adjustments to the temperature field over successive iterations,
whereas TVRT applies greater adjustments at each iteration. These results
reflect the t1 norms, with the lower mantle adjustments for the converging
cases reaching values <10 K by the calculations end. In the upper mantle we
see adjustments of very similar sizes being applied for all cases beyond the
fifth iteration. The slightly smaller adjustment in the upper mantle for the T2

0

field of the TT case can be explained by the lack of extra complexity of the Vs

conversion where the indeterminate influence of crustal features come into
effect.

The continually diverging updates in initial condition, together with the
diverging present day temperature profiles for the TVRT case suggest that
the process of applying the resolution filter is dramatically changing the
temperature structure of the system. This is then having a feedback effect
due to the iterative process and compounding errors, as we further alter the
forward temperature field by applying the resolution filter on each successive
iteration.

As minimising the temperature misfit is made more difficult in the upper
mantle due to crustal features we shall focus on the lower mantle recon-
structions. In figs. 6.7 to 6.9 we present the layer averaged temperature field
for the three cases using S40RTS at t0, t1, and also the t1 temperature field
prior to any conversion, for successive iterations. Overlaying the -0.6% dVs

contour shows how successive forward-adjoint iterations can quickly match
to the true data source.

We see in the first iteration of TT that at a depth of 2800 km, over the
10 Myr assimilation period no real features are introduced with the initial
temperature profile still being the dominant feature. By the beginning of the
second iteration we see that structures that resemble the contour from the
tomographic model at both t0 and t1. Successive iterations further reinforce
these two structures with the t0 positive temperature features being rotated
slightly eastward from the present day temperature field.

The TVT case presented in fig. 6.8 shows similar behaviour in the early
iterations with the effect of converting to Vs and back only serving to re-
duce anomalous temperature amplitudes that otherwise line up with the
contours. At the fifth iteration we see that the process of converting to and
from seismic velocities now has quite a pronounced effect, reducing and
sharpening the colder than average regions at this depth. While the -0.6%
contour still encircles the hottest regions at this depth, a much larger area is
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Fig. 6.7 Horizontal average temperature maps at 2800 km of the initial Tn
0 ,

and the final Tn
m, temperatures from the Tn

1 7→ Tn
m forward-adjoint model

using S40RTS for iterations one, two, five and eight. Relevant time period
coastlines (black) and the -0.6% dVs contours are shown for S40RTS (green)
are included. Hotter than average regions, which are seen to correspond
with the positive Vs anomalies, overlap at both t0 and match at t1 reflecting
the low misfit norms.
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Fig. 6.8 Horizontal average temperature maps at 2800 km of the initial Tn
0 ,

final Tn
1 , and model, Tn

m; temperatures from the Tn
1 7→ Vn

s,1 7→ Tn
m forward-

adjoint model using S40RTS for iterations one, two, five and eight. Relevant
time period coastlines (black) and the -0.6% dVs contours are shown for
S40RTS (green) are included. The Tn

1 temperature field shows excellent
match to the -0.6% dVs contour, however in the process of determining
Tm we see that in later iterations the negative temperature anomalies are
sharpened and increased in power while hotter regions are expanded.
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Fig. 6.9 Horizontal average temperature maps at 2800 km of the initial Tn
0 ,

final Tn
1 , and model, Tn

m; temperatures from the Tn
1 7→ Vn

s,1 7→ R(Vn
s,1) 7→ Tn

m
forward-adjoint model using S40RTS for iterations one, two, five and eight.
Relevant time period coastlines (black) and the -0.6% dVs contours are shown
for S40RTS (green) are included. By the fifth iteration it can be seen that the
effects of the resolution matrix have dramatically altered the temperature
field of the model such that there is no overlap of positive temperature
anomalies and the -0.6% dVs contour.
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hotter than average when compared to the respective Tn
1 prior to the conver-

sions. Despite this quite dramatic shift in Tm we see however the power of
the adjoint method, with the predicted t0 structures consistently returning
back to two distinct positive thermal anomalies reaffirming the proposed
idea that solutions converge to a single initial condition (Horbach et al. 2014).

Finally looking at the slices from the TVRT case (fig. 6.9), we can see
the diverging temperature mismatch field observed in fig. 6.5. We see fol-
lowing the first forward iteration that as expected the resolution filter alters
the modelled temperature structure which when combined with our true
data source as in the other examples goes on to create an initial temperature
field that follows the -0.6% contour. The effect of the resolution filter on the
second iteration shifts the structures away from the contour of the true data
source, more prominently in the Pacific, whilst also reducing the amplitude
of features. By iteration 5 we see the predicted temperature field, whilst a
similar shape to the other cases, has strong temperature gradients with tem-
peratures exceeding ±600 K. Due to these substantial temperature gradients,
10 Myr of assimilating the plate reconstructions in the forward model is an
insufficient length of time to overcome this very different temperature field,
with the Tn

1 field now not resembling the true field as in the other instances.
The application of the resolution filter at this point does little to improve
the forward model temperature field. The effects of this feedback loop of
more extreme present day mismatch values further compounds the issue
over successive iterations, as shown by figures from the eighth iteration.

6.4 Discussion

In this study we have built on the previous work testing the forward-adjoint
method from Chapter 5, by using a data source derived from Earth studies
and investigated different methods of performing the mismatch calculation.
Many studies have shown that applying the appropriate resolution filter aids
comparisons between geodynamic models and tomography (Ritsema et al.
2007; Bull et al. 2009; Schuberth et al. 2009a; Davies et al. 2012). However, we
see in the results presented here that accounting for the filtering as part of
the iterative process of calculating the initial condition, distorts and prevents
converging solution.
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Fig. 6.10 Absolute temperature equatorial cross sections through the mantle,
and the average temperature layers at 180 km at t1 for the TVRT case using
S40RTS, showing the temperature structures before and after applying Tn

1 7→
Vn

s,1 7→ R(Vn
s,1) 7→ Tn

m in order to determine Tm. Here we see the effect of
the resolution filter on the upper mantle over successive forward-adjoint
iterations.
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Figure 6.10 presents equatorial cross sections, together with the average
temperature profile for 180 km depth from the TVRT model using S40RTS
resolution filter. We see that in applying the resolution filter the spreading
and converging plate margins of the forward model at iteration one are
completely removed, with features in the cross section not present prior to
the conversion. This introduction of different features is more pronounced in
the second iteration with a significant positive thermal anomaly present after
filtering. The introduction of such significant thermal anomalies is clearly the
reason for the observed diverging solution with this being the only difference
from the other cases that were ran. Inspecting the images from the 180 km
horizontal plots, we see the effect this has as significant thermal anomalies
are present in the later iterations. Here thermal anomalies are seen to line up
with the plate margins as should be expected in the early iterations, but in
later iterations they have very sharp boundaries with significant temperature
gradients beyond what are observed. Looking at the cross sections of the
later iterations, unsurprisingly no real match to the expected structures are
present.

These models were reran where, for the uppermost 200 km, when per-
forming the conversion to Vs using eq. (6.3) we set R = 0 as in other studies
to account for the indeterminate nature of velocity perturbations at shallow
depth (Bull et al. 2010). This however, yielded no improvements over the
results presented here, leading us to conclude that a region at least as deep
as the upper mantle would need to be removed in the conversion in order
to maintain some convergence in the lower mantle. While this is one poten-
tial way of removing the feedback loop we are observing by applying the
resolution filter, we do not believe a compromise should be used.

We therefore are left with the TT and TVT cases for using in calculating
the mismatch. Owing to the uncertainties in converting to Vs and back again,
which involves a crude radial conversion back to temperatures, the preferred
method is the TT method.

Having determined that using tomography models that have an associ-
ated resolution filter yields no advantages due to erroneous effects of using
R, this opens up forward-adjoint methods to use any of wealth of available
global seismic tomography models. One such candidate for further studies
to utilise would be the SMEAN, PMEAN, and the newer SMEAN2, tomo-
graphic models of Becker and Boschi (2002) which each aggregate several
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tomography models to average the models and emphasise the common
structures of the separate models.

6.5 Conclusion

In this work we have investigated three different ways of manipulating the
temperature structure from the forward model to compare to a shear wave
seismic tomography model. We have shown that over the short timescale
used in this study, using the resolution matrix that corresponds to the to-
mography model used for the true data source does not provide any advan-
tages of matching spatial resolutions. We conclude that using the forward
predicted temperature field as the temperature field used in the mismatch
calculation yields a solution with no disadvantages. In future work look-
ing to extend the forward-adjoint method further back in Earth history we
would suggest it unnecessary to account for poorer resolutions in the true
data source, as the adjoint calculation accurately assimilates the true present
day mantle structures.

Following this conclusion we have now determined; a preferred time
interval to run our forward-adjoint model over, as well as the ideal method
of comparing modelled structures to the seismic data. With this knowledge
we will, in the final chapter of this work, turn our attention to applying the
forward-adjoint method to high resolution models that closer mimic Earth
features to investigate deep mantle structures.



CHAPTER 7

INVESTIGATING THE DIFFERENCES IN 40 Myr MAN-

TLE FLOW FOR DIFFERING VISCOSITY PROFILES US-

ING STANDARD AND INVERSE METHODS

Abstract

Mantle circulation models (MCMs) are started from an unknown initial con-
dition. This lack of knowledge for a starting point introduces uncertainties to
the early part of models when looking at mantle flow patterns. Inverse meth-
ods have been shown to overcome the uncertainty of the initial condition by
assimilating present day observations. We compare the classic method for
generating an initial condition for MCMs to using one such inverse method,
the adjoint. The classic method uses prior plate reconstructions stages avail-
able to precondition the starting point at 40 Ma, whereas the adjoint method
uses tomographic data from present day together with the last 40 Myr of
plate reconstructions. We observe that irrespective of viscosity structure, ad-
joint derived initial conditions create markedly different flow patterns over
the 40 Myr assimilation period. Comparisons of the modelled present day
mantle to tomography yields a varying distribution of velocity perturbations
for the different initial conditions.

7.1 Introduction

Observations of the lower mantle from seismic tomography reveals two
extremely large anomalous regions at the core-mantle boundary (CMB),
which significantly increase the travel times of seismic waves that travel
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Fig. 7.1 Shear wave velocity perturbations for the S40RTS model at 2800 km
depth highlighting the LLSVP anomalies near the CMB. Present day coast-
lines are highlighted by black lines, present day tectonic boundaries by white
lines.

through them (Garnero and McNamara 2008). These two anomalous regions,
located beneath the Pacific and Africa respectively (as seen in fig. 7.1), have
been observed in S wave tomographies, and to a lesser extent in P wave
velocity models (Garnero et al. 2016). Due to their observed existence in S
wave tomographic models, these two regions are referred to as the Large
Low Shear Velocity Provinces (LLSVPs).

The nature, composition and stability of these LLSVPs has been an ongo-
ing research question that has generated lively debate (Dziewonski et al. 1977;
Ritsema 1999; McNamara and Zhong 2005; Zhang et al. 2010; Davies et al.
2012; Bower et al. 2013; Bull et al. 2014). Numerous studies have attempted to
reconcile these LLSVPs with our understanding of mantle dynamics through
the use of mantle circulation models. Mantle circulation models (MCMs)
are a class of mantle convection model that assimilate known plate recon-
structions as the surface boundary condition, recreating mantle flow patterns
similar to those observed at present day (Bunge et al. 2002).

The stability of these structures as two near antipodal features in the
lower mantle is a particularly interesting question, with studies showing
that the remnants of subduction, colder higher than average wave speed
material, surrounds the LLSVPs (Grand et al. 1997; Bunge et al. 1998; Zhang
et al. 2010; Shephard et al. 2012a). Through the use of MCMs and long plate
assimilation periods (> 250 Myr) studies have investigated the possibility of
the LLSVPs existing more or less as they are prior to the breakup of Pangea
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(Zhang et al. 2010; Bower et al. 2013; Bull et al. 2014). Further interest has
been in whether the LLSVPs are caused by thermal or thermo-chemical
structures (Davies et al. 2015a; Deschamps et al. 2015). A purely thermal
explanation for the LLSVPs would be that they are comprised of a collection
of fine plumes, which due to resolution limitations in the tomography are
imaged as single large features (Schuberth et al. 2009a; Bull et al. 2009)
Thermo-chemical explanations meanwhile hypothesise that the LLSVPs are
comprised of reservoirs of chemically distinct material that has a density
higher than the surrounding mantle (McNamara and Zhong 2005; Bull et al.
2014).

A limitation in these MCM studies however, is the lack of initial condition
for past mantle flow. This is an inherent unknown, and inferences from man-
tle circulation models for the time evolution of mantle flow are intrinsically
linked to their starting condition. While studies have shown that differences
in initial condition can be overcome through assimilation of known surface
boundary velocities (Colli et al. 2015), these differences are reduced over the
course of the calculation meaning early calculation mantle flow will still not
be well constrained.

Attempts to overcome this lack of initial condition have been made with
use of knowledge of the present day mantle flow from sources such as
tomography. Through simple inversions, a density structure for tomographic
models can be generated and related to a temperature field, which can then be
used as an initial condition for a backwards calculation (Conrad and Gurnis
2003). Such backwards in time methods however are not well suited to the
problem of mantle convection as they ignore the effects of thermal diffusion
in order to maintain some stability. More sophisticated methods that do not
ignore diffusion are available such as the adjoint (Bunge et al. 2003; Ismail-
Zadeh et al. 2004) and quasi-reversibility (Ismail-Zadeh et al. 2007). The
adjoint method is an iterative process of forward and reverse calculations
which has been shown to be well suited to mantle models, converging to
a global minimum for the unknown initial condition determined by the
method (Horbach et al. 2014). However, as each initial condition is unique to
its physical parameterisation (e.g. heating mode, rheology, compressibility),
this adds further complexity to attempts to constrain past mantle flow due
to these additional unknowns.

The few previous studies looking to constrain past mantle flow using
adjoint methods have employed a single parameterisation for their inves-
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tigations, with each study choosing a different parameterisation. One of
the main differences between these models is the choice of viscosity profile.
Many radial viscosity profiles have been put forward for the mantle, with a
remarkable amount of variation as to where high and low viscosity regions
may exist (Hager 1984; Hager and Richards 1989; Mitrovica and Forte 2004;
Rudolph et al. 2015; Liu and Zhong 2016). With the mantle also expected to
feature lateral variations in viscosity it is not untypical for models to feature
viscosity variations over 3 orders of magnitude. Such contrasts in viscosity
has a major influence on flow speeds and the convective planform of the
mantle (Bunge et al. 1996; Bunge et al. 1997).

As viscosity changes have been shown to have a significant effect on the
convective patterns of the mantle, we shall focus our investigation to look at
applying the adjoint method to different radial viscosity profiles. Since the
adjoint method by design generates a unique initial condition for its given
model parameters we can also see how these initial conditions compare to
the classic MCM models. By comparing adjoint and classic MCMs we hope
to better understand how flow patterns differ between the two methods over
the assimilation period while using different viscosity profiles.

7.2 Method

We derive the first initial condition for our forward models using the adjoint
equations for incompressible mantle convection (Bunge et al. 2003). These
equations are combined with the standard forward equations for incompress-
ible mantle convection (Mckenzie et al. 1974), and are solved in an iterative
process as shown in fig. 7.2.

This method assimilates plate reconstructions in the forward model as
in typical mantle circulation models (Bunge et al. 2002) which results in a
temperature field which shows agreement with observed present day mantle
features (Schuberth et al. 2009b). Following the conclusion of the forward
model present day observations of the mantle (from sources such as seismic
tomography), are assimilated by computing the difference between the final
modelled temperature field and the observed temperature field to form an
adjoint temperature field. This adjoint temperature field is then used as an
initial condition for the adjoint equations, which run from present day to
the start of the forward model, at which point we can update our initial
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Fig. 7.2 The iterative solution scheme of the forward-adjoint workflow.

condition for the temperature field in Earth’s past. Successive iterations
allow the initial condition to converge towards a fixed solution for a given
physical parameterisation as shown by Horbach et al. (2014). Previous results
(see Chapter 5) suggest that the adjoint method performs best for models
running over 40 Myr. We will therefore investigate models starting at 40 Ma.

The second initial conditions we use are determined using a classic mantle
circulation model that uses 200 Myr of plate reconstructions. These models
are initiated from a 1D temperature profile and conditioned with the oldest
available stage of plate reconstruction for 50 Myr before being progressed
from 200 Ma to 40 Ma. Setup for calculations such as this is typical for man-
tle circulation studies. By taking the last 40 Myr of mantle structure from
this calculation to compare to the adjoint derived models allows observa-
tions between the different temperature structures generated during each
calculation.

We perform all calculations using an adapted version of the spherical
finite element code, TERRA (Baumgardner 1985; Bunge et al. 1997). Calcu-
lations are carried out on a computational mesh of 80 million nodal points,
which corresponds to an average grid spacing of 22 km. Performing calcula-
tions at this resolution allow us to investigate models that have a convective
vigour comparable to that of Earth, with an internally heated Rayleigh num-
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Fig. 7.3 The three depth dependent viscosities profiles used in this study.

Parameter Value Units

Surface temperature TS 300 K
CMB temperature TC 3000 K
Internal heating rate H 4 × 10−12 W kg−1

Density ρ 4500 kg m−3

Thermal expansivity α 2.5 × 10−5 K−1

Thermal conductivity k 4 W m−1 K−1

Thermal diffusivity κ 1 × 10−6 m2 s−1

Specific heat capacity CV 1000 J kg−1 K−1

Table 7.1 Model parameters

ber value RaH ≈ 4 × 108. This value of RaH is in line with Rayleigh number
estimates for Earth’s mantle (Davies 1999).

The viscosity profiles employed in our study are shown in fig. 7.3. All
models have a high viscosity uppermost mantle (1023 Pa s) to replicate the
effects of the lithosphere, with an upper mantle viscosity of 1021 Pa s. Below
660 km depth we then use three differing viscosity structures with case 1
featuring a factor of 100 viscosity increase into the lower mantle. For case 2
we have a more moderate factor of 30 increase in the lower mantle to a value
of 3 × 1022 Pa s. In case 3 we have this same factor increase into the lower
mantle, but also include a much less viscous layer from 2790 km to the CMB.
Other key physical parameters used in this study are stated in table 7.1.

At the surface we assimilate plate velocities according to the plate re-
construction model of Seton et al. (2012) by setting these as the boundary
condition for the velocity field. The core-mantle boundary is prescribed as
a free slip boundary condition due to the low viscosity of the adjacent core
material.
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Fig. 7.4 Average temperature plots at 2800 km for different stages for the case
1 viscosity profile for the classic (left), and adjoint derived initial condition
(right) mantle circulation models. Black lines denote current age coastlines.

7.3 Results

7.3.1 Time evolution of classic and adjoint based mantle cir-

culation models

In figs. 7.4 to 7.6 we present the average temperature profile at 2800 km depth
for the last 40 myr for both the classic MCMs and MCMs started at 40 Ma
with the adjoint derived initial condition.

For our most viscous mantle, case 1, we observe that both the classic and
adjoint models show hot regions in the Pacific and Africa across all ages,
separated by colder than average material. Due to the stiffness of the lower
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Fig. 7.5 Average temperature plots at 2800 km for different stages for the case
2 viscosity profile for the classic (left), and adjoint derived initial condition
(right) mantle circulation models. Black lines denote current age coastlines.

mantle, the hotter than average features do not show much movement over
the 40 Myr of circulation calculation. The form that the hotter than average
features take varies quite dramatically however. In the classic model we
see a fine ‘spiderweb’ of hot features, typically observed in high Rayleigh
number, purely thermal mantle circulation models (Schuberth et al. 2009b).
These fine features are the base of fine upwellings plumes that extend up
from the CMB. In comparison, the adjoint model shows very broad features
that closely resemble the S40RTS tomographic model used in the assimilation
process of the adjoint calculation.

Case 2 (fig. 7.5), which features a ×30 increase into the lower mantle
displays much more mobile features over the 40 Myr. We again note that the
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classic model consists of the fine web of hotter than average features that
are still centred around the Pacific and Africa. Over the 40 Myr circulation
calculation these two regions grow more distinct with cold material being
placed between them.

The adjoint based calculation again begins as two distinct regions. We
note that at 40 Ma around the main hot features there is some local banding
of hot and cold features, which may suggest some numerical instabilities.
By 20 Ma these features have been removed leaving the two very distinct
regions, with the African feature displaying the typical south-east to north
planform as observed in the tomography, but constructed of much finer
features. Similarly the Pacific features planform lies in a similar region to the
observed LLSVP region while displaying the more typical fine upwellings.
By present day these two regions have evolved to be more focused about their
centres whilst still displaying planforms that follow the directions expected
by tomographic studies.

Our final viscosity structure featured a much less viscous layer above the
CMB (shown in fig. 7.6). As in our other models the differences between the
classic and adjoint models is the focus of the fine upwelling features, with
classic models having upwellings spread over a larger area. Over the 40 Myr
assimilation period the classic model does not show the same level of lateral
change as case 2, with the perceived boundary between the two hot regions
following the figures central longitude not becoming more distinct.

In contrast the adjoint model again displays very distinct upwelling
regions over the course of the circulation calculation. The initial condition
at 40 Ma, similar to case 2, shows two separate hotter than average regions
which contain some hot/cold banding hinting at some numerical instability
in calculating this starting point. As before though, following 20 Myr of
convection we have two hot anomaly regions that have planforms similar to
the LLSVPs observed in tomographic models. The final present day structure
is very similar to the Pacific anomaly present in case 2, with more focused
upwelling features within the areas imaged in the tomography. The African
anomaly in contrast appears somewhere between cases 1 and 2, with a longer
north to south east shape as in case 1, but with more focused features as in
case 2.
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Fig. 7.6 Average temperature plots at 2800 km for different stages for the case
3 viscosity profile for the classic (left), and adjoint derived initial condition
(right) mantle circulation models. Black lines denote current age coastlines.

7.3.2 Comparison between modelled final velocity structures

to the S40RTS tomography model

As a final step, we convert the present day temperature structures to shear
wave velocities using the mineral based lookup tables of Stixrude and
Lithgow-Bertelloni (2011), assuming a pyrolitic mantle composition. We
also apply a resolution filter to our derived seismic structure which accounts
for the regional bias of the tomographic model we compare to, the S40RTS
shear wave tomography model (Ritsema et al. 2007; Ritsema et al. 2011).
Such a conversion method has been shown to provide a clearer picture for
comparing circulation model outputs to tomographic models due to the
reduction in amplitude of perturbations (Schuberth et al. 2009a; Bull et al.
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Fig. 7.7 Histograms of perturbations in Vs for the various classic and adjoint
viscosity cases, together with those of S40RTS. Logarithmic colour scale and
contours indicates the number of grid point (NGP) for a given depth.
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2009). In fig. 7.7 we display histograms of the Vs perturbations for the lower
mantle as a function of depth for the six cases as well as for the S40RTS model
for reference.

Looking at case 1 (figs. 7.7a and 7.7d) we see that there is noticeable
difference between the distribution of velocities. For both we see the largest
amplitudes are present in the uppermost parts of the lower mantle, however
the overall skew in the classic case is positive whilst negative in the adjoint
model. This skew is less significant below 2000 km depth for both cases, with
both models displaying an overall skew to negative values as observed in
S40RTS. This skew to negative perturbations has also been noted from other
tomographic models (Hernlund and Houser 2008).

For case 2 (figs. 7.7b and 7.7e) there is less difference between the two
models with the majority of the perturbations located within ±1% at all
depths. While the classic case has no marked skew, the adjoint case shows a
much narrower spread of points with an overall negative skew across the
lower mantle.

For the final viscosity profile looked at in this study ((figs. 7.7c and 7.7f),
we see that using the adjoint initial condition again has a significant difference
on the Vs perturbations. The classic case has a very narrow spread of values
(typically ±1%) whereas the adjoint case has values spread over twice the
range. The log10(NGP) = 4 and greater contours for the adjoint show the
closest match to the S40RTS model, although the tomography model has a
much tighter overall spread.

Overall we see that adjoint cases 1 and 3 produce the most substantial
deviation from the classic approach, with a larger spread for the majority of
points. The classic cases and adjoint case 2 meanwhile all display a much
narrower distribution across the entire lower mantle.

7.4 Discussion

We have compared the results of 40 Myr MCMs that use initial conditions
derived from either assimilating the 200 Ma to 40 Ma plate histories, or by
performing forward-adjoint calculations over 40 Myr that assimilate the
S40RTS tomography model. We have also varied the viscosity profile for
these models and observed the effects this has on the mantle flow over the
40 Myr assimilation period. Finally by utilising the mineral based lookup
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tables of Stixrude and Lithgow-Bertelloni (2011) we convert the present day
temperature field to seismic velocities and account for the limited resolution
of tomographic models (Ritsema et al. 2007).

The most remarkable difference is between the very stiff lower mantle
used in case 1 compared to the other cases. We see that the high viscosity of
case 1 has limited the movement of the lower mantle features for the adjoint
constructed initial condition. This high viscosity lower mantle is the same as
is used in Horbach et al. (2014), where there was also very limited deviation
of lower mantle structures. In comparison, cases 2 and 3 both see much more
dynamic movement of the hotter than average features, being more easily
influenced by the continuing convective processes over the 40 Myr period.
Cases 2 and 3 also show structures more similar to their classic counterparts
with features concentrated into the finger like upwelling bands seen in the
classic case.

When considering the information from the histograms of the velocity
perturbations we note that each layer in our models contain over six hun-
dred thousand grid points; therefore the contours below log10(NGP) = 4
represent only 1% of the total number of points in the layer. Taking this into
consideration we see that despite the spread of perturbations in the adjoint
cases being wider than seen in the tomography and classic cases, the main
distribution of values (≥ log10(NGP) = 4) in adjoint case 3 best line up with
S40RTS distribution.

The difference in the deep mantle flow patterns between the initial condi-
tions is of interest, as it has the potential to alter current ideas of the dynamic
topography in the past. Estimates of topography have been known to differ
over regional areas by an order of magnitude (Muller et al. 2008). Such differ-
ences would imply that a region is or is not above sea level which has great
economic interest, as knowledge of past sea levels is of great importance
in resource exploration. Studies by Spasojevic et al. (2009), Shephard et al.
(2010), and Shephard et al. (2012b) employ a simplified adjoint model to
perform such observations by deriving an initial condition for the Americas
at 50 Ma.

MCM studies regularly employ compressibility, phase transitions and
lateral viscosity variations, whereas these are still in their infancy for adjoint
models. These studies can also see good matches to present day heterogene-
ity for higher lower mantle viscosities (Schuberth et al. 2009a). Because of
this we must take caution when drawing conclusions for a preferred viscos-
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ity structure as the models presented in this study, whilst having a number
of characteristics of Earth do not cover the full range of Earth dynamics.
We acknowledge that it has recently been shown that compressibility can
be incorporated into adjoint models by using compressible equations for
convection in the forward model and incompressible equations for the ad-
joint calculation without affecting the convergence of the forward-adjoint
(Ghelichkhan and Bunge 2016).

Alternative methods for constraining the viscosity profile are currently
being undertaken such as in the work of Atkins et al. (2016). In this study,
the authors use pattern recognition techniques to make inferences on model
parameters, such as the viscosity profile for 2D mantle models. While their
study serves as a proof of concept currently (without the added complexities
of moving to an extra dimension with 3D models), such techniques show
promise as an additional pathway to helping improve estimates of mantle
parameters.

This result paves the way for more Earth like investigations to be un-
dertaken using the adjoint method. Thanks to the work of Ghelichkhan
and Bunge (2016) it is possible incorporate complex dynamics into forward-
adjoint models using the a compressible forward. Including the additional
dynamics of compressibility will help clarify the potential for adjoint models
to be a useful tool towards understanding mantle dynamics.

7.5 Conclusion

We have presented models that investigate the longevity of thermal structures
that can be inferred as the source of LLSVPs from shear wave tomographic
models for the last 40 Ma. Using a range of viscosity profiles we have con-
structed a temperature profile for the mantle flow using both a classic mantle
circulation model, as well as assimilating present day information using
adjoint methods.

The planforms of the African and Pacific structures show great variability
in their evolution depending on both the initial condition and viscosity
profile. Their positions at present day also vary significantly between classic
and adjoint derived initial condition models, with adjoint models generating
Vs perturbations that show a better match to the tomography at depth. These
results suggest that viscosity profiles that feature a low viscous base and a
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moderate ×30η lower mantle best matches tomography models. However,
other studies that incorporate a greater set of the physics describing the
mantle find matches for higher viscosity values for the deep mantle. To this
end, introducing more complex rheologies and the effects of compressibility
would better position adjoint derived initial conditions in addressing the
question of the ideal viscosity structure for the mantle.



CHAPTER 8

CONCLUSIONS

In this thesis we have been motivated by the simple question surrounding the
choice of the initial condition in MCMs. As computational power increases
and with advancements in the numerical model allowing more sophisticated
descriptions of the physical processes, the choice of initial condition is one
of greater importance. While various studies have looked at smaller sec-
tions of this problem, we aimed here to investigate the entire issue of initial
conditions, from the effects of its choice to how to better determine one.

8.1 Summary of research

At the start of this thesis we posed three questions that we aimed to address
over the course of the undertaken research. The questions we presented
were:

1. How accurate are our current methods of calculating mantle flow?

2. In what ways can we better constrain our understanding of past mantle
flow?

3. Are these methods an improvement over current techniques in helping
understand current questions in geodynamics?

By addressing these questions we hoped to provide a clear picture of the
initial condition for MCMs, from how it affects current models, to how we
can improve it, and finally to how an improved initial condition may change
results. To conclude we now revisit these questions and summarise our
findings.
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How accurate are our current methods of calculating mantle flow?

The beginning of our investigations into the initial conditions for MCMs was
based around the idea of chaotic growth and the results of Bello et al. (2014),
which stated that there is a limit of predictability to our models. In Chapter 3
we readdressed the methods of Bello et al. (2014), which exclusively looked
at models which did not prescribe a surface boundary condition as would be
the case in circulation models.

In our work we took the surface velocity field from the reference twin
and assimilated this as the surface boundary condition for the perturbed
twin, alongside a free slip perturbed twin. By prescribing a surface boundary
condition we found that the notion of limits of predictability are redundant
in these cases, with values far exceeding the length of plate reconstructions,
corroborating the results found in Colli et al. (2015). Furthermore, by varying
the heating mode for models we found that the Lyapunov times for models
heated internally are the shortest. The implication of this being that internal
heating has a greater effect on any growth of errors as models progress.

Overall in answering this question we find that mantle models that pre-
scribe a surface boundary, such as in MCM studies, and which are investigat-
ing questions based on the final output, will not be influenced by the choice
in initial condition since errors are reduced over the assimilation period. This
does not however, vindicate studies that look at the long term past mantle, as
the errors are reduced over the assimilation period, and not instantaneously.
While this can be avoided by refocusing studies to, investigate potential start
states for imaged deep mantle structures for example, these only slightly
constrain our understanding of past mantle flow. It does not provide us with
a unique picture for the past mantle flow based on all available observations,
something that we addressed in the rest of this research.

In what ways can we better constrain our understanding of past mantle
flow?

Beginning in Chapter 4 we presented the main numerical methods that
attempt to answer this question. After choosing the method of variation
assimilation (the adjoint) we presented the adjoint equations for mantle
convection (with a derivation in Appendix B) and in detail for the first time,
the steps required to implement a successful forward-adjoint iteration model
into a mantle convection code. Following this, through the use of a twin
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experiment that utilised a synthetic true reference state, we showed that our
implementation of the method worked well.

Through the presentation of the adjoint method, it was clear that while
an excellent method, the adjoint method is very computationally intensive.
High resolution models need to run on large HPC systems that typically
restrict a users CPU time and disk space, both of which are intensively used
with this method. Clearly any potential savings in either runtime or disk
space would be advantageous, and we showed in Chapter 5 that savings
in term of runtime and disk space could be achieved by altering the time
stepping mechanism of the model. Such tweaks also had no bearing on
the overall accuracy of predicted results making this a useful addition to
the forward-adjoint model. We also went on to investigate the method of
updating the initial condition, finding that while complex gradient methods
yielded a more consistent level of convergence in synthetic tests, simple linear
update methods converged much faster before displaying divergence. When
considering this in terms of HPC system usage, we once again conclude
that the apparent compromise to cruder methods is beneficial, with the
calculations requiring less CPU time to reach satisfactory convergence levels.

The final conclusion from our synthetic testing was that high accuracy re-
construction of mantle structures was only reliably achieved for calculations
extending back between 80 Ma to 40 Ma. Forward-adjoint calculations that
ran over longer time intervals displayed a poorer convergence rate, and less
detailed reconstruction of features over their twenty iterations. Of course
extra iterations could change this, such as in Bunge et al. (2003) where they
ran models for 100 iterations. This is however, impractical for the same
reasons given previously for adjoint calculations, and represents a major
limitation for the method.

Whilst we acknowledge this limitation, it does not deter us from further
investigations as the method had been shown to have excellent convergence
over shorter time frames. Chapter 6 continued our investigations into the
overall method of the forward-adjoint by looking at the mismatch calculation
at present day. Previous studies that utilise Earth observations from seismic
tomography did not investigate the effects of the difference in resolution
between the tomography and modelled fields. This, of course, left room for
an investigation into how the differing resolutions impacted convergence.

To this end we utilised the resolution filter of the S20RTS and S40RTS
models (Ritsema et al. 2004; Ritsema et al. 2011) to account for this drop
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in resolution in our modelled data before computing any mismatches. Of
course, further uncertainties in the mismatch calculation are created when
using data sources that are not already a temperature field, with a conversion
to a temperature field required for such data. We analysed this by converting
our modelled temperature field to a velocity field and then back to tem-
perature and found no difference to the case where no conversions of the
modelled data were used. In our findings, we then found that methods of
computing the mismatch performed equally well as long as the respective
resolution filters were not applied to the model data. This result was some-
what surprising, however it does reduce the complexity in calculations as not
requiring any conversion of the model data before computing the mismatch
has significant savings in terms of CPU time.

We do acknowledge however, that the true data will always have a lower
resolution and require converting to temperatures and so there will always
be some base level of uncertainty in these adjoint models. This does not
overly impact the adjoint methods effectiveness compared to other forward
model techniques, as this method is still assimilating more information than
those studies.

Overall, in these three chapters we have unequivocally shown that meth-
ods exist that can better constrain estimates of past mantle flow. We acknowl-
edge that we have only shown one such method, albeit with a rigorous testing
of its implementation. Testing of other methods such as the QRV method
(Ismail-Zadeh et al. 2007; Glišović and Forte 2014), which has been shown
to perform equally well as the adjoint, lies beyond the scope of this thesis
where we ultimately chose to fully understand the adjoint method. This
decision was based on the lack of available information on implementations
and robustness of the adjoint method in the geodynamics literature.

Are these methods an improvement over current techniques in helping un-
derstand current questions in geodynamics?

With the final question that we posed, we aimed to introduce a method
that can constrain past mantle flow to a real Earth situation in earnest. To
this end, in Chapter 7, we investigated high resolution models that use the
forward-adjoint method.

In this chapter we have seen that over a 40 Myr calculation, classic for-
ward models and adjoint based models generate remarkably different flow
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patterns. The planform of present day thermal structures was seen to vary
greatly, with the adjoint based models having two focused positive thermal
anomalies in the locations of observed LLSVPs. The classic models on the
other hand had positive thermal anomalies spread over a much larger area.
We have also seen that the choice in viscosity structure also has an influence
on the adjoint based models. Having a high viscosity produced a mantle
characterised by two features very reminiscent of the tomography model
used, while lower viscosities showed more variation during their evolution.

These results suggest that adjoint models can indeed be used to improve
our understanding of current questions. The markedly different flow pat-
terns that appear from incorporating present day observations provide an
alternative perspective on the mantle evolution from current methods.

8.2 The place of adjoint models and future work

The adjoint for mantle models sits in a unique position that allows investiga-
tions into areas with which current forward techniques will always struggle
without a constrained initial condition. We have shown that the method
works best when being ran over intervals between 40 Myr to 80 Myr, which
while not as wide an interval as hoped, still places this method as an excellent
tool for mantle studies. While forward models still undeniably have great
use, the ability to construct a picture of mantle flow over this period has clear
benefits in studies that would look to investigate phenomena such as true
polar wander, dynamic topography changes, and the touched upon place-
ment of the large scale deep mantle structures. These areas would benefit
greatly from these inverse techniques.

Of course, the method is still greatly untapped despite the work presented
in this thesis. One potential method that we have not investigated in this
thesis is the option of ‘chaining’ time intervals together using the adjoint. As
we have seen it is difficult to project information back in time beyond a certain
age. We pose the question, would an adjoint model running 0 Ma to 40 Ma
followed by a second adjoint that runs 40 Ma to 80 Ma carry information
back better than the attempted 0 Ma to 80 Ma presented in this thesis? This
idea is not dissimilar from the iteration steps employed in Ismail-Zadeh et al.
(2004), although their implementation was not for the full adjoint.
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A second question is whether the adjoint method could be extended to
compositional mantle flow? The potential applications of such a method
are clear with the current debate over potential dense piles on the CMB.
The equations for mantle convection contain a fourth equation for com-
position which is also time-dependent (see Section B.8). Having a second
time-dependent equation, together with a fourth term C, requires additional
initial and boundary conditions for C, as well as requiring a true compo-
sitional field, Ct at present day to compare a modelled composition Cm to.
Implementing such a set of equations would require additional assumptions
that are not immediately clear.

It is clear from the growing body of literature regarding inverse and
assimilation techniques that the geodynamics research community is em-
bracing techniques that utilise the wealth of present day observations to
improve estimates of the mantle’s history. From the adjoint methods covered
here and by others such as Bunge et al. (2003), Horbach et al. (2014), and
Ghelichkhan and Bunge (2016); to the QRV methods of Ismail-Zadeh et al.
(2007) and Glišović and Forte (2014); or to innovative methods that zero in
on constraints of mantle parameters using pattern recognition and statistics
as in Atkins et al. (2016); we see that these methods are becoming a valuable
tool in any modellers toolbox thanks to their additional insights.
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APPENDIX A

GLOSSARY

Forward model notation

These symbols are found in the forward model equations and may also be
found in the adjoint equations.

Symbol Description Units

CV Specific heat at constant volume J kg−1 K−1

g Gravitational acceleration m s−2

H Radiogenic heat production W m−3

k Thermal conductivity W m−1 K−1

n Normal vector –

P Pressure Pa

T Temperature K

t Time s

u Fluid flow m s−1

α Coefficient of thermal expansion K−1

γ Grüneisen parameter –

η Dynamic viscosity Pa s

κ Thermal diffusivity m2 s−1

ρ Density kg m−3
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Adjoint model specific notation

These symbols are found exclusively when using the adjoint equations.

Symbol Description Units

Tm Model temperature K

Tt True temperature K

τ Adjoint temperature K

φ Adjoint fluid flow m s−1

ψ Adjoint pressure Pa

χ Misfit function of Tm and Tt K

Other notation

Other notation found through this thesis.

Symbol Description Units

Ma Million years ago years

Myr Millions of years years

Rab Bottom heated Rayleigh number –

RaH Internally heated Rayleigh number –

Vs S-wave velocity m s−1

Vp P-wave velocity m s−1



APPENDIX B

DERIVATION OF THE ADJOINT EQUATIONS

The following derivation of the adjoint equations for mantle convection
follows the general operator approach outlined in Horbach et al. (2014).

B.1 Mathematical requirements - the Fréchet deriva-

tive and inner products

In order to derive the adjoint equations we will utilise the Fréchet derivative;
which is an extension of the formal definition of a derivative to general
operators. While this derivation does not require calculation of the Fréchet
derivative, knowledge of its concept and manipulation of terms involving
it is required for determining the adjoint equations. To this end we take a
small digression to outline the Fréchet derivative.

Let X and Y be Banach spaces and F be an operator such that F : X → Y
for x ∈ X, y ∈ Y. F is said to be Fréchet differentiable at x0 ∈ X if and only if
there exists a linear operator L : X → Y such that:

lim
h→0,h∈X

||F(x0 + h)− F(x0)− L(h)||Y
||h||X

= 0

where || · ||X and || · ||Y are norms in X and Y respectively. If the linear
operator L exists for all x ∈ X then we say F is Fréchet differentiable with
respect to x with DxF = L

Since the Fréchet derivative is an extension of the classic definition of a
derivative it can be shown that these derivatives follow the standard rules of
differentiation; namely the chain and product rules.



B.2 Method of optimising a model | 153

We also need to make use of the properties of inner product. The domain
D for the mantle convection model is the time interval I = [t0, t1] and the
spatial domain being the spherical shell V, with D = I × V. For two squared
integrable vectorial functions (such as velocity) f , g ∈ l2(D)

⟨ f , g⟩l2 =
∫

D
f (z) · g(z)dz =

∫

I

∫

V
f (x, t) · g(x, t)d3x dt

Similarly for two squared integrable scalar functions (e.g. pressure or tem-
perature) F, G ∈ L2(D)

⟨F, G⟩L2 =
∫

D
F(z)G(z)dz =

∫

I

∫

V
F(x, t)G(x, t)d3x dt

Finally, if a linear and bounded operator F : X → Y where X, Y are
Hilbert spaces, then there exists a unique adjoint operator F∗ to F where
F∗ : Y → X with

⟨F(x), y⟩Y = ⟨x, F∗(y)⟩X

While we can digress further to prove the properties of the operators we
will omit these here, the derivation of the adjoint equations will require
these adjoint operators to be explicitly identified for our mantle convection
equations.

B.2 Method of optimising a model

In order to optimise our mantle convection models we can imagine the
problem as such; we begin with our standard unrestricted model with its
arbitrarily determined initial temperature structure at t0. The trajectory of
the initial condition then is corrected using known restraints such as the
present day structure of the Earth as determined from a source such as
seismic tomography, which yields an optimal fit of the initial temperature to
the restraints. To state this mathematically then, the objective function χ(p)
(also known as the misfit function) is a measure of the difference between
the reference temperature field and the modelled temperature field. The
objective function χ(p) is dependent on the vector p which consists of the
parameters in the model which can affect the final answer of χ. These
parameters include the boundary conditions, the initial condition, the data
misfit and the mathematical model itself (Bunge et al. 2003). For our case, we
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take p as a one-dimensional vector that consists only of our intial condition
temperature field T0, and we look to minimise χ to constrain this initial
temperature field.

In order to minimise χ we look to compute the gradient of χ with respect
to p. We also make note that we are not only looking for the dependency of
χ on p, as χ can also be affected indirectly by the function u(p) (i.e. p would
be our initial temperature T0 but the temperature field T at any given time
is dependent on our initial temperature field). Since our model is built on
the equations of conservation of mass, momentum and energy which are
differential equations, computing their gradient is impractical since they are
solved numerically on grid sizes of the order of tens of millions of grid points.
With finite difference as a means of computing the gradient of χ ruled out,
we turn to the adjoint method as a more efficient way to find the gradient of
χ.

Coming back to the Fréchet derivative we now see that if we want to the
change of χ by changing the parameter p by an infinitesimal amount ∆p we
are looking for the Fréchet derivative of χ. Since χ depends on both u and p
we apply the chain rule and see

Dpχ(u, p)(∆p) =
∂χ(u, p)

∂u
(Dpu(∆p)) +

∂χ(u, p)
∂p

(∆p). (B.1)

Assuming that we can express χ using the L2 scalar product and the function
χ̂ we can rewrite our derivatives as

Dpχ(u, p)(∆p) =
∂⟨χ̂(u, p), 1⟩

∂u
(Dpu(∆p)) +

∂⟨χ̂(u, p), 1⟩
∂p

(∆p) (B.2)

〈
∂uχ̂(u, p)(Dpu(∆p)), 1

〉
+

〈
∂pχ̂(u, p)(∆p), 1

〉
. (B.3)

The total derivative Dpu(∆p) measures the effect that our initial tempera-
ture T0 = p effects the temperature field T(T0) = u(p) at any point in time
and is difficult to calculate by finite differencing. In order to calculate Dpχ

we look to eliminate the total derivatives from the right hand side of eq. (B.3)
with help from our knowledge of the adjoint operator.

Dpχ(u, p)(∆p) =
〈
(Dpu(∆p)), (∂uχ̂(u, p))∗(1)

〉
+

〈
∆p, (∂pχ̂(u, p))∗(1)

〉
.

(B.4)
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We now recall the linear operator L found in the definition of the Fréchet
derivative, where in this instance L is dependent on the parameters u and p
and we assume L(u, p) = 0. L may be a combination of differential operators,
and for our derivation involving the equations governing mantle convection,
it is these equations which make up the function L. Using the chain rule to
take the Fréchet derivative of L we obtain:

0 = DpL(u, p) (B.5)

= ∂uL(u, p)(Dpu(∆p)) + ∂pL(u, p)(∆p) (B.6)

=
〈
∂uL(u, p)(Dpu(∆p)), v

〉
+

〈
∂pL(u, p)(∆p), v

〉
(B.7)

=
〈
(Dpu(∆p)), (∂uL(u, p))∗(v)

〉
+

〈
∆p, (∂pL(u, p))∗(v)

〉
(B.8)

where similar to before we apply the same idea of scalar products to convert
to a weak formulation using a test function v, and the idea of adjoint opera-
tors to obtain an expression similar to eq. (B.4) which has isolated the total
derivative.

We can now add eq. (B.4) and eq. (B.8) since the latter is homogeneous to
give,

Dpχ(u, p)(∆p) =
〈
(Dpu(∆p)), (∂uχ̂(u, p))∗(1) + (∂uL(u, p))∗(v)

〉

+
〈
∆p, (∂pχ̂(u, p))∗(1) + (∂pL(u, p))∗(v)

〉
. (B.9)

If we determine the test function v such that

(∂uL(u, p))∗(v) = −∂uχ̂(u, p))∗(1) (B.10)

the total derivative term is null and reducing the complexity of our problem.
Thus we aim to find the adjoint operator L∗ and the test function v that yields
eq. (B.10) and allows us to simplify eq. (B.9) to

Dpχ(u, p)(∆p) =
〈
∆p, (∂pχ̂(u, p))∗(1) + (∂pL(u, p))∗(v)

〉
. (B.11)

We note the presence still of the adjoint operators and test function v, and so
deriving these is the main part of this method. With the theory now outlined
we can apply this directly to our problem of mantle convection.
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B.3 The objective function

The objective function χ that we look to minimise for the mantle model mea-
sures the difference of the model temperature at present day Tm = T(T0, x, t1)

which is dependent on the initial temperature field; and an observed tem-
perature of the Earth Tt that is based on some external data reading. For our
objective function, we will consider the same quadratic functional found in
other derivations for adjoint data assimiliation models (Ismail-Zadeh et al.
2004; Liu and Gurnis 2008; Bunge et al. 2003)

χ(T) =
1
2

∫

V
(Tt(x)− Tm(x))2 d3x (B.12)

which we can express as a scalar inner product

⟨χ̂(T, x, t), 1⟩L2 (B.13)

where χ̂ = 1
2(Tt(x)− Tm(x))2δ(t − t1) Setting u = T and p = T0 in eq. (B.4)

we can find the total derivative of the objective function with respect to T0.
We note that our definition for the objective function does not depend on the
primary paramater T0 but indirectly through T which allows us to simplify
our total derivative as follows:

DT0χ(T)(∆T0) = ⟨(DT0 T(∆T0)), (∂Tχ̂(T))∗(1)⟩+ ⟨∆T0, (∂T0 χ̂(T))∗(1)⟩︸ ︷︷ ︸
=0

(B.14)

= ⟨(DT0 T(∆T0)), ∂Tχ̂(T)⟩ . (B.15)

As discussed previously we need to eliminate DT0 T, which can be achieved
through determining the adjoint operators L∗ of our underlying equations
(eq. (B.18)) using the Fréchet derivative and a chosen test function. I.e. we
need to determine the adjoint equation for each of the forward conservation
equations.

B.4 Preliminaries

The approach we will employ on each of the conservation equations is to
take the total derivative of each equation with respect to T0 and applied in



B.5 Derivation for incompressible flow | 157

the direction ∆T0. We then look to convert this equation to its weak form
by multiplying with a relevant test function and applying the inner product
⟨·, ·⟩L2 , at which point the aim is then to isolate all terms associated with
the total derivative. For ease of reading the resulting equations we will
substitute ·̃ := (DT0 ·̃ ) to denote the derivative and omit the (∆T0) notation
for the direction of the total derivative. Using this notation we can rewrite
eq. (B.15) as

DT0χ(T)(∆T0) =
〈

T̃, ∂Tχ̂(T)
〉

. (B.16)

During the derivations we will also make use of a number of vector
identities to manipulate equations. We will also make use of the divergence
theorem which states the relationship between a volume and surface integral

∫

V
∇ · u dV =

∫

S

∂u
∂n

dS =
∫

S
u · n dS (B.17)

where n(x) is the outward facing normal vector for x ∈ ∂V.

B.5 Derivation for incompressible flow

With these preliminaries presented we know continue onwards and present
a derivation of the adjoint equations for incompressible mantle flow.

B.5.1 The forward equations for incompressible flow

In section 2.2 we outlined the equations that describe incompressible mantle
convection

∇ · u = 0 (B.18a)

∇ ·
(

η{∇u + (∇u)T}
)
−∇P + αρ(Tav − T)g = 0 (B.18b)

∂T
∂t

+ u∇ · T − κ∇2T − H = 0. (B.18c)
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with necessary boundary conditions for the velocity u

u(x, t) = uP(x, t) x ∈ S, t ∈ I (B.19a)
((

∇u(x, t) + (∇u(x, t))T)
)
· n(x)

)
tan

= 0 x ∈ C, t ∈ I (B.19b)

u(x, t) · n(x) = 0 x ∈ ∂V, t ∈ I, (B.19c)

pressure P
P(x, t) = 0 x ∈ S, t ∈ I, (B.20)

and temperature T

T(x, t) = TS(x, t) x ∈ S, t ∈ I (B.21a)

T(x, t) = TC(x, t) x ∈ C, t ∈ I, (B.21b)

together with the initial condition on T

T(x, t0) = T0(x) x ∈ V. (B.22)

As previously discussed it is from these equations and boundary condi-
tions that we derive the set adjoint equations for mantle convection, which
we will now proceed to do.

B.5.2 The continuity equation

Starting with the continuity equation when the flow is incompressible,
eq. (B.18a), we take the total derivative of the equation with respect to T0 and
apply it in the direction ∆T0. Doing so obtains the following

∇ · (DT0u)(∆T0) = 0 (B.23)

We then look to convert this equation to its weak form by multiplying with a
scalar test function ψ and applying the inner product ⟨·, ·⟩L2 .

⟨ψ,∇ · ũ⟩L2 = 0 (B.24)

In order to isolate the total derivative ũ we use the vector identity f∇ ·
u + u · ∇ f = ∇ · ( f u) together with the divergence theorem eq. (B.17) allows
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eq. (B.24) to be rewritten as

∫

I

∫

V
ψ∇ · ũ d3x dt =

∫

I

∫

V
∇ · (ψũ)d3x dt−

∫

I

∫

V
ũ∇ · ψ d3x dt

=
∫

I

∫

∂V
(ψũ) · n d2x dt−

∫

I

∫

V
ũ∇ · ψ d3x dt (B.25)

If we prescribe ψ(x, t) = 0 for x ∈ ∂V, t ∈ I the surface integral on ∂V is
zero and we obtain the homogeneous weak formulation of eq. (B.23)

⟨ψ,∇ · ũ⟩L2 = −⟨ũ,∇ψ⟩l2 = 0. (B.26)

B.5.3 The momentum equation

For the momentum equation eq. (B.18b), we follow the same approach taking
the total derivative in ∆T0

∇ ·
{

η(∇(DT0u)(∆T0) + (∇(DT0u)(∆T0))
T)
}
−∇(DT0 P)(∆T0)

+ αρ((DT0 Tav)(∆T0)− (DT0 T)(∆T0))g = 0. (B.27)

We note that the derivative of Tav with respect to T0 vanishes since Tav is
independent of T0, before converting to its weak formulation by multiplying
the equation by the vector test function φ and taking the inner product giving

〈
φ,∇ · η((∇ũ) + (∇ũ)T)

〉
l2
−

〈
φ,∇P̃

〉
l2
−

〈
φ, αρT̃g

〉
l2
= 0. (B.28)

Using the identity v · (∇ · ( f∇u))− u · (∇ · ( f∇v)) = ∇ · ( f (∇u)v)−
∇ · ( f (∇v)u) (where u = ũ, v = φ and f = η) on the first inner product we
obtain the expression

〈
φ,∇ · η

(
(∇ũ) + (∇ũ)T

)〉
l2
=

∫

I

∫

V
∇ · η

(
(∇ũ) + (∇ũ)T

)
φ d3x dt

−
∫

I

∫

V
∇ · η

(
(∇φ) + (∇φ)T

)
ũ d3x dt

+
∫

I

∫

V
ũ ·

(
∇ · η

(
(∇φ) + (∇φ)T

))
d3x dt

(B.29)
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Utilising the divergence theorem eq. (B.17) once more on the first two
expressions on the right hand side

∫

I

∫

V
∇ · η

(
(∇ũ) + (∇ũ)T

)
φ −∇ · η

(
(∇φ) + (∇φ)T

)
ũ d3x dt

=
∫

I

∫

∂V
η
((

∇ũ + (∇ũ)T
)

φ
)
· n(x)− η

((
∇φ + (∇φ)T

)
ũ
)
· n(x)d2x dt

=
∫

I

∫

∂V
η
〈

φ,
(
∇ũ + (∇ũ)T

)∗
n(x)

〉
− η

〈
ũ,
(
∇φ + (∇φ)T

)∗
n(x)

〉
d2x dt

=
∫

I

∫

∂V
ηφ ·

((
(∇ũ)T +∇ũ

)
n(x)

)
− ηũ ·

((
(∇φ)T +∇φ

)
n(x)

)
d2x dt

(B.30)

Now we recall the various boundary conditions placed on the velocity u.
The zero outflow condition eq. (B.19c) implies the derivative for the radial
velocity ũr = 0 for x ∈ ∂V, t ∈ I. On the CMB eq. (B.19b), the free-slip
velocity condition, results in

((
∇ũ + (∇ũ)T) n(x)

)
tan = 0 for x ∈ C, t ∈

I. Prescribing plate motion histories as the surface boundary condition
eq. (B.19a), makes the derivative ũtan = 0 for x ∈ S, t ∈ I.

Taking these simplifications onboard we can now rewrite eq. (B.30) as

∫

I

∫

S
ηφ ·

((
(∇ũ +∇ũ)T

)
n(x)

)
d2x dt

+
∫

I

∫

C
ηφr

((
(∇ũ +∇ũ)T

)
n(x)

)
r

d2x dt

−
∫

I

∫

C
ηũ ·

((
(∇φ +∇φ)T

)
n(x)

)
d2x dt . (B.31)

Prescribing boundary conditions to the test function φ we can force these
three surface integrals to vanish. The similarity to the forward equations
velocity boundary conditions eqs. (B.19a) to (B.19c) can be thought of as
follows;

• φtan = 0 for x ∈ S, t ∈ I related to the velocity condition at the surface
eq. (B.19a)

•
((
∇φ + (∇φ)T) n(x)

)
tan = 0 for x ∈ C, t ∈ I analogous to free slip on

the CMB eq. (B.19b)

• φr = 0 for x ∈ ∂V, t ∈ I which parallels to the no-outflow condi-
tioneq. (B.19c)
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Note also, that the way in which these conditions were determined has the
side result that a different choice in boundary conditions (e.g. free-slip/no-
slip) for the S or C boundaries, would cause no change in the choice of the φ

boundary conditions.
With these boundary conditions imposed the first term of eq. (B.28) can

be simplified to

〈
φ,∇ · η

(
(∇ũ) + (∇ũ)T

)〉
l2
=

〈
ũ,∇ · η

(
(∇φ) + (∇φ)T

)〉
l2

. (B.32)

The second term of eq. (B.28) contains the pressure term of the momentum
equation. This time we apply the vector identity ∇ · ( f u) = f∇ · u + u · f
(where u = φ and f = P̃) followed by the divergence theorem eq. (B.17)
yielding

〈
φ,∇P̃

〉
l2
=

∫

I

∫

V
∇ · (P̃φ)d3x −

∫

I

∫

V
P̃∇ · φ d3x

=
∫

I

∫

∂V
(P̃φ) · n(x)d2x −

〈
P̃,∇ · φ

〉
L2

. (B.33)

Recalling in the previous step the boundary condition φr = 0 for x ∈ ∂V, t ∈
I, the surface integral becomes zero and

〈
φ,∇P̃

〉
l2
= −

〈
P̃,∇ · φ

〉
L2

. (B.34)

The final term that must be dealt with in eq. (B.28) is the buoyancy term
which contains a total derivate of the temperature T̃. We can isolate T̃ by
re-expressing the vectorial product l2 as the scalar product L2 which gives

〈
φ, αρT̃g

〉
l2
=

〈
T̃, αρg · φ

〉
L2

(B.35)

which combining with the other terms we can rewrite eq. (B.28) as

〈
ũ,∇ · η

(
∇φ + (∇φ)T

)〉
l2
+

〈
P̃,∇ · φ

〉
L2
−

〈
T̃, αρg · φ

〉
L2

= 0. (B.36)
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B.5.4 The energy equation

Finally for conservation of energy eq. (B.18c) we again take the total deriva-
tive;

∂(DT0 T)(∆T0)

∂t
+ (DT0u)(∆T0) · ∇T + u · ∇(DT0 T)(∆T0)

− κ∇2(DT0 T)(∆T0)− (DT0 H)(∆T0)︸ ︷︷ ︸
=0

= 0. (B.37)

Before multiplying through this time by the scalar test function τ and
taking the inner product we can eliminate any terms which are independent
of the initial temperature T0; i.e. the internal heating rate H. With this we
obtain as the weak formulation for our energy equation

〈
τ,

∂T̃
∂t

〉

L2

+ ⟨τ, ũ · ∇T⟩L2 +
〈

τ, u · ∇T̃
〉

L2
−

〈
τ, κ∇2T̃

〉
L2

= 0. (B.38)

Once more we look to isolate any terms containing total derivative ũ or T̃,
and again we will work left to right through the terms present in eq. (B.38).

By partially integrating our first term we see that

〈
τ,

∂T̃
∂t

〉

L2

=
∫

I

∫

V
τ

∂T̃
∂t

d3x dt

=
∫

V

(
τT̃

)
|t1
t0

d3x −
∫

I

∫

V
T̃

∂τ

∂t
d3x dt

=
∫

V


τ(x, t1)T̃(x, t1)︸ ︷︷ ︸

τ(x,t1)=0

−τ(x, t0) T̃(x, t0)︸ ︷︷ ︸
=∆T0


d3x −

〈
T̃,

∂τ

∂t

〉

L2
.

(B.39)

The first part of the partially evaluated integral vanishes if we apply the
constraint τ(x, t1) = 0 for x ∈ V. In the second term of this integral we note
that T̃(x, t0) is the derivative of the temperature in the direction T0 at t0 and
so is infact our search direction ∆T0, which leaves us with the following:

〈
τ,

∂T̃
∂t

〉

L2

= −
∫

V
τ(x, t0)∆T0(x)d3x −

〈
T̃,

∂τ

∂t

〉

L2
(B.40)
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The second term contains the total derivative of u, ũ. This is again trivial
to isolate by once again re-expressing the scalar product L2 as the vectorial
product l2 to give

⟨τ, ũ · ∇T⟩L2 = ⟨ũ, τ∇T⟩l2 . (B.41)

For the third term we make use of the vector identity f (∇g · u) + g(∇ f ·
u) = ∇ · ( f gu)− f g(∇ · u) (with f = τ, g = T̃ and u = u) to expand the
term such that

〈
τ, u · ∇T̃

〉
L2

=
∫

I

∫

V
∇ ·

(
τT̃u

)
d3x dt

−
∫

I

∫

V
τT̃ (∇ · u)︸ ︷︷ ︸

=0

d3x dt−
∫

I

∫

V
T̃(∇τ · u)d3x dt . (B.42)

Since ∇ · u is our conservation of mass we know its value is 0 and so can be
eliminated. Furthermore the application of the divergence theorem eq. (B.17)
again allows us to simplify the volume integral such that

〈
τ, u · ∇T̃

〉
L2

=
∫

I

∫

V
τT̃ (u · n)︸ ︷︷ ︸

=0

d2x dt−
〈

T̃, u · ∇τ
〉

L2
. (B.43)

From our no-outflow boundary condition, eq. (B.19c), our surface integral
also vanishes leaving only the one term

〈
τ, u · ∇T̃

〉
L2

= −
〈

T̃, u · ∇τ
〉

L2
. (B.44)

The final term in which a total derivative needs to be isolated contains
the laplacian, and so we will make use of Green’s second identity

∫
V f∇2g −

g∇2 f dV =
∫

∂V f∇g · n − g∇ f · n d∂V (where f = τ and g = T̃) in order to
obtain the following

〈
τ, κ∇2T̃

〉
L2

= κ
∫

I

∫

∂V
τ︸︷︷︸
=0

(
∇T̃ · n

)
d2x dt

− κ
∫

I

∫

∂V
T̃︸︷︷︸
=0

(∇τ · n)d2x dt+κ
∫

I

∫

V
T̃∇2τ d3x dt . (B.45)

Since ∇T̃ · n is not necessarily zero, by defining the boundary condition
τ = 0 for x ∈ ∂V, t ∈ I the first surface integral is forced to vanish. Secondly
since T has fixed boundary conditions, eqs. (B.21a) and (B.21b), the total
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derivative T̃ = 0 at the boundaries and the second surface integral also
vanishes. This leaves only the final volume integral which we can see has T̃
isolated as desired, hence

〈
τ, κ∇2T̃

〉
L2

=
〈

T̃, κ∇2τ
〉

L2
. (B.46)

Combining each term we arrive at the following expression:

⟨ũ, τ∇T⟩l2 −
∫

V
τ(x, t0)∆T0(x)d3x −

〈
T̃,

∂τ

∂t

〉

L2

−
〈

T̃, u · ∇τ
〉

L2
−

〈
T̃, κ∇2τ

〉
L2

= 0. (B.47)

B.6 The adjoint equations for incompressible flow

As eqs. (B.26), (B.36) and (B.47) are all homogeneous (i.e. = 0) we can
add these terms to the total derivative of our misfit function χ (eq. (B.15))
Combining inner products containing the same isolated variable we arrive
at:

DT0χ(T)(∆T0) =
〈

P̃,∇ · φ
〉

L2

+
〈

ũ,∇ · (η{∇φ + (∇φ)T})−∇ψ + τ∇T
〉

l2

+

〈
T̃, ∂Tχ̂ − ∂τ

∂t
− u · ∇τ − κ∇2τ − αρg · φ

〉

L2

−
∫

V
τ(x, t0)∆T0(x)d3x . (B.48)

From this we can deduce that the scaler/vector products involving each total
derivative ũ, P̃, T̃ will vanish if our test functions φ, ψ, τ satisfy the following
equations:

∇ · φ = 0 (B.49a)

∇ ·
(

η{∇φ + (∇φ)T}
)
−∇ψ + τ∇T = 0 (B.49b)

∂τ

∂t
+ u · ∇τ + κ∇2τ + αρg · φ =

∂χ̂(T)
∂T

(B.49c)

where ∂Tχ(T) = (Tt − Tm)δ(t − t1). We will from here on refer to these
as the adjoint equations for incompressible mantle circulation. This set of
equations have their own boundary and initial condition as outlined during
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the derivations. Collecting these together now we see that

φtan(x, t) = 0, x ∈ S, t ∈ I (B.50a)
((

∇φ + (∇φ)T
)
· n(x)

)
tan

= 0, x ∈ C, t ∈ I (B.50b)

φr(x, t) = φ(x, t) · n(x) = 0, x ∈ ∂V, t ∈ I (B.50c)

ψ(x, t) = 0, x ∈ ∂V, t ∈ I (B.50d)

τ(x, t) = 0, x ∈ ∂V, t ∈ I (B.50e)

are our boundary conditions, together with the initial condition

τ(x, t1) = 0, x ∈ V. (B.51)

Once the solutions to the adjoint equations are found, eq. (B.48) is reduced
to

DT0χ(T)(∆T0) = −
∫

V
τ(x, t0)∆T0(x)d3x, (B.52)

which now only depends on the adjoint temperature at t0, τ(x, t0) and the
differentiation direction ∆T0. For this instance, the appropriate differentiation
direction for y ∈ V is

∆T0(x) = βδ(y − x), x ∈ V, (B.53)

where β ∈ R is a step length determined by a conjugate gradient method
(Fletcher and Reeves 1964). It is using the conjugate gradient method that we
update our initial condition guess Tn

0 using eq. (B.53) to yield the following
equation to update our initial condition guess

Tn+1
0 (x) = Tn

0 (x)− βτ(x, t0). (B.54)
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B.7 The adjoint equations for compressible mod-

els

We recall from section 2.2 that if we consider the mantle to be compressible
then the equations describing mantle convection are instead

∇ · (ρu) = 0 (B.55a)

∇ ·
(

η

{
∇u + (∇u)T − 2

3
I(∇ · u)

})
−∇P + ∆ρg = 0 (B.55b)

∂T
∂t

+ u · ∇T + γT∇ · u − 1
ρcV

(τ̄ : ∇u +∇ · (k∇T)) + H = 0. (B.55c)

where τ̄ is the deviatoric stress given by

τ̄ = η

{
∇u + (∇u)T − 2

3
I(∇ · u)

}
.

Since this is a different set of equations than the incompressible case
just presented, a new derivation is required here. Ghelichkhan and Bunge
(2016) use the same method of derivation by operator formulations in Hilbert
spaces as used for the incompressible equations, and obtain the following set
of equations which describe the adjoint equations for compressible mantle
flow.

∇ · φ = 0 (B.56a)

∇ ·
(

η{∇φ + (∇φ)T}
)
− ρr∇ψ + τ∇T − 2∇ ·

(
τ

ρrcv
τ̄

)
= 0 (B.56b)

∂τ

∂t
+ u · ∇τ − (γ − 1)τ∇ · u +∇ ·

(
k∇

(
τ

ρrcv

))
+ αρg · φ =

∂χ̂(T)
∂T

(B.56c)
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and their corresponding boundary conditions

φtan(x, t) = 0, x ∈ S, t ∈ I (B.57a)
((

∇φ + (∇φ)T
)
· n(x)

)
tan

= 0, x ∈ C, t ∈ I (B.57b)

φ(x, t) · n(x) = 0, x ∈ ∂V, t ∈ I (B.57c)

ψ(x, t) = 0, x ∈ ∂V, t ∈ I (B.57d)

τ(x, t) = 0, x ∈ ∂V, t ∈ I (B.57e)

and initial condition
τ(x, t1) = 0, x ∈ V. (B.58)

The presence of the term (γ − 1) in eq. (B.56c), effectively the adjoint
compressibility term, is minimal as γ is typically taken O(1). Because of this
using compressible or incompressible adjoint equations with a compressible
forward model yields very similar results. Therefore it is not necessary to
use the compressible adjoint equations.

B.8 Thoughts on the adjoint equations for ther-

mochemical models

The equations outlining a thermochemical model vary from a purely thermal
model as follows;

∇ · u = 0 (B.59a)

∇ ·
(

η{∇u + (∇u)T}
)
−∇P + αρ(Tav − T)g + ∆ρCg = 0 (B.59b)

∂T
∂t

+ u · ∇T − κ∇2T + H = 0 (B.59c)

∂C
∂t

+ u · ∇C = 0. (B.59d)

Here C represents composition and ∆ρ is the density difference between the
light (C = 0) and dense (C = 1) material with boundary conditions for the
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velocity u

u(x, t) · n(x) = 0, x ∈ ∂V, t ∈ I (B.60)

∇u(x, t) · n(x) = 0, x ∈ C, t ∈ I (B.61)

u(x, t) = uP(x, t), x ∈ S, t ∈ I (B.62)

and temperature T

T(x, t) = TS, x ∈ S, t ∈ I (B.63)

T(x, t) = TC, x ∈ C, t ∈ I (B.64)

with initial conditions

T(x, t0) = T0(x), x ∈ V. (B.65)

C(x, t0) = C0(x), x ∈ V. (B.66)

Boundary conditions on C are not immediately obvious, as unlike the
temperature field where we presume our boundary conditions are perfect,
we would hope to use the adjoint method to improve our estimate of C
which varies over the CMB boundary. Because of this we cannot perform the
same simplifications as seen in the previous derivations. Furthermore, we
see that eq. (B.59d) is also time-dependent like the heat equation (eq. (B.59c)).
This introduces an extra complexity with additional assumptions needed.
The implications of the boundary conditions for C is that a more complete
reevaluation of the adjoint derivation is required.
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