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E-mail: M.Baumgartl@physik.uni-muenchen.de, swood@phys.ethz.ch

Abstract: We investigate the one-parameter Calabi-Yau models and identify families
of D5-branes which are associated to lines embedded in these manifolds. The moduli
spaces are given by sets of Riemann curves, which form a web whose intersection points
are described by permutation branes. We arrive at a geometric interpretation for bulk-
boundary correlators as holomorphic differentials on the moduli space and use this to
compute effective open-closed superpotentials to all orders in the open string couplings.
The fixed points of D5-brane moduli under bulk deformations are determined.

Keywords: D-branes, Conformal Field Models in String Theory, Topological Strings

c© SISSA 2009 doi:10.1088/1126-6708/2009/06/052

mailto:M.Baumgartl@physik.uni-muenchen.de
mailto:swood@phys.ethz.ch
http://dx.doi.org/10.1088/1126-6708/2009/06/052


J
H
E
P
0
6
(
2
0
0
9
)
0
5
2

Contents

1 Introduction 1
1.1 Matrix factorisations 3
1.2 Three-point functions and bulk-boundary correlators 3
1.3 Minimal models 4
1.4 Permutation branes 5
1.5 Equivalence classes 6

2 The Fermat quintic 6
2.1 D-branes families 6
2.2 Spectra 9
2.3 The moduli web 10
2.4 Bulk deformations and superpotential 12

3 The Calabi-Yau P(1,1,1,1,2)[6] 14
3.1 Embedded lines 15
3.2 Permutation points 15
3.3 Marginal cohomology on the branches 16
3.4 The moduli web 17
3.5 Obstructions 18
3.6 Bulk deformations 19
3.7 Effective superpotentials 21

4 The Calabi-Yau P(1,1,1,1,4)[8] 21
4.1 Lines and the moduli web 22
4.2 Bulk perturbations and effective superpotentials 23

5 The Calabi-Yau P(1,1,1,2,5)[10] 24
5.1 Lines and the moduli web 25
5.2 Bulk perturbations and effective superpotentials 27

6 Conclusions 28

A Factorisations on P(1,1,1,1,1)[5] 30

B Factorisations on P(1,1,1,1,2)[6] 30

C Marginal spectrum on P(1,1,1,1,2)[6] 30
C.1 Fermions of charge 1 30
C.2 Fermions of charge 2

3 32
C.3 Fermions of charge 1

3 32
C.4 Fermions of charge 0 32



J
H
E
P
0
6
(
2
0
0
9
)
0
5
2

D Obstructions on type-1-branches of P(1,1,1,1,2)[6] 33

E Factorisations on P(1,1,1,1,4)[8] 33

F Factorisations on P(1,1,1,2,5)[10] 34

1 Introduction

The matter content of string theory depends on the compactification details of higher
dimensions as well as the brane configurations in the hidden dimensions. Often such
configurations are organised in families, which constitute some open string moduli space.
In order to better understand the role of the moduli space it is important to go beyond
perturbative calculations and examine its global geometry. In this paper we will study
the moduli spaces of D5-branes in ten-dimensional string theory compactified on various
specific Calabi-Yau manifolds, which are constructed of tensor products of minimal models.
We compute exact superpotentials for open string moduli under bulk perturbations and
find explicit conditions for branes in order to survive the large complex structure limit. The
moduli space turns out to be a web of intersecting complex lines with a generic structure,
whose intersections are permutation points. We construct this space exactly to all orders in
perturbation theory, investigate its symmetry properties, compute the marginal spectrum
and find joining relations for the transitions of cohomologies at the intersection points.

We work in the B-model in a stringy regime at the Landau-Ginzburg point, where
the Kähler moduli are decoupled. At this point the model is realised as an (orbifold of)
a Landau-Ginzburg theory. Our results are achieved by matrix factorisation technologies.
Matrix factorisations are establishing a novel way in the study of open strings on Calabi-
Yau spaces. This technology can be applied at the Landau-Ginzburg point, where boundary
degrees of freedom have a matrix representation. Concretely we will work with the topolog-
ically B-twisted model, which restricts the theory to its BPS spectrum. Of particular inter-
est will be the boundary part Q of the BRST operator. This operator is related to (superpo-
sitions of) D-branes, whose connection to the conformal field theory description of minimal
models and Gepner models is well understood. D5-branes with three extended directions
and two directions in the compactified space (which appear as two-dimensional branes in
the Calabi-Yau) have a geometric meaning as complex lines in the Calabi-Yau manifold.
The deformation space of such lines is identical to the moduli space of these D5-branes.

Conformal field theory descriptions are usually only available for certain points in mod-
uli space. Moving away from such points is technically difficult and involves the construc-
tion of renormalisation group flows. Matrix factorisations provide an alternative descrip-
tion, where one has access to the chiral primary fields in the spectrum only. One of their at-
tractive features lies in the fact that in some cases it is possible to study deformations which
allow the exploration of connected regions in moduli space. A good understanding of mod-
uli spaces and the relation between open and closed string moduli is essential for acquiring
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insight into the structure of full string theory. The coupled open-closed superpotential for
D-branes on Calabi-Yau manifolds is much sought after. It is interesting from a phenomeno-
logical point of view since it determines various string couplings. It also plays an important
role in approaches to open mirror symmetry, including open-closed Picard-Fuchs equations
and relative period integrals [1, 2, 17, 31, 38, 39, 44, 45, 48–50, 56]. Beyond this it enters
the discussion of background independence of string theory along the lines of [8, 9, 33, 51].

Occasions are rare where one is actually able to cover not only infinitesimal parts of
moduli spaces. In this paper we will use geometrical methods in order to find matrix
factorisation descriptions for D-branes at the Gepner point. Such factorisations are then
constructed over the whole open string moduli space to all orders in the boundary couplings.
Following the methods developed in [10] we explicitely compute these spaces for the quintic
and the one-parameter family P(1,1,1,1,2)[6], P(1,1,1,1,4)[8] and P(1,1,1,2,5)[10].

Under bulk deformations the boundary moduli space can change significantly (see for
example [22]). We show that bulk-boundary correlators are in correspondence to holo-
morphic differentials on the moduli space, which is a result important for integrability of
three-point functions and therefore for the existence of effective potentials. We are able to
identify those points in moduli space for which matrix factorisations deform with complex
structure deformations, thus representing marginal directions in the open-closed moduli
space. Under such deformations the boundary moduli space collapses to a discrete set of
points, fixing the open string moduli as functions of the closed string moduli. In addition
correlators between boundary fields and marginal bulk fields contain information about the
effective superpotential. Since we know this correlator at any point in the boundary moduli
space, this allows us to integrate it and obtain an expression for the effective superpoten-
tial. This result is exact in open string couplings but first order in closed string couplings.
Effective superpotentials have been perturbatively computed in [4, 12, 13, 20, 28, 32–34, 40]

We start with a brief summary of methods and results of previous work in the next sec-
tion, where matrix factorisations are introduced and their connections to BCFT boundary
states are tersely outlined. Section 2 is devoted to the Fermat quintic. Techniques which
are important in later sections are introduced here. The marginal cohomologies are com-
puted. We look at the symmetries of intersections and show how the moduli web emerges
from joining relations between the moduli branches. The bulk-induced superpotential is
computed. In section 3 we focus on the threefold P(1,1,1,1,2)[6]. Due to the different weights
of the coordinates, which is reflected in the spectrum, the joining relations are modified
while the global structure of the moduli web is unchanged. We obtain again expressions
for the effective superpotential and verify the correspondence between bulk deformations
and holomorphic differentials on the moduli space. Very similar results are obtained in
section 4 while here for the first time isolated marginal states are observed which only live
in an enhanced spectrum at some permutation points. In section 5 we discuss the more
intricate case of the P(1,1,1,2,5)[10] threefold. The different weights in this model introduce
more complexity. Cohomologies, joining relations and superpotentials are determined as
in the previous models.
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1.1 Matrix factorisations

Before we start with the quintic we repeat the basic construction of matrix factorisations
for minimal models, their tensor products and (generalised) permutation branes.

Matrix factorisations arise in the context of N = 2 Landau-Ginzburg models with
superpotential W and are important to understand the connection of string theory on
Calabi-Yau manifolds with minimal models and Gepner models [19, 23–25, 29, 35, 47,
58] in the presence of D-branes. The presence of a worldsheet boundary breaks N =
2 supersymmetry so that only one supersymmetry charge is preserved. There are two
distinct ways to combine the two left and right moving bulk supercharges into a boundary
supercharge, resulting in A- or B-type supersymmetry. We will focus on the latter.

Supersymmetric boundary conditions for open strings can be obtained along the route
described in [57] (see also [36]). This approach utilises the fact that on an open string
worldsheet it is possible to introduce fermionic boundary fields π, π̄ [46, 59]. It is in fact
necessary to include fermionic boundary terms in order to cancel boundary contributions
to supersymmetry variations in the bulk. The boundary fermions together with the fields
coming from the bulk are the building blocks of the open string BPS spectrum. This
spectrum is obtained as the cohomology of a boundary part Q of the supersymmetry
charge. Q can be expressed as1

Q =
∑
i

(πiJi + π̄iEi) , (1.1)

where J and E are polynomials of the bosonic fields.2 The supersymmetry condition
becomes

Q2 = W (1.2)

or

W =
∑
i

JiEi . (1.3)

Since π and π̄ have a Clifford representation as graded matrices Q can also be represented
as a matrix. Equation (1.2) can then be viewed as a matrix equation in which Q is the
square root of the superpotential [5–7, 14, 20, 41, 43].

1.2 Three-point functions and bulk-boundary correlators

A central tool for our calculations is the Kapustin-Li formula derived in [14, 42]. It allows
one to calculate three-point functions and bulk-boundary correlators. For a bulk field Φ
and a boundary field ψ the formula is

〈Φψ〉 = ResΦ
STr[∂x1Q · · · ∂x5Qψ]
∂x1W · · · ∂x5W

. (1.4)

1In general higher powers of π and π̄ can appear. In this article it will only be necessary to consider

operators which are products of Qs linear in the boundary fermions.
2We will eventually use the notation (J1, E1) for π1J1+π̄1E1. Also we will denote graded tensor products

as (J1, E1)� (J2, E2) =
P2
i=1 (πiJi + π̄iEi), where a suitable choice of the matrix representation of πi and

π̄i is understood.
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For three boundary fields ψ1, ψ2, ψ3 it is

〈ψ1ψ2ψ3〉 = Res
STr[∂x1Q · · · ∂x5Qψ1ψ2ψ3]

∂x1W · · · ∂x5W
, (1.5)

where the residue is taken at the critical points of W . We will use this formula later in order
to determine bulk-boundary couplings as derivatives of an open-closed superpotential.

1.3 Minimal models

The simplest models which allow non-trivial matrix factorisations are the minimal models
of type Ad−2. These are related to Landau-Ginzburg models with W = xd. The spectrum
of D-branes obtained through matrix factorisations is given by a set Qn = πxn + π̄xd−n

where n ≤
[
d
2

]
. Choosing a matrix representation together with a grading operator σ =

diag(−1, 1) gives a family

Qn =

(
0 J

E 0

)
=

(
0 xn

xd−n 0

)
. (1.6)

In the conformal field theory language, Qn corresponds to the boundary state |L, S 〉〉 =
|n− 1, 0 〉〉 in the B-model [14, 43]. The BPS spectrum of strings Ψ between two D-branes
with Q and Q′ is then obtained as cohomology of the twisted differential

DΨ = QΨ− (−1)|Ψ|ΨQ′ , (1.7)

where |Ψ| is the fermion number of the field Ψ. We restrict ourselves to the spectrum of
a single D-brane, so Q′ = Q. For the Ak minimal model with only one such D-brane the
fermions are given by

Ψl =

(
0 xl

−xd−2n+l 0

)
(1.8)

and the bosons by

Φl =

(
xl 0
0 xl

)
(1.9)

with 0 ≤ l < n < d. Thus there are n fermions and bosons in the spectrum.
It is helpful to keep track of the R-charges of the various states. In the bulk the

superpotential is normalised to charge 2, which fixes the R-charges of the chiral bulk fields
to [x] = 2

d . At the boundary Q must have charge 1, due to (1.2). From this it is easy to
write down the charges for the boundary fermions to [π] = 1− 2n

d = −[π̄], where n = degJ
is the degree of the homogenous polynomial J . We will focus on degJ = 1 throughout this
paper, in which case [π] = d−2

d . Therefore [Φl] = 2l
d and [Ψl] = d−2n+2l

d .
This construction can be extended to more complicated models. For tensor products of

minimal models higher-dimensional representations of the Clifford-algebra must be used.3

3For the description of Gepner models we must in addition orbifold, but this will be of no relevance for

our further computations.
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The BRST operator of the tensored theories becomes a graded tensor product of the BRST
operators associated to each of the building blocks.

To describe Calabi-Yau compactifications at the stringy point, one must consider orb-
ifolds of graded tensor products. The orbifold projects on integer charges in the bulk
and is necessary to conduct a GSO projection of the theory. For D-branes, orbifolding
introduces an extra representation label that has been discussed in [5] in the context of
Landau-Ginzburg models. In this paper we will consider only single branes; in this case
the projection is on integer charges, also in the boundary sector.

1.4 Permutation branes

In the following, permutation branes and generalised permutation branes are of some im-
portance, thus we will summarise some facts about them.

Permutation branes have been constructed as objects in CFT in [53, 54]. Their matrix
factorisation representation has been described e.g. in [15, 16, 21, 26]. They correspond to
conformal boundary conditions which exchange the currents of tensored minimal models
at the boundary. They are of the form4 [16]

JML =
(M+L)/2∏

m=(M−L)/2

(x1 − ηmx2) (1.10)

with ηm = e−πi
2m+1
d a d-th root of −1 and W = xd1 +xd2. In conformal field theory language

this translates into the boundary state

JML ⇔ |L,M,S1 = 0, S2 = 0 〉〉 . (1.11)

As we will be interested in linear matrix factorisations, J will always be a polynomial of
degree 1, so J = x1 − ηx2, where η stands for one of the roots ηm.

For the computation of the spectrum we will consider generalised permutation branes.
Let W be of the form

W (x1, x2) = xdn
1 + xdm

2 , (1.12)

where n and m are coprime. The linear factorisations are then given

J = xn1 − ηxm2 E =
∏
η′ 6=η

(xn1 − ηxm2 ) , (1.13)

where ηd = η′d = −1. The cohomology is easily calculated. It contains no fermions. The
bosons are of the form

Φij = xi1x
j
21 , (1.14)

with the constraints 0 ≤ i < n(d− 1)− 1 and 0 ≤ j < m. Thus there are (nd− n− 1)m of
them and their charges are [Φij ] = 2i

nd + 2j
md .

In the following we will use tensor products of minimal modes boundary states and
permutation boundary states in order to construct the D5-branes in various Calabi-Yau
spaces. In particular we will use them to compute superpotentials on these manifolds.

4When x1 and x2 do not appear with the same exponent, we call them generalised permutation branes.
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1.5 Equivalence classes

Matrix factorisations are equipped with an obvious gauge freedom. The supersymmetry
condition Q2 = W · 1 is invariant under similarity transformations Q ∼ UQU−1. The
matrix U has even grading and appears therefore in block diagonal form

U = U0 ⊕ U1 =

(
U0 0
0 U1

)
. (1.15)

The matrices U0 and U1 must be invertible over the polynomial ring. In particular, all
constant invertible matrices represent gauge transformations which also contain standard
row and column operations [26].

Gauge transformations affect the form of Q as well as the expressions for the cohomol-
ogy elements, but physical data of the brane are unaffected.

A second equivalence relation is given by adding and subtracting trivial factorisations.
The factorisations W = 1 ·W is trivial in the sense that its cohomology is empty. It indeed
describes rather the situation when a boundary term in the Landau-Ginzburg action is
absent (or trivially decoupled) and must therefore be identified with the braneless vacuum.
Physical data of a brane are independent or the operation [33]

Q ∼ Q⊕

(
0 1
W 0

)
. (1.16)

In the following we will sometimes fix the gauge and choose a particular representative
of the equivalence class.

2 The Fermat quintic

2.1 D-branes families

We begin by considering D-branes in the Fermat quintic, which is given as the geometrical
zero locus of the polynomial

W = x5
1 + x5

2 + x5
3 + x5

4 + x5
5 . (2.1)

This model and its brane superpotentials have been studied before many times, for example
in [4, 12]. Many branes of this model are known and their connection to boundary states
in the corresponding Gepner model have been worked out [4, 5, 14, 37]. It has been shown,
basically by counting intersections [16] and also by more general arguments [35, 52], that
linear permutation branes in this model correspond to D5-branes. Geometrically these are
complex lines in the projective space where W = 0.

There is a straightforward way to associate a matrix factorisation to a given line in
the Calabi-Yau manifold. As an example consider the line given by the intersection of the
three polynomials J1 = x1−ηx2, J2 = x3−η′x4, J3 = x5, where η5 = η′5 = −1. Employing
the Nullstellensatz we know that W can be factored as [16, 35, 52]

W = J1E1 + J2E2 + J3E3 , (2.2)

– 6 –
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and it is easy to write down such polynomials Ei by using x5 +x′5 =
∏5
i=1(x− ηix′). Since

these pairs (Ji, Ei) are exactly the data we need to construct a matrix factorisation, we
can immediately write down the result:

Q = Q1 �Q2 �Q3 =
3∑
i=1

(Jiπi + Eiπ̄i) . (2.3)

Let us denote the matrix factorisation Q1 = J1π1+E1π̄1 by (12), since it mixes the first
and the second coordinate. Then a short hand notation for the above brane is (12)(34)(5).
We can use the symmetry group of the quintic, which is just the symmetric group S5, to
permute the coordinates and construct more such branes. This way all the permutation
D5-branes can be generated.

It has been shown in [3] that there are many such complex lines and that they are
organised in one-parameter families. They also give rise to branes wrapping these lines,
which have been discussed in [10]. Under generic bulk deformations not all lines in a
family will adjust to the new complex structure. Only a small set which does not break
supersymmetry will be left. We will interpret this later as a collapse of the moduli space
through bulk-induced lifting of boundary moduli.

We start with the ansatz

l = (u : ηu : va : vb : vc) . (2.4)

Here (u : v) ∈ P1. The parameters (a : b : c) ∈ P2 must be chosen in a way so that the line
l lies in W . The condition we obtain from this is

a5 + b5 + c5 = 0 . (2.5)

This is the Riemann surface describing the moduli space of the lines of the form (2.4). Note
that since η is a 5th root of −1, there are five copies of each of these Riemann surfaces.

Now we can use (2.4) to read off the corresponding matrix factorisations:

J1 = x1 − ηx2 J2 = ax4 − bx3 J3 = cx3 − ax5 . (2.6)

The associated polynomials Ei are quoted in appendix B.
Inserting (2.6) into (1.2) yields the same condition (2.5) on the moduli as in the purely

geometric treatment. Since Q = Q(a, b, c) depends parametrically on the moduli, we have
constructed a family of BRST-operators defined smoothly over the whole moduli space. Of
course there are many such matrix factorisations, such as

J1 = x1 − ηx2 J2 = ax5 − cx3 J3 = cx4 − bx5 , (2.7)

which are associated to the same D5-brane. It can be convenient to switch between repre-
sentations of the BRST operator when approaching other patches of the moduli space. For
example, (2.6) is a good factorisation in the patch a = 1 and we can evaluate Q at the points
b = 0 and c = 0. In order to describe the patch b = 1 the factorisation (2.7) is more suitable.

– 7 –
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name factorisation intersects with
(α) (12)(435) (β), (ζ), (ρ)
(β) (35)(412) (α), (γ), (µ)
(γ) (14)(325) (β), (δ), (ν)
(δ) (23)(415) (γ), (ε), (ρ)
(ε) (15)(324) (δ), (ζ), (µ)
(ζ) (34)(215) (ε), (α), (ν)
(λ) (13)(245) (µ), (ν), (ρ)
(µ) (24)(315) (β), (λ), (ε)
(ν) (25)(134) (γ), (ζ), (λ)
(ρ) (45)(123) (α), (δ), (λ)

Table 1. Complete list of branches and their intersections

Both sets of polynomials describe the same physical quantity, so they are representatives
of the same equivalence class of matrix factorisations related by gauge transformations.

In the following it will sometimes be necessary to explicitly choose a particular gauge.
To keep track of the combinatorics we find it helpful to introduce the following

Notation. The expression (i) denotes the linear matrix factorisation for a minimal model
in the ith coordinate. The expression (ij) denotes the linear matrix factorisation J = xi−
ηxj , with appropriate η (in particular, (ij) and (ji) are gauge equivalent but not identical).
The expression (ijk) denotes the linear matrix factorisation defined by J = axi − bxj and
J ′ = cxj − axk. Note that this implicitly fixes how a, b and c appear in the polynomials.
All permutations (σ(i)σ(j)σ(k)) describe gauge equivalent matrix factorisations. We will
not further distinguish between matrix factorisations (ij)(klm) and (klm)(ij) etc.

The factorisation (2.6) is thus given and fixed by the expression (12)(435). This no-
tation encodes the symmetries of (2.4) nicely. It is easy to see, that there is also a matrix
factorisation (34)(215), for instance, which corresponds to

J ′1 = x3 − η′x4 J ′2 = a′x2 − b′x1 J ′3 = c′x1 − a′x5 . (2.8)

In addition it is easy to find the intersection of branches in the moduli space. For ex-
ample the branch (12)(435) contains the three special points (12)(43)(5), (12)(35)(4) and
(12)(45)(3). As we have seen above these are permutation points. The point (12)(43)(5)
is also part of the branch (34)(215) hence it is an intersection point between the branches
(given that the four roots of −1 are chosen correctly). This is enough to set up a list of all
branches and their intersections:

These are all possible
(

5
2

)
= 10 families of lines. Note that permutation points are

those points on moduli space which lie on exactly two branches, so we can identify them
by specifying the two intersecting branches. Thus we will refer to them for example as
P(αβ) = (12)(43)(5).

More notation: In order to keep track of the various branches we will give the states
and the moduli an index, e.g. ψA, aA, bA, cA. Here A = α, β, . . . and for permutation points

– 8 –
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A will denote the appropriate combination A = αβ, βγ, . . . . Later we will drop this index
again as long as it is clear from the context which branch is being discussed.

2.2 Spectra

Since we want to describe the moduli space it is enough to restrict to the marginal fermionic
fields in the spectrum. The reason for this is that the moduli space is generated by de-
formations of the boundary BRST operator. Therefore we only need to be interested in
fermions of charge one.

The spectrum at the permutation points is easily obtained from the cohomologies
computed in section (1.1). In (2.9) we give a list for the charges of each state in the
cohomologies of the factors of Q and indicate odd or even grading by the subscripts f or b.

(12) : 0b 2
5 b

4
5 b

6
5 b

(34) : 0b 2
5 b

4
5 b

6
5 b

(5) : 0b 3
5f

(2.9)

From this it is clear that one can find two fermions of charge 1. We write them symbolically
as
[

2
5

]
b
� [0]b �

[
3
5

]
f

and [0]b �
[

2
5

]
b
�
[

3
5

]
f
. The numbers denote the R-charge and the

subscript fermionic or bosonic grading.
In order to find the spectrum on the branch away from the permutation point it is

necessary to explicitly compute the cohomology. The details of this calculation have been
presented in [10]. It was shown that there are exactly two fermions present everywhere on
the branch. One fermion is given by the derivative of the BRST charge with respect to a
modulus, which we will denote by ψ. The second fermion we will denote by ψ⊥. On the
branch (α) we find the following explicit representation:

ψα = ∂bαQ
α = −x3π2 −

b4α
c4
α

x3π3 + ∂b (E2π̄2 + E3π̄3)

ψ⊥α =
x1

x3
ψα .

(2.10)

There are two comments at order on these states: First, as mentioned above the matrix
factorisation Q from which the first fermion is derived, is not unique, but Q is subject to
a huge gauge symmetry, which is given by all transformations leaving Q2 = W invariant.
Therefore the explicit expressions given here are gauge dependent. The explicit form of
ψα suggests that x3 plays a distinguished role, but indeed it is possible to choose another
equivalent Q so that ψα is proportional to x4 or x5. This reflects democracy among the
coordinates. The only restrictions come from the patch of (aα : bα : cα) in which one is
working; depending on that choice it is sometimes preferable to consider derivatives with
respect to aα or cα rather than bα. This, of course, depends on to which permutation point
one wants to connect the branch (e.g. the permutation point (αβ) cannot be described in
the patch where bα = 1).

Second, the same argument also applies to the coordinates x1 and x2. Hence it is
feasible to switch to a matrix factorisation which comes with x1 and x2 exchanged. This
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also changes the relation between ψα and ψ⊥α . Generally we can say: for a branch (ij)(klm)
it is possible to choose a factorisation so that its exactly marginal fermion is proportional
either to xk, xl or xm. Furthermore it is possible to choose it in a way that the second
fermion is proportional either to xi or xj . This will be important when we join the branches
together to form a web.

Before we look at the connections between the branches, we make a few comments on
the nature of these fermions.

It is clear, by construction, that ψα is unobstructed on the branch since it creates
the modulus. The second fermion ψ⊥α cannot be marginal, since we know that the moduli
space is one-dimensional. This can be made explicit by computing the three-point function,
which gives [10, 32, 42]

〈ψ⊥αψ⊥αψ⊥α 〉 = −2
5
η4 b

3
α

c9
α

. (2.11)

Only at the point b = 0 this fermion can become marginal, and this is consistent with the
fact that there are two marginal fermions at a permutation point. When changing from
one branch to the other, the two fermions exchange their roles, as has been shown in [10].

2.3 The moduli web

We want to look a bit closer on what happens to the cohomology in the vicinity of a
permutation point. For example, at (αβ) = (12)(35)(4) we can find two fermions

f1
αβ = 1� x3 �

(
0 1
−x3

4 0

)
(2.12)

and

f2
αβ = x1 � 1�

(
0 1
−x3

4 0

)
(2.13)

On (α) we have (in the patch aα = 1)

ψα = 1� ∂bQα

ψ⊥α = x1 �
1
x3
∂bQ

α
(2.14)

so that it is obvious that f1
α is simply the continuation of ψα at the permutation point, and

likewise ψ⊥α becomes f2
α.

On the branch (β) = (35)(124) we find the two fermions

ψβ = 1� ∂bQβ

ψ⊥β = x3 �
1
x1
∂bQ

β
(2.15)

By looking at their expressions at the permutation point (αβ) one sees how the fermions
on the branches can be identified:

ψα ∼f1
αβ ∼ ψ⊥β

ψ⊥α ∼f2
αβ ∼ ψβ .

(2.16)
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The obstructed fermion in (α) becomes the unobstructed fermion on (β) and vice versa.
Only at the permutation point both fermions are marginal. So, locally in the vicinity of
the permutation point, the moduli space is C⊕ C.

Let us now see how the branch (β) connects (αβ) with (βµ) = (35)(24)(1). At (βµ)
we find the marginal fermions

f1
β = x2 � 1�

(
0 1
−x3

1 0

)
(2.17)

and

f2
β = 1� x3 �

(
0 1
−x3

1 0

)
(2.18)

Let us now consider (β′) = (35)(124), which differs from (β) just by a gauge transformation.
We find

ψβ′ = 1� ∂bQβ
′

ψ⊥β′ = x3 �
1
x2
∂bQ

β
(2.19)

On (µ) = (24)(135) we find the fermions

ψµ = 1� ∂bQµ

ψ⊥µ = x2 �
1
x3
∂bQ

β
(2.20)

So the fermions are connected in the following way:

ψβ′ ∼f1
β′µ ∼ ψ⊥µ

ψ⊥β′ ∼f2
β′µ ∼ ψµ .

(2.21)

Again we see the obstructed and the unobstructed fermion change their roles at the per-
mutation point. Note that in order to see this it was important to correctly understand
the appearance of the gauge transformation.5

With these preparations we can set up a chain of moduli branches:

(α)
(12)(435)

−→ (αβ)
(12)(35)(4)

−→ (β)
(35)(412)

gt−→ (β′)
(35)(124)

−→ (2.22)

−→ (β′µ)
(35)(24)(1)

−→ (µ)
(24)(135)

gt−→ (µ′)
(24)(315)

−→ (µ′ε)
(24)(15)(3)

−→ (2.23)

−→ (ε)
(15)(324)

gt−→ (ε′)
(15)(234)

−→ (ε′ζ)
(24)(15)(3)

−→ (ζ)
(34)(215)

−→ (2.24)

gt−→ (ζ ′)
(34)(521)

−→ (ζ ′α)
(34)(21)(5)

−→ (α′)
(12)(534)

gt−→ (α)
(12)(435)

(2.25)

5The appearance of the gauge transformation is the price to pay for working in coordinate patches where

a = 1 on each branch and considering b as the free modulus.
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The arrows labelled by ‘gt’ indicate a gauge transformation. This cycle α − β − µ −
ε− ζ − α is not the only cycle we can construct. The global structure of the moduli space
is encoded in the symmetries of the quintic and the intersections listed in table 1. In order
to arrive at a convenient representation of the symmetries we will map the data in table
1 to a graph by assigning a vertex to each branch and an edge to each permutation point.
This graph is unoriented and contains self-intersecting faces. We want to find an universal
cover of this graph which avoids such intersections and is oriented. The moduli space is
then a quotient of it.

The smallest cycles one can find in this graph are cycles of length 5 and length 6, which
define faces with 5 and 6 vertices. When orientation is taken into account we find 12 such
cycles of length 5 and 20 cycles of length 6. The maps from S2 to graphs which consist only
out of pentagons and hexagons have been classified in [11]. The minimal standard realisa-
tion is the uniform polyhedron U25, the truncated icosahedron also known as soccer ball.

Figure 1 shows the Schlegel tree diagram associated to U25. The vertices have been
decorated with the names of the moduli branches which they represent. Each vertex
appears 6 times, so the topology of the moduli space must be a quotient of U25. The
automorphism group of the ‘soccer tree’ has been determined in [11] as Aut(U25) = Z2 ×
Z3 × Z5. However, this is not the automorphism group which we encounter for the soccer
ball with labelled vertices. Rather, we are missing the isotropy group of order 5 in [11] for
the pentagons, which leads to an automorphism group of Z2 × Z3 in our case. Therefore
we find that the moduli space of D5-branes on the undeformed quintic has the symmetry6

MD5 '
U25

Z2 × Z3
. (2.26)

In the following sections we will discuss examples of other threefolds. It will become
obvious that their moduli space is given by the same web as the Fermat quintic. The
construction applies to all threefolds constructed out of tensor products of minimal models.

Before we do this we want to discuss superpotentials on this web.

2.4 Bulk deformations and superpotential

Non-vanishing bulk-boundary correlators contain information on the effective superpoten-
tial. This tells us which directions are flat and which are possibly lifted under bulk deforma-
tions. We have seen above that in the presence of bulk operators the boundary moduli space
collapses into a set of discrete points. Only these points preserve supersymmetry and are ob-
tained as extrema of a bulk induced potential. This connection has been investigated in [10].

With our approach we are in the convenient situation that we know the boundary
moduli space exactly, therefore we can study effects of bulk perturbations globally. By
integrating three-point functions we are able to determine the effective superpotential W
explicitely. On each of the branches the bulk-boundary couplings satisfy

∂bW =
λ

2
BGψ , (2.27)

6If we consider the Z5-orbifold of the Landau-Ginzburg theory, then indeed the MD5 ' U25
Z2×Z3×Z5

.
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Figure 1. The Schlegel tree diagram for the truncated icosahedron U25. Vertices represent moduli
branches and are labelled according to table 1. Vertices with same label are identified. Edges
correspond to intersections of branches and are therefore identified with permutation points.

where b is the coupling associated to the boundary fermion ψ and G is a bulk operator. A
closed expression for the superpotential can only be obtained because the bulk-boundary
correlators are known on every point of the moduli space and can therefore be integrated up.

We will deform the superpotential by ∆W = G, an element of the bulk chiral ring:

W ′ = W +G. (2.28)

The deformation we are interested in is of the form

G = λs(3)(x1, x2)s(2)(x3, x4, x5) , (2.29)

where s(n)(x1, x2, . . . , xk) =
∑

n=
P
ri
s

(n)
r1r2...rkx

r1
1 x

r2
2 · · ·x

rk
k denotes homogenous polynomi-

als of degree n.
These monomials have a non-vanishing bulk-boundary correlator with the fermion ψ1,

which generates the branch (α). There is a second disjoint class of bulk deformations,

H = s(2)(x1, x2)s(3)(x3, x4, x5) , (2.30)

which excite the completely obstructed fermion ψ⊥α = x1
x3
ψα on (α).
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On the quintic perturbed by G the matrix factorisation condition can only be satisfied
for a set of discrete points on the branch. This set has been shown to be determined by
the intersection of the curves a5 + b5 + c5 = 0 and s(2)(a, b, c) = 0 at exactly 10 points.7

At these points, the bulk deformation need not be infinitesimal, but matrix factorisations
can be constructed also for finite λ.

From symmetry considerations it is easy to determine, which fermions on other
branches are excited. For example, G = x2

1x2x3x4 will give a potential to the branch
generating fermions on (α), (γ) and (λ).

The effective superpotential is obtained by integrating the bulk-boundary correlators
with the fermion which generates the branch. This is possible because the correlators are
holomorphic functions on the moduli space [10]. The correlation functions obtained are

〈
s(3)(x1, x2) · s(2)(x3, x4, x5) · ψ

〉
= − η

25
s(3)(η, 1)

s(2)(1, b, c)
c4〈

s(2)(x1, x2) · s(3)(x3, x4, x5) · ψ⊥
〉

= −η
2

25
s(2)(η, 1)

s(3)(1, b, c)
c4

.

(2.31)

In particular there is a one-to-one map between the coefficients of monomials in s(2) and
globally holomorphic forms on the Riemann curve a5 + b5 + c5 = 0 [10]. Thus equa-
tion (2.27) can be integrated. The superpotentials we obtain this way are given in terms
of hypergeometric functions by (we have skipped some unimportant global prefactors)

W(1, b, c) = λ
∑

i+j+k=2

s
(2)
ijkWj+1,k+1 (2.32)

on the branch (α) in the patch where a = 1. Here (and in the following)

Wrs =
br

r
2F1

( r
N
, 1− s

N
; 1 +

r

N
;−bN

)
, N = 5 . (2.33)

3 The Calabi-Yau P(1,1,1,1,2)[6]

In this section we investigate the moduli space of D5-branes in P(1,1,1,1,2)[6] with the meth-
ods developed for the Fermat quintic in the previous section. This Calabi-Yau manifold is
defined by the superpotential

W = x6
1 + x6

2 + x6
3 + x6

4 + x3
5 (3.1)

of weighted projective degree 6 [18, 44]. In particular the field x5 has charge 2
3 while all

other fields xi carry charge 1
3 .

Anticipating our results, we will find the same structure for the moduli web, but we will
see that there are now additional obstructed fermions at some of the permutation points.

7For the sake of readability we will not indicate the branch which some moduli are associated to as long

as this is clear from the context. Otherwise, for instance a(α) will indicate a modulus on (α).
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3.1 Embedded lines

For the superpotential W a parametric equation for (families of) lines is

`1 = (u : ηu : av : bv : cv2) (3.2)

where (u : v) ∈ P1 and η, a, b, c have to be chosen such that (α) lies in the Calabi-Yau. In
other words they have to satisfy the equation

u6 + η6u6 + a6v6 + b6v6 + c3v6 = u6(1 + η6) + v6(a6 + b6 + c3) = 0. (3.3)

Therefore η is a sixth root of −1 and a, b, c satisfy

a6 + b6 + c3 = 0 ⊂ P[1,1,2] . (3.4)

Thus (α) is parametrised by a Fermat curve.
There is a second inequivalent type of lines in W , namely those where x5 is

parametrised by the coordinate u:

`2 = (u : av : bv : cv : η2u2) . (3.5)

The condition on the moduli is now

a6 + b6 + c6 = 0 ⊂ P2 (3.6)

for these lines.

3.2 Permutation points

The intersection pattern of lines does not differ from the Fermat quintic case, since we are
still considering a situation where five minimal models are tensored. Therefore the soccer
ball diagram is valid here, too, and can be used to keep track of all the permutation points
and moduli branches.

The matrix factorisations associated to lines of type (3.2) are given by the branches
which we call of ‘type 1’ (α), (γ), (δ), (ζ), (λ) and (µ). The other branches which we call
of ‘type 2’ (β), (ε), (ν) and (ρ) correspond to lines of the type (3.5). We find permutation
points that correspond to intersections of lines of the first type and those that are inter-
section between first and second type, but no intersections between second type lines only.

In this setting we find two types of permutation points. First, there is

(ij)(kl)(5) , (3.7)

which is an intersection between two lines of first type. The matrix factorisation is deter-
mined by

J1 = xi − ηxj
J2 = xk − η′xl
J3 = x5 .

(3.8)

– 15 –



J
H
E
P
0
6
(
2
0
0
9
)
0
5
2

The states in the cohomologies of the factors Qi are listed by charge:

(ij) : 0b 1
3 b

2
3 b

1b 4
3 b

(kl) : 0b 1
3 b

2
3 b

1b 4
3 b

(5) : 0b 1
3f

(3.9)

From this we get three marginal fermions:

f1 = [0b]�
[

2
3 b

]
�
[

1
3f

]
f2 =

[
2
3 b

]
� [0b]�

[
1
3f

]
f3 =

[
1
3 b

]
�
[

1
3 b

]
�
[

1
3f

] (3.10)

An example for the other class of permutation points, which is an intersection of a type
1 and a type 2 branch, is given by the matrix factorisation (ij)(l5)(k) with the polynomials

J1 = xi − ηxj
J2 = x2

l − η′2x5

J3 = xk .

(3.11)

Note that this is a product of a permutation brane (ij), a generalised permutation brane
(l5) and a minimal model (k). The states are:

(ij) : 0b 1
3 b

2
3 b

1b 4
3 b

(l5) : 0b 1
3 b

2
3 b

1b
(k) : 0b 2

3f

(3.12)

The marginal fermions are:

f1 = [0b]�
[

1
3 b

]
�
[

2
3f

]
f2 =

[
1
3 b

]
� [0b]�

[
2
3f

] (3.13)

Note that there are no intersections between two type 2 branches.

3.3 Marginal cohomology on the branches

As next set we want to determine the marginal fermions away from the permutation points.
It is clear immediately that the single fermion which generates a branch is given by a
derivative of Q with respect to a modulus, since {Q, ∂bQ} = 1

2∂b{Q,Q} = 1
2∂bW = 0.

Let us consider the branch (ij)(kl5). The corresponding matrix factorisation is given by

J1 = xi − ηxj
J2 = axk − bxl
J3 = cx2

l − a2x5 .

(3.14)
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The exactly marginal fermion ψ = ∂bQ is obviously proportional to xl. Therefore we can
construct a second state of weight 1 by dividing out xl and replacing it with xi. This state
must be Q-closed since {Q, xixl ∂bQ} = 1

2
xi
xl
∂b{Q,Q} = 1

2
xi
xl
∂bW = 0.8 We thus get the states

ψ = ∂bQ

ψ⊥ =
xi
xl
∂bQ .

(3.15)

This is in fact only true when we are away from certain permutation points. For example,
when we approach the point given by b = 0 we see that ∂bQ becomes now proportional
to x2

l . This shows that at such a point we can construct the states xi
xl
∂bQ(b = 0)

and x2
i

x2
l
∂bQ(b = 0). Of course this is what we find from the examination of the brane

configuration at the permutation point. Away from the permutation point we can only
find two fermions with this method, and indeed an explicit calculation presented in
appendix C proves that this is the full cohomology.

The dimension of the marginal cohomology as computed in appendix C is the generic
dimension on the Riemann curve which forms the moduli space. The linear system of equa-
tions from which the cohomology is calculated parametrically depends on the position in the
curve. As is explained in the appendix, there might be special points at which the cohomol-
ogy jumps, but if so the dimension will be larger than on generic points. We can utilise this
fact and check if we have found the full cohomology on a branch from computing the coho-
mologies at the permutation points. For example, we know that the branches of type 1 and 2
intersect in a permutation point whose cohomology is two-dimensional. Since we have found
already two fermions on branch 1 we can be sure that we have found all marginal fermions.

The same argument also applies to the second branch, where we also expect 2 or less
fermions. On branches (5j)(klm) we work with the matrix factorisation

J1 = x5 − η2xj

J2 = axk − bxl
J3 = cxl − axm .

(3.16)

Just as before we construct the two fermions

ψ = ∂bQ

ψ⊥ =
x5

xl
∂bQ .

(3.17)

With the arguments presented above we have constructed the full cohomology.

3.4 The moduli web

As we have pointed out above the tensor structure of the model consisting of five minimal
models makes it obvious that the various branches of moduli form the soccer ball diagram

8Instead of xi
xl

we could have considered polynomials f(x1, x2, x3, x4, x5) of weight 1 (this corresponds to

degree 1 only for the first four coordinates). A choice of x3, x4 or x5 gives a state in the same equivalence

class as ψ. A choice of x1 or x2 gives the different state ψ⊥.
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as in the case of the Fermat quintic. We must check though if the cohomologies can really
be joined together at the permutation points.

Let us first consider the permutation point between branches of first and second type,
Q = (ij)(kl5) and Q′ = (5l)(ijk) with intersection (ij)(5l)(k). On Q we find the fermions
ψ = ∂bQ and ψ⊥ = xj

xl
∂bQ. On Q′ we have ψ′ = ∂bQ

′ and ψ′⊥ = xl
xj
∂bQ

′. Here we
have already chosen a gauge in which it is obvious that at the permutation point the two
fermions are exchanged

ψ ←→ ψ′
⊥

ψ⊥ ←→ ψ′ .
(3.18)

Two branches of first type Q = (ij)(5lm) and Q′ = (lm)(5ji) intersect at (ij)(lm)(5).
The fermions ψ = ∂bQ and ψ⊥ = xj

xl
∂bQ live on Q. On Q′ there are ψ′ = ∂bQ

′ and ψ′⊥ =
xl
xj
∂bQ

′. Thus there are two fermions present on each branch, but at the permutation point
itself the marginal fermionic cohomology is enhanced and consists of three states (3.10)

f1 = x2
l

(
π3 − x5π̄

3
)

f2 = x2
j

(
π3 − x5π̄

3
)

f3 = xjxl
(
π3 − x5π̄

3
)
.

(3.19)

Transporting the fermions from the branches to the permutation point yields the connec-
tions

ψ −→ f1

ψ⊥ −→ f3 ←− ψ′⊥ (3.20)

f2 ←− ψ′ .

In particular we observe here that the obstructed fermion on both branches can be iden-
tified. At the permutation point the branch generating fermions appear in or disappear
from, respectively, the marginal cohomology.

3.5 Obstructions

In this section we compute three-point functions of the fermions. Let us first focus on the
branches of second type, (i5)(klm). We find the following correlators:

〈(ψ)3〉 = 0

〈(ψ⊥)3〉 ∝ b4

c11

(3.21)

This shows that ψ⊥ is obstructed to lowest order everywhere except at the permutation
point b = 0, where the transition to the next branch occurs.

On the branches of first type, (ij)(kl5) the correlation functions all vanish

〈(ψ)3〉 = 0

〈(ψ⊥)3〉 = 0
(3.22)
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(and this implies the vanishing of the three-point functions of all fi at the permutation
point, too). The field ψ⊥ is supposed to be obstructed, since our geometric picture tells us
that it does not generate a moduli branch. As its three-point function vanishes we expect
the obstructions to occur at higher order.

In order to see this we perturb the BRST operator by ψ⊥ and apply the methods
developed in [37]. For convenience we present here the argument only at the permutation
point and refer to appendix D for the general calculation. Our ansatz is

Q(λ) =
∑
n

λnQn , (3.23)

where Q0 is the original Q and Q1 = ψ⊥. The first order equation {Q0, Q1} = 0 is satisfied
because ψ⊥ is in the cohomology. The second order equation, which determines Q2, is

{Q0, Q2} = −1
2
{Q1, Q1} ∝ x2

jx
2
l x5 . (3.24)

Indeed we can find an appropriate Q2, e.g.

Q2 = x2
jx

2
l π̄

3 . (3.25)

The third order equation is

{Q0, Q3} = −{Q1, Q2} ∝ x3
jx

3
l . (3.26)

At this order the perturbation series breaks down because the r.h.s. is not Q-exact, and
therefore no Q3 can be found. We encounter an obstruction at third order in λ.

3.6 Bulk deformations

Under general bulk deformations not all branes on the moduli space will stay supersym-
metric. We want to identify those bulk deformations for which we can find branes whose
moduli space extends into a bulk direction. Since we can probe only the on-shell properties
of these branes, the boundary modulus will be fixed.

For the branches of first type (ij)(kl5) we find the following bulk boundary correlators:〈
s(4)(xi, xj)s(2)(xl, xk, x5) · ψ

〉
= −ηs

(4)(η, 1)
18

s(2)(1, b, c)
c2〈

s(3)(xi, xj)s(3)(xl, xk, x5) · ψ⊥
〉

= −η
2s(3)(η, 1)

18
s(3)(1, b, c)

c2

(3.27)

while for the second type branches (i5)(klm) we get〈
s(3)(xi, x5)s(3)(xl, xk, xm) · ψ

〉
=
ηs(3)(η, 1)

18
s(3)(1, b, c)

c5〈
s(2)(xi, x5)s(4)(xl, xk, xm) · ψ⊥

〉
=
ηs(2)(η, 1)

18
s(4)(1, b, c)

c5

(3.28)

Here, s(n)(xj1 , xj2 , . . . , xjm) =
∑

i1+···+im=n s
(n)
i1...im

xi1j1 · · ·x
im
jm

are homogenous polynomials
of weighted degree n.
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In order to find branes which deform with a bulk deformation they must satisfy

a6 + b6 + c3 = 0 = s(2)(a, b, c) for type 1 (3.29)

a6 + b6 + c6 = 0 = s(3)(a, b, c) for type 2 . (3.30)

There are 12 and 18 such points on a branch. These points are determined by the chosen
bulk deformation. The associated matrix factorisations are given as follows:

The bulk deformation is

W →W ′ = W +G (3.31)

where

G = λs(4)(xi, xj)s(2)(xk, xl, x5) for type 1 (3.32)

G = λs(3)(xi, x5)s(3)(xk, xl, xm) for type 2 . (3.33)

The deformations of the matrix factorisations are given by

type 1:

E2 → E2 + λs(4)(1, η)

(
−a

2s
(2)
200 + cs

(2)
001

a2b
xl +

s
(2)
020

a
xk

)

E3 → E3 − λs(4)(1, η)
s

(2)
001

a2

(3.34)

type 2:

E2 → E2 + λs(3)(η2, 1)
(
x2
k

s030

a
+ x2

m

s012 − s021

a
− xkxm

as111 + cs021

ba

− x2
l

a3s300 + a2cs201 + ac2s102 + bc2s012 − bc2s021 + c3s003

a3b

− xkxl
a2cs201 + ac2s102 + bc2s012 − bc2s021 + c3s003 + a2bs210 + a3s300

b2a2

)
E3 → E3 + λs(4)(η2, 1)

(
−x2

m

s003

a
− xkxm

s021

a

− xlxm
as102 + bs012 − bs021 + cs003

a2

x2
k

ab2s120 + a2cs201 + ac2s102 + bc2s012 − bc2s021

ab2c

x2
k

c3s003 + a2bs210 + a3s300 + b3s030

ab2c

− x2
l

a2s201 + acs102 + bcs012 − bcs021 + c2s003

a3

)

(3.35)

Those branes which do not lie at the points s(2)(a, b, c) = 0 or s(3)(a, b, c) = 0, respectively,
cannot be deformed by bulk fields. For them, supersymmetry is broken, which will render
them instable. For the quintic it was possible to derive an effective superpotential for the
brane moduli.
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3.7 Effective superpotentials

The effective superpotential for bulk and boundary moduli obeys

∂bWeff =
λ

2
BGψ , (3.36)

where the right hand side is given by a bulk-boundary correlator. A closed expression for
the superpotential can only be obtained when BGψ is known on every point of the moduli
space and can thus be integrated up.

In [10] it was a crucial observation that the bulk-boundary correlators form a set
of holomorphic functions on the complete moduli space. This assigns a very concrete
geometrical meaning to BGψ and is in fact the decisive criterion which tells us that the
bulk-boundary couplings are derivatives of an effective potential.

For the moduli branches of type 2 a basis for the bulk-boundary correlators
c−5s(3)(1, b, c) are the functions {

brcs

c5
, 0 ≤ r + s ≤ 3

}
. (3.37)

This is in fact the complete set of holomorphic functions on the Riemann curve 1+b6 +c6 =
0 [30]. The basis is 10-dimensional and this is also the genus g = 10 of the curve. Therefore
the associated holomorphic 1-forms are integrable. Their integrals are

Wrs =
br

r
2F1

(r
6
, 1− s

6
; 1 +

r

6
;−b6

)
. (3.38)

As result we get an expansion of the effective potential in terms of hypergeometric functions
(we have ignored global factors which do not depend on the moduli)

Wtype 2
eff =

∑
i+j+k=3

s
(3)
ijkWj+1,k+1 (3.39)

For the type 1 lines only a subset of the holomorphic functions appears as basis for the
bulk-boundary correlators. This is due to the fact that fields of different weights appear in
the perturbing polynomial s(2)(xl, xk, x5). The basis is explicitly{

bicj

c2
, 0 ≤ i+ 2j ≤ 2

}
. (3.40)

From this we see that the genus of the curve is g = 4. For the superpotential we find

Wtype 1
eff =

∑
i+j+2k=2

s
(2)
ijkWj+1,k+1 (3.41)

4 The Calabi-Yau P(1,1,1,1,4)[8]

D5-branes on the 3-fold defined by

W = x8
1 + x8

2 + x8
3 + x8

4 + x2
5 = 0 (4.1)

is technically very similar to the case discussed in the previous section. The main difference
is that the weight of the coordinate x5 is much larger in this example.
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4.1 Lines and the moduli web

We find again two types of lines with the parametric equations

`1 = (u : ηu : av : bv : cv4) (4.2)

and

`2 = (u : av : bv : cv : η4u4) (4.3)

with the moduli spaces

η8 = −1 a8 + b8 + c2 = 0 ⊂ P(1,1,4) (type 1)

η8 = −1 a8 + b8 + c8 = 0 ⊂ P2 (type 2)
(4.4)

At those permutation points (ij)(kl)(5) which join two type 1 branches, we find the
marginal fermions

f1 = x4
j (π

3 − π̄3)

f2 = x3
jxl(π

3 − π̄3)

f3 = x2
jx

2
l (π

3 − π̄3)

f4 = xjx
3
l (π

3 − π̄3)

f5 = x4
l (π

3 − π̄3) .

(4.5)

The marginal fermions at the other permutation points (ij)(l5)(k) are

f1 = xl(π3 − x6
kπ̄

3)

f2 = xj(π3 − x6
kπ̄

3)
(4.6)

We now describe the fermions on the branches. Both on type 1 branches (ij)(kl5) and
on type 2 branches (5j)(klm) we find

ψ = ∂bQ

ψ⊥ =
xj
xl
∂bQ .

(4.7)

Both branches intersect in a permutation point whose marginal cohomology is two-
dimensional. From the arguments presented in section 3.3 it is clear that this is the full
cohomology.

The joining relations at the permutation points are given by

ψ −→ f5

ψ⊥ −→ f4

f3 (4.8)

f2 ←− ψ′⊥

f1 ←− ψ′ .

– 22 –



J
H
E
P
0
6
(
2
0
0
9
)
0
5
2

for the intersections (ij)(kl)(5), and

ψ −→ f1 ←− ψ′⊥

ψ⊥ −→ f2 ←− ψ′ (4.9)

for the intersections (ij)(l5)(k). The fermion ψ⊥ on branch 2 has a three-point function

〈(ψ⊥)3〉 =
7
4
η4 b

6

c15
. (4.10)

As expected, it is obstructed everywhere except at the permutation points.
On the first branch, ψ⊥ has a vanishing three-point function. Also, the three-point

function for the fermion f3 at the permutation point vanishes. Again, we expect the
obstructions to appear at higher order. It will be enough to check this at the permutation
point, i.e. for the fermions f2, f3 and f4. For the first order perturbation we find

−1
2
{f2, f2} = x6

jx
2
l − 1

2
{f3, f3} = x4

jx
4
l − 1

2
{f4, f4} = x2

jx
6
l . (4.11)

All these expressions are non-trivial in cohomology, so a solution to the first order equations
cannot be found. Thus these fermions are obstructed at first order.

4.2 Bulk perturbations and effective superpotentials

When switching on bulk moduli we find the following bulk-boundary correlators on
branches of the first type:

〈s(6)(xi, xj) · s(2)(xk, xl, x5) · ψ〉 = −ηs
(6)(η, 1)

16
s(2)(1, b, c)

c

〈s(5)(xi, xj) · s(3)(xk, xl, x5) · ψ⊥〉 = −η
2s(5)(η, 1)

16
s(3)(1, b, c)

c
.

(4.12)

On type 2 branches we find

〈s(3)(xi, x5) · s(5)(xk, xl, xm) · ψ〉 =
ηs(3)(η, 1)

16
s(5)(1, b, c)

c7

〈s(2)(xi, x5) · s(6)(xk, xl, xm) · ψ⊥〉 =
η2s(2)(η, 1)

16
s(6)(1, b, c)

c7
.

(4.13)

(Note that in (4.12) and (4.13) the polynomials s(2) and s(3) are independent of x5 due to
its high charge. Hence also on the r.h.s. there is no dependence on c or η.)

From this we can immediately derive the intersection points for those branes
which deform under finite bulk deformations. They are given by 16 points
a8 + b8 + c2 = 0 = s(2)(a, b, c) for the type 1 branches, and by 40 points
a8 + b8 + c8 = 0 = s(5)(a, b, c) for the type 2 branches.

The basis of functions on the moduli space which is spanned by s(5)(1,b,c)
c7

in (4.13) is,
as in the examples above, in one-to-one correspondence to holomorphic differentials [30]{

brcs

c7
, 0 ≤ r + s ≤ 5

}
(4.14)
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line parametrisation factorisation branches
type 1 `1 = (u : ηu : av : bv2 : cv5) (ij)(4l5) (α), (δ), (λ)
type 2 `2 = (u : av : bv : η2u2 : cv5) (i4)(kl5) (γ), (ζ), (µ)
type 3 `3 = (u : av : bv : cv2 : η5u5) (i5)(kl4) (β), (ε), (ν)
type 4 `4 = (av : bv : cv : u2 : η5u5) (45)(klm) (ρ)

Table 2. The four types of branches for D5-branes in P(1,1,1,2,5)[10].

on the Riemann curve a8+b8+c8 = 0. Its genus is g = 21. The moduli space a8+b8+c2 = 0
for the type 1 lines has genus g = 3. The differentials are{

brcs

c
, 0 ≤ r + 4s ≤ 2

}
(4.15)

and this is in clear correspondence to the r.h.s. of (4.12). The integrated effective potential
is given by

Wtype 1
eff =λs(6)(1, η)

∑
i+j+4k=2

s
(2)
ijkWj+1,4(k+1) (4.16)

and

Wtype 2
eff =λs(3)(1, η4)

∑
i+j+k=6

s
(5)
ijkWj+1,k+1 (4.17)

where

Wrs =
br

r
2F1

(r
8
, 1− s

8
; 1 +

r

8
;−b8

)
(4.18)

5 The Calabi-Yau P(1,1,1,2,5)[10]

The last Calabi-Yau manifold we want to investigate is given by the defining equation

W = x10
1 + x10

2 + x10
3 + x5

4 + x2
5 = 0 (5.1)

in P(1,1,1,2,5)[10]. We can geometrically embed five different types of lines into W = 0, listed
in table 2. Together with the condition η10 = −1 their moduli spaces are given by

a10 + b5 + c2 = 0 P[1,2,5] for type 1

a10 + b10 + c2 = 0 P[1,1,5] for type 2

a10 + b10 + c5 = 0 P[1,1,2] for type 3

a10 + b10 + c10 = 0 P2 for type 4

(5.2)

The representatives of the equivalence classes of matrix factorisations used are listed in
appendix (F). Alone the matrix factorisation (45)(klm) requires some brief comments.
The first factor of this factorisation (45) stands for the formal factorisation x5

4 + x2
5 =

(x5
4 + x2

5) · 1. Since this factorisation has an empty cohomology it must be identified
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with the vacuum configuration [14]. This does not mean that the cohomology of the
full factorisation (45)(klm) is empty. Rather we should construct factorisations from the
reduced superpotential W − x5

4 − x2
5. Effectively this splits off the coordinates x4 and x5

from the boundary sector of the model while not affecting the other coordinates.
The list of possible permutation points is given by

intersection 1− 2 : (ij)(k4)(5)

intersection 1− 3 : (ij)(k5)(4)

intersection 2− 3 : (i4)(k5)(m)

(5.3)

Generally one would expect an intersection point between branches 1 and 4 of the
form (ij)(45)(m). It turns out that this matrix factorisation is not directly accessible as an
intersection of two branches. To see this we derive from the parametric line equation `1 the
vanishing polynomials J1 = x1−ηx2, J2 = b2x2

3−ax4, J3 = c2x5
4− b5x2

5. This factorisation
has a limit a→ 0 which results in J1 = x1−ηx2, J2 = x2

3, J3 = x5
4+x2

5. The appearance of a
quadratic term in the polynomial J2 is interesting, because this point also lies on the branch
4, but the factorisations derived from `4 are linear in x3. Therefore there is no connection
between the matrix factorisation associated to (ρ) and any of the other branches.

At the permutation points we find the following spectrum of marginal states:

permutation point 1-2: f1 = [0]b � [1]b � [0]f = x5
k(π

3 − π̄3)

f2 = [1
5 ]b � [4

5 ]b � [0]f = xix
4
k(π

3 − π̄3)

f3 = [2
5 ]b � [3

5 ]b � [0]f = x2
ix

3
k(π

3 − π̄3)

f4 = [3
5 ]b � [2

5 ]b � [0]f = x3
ix

2
k(π

3 − π̄3)

f5 = [4
5 ]b � [1

5 ]b � [0]f = x4
ixk(π

3 − π̄3)

f6 = [1]b � [0]b � [0]f = x5
i (π

3 − π̄3)

permutation point 1-3: f1 = [0]b � [3
5 ]b � [2

5 ]f = x2
k(π

3 − x2
4π̄

3)

f2 = [1
5 ]b � [1

5 ]b � [2
5 ]f = xixk(π3 − x2

4π̄
3)

f3 = [3
5 ]b � [0]b � [2

5 ]f = x2
i (π

3 − x2
4π̄

3)

permutation point 2-3: f1 = [1
5 ]b � [0]b � [4

5 ]f = xi(π3 − x8
mπ̄

3)

f2 = [0]b � [1
5 ]b � [4

5 ]f = xk(π3 − x8
mπ̄

3)

(5.4)

5.1 Lines and the moduli web

On type 1 branches (ij)(4l5) the unobstructed fermion ∂bQ is proportional to x2
l . This

allows us to construct two additional fermions so that the marginal cohomology is given by

ψ = ∂bQ

ψ⊥ =
xi
xl
∂bQ

ψ⊥⊥ =
x2
i

x2
l

∂bQ .

(5.5)

This is indeed the full cohomology because from (5.4) we see that branches of type 1
intersect branches of type 3 with a three-dimensional cohomology.
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On the other branches we find only two fermions, which are given by

ψ = ∂bQ

ψ⊥ =
xi
xl
∂bQ

(5.6)

for both, branches of second and third type. Again, (5.4) tells us that this is the full
cohomology since the spectrum at the permutation point 1-3 is two-dimensional.

The joining relations at the points 1-2 between the branches Q = (ij)(5l4) and Q′ =
(l4)(5ij) are

ψ −→ f1

ψ⊥ −→ f2

ψ⊥⊥ −→ f3

f4 (5.7)

f5 ←− ψ′⊥

f6 ←− ψ′

For the points 1-3 between Q = (ij)(4l5) and Q′ = (l5)(4ij) we find

ψ −→ f1

ψ⊥ −→ f2 ←− ψ′⊥ (5.8)

ψ⊥⊥ −→ f3 ←− ψ′ .

Finally, for the points 2-3 between Q = (k4)(il5) and Q′ = (l5)(ik4) the joining relations are

ψ −→ f1 ←− ψ′⊥

ψ⊥ −→ f2 ←− ψ′ . (5.9)

All states at the permutation points can be continued on the branches, except f4. We
briefly discuss their obstructions.

At the intersection point 1-2, (ij)(k4)(5), the first order condition for deformations in
directions f3, f4 and f5 are obstructed because

−1
2
{f3, f3} = x4

ix
6
k − 1

2
{f4, f4} = x6

ix
4
k − 1

2
{f5, f5} = x8

ix
2
k , (5.10)

which are all non-trivial in the cohomology. Thus, no further correction to the matrix
factorisation can be found, and the direction is obstructed.

For f2 the obstruction does not occur until the forth order. The second order correction
Q2 that solves

{Q0, Q2} = −1
2
{f2, f2} = x2

ix
8
k (5.11)

is given by

Q2 =
η′

5
x2
i

(
π2 −

3∑
i=0

η′
2i(i+ 1)x2i

3 x
3−i
4

)
. (5.12)
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For the third order correction we then have the equation

{Q0, Q3} = −{f2, Q2} = 0, (5.13)

which is solved by Q3 = 0. At the fourth order we encounter the obstructed equation

{Q0, Q4} = −{f2, Q3} −
1
2
{Q2, Q2}

= −η
′6x4

i

50

3∑
i=0

η′
2i(i+ 1)x2i

k x
3−i
4 .

The right hand side of the above equation is gauge equivalent to λx4
ix

6
k, λ ∈ C, which

is a non-trivial element of the cohomology. The fermion f2 is therefore obstructed at
fourth order.

5.2 Bulk perturbations and effective superpotentials

The bulk deformations which switch on the various fermions are listed below:

type 1 branch (ij)(4l5) :〈
s(8)(xi, xj)s(2)(xl, x4, x5) ψ

〉
=
ηs(8)(η, 1)

10
bs(2)(1, b, c)

c〈
s(7)(xi, xj)s(3)(xl, x4, x5) ψ⊥

〉
=
η2s(7)(η, 1)

10
bs(3)(1, b, c)

c〈
s(6)(xi, xj)s(4)(xl, x4, x5) ψ⊥⊥

〉
=
η3s(6)(η, 1)

10
bs(4)(1, b, c)

c

(5.14)

type 2 branch (i4)(kl5) :〈
s(7)(xi, x4)s(3)(xl, xk, x5) ψ

〉
= −ηs

(7)(η, 1)
10

s(3)(1, b, c)
c〈

s(6)(xi, x4)s(4)(xl, xk, x5) ψ⊥
〉

= −η
2s(6)(η, 1)

10
s(4)(1, b, c)

c

(5.15)

type 3 branch (i5)(kl4) :〈
s(4)(xi, x5)s(6)(xl, xk, x4) ψ

〉
=
ηs(4)(η, 1)

10
s(6)(1, b, c)

c4〈
s(3)(xi, x5)s(7)(xl, xk, x4) ψ⊥

〉
=
η2s(3)(η, 1)

10
s(7)(1, b, c)

c4

(5.16)

From this we can immediately derive the points in the moduli space for which branes
deform with bulk moduli by requiring that the r.h.s. of the ψ-correlators 〈Gψ〉 vanish.
There are 20 such points on type 1 branches, 30 on type 2 and 60 on type 3, at which the
matrix factorisations can be deformed with a bulk modulus.

In complete agreement with the previously studied Calabi-Yaus we find that
the holomorphic functions on the moduli spaces (5.2) are a basis for bulk-boundary
correlators 〈Gψ〉:
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The curve a10 + b5 + c2 = 0 (type 1) has genus g = 2 and we find the holomorphic
functions [30] {

bscs

c
, 0 ≤ 2s+ 5c ≤ 2

}
. (5.17)

For the curve a10 + b10 + c2 = 0 (type 2) the genus is g = 4. The holomorphic functions
are {

bscs

c
, 0 ≤ s+ 5c ≤ 3

}
. (5.18)

Finally the curve a10 + b10 + c5 = 0 (type 3) has genus g = 16 and its holomorphic
functions are {

bscs

c
, 0 ≤ s+ 2c ≤ 6

}
. (5.19)

Integration of the bulk-boundary correlators leads to the effective superpotentials

Wtype 1
eff = λ

∑
i+2j+5k=2

s
(2)
ijkW2(j+1),5

Wtype 2
eff = λ

∑
i+2j+5k=2

s
(3)
ijkWj+1,5

Wtype 3
eff = λ

∑
i+2j+5k=2

s
(6)
ijkWj+1,2(k+1) ,

(5.20)

where

Wrs =
br

r
2F1

( r
10
, 1− s

10
; 1 +

r

10
;−b10

)
. (5.21)

6 Conclusions

In this article we have extended the work of [10] to the set of one-parameter Calabi-Yaus.
It has been shown that the moduli space of lines in these manifolds consists of several
branches which are connected at permutation points. These points are distinguished by
their enhanced spectrum of marginal states, coming once from the two different fermions
generating the flat directions and also from fermions that are marginal only at the permu-
tation points. The underlying symmetry group which is given by the soccer ball diagram is
universal for all models that are tensor products of five minimal models; we have seen that
this symmetry is modified in weighted space. The joining conditions which determine how
the marginal spectra on the branches are connected at permutation points are non-trivial
and have been explicitly computed. It is important to understand these conditions in order
to get a global view of the moduli space.

It is very interesting to study the lifting of open string moduli under closed string
deformations. Under bulk deformations we found that each branch of the moduli space
collapses into a set of discrete points which are extrema of an effective potential. There the
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branes are stable and deform along with complex structure deformations to finite coupling.
Since the boundary moduli are now fixed by the bulk moduli the large complex structure
limit is accessible. This in principle makes it possible to apply methods as presented
in [56] in order to find more examples for open-closed Picard-Fuchs equation. This could
in particular be interesting since on each branch a whole set of branes deforms with W , so
that the domain wall tensions between various branes can be computed.

For unfixed boundary modulus we have computed explicitly the bulk-induced effective
potential for the holomorphic sector of the B-model by integrating the bulk-boundary cor-
relators. It is an essential point to see that this method works not only in the simplest
case for the Fermat quintic, but also for more complicated models. In particular we have
shown that the bulk-boundary correlators are in one-to-one correspondence to holomor-
phic differentials on the Riemann curve forming the moduli space. Hence a very concrete
geometrical interpretation is assigned to them.

This correspondence is very interesting because it seems that topological data on the
moduli space, namely the genus, can be extracted from a computation of bulk-boundary
correlators. In practice the genus can correctly be obtained only at generic points, where
no bulk-boundary coefficients accidentally vanish. Also, knowledge of the exactly marginal
fermion is necessary, which is in a way a ‘global’ information that enters here. In practice it
might often be obvious which of the fermions on the D5-moduli space are obstructed, so that
the exactly marginal one can be identified without knowledge of the full deformation theory.

Our calculations are conducted at first order in the bulk moduli. For bulk deformations
of higher order we expect that the holomorphic differentials acquire corrections, which
should give a hint on a modified moduli space, maybe in a similar way as the first order
bulk-boundary correlators determine the genus of the open string moduli space. It seems
desirable but unreasonable to attempt to take these computations to higher order, since
in our approach we have to keep all possible bulk moduli. For practical purposes this is
far too complicated; in order to make progress in this direction the number of bulk moduli
could be reduced by dividing out some symmetry. However, the most simple situation
in which the Fermat quintic is divided by the diagonal symmetry, is exactly the case
where there are no boundary moduli generated by ψ. Rather, in this situation ψ⊥ is the
important fermion. Since ψ⊥ is not exactly marginal we expect a complicated combined
bulk-boundary moduli space.
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A Factorisations on P(1,1,1,1,1)[5]

On the Fermat quintic the matrix factorisation can be generally written as

(ij)(klm) : J1 = xi − ηxj E1 =
∏
η′ 6=η

(xi − η′xj)

J2 = axk − bxl E2 =
4∑
i=0

b4−i

a5−ix
4−i
l xik

J3 = cxl − axm E3 = −
4∑
i=0

ci

ai+1
x4−i
m xil (A.1)

B Factorisations on P(1,1,1,1,2)[6]

On P(1,1,1,1,2)[6] we consider the matrix factorisations

(5j)(klm) : J1 = x5 − η2x2
j E1 =

∏
η′2 6=η2

(x5 − η2x2
j )

J2 = axk − bxl E2 =
5∑
i=0

b5−i

a6−ix
5−i
l xik

J3 = cxl − axm E3 = −
5∑
i=0

ci

ai+1
x5−i
m xil

(ij)(kl5) : J1 = xi − ηxj E1 =
∏
η′ 6=η

(xi − η′xj)

J2 = axk − bxl E2 =
5∑
i=0

b5−i

a6−ix
5−i
l xik

J3 = cx2
l − a2x5 E3 = −

2∑
i=0

c2−i

a6−2i
x4−2i
l xi5 (B.1)

C Marginal spectrum on P(1,1,1,1,2)[6]

On branches of type 1 the matrix factorisation takes the form Q = Q1�Q2�Q3. The first
factor Q1 is defined by the polynomial J1 = xi − ηxj , so that this part is independent of
the boundary moduli. The spectrum of Q1 consists of three bosons with charges 0, 1

3 . . .
4
3 .

In order to construct factorisations of total charge one we look for fermions with charges
1, 2

3 and 1
3 in the reduced factorisation Q′ = Q2 �Q3.

C.1 Fermions of charge 1

The ansatz for a general fermion is9

Ψ = p2π
2 +m2π̄

2 + p3π
3 +m3π̄

3 . (C.1)
9One might wonder if higher powers of π and π̄ can appear. In general, these must indeed be taken into

account. But here all such higher order terms are trivial because the matrix factorisation itself contains
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In this expression pi and mi are polynomials in the variables x3, x4, x5. We list their
charges and the corresponding number of free parameters (taking into account the higher
charge of x5):

[p2] = 1
3 parameters: 2

[p3] = 4
3 parameters: 9

[m2] = 5
3 parameters: 12

[m3] = 2
3 parameters: 4. (C.2)

Thus the space of such fermions has dimension 27. The closedness equations become

p2E2 + p3E3 +m2J2 +m3J3 = 0 . (C.3)

For general values of a, b and c this equation supplies 16 constraints.10 Therefore

dim (Ker(Q2 �Q3)) = 11 . (C.4)

In order to determine the dimension of the exact fermions we make the ansatz

Λ =λ1 + λ2π
2π̄2 + λ3π

2π3 + λ4π
2π̄3 + λ5π̄

2π3

+ λ6π̄
2π̄3 + λ7π

3π̄3 + λ8π
2π̄2π3π̄3 .

(C.5)

The parameters λ1 and λ8 can’t be used to build fermions (C.1) hence we can set the to
zero. The charge of Λ must be zero, thus we get the following list of charges and free
parameters:

[λ2] = 0 parameters: 1

[λ5] = 1 parameters: 6

[λ6] =
1
3

parameters: 2

[λ7] = 0 parameters: 1. (C.6)

There are no λ3 and λ4 that could meet the charge constraints, so they have been set to
zero. In total we get

dim(Im(Q2 �Q3)) = 10 . (C.7)

Thus the cohomology has dimension

h(Q2 �Q3) = 1 . (C.8)

Thus there is generically one such fermion in the spectrum.

only linear terms. For instance, for a fermion with a term pijkπ
iπj π̄k + qijkπ

iπ̄j π̄k its closedness condition

becomes πiπjJkpijk+ π̄iπ̄jEkqkij +πiπ̄j(2Jkqijk+2Ekpkij). The first term leads to the condition p232J
2 +

p233J
3 = 0. Since J2 and J3 are linear independent, pijk must be zero. The same argument sets qijk to zero.

10For special values of a, b and c some equations might become dependent. This might lead to less

constraints and a higher dimension of the kernel for a finite set of points.
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C.2 Fermions of charge 2
3

The above computations are repeated for fermions of charge 2
3 . In this case we get the

following charge tables:

[p2] = 0 parameters: 1

[p3] = 1 parameters: 6

[m2] = 4
3 parameters: 9

[m3] = 1
3 parameters: 2 . (C.9)

The closedness condition imposes 12 constraints, thus

dim (Ker(Q2 �Q3)) = 6 . (C.10)

For Λ with charge −1
3 we find

[λ5] = 2
3 parameters: 4

[λ6] = 0 parameters: 1 (C.11)

with all other λi = 0. From this

dim(Im(Q2 �Q3)) = 5 (C.12)

and

h(Q2 �Q3) = 1 . (C.13)

C.3 Fermions of charge 1
3

Now we focus on the fermions of charge 1
3 . The charge tables are:

[p3] = 2
3 parameters: 4

[m2] = 1 parameters: 6

[m3] = 0 parameters: 1 (C.14)

with p2 = 0. The closedness condition imposes 9 constraints, thus the kernel has dimension
zero and the cohomology is empty.

C.4 Fermions of charge 0

For fermions with zero charge we get

[p3] = 1
3 parameters: 2

[m2] = 2
3 parameters: 4 (C.15)

with p2 = 0 = m3. The closedness condition supplies 6 constraints, thus again the kernel
has dimension zero and the cohomology is empty.

In total we find that

h(Q) = 2 , (C.16)

thus there are two fermions defined on the type 1 branches. Since we have found two
fermions ψ = ∂bQ and ψ⊥ = xi

xk
∂bQ we have found the maximum number and thus the

complete marginal cohomology.
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D Obstructions on type-1-branches of P(1,1,1,1,2)[6]

Since the three-point function 〈
(ψ⊥)3

〉
= 0 (D.1)

everywhere on the branches (ij)(kl5) we expect obstruction to appear at higher order. A
perturbation of Q with ψ⊥ leads to the ansatz

Q(λ) =
∑
n

λnQn (D.2)

with Q0 = Q and Q1 = ψ⊥. We know already that ψ⊥ is in the cohomology, so the first
order equation is already satisfied. The second order equation

{Q0, Q2} = −1
2
{ψ⊥, ψ⊥}

=
1

4η̂10

(
4∑
i=0

(5− i)b4−ic8x2
1x

4−i
3 xi4

+2
1∑
i=0

(4− 2i)b10c2−2ix2
1x

4−2i
3 xi5

)
(D.3)

is solved by

Q2 =−
(

5
b10

c5
+ 5

b4

c2

)
x2
iπ

3

+
3∑

n=0

(n+ 1)(n+ 2)
2

b3−nx2
ix

3−n
l xnk π̄

2

+
((

4
b10

c5
+ 5

b4

c2

)
x2
ix5 +

(
4
b10

c4
+ 10

b4

c

)
x2
ix

2
l

)
π̄3 .

(D.4)

With the help of computer algebra software we verify that the third order equation

{Q0, Q3} = −{ψ⊥, Q2} (D.5)

has no solutions. Therefore the fermion ψ⊥ is obstructed.

E Factorisations on P(1,1,1,1,4)[8]

On P(1,1,1,1,4)[8] we consider the matrix factorisations

(5j)(klm) : J1 = x5 − η4x4
j E1 =

∏
η′4 6=η4

(x5 − η4x4
j )

J2 = axk − bxl E2 =
7∑
i=0

b7−i

a8−ix
7−i
l xik
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J3 = cxl − axm E3 = −
7∑
i=0

ci

ai+1
x7−i
m xil

(ij)(kl5) : J1 = xi − ηxj E1 =
∏
η′ 6=η

(xi − η′xj)

J2 = axk − bxl E2 =
7∑
i=0

b7−i

a8−ix
7−i
l xik

J3 = cx4
l − a4x5 E3 = −

1∑
i=0

c1−i

a8−4i
x4−4i
l xi5

(E.1)

F Factorisations on P(1,1,1,2,5)[10]

On P(1,1,1,2,5)[10] we consider the matrix factorisations

(4j), j 6= 5 : J1 = x4 − η2x2
j E1 =

∏
η′2 6=η2

(x4 − η′2x2
j )

(5j), j 6= 4 : J1 = x5 − η5x5
j E1 =

∏
η′5 6=η5

(x5 − η′5x5
j )

(kl5), k, l 6= 4 : J2 = axk − bxl E2 =
9∑
i=0

bi

ai+1
x9−i
k xil

J3 = cx5
l − a5x5 E3 = −

1∑
i=0

c1−i

a10−5i
x5−5i
l xi5

(kl4), k, l 6= 5 : J2 = axk − bxl E2 =
9∑
i=0

bi

ai+1
x9−i
k xil

J3 = cx2
l − a2x4 E3 = −

4∑
i=0

c4−i

a10−2i
x8−2i
l xi4

(4l5), l 6= 4, 5 : J2 = a2x4 − bx2
l E2 =

4∑
i=0

b4−i

a10−2i
x8−2i
l xi4

J3 = cx5
l − a5x5 E3 = −

1∑
i=0

c1−i

a10−5i
x5−5i
l xi5

(F.1)
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