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A B S T R A C T

We discuss whether homogeneous Cauchy stress implies homogeneous strain in isotropic nonlinear elasticity.
While for linear elasticity the positive answer is clear, we exhibit, through detailed calculations, an example with
inhomogeneous continuous deformation but constant Cauchy stress. The example is derived from a non rank-one
convex elastic energy.

1. Introduction

In isotropic linear elasticity, it is plain to see that a homogeneous
stress is always accompanied by homogeneous strain, provided that the
usual positive-definiteness assumptions on the elastic energy are
required. Indeed, the linear elastic energy takes the form

W μ κu u u(∇ ) = ∥ dev sym∇ ∥ +
2

[tr(sym∇ )] ,lin
2 2

where B Bu: →0 is the displacement vector, ε u= sym∇ =
u u[∇ + (∇ ) ]/2T is the infinitesimal strain tensor, ε ε ε εtr( ) = + +11 22 33

is the trace of the strain tensor, and

ε ε ε Idev = − tr( )1
3

is the deviatoric strain, with I being the tensor identity. In the above
formulation, ∥·∥ denotes Frobenius norm, hence, for a second order
tensor A, this satisfies A A A A A∥ ∥ = : = tr( )T2 .

The corresponding stress–strain law is

σ ε εμ κ I= 2 dev + tr( ) .

This relation is invertible if and only if the shear modulus satisfies
μ > 0, and similarly the bulk modulus satisfies κ > 0. We note that, if
σ T= is given, then ε σu T= sym∇ = ( )−1 is uniquely determined, and
moreover, if σu Tsym∇ = constant= ( ) ∈ Sym(3)−1 , where Sym(3) is the
set of symmetric matrices, then

sσ ou X T A X A X∇ ( ) = ( ) + ( ), ( ) ∈ (3),−1 (1.1)

where so (3) is the set of skew-symmetric matrices. This implies

     σu T A xCurl ∇ = Curl ( ) + Curl ( ),
=0

−1

=0

hence A XCurl ( ) = 0, and therefore A X A( ) = = constant [14].
Altogether, we have that a constant stress tensor σ T= implies the
following representation for the displacement:

σu X T A X b( ) = [ ( ) + ] + ,−1 (1.2)

where soA ∈ (3) is arbitrary and b ∈ R3 is an arbitrary constant
translation. Up to infinitesimal rigid body rotations and translations,
the homogeneous displacement state is therefore uniquely defined
through the constant stress field σ T= .

In nonlinear elasticity, the similar question of whether constant
stress implies constant strain is considerably more involved. One reason
for this is the need to decide about the choice of the stress measure.
Here, we focus on the “true” or Cauchy stress tensor.

For a homogeneous isotropic hyperelastic body under finite strain
deformation, the Cauchy stress tensor can be represented as follows
[6,7,16,17]:

σ β β βB I B B( ) = + + ,0 1 −1
−1 (1.3)

where B FF= T is the left Cauchy–Green tensor, with the tensor φF = ∇
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representing the deformation gradient, and the coefficients:
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⎠⎟ (1.4)

are scalar functions of the strain invariants:

I I IB B B B B B B B( ) = tr , ( ) = [(tr ) − tr ] = tr(Cof ), ( ) = det ,1 2
1
2

2 2
3

with W I I I( , , )1 2 3 being the strain energy density function describing the
properties of the isotropic hyperelastic material.

If the material is incompressible, then the Cauchy stress takes the
form:

σ p β βB I B B( ) = − + + ,1 −1
−1 (1.5)

where p is an arbitrary hydrostatic pressure.
The answer to whether constant Cauchy-stress implies constant

Cauchy–Green tensor B FF= T would be easy to give if we could assume
that the relation (1.3) is invertible. That this relation may be invertible
for a number of nonlinear elastic models (among them variants of Neo-
Hookean or Mooney–Rivlin materials [4,16], and the exponentiated
Hencky energy [5,11,12]) has recently been shown in [11].

If invertibility holds in (1.3), then we have a unique left Cauchy–
Green tensor B ∈ Sym (3)+ which satisfies

σφ φ B T∇ (∇ ) = = ( ).T −1 (1.6)

The latter implies (formally equivalent to the infinitesimal situation)
that [4, p. 55]

σφ X V R X b T R X b( ) = ( ) + = [ ( ) ] + ,−1 (1.7)

where R ∈ SO(3) is an arbitrary constant rotation, b ∈ 3 is an
arbitrary constant translation, and V is the left principal stretch tensor
satisfying V B=2 , and which is uniquely determined from the given
stress σ T= .

While it is tempting to adopt invertibility of (1.3) as a desirable
feature of any ideal nonlinear elasticity law (at least for situations in
which there is no loss stability), we refrain from imposing invertibility
at present. Renouncing invertibility, in this paper, we consider the
question if, and how, a homogeneous Cauchy stress tensor can be
generated by non-homogeneous finite deformations. First, in Section 2,
we provide an explicit and detailed construction of such situations on a
specific geometry that allows for the deformation to be continuous and
homogeneous in two different parts of the domain, connected by a
straight interface, such that the two homogeneous deformations are
rank-one connected. Then, in Section 3, we present an example of an
isotropic strain energy function, such that, if a material is described by
this function and occupies a domain similar to those analysed, then the
expressions for the homogeneous Cauchy stress and the corresponding
non-homogeneous strains can be written explicitly.

2. Homogeneous stress induced by different deformations

If the same Cauchy stress (1.3) can be expressed equivalently in
terms of two different homogeneous deformation tensors B FF= T and

B FF= T , such that F F≠ and B B≠ , then the question arises whether it
is possible for some part of the deformed body to be under the strain B
while another part is under the strain B. For geometric compatibility,
we must assume that there exist two non-zero vectors a and n, such that
the Hadamard jump condition is satisfied as follows [2,3]:

F F a n− = ⊗ , (2.1)

where n is the normal vector to the interface between the two phases
corresponding to the deformation gradients F and F. In other words, F
and F are rank-one connected, i.e.

F Frank( − ) = 1. (2.2)

Here, we show that, under certain further restrictions, this type of

non-homogeneous deformations leading to a homogeneous Cauchy
stress is possible, and to demonstrate this, we uncover a class of such
deformations by constructing them explicitly.

2.1. Elastostatic equilibrium

A continuous material body occupies a compact domain Ω of the
three-dimensional Euclidean space 3, such that the interior of the body
is an open, bounded, connected set Ω ⊂ 3, and its boundary
Γ Ω Ω Ω= ∂ = ⧹ is Lipschitz continuous (in particular, we assume that
a unit normal vector n exists almost everywhere on Γ). The body is
subject to a finite elastic deformation defined by the one-to-one,
orientation preserving transformation

φ Ω: → ,3

such that φJ = det(∇ ) > 0 on Ω and φ is injective on Ω (see Fig. 1). The
injectivity condition on Ω guarantees that interpenetration of the
matter is avoided. However, since self-contact is permitted, this
transformation does not need to be injective on Ω .

Let the spatial point φx X= ( ) correspond to the place occupied by
the particle X in the deformation φ. For the deformed body, the
equilibrium state in the presence of a dead load is described in terms of
the Cauchy stress by the Eulerian field equation

σ φ Ωx f x x−div ( ) = ( ), ∈ ( ). (2.3)

The above governing equation is completed by a constitutive law for σ ,
depending on material properties, and supplemented by boundary
conditions.

Since the domain occupied by the body after deformation is usually
unknown, we rewrite the above equilibrium problem as an equivalent
problem in the reference configuration where the independent variables
are ΩX ∈ . The corresponding Lagrangian equation of non-linear
elastostatics is

ΩS X f X X−Div ( ) = ( ), ∈ ,1 (2.4)

where σS F= Cof1 is the first Piola–Kirchhoff stress tensor, φF = ∇ is
the gradient of the deformation φ X x( ) = , such that J F= det > 0, and

Jf X f x( ) = ( ).
For a homogeneous compressible hyperelastic material described by

the strain energy functionW F( ), the first Piola–Kirchhoff stress tensor is
equal to

WS F F
F

( ) = ∂ ( )
∂

,1 (2.5)

and the associated Cauchy stress tensor takes the form
σ J S F S F= = (Cof )T−1

1 1
−1.

The general boundary value problem (BVP) is to find the displace-
ment φu X X X( ) = ( ) − , for all ΩX ∈ , such that the equilibrium
equation (2.4) is satisfied subject to the following conditions on the
relatively disjoint, open subsets of the boundary Γ Γ Ω{ , } ⊂ ∂D N , such
that Ω Γ Γ∂ ⧹( ∪ )D N has zero area [9,10,15]:

• On ΓD, the Dirichlet (displacement) conditions

u X u X( ) = ( ),D (2.6)

• On ΓN, the Neumann (traction) conditions

S X N g X( ) = ( ),N1 (2.7)

Fig. 1. Schematic of elastic deformation.
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where N is the outward unit normal vector to ΓN, and τdA dag =N ,
where τ σn= is the surface traction measured per unit area of the
deformed state.

The existence of a solution to the boundary value problem (BVP)
depends on whether or not there exists a deformation which minimises,
in the local or global sense, the total elastic energy of the body.
Sufficient conditions that guarantee the existence of the global mini-
miser are that the strain energy density function is polyconvex, i.e.
convex as a function of deformation of line (F), of surface ( FCof ), and
of volume ( Fdet ) elements, and satisfies the coercivity (growth) and
continuity requirements [1]. Clearly, in the absence of body forces, if
the Cauchy stress is constant, then the equilibrium equation (2.3) is
satisfied.

2.2. Finite plane deformations

First, we consider the finite plane deformation of an elastic square
partitioned into uniform right-angled triangles, as illustrated in Fig. 2.

Assuming that the deformation gradient is homogeneous on every
triangle, in a single triangle ABCΔ , the displacement field takes the
general form

u
u

a X a X b
a X a X b

u X X
X( ) = ( )

( ) = + +
+ + ,1

2

11 1 12 2 1

21 1 22 2 2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ (2.8)

where the six undetermined coefficients aij and bi, with i,j=1,2, are
constants, and the associated deformation gradient is equal to

a a
a a

F = 1 +
1 + .11 12

21 22

⎡
⎣⎢

⎤
⎦⎥ (2.9)

In order to determine the coefficients aij and bi, with i, j=1, 2, we
first evaluate the displacement (2.8) at the three vertices

A B C{ , , } ∈ 2:

A
X
X

B
X
X

C
X
X

= , = , = .
A

A

B

B

C

C
1

2

1

2

1

2

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

In this way, a system of six linear equations is obtained from which the
six unknown coefficients are computed uniquely in terms of the
displacements u u u{ , , } ∈A B C 2:

u
u

u
u

u
u

u u u= , = , = ,A
A

A
B

B

B
C

C

C
1

2

1

2

1

2

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

at the three vertices, respectively, as follows:

a
u X X u X X u X X
X X X X X X X X X

a
u X X u X X u X X
X X X X X X X X X

= ( − ) + ( − ) + ( − )
( − ) + ( − ) + ( − )

,

= ( − ) + ( − ) + ( − )
( − ) + ( − ) + ( − )

,

A B C B C A C A B

A B C B C A C A B

A C B B A C C B A

A C B B A C C B A

11
1 2 2 1 2 2 1 2 2

1 2 2 1 2 2 1 2 2

12
1 1 1 1 1 1 1 1 1

2 1 1 2 1 1 2 1 1

a
u X X u X X u X X
X X X X X X X X X

a
u X X u X X u X X
X X X X X X X X X

= ( − ) + ( − ) + ( − )
( − ) + ( − ) + ( − )

,

= ( − ) + ( − ) + ( − )
( − ) + ( − ) + ( − )

,

A B C B C A C A B

A B C B C A C A B

A C B B A C C B A

A C B B A C C B A

21
2 2 2 2 2 2 2 2 2

1 2 2 1 2 2 1 2 2

22
2 1 1 2 1 1 2 1 1

2 1 1 2 1 1 2 1 1

b
u X X X X u X X X X u X X X X

X X X X X X X X X

b
u X X X X u X X X X u X X X X

X X X X X X X X X

= ( − ) + ( − ) + ( − )
( − ) + ( − ) + ( − )

,

= ( − ) + ( − ) + ( − )
( − ) + ( − ) + ( − )

.

A B C C B B C A A C C A B B A

A B C B C A C A B

A B C C B B C A A C C A B B A

A C B B A C C B A

1
1 1 2 1 2 1 1 2 1 2 1 1 2 1 2

1 2 2 1 2 2 1 2 2

2
2 1 2 1 2 2 1 2 1 2 2 1 2 1 2

2 1 1 2 1 1 2 1 1

For example, when X X X h j h= = − = ( − 1)A C B
1 1 1 and

X X X h i h= = − = ( − 1)A B C
2 2 2 , with i j N, = 1,…, + 1 and h > 0, the

deformation gradient in the triangle ABCΔ can be expressed as follows:

u u h u u h
u u h u u h

F =
1 + ( − )/ ( − )/

( − )/ 1 + ( − )/
.

B A C A

B A C A
1 1 1 1

2 2 2 2

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

Similarly, in a triangle A BCΔ ′ , the displacement field takes the form




 
 





u
u

a X a X b
a X a X b

u X X
X

( ) = ( )
( )

= + +
+ +

,1

2

11 1 12 2 1

21 1 22 2 2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ (2.10)

where the coefficients aij and bi, with i, j=1, 2, are uniquely computed
in terms of the displacements    u u u{ , , } ∈A B C′ 2 at the three vertices

A B C{ ′, , } ∈ 2, respectively. Then the corresponding deformation
gradient is equal to

 
 

 a a
a a

F = 1 +
1 +

.11 12

21 22

⎡
⎣⎢

⎤
⎦⎥ (2.11)

Given that the displacements are continuous at the vertices B and C,
i.e. u u=B B and u u=C C, the following two systems of algebraic
equations are obtained:

 

 




a X a X b a X a X b

a X a X b a X a X b

+ + = + + ,

+ + = + + ,

B B B B

B B B B

11 1 12 2 1 11 1 12 2 1

21 1 22 2 2 21 1 22 2 2

and

 

 




a X a X b a X a X b

a X a X b a X a X b

+ + = + + ,

+ + = + + ,

C C C C

C C C C

11 1 12 2 1 11 1 12 2 1

21 1 22 2 2 21 1 22 2 2

from which the free coefficients bi and bi, with i=1, 2, can be written in
terms of the coefficients aij and aij, with i, j=1, 2. Note that, though the
displacements are continuous at the common vertices B and C, the
deformation gradient F on the triangle ABCΔ may differ from the
deformation gradient F on the triangle A BCΔ ′ .

In general, for a square partitioned into uniform right-angled
triangles as depicted in Fig. 2, given that the components of the
displacement vector u uu = [ , ]T

1 2 are continuous at every vertex
X X[ , ]T

1 2 , for every interior vertex, there are 6 local systems of algebraic
equations of the form:

a X a X b u a X a X b u+ + = , + + = ,11 1 12 2 1 1 21 1 22 2 2 2

one for each triangle meeting at that vertex, for every vertex on a side of
the domain that is not a corner there are 3 local systems, for two of the
four corners there are 2 systems, and for the other two corners there is
only 1 system of local equations.

Assuming that there are 2m2 right-angled triangles, we obtain
m6( − 1)2 systems of two algebraic equations each corresponding to

the interior vertices, m12( − 1) systems for the vertices situated on the
boundaries that are not at the corners, 4 systems for two of the four
corners, and 2 systems for the remaining two corners. This gives a total

Fig. 2. Uniform triangulation of elastic square.
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of m m m6( − 1) + 12( − 1) + 4 + 2 = 62 2 systems of two algebraic equa-
tions each, i.e. 12m2 algebraic equations. For every triangle, there are 6
unknown coefficients of the form aij and bi, with i j, , hence 12m2 such
coefficients for the entire domain, which can be determined uniquely in
terms of the displacements from the 12m2 algebraic equations.

It remains to find the equations from which the displacements are
computed. Given the continuity of the displacement fields at the
m( + 1)2 vertices, there are 2 displacement components ui, with
i=1,2, for every vertex, i.e. m2( + 1)2 displacement components in
total. After the boundary conditions are imposed, 4m systems of two
algebraic equations each, i.e. 8m algebraic equations in total are
provided at the vertices situated on the boundary. This leaves

m m m2( + 1) − 8 = 2( − 1)2 2 displacement components, corresponding
to the interior vertices, for which additional information is needed. This
information may come, for example, from the condition that, on each
triangle which does not have a vertex on the boundary, the determinant
of the deformation gradient is equal to some given positive constant d,
which is always valid for incompressible materials, where d=1, and
which generates the required m2( − 1)2 equations.

Hence, the displacement fields, which are continuous at the vertices,
and the corresponding deformation gradients, which may differ from
one triangle to another, can be uniquely determined from the boundary
conditions and the constraint that the deformation is isochoric.
Moreover, though the displacements are continuous at each vertex,
the deformation gradient, and hence the left Cauchy–Green tensor, may
differ from one triangle to another.

Thus, any extra condition, such as the rank-one connectivity of the
deformation gradients on two triangles having a common edge would
mean additional constraints on the solution, and must be taken into
account a priori, when selecting the boundary conditions. To see this,
let σ be a homogeneous Cauchy stress tensor given by (1.5), such that it
can be expressed equivalently in terms of two different homogeneous
tensors B FF= T and B FF= T , where F and F take the form (2.9) and
(2.11), respectively, and are rank-one connected.

We represent the respective first Piola–Kirchhoff stress tensors (2.5)
as follows:

  
 

σ σS S
S S

S S
S S

S F S F= Cof = , = Cof = .1
11 12

21 22
1

11 12

21 22

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

We wish to demonstrate that it is possible for an elastic body
occupying a square domain to deform such that the deformation
gradient is equal to F on some part of the body and to F on another part.

First, we notice that, for the square domain partitioned into right-
angled triangles as discussed above, if the deformation gradient is F on
one set of triangles and F on the remaining set, then the common
vertices between the two sets must lie on the same straight line. To
show this, we assume that there are three common vertices X X[ , ]k k T

1
( )

2
( ) ,

with k = 1, 2, 3, which are not co-linear. At each vertex, the displace-

ments are continuous, i.e. the following identities hold:

 

 




a X a X b a X a X b

a X a X b a X a X b k

+ + = + + ,

+ + = + + , = 1, 2, 3.

k k k k

k k k k

11 1
( )

12 2
( )

1 11 1
( )

12 2
( )

1

21 1
( )

22 2
( )

2 21 1
( )

22 2
( )

2

Equivalently, we obtain six linearly independent homogeneous equa-
tions of the form:

 

 




X a a X a a b b

X a a X a a b b k

( − ) + ( − ) + − = 0,

( − ) + ( − ) + − = 0, = 1, 2, 3,

k k

k k
1
( )

11 11 2
( )

12 12 1 1

1
( )

21 21 2
( )

22 22 2 2

from which we deduce that a a=ij ij and b b=i i, with i, j=1, 2. Hence
F F= .

Remark 2.1. We conclude that, if the displacement field is continuous
everywhere, and the deformation gradient is F on one set of triangles
and F on the remaining set, then a single straight line separates the two
sets, i.e. the two sets are situated at opposite corners. In particular,
there are no layers of the domain where these sets can alternate.

Next, we present some examples.

2.2.1. Non-homogeneous deformation
We consider an elastic material occupying the unit square

Ω = (0, 1) × (0, 1), and satisfying the equilibrium equation (2.4) with
the boundary conditions defined as follows.

• Non-homogeneous Dirichlet boundary conditions:

a X a X
a X a Xu X( ) = +

+ on (0, 1) × {0} ∪ {0} × (0, 1),11 1 12 2

21 1 22 2

⎡
⎣⎢

⎤
⎦⎥ (2.12)

 
 





a X a X b
a X a X b

u X( ) = + +
+ +

on (0, 1) × {1} ∪ {1} × (0, 1),11 1 12 2 1

21 1 22 2 2

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ (2.13)

such that the possibility of rigid body deformations is eliminated by
assuming that the lower left-hand corner is clamped, i.e. u u= = 01 2 at
X = (0, 0) (hence b b= = 01 2 ).

Solving Eq. (2.4) with the Dirichlet boundary conditions (2.12) and
(2.13) yields the left Cauchy–Green tensor B and the first Piola–
Kirchhoff stress tensors S1 in the triangular subdomain ABCΔ , and the
left Cauchy–Green tensor B and the first Piola–Kirchhoff stress tensors
S1 in the subdomain A BCΔ ′ , as illustrated in Fig. 3(a). It follows that the
given Cauchy stress tensor σ is the same throughout the deforming
square.

This non-homogeneous solution is also found when one side of the
square is free and the Dirichlet boundary conditions (2.12) and (2.13)
are prescribed on the other three sides, as shown in Fig. 3(b):

• Alternatively, the above non-homogeneous solution can be attained
under the following mixed boundary conditions, as indicated in

(a) prescribed displacement

pr
es

cr
ib

ed
di

sp
la

ce
m

en
t

)0,1(B)0,0(A

C(0,1) A’(1,1)

F

prescribed displacement

tn
e

me
ca

l p
si

d
de

bi r
cs

er
p

F̂

(b) prescribed displacement

tne
mecalpsid

debircserp

)0,1(B)0,0(A

C(0,1) A’(1,1)

F

t n
e

me
ca

l p
si

d
de

bi r
cs

er
p

free surface

F̂

Fig. 3. Elastic square with (a) Dirichlet boundary conditions and (b) with one side left free and Dirichlet boundary conditions on the other three sides, partitioned into two right-angled
triangles with homogeneous deformation gradient in each triangle.
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Fig. 4(a):

a X
a Xu X( ) = on (0, 1) × {0},11 1

21 1

⎡
⎣⎢

⎤
⎦⎥ (2.14)

a X
a Xu X( ) = on {0} × (0, 1),12 2

22 2

⎡
⎣⎢

⎤
⎦⎥ (2.15)

 

S
S

S X( ) 1
0 = on (0, 1) × {1},1

12

22

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ (2.16)

 

S
S

S X( ) 0
1 = on {1} × (0, 1),1

11

21

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ (2.17)

such that u u= = 01 2 at X = (0, 0). Under these conditions, at a corner
where one of the adjacent edges is subject to Dirichlet conditions and
the other to Neumann conditions, the Dirichlet conditions take priority,
and when both edges meeting at a corner are subject to Neumann
conditions, these conditions are imposed simultaneously at the corner.
• However, a different non-homogeneous solution is obtained under

the following mixed boundary conditions:

a X
a Xu X( ) = on (0, 1) × {0},11 1

21 1

⎡
⎣⎢

⎤
⎦⎥ (2.18)

a X
a Xu X( ) = on {0} × (0, 1),12 2

22 2

⎡
⎣⎢

⎤
⎦⎥ (2.19)

a X a
a X au X( ) = +

+ on (0, 1/2) × {1},11 1 12

21 1 22

⎡
⎣⎢

⎤
⎦⎥ (2.20)

a a X
a a Xu X( ) = +

+ on {1} × (0, 1/2),11 12 2

21 22 2

⎡
⎣⎢

⎤
⎦⎥ (2.21)

 

S
S

S X( ) 1
0 = on (1/2, 1) × {1},1

12

22

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ (2.22)

 

S
S

S X( ) 0
1 = on {1} × (1/2, 1),1

11

21

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ (2.23)

such that u u= = 01 2 at X = (0, 0). As before, at a boundary point where
one of the adjacent edges is subject to Dirichlet conditions and the other
to Neumann conditions, the Dirichlet conditions take priority, and
when both edges meeting at a point are subject to Neumann conditions,
these conditions are imposed simultaneously at that point.

The solution of Eq. (2.4) with the boundary conditions (2.18)–(2.23)
is illustrated schematically in Fig. 4(b). Thus the given Cauchy stress σ
is again obtained, uniform throughout the deforming domain.

This case can be directly extended to the case when the unit square

is partitioned as an arbitrary number of uniform right angled triangles,
such that, the resulting solution has the deformation gradient equal to F
on every deforming triangle except for the top right-hand side triangle,
where the deformation gradient is F. Therefore, we conclude that there
are infinitely many possible deformed states with non-homogeneous
strain distribution giving the same homogeneous Cauchy stress
throughout the elastic domain, provided that the Cauchy stress tensor
given by (1.3), or by (1.5) if the material is incompressible, can be
expressed equivalently in terms of two different homogeneous left
Cauchy–Green tensors B FF= T and B FF= T , where F and F are rank-
one connected.

2.2.2. Homogeneous deformation
In order to obtain the homogeneous left Cauchy–Green tensor B

throughout the entire domain, the following boundary conditions can
be prescribed:

• Homogeneous Dirichlet boundary conditions:

a X a X
a X a Xu X( ) = +

+ on (0, 1) × {0, 1} ∪ {0, 1} × (0, 1),11 1 12 2

21 1 22 2

⎡
⎣⎢

⎤
⎦⎥ (2.24)

such that u u= = 01 2 at X = (0, 0).

Solving Eq. (2.4) with the Dirichlet boundary conditions (2.24)
gives the left Cauchy–Green tensor B and the first Piola–Kirchhoff stress
tensors S1 throughout the deforming domain, as indicated in Fig. 5(a).
Then the given Cauchy stress σ is produced throughout the deforming
square.

The same homogeneous solution is found when one side of the
square is free and the Dirichlet boundary conditions (2.24) are
prescribed on the remaining three sides, as shown in Fig. 5(b).

• Alternatively, the above homogeneous solution can be obtained by
imposing the following mixed boundary conditions, as indicated in
Fig. 6(a):

a X
a Xu X( ) = on (0, 1) × {0},11 1

21 1

⎡
⎣⎢

⎤
⎦⎥ (2.25)

a X
a Xu X( ) = on {0} × (0, 1),12 2

22 2

⎡
⎣⎢

⎤
⎦⎥ (2.26)

S
SS X( ) 1

0 = on (0, 1) × {1},1
12

22

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ (2.27)

S
SS X( ) 0

1 = on {1} × (0, 1),1
11

21

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ (2.28)

such that u u= = 01 2 at X = (0, 0). In this case also, at a corner where
one of the adjacent edges is subject to Dirichlet conditions and the other
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Fig. 4. Elastic square with mixed boundary conditions, partitioned into right-angled triangles with homogeneous deformation gradient in each triangle.
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to Neumann conditions, the Dirichlet conditions take priority, and
when both edges meeting at a corner are subject to Neumann condi-
tions, these conditions are imposed simultaneously at the corner.
• Other mixed boundary conditions leading to the same homogeneous

solution may also be given in the following form:

a X
a Xu X( ) = on (0, 1) × {0},11 1

21 1

⎡
⎣⎢

⎤
⎦⎥ (2.29)

a X
a Xu X( ) = on {0} × (0, 1),12 2

22 2

⎡
⎣⎢

⎤
⎦⎥ (2.30)

a X a
a X au X( ) = +

+ on (0, 1/2) × {1},11 1 12

21 1 22

⎡
⎣⎢

⎤
⎦⎥ (2.31)

a a X
a a Xu X( ) = +

+ on {1} × (0, 1/2),11 12 2

21 22 2

⎡
⎣⎢

⎤
⎦⎥ (2.32)

S
SS X( ) 1

0 = on (1/2, 1) × {1},1
12

22

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ (2.33)

S
SS X( ) 0

1 = on {1} × (1/2, 1),1
11

21

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ (2.34)

such that u u= = 01 2 at X = (0, 0). At a boundary point where one of the
adjacent edges is subject to Dirichlet conditions and the other to
Neumann conditions, the Dirichlet conditions take priority, and when
both edges meeting at a point are subject to Neumann conditions, these
conditions are imposed simultaneously at that point.

This case is illustrated graphically in Fig. 6(b), and can be extended
directly to the case when the unit square is partitioned as an arbitrary
number of uniform right angled triangles.

3. Deriving suitable deformations

Given the strain energy density function for a homogeneous
isotropic hyperelastic material, suitable elastic deformations can be
found, such that the corresponding Cauchy stress tensor can be
expressed equivalently in terms of two different homogeneous left
Cauchy–Green tensors B FF= T and B FF= T , where F and F take the
form (2.9) and (2.11), respectively, and are rank-one connected.

For unconstrained materials, writing the components of the Cauchy
stress described by (1.3) in the two equivalent forms leads to the
following three simultaneous equations:

   β β B β B β β B β BB B B B B B( ) + ( ) + ( ) = ( ) + ( ) + ( ) ,0 1 11 −1 22 0 1 11 −1 22 (3.1)

   β β B β B β β B β BB B B B B B( ) + ( ) + ( ) = ( ) + ( ) + ( ) ,0 1 22 −1 11 0 1 22 −1 11 (3.2)

  β β B β β BB B B B[ ( ) − ( )] = [ ( ) − ( )] ,1 −1 12 1 −1 12 (3.3)

where

B F F= + ,11 11
2

12
2 (3.4)

B F F F F= + ,12 11 21 12 22 (3.5)

B F F= + ,22 21
2

22
2 (3.6)

and

  B F F= + ,11 11
2

12
2

(3.7)

    B F F F F= + ,12 11 21 12 22 (3.8)

  B F F= + .22 21
2

22
2

(3.9)

The rank-one connectivity condition means

   F F F F F F F F( − )( − ) = ( − )( − ).11 11 22 22 12 12 21 21 (3.10)
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Fig. 5. Elastic square with (a) uniform Dirichlet boundary conditions and (b) with one free side and Dirichlet boundary conditions on the remaining three sides, partitioned as two right-
angled triangles, and the corresponding homogeneous deformation gradient indicated in each triangle.
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Fig. 6. Elastic square with mixed boundary conditions, partitioned as two right-angled triangles, and the corresponding homogeneous deformation gradient indicated in each triangle.
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From the four nonlinear equations (3.1)–(3.3) and (3.10), the
components    F F F F{ , , , }11 12 21 22 of the deformation gradient F can be
determined, at least in principle, in terms of the components
F F F F{ , , , }11 12 21 22 of the deformation gradient F.

For incompressible materials, the components of the Cauchy stress
described by (1.5) expressed in the two equivalent forms lead to the
following three simultaneous equations:

   p β B β B p β B β BB B B B+ ( ) + ( ) = + ( ) + ( ) ,0 1 11 −1 22 0 1 11 −1 22 (3.11)

   p β B β B p β B β BB B B B+ ( ) + ( ) = + ( ) + ( ) ,0 1 22 −1 11 0 1 22 −1 11 (3.12)

  β β B β β BB B B B[ ( ) − ( )] = [ ( ) − ( )] ,1 −1 12 1 −1 12 (3.13)

where the components of the left Cauchy–Green tensors B and B are
given by (3.4)–(3.6) and (3.7)–(3.9), respectively, and p0 and p0 are the
associated hydrostatic pressures.

In this case, in addition to the condition (3.10), the following
incompressibility constraints must be satisfied:

F F F F− = 0,11 22 12 21 (3.14)

   F F F F− = 0.11 12 12 21 (3.15)

From the four nonlinear equations (3.10)–(3.15), the components
   F F F F{ , , , }11 12 21 22 of the deformation gradient F and the hydrostatic
pressure p0 can be determined in terms of the components
F F F F{ , , , }11 12 21 22 of the deformation gradient F and the hydrostatic
pressure p0.

Example 3.1. We offer a simple example of two homogeneous
deformations leading to the same Cauchy stress in a given
unconstrained homogeneous isotropic hyperelastic material
characterised by the following strain energy density function:

W μ I I μ I κ I μ

μ κ

F
F

F F

=
2

( − 3) +
4

( − 3) +
2

( − 1) =
2 (det )

− 3

+
4

(∥ ∥ − 3) +
2

(det − 1) ,

∼

∼

3
−1/3

1 1
2

3
1/2 2

1/3

2

2 2 2

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

(3.16)

where μ > 0 is the infinitesimal shear modulus, κ > 0 is the
infinitesimal bulk modulus, μ∼ is an additional positive constant
independent of the deformation, and ∥·∥ is the Frobenius norm. This
energy function is not rank-one convex due to the presence of the
μ − term∼ . Nevertheless, it is LH-elliptic in a neighbourhood of the
identity [8].

For the material model (3.16), differentiating with respect to the
strain invariants gives:

W
I

μI μ I W
I

W
I

μI I κ I I∂
∂

=
2

+
2

( − 3), ∂
∂

= 0, ∂
∂

= −
6

+
2

( − 1),
∼

1
3
−1/3

1
2 3

1 3
−4/3

3
−1/2

3
1/2

and the coefficients (1.4) take the form:

β μI I κ I β μI μ I I β= −
3

+ ( − 1), = + ( − 3), = 0.∼
0 1 3

−5/6
3
1/2

1 3
−5/6

3
−1/2

1 −1

(3.17)

We consider two homogeneous deformations with the following
deformation gradients:


k s k s

F F=
0

0 1 0
0 0 1

, =
− 0

0 1 0
0 0 1

,
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

(3.18)

where k and s are positive constants, hence the rank-one connectivity
condition (2.2) is satisfied.

The corresponding left Cauchy–Green tensors are, respectively,


k s s

s
k s s

sB FF B FF= =
+ 0

1 0
0 0 1

, = =
+ − 0

− 1 0
0 0 1

,T T
2 2 2 2⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

(3.19)

and, by (1.3) and (3.14), the associated Cauchy stresses take the form

 σ σβ β β βB I B B I B( ) = + , ( ) = + .0 1 0 1 (3.20)

For these deformations,  kF Fdet = det = > 0, and if s ≠ 0, then
F F≠ and B B≠ . A graphical illustration of such deformations is shown

in Fig. 7.
Since I k s= + + 21

2 2 and I k=3
2 are invariants for both B and B, it

follows that, in (3.20),

β μk k s κ k

β μk μk k s

= −
3

( + + 2) + ( − 1),

= + ( + − 1).∼
0

−5/3 2 2

1
−5/3 −1 2 2

It can be verified that, if μ μ/(3 ) < 4∼ −4/3 and
s μ μ0 < < 1 − 4[ /(3 )]∼ 3/4 , then there exists k ∈ (0, 1)0 , such that, for

k k= 0,

β μk k s κ k β= −
3

( + + 2) − (1 − ) < 0, = 0,0 0
−5/3

0
2 2

0 1

and all the equations (Eqs. (3.1)–(3.3) and (3.10)) are satisfied, with the
common Cauchy stress tensor produced by these deformations taking
the form

σ σ βB B I( ) = ( ) = .0

Note that, our example does not violate the uniqueness result from
linear elasticity even if s > 0 is small. If s → 0 and k → 1, corresponding
to the linear elastic limit in (3.19), then s k+ − 12 2 is arbitrarily small,
and β μk μk k s μ= + ( + − 1) → ≠ 0∼

1
−5/3 −1 2 2 . Hence if β = 01 and s is

close to zero, then k cannot be close to one, and therefore the two
different deformation gradients (3.18), which are rank-one connected,
do not correspond to infinitesimal deformations.

Furthermore, if different k k, ∈ (0, 1)1 2 exist, such that β = 01 with
the same s > 0, then two different deformation gradients


k s k s

F F=
0

0 1 0
0 0 1

and =
− 0

0 1 0
0 0 1

,
1 1⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

satisfy (2.2) and produce the same Cauchy stress

σ β μk k s κ kI I= = −
3

( + + 2) − (1 − ) ,0 1
−5/3

1
2 2

1
⎡
⎣⎢

⎤
⎦⎥

and similarly,


k s k s

F F=
0

0 1 0
0 0 1

and =
− 0

0 1 0
0 0 1

,
2 2⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

are rank-one connected and produce the Cauchy stress

σ β μk k s κ kI I= = −
3

( + + 2) − (1 − ) .0 2
−5/3

2
2 2

2
⎡
⎣⎢

⎤
⎦⎥

Looking back at our example (3.16), we have constructed an elastic
strain energy which is not rank-one convex and which allows for
inhomogeneous deformations leading to a homogeneous Cauchy stress.
This leads to the following question: is it possible to find a rank-one
convex elastic energy, such that the Cauchy stress σ is not injective and
there exists a homogeneous state with deformation gradient F, such that
σ σF F a n( ) = ( + ⊗ ), with a and n as given in (2.1). The answer to this
question, however, is negative, and we show this in [13].

4. Conclusion

We established here that, in isotropic finite elasticity, unlike in the
linear elastic theory, homogeneous Cauchy stress does not imply
homogeneous strain. To demonstrate this, we first identified such
situations with compatible, continuous deformations on a specific
geometry. Then we provided an example of an isotropic strain energy
function, such that, if a material is described by this function and
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occupies a domain similar to those analysed, then the expressions of the
homogeneous Cauchy stress and the corresponding non-homogeneous
strains could be written explicitly. We derived our example from a non
rank-one convex elastic energy.
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Fig. 7. Elastic square partitioned into two right-angled triangles, showing (a) the reference configuration, (b) the deformed state with the deformation gradient equal to F on each
triangle, and (c) the deformed state with the deformation gradient equal to F on one triangle and F on the other.
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