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Damage detection in a composite 
wind turbine blade using 3D 
scanning laser vibrometry 
 

Ryan Marks1, Clare Gillam1, Alastair Clarke1, Joe Armstrong2 and Rhys Pullin1  

Abstract 

As worldwide wind energy generation capacity grows, there is an increasing demand to ensure structural 
integrity of the turbine blades to maintain efficient and safe energy generation. Currently traditional non-
destructive testing methods and visual inspections are employed which require the turbine to be out-of-
operation during the inspection periods, resulting in costly and lengthy downtime.  This study 
experimentally investigates the potential for using Lamb waves to monitor the structural integrity of a 
composite wind turbine blade that has been subject to an impact representative of damage which occurs 
in service. 3D scanning laser vibrometry was used to measure Lamb waves excited at three different 
frequencies both prior to, and after, impact to identify settings for an optimal system. Signal processing 
techniques were applied to the datasets to successfully locate the damage and highlight regions on the 
structure where the Lamb wave was significantly influenced by the presence of the impact damage. 
Damage size resulting from the impact was found to correlate well with the laser vibrometry results. The 
study concluded that acousto-ultrasonic based structural health monitoring systems have great potential 
for monitoring the structural integrity of wind turbine blades. 
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Introduction 

As technology continues to advance and world population increases there is an ever increasing demand 

for energy. Due to limited reserves of fossil fuels and increasing pressure to reduce environmental impact, 

renewable methods of producing energy are forming an increasingly important part of the world’s energy 

capacity.  

A long established alternative to fossil fuel power generation is wind energy. Globally, 51,477 MW of new 

wind power capacity was added in 2014 with the UK contributing 1,736 MW (3.4%) of generation, bringing 

the total global wind generation capacity at year end to 369,553 MW1. 

To maintain optimum performance of the wind turbine fleet, the structural integrity of the turbine has to 

be ensured. Blade failures are the most common structural failure on a wind turbine2, 3 with tip breaks 

being the most prevalent type of blade failure. Although the blades typically represent less than 20% of 

the overall capital cost of the turbine, they are the biggest source of maintenance costs4. Data from in-

service operation of wind turbines has shown that the blades have the second highest failure rate of all 

of the components of the turbine5.  

Of the wind turbines currently in operation, 51% of blade damage is attributed to manufacturing defects 

whereas 49% of damage is as a result of in-service operation. Of all damage events, 16% of all  damage is 

attributed to foreign object damage while the turbine blade is in-service (with lightning strikes (20%) and 

the tips deflecting causing them to hit the tower (13%) making up the rest of the 49%)6. In optimum wind 

conditions, large wind turbine blade tips can move through the air at relative speeds of up to 320 km/h 

(200 mph)7 making impacts from even small objects significant. Damage to both the leading edge and 

blade surface (from rain, hail, ice, sand, salt, UV rays and insects)8 is  detrimental to aerodynamic efficiency 

and as a result power generation is compromised. Serious structural damage can also be  caused by 

lightning and bird strikes. A detailed discussion of turbine blade damage is presented in a study conducted 

at Risø National Laboratory9. 
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Small impacts can create barely visible impact damage (BVID) which, if allowed to grow under the 

aerodynamic loading, could necessitate significant repair works or result in catastrophic failure of the 

blade structure. BVID is a term used that depends on many factors such as colour of the structure, 

illumination and angle of viewing10 although it has been suggested that BVID usually lies within the range 

of 0.25 - 0.5 mm11. Non-destructive testing (NDT) methods are currently conducted to detect BVID 

however blade removal is usually required. Maintaining the structural performance of the blades is 

therefore vital to the turbine’s efficiency12.  

It is recommended that wind turbine blades undergo a full in-service visual inspection on a yearly basis to 

significantly reduce the risk of catastrophic failure12. Visual inspection and traditional NDT techniques are 

currently employed for installed blade maintenance, although due to turbine size (ranging from 26 - 

128m),5 height and blade location these are costly, lengthy processes that are subject to human error.  

There are currently condition monitoring (CM) and supervisory control and data acquisition (SCADA) 

systems in place in which fault detection and diagnostic algorithms are implemented to provide an early 

warning system13. However, the data received only detects the fault based on the response of the turbine 

to damage and does not characterise or locate it.  SCADA and CM systems monitor a large range of 

parameters, including direct wind measurements, vibration, temperature and the efficiency of the energy 

conversion process (e.g. power output, blade pitch angle, rotor speed). There is currently typically only a 

60 minute window between detection and failure when using a SCADA system8. Structural health 

monitoring (SHM) studies suggest that defects could be detected long before they have an adverse effect 

on the performance of the system14. There are many SHM techniques which are currently being developed 

to continually monitor the structure of wind turbine blades for damage. Acoustic Emission (AE) is a 

powerful SHM technique a which is showing a great deal of potential. Many laboratory and field based 
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studies have been conducted using this technique.15-18 This technique benefits from being a passive 

technique meaning that no external excitation is required and can be used for detecting and locating a 

range of damage mechanisms.19 However, the drawback to technique is that other acoustic signals (such 

as mechanical noise from the gearbox) may be incorrectly interpreted as a damage signal. 

Thermal imaging methods have become an important tool for SHM of wind turbines. This is typically split 

into two approaches; active and passive. The passive approach is beneficial as it can be conducted while 

the wind turbine is in operation from the ground by differences in temperature to that of ambient 

although the development of this techniques is still at an early stage20. The active approach requires 

thermal excitation to create the thermal contrast on the turbine blade highlighting regions of high stress 

and hence damage. Techniques such as thermoelastic stress method have shown great potential for the 

monitoring of wind turbine blades21-23. 

Modal-based techniques have been a common method of conducting SHM24 on wind turbine blades25, 26. 

The structure is either excited from the ambient modal response during operation or from some external 

excitation such as a shaker. The modal response is measured by sensors on the structure or other vibration 

measurement technique such as laser vibrometry27. When damage is present, such as fatigue cracks which 

affect structural stiffness, the response changes. By comparing this response with the healthy state, the 

presence of damage can be identified and to some degree localised.  

Fibre optic methods have become a popular method of monitoring blade structural performance. Fibre 

optics can be used to measure the light intensity along the length of the fibre. As the structure is loaded, 

the fibre deforms reducing the light intensity and hence the loading can be monitored for the onset of 

damage. Fibre Bragg gratings use a series of grates which reflect a narrow band of a broadband light 

source. As the structure deforms, the grating varies causing the wavelength of light reflected light to vary. 
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This has been used to some success in monitor crack growth28 and impact damage29 as well as showing 

potential to sense AE sources30-32. These technique can be applied to both new and in-service blades. 

A summary of commonly used SHM techniques have been presented here although there are many other 

SHM methods such as eddy current monitoring, electrical resistance and vacuum pressure monitoring 

used in other applications33. Comprehensive reviews of studies for the SHM for wind turbines are 

presented by Yang et al.34 and Ciang et al.13 

By implementing a cost-effective SHM system the down time of the turbine will be reduced and overhaul 

logistics can be optimised and pre-planned; lowering the turbine’s life cycle costs13. This is particularly 

significant for turbines installed in remote areas such as offshore. 

A long-established technique for detecting damage in structures is by using acousto-ultrasonic-induced 

Lamb waves.  The principle involves exciting a piezoelectric transducer mounted to the structure’s surface 

which induces a Lamb wave that propagates through the structure and is then detected by another 

transducer mounted at a different location on the surface.  If damage occurs within the transmission path 

between the two sensors, the signal propagation is altered resulting in a quantifiable difference in the 

signal received. This technique can be extended to networks of multiple sensors to improve detection 

capability.  

Following a review of Lamb wave based studies using laser vibrometry to detect impact damage in 

composite components for SHM applications, this paper presents the results of an experimental study 

into the interaction of Lamb waves with impact damage on a composite wind turbine blade using 3D 

scanning laser vibrometry. Visualisation of both this out-of-plane and in-plane components of the Lamb 

wave interaction with impact on a real structure is presented. Results showing Lamb wave interaction 
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along with post-processing of the vibrometry data using RMS baseline subtraction techniques are 

presented and discussed. Novelty is found within this study with the consideration of both of the 

components (particularly the in-plane) and the visual and signal processing methods used to present the 

interaction with the impact damage. This advances understanding of the interaction of the different 

fundamental Lamb modes as well as highlighting areas suitable for the placement of sensors for an 

acousto-ultrasonic system. The results are further compared to surface profilometry and white light 

interferometry measurements of the impact site. The extent of the impact damage was considered to be 

‘barely visible’. The surface measurements are shown to correlate with the interaction of the Lamb waves 

shown in the laser vibrometry results, demonstrating the sensitivity of Lamb wave-based SHM systems to 

detect impact damage.  

Lamb waves 

Lamb waves are traction free plate waves  first observed by Lamb35.  Through the combination of shear 

and pressure components two main modes of a Lamb wave are formed; symmetrical (S) or extensional 

modes which can be represented by cosine functions, and asymmetric (A) or flexural modes which can be 

represented by sine functions.  The full numerical solutions are presented by Rose36. 

Dispersion is a phenomenon where the velocity of a Lamb wave is a function of its excitation frequency. 

This is an important consideration for pulse-receive type SHM systems where detecting damage is 

dependent on the wavelength of the Lamb wave. The mathematical solutions to Lamb waves demonstrate 

there are two variables that determine the dispersion of a Lamb wave, the frequency and the plate 

thickness. This is known as the frequency-thickness product. By using this relationship it is possible to 

calculate higher order modes of Lamb waves37. The fundamental modes of S0 and A0 are only typically 
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excited in an SHM system. If higher order modes are excited, their amplitude tends to be considerably 

less than that of the principle modes meaning that their use in SHM systems is limited38.  

There have been many studies conducted using acousto-ultrasonic Lamb waves to detect the presence of 

damage on a structure. Pullin et al. successfully used acousto-ultrasonic Lamb waves to detect the 

presence of impact damage on a scale carbon fibre wing structure39. Measurements of Lamb waves were 

taken pre and post impact using macro-fibre composite (MFC) transducers. By using the pre-impact 

measurements as a baseline, a quantitative comparison of the received waveforms was made using a 

cross-correlation technique. The analysis showed a significant change in the wave form by a reduction in 

cross-correlation coefficient as well as demonstrating the potential for energy harvesting using acousto-

ultrasonic Lamb waves. However, the interaction of the waves with the damage could not be observed 

visually unlike the results presented in this study. 

Laser vibrometry 

3D scanning laser vibrometry is a non-contact vibration measurement technique. The technique uses 

three laser heads to measure the Doppler-shift between the backscattered light and a reference signal.  

This is proportional to the vibrational velocity.  Through trigonometric techniques both in-plane and out-

of-plane velocities of vibration are measured.  

Scanning mirrors allow the lasers to be steered making it is possible to measure vibration at multiple 

locations on a structure in a relatively short period of time. This enables a full-field 3D representation of 

a wave to be created.  
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As laser vibrometry is a non-contact measurement technique, the presence of additional sensor mass on 

the structure which may contribute to mass dampening is eliminated. The technique is broadband and 

has a transfer function of unity allowing an accurate measurement of Lamb waves to be made40, 41. 

Laser vibrometry damage detection studies 

Laser vibrometers were first developed as a measurement tool in the 1980s but had limited sensitivity 

and low signal-to-noise ratio (SNR) limiting their application. Substantial advances in computation during 

the 1990s, the instrumentation became mature enough for widespread use42. Vibrometry technology 

advanced further towards the end of the last century reaching maturity level making it possible to 

measure ultrasonic elastic waves.43-46. The technique was soon after developed further and applied to 

detecting defects in composite materials using Lamb waves47-49.  

Laser vibrometry has been used to inspect turbine blades for damage in many studies50-52. The focus of 

these studies however has been to investigate modal responses of healthy and damaged blades. The 

results from these studies do not locate or characterise the damage using ultrasonic techniques, which is 

the explicit aim of the work reported in this paper.  

There is limited published works using laser vibrometry and ultrasonic techniques to assess the structural 

integrity of wind turbine blades. A study by Lee et al.6 investigated the viability of using a pylon mounted 

laser vibrometer with integrated transducers used to initiate a Lamb wave as a non-contact method which 

can inspect the full length of the turbine blade. The focus of the study was the development of a cost-

effective, portable laser vibrometer for in-service monitoring of wind turbine fleets. Image processing 

techniques were used to quantitatively compare baseline images with images that showed the presence 

of damage. The result of the analysis gave a visual representation of the damage and its location. The 
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main focus of this study was the interaction of Lamb waves with damage for the development of an SHM 

system comprised of a network of sensors but rather the development of a laser vibrometer for in-service 

use. 

Aside from the applied study of wind turbines, studies have been conducted using laser vibrometry to 

investigate Lamb wave interaction with impact damage in composites. A study by Grigg et al.53 

investigated Lamb wave interaction with impact damage in a flat carbon fibre panel using 3D scanning 

laser vibrometry. The results showed little interaction of the S0 mode with the impact damage but a 

significant disruption to the propagation of the A0 mode. It was found that the presence of the impact 

damage had a greater effect on Lamb waves of higher frequencies. 

Schubert et al.54 investigated Lamb wave interaction with impact damage in carbon fibre reinforced 

plastics using 3D scanning laser vibrometry. It was found that the A0 mode showed the strongest 

interaction with the damage. Phase-based techniques were used to evaluate the time signal difference 

before and after damage and a ratio of the energy of the out-of-plane component was obtained. The 

study concluded that phase based signal processing was more sensitive to impact damage than amplitude 

based methods 

A study by Sohn et al.55 investigated Lamb wave interaction with impact induced delaminations in 

composite plates using a 1D scanning laser vibrometer to measure the out-of-plane component of Lamb 

waves. The measurements were post-processed using an outlier analysis to quantify the size and shape 

of the damage. Frequency-wavenumber domain and Laplacian image filters were also applied to 

measurements to enhance the visualisation of the defects. The technique was also applied to 

delaminations of composite stiffeners highlighting the potential for image based techniques for SHM 

applications. 
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Staszewski et al.56 used 3D laser vibrometry to measure Lamb waves generated by a piezo-ceramic 

transducer bonded to the surface of an aluminium plate. A fatigue crack was grown in the aluminium 

specimen from a spark eroded notch. The interaction of Lamb waves excited at 75, 190 and 325 kHz with 

the fatigue crack was investigated. The capability of the 3D vibrometer was exploited allowing an in-depth 

study of the interaction of both S0 and A0 modes with the damage to be conducted.  

Experimental study 

A commercial 1.8m composite wind turbine blade constructed from a short glass fibre chopped strand 

mat with a black epoxy matrix was used for this study, as shown in Figure 1. The placement of the fibres 

was random and hence the direction of the fibre placement was inhomogeneous (N.B. this is not in 

reference to the material properties being inhomogeneous). The structure of the blade was hollow, made 

from two 3mm thick matched halves bonded together.  

 

Figure 1. Composite wind turbine blade used throughout the experiments, demonstrating the location 
of the area of investigation. 

An area of investigation of dimensions 50mm x 120mm was located on the low pressure face 1.17m from 

the root of the blade as shown in Figure 2. 

Area of 

Investigation 
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Figure 2. Dimensions of the area of investigation and location of the impact 

The transducer selected for this study was a commercially available PANCOM Pico-Z (200kHz – 500kHz) 

which was acoustically coupled to the blade using Loctite® Ethyl-2-Cyanoacrylate adhesive.  The small face 

size of this sensor makes it more representative of a point source than a larger sensor. The frequency 

response within the operating range is also relatively flat. The transducer was located at a distance of 

115mm from the impact site. This was sufficient distance to ensure that that the Lamb waves had fully 

formed before interacting with the impact damage. 

3D scanning laser vibrometry setup 

Three transducer excitation frequencies of 100kHz, 200kHz and 300kHz were selected to investigate the 

sensitivity of different wavelengths to the presence of impact damage. Although 100kHz lies outside of 

the published operating resonance of the transducer it has shown to produce useful results in previous 

studies53, 57, 58. Due to the maximum sampling frequency of the vibrometer being 2.56MHz, frequencies 

above 300kHz were not considered due to insufficient temporal resolution  

A 150V, 5-cycle sine burst was generated by a Mistras Group Limited (MGL) WaveGen function generator 

software which was connected to MGL μdisp/NB-8 hardware. A 10 V peak-to-peak reference signal was 

Pico-Z transducer Area of 
investigation 

Impact 
site 

115mm 
50mm 

120mm 
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also generated to trigger the acquisition of the vibrometer. A repetitive trigger rate of 20 Hz was used as 

it gave sufficient time for the Lamb wave to attenuate between bursts.  

A Polytec PSV-500-3D-M Scanning Vibrometer was used for this study. The area of investigation comprised 

of 2514 measurement points which gave sufficient spatial resolution for wave reconstruction. To improve 

the signal-to-noise ratio the area of investigation was coated with retro-reflective glass micro-beads. 200 

measurements at each point were recorded, and the average calculated to further improve the signal to 

noise ratio. 

4096 samples were taken giving an overall sample time of 1.6 ms and a resolution of 390.625 ns.  

Two sets of measurements were taken; prior to impact, which served as a baseline, and after impact.  

A purpose built steel stanchion was used to support the turbine blade while the laser vibrometry 

measurements were taken. This allowed the blade to be removed for impacting and replaced in the same 

position relative to the laser heads.   

Impact Damage 

The blade was secured at the base to a steel stanchion and supported on both sides of the area of 

investigation. The blade was impacted using a 20mm radius impactor with impact energy of 10 Joules in 

an INSTRON dynatup 9250HV impact test machine. The impact caused BVID on the surface as shown in 

Figure 3. The impact was representative of a hail stone impact. 
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Figure 3. BVID on the turbine blade after being impacted. The retro-reflective beads have been removed 
around the impact site for clarity.  

Laser vibrometry results and discussion 

For each set of results, a 0μs datum point was taken immediately as the S0 mode reached the 

measurement field. A selection of images are then shown in Figures 4 to 12 which illustrate the 

propagation of the Lamb waves through the area of investigation. For consistency, the time windows for 

each excitation frequency have been kept the same. As wave velocity increases with frequency due to 

dispersion, fewer images are presented for the higher frequency excitations. For each set of post-impact 

measurements, the white dashed line denotes the impact site.  

100kHz results  

The results of the resultant magnitudes (the magnitude calculated from the three components measured 

by the vibrometer) from the pre and post impact scans are shown in Figure 4 and Figure 5 respectively. 

Studying the pre-impact results, it is apparent that the S0 mode propagated away from the source and 

appears either not to reflect off the edges of the turbine blade or has dissipated by that point, or by the 

time any reflections have reached the area of investigation. 

The A0 mode however appears to be significantly disrupted as it propagated through the area of 

investigation. There are two explanations for this. The first is the interaction of edge reflections with the 

propagating wave. However it is also likely that the scattering of the A0 mode observed is the result of the 
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fibre distribution in the material. As the fibres are randomly distributed, it results in a inhomogeneous 

microstructure 59. This can cause scattering of the Lamb waves which results in a high level of noise in the 

propagating wave60. This is observed from 90μs onwards. 

  
0µs 15µs 

  
30µs 45µs 

  
60µs 75µs 

  
90µs 105µs 

  
120µs 135µs 

  
150µs 165µs 

  
180µs 195µs 

 
Figure 4. Resultant magnitude results of the 100kHz excitation vibrometry scan of the blade pre-impact  
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60µs 75µs 

  
90µs 105µs 

  
120µs 135µs 

  
150µs 165µs 

  
180µs 195µs 

 
Figure 5. Resultant magnitude results of the 100kHz excitation vibrometry scan of the blade post-impact  

Comparing the two sets of results, the S0 mode appears to be mostly unaffected by the presence of the 

impact damage. This concurs with the findings of Grigg et al.53. The A0 Lamb mode does appear however 
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to be affected by the presence of the impact damage. This can be seen in the results at 90μs - 120μs 

although it is not clear when the resultant magnitude is plotted. 

As the A0 Lamb mode is mostly out-of-plane, this component was isolated and plotted separately for 

clarity as shown in Figure 6. It is evident that the out-of-plane component of the Lamb wave interacts with 

the damage causing a disruption in the wave front. This suggests that the  unintelligibility  of the 

interaction of the A0 mode with the damage in the resultant magnitude plots in Figure 4 and Figure 5 is 

mostly caused by noise from the in-plane components.  

Pre-impact Post-Impact 

  
90µs 

  
105µs 

  
120µs 

 

Figure 6. 100kHz excitation out-of-plane component highlighting the Lamb wave interaction with the 
impact damage 
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200kHz results 

The results of the resultant magnitudes from the pre and post impact scans are shown in Figure 7 and 

Figure 8 respectively. 

Comparing these results to those from the 100kHz excitation there is an increase in amplitude of the 

measured Lamb wave. This can be attributed to this 200kHz being inside of the transducer’s operating 

resonance. 

  
0µs 15µs 

  
30µs 45µs 

  
60µs 75µs 

  
90µs 105µs 

 

Figure 7. Resultant magnitude results of the 200kHz excitation vibrometry scan of the blade pre-impact  

As with the results from the 100kHz excitation, the S0 mode appears to be unaffected by the presence of 

the impact damage in the resultant magnitudes results. Comparing the S0 propagation in both the pre and 

post impact results at 45μs it is not possible to distinguish the presence of damage by visual observation 
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alone especially as there appears to be no disruption in the wave front to the right of the impact damage 

as observed with the A0 mode in Figure 6.   

The effects of attenuation and dispersion of higher frequency waves, coupled with high levels of noise, 

resulted in a highly disrupted, low amplitude A0 wave front by the time the mode reaches the impact site 

as shown at 90µs. As with the 100kHz results, this makes it difficult to determine whether the Lamb wave 

interacted with the damage through means of visual observation alone.  

  
0µs 15µs 

  
30µs 45µs 

  
60µs 75µs 

  
90µs 105µs 

 

Figure 8. Resultant magnitude results of the 200kHz excitation  vibrometry scan of the blade post-
impact  

To verify the Lamb wave interaction, again the out-of-plane component was isolated and plotted 

separately as shown in Figure 9. 
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Pre-impact Post-Impact 

  
45µs 

  
90µs 

 
Figure 9. 200kHz excitation out-of-plane component highlighting the Lamb wave interaction with the 
impact damage 

The results at 45µs show that there is possibly some interaction with the S0 mode. This may be indicated 

in the post-impact results where there is a significantly lower amplitude than in the pre-impact results 

due to the presence of the impact damage. This can be justified by the shorter wavelength of the 200kHz 

excitation S0 mode compared to that of the 100kHz excitation. However, there appears to be no disruption 

in the wave front to the right of the impact site which also suggest that there is limited interaction with 

the impact damage. It is therefore not conclusively possible to determine the presence of the impact 

damage using the S0 mode from the 200kHz excitation by visual observation alone. 

It is difficult to determine from these results whether the A0 mode is influenced by the presence of the 

damage as demonstrated at 90µs. It is apparent there is a difference in the results and it could be argued 

that the reduction in amplitude in the post-impact results was due to the presence of the damage. 

However, due to the high levels of disturbance in the wave front this is also by no means conclusive.   

 

300kHz results 
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The results of the resultant magnitudes for the pre and post impact 300kHz excitation are shown Figure 

10 and Figure 11 respectively. 

The increased wave velocity due to dispersion is apparent when compared to the results of the 100kHz 

excitation. As with the two other excitation frequencies, the S0 mode in the resultant magnitude results 

appears to be mostly unaffected by the impact damage. However, by the time the S0 mode interacts with 

the impact damage, the amplitude has significantly reduced.    

  
0µs 15µs 

  
30µs 45µs 

  
60µs 75µs 

 

Figure 10. Resultant magnitude results of the 300kHz excitation vibrometry scan of the blade pre-impact 

The increased attenuation of the higher frequency excitation is apparent in this results set. The A0 mode 

is measured in the area of investigation with a peak amplitude of 1mm/s. At 45µs the amplitude of the 

wave has significantly decreased. This decrease in amplitude with the added effects of edge reflections 

and scattering due to the microstructure makes it near impossible to determine Lamb wave interaction 

from just studying the resultant magnitude time-domain results alone. In turn, adjusting the colour scale 

to study the low amplitude Lamb wave activity does not help to clarify the results.   
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0µs 15µs 

  
30µs 45µs 

  
60µs 75µs 

 

Figure 11. Resultant magnitude results of the 300kHz excitation vibrometry scan of the blade pre-impact  

As with the results from the previous two excitation frequencies, the out-of-plane mode was isolated and 

presented in Figure 12. 

Pre-impact Post-Impact 

  
60µs 

 
Figure 12. 300kHz excitation out-of-plane component highlighting the Lamb wave interaction with the 
impact damage 

As with the 200kHz excitation, the S0 mode interacts with the damage. This is shown in the post-impact 

results by a fringe of low amplitude to the right of the impact damage. However, as also with the 200kHz 

excitation, due to the high levels of disturbance in the wave it is not possible to determine A0 mode 

interaction with the damage. 
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The clarity of the wave propagation may be improved upon by increasing the number of scan points, 

hence increasing the spatial resolution for the higher frequency excitations. However, for comparability 

between excitation frequencies and constraints on acquisition time this was not changed during this 

study.  

Root-mean squared baseline subtraction 

From the time domain results presented, it is apparent that the A0 Lamb mode does interact with the 

damage although it is difficult to identify the presence of damage on the structure without carefully 

examining the results. It therefore would be advantageous to identify the presence of the BVID and 

quantify it using comparative post processing methods. A computationally inexpensive post-processing 

technique is baseline subtraction. Subtracting the waveforms of the out-of-plane component of the post-

impact dataset from the waveforms of out-of-plane component from the pre-impact dataset identifies 

the region on the scan area where there is a significant change. By calculating the root-mean squared 

(RMS)  velocity values for  the resulting subtracted waveforms of each measurement point over the whole 

measurement period, the region of significant change in waveform, and hence the location of the damage 

can be identified. The RMS baseline subtraction analysis for the out-of-plane component of the Lamb 

wave is presented in Figure 13. Only the out-of-plane component has been considered as it was shown to 

significantly interact with the damage. The impact site is denoted by the dashed line.  
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100kHz 

 

 
200kHz 

 
 

 
300kHz 

Figure 13. RMS baseline subtraction analysis of the out-of-plane component of the Lamb modes 

For each excitation frequency the impact site has been clearly identified by this technique. The peak RMS 

values for the 100kHz excitation are greater than those for the 200kHz and 300kHz excitations. This is 

because of the lower attenuation of the lower frequency. The RMS values the plate area outside of the 

impact site are not zero. This is because of small differences in experimental setup between the pre and 

post impact vibrometry scans. This has resulted in a small phase difference which when subtracted results 

in low amplitude signals being produced. In addition to this, low amplitude reflections result due to Lamb 

wave interaction with the damage and hence cause an additional change in signal. 

The size of the area influenced by the defect appears to vary depending on excitation frequency. Using 

the Polytec PSV software,   it was possible to measure the size of the area of peak RMS. Taking 

60 80 100 120 140

μm/s

50 60 70 90 100

μm/s

80

50 60 70 90 100

μm/s

80



 
 
 
 
 
 
 

Proc IMechE Part C: J Mechanical Engineering Science 

measurements across the peak for each excitation frequency found the average length of the area 

affected by the presence of the damage to be 12.6mm, 7.8mm and 14.9mm, for the 100kHz, 200kHz and 

300kHz results respectively. Surprisingly the average length of the area affected by the presence of the 

damage increases from the 200kHz excitation results to the 300kHz excitation results as the reduction in 

wavelength should be more sensitive to the impact damage.  

Out-of-plane cross-correlation  

Calculating the cross-correlation coefficient of two waveforms has previously been used in acousto-

ultrasonic studies as method of quantitatively comparing two waveforms39. A value for the cross-

correlation coefficient of unity indicates no change in the waveforms. By comparing the measured signals 

pre and post-impact an indication may be obtained of where the wave has interacted with the damage. 

Results from the cross-correlation analysis for the out-of-plane component of the Lamb wave are 

presented in Figure 14. The impact site is denoted by the dashed line.  

It is evident that the Lamb wave interaction with the impact damage significantly alters the waveform 

when compared to the pre-impact waveforms.  

The results from the 100kHz excitation show that there is little difference in waveform in-front (left hand 

side of Figure 14) of the impact damage. There is a significant, localised reduction in correlation 

downstream (right) of the impact damage. There is an increased area of lower correlation behind the 

impact damage in the results from the 200kHz excitation. In addition to this, there is also a minor 

reduction in correlation in front of the impact damage. The 300kHz results show an increased area of 

lower correlation behind the impact damage when compared to the 200kHz results as well as reduced 

correlation in front.  
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Figure 14. Out-of-plane cross-correlation coefficient results  

The increased area of lower correlation demonstrates that higher frequency Lamb waves are more 

sensitive to interaction with damage due to their smaller wavelength. At the higher frequencies there is 

also a reduction in correlation in front of the impact damage. This is most likely due to reflections from 

the damage.  

Previous studies that have used the cross-correlation technique have shown less difference in signals 

which was quantified by a smaller reduction in cross-correlation coefficient. It is worth noting however 

that previous studies used sensors physically coupled to the structure that have a mass-dampening effect 
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as well as a transfer function. In addition to this, cross-correlation coefficients have not been previously 

calculated at the impact site.  

In-plane cross-correlation  

Considering the in-plane components of the wave it is possible to conduct a cross-correlation analysis to 

investigate how the in-plane components are affected by the presence of the impact damage. This is 

conducted by calculating the respective cross-correlation coefficients for both of the in-plane 

components. The resultant magnitude of the two cross-correlation coefficients is then calculated. The 

theoretical maximum for the cross-correlation is therefore √2. In order to make the results comparable 

to the out-of-plane results, the cross-correlations coefficients are divided through by √2. The results of 

this analysis are presented in Figure 15. The dashed line denotes the impact site. 

It is apparent that the propagation of the in-plane component of the Lamb wave is affected by the 

presence of the impact damage. The 100kHz results clearly indicate a difference in the two Lamb wave 

signals at the of the impact damage. Comparing this with the out-of-plane results it is evident that there 

is less reduction in cross-correlation coefficient in this region.  
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Figure 15. In-plane cross-correlation coefficient results 

Unlike the out-of-plane results, there is a significant reduction in cross-correlation coefficient over a much 

larger region of the area of investigation. This can be justified by the scattering of the in plane modes due 

to the microstructure. It was demonstrated by comparing the resultant magnitude plots with the out-of-

plane plots for the 100kHz excitation that a significant level of noise could be attributed to the in-plane 

components. This is due to the random placement of the chopped fibres. In fibre composite materials the 

in-plane Lamb wave components are influenced by the fibre direction53 therefore inhomogeneity of the 

fibre directions will have a more significant influence the noise on the in-plane components than the out-

of-plane.   

The results from the 200kHz excitation identify a region of reduced cross-correlation coefficient 

surrounding the impact site. The region is larger than that of the 100kHz excitation and is similar to that 

observed in the out-of-plane results. This can be attributed to the shorter wavelength of the higher 

frequency excitation. Like the 100kHz excitation, there is a region of reduced cross-correlation coefficient 
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upstream of the impact site. This suggests that the in-plane component of the Lamb wave is partially 

reflected by the presence of the impact damage which is not possible to determine by studying the time-

domain plots alone. 

The results from the 300kHz excitation show a large region of the area of investigation where there is a 

significant reduction in cross-correlation coefficient. Like the 200kHz excitation, there is a larger area of 

reduced cross-correlation coefficient to the left of the impact site than that observed in the out-of-plane 

results. This would suggest that more of the in-plane components were reflected by the presence of the 

impact damage than the out-of-plane components.  

It is worth noting that this analysis does not indicate that the S0 mode interacts with the damage as the 

whole signal length is considered. Though the A0 is mostly out-of-plane due to Poisson’s ratio, it will have 

a small in-plane component which may be what is causing the reduction in correlation. It is also possible 

that interaction with the impact damage has caused a mode conversion resulting in the A0 mode being 

converted to an S0 mode, hence the reduction of in-plane correlation. The results from this analysis 

however do demonstrate that it is possible to detect Lamb wave interaction with impact damage using 

in-plane methods of sensing. 

These cross-correlation plots demonstrate the regions within the area of investigation where the 

waveform has been disrupted by the presence of the impact damage. This is significant for planning sensor 

placements to maximise the probability of damage detection. Though the higher frequency excitations 

showed to be more interactive with the damage, considerations for Lamb wave attenuation would also 

have to be considered. Thus, a trade-off between probability of detection and size of sensor network 

would be needed for the design of a sensor network.   
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Damage measurement 

To quantify the damage, a section of the turbine blade surrounding the impact site was removed to enable 

high precision measurements of the damage to be made. On removal of the section a crack was 

discovered on the internal face of the blade surface which ran lengthwise along the blade as shown in 

Figure 16. The length of this crack exceeded the dimensions of the section removed. 

 

Figure 16. Resulting crack on the internal face of the turbine blade. 

Outer surface measurement 

To measure the BVID on the external face, a Taylor-Hobson Talysurf 2 surface profilometer with a 2μm-

radius stylus was used. A three-dimensional measurement was taken of a 12mm x 12mm area, with a 

0.05mm y-axis spacing, a 3μm x-axis spacing and a 16nm z-axis resolution. This allowed a 3D 

representation of the impact site to be produced. By extracting a 2D profile across the widest part of the 

impact site, the BVID was found to have depth of 40µm and an average length of 7.5mm as shown in 

Figure 17. 
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Figure 17. Surface profile of the BVID showing the length and maximum depth of the indentation 

created. 

The depth of the impact damage on the outer face was significantly lower than that of 0.25mm which had 

been suggested as a quantifiable level for BVID. When inspecting the removed section it was only possible 

to see the damage at certain angles of viewing in well-lit conditions.  

Comparing the measurement of the length of the impact site with the dimension determined from the 

200kHz RMS baseline subtraction technique, there is only a 7% difference demonstrating that this Lamb 

wave analysis technique has potential for indicating the scale of BVID. Indeed, all three excitation 

frequencies identified dimensions (of the region of significant difference in waveform) which are of similar 

magnitude. 

The 3D measurement of the impacted area is presented in Figure 18.  
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Figure 18. 3D Talysurf scan - Plan view of the BVID. 

The 3D measurement shows a clear indentation caused by the impact damage. Though the maximum 

depth of the indent was found to be 40µm, the 3D measurement shows that only an approximately 

circular area of around 2mm diameter of the indentation is of this depth. This measurement however 

does confirm that there was no additional damage caused by the impact damage on the outer surface of 

the blade. 

Inner surface measurement 

Due to the surface profilometer being a contact measurement method it was not possible to use it to 

measure the inner face, which had a significantly higher level of damage rendering it unsuitable for stylus-

based measurement. Precision measurements were made using a Polytec confocal-type white light 

interferometer.  

A 15mm x 15mm area was measured with a 0.88μm x and y-axis resolution and a 50nm z-axis resolution. 

This allowed a 3D representation of the crack to be produced using a non-contact method.  
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The results from the white light interferometry are presented in Figure 19. 

 

Figure 19. White light interferometry measurement of the crack on the inner face 

These results show that the impact resulted in displacing material by approximately 0.9mm along the 

length of the crack which is photographed in Figure 16. This is significant damage which would affect the 

structural performance of an operational wind turbine blade.  

Comparing the scale and location of the crack with the results from the 300kHz baseline subtraction it is 

possible that the larger area of increased RMS value was due to the presence of the crack, although this 

observation is by no means conclusive. As the crack ran in the same direction as the propagating wave, it 

would have little effect on the wave. It is possible however that shorter wavelength of the 300kHz 

excitation did interact with the damage. 

Discussion and conclusion 

This paper has demonstrated how 3D scanning laser vibrometry can be used to conduct a thorough 

investigation of acousto-ultrasonic induced Lamb wave interaction with impact damage on a composite 

turbine blade. The results from the 3D laser vibrometry clearly showed that the 100kHz excitation S0 Lamb 

mode had minimal interaction with the impact damage when compared to the pre-impact results 
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however the higher excitation S0 Lamb modes were more interactive due to the shorter wavelengths. The 

A0 Lamb mode was found to interact at all frequencies with the impact damage, which is supported by 

previous studies. A high level of noise was observed particularly when the in-plane components were 

considered. This was justified by the inhomogeneity in the placement of the short chopped fibres and 

highlighted the challenge of monitoring structures reinforced with such fibres. The stand-off distance from 

the vibrometer to the specimen was unaltered throughout the study. Increasing the stand-off distance 

will inherently increase the signal to noise ratio as well as increase the laser spot size by approximately 

85μm per meter of stand-off added61. The particular vibrometer used however is fitted with the ability to 

focus the laser enabling a more focused beam. If vibrometry were to be used in the field for in-service 

inspection, it is likely that any issues resulting by the stand-off distance can be overcome as demonstrated 

by previous studies6, 62.                       

The dispersive phenomenon of Lamb wave modes was observed in the vibrometer results by the 

increased wave velocity of the higher frequency excitations.  

An RMS baseline subtraction technique was applied to the out-of-plane component of the Lamb waves at 

the three excitation frequencies. This successfully produced a visual location and size of defect. When 

compared to the precise surface profilometer measurements the size of the defect was found to be within 

7%. It is worth noting however that a threshold has to be set in order to reduce the effects of the low 

amplitude signals.  This technique demonstrates potential for using scanning laser vibrometry for routine 

inspection of structures. 

A comparison of the pre-impact and post-impact measured signals was made by calculating the cross-

correlation coefficient for each measurement point, allowing a visual indication of the region where the 



 
 
 
 
 
 
 

Proc IMechE Part C: J Mechanical Engineering Science 

impact damage had influenced the Lamb wave. The out-of-plane component was first considered as it 

was shown to be more strongly influenced by the presence of the impact damage.  

The cross-correlation coefficients for in-plane components were isolated and plotted. Noise on the in-

plane components was attributed to the scattering due to the inhomogeneity of the short chopped fibre 

material, which was supported by the reduction of cross-correlation coefficient over the entire area of 

investigation.  

The in-plane components of the Lamb wave were then considered with a cross-correlation coefficient 

being calculated for both individual in-plane components and the magnitude of both plotted. This showed 

an increased region of reduced correlation highlighting that it would be possible to use in-plane sensors 

to measure the interaction of the Lamb modes with impact damage. This would be particularly beneficial 

for integrated sensors.  

The results from the cross-correlation analyses demonstrated that higher frequencies were more sensitive 

than lower frequencies to impact damage, shown by significantly larger areas of low correlation. This is in 

agreement with previous studies 63. Although it would be advantageous to use higher excitation 

frequencies for acousto-ultrasonic SHM systems, considerations of signal attenuation have to be made as 

has been shown in the laser vibrometry results. Therefore, any acousto-ultrasonic sensor network design 

should consider the placement of sensors with respect to the attenuation of the signal and the excitation 

frequency with respect to the minimum defect size. 

The results of the cross-correlation analysis has highlighted that in a monitored area of structure there 

are areas that show a minimal reduction in cross-correlation coefficient and therefore would be unlikely 
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to detect the damage in a acousto-ultrasonic system. Therefore, there is potential for using cross-

correlation analysis on laser vibrometry to support optimisation of sensor locations. 

A section of the turbine blade surrounding the impact site was removed. On removal, a crack was 

discovered on the internal face of the blade. Precise measurements of the damage were made on both 

sides of the section using surface profilometry and white light interferometry. The measured damage 

correlated well with the results of laser vibrometer study and the baseline subtraction RMS analysis, 

particularly for the 200kHz excitation where the size of the impact was found to be within 7%.  

This paper has presented an in-depth study into Lamb wave interaction with impact damage in composites 

for SHM applications. It has been shown that even relatively low-energy impacts can result in BVID that 

has caused more significant damage in areas which cannot be easily inspected. It has been shown that 

acousto-ultrasonically induced Lamb waves have great potential for monitoring the structural integrity of 

wind turbine blades in-service although careful consideration must be made when considering the 

excitation frequency due to the complexity of the Lamb wave interaction particularly in complex 

composite materials.  
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