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Abstract

The (p+, p—) singlet algebra is a vertex operator algebra that is strongly generated by a Virasoro field of
central charge 1 — 6(p4+ — p,)2 / P+ p— and a single Virasoro primary field of conformal weight 2p4 —
1)(2p— — 1). Here, the modular properties of the characters of the uncountably many simple modules
of each singlet algebra are investigated and the results used as the input to a continuous analogue of the
Verlinde formula to obtain the “fusion rules” of the singlet modules. The effect of the failure of fusion to be
exact in general is studied at the level of Verlinde products and the rules derived are lifted to the (p+, p—)
triplet algebras by regarding these algebras as simple current extensions of their singlet cousins. The result
is a relatively effortless derivation of the triplet “fusion rules” that agrees with those previously proposed in
the literature.
© 2014 The Authors. Published by Elsevier B.V. Open access under CC BY license. Funded by SCOAP .

1. Introduction

The (1, p) singlet and triplet models (for p > 2 a positive integer) are perhaps the most
basic known examples of logarithmic conformal field theories. Introduced in [1], their loga-
rithmic nature was exposed, at least for p = 2, through a connection to symplectic fermions and
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bc-ghosts [2,3]. Further investigations, for example [4-7], addressed the issue of generalising
the tools familiar from rational conformal field theory to these models and they have remained
popular objects of study ever since.

Generalisations of these triplet models, called (p4, p—)-models, for py and p_ coprime
and positive, were introduced in [8]. Because their central charges match those of the Virasoro
(p+, p—) minimal models when p; and p_ are greater than 1, they are sometimes referred to
as logarithmic minimal models. One might hope that these logarithmic models could capture
the universal features of critical lattice models that are missed by the minimal models (cross-
ing probabilities, fractal dimensions and so on), but this is still contentious. Nevertheless, there
has been persistent interest in these models from both theoretical physicists and mathematicians.
One reason for this interest is that the underlying vertex operator algebras are not simple, so these
models allow one to explore the consequences of this non-simplicity in a tractable, though still
very challenging, setting. We remark that the simple quotients are precisely the minimal model
vertex operator algebras.

As with other logarithmic models, one of the main difficulties to surmount is that of obtaining
a detailed structural understanding of the reducible but indecomposable modules which appear in
the spectrum. While a complete classification of the indecomposables may well be infeasible, a
first aim would be to identify the spectrum of simple modules and their projective covers. This is
expected to be sufficient to construct bulk state spaces with modular invariant partition functions,
for example. However, the current state of knowledge regarding projectives in non-semisimple
module categories over vertex operator algebras is still in its infancy, so much of our intuition
stems from examples like the (p4, p—)-models.

But even in examples, the rigorous identification of projectives remains a formidable task. In-
deed, this has only been achieved for p4 = 1 [9]. However, the literature contains many proposals
and conjectures for general py and p_ (with varying degrees of structural detail), see [8,10—13]
for example. These proposals rely on conjectured equivalences of categories, numerical com-
putations within integrable lattice discretisations, and explicit construction, the latter giving the
most information (but requiring the most effort). In this direction, a powerful tool for structural
investigations of indecomposables is the celebrated Nahm—Gaberdiel-Kausch algorithm [14-16]
that explicitly constructs (filtered quotients of) the fusion product of two modules.

Determining fusion rules is, of course, another of the main difficulties one would like to
overcome along the path to understanding a given logarithmic conformal field theory. While the
Nahm-Gaberdiel-Kausch fusion algorithm allows one to construct enough of a fusion product
to identify it completely in principle, the calculations are too computationally intensive for all
but the smallest theories, even when performed by computer. Another issue is that the algorithm
in practice only provides an “upper bound” on the fusion product in the sense that the true result
could be, in principle, a proper subspace of what has been deduced. However, both of these issues
can be circumvented by generalising another standard tool from rational conformal field theory
to the logarithmic setting: the Verlinde formula.

The Verlinde formula [17] for rational conformal field theories computes the fusion product
of two modules from the modular transformation properties of their characters. As this for-
mula may be shown to follow from the internal consistency conditions that must be satisfied
by any conformally-invariant quantum field theory [18], one expects that it should remain valid
in some form for more general classes of non-rational theories. In the logarithmic setting, char-
acters cannot distinguish between reducible but indecomposable modules and the direct sum
of their simple composition factors, hence the Verlinde formula cannot be expected to com-
pute the true fusion rules, but only tell us which composition factors appear, and with what
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multiplicity, in a given fusion product. However, this is already very valuable information. In
many cases, one can easily rule out the possibility that the simple factors combine to form an
indecomposable and then the Verlinde formula gives the fusion rules as in rational theories.'
If an indecomposable can be formed, then this formula provides the character of the indecom-
posable effortlessly, thus solving the “upper bound” problem. Moreover, it also tells us which
fusion products need to be checked for indecomposability, thus potentially saving computational
resources.

Unfortunately, the modular properties of the triplet (p, p—)-models (with (py, p—) # (1, 1))
are not as nice as one could have hoped for. In particular, the character of the vacuum module
transforms under S: 7 — —1/7 into a linear combination of other characters, but the coeffi-
cients depend non-trivially on 7 [4,8]. This would appear to invalidate a naive application of the
Verlinde formula. Nevertheless, one can arrive at a t-independent S-transformation by postu-
lating a non-standard automorphy matrix and a generalised Verlinde formula exploiting this has
been demonstrated for the triplet models with p = 1 [7]. This proposed recipe does produce
non-negative integer structure constants which agree with the known (Grothendieck) fusion co-
efficients. However, the generalised Verlinde formula itself is significantly more unwieldy than
the original and we are not aware of any attempts to derive its analogues for other logarithmic
conformal field theories. Another way of obtaining t-independent coefficients is to enlarge the
space of characters to the space of torus 1-point functions, that is, to add certain linear combina-
tions of characters multiplied by appropriate powers of T [19], see also [4,8,20]. Other proposals
for triplet Verlinde formulae may be found in [21-25].

Here, we follow a different path to the Verlinde formula. Instead of working directly with the
triplet (p+, p—)-models that have received so much attention in the literature, we focus our at-
tention on the relatively unexplored singlet (p4, p—)-models. Whereas the triplet vertex operator
algebras are known to possess a finite number of inequivalent simple modules [4,8,26-29], the
singlet algebras admit an uncountable infinity of them. However, this is not a bug, but a feature!
We will see that the modular transformation properties of the characters of these simple singlet
modules are very well behaved. Moreover, applying the standard Verlinde formula (but with an
integral replacing the sum) leads again to non-negative integer structure constants. Finally, these
results can be lifted from the singlet algebra to its triplet cousin using the technology of simple
current extensions. In particular, our results provide an effortless derivation of the (1, p) triplet
(Grothendieck) fusion rules without the need for non-standard automorphy factors and compli-
cated generalisations of the Verlinde formula.

This path to the Verlinde formula is actually a special case of a rather more general formal-
ism that has been proposed for non-rational conformal field theories in [30]. There, one starts
with a continuous spectrum of so-called standard modules which are typically simple and whose
characters have good modular properties. In logarithmic theories, the atypical standard modules
are reducible but indecomposable and the not-so-good modular properties of the characters of the
simple subquotients may be determined using standard methods of homological algebra. This ap-
proach was developed for logarithmic models based on affine (super)algebras [31-34] where the
natural spectrum is continuous. One of the successes of this approach is the complete resolution
of the longstanding problem of negative fusion coefficients in fractional level Wess—Zumino—
Witten models [35,36].

1" We are implicitly assuming here that fusing with a fixed module defines an exact functor on our module category.
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The application of this general formalism to the (1, p) singlet models is relatively straight-
forward (see [30, Section 3] for the case p =2 and [37] for more general p). However, the
generalisation to all (p4, p—) singlet algebras is rather more interesting because, in the case
where py and p_ are both greater than 1, the fusion product is no longer expected to define ex-
act functors on the (natural) category of vertex operator algebra modules. This non-exactness was
first noted in [11] for the (2, 3) triplet model. Consequently, the Grothendieck group spanned by
the (equivalence classes of) simple modules does not inherit a ring structure from the fusion prod-
uct. One therefore cannot expect that the ring structure defined by the Verlinde formula on the
span of the characters of the simple modules — we call the resulting object the Verlinde ring —
will coincide with a Grothendieck ring of fusion. The natural question of how the non-exactness
of fusion is manifested in the Verlinde ring is what motivated our work on this problem.” As
we will see, the answer is natural and satisfying, though there are subtleties worth remarking
upon.

We begin in Section 2 with notations and conventions, reviewing the definitions of the sin-
glet and triplet (p4, p—)-algebras in terms of the Heisenberg algebra and its simple current
extensions. The irreducible modules of both vertex operator algebras are constructed and their
classifications are quoted with the necessary structural aspects of these modules being deferred
to an appendix. This material has many sources, for example [39,40]. Here, we mostly follow the
notation of [29].

In Section 3, the modular properties of the characters of the singlet modules are derived.
We begin with the standard modules which are of Feigin—Fuchs type, adding a Heisenberg
charge to their characters so that all non-isomorphic simple modules have distinct characters.
The S-transformations of these characters are deduced in the usual way. The algebraic definitions
of the remaining (atypical) simple modules then lead to resolutions for each atypical simple in
terms of standards. The resulting character formulae then give the S-transformations of the atyp-
ical characters directly. Of note here is that when p and p_ are both greater than 1, there exist
atypical simple modules £, ; whose S-matrix entries cannot be expressed as functions, but only
as distributions. Indeed, this is also the case for the (non-simple) vacuum module.

We then turn to the Verlinde formula and the Verlinde product that it induces in Section 4.
Most importantly, we show that the £, completely decouple in the Verlinde ring and may be
consistently set to zero. This lets us replace, when p,, p_ > 1, the S-matrix entries involving
the vacuum module by those involving its maximal submodule, which happens to be simple. The
Verlinde formula is then well-defined, because we no longer need to divide by a distribution,
and direct computation ensues. We thereby obtain a completely explicit description in Eq. (4.24)
of the Verlinde product of the characters of any two simple singlet modules, excepting the £, s
whose characters have been set to 0.

This result is then lifted to the triplet models through their realisations as simple current
extensions of the corresponding singlet models. Actually, these realisations remain conjectural
in general because we can only verify the simple current property at the level of the Verlinde
rings, not the fusion rings themselves. Nevertheless, we apply standard simple current technology
to deduce the triplet analogues of Eq. (4.24). The resulting Verlinde product rules, reported in
Eq. (5.9), are then compared favourably with the rules that have been proposed elsewhere in the
literature. We close with a conclusion and discussion of our results.

2 A second motivation is to study the modular story for examples of logarithmic theories (see also [38] in this regard)
involving indecomposables that are structurally more complicated than those of the (1, p)-models.
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2. The (p4+, p-) singlet and triplet models

In this section, we introduce and fix our notation for the singlet and triplet models. These
conformal field theories are parametrised by two coprime positive integers p; and p_. As one
would expect, many of the important quantities that we will study take a somewhat unwieldy
form when expressed in terms of these parameters, so to partially alleviate this, we introduce the
following quantities:

2p- 2
ay = L, o =— ﬁ, ) =0+ +o, (2.12)
P+ P-

1—r 1—s
o=pioy=—p_a_=2pyp_, Urs =50 +——a,
1
Opsip =0+ Encx. (2.1b)

Here, r, s and n will always be assumed to be integers. Note that the o, 5., so-defined satisfy

Qrxpi,sin = Ursintl = Wrstp_in- (2.2)

We may therefore choose n so that 1 <r < py and 1 <s < p_, when convenient.
2.1. Feigin—Fuchs modules

Consider the Fock module ), of the Heisenberg algebra a[(l) with highest weight A € R. As
is well known, the vacuum module Jy carries the structure of a vertex operator algebra. There
exists a continuous family of conformal structures for this vertex operator algebra and we will
choose the corresponding Virasoro algebra so that the central charge is

c=1-303 (2.32)
and the highest weight vector of J, has conformal weight
1 1 a\® ol
Ary==2Ar—ap)==(r——=— ) ——. 2.3b
r=3 (A —ap) 3 ( > ) 3 (2.3b)

Restricting to the action of this Virasoro algebra, the Fock modules &) become Virasoro modules
which we shall also denote by J;. When considering the &), as Virasoro modules, we shall refer
to them as Feigin—Fuchs modules.

The structure of these Feigin—Fuchs modules was determined by Feigin and Fuchs in [39]
(see also [40] for a comprehensive treatment). If A is not of the form «, ., for some r, s, n € Z,
then ) is simple as a Virasoro module. If we choose n in what follows so that 1 <r < p4 and
1 <5 < p_, then the structure depends only upon whether r and s are p, and p_, respectively,
and upon the sign of n. We defer the explicit structural details of these Virasoro modules, in the
form of socle filtrations, to Appendix A.

The structure of the Feigin—Fuchs modules may be used to derive the Felder complexes [41]

> Srr,s;—Z — Sthr—r,s;—l — ?r,s;O — g'~p+—r,s;+l — Str,s;+2 —>

(r#p4), (2.4a)
> EFr,s;—&—Z — grr,p_—s;+l I ?r,x;O — grr,p_—xg—l — grr,s;—Z —>

(s # p-)s (2.4b)
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where we have simplified our notation by setting J, ., = a5, Indeed, the Virasoro homo-
morphisms defining these complexes may be identified with (suitably regularised) powers of
screening operators [42]. The complex (2.4a) may be checked to be exact when s = p_. More-
over, it only fails to be exact when s # p_ at the n = 0 term, in which case the homology is the
simple Virasoro module £, ; whose highest weight vector has conformal weight A, s = Ay, .
Similarly, (2.4b) is exact for » = p, and otherwise only has non-zero homology, again given by
L,s,atn=0.

2.2. The singlet algebra and its modules

We define the following (Virasoro) submodules of F,. 5., for 1 <r < pyand 1 <s < p_:

UC:FA o =Ker[Fr 50 = Fp, —rsins1l, jj; o =1m[Fp, sin—1 = Frsinl
(r # p+),
Kosn= ker[F) 5.n = T p_—sin—1l, Iy =1MIFy p g1 —> Frsinl
(s #p-),
Krsin =K VK s Jrsn =T NI F#py, s#po). (2.5)

If py =1, the iK+ ,, are not defined by (2.5). We will therefore set JC+ = J, s.n in this case.

Similarly, if p_ = 1 we set ﬂCr sin = = J,s:n. Because of the exactness of the Felder complexes,
we have the identifications (r ;é D+, S F# p-)

+ ~ q+ - ~ q— .
Ko n =00, e K =T, ., (foralln);
K sn =005, (foralln#0), (2.6)

where the superscript “e” stands for +, —, or is empty. Working out the Virasoro module struc-
tures of the n = 0 modules using the socle series of the Feigin—Fuchs modules (Appendix A),
one arrives at the (non-split) short exact sequences

0—> 20— Ko — Lrs —> 0 (r# py, s # po). @7
Finally, the definitions (2.5) immediately imply the exact sequences

0— 3, — Frsn— 70 _ny — 0 #pp),

0— K,y — Tran—> Ty, _uy —0 (57 po), (2.8)

for all n, and further contemplation of Virasoro structures (see Appendix A) leads to

0—Jrsn — gt Jrp_—sin—1—0

nEn T (r# ps. s# po), (2.9)

0— jr sin T jrs n T jp+—r,s;n+1 —0

again for all n, which are likewise exact.

Recall that F; 1.0 = J carries the structure of a vertex operator algebra. As iK;fl 0 and iK[l 0
are both kernels of screening operators acting on this vertex operator algebra, they define vertex
operator subalgebras, as does their intersection K 1.0. The vertex operator algebra corresponding
to Ky 1.0 is called the singlet algebra I(p+ p—). It is simple if and only if py or p_ is 1.
We remark that if p, = p_ =1, then iKl 1o = iKl 1o = =X1.1.0 = J1.1.0 and we see that the
singlet algebra I(1, 1) is nothing but the Helsenberg algebra (with central charge 1). In general,



D. Ridout, S. Wood / Nuclear Physics B 880 (2014) 175-202 181

the singlet algebra is strongly generated by the energy-momentum tensor and a single Virasoro
primary of dimension 2p4+ — 1)(2p— — 1) [8,28,29].

Each of the J;, 9(; sin and J?° ., as well as the £, ;, become modules for the singlet vertex
operator algebra. A complete hst of 51mple I(p+, p—)-modules is given by

o the J) with A # @, ., forany r, s, n € Z,

o theF,, , .,forallneZ,

° theJ:p_;n forall1<r<py—landneZ,

o the J;Jﬂm foralll<s<p_—1landneZ,

o thel, s ,forall <r<py—1,1<s<p_—1landneZ,
ethe L, s =L, ,p sforalll<r<py—landl<s<p —1.

The case when p4 or p_ is 1 was settled in [43.,44]. When p, p_ > 2, then the completeness
of the above list is a straightforward corollary of [29 Theorem D] using the same arguments as
in [44]. We remark that when p; = 1, the sets of f] rpon Jr.s:n and L, ¢ are empty — the only
I(1, p—)-simples are the F;, the 1 ,_,, and the J| . . The story when p_ =1 is similar.

Notice that the J; are simple for generic A. In the formalism proposed in [30] for general
(logarithmic) conformal field theories , the F; may be identified as the standard singlet modules.
The simple standard modules, those with A # @, 5;, or with A = a), ,_.,, are called typical in
this formalism and the remaining simple modules, the J' , and L, s, are examples of atypical
singlet modules. We will use this terminology freely in what follows.

2.3. The triplet algebra and its modules

Just like the singlet algebra I(p4, p—), the triplet algebra W(p4, p—) can be defined as a
vertex operator subalgebra of a lattice vertex operator algebra V(p4, p—). This lattice algebra
may be characterised as the simple current extension of J 1.o by the group of simple currents
generated by J7 1.2 (or alternatively by J7 1. 7). In terms of Feigin—Fuchs modules, we therefore
have the decomposition

V(p+. p-) =P T (2.10)
keZ

This lattice vertex operator algebra is known to be rational, meaning that all of its modules
are semisimple and that there are only finitely many inequivalent simple modules. The number
of inequivalent simple modules is, in this case, exactly 2p4 p_ and they can be parametrised
by two integers, 1 <r < p; and 1 <5 < p_, and a label “£+”. We denote these simple
V(p+, p—)-modules by Ffs. They may be decomposed into Feigin—Fuchs modules as follows:

=®:Tr,s;2k» F;S =®~Tr,s;2k+l' (211)

keZ keZ
Just like the Feigin—Fuchs modules, the lattice modules Fffs can also be arranged into Felder
complexes connected by (appropriately regularised) powers of screening operators:

= — T — T —F  —F - (r# Py, (2.12a)

=T =T,  — T —F —F — (s#p-). (2.12b)
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Here, ¢ stands for either “4-” or “—". As with the singlet algebra, the triplet algebra W(p, p—)
may also be defined as an intersection of kernels:

W(p+, p-) :ker[IE‘ff1 — IF‘;+7]’]] ﬁker[IF‘?"1 — Fl_,p_fl]' (2.13)

Again, when py =1 or p_ = 1, at least one of the Felder complexes is not defined and its corre-
sponding kernel is replaced by the lattice module IF‘I" |- In particular, it follows that W(1, 1) = IET]

which is well known to be isomorphic to the level 1 vertex operator algebra ?[(2)1. In general,
the triplet vertex operator algebra W(p, p_) is strongly generated by the energy momentum
tensor and three Virasoro primaries of dimension (2p4 — 1)(2p_ — 1) [8,28,29]. The singlet al-
gebra I(p4, p—) is naturally generated as a vertex operator subalgebra by removing two of these
Virasoro primaries.

Unlike the lattice algebra V(p,., p_), the triplet algebra W(p., p_) is not rational in general,’
because there exist non-semisimple triplet modules [5,27]. However, the number of inequivalent
simple W(p4, p—)-modules is finite and, in fact, this number is %(p.,r —D(p— =D +2pyp—
[8,28,29]. We give a complete list of these simples along with their decompositions into singlet
modules (for later convenience):

WL,p, = Drez Fps.p_;2« and W;+,p, =Orez Fpr.p_s2k+15

W, =@z Jj’pf;zk and W, =@z :ijpf;z,(+1 forall 1 <r < py —1,

WL’X =@z I, s and Wy = Dz T, sonq forall 1<s < p- — 1,

W =@Brez Trsiok and Wy o = Py Trgonsr forall 1<r < py —land 1<s < po — 1,
L s=Lp, vp sforalI<r<py—landl<s<p —1.

Again, this is an easy consequence of the results of [8,28,29]. Note that when p; = 1, there
are no Wfp,’ fo or £, in this list — the simples are exhausted by the Wf ; (with s = p_
allowed). Again, the story is similar for p_ = 1.

In the terminology of [30], the Wiﬂ p_ are the fypical triplet modules, being direct sums of
typical singlet modules. The Wffs, with either r # p4 or s # p_, and the £, ; are then atypi-
cal triplet modules. We remark that the decompositions of the triplet simples into singlet simples
suggest that the triplet algebra is just a simple current extension of the singlet algebra. Indeed, the
decomposition of Wfl shows that the simple currents responsible for this conjectured extension
are the J; 1,2,. We will verify that this conjecture is consistent with our Verlinde formula compu-
tations in Section 5.1, though we will see that there are interesting subtleties which prevent the

evidence from being conclusive.
3. Characters and modular transformations for singlet models

This section details the derivation of the modular S-transformations of the characters
of the simple I(p+, p—)-modules. The methodology follows the approach proposed in [30]
for general non-rational conformal field theories. Specifically, the characters of the standard
I(p+, p—)-modules, simple and non-simple, are taken as a (topological) basis for a vector space
which is shown to be preserved by the natural action of S. This space then carries a representa-
tion of SL(2; Z) of uncountably-infinite dimension. Resolutions are then derived for the atypical

3 The single exception is W(1, 1) = a(2)1 which is well known to be rational and even unitary.
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simple modules in terms of the non-simple standard modules and this gives expressions for the
characters of the former as infinite alternating sums of the characters of the latter (the basis
characters). In this way, we arrive at S-transformations for all simple I(p4, p—)-modules.

The computations are straightforward when p, or p_ is 1. However, the case where
p+, p— > 1 is more interesting (as expected) because the “S-matrix entries”, that describe the
decomposition of the S-transformed character of £, into standard characters, are no longer
functions of the parameters, but must instead be regarded as distributions. Consequently, the
same is true for the S-matrix entries of the vacuum module X 1.0, leading to conceptual diffi-
culties in applying the Verlinde formula.

3.1. Characters of Feigin—Fuchs modules and their modular transformations

For any Virasoro module M at central charge c, one defines its character to be the following
power series in g = exp(2it):

ch[M](t) = trpr (gLo=/24). (3.1)
For example, the characters of the Feigin—Fuchs modules J of Section 2.1 are given by
Ay—(1-3a})/24 q(x—ao)l/z

ch[F3](v) = ; (3.2)

[2—-¢) — nlg)
where n(q) is the Dedekind eta function. As one can see from this formula, the Feigin—Fuchs
modules J;, and JFy,_ have identical characters. In order to disambiguate these characters [30],
we generalise them by adding an extra formal variable z = exp(27i¢):

g0 /2?/2 h~ao/2

ch[F1(r,¢) = . (3.3)
n(q)
Here, one can think of z as keeping track of the eigenvalue of the Heisenberg zero-mode (shifted
by —a/2).
The modular S-transformation of characters is the map*
1
ch[M](z,¢) —~ ch[M](—;, %) 34
The characters of the Feigin—Fuchs modules satisfy the transformation formulae
1 ¢
ch[fﬂ](—;, ;) =/S[3’A—> Fylch[F,pl(r, &) dp, (3.5)
R

where the S-matrix coefficients S[F) — J,] are given by
S[F). = Fp] = exp[—27i(h — a0/2)(p — @0/2)]. (3.6)

These coefficients follow from a straightforward gaussian integral, convergent for Im t > 0 hence
|g| < 1. In particular, for A = ;. s.,, the S-matrix coefficients specialise to

S[ffr cn = Sgp] — einrot+(pfoto/Z)einsa_(pfao/Z)efinna(pfoto/Z). (3.7)

4 Technically, one needs an additional transformation variable to absorb the so-called automorphy factor. We refer to
[30, Section 1.2] for the detail (in the case g = 0).
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3.2. Characters of singlet modules and their modular transformations

With Egs. (3.6) and (3.7), we have determined the modular transformations of the standard
I(p+, p—)-modules. The Felder complexes of Section 2.1 and the exact sequences of Section 2.2
now determine resolutions (or coresolutions or two-sided resolutions) of the singlet modules
3(; sin? fJ; sin and £, s in terms of Feigin—Fuchs modules. These, in turn, allow us to calculate the
characters of the atypical singlet modules in terms of characters of the standard (Feigin—Fuchs)
singlet modules.

It is important to note that the maps defining the Felder complexes and exact sequences are not
Heisenberg algebra homomorphisms in general. The interpretation of z in Feigin—Fuchs charac-
ters as tracking the eigenvalue of the Heisenberg zero-mode therefore does not lift to the character
formulae for the atypical singlet modules that we shall derive. There is no Heisenberg zero-mode
in the singlet algebra, so the singlet characters should in fact be computed with z = 1. However, if
one does this, one immediately encounters the problem that non-isomorphic singlet modules can
have identical characters. We will therefore keep z as a formal variable in the singlet character
formulae that follow. Its function remains to naturally facilitate the distinguishing of characters
of non-isomorphic modules, though it no longer appears to have any (obvious) interpretation in
terms of eigenvalues of zero-modes.

3.2.1. The J:S;n modules

As long as we avoid the non-exact parts of the Felder complexes (2.4), we can use them to
give (co)resolutions of the J+ ,, in terms of Feigin-Fuchs modules, which in turn allow us to
derive character formulae and S matrix coefficients. When n > 0, we can iteratively splice the
first exact sequence of (2.8) with itself, using the isomorphisms (2.6). The result is a resolution

for Jj’s,n. For n < 0, the same method results instead in a coresolution. We therefore obtain, for

1<r<py—1land1<s < p_, the following (co)resolutions of the Jr sint
=T rsin3 > Frgn2—> Fp, ”nl—>3”n—>0 n<0), (3.82)
0— jjs n T Frsin —> ?p+—r,s;n+l — Frsipz —> 0 (= 1). (3.8b)

Note that both of these sequences will be exact for all n € Z if and only if s = p_. From these
(co)resolutions, we can read off the character formulae

Zk}o(Ch[?pJF—r,s;n—Zk—l] - Ch[?r,s;n—Zk—Z]) if

. 3.9
Zk;o(Ch[gjr,s;n+2k] - Ch[gjp+7r,s;n+2k+l]) if 3-9)

ch[7 ., ]=

r,sin

and the S-matrix coefficients are obtained by adding and subtracting the S-matrix entries
S[Sjp+7r,s;n72k71 g Sjp] and S[F,5.p—2k—2 — Stp]’ for n <0, or S[JF} 5. p42k — SL-p] and
S[S:p+—r,s;n+2k+l — Fpl, forn > 1:

+
[jrs n g ‘rfp]
—2i sin[nroz+(v _ ao/z)]einsa, e—in(n—2)ot(p—ozg/2) Zk>0 e2nikoz(p—a0/2)
ifn <0,

= ) ) . 3.10
+2isin[wras (v —ag/2)]e ™% e~ imna(p—ao/2) Zk}o e—2mika(p—ao/2) ( )

ifn>1
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The infinite sums in this formula are geometric series at the boundaries of their radius of conver-

gence. Nevertheless, we will replace these geometric series by their analytic continuations’
2k —x! —2k x
Zx — —, Zx — —. (3.11)
X—x" X—x~
k>0 k=0

With these replacements, the S-matrix coefficients simplify to the common form (for all n)

S[gf.., — Fp]

rs;n

in&a_(pfaO/Z)efﬁn(nfl)ot(pfoto/Z) ?in[nraju (b —0/2)] (r # p1), (3.12)
sin[rpyoy (p —ap/2)]

where we have used the identity @ = pj o4 in the denominator.

=e

3.2.2. TheJ_ .. modules

r,s;n
The derivation of (co)resolutions, character formulae and S-matrix coefficients for the singlet
modules J_ . is completely analogous to the derivation for the Jj's, 0
For 1 <r < py and 1 <s < p_ — 1, the following sequences are exact and define (co)reso-

lutions of J;S;n:

— 0 (n=0), (3.13a)

> Srr,pf—szn—t-S — EFr,s;n—&-Z — gur,pf—s;n+l — st;n

0—17 — Frsn— Frp_—sin1 —> Frsn2—> -+ (<=1 (3.13b)

r,sin

These (co)resolutions lead to the character formulae

(ch[F} p_ —s: 1 —ch[JF} . D ifn>0,
Ch[j;dn] _ Zk>0 r,p——s;n+2k+1 r,s;n+2k+2 . (314)
” Zkgo(Ch[?r,s;nfzk] - Ch[?r,p,fs;nfﬂcfl]) ifn<—1,
which in turn imply the S-matrix coefficients
S[j;s;n - 3:/’]
_ ot (p—a0/2) g—in (1 Da(p—ato/2) .Sin[ﬂm—(ﬂ —ap/2)] 5% p), (3.15)
sin[rp_a_(p —ao/2)]

for general n. Here, we have used the identity « = —p_«a_ in the denominator as well as the

analytic continuations (3.11).

3.2.3. The I, 5.n modules
For1<r<py—1land1<s < p_ — 1, the singlet modules J, 5., can be resolved by itera-
tively splicing the exact sequences (2.9) to obtain

+ + +
— jr,p,—s;n+3 — Jm;n_ﬂ — jr,p,—s;n+1 —> Jr5:n — 0, (3.16a)
’ jp+—r,s n—3 jr,s;n—2 j[ur—r,s;n—l jr,s;n 0. (316b)

We therefore arrive at two seemingly different character formulae:

5 We refer to [37] for an explicit example of how to regularise these sums in the case that p4 or p_ equal 1. It is not
clear to us if this regularisation extends to p4 and p_ greater than 1.
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chJy sl = Z(Ch[jj,_p,—s;n+2k+l] —ch[IF 1 oein]) (3.17a)
>0

= Z(Ch[j[_)+—r,s;n—2k—l] - Ch[jr_,s;n—2k—2])' (3.17b)
>0

However, the resulting S-matrix coefficients are identical:

sin[rroq (o —oap/2)] sin[rsa_(p —ap/2)] o ina(p—ao/2)
sin[pay (o —ao/2)] sin[rp_a_(p —ap/2)] '

S[Jrs;n —> H:p] = (3.18)

One can also coresolve the J, 5., in terms of the Jris,n with the same result.

3.2.4. The L, s modules

As noted in Section 2.1, the cohomology of the Felder complexes (2.4) is trivial everywhere
except when 1 <r < py —1,1<s < p_ —1and n =0, where it is the simple Virasoro module
L, ;. By the Euler—Poincaré principle, the Felder complex (2.4a) implies that the character of the
simple singlet module £, ; is given by

Ch[Lr,s]+ = Z(Ch[‘rfr,s;Zn] - Ch[gjp+—r,‘v;2n+l])» (319&)

nez

whereas the Felder complex (2.4b) gives the character of £, s as

ch[L,,17 =Y _(ch[Fr.s2n] — chlFs p_—:2011]). (3.19b)

nez

It is not clear that these coincide. However, we remark that we should only expect that these
character formulae coincide once we remove the z-dependence. Recall that we included z, some-
what artificially, in our definition of singlet characters so as to be able to distinguish simple
modules that would otherwise have identical characters. Setting z = 1, it is easy to check that
the right-hand sides of (3.19) indeed coincide formally as a consequence of (3.2) and the identity
AUp, —rs;2n+1 — a0/2 = — (0, p_—s;—2n—1 — ao/2).

Now, unlike the character formulae for the J, ;.,, considered above, the character formulae
(3.19) yield different S-matrix coefficients:

S[Lrs — T, = 2isin[wra; (p —ag/2)]e ™ - P~/ Z g~ 2rinalp—a0/2) (3 20)a)
nez

S[Lys — F,1~ =2isin[zsa_(p — ag/2)|e @+ P/ N " gaminalpmao/2) - (320b)

nez

The superscript “+” serves to remind us which Felder complex was used in the derivation. We
note that the sums in these formulae do not define functions but must be interpreted as distribu-
tions (see Section 4.1). We note in addition that the character formulae (3.19) also do not appear
to respect the isomorphism £, = £,y p_ 5. Again, the disambiguation variable z is to blame.
We shall see shortly that this non-uniqueness problem solves itself rather naturally in the setting
of the Verlinde algebra, though there is of course a price that has to be paid.

3.2.5. The X, .0 modules
For 1 <r<py—1land1<s < p_ — 1, the exact sequences (2.8) and the formulae (3.19)
give two distinct character formulae for the X, .o singlet modules:
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ch[K, 501" = ch[ £, ]7 4 ch[J,.s:0]. (3.21)
These in turn yield two distinct S-matrix coefficients:
S[:Kr,s;o - Sjp]+

=2i sin[r[ra+ (p — ao/Z)]eim“‘(pf‘)‘O/z) Z g~ 2rina(p=ao/2)

nez
sin[rroy (o —ap/2)] sin[rsa_(p —ap/2)] o—imna(o—a0/2) (3.222)
sin[rrpoy (p —ao/2)] sin[rp_a—_(p — ao/2)]
S[K)s.0 = Fpl™
=2i sin[nsoz, (p — a0/2)]eim“+("_o‘°/2) Z g~ Zrina(p—ao/2)
nez
sin[rro4 (o —ap/2)] sin[rsa_(p —ap/2)] o imna(o—ao/2) (3.22b)

sin[rpiay (o —ao/2)] sinfrp_a_(p —ap/2)]

We remark that the vacuum module is X 1.9, so this non-uniqueness is a potential problem for
the Verlinde computations below. This is on top of the problem that one will seemingly have to
make sense of dividing by a distribution in order to apply the Verlinde formula. Again, we will
resolve these issues in Section 4.1. Note however that the above formulae are not valid for X .0
when p; =1or p_ = 1. In these cases, K1 1.0 = J1,1.0 and the vacuum S-matrix coefficients are
instead given in Eq. (3.18).

3.3. Addendum

At this point, the reader might object that the character formulae for the Ji have been
derived from (co)resolutions which avoid the part where the Felder complexes (2 4) fail to be
exact. Is it possible that we will obtain different formulae if we (co)resolve so as to cross the
non-exact piece of the complexes? Now that we have the characters of the £, ;, derived from
each Felder complex, it is easy to attend to this objection. We will consider the resolution (3.8a)
for 5;: , With r 7 py and n > 1, the analysis in the other cases being almost identical.

First, the splicing of the exact sequences (2.6) stops when the third label (n) of the modules
drops to 0 because iK 5.0 and fJ ;:0 are not isomorphic. Instead, we arrive at the long exact
sequence

0— Ko Fasio—> = Frgna—> Fp,rsn1 — I, — 0, (323)

“ ”»

where the subscript “x” stands for r, if n is even, and p4 — r, if n is odd. Because of the exact
sequence (2.7), continuing the splicing to obtain (3.8a) does not yield a resolution of .'J+ , (for
n > 1) because the sequence has non-trivial cohomology £, ; when the third label is O. No matter
— Euler—Poincaré says that the character formula (3.9) derived earlier for the J+ , With n <0
should be corrected, for n > 0, by (—1)" ch[ L, s]:

Zk>()(Ch[~rfp+ —r,s;n— 2k—1] - Ch[?r,s;n—Zk—ﬂ) + Ch[Lr,s]
if 1i
h[jj_s n] _ 1 n 1S even, (324)
Zk>O(Ch pa—T, s‘n—2k—l] - Ch[:‘Fr,s;n—Zk—Z]) - Ch['cp+7r,s]
if n > 1 is odd.
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Because the IK:FJ;O and fJ:X;O are defined using the Felder complex (2.4a), we must use the char-
acter formula (3.19a) for the £, s that was derived from this complex. When we substitute this
into the above character formulae, we find that the result precisely reproduces (3.9) for n > 1.
In summary, the character formula does not depend upon whether we use a (not quite exact)
resolution or a coresolution.

4. The Verlinde ring for singlet models

Everything is now in place to use the obvious continuum analogue of the Verlinde formula
to compute “fusion coefficients” for the singlet theories. Roughly speaking, this will define a
ring structure on an abelian group generated by (some of) the simple characters. We will refer
to this ring as the (singlet) Verlinde ring, denoting it by V[I(p4, p—)]. As we will see, the com-
putations are relatively straightforward, although there is the issue of the distributional nature
of the vacuum S-matrix entries to surmount. However, the interpretation of the computations is
not: For I(1, 1), we do indeed recover the fusion coefficients because of the semisimplicity of
the module category. The Verlinde ring V[I(1, 1)] is the fusion ring of the Heisenberg algebra.
For I(1, p—) and I(p4+, 1), non-semisimple modules exist, so the best we can expect is that the
Verlinde ring will coincide with the Grothendieck ring of fusion. This, in turn, requires that fu-
sion defines an exact functor on the singlet modules which we expect to be true (it is true for
the triplet algebras W(1, p_) and W(p., 1) [45]). However, fusion is not expected to be exact
for p4, p— > 1 and, indeed, non-exactness has been demonstrated for the corresponding triplet
algebras [11]. So, we can only expect that the Verlinde ring may be identified with a quotient of
the Grothendieck group upon which fusion restricts to an exact product. Happily, the appropriate
quotient is naturally determined from simple considerations: It is obtained by setting the £, s to
0 — see Section 4.1.

Before we start calculating the structure constants of the Verlinde ring, it is convenient to
extend the range of the indices of the J, 5., toinclude r = p; and s = p_. Let I <r < p;y —1
and 1 <s < p_ — 1 and then define

] . qt -
JP-%—J;" - jp+,s;n’ jr»P—W T jr,p,;n’ jp+,17—§n T SFP%P—W' (41)

For 1 <r < pyand 1 <s < p_, the S-matrix coefficients (3.7), (3.12), (3.15) and (3.18) can
now be compactly written in the unified form

sin[rroq (o —oap/2)] sin[rsa_(p —ap/2)] o~ imna(p—ao/2)

. . (4.2)
sin[rpyoy (p —ap/2)] sin[rp_a_(p —ap/2)]

S[jr,s;n - H:p] =

4.1. The decoupling of the L, s

For two singlet modules M and N, the Verlinde formula for “fusion products” states that there
is a product (on certain equivalence classes of modules) given by

[M] x [N]= / Narwv TV [F, 1 dv. 4.3)
R
The “fusion coefficents” Ny n Jv are defined in terms of the S-matrix coefficients by
Ny ™ =/ S[M — F,IS[N — F,1S[F, — F,1*
S[K1,1.0 = Tyl

dp, (4.4)
R
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where “x” denotes complex conjugation. Consider the denominator of the above integrand. Ac-
cording to Eq. (3.22), this S-matrix coefficient has two possible forms:

S[K1.1:0 = Fp1F =S[L1.1 — F,1F +S[I1.1.0 = T,
S[L11 — ffp]i)

4.5
S[31,1;0_)9:,0] (*+3)

=S[Jy,1;0 —~> fﬂ,](l +

The quotient of the S-matrix coefficients of £1 1 and J; 1.0 can be evaluated using (3.20a) and
4.2):

S[Li11— F,lt

S[J1,1;0 = Fp]

_ sin[rpyaq(p —ao/2)] sinfrp_a_(p —ao/2)]
sin[rag(p —ap/2)] sin[ra_(p —ap/2)]
.24 Sin[TCO[+(,O _ ao/z)]eiﬂa,(p—o{o/Z) Ze—Znia(p—ao/2)k
keZ
2isin[ma(p — ap/2)] Y e FrixlPme0/k,
keZ

ira_(p—ag/2) sin[rp_a_(p —ap/2)]

- sin[ra—(p — ap/2)]

(4.6)

The product of the last two factors on the right-hand-side can be identified with zero because

2isin[ma(p —ap/2)] Y e2mip-a/2k
keZ
— eiﬂa(ﬂ—ao/Z) (1 _ e—Zﬂiol(;O—oto)) Ze—2nia(p—a0/2)k
keZ
— gita(p—a0/2) Z(eonia(p*ao/Z)k _ efznia(pfozo/z)(kﬂ))‘ @7
kel

A similar calculation gives the same conclusion for S[£1,1 — JF,]. We may therefore replace
the vacuum S-matrix coefficient S[K; 1.0 = F p]i in the Verlinde formula by S[J; 1.0 = J,1,
the S-matrix coefficient of its simple submodule J; 1.¢. In this way, the non-uniqueness of the
vacuum S-matrix coefficients is neatly bypassed.

We remark that the S-matrix coefficients S[L, ; — F p]i, and hence the S[X, ;.0 = F p]i as
well, can only be understood as distributions:

S[Lys — Tl 221 sin LTk P- 5 — 00 /2 — k@), (4.82)
keZ

S[Lys = Tyl =—— 221 sin . +”fk’/f’+5(p —ap/2 —k/a). (4.8b)
keZ

ITEERL

From this point of view, the vanishing of the quotient (4.6) and its version is manifest
because the factors sin[7 prot (o — ap/2)] may be replaced by = sin[kzr] = 0 when brought into
the sum over k, so the coefficient of each delta function is zero.

We next argue that at the level of the Verlinde products, the minimal model modules £, ¢
decouple, meaning that for any singlet module N, we have Ng, | ~7» = 0. This follows from an
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obvious generalisation of the argument above for (7, s) = (1, 1) to the quotients

S[Lrs = Fpl*
S[J1,1:0 > Fpl

It therefore follows from (4.4) and the replacement S[X; ;.0 — f}'p]jE — S[J1,1.0 = F,] that
Ng,, n7» = 0. Summarising, we have seen that the alarming non-uniqueness and distributional
nature of the S-matrix coefficients that we observed for the £, is not at all troublesome for
Verlinde computations as these modules decouple completely. In other words, the £, ; may be
naturally identified with zero in the Verlinde ring: [£, ] =0.

4.2. Verlinde products

We are now ready to compute the “Verlinde products” defined by the Verlinde formula. First,
we will compute the product [F;] x [F,] of standard singlet module characters for A, u € R.S
The Verlinde coefficient we seek is

v

N g’
FrF
_/ S[F, — ffp]S[ffM — 3’"/)]8[35” — ffp]* d
- S[11:0 > T, P

R
_ / sinlwp oy (p — a0/ sinlrp-a—(p = @0/ oriGtu—v—ao/2)(p-00/2) 4 0
sin[rat(p —ap/2)]  sin[ra_(p —ap/2)]

4.9)
which, by means of the trigonometric identity
sin[px]  eP* —e7irx p=l
e I (4.10)
sin[x] e —e W ‘
j=0
simplifies to
p+—1p——1
Ngs, &= 3 % / e~ 2iGti—v+jsas e (p=e0/2) g
J+=0j-=0p
p+—1p—1
=Y Y Sv-hr—p—jyoy—joa). 4.11)
J+=0 j-=0
The Verlinde formula (4.3) therefore yields the following product:
p+—1p_—1
[F < (Ful= Y D (Fasutjvastjal- (4.12)
J+=0 j-=0

We next turn to the product [J, ., X [Ty for 1 <r < py, 1 <s < py,neZand p e R. The
remaining Verlinde products will then be calculated by applying this product to the appropriate

6 In what follows, we will drop the “ch” from the character ch[M] of a module M for brevity and to make contact with
Eq. (4.3).
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(co)resolutions. This time, the Verlinde coefficient to be computed is

F
er,s;ngju !

_ / sin[rray (o — ag/2)] sin[rsa_(p — aO/z)]e—inna(pfao/z)6*27”(#*”)(/)*0‘0/2) dp
sin[ray (p —ap/2)] sin[ra_(p —ap/2)]

r—1 s—1
=Y 8 =g — e — jpoy — joa). (4.13)
J+=0j-=0
The Verlinde formula therefore gives
r—1 s—1
Drscn] X [Ful =D Y [Far ooy ntul (4.14)
J+=0j-=0
As the Verlinde formula is defined entirely in terms of characters of modules, it cannot differ-
entiate between an indecomposable module and the direct sum of its simple composition factors.

We therefore obtain the following identifications, for | <r < py —land 1 <s < p_ — 1, from
Egs. (2.6), (2.8) and (2.9):

[j+ ] = [jr,s;n] + [jr,p,—s;n—l], [Serr,s;n] = [jp+,s;n] + [jp+,p,—s;n—l]v

r,sin
[j;s;n] = [jr,s;n] + [jp+7r,s;n+]]a [gr,p_;n] = [jr,p_;n] + [jp+7r,p_;n+]]~ (415)
Here, we recall the definitions (4.1) that we have already made for r = p or s = p_. By applying

the Verlinde product (4.14) to the (co)resolutions (3.8a), (3.8b), (3.13a), (3.13b), (3.16a) and
(3.16b), we obtain the following products involving the J; 1.,,, J2.1.0 and J; 2.0:

[jl,l;m] X [jr,s;n] = [jr,s;m+n]s (4163)
[52,s;n] ifr=1,

[JZ,I;O] X [jr,s;n] = [ [jrfl,s;n] + [jr+l,s;n] ifl<r< P+, (4.16b)
[j],s;nfl]+2[jp+71,s;n]+[jl,s;n+l] ifr:p+»
[Jr,Z;n] ifs = 1,

[31,2;0] X [jr,s;n] = [Jr,sfl;n] + [jr,s+1;n] ifl<s< P—, (4160)

Urtn—1)+200r p_—1:0] +r1in1]l ifs=p_.
We note for future use that the linear Z-span of the [J, s.,,] is closed under the Verlinde product.
To illustrate how to apply (4.14) to (co)resolutions, we present the details of the derivation
of the product [J3 1;0] % [Jp, 5;n], With s # p_. First, we recall that J,, ;;, = J;Jr’m, so the
resolution (3.13) (or rather the corresponding character formula (3.14)) allows us to write’

2, 1;0] X Tppson] = Z[Uz,l;o] X ([Fpy po—sint2k41] — [Fpy sintok42])
>0

= Z([?p++l,p,—s;n+2k+l] + [SthF—l,p,—s;n—Q—Zk—i-l]
k=0
- [?p++l,s;n+2k+2] - [?er—l,s;n—Q—Zk—i-Z])

7 Note that (3.14) gives two character formulae, one for n > 0 and the other for n < —1. We assume here that n > 0 for
clarity. One can easily check that we get the same answer for the Verlinde product when we use the formula for n < —1
instead.
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(using Eq. (4.14) and o4 p, 50 = %y 5;n—1)

= Z([gl,p,—s;n+2k] - [gl,s;n+2k+1]) + [j;+fl,s;n]
k>0
=17

1,s;n—1

] + [j;Jr—l,s;n]

(using Eq. (3.14) again)
= [jl,s;n—l] +2 [jp+—l,s;n] + [jl,s;n+1]» (4~17)

the last equality following from (4.15). The remaining Verlinde products of (4.16) are similarly
derived.

4.3. Presentations and the Verlinde ring

It is clear from Eq. (4.16) that [J1 1.4+1], [J2.1;0] and [J1 2.0] generate all of the [J, s.,], for
1<r<ps, 1 <s< p_ and n € Z, by repeatedly taking Verlinde products with one another.
Mathematically, this implies that there is a ring homomorphism ¢ from the polynomial ring
Z[X,Y,Z,Z~"] to the subring of the singlet Verlinde ring V[I(p., p_)] that is spanned by the
[Jr,5:n]. We will denote this subring by Vi [I(p4, p—)], referring to it as the atypical Verlinde
ring for the singlet algebra (the only typical simples involved are the J,, , . =3, p_.n). The
homomorphism ¢ is defined by

¢:Z[X, Y, Z, Z7' ] — Vayp [1(p+, po)];
X [Dpol, Y= [0izol,  Z7 = [Tl (4.18)
This map is surjective by construction.

If we restrict the Verlinde products to those of [J 1.0] with [J, 1.0] (or [J1,2.0] with [J1 s.0]),
then we observe the familiar sl(2)-structure that may be formalised in terms of Chebyshev
polynomials of the second kind, at least for r < p4 (s < p_). Recall that these Chebyshev poly-
nomials are defined recursively by®

U-1(X)=0, Up(X)=1 Unt1(X) = XUp(X) = Up—1(X) (n2>0) (4.19)
and that they satisfy the simple multiplication formulae,
k+L

UiX)UX) = 3 Un(X), (4.20)
m=k—¢|

where the primed summation means that the label increases in steps of 2, not 1. From the Verlinde
products (4.16) and the recursion relations (4.19), it is not hard to see that the ring homomorphism
¢ acts as

¢(Ur—l(X)Us—l(Y)Zn) = [jr,s;n]- (421)
However, the kernel of ¢ is non-trivial as is evidenced by the Verlinde products with r = p, and
s = p_. They imply that

¢(Up, (X)—Up, 2(X)—Z—-Z ") =¢(Up_ (¥)=U,_2(Y)—Z—-Z"")=0. (4.22)

8 Our definition is slightly non-standard and is related to the standard Chebyshev polynomials U,(x ) by Up(X) =
Un(X/2).
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In fact, one can show that the kernel of ¢ is generated, as an ideal, by the above polynomials,
hence that we have the following explicit presentation of the atypical Verlinde ring:

Vatyp‘[l(erv p*)]
- ZIX,Y, Z,Z7Y
S Up,(X)—Up,2X)—Z—=Z" Uy (Y)=Up_2(Y)—Z—Z71)
This presentation can be used to easily compute the Verlinde product of two J, ., modules:

[jr,s;n] X [jr’,s’;n’]
ay(r+r')y  a_(s+s)

= Z/ Z/ i josnn']

Jy=lr=r'|+1 j_=|s—s'|+1

(4.23)

ay(r+r')  s+s'—1—p_

/
+ Z Z ([jjJr,j,;n-i-n/—l]+[jj+,p,—j,;n+n’]+[jj+,j,;n+n’+1])
Jy=Ir—r'|+1 j_=b_(s+s')

r+r'—=l1—py  a_(s+s')
’ ’
+ D Yo (gt p o]+ 10 ntrs1])
J4=by (r+1") jo=|s—s'|+1
r+r'—1—py s+s'—1—p_
’ /
+ Z Z ([U/Jr Jj—in+n’ 2]+ [jH p——j—;n+n’ ~1]
J+=by(r+r') j-=b_(s+s")

+ Ups—jisjosntn =11+ 20 josntn )+ i — i p—josntn’]

+ gy p—jontn+t) + Ty —jy o1l + 10y jnnrt2]), (4.24a)
where
r—1 ift —1—ps <0,
ar(t) =1 p+ ift —1— p+ > 0iseven,

p+r—1 ift—1—py>0isodd,
1 ift—1— pyisodd,

by(t) = 4.24b
() {2 ift —1 — p+ is even. ( )

Finally, we remark that the sums involving b4 (¢) in this result should be understood to vanish
whenever t — 1 — p4+ < 0. This formula follows directly from the multiplication formulae (4.20)
and the easily derived relations

Up, 6(X) =Up, 2k (X) + Up(X)(Z+Z7")  mod ker¢ (0

Sk<py—2),
Up +x(Y)=Up 2 k() + U(Y)(Z+Z7') modkergp (0<k<p

-2). (4.25)
5. The Verlinde ring for triplet models

Having determined explicit formulae for the Verlinde products of simple singlet modules, we
now consider analogous formulae for the triplet modules. We note that there is almost nothing
in the literature devoted to fusion rules for singlet models, but that there are many sources where
triplet fusion rules have been conjectured or computed [5,7,8,12,45-47]. Comparing these results
with the triplet Verlinde products that we will deduce therefore gives very strong consistency
checks of both our results and those in the literature.



194 D. Ridout, S. Wood / Nuclear Physics B 880 (2014) 175-202

5.1. Simple currents for the singlet Verlinde ring

As previewed in Section 2.3, the [J; 1.,] are simple currents in the Verlinde ring V[I(p+, p—)],
that is, they are units of the Verlinde ring that act as permutations on the set of all simple modules.
Indeed, the Verlinde products (4.14) and (4.16a) give

[jl,l;n] X [EFM] = [EFqunot/Z]a [jl,l;n] X [jr,s;n’] = [jr,x;n+n/]‘ 5.1

In particular, [J; 1,—,] is the inverse, with respect to the Verlinde product, of [J1 1.,] (because
[J1.1:0] is the identity). We note that when py =1 and p_ > 1 (p— =1 and p4 > 1), these
simple currents are identified with the [J]i];n] ([JT’];”]). For p; = p_ =1, the identification is
rather with the [ 1,,].

When p; = p_ =1, so the singlet algebra coincides with the Heisenberg algebra, the I ;.5
are well known to be simple currents in the fusion ring. Indeed, extending I(1, 1) by J 1.2 leads
toW(l, 1) = 5[(2) 1. We conjecture that this generalises so that the J; 1., define simple currents,
in a sense that we will shortly describe, with respect to the fusion product of the singlet algebra
I(p+, p—). As remarked in Section 2.3, this conjecture is already suggested by the decomposition
of the simple triplet algebra modules into singlet modules, at least for n even.

Let us consider the case where py =1 and p_ > 1 (the case p_ =1 and p; > 1 is anal-
ogous). As we have noted above, there is then no Felder complex (2.4b), hence the list of
simple I(1, p_)-modules given in Section 2.2 truncates to the typical J, and the atypicals
Tsin=17] s with 1 <s < p_ — 1 and n € Z (the analogous modules with s = p_ are typi-

cal: I = =J1,p_.n = F1,p_;n)- In particular, there are no problematic modules £, s to worry
about and we have a bijective correspondence between the simple I(1, p_)-modules and their
(linearly independent) representatives in the Verlinde ring. We therefore claim that the Verlinde
products (5.1) lift to fusion products as follows:

jl_l n X ?V« = Y utna/2s jl_,l;n x jl_s n = jl s;n+n'" (52)

Note that J; ;.4 is the vacuum module of I(1, p_). These singlet fusion products are consistent
with the triplet fusion products that have appeared in the literature, though we will only verify this
here at the level of the Verlinde ring. Essentially, we claim that the Verlinde products guarantee
that these fusion products are simple, hence that there are no possible ambiguities concerning
their structure. This is equivalent to fusion being exact on I(1, p_)-modules and the Verlinde
ring, as defined above, coinciding with the Grothendieck ring of fusion.

If we accept these arguments supporting the Jil;n being simple currents, then it is a simple
matter to determine the (simple) spectrum of the simple current extension. We will do this for the
group of simple currents corresponding to n = 2 in order to compare with the known spectrum
of the triplet algebra W(1, p_). As the simple currents act freely (under the fusion product) on
the simple singlet modules, the simple extended algebra modules are realised by summing over
the orbits of the simple current group:

Ffb =P Frtko- Fioy =D Frvr1/20:

keZ keZ
@jl s;2k> @jl §;2k+1° (5.3)
keZ keZ

Note that IFE;] = IF[_A +a/2)> SO We may restrict A to the real interval 0 < A < «/2. We remark that
because the simple currents Jfl,n, with n even, have integer conformal weights, it is natural to
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restrict to the untwisted extended algebra modules upon which the simple current fields act with
integer moding. Referring to the conformal weights listed in Appendix A, we quickly find that all
of the Wf . are untwisted, but that the simple Fﬁ] are only untwisted when A = a1 ,_. Defining

Wiy =Fie (5.4)

[al,p,]

and comparing with the decompositions of the simple triplet modules given in Section 2.3, we
conclude that the simple untwisted modules of the simple current extension of I(1, p_) by the
group generated by J, ., may be identified with the simple W(1, p_)-modules. We view this as
extremely strong evidence for the claim that the triplet algebra is just the simple current extension
of the singlet algebra by J; | .

The general case, where p., p_ > 1, is somewhat more delicate because of the simple
I(p+, p—)-modules £, ; which are set to zero in the Verlinde ring. In particular, we must al-
low for the possibility that a given fusion product may have composition factors of the form
L, s which are not visible in the Verlinde product. This spoils any chance of a bijective corre-
spondence between simple I(p4, p—)-modules and their representatives in V[I(p4, p—)]. The
connection between the Verlinde product and the fusion product is therefore correspondingly
weaker. The best we could hope for then is that fusion turns out to define a product on the quo-
tient of the Grothendieck group of 1(p4, p—)-modules by the £, and that the Verlinde ring
coincides with this quotient. We shall assume this in what follows.

Despite the expected lack of exactness and ambiguities concerning the £, s, we conjecture
that the fusion products corresponding to the Verlinde products (5.1) are

jl,lgn X ?u = J u+na/2 (u #ar,xgn)’ j],l;n X Lr,s =0,

. Xe )" ifr#py, s#p_andn+n' =0,
jl,l;n X jr,s;n’ = Je o

r,s;n+n’

otherwise, (5:5)

where “e” stands for 4+, — or is empty, and “x”” denotes the contragredient dual. The appearance
of the contragredient modules when n+n’ = 0 is suggested by the W(2, 3) fusion rules computed
in [11] and is consistent with the W(p, p—) fusion rules proposed in [12,47,48]. An interesting
consequence of this is that the simple currents J; 1., do not generate a group under fusion because
(UCIJ;O)* is not the vacuum module, but its contragredient. Instead, they generate semigroups
(this possibility seems to have been first noticed in [49]).

We therefore conjecture that the triplet algebra W(p, p_), with p4, p_ > 1, is the simple
current extension of the singlet algebra I(p, p—) by the semigroups generated by J; 1.42. This
is easily checked to be consistent with the decompositions of the simple triplet modules given
in Section 2.3 and, again, we identify the triplet modules with the untwisted modules of the
simple current extension. Evidently, this subtlety of semigroups is irrelevant at the level of the
Verlinde ring, so we will assume the standard simple current machinery in what follows for all

p+and p_.

5.2. Verlinde products

In this section, we will calculate the Verlinde products of the simple triplet modules under the
assumption that the triplet algebra W(p4., p—) is the simple current extension of the singlet alge-
bra I(p+, p—). The results are then compared with the literature, in particular with the products
proposed in [8,12,47,48].
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If this assumption is valid, then the Verlinde products of the triplet Verlinde ring
VIW(p+, p—)] can be computed in terms of singlet Verlinde products by regarding each triplet
module as a direct sum over an orbit of singlet modules under the action of the simple current
(semi)group, choosing arbitrary representatives of each orbit, computing the Verlinde product of
the representatives and, finally, determining the orbit of the resulting product. It is not hard to see
that this general procedure reduces to the following simple rules:

W18 WS ] = Dol x [WE, ] (Wi ] B[WE ] = Bt x [W5,]. 5.6)

Here, we distinguish the Verlinde product (X) of the triplet Verlinde ring V[W(p4, p—)] from
that (x) of its singlet counterpart V[I(p, p_)]. It is clear now that the triplet Verlinde products
can be directly read off from those of the singlet Verlinde ring V[I(p+, p—)]. For example,

[Wf,]] X {W, ] =] x (W] =011 x Z[jr,s;2n]

nez

= Z[jr,s;2n+l] = [Wr_’q] 5.7

nez

This shows, of course, that [W; ;] is a simple current in the triplet Verlinde ring — this is the
residual simple current symmetry after extending the singlet Verlinde ring by J; 1.45.”

The general product formulae for the triplet Verlinde ring V[W(p, p—)] now follow directly
from the decompositions of Section 2.3 and the Verlinde products of the singlet Verlinde ring
given in (4.24a). The orbit of the singlet module J; 1. gives rise to the identity of V[W(p, p-)I:

[th]. As the orbits of the singlet generators Jy 1.+1, J2,1.0 and Jj 2.¢ define the triplet modules

Wi W;r | and Wtz, respectively, Eq. (4.16) implies their Verlinde products:

(Wi IR [We ] =[W;e]. (5.8a)
[Wis] ifr=1,

[WE IR [WE]=1 Wi+ W 1 if T <r<py, (5.8b)
2(W5 _ J+2IWE] ifr = py,
[Wiz] if s = 1,

(Wi R [we =1 W+ W] ifl<s <po, (5.8¢)
2(W; , 1+2[W T ifs=p_.

The [W] ], [WZ ] and [Wiz] therefore generate V[W(p., p_)]. The general formula for the
Verlinde product in the triplet Verlinde ring is similarly obtained from (4.24a):

[Wfr] X [Wi;v/]

a4 (r+r') a—(s+s")

= Y Y wr]

J=lr—r 1 jo=ls—s'|+1

9 The fact that Wi | fuses with itself to give the contragredient of the vacuum module, at least for small p4 and p—
[11,12], is our main reason for proposing the appearance of the contragredient modules in (5.5).
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ay(r+r')  s+s'—1-p_
I / gl ’
+ > > O+, D)
o=l 141 jo=b_(s+s")
r+r'—1—py  a_(s+s’)
/ / PN /
+ D > i+ )
J4=by(r+17) jo=Is—s'|+1

r+r'—l—py s+s'—1—p_

’ ’ , oot o
+ Z Z (4 [Wiiv/—] +2 [ij,;—fj-] +2 [Wpiij+,j_]

J+=by (r+r") j_=b_(s+s")
Wi ) (5.9)

where a4 () and by (r) were defined in (4.24b). These formulae reproduce the Grothendieck
fusion rules conjectured in [8] from a Kazhdan-Lusztig-like correspondence with a certain
quantum group, and are consistent with the fusion rules proposed in [47,48] from lattice con-
siderations, and those computed for certain small values of p4 and p_ in [12] using the Nahm—
Gaberdiel-Kausch algorithm, once the £, ; have been set to zero.

6. Discussion and conclusions

We have seen above that the Verlinde ring of the singlet algebra I(p, p—) may be straight-
forwardly derived from the modular transformation properties of the simple singlet modules and
a continuous version of the Verlinde formula. Moreover, the Verlinde ring of the triplet algebra
W(p4, p—) then follows from some basic simple current technology and the result compares
favourably with what is known of the triplet fusion ring. Indeed, it appears that this rather effort-
less approach captures pretty much all the information about the fusion ring that can be divined
from the simple characters alone. The most difficult step was, in a sense, understanding the rep-
resentation theory of the singlet algebra in the first place.

On a heuristic level, we can understand the good behaviour of the modular properties of
the singlet characters, as compared with those of the triplet characters, as stemming from the
uncountable nature of the spectrum of simple singlet modules. For the singlet, the parametrisation
of standard modules defines a countable set of points — points of atypicality let us say — at
which the standard singlet modules become reducible. For the triplet, with its finite spectrum of
simple modules, one finds instead that the majority correspond to atypical points (the exception
is W(1, 1) of course). Now, observe that the S-matrix elements derived for the atypical simple
singlet modules have poles at atypical parameter values. Consequently, we see that these poles
need not cause problems when integrating over a continuous spectrum as we do for the singlet
(the poles form a set of measure zero after all) but that they will definitely cause problems if one
tries to perform a discrete sum as one would like to do for the triplet.

It was first discovered in [ 1 1] that the fusion product of the triplet algebra W(p, p—), with p4
and p_ greater than 1, does not necessarily map exact sequences to exact sequences. However,
this failure of exactness was always observed to involve the simple modules £, . As one can
see from the fusion products proposed in [12,48], the £, form an ideal with respect to the
fusion product in the category of W(p, p—)-modules. It was therefore conjectured in [29] that
if one takes the quotient of the category of W(p, p—)-modules by the ideal generated by the
L, s, then the fusion product on this new quotient category, there referred to as the Whittaker
category, will be exact. It seems natural to expect that this quotient category is equivalent to the
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category of quantum group modules that has been studied under the name “Kazhdan-Lusztig
correspondence” [50].

We can of course form the same kind of quotient category for the singlet algebra I(p4, p—).
This quotient appears to be exactly what the singlet Verlinde ring V[I(p4, p—)] sees, since the
formalism we introduced above naturally sets all the £, ; to zero. We therefore conjecture that
the J1 1., form simple currents of this quotient category. Settling these conjectures would appear,
to us, to be the natural next step to tackle in understanding the (p4, p—)-models. In particular, we
would like to see results concerning rigidity and projectivity, which have received some attention
for the triplet algebras, being generalised to the singlet algebras. It would be interesting to know
if there is some variant of a Kazhdan—Lusztig correspondence that applies to singlet models,
given that these theories are arguably more fundamental in the sense that the singlet theories are
more closely related to other logarithmic theories [51-54] than the triplet theories.

Finally, let us remark upon some small overlap of our results with those of the recent paper
[37]. There, the focus is on the (1, p) singlet algebras and the relation between atypical singlet
modules and the modular properties (or lack thereof) of certain variants of Jacobi theta functions
that are known in number-theoretic circles as false and partial theta functions. The idea is to
regularise these functions and analyse modular aspects of the regularisation. In this respect, their
regularisation parameter ¢ plays the same role, roughly speaking, as our formal variable z. They
finish by computing a regularised Verlinde formula for (1, p) singlet models that agrees with our
results. It would be interesting to study their regularisation procedure for general (p, p—) singlet
algebras to see whether any of the “bad” features of these models, such as non-exactness of
fusion, can at all be ameliorated. We suspect that the answer will be “no” because the geometric
sum formulae being regularised in [37] may instead be interpreted as identities of distributions
where the test functions are linear combinations of the standard characters.
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Appendix A. Structural data

In this appendix, we quote the structural results concerning Feigin—Fuchs modules that are re-
quired in the text. This material may be found in [39,40]. We also need the corresponding results
for the simple modules of the singlet algebras. Our presentation follows [29] rather closely.

Recall that a Heisenberg weight A € R and its corresponding conformal weight A, are related
by Eq. (2.3b):

1 1 a\® ol
Ap=-Ar—ap)==(r——=) — 2. Al
Py 2( ao) 2< 2) 3 (A.D)

For A =« 5., we suppress the « in A, and write

_ (pr—pes —2npyp ) — (py — p-)?
4pip-

Mg, =Arsin (A2)

Qr s:n
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We will denote the simple Virasoro module generated by a highest weight state of central charge
c=1-— 305% and conformal weight A by £(A).
The socle of a Virasoro module M is its maximal semisimple submodule. The socle series of
M is the ascending series
O=MyCcMiCMC--- (A.3)

of submodules of M for which S; (M) = M;/M;_y (fori > 1) is the socle of M;1/M;_1. Socle
series are unique if they exist. Recalling the notation F; 5., = J, ., , there are five different
possibilities for the socle series factors S; (F;) of the Feigin—Fuchs modules &) :

(1) For1<r < p4,1<s < p_andn €Z, we have

S3(3rr,s;n) = @L(Ap+7r,s;|n|+2k+] ),

k>0

SZ(?r,s;n) = @L(Ar,s;|n|+2k) ® @ L(Ap+—r,p,—s;|n|+2k)v
k>a k>1—a

Sl (Str,s;n) = @L(Ar,p,—s;lnHZl{—H)s (A4)
k=0

wherea =0ifn >0anda=1ifn <O0.
(2) For 1 <s < p_ and n € Z, we have

SZ(SF[)Jr,s;n) = @L(A[}%s;\n\—ﬁ—ﬂc)s
k>a

S1(Fpysin) =ED LA, p —smrans1), (A.5)
k>0

wherea=0ifn>1anda=1ifn < 1.
(3) For1 <r < p; and n € Z, we have

52(?r,p,;n) = @L(Aer—r,p,;lnHZk—l)y
k=>a

$1Frp ) =ED LAy nrs20), (A.6)
k>0

wherea=1ifn>1anda=0ifn < 1.
(4) For n € Z, the Feigin—Fuchs module F,, ,_., is semisimple as a Virasoro module:

Sl(?er,p,;n)=®L(Ap+,p,;|n|+2k)- (A7)
k=0
(5) Finally, for A € R, with A # o, 5., forany 1 <r < py, 1 <s < p_ and n € Z, the Feigin—
Fuchs module T, is simple as a Virasoro module:

S1(Fn) =L(A). (A.8)

We will also need socle factors for the simple I(p4, p—)-modules decomposed as Virasoro
modules. The F;, with A # o 5., forany 1 <r < p4, 1 <s < p_ and n € Z, are simple singlet
modules, as are the F,, ,_.,. Their socle factors were given above. As the result for the simple

singlet modules £, s is obvious, it only remains to list the factors for the J7 . -
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(1) For1<r<p4,1<s<p_andn€Z,

jr,s;n = Sl (?r,s;n) = @L(Ar,p,—s;|n|+2k+l)- (A9)
k>0

The minimal conformal weight of the states of J,. ., is therefore A, , . |n41.
2) Forl1<s<p_andneZ,

31_7+,s;n =5 (?P+,S§") = @’C(Ap+,p_—s;|n|+2k+l)- (A.10)
k>0

The minimal conformal weight of the states of I, ., is therefore A, p_—s;jnj+1-
B) Forl<r<piyandneZ,

3t =51y ) =LA rs20)- (A.11)
k=0

The minimal conformal weight of the states of ij_-n is therefore A, p_; ).

Of course, the minimal conformal weight of the states of F,, , ., is Ap, , .| and that for Fy
is A)L.
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