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Spatial network analysis (SpNA) provides a promising alternative to traditional transport models for the model-
ling of active travel, because walking and cycling behaviour is influenced by features smaller than the scale of
zones in a traditional model. There is currently a need for link-level, city wide modelling of cycling, both to ensure
the needs of existing cyclists are catered for in planning, and to model the effects of changing infrastructure in
shaping cyclist behaviour. Existing SpNA models treat cyclists and car drivers as if they make navigational deci-
sions in a similar way, which in reality is not the case.
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Spatial network analysis This paper presents an SpNA model using hybrid betweenness, which fits cyclist flows in Cardiff, Wales using dis-
Cycling tance, angular distance, motor vehicle traffic and slope as predictors of route choice. SpNA betweenness is also
Modelling shown to implicitly capture the effect of urban density on mode choice. As it handles route finding decisions of

Gis drivers and cyclists separately, the model presented is also applicable to road safety models examining the inter-
action between the two classes of road user. The model has low cost of data collection and is reproducible using
publicly available network analysis software and open mapping data. Further avenues for modelling the effect of

infrastructure on cycling are discussed.
© 2016 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In a world facing both resource depletion and global warming, and in
societies facing obesity as well as transport congestion problems, the
use of cycling for transportation seems like a good idea. Forsyth et al.
(2009) documents the promotion of cycling as sustainable transport
from the 1960s onwards.

There is currently therefore, considerable interest among planners
both in catering to the needs of existing cyclists, and in encouraging
non-cyclists to switch to this option. There is no simple way to achieve
these aims, and in particular the literature suggests that only compre-
hensive packages of policies can help to achieve the latter (Forsyth
and Krizek, 2010, 2011; Handy et al., 2014; McCormack and Shiell,
2011; Pucher et al., 2010). For better or worse, the benefits of active
travel schemes are principally evaluated on a financial basis; the prima-
ry benefit from this perspective is usually the saving to healthcare pro-
viders dealing with a more active population, although a secondary
saving arises from increased safety of those who are already active
(Canning et al., 2012; sample analyses of this type include Wilson and
Cope, 2011). Various authors, possibly inspired by the overlap of cycling
with public health issues, have noted the need for developing a more ro-
bust quantitative evidence base for cycling in urban planning (Krizek et
al., 2009), more reliable and better validated GIS measures, e.g. for street
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patterns (Brownson et al., 2009) and better ways to ensure integration
of new infrastructure with the “continuous network” (Forsyth and
Krizek, 2011).

Traditional transport modelling methods have to date had limited
application in the modelling of active travel, due to their focus on
large scale transport analysis zones rather than small, link-level features
which affect the travel decisions of pedestrians and cyclists (Cervero,
2006). This paper therefore focuses on spatial network analysis (SpNA),
which offers an alternative to traditional methods for predicting fine-
grained flows on networks, by working at unsimplified network link
level. Karou and Hull (2014) demonstrate the use of SpNA to measure ac-
cessibility to public transport, and Zhang et al. (2015) show a strong link
between various network centrality measures and accidents involving
non-motorists. Returning to the prediction of flows, Lowry (2014) uses
ordinary (shortest Euclidean network distance) betweenness to interpo-
late from a small set of measured vehicle flows to the remainder of the
road network. In the case of bicycles, spatially localized angular between-
ness (reviewed in Cooper, 2015) is used in a series of space syntax studies
(Law et al.,, 2014; Manum and Nordstrom, 2013; Raford et al., 2007),
often in combination with other variables, to predict flows of cyclists on
the network. Angular betweenness is a measure which identifies the
links most commonly used in straightest-path (rather than shortest-
path) routes through the network. While this does correlate with flows
of cyclists to some extent, angular betweenness is the exact same mea-
sure used in the space syntax tradition to predict flows of vehicles and
pedestrians (Hillier and lida, 2005). Combining angular betweenness
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with other factors in a multivariate regression model could thus be
viewed as post-processing (Cervero, 2006) a single underlying direct de-
mand transport model which - apart from the straightest-path aspect - is
similar to Lowry's (2014) vehicle model. Prior to post-processing, such a
model differentiates between the navigational choices of drivers, cyclists
and pedestrians only in terms of the distance that each are willing to trav-
el. Common sense suggests that these three classes of road user are in fact
likely to choose routes in a different manner; the observation of Raford et
al. (2007) that preferred cyclist routes are often parallel to, but not coin-
cident with routes of high angular betweenness would also suggest this
possibility, and discrete choice modelling in fact confirms it (Broach et
al., 2012; Wardman et al., 2007). The approach of the current paper,
therefore, is to move beyond the SpNA obsession with angular between-
ness and define betweenness in terms of factors more likely to influence
cyclist route choice (distance, slope, vehicle traffic and angular distance),
thus giving the SpNA model a stronger behavioural foundation.

Related to the problem of predicting bicycle flows, is the problem of
predicting trip generation, trip distribution and mode choice, i.e. whether
or not people will travel in the first place, where they will choose to
travel and whether they will choose to cycle. For the purpose of this
paper we group these three phenomena into a single model of cycle
trip demand. Any model of cycle flow must contain at least some
assumptions on trip demand, if not an explicit model. For the environ-
mental, social and economic policy reasons noted above, the question
of whether and to what extent new infrastructure affects the number
of people who choose to cycle is an area of active research. Note howev-
er, that a model of cycle demand for individual trips is not necessarily
the same as a model of cycle demand for the aggregate population.
Feedback loops such as the land use-accessibility cycle (Chiaradia et
al., 2014 contains a brief review), and residential self-selection
(Cervero, 2006) will mean that keen cyclists may deliberately choose
to live near a suitable route for cycling to work, or perhaps that an abun-
dance of opportunities for cycling will lead to a population more willing
to consider cycling as a mode of transport. Thus, in addition to models of
mode choice for individual routes (e.g. Wardman et al., 2007) there
exist numerous models of mode choice at district level, which aside
from being necessary, are advantageous to explore due to the better
availability of data at this level. Some of these models have been unable
to discern any effect of infrastructure on cycling (Goodman et al., 2014;
Pooley et al., 2011) while others have (Ewing et al., 2014; Winters et al.,
2013) including Parkin et al. (2007) which is endorsed by Department
for Transport (2014a). Parkin et al. (2007) find a strong correlation be-
tween the proportion of off-road cycle path at local authority level, and
decision to cycle to work at ward level; however this model does not ac-
count for the location of off-road path, and so from the perspective of
urban design is not sensitive to the location options a planner might
consider. There is also little history of any such district level models
being used to predict cycle flows at network link level; traditionally,
cycle mode choice and hence demand is considered exogenous to
existing transport models such as TRIPS and QUOVARDIS (Schwartz et
al., 1999) which themselves tend to operate on a simplified network
suitable for motor vehicles rather than cyclists. In the absence of suitable
models, current approaches to planning cycle networks involve
bypassing the non-existent demand model and instead focussing on po-
tential, defined as existing motorized trips that could be undertaken by
bike (Lovelace et al., 2015).

The objective of the current study is to create an SpNA methodology
for calibrating a more behaviourally realistic, link level model of cyclist
flow in cities, and to test whether that model fits available flow data.
The ultimate aim is to help planners with decisions on cycling infra-
structure, by providing a tool (i) to extrapolate from a small number
of measured flows to likely cycling patterns over the entire network;
(ii) to predict the effect on flows of new infrastructure schemes,
(iii) to understand how proposed schemes will (or won't) integrate
with the wider network and (iv) to help understand interactions be-
tween flows of cyclists and cars.

The model attempts to form a bridge between SpNA and transport
modelling traditions. To this end it is based on discrete choice literature
which studies the effect of distance, turns, slope and vehicle traffic on
cyclist route choice, combined with the SpNA calculation of spatially lo-
calized betweenness reviewed in Cooper (2015). It will be shown that
this is equivalent to a mode choice model which uses urban density to
predict the decision to cycle. The approach can perhaps be classed as
‘extreme’ spatial network analysis in that it considers network accessi-
bility itself to be the primary driving cause of land use and hence trip
generation, resulting in a model which is low cost with respect to data
collection requirements: at a minimum the model can function using
only the network itself as input, although in the current case we cali-
brate using measured flows. As it handles route finding decisions of
drivers and cyclists separately, the model presented is applicable to
road safety models examining the interaction between the two classes
of road user; this application is briefly demonstrated and also serves
as validation of the flow model. We conclude by discussing further ave-
nues for modelling the effect of infrastructure on cycling. The model is
reproducible using publicly available, general purpose network analysis
software sDNA +, which can function either as a GIS or CAD plugin
(Cooper et al,, 2011).

2. Methods
2.1. Data

Our spatial network is based on Open Street Map (OSM). OSM is an
open access, crowd sourced mapping product with global scope; while
coverage is currently patchy, both coverage and data quality are only
likely to increase for the foreseeable future, and for coverage of cycle
paths OSM is currently the best on offer in the UK (Lovelace, 2015).
The OSM network is however, still liable to contain spatial errors
which are detected and repaired as described in Cooper (2016,
chapter 2). Slope data is taken from OS Terrain 50.

Fig. 1 shows a map of all cycle sampling locations and counts used in
the study. Two sources of cycle flow data were used to calibrate the
model:

1. Department for Transport (2014b) (DfT) pedal cycle flows, which are
derived from a mixture of vehicle gates and manual sampling at 107
locations in Cardiff. The DT report annual average daily traffic
(AADT). However, only locations on roads carrying vehicle traffic
are recorded, so this data gives no indication of the use of traffic
free paths. The DfT deem any weekday from March-October to be a
‘neutral day’ on which a representative sample of traffic can be
taken; AADT is estimated by applying expansion factors based on
type of road, day of year and type of vehicle. Thus while this method-
ology takes account of national weather variations it discards region-
al ones, which may have a major effect on pedal cycle usage.
Additionally, it may underestimate recreational pedal cycle traffic
on weekends. Finally, in some cases roads are not sampled at all,
but flows are estimated by applying a growth factor to count data
from a previous year (Department for Transport, 2011).

2. Cardiff Council's data, collected from 14 electronic cycle counters on
traffic free paths over a 3 month period. Cardiff council report only
daily flows for the recorded months (September-November 2014).
As cycle traffic is heavily seasonal, a seasonal correction was derived
from a 15th electronic cycle counter which records year round flows,
to estimate AADT.

As the two sources of data were collected using different methodol-
ogies, we cannot be sure whether or not the AADT flows derived from
each are truly comparable (a more detailed discussion of issues with
cycle count data can be found in Gordon, 2014). However, as both
data types are essential to understanding flows of pedal cycles, they
must be combined nonetheless. To account for errors generated by the
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Fig. 1. Measured cycle flows in Cardiff. DfT and Council figures both estimate AADT but are not necessarily comparable.

mismatch of methods, the final flow model includes a dummy variable
to account for the data source.

The vehicle flow sub-model is calibrated using vehicle counts from
the same 107 locations sampled by the DfT (2014b). Mode choice data
is derived from the UK Census (Office for National Statistics, 2011) ag-
gregated to output area level, at which there are 1076 zones within
the city of Cardiff.

Road traffic incident data is sourced from DT (2013) and records
767 incidents involving at least one motor vehicle and at least one
cyclist, between 2005 and 2012. The data includes spatial co-ordinates,
vehicle types and in some cases road names. The spatial accuracy is
limited, with locations taken from grid references recorded by officers
attending the scene of incident; in some cases due to human error
these do not fall on the named road, and in other cases they do not
fall on any road in the spatial model. For the purpose of this study, we
consider locations to be accurate to the nearest 30 m.

2.2. Trip generation, distribution and mode choice models

The SpNA models of vehicle, pedestrian and cyclist flow cited in the
introduction have all used some form of spatially localized betweenness
as a predictor of actual flow. In rough terms, betweenness is the output
of a flow model which simulates indiscriminate trips from everywhere
to everywhere, subject to a maximum trip distance or radius, and
some criteria by which each trip is routed. Thus it replaces all four stages
of the traditional transport model (de Ortazar and Willumsen, 2011):
trip generation, trip distribution, mode choice and route choice. In
framing betweenness as a transport model, the first three of these are
subsumed into a single, simplified model of transport demand (“indis-
criminate trips from everywhere to everywhere”). The route choice
model remains distinct, and is used to determine the path of each indi-
vidual trip, although the betweenness model outputs link-level flows
rather than routes. That the literature shows such models fitting the
data at all, let alone well, could be considered surprising from a trans-
port perspective as the indiscriminate simulation of trips takes into

account neither land use nor trip purpose. It is therefore prudent to con-
sider why good model fit might arise from this process in order to un-
derstand the limits of SpNA models. This exercise also helps to shine
some light on the links between SpNA and traditional transport model-
ling, from which perspective SpNA contains some implicit assumptions
which are not usually voiced.

Briefly reviewing the mode choice literature, we note the impor-
tance of urban density as a common theme among all models which
find a link between the built environment and decision to cycle.
Winters et al. (2013) considers the effect of bike paths on mode choice,
though this is tested only in a univariate model and it is unclear to what
extent urban density confounds this relationship. Ewing et al. (2014)
show a weak relationship between cycle mode choice and several
variables (intersection density and connectivity, population and jobs)
all of which strongly correlate with urban density. Parkin et al. (2007)
describe a combined built environment and demographic model
which explains a large proportion of variance in cycle use for the jour-
ney to work (1% = 0.82); in this case the two largest built environment
coefficients relate to the proportion of off-road cycle path, and distance
travelled. Note that the latter variable will again, on average, tend to cor-
relate (inversely) with urban density as the existence of numerous job
opportunities nearby increases the likelihood that a randomly selected
individual will both occupy such a job, and cycle to it. Similar logic
also applies both to discretionary and recreational trips. It is thus
reasonable to assume that both cycle trip generation and distribution
correlate with urban density.

Betweenness implicitly scales with density. In the current study, fol-
lowing Chiaradia et al. (2014) we use link weighted betweenness as the
density of network links has been shown to correlate strongly with the
density of jobs and homes (Chiaradia et al., 2012) and can thus be used
to proxy them. The betweenness is spatially localized within a Euclidean
buffer, with the buffer representing a maximum trip distance - in SpNA
terms, a radius - which is fitted by calibration. As a trip is simulated be-
tween each distinct pair of links closer than the radius, the denser the
network at any given point, the more trips are simulated to and from
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that point. This goes some way towards explaining the success of
betweenness in modelling pedestrian, cycle and vehicle flows.

Note that the total weight of trips doesn't scale linearly but with the
square of urban density. Thus betweenness weighted in this manner
quantifies opportunities (potential flows from pairs of links close
enough to form a feasible trip) rather than flows between entities
with a physical constraint, such as individual households with a travel
budget. This is reasonable because betweenness is defined between
links which can vary in intensity of land use (i.e. households and jobs
per link). The spatial network generates accessibility, and this influences
land use through economy of agglomeration - links in denser areas ex-
perience more intense land use due to the convenience of their location.
Also, scaling effects in cities are known to exist even for individuals
(Bettencourt, 2013). Therefore the betweenness model implies an
assumption that transport opportunities offered by the network are
efficiently exploited through a land use-transport accessibility feedback
cycle (Chiaradia et al., 2014). Restricting our consideration to a single
mode - cycling - we see that residential self-selection is a special case
of this, with cyclists preferring to live on links that are more accessible
by bike, and travel to places more accessible by bike.

As well as forming part of the definition of urban density, calibrating
the radius parameter also permits competing modes to enter the model,
because at higher radius the incentive is to travel by motorized trans-
port rather than cycle. We do not consider any negative effect on cycling
of readily available alternatives such as metro transit, in specific loca-
tions. While this is not ideal, we note that cycle modelling is still in its
infancy and that the Department for Transport (2014a) endorse
unimodal approaches for cycling as a simplification.

While we present the model in SpNA terms, it can also be character-
ized as a direct demand transport model in which trip generation, distri-
bution and mode choice are considered congruent (Cervero, 2006;
Lowry, 2014; and de Ortizar and Willumsen, 2011, chapter 6). Com-
pared to a traditional transport model, the disadvantage is that the
lack of individually calibrated stages means we cannot verify each
stage of trip generation, distribution, mode choice and route choice in-
dividually. In mitigation of this problem, we explicitly test the link be-
tween urban density and mode choice.

2.3. Route choice model

The design principle guiding the route choice model is that it should
make use of publicly available data to capture as many of the factors
affecting cyclist route choice as possible. As a starting point we take
the commuter-derived figures from Broach et al. (2012) in which a
discrete choice model is used to determine factors affecting cyclists'
choice of routes in Portland, Oregon. Broach goes on to express the
model in terms of equivalent distance, in other words, for each factor,
how much extra distance would have an equally deterrent effect on
the cyclist. Following our own work with policymakers we have found
this choice of words to cause confusion, so instead we call this concept
perceived effort, as it is the effort of travelling the route measured as
the cyclist perceives it rather than as a literal distance. Distance enters
Broach's model in log form; thus slope, vehicle traffic and path type
have a multiplicative effect on perceived effort. Other factors such as
crossings, turns and stop signs are expressed by occurrence per mile,
which cancels the multiplication with distance giving them a constant
(additive) effect per occurrence.

In the desire to create a model based on publicly available data, and
hence more easily usable by practitioners, it is necessary to exclude
some factors used by Broach due to lack of data availability. These in-
clude traffic signals, stop signs and unsignalled turns and crossings. Fol-
lowing a review of available data on cycle infrastructure in the Cardiff it
was found that Open Street Map (2015) contained the most extensive
information on traffic free cycle paths (a finding confirmed at UK level
by Lovelace, 2015) but patchy information on bike lanes on-road, with
not all on-road lanes being recorded, and those that were recorded

being of variable quality. The quality of on-road bike lanes in the UK is
subject to extensive criticism with some research questioning whether
they improve safety at all (Parkin and Meyers, 2010; Stewart and
McHale, 2014). Facilities such as the ‘bike boulevards’ studied by
Broach, as well as being hard to source data for, are also extremely
rare in Cardiff and where they do exist, their status as favourable routes
is already partially captured in the model due to the absence of traffic on
neighbourhood streets. We therefore exclude consideration of on-road
bicycle facilities and assume them to be absent. The encouraging effect
of off-road facilities is captured in the model as they are completely free
from motor traffic, which we simulate explicitly on the roads where it is
allowed.

Table 1 summarizes the variables in Broach's model. It can be seen
that the attributes with the greatest effect on cycle route choice are
slope and vehicle traffic, which are both included in the SpNA model.
The largest excluded factor is unsignalled crossing of busy roads
(AADT > 20 k) however it would take 4.3 of these per mile to equal
the effect of travelling along the same roads, which is included in the
SpNA model. Only one section of road in Cardiff is this busy in any
case. The excluded factors relating to bridges appear substantial; how-
ever Broach notes that these are subject to a high degree of error in
that study.

As a high proportion of road links in Cardiff fall into the lowest traffic
band in Broach's model (98.6% have estimated AADT < 10.000), apply-
ing this model directly would allow little distinction between roads of
varying business. We therefore choose to interpolate between classes
of vehicle flow by fitting an exponential curve. We plot each ‘band’ of
cost at its lower limit of traffic flow, e.g. the perceived effort of cycling
in traffic of 20-30,000 vehicles per day is assumed to apply to 20,000 ve-
hicles per day, as most roads in this each band will have flows close to
the lower bound of the band (the distribution of traffic flow over
roads tending to exponential tailoff in its upper limits). The exception
to this is the 0-10,000 vehicles per day band, for which we take 5000 ve-
hicles per day to be indicative. For zero vehicles per day we take the per-
ceived effort for Broach's traffic free bike path; 840 m for a 1 km trip.

The curve resulting from these assumptions is shown in Fig. 2, and
over the range shown can be interpolated to a ‘traffic multiplier’
expressed as

traffic multiplier = 0.84 e*0T<005 _ trqfficfac™ 0 1)

Table 1

Equivalent distances for commuting route attributes from Broach et al. (2012) Table 3. Re-
sorted by magnitude. AADT = Annual Average Daily Traffic.

Reproduced with permission from Elsevier.

Attribute Distance value  Included in
(% dist) SpNA model
Prop. AADT 30 k + w/o bike lane 715.7 Yes
Prop. upslope > 6% 3239 Yes
Prop. AADT 20-30 k w/o bike lane 140 Yes
Prop. upslope 4-6% 1203 Yes
Prop. upslope 2-4% 371 Yes
Prop. AADT 10-20 k w/o bike lane 36.8 Yes
Unsig. cross AADT 20 k + exc. right turn (mile) 322 No
Bridge w/sep. bike facility —29.2 No
Left turn, unsig., AADT 20 k + (mile) 23.1 No
Bridge w/bike lane —18.2 No
Prop. bike path —16 Yes
Prop. bike boulevard —10.8 No
Left turn, unsig., AADT 10-20 k (mile) 9.1 No
Unsig. cross AADT 10-20 k exc. right turn (mile) 5.9 No
Turns (mile) 42 Yes
Unsig. cross AADT 5-10 k exc. right turn (mile) 4.1 No
Unsig. cross AADT > 10 k right turn (mile) 3.8 No
Traffic signal exc. right turns (mile) 2.1 No
Stop sign. (mile) 0.5 No




CH.V. Cooper / Journal of Transport Geography 58 (2017) 157-165 161

Perceived km
O = N W B 0D OO N 0O O

0 10 20 30 40
Annual Average Daily Traffic (1000s)

Fig. 2. Perceived effort for cycling in motor vehicle traffic, adapted from Broach et al.

where kAADT is annual average daily traffic expressed in 1000s. (We de-
fine trafficfac slightly differently as traffic multiplier'/°% for later
formulae).

Broach's concept of “turn” relates to junctions on a grid street pat-
tern, i.e. 90° change of direction, which is equivalent to 4.2% of a mile,
or 68 m. For irregular street patterns this is modified to an equivalent
distance in metres per degree of angular change of 68/90. It should
be noted that this incorporates changes of direction along links as
well as at junctions, which would not exist in the block street pattern
of the original study. Therefore the concept measured is slightly dif-
ferent, but in the original study it would not be possible to distin-
guish the two. The literature on angular betweenness gives
confidence that total change of direction has an effect on route
choice.

Noting that slope and traffic have a multiplicative effect on dis-
tance, while turns are additive, the above factors can be combined
into a hybrid distance metric:

perceived effort = distance x slopefac x trafficfac®®

+ angular distance x % (2)

where trafficfac is as defined above, distance is measured in metres,
angular distance is the cumulative directional change over the
whole route measured in degrees, and slopefac is the relevant coeffi-
cients for slope taken from Broach (converted such that e.g. + 323.9%
is a ratio of 4.239):

1.000
1.371
2.203
4.239

if slope < 2%

if 2% < slope < 4% 3)
if 4% < slope < 6%

if slope > 6%

slopefac =

The model is then calibrated to match local data. Multiplicative
factors can be calibrated through exponentiation, while additive fac-
tors can be calibrated through multiplication. Thus the final model
form is

perceived effort (calibrated) = distance x slopefac® x trafficfac*

+ angular distance x % x a (4)

To match Broach we would set calibration parameterss =1, t =
0.05, a = 1. Final parameters are chosen by exploration of parameter
space around this point. The sDNA + configuration used to imple-
ment this formula is shown in the appendix; this formula (and

sDNA +) can be extended to take account of further data if available,
e.g. on-street cycle lanes, Level of Service, etc.

The estimated vehicle traffic flows used to inform the calculation
of trafficfac are themselves based on a second sDNA model based on
angular betweenness alone, similar to Chiaradia et al. (2014) but cal-
ibrated over a range of radii from 10 to 35 km to match motor vehicle
trip lengths. The surrounding region is included in the vehicle model
so that origins and destinations for vehicle trips can likewise be in-
ferred from urban density. It is necessary to include one-way restric-
tions in the motor vehicle model to ensure both halves of a dual
carriageway are always used by the model, instead of the most direct
option being used both ways; if this were not done, any ‘unused’ sec-
tions of dual carriageway would erroneously appear to be attractive
traffic-free cycle paths.

24. Flow prediction and road safety models

The combination of the mode and route choice models specified
above is represented in SpNA terms by a hybrid betweenness mea-
sure, computed over a range of radii. We calibrate the model by pick-
ing the radius, s, t and a parameters to give the best correlation
between betweenness and measured flows. Note that the calibration
process involves only four parameters; origin and destination
balancing factors (which would be typical in a transport model) are
not employed, so the risk of overfitting the model is minor by com-
parison. For this reason, we fit the flow model using all available
measurements, though the road safety model can still be considered
as a test of the flow model against an independent road traffic acci-
dent data set.

Recalling that our cycle flow data originates from two separate
sources, we post process to fit a variable accounting for differences
in collection methodology. However, as the methodology for each
measured flow also correlates with the type of location (on road/
traffic free), it is not clear to what extent this variable is correcting
for data source vs type of cycle path. The model is given in Eq. (5):

predicted flow = source correction x Betweenness” x & (5)
where

. 0 for Department for Transport (on road
source correction = a j:or Carl?diff Counfcil (traffilgfree() ) 6)

The effect of this is to scale measured flows from Cardiff Council
by a factor of «, while 3 captures nonlinearities in the relationship
between flows and betweenness.

The road safety model is included as a brief demonstration of
what is possible with an SpNA model which handles driver and cy-
clist behaviour differently. As the model discriminates between
route choices of cyclists and motor vehicle drivers, independent pre-
dictions of flows are produced for each category of user. This enables
the construction of a secondary model which predicts the potential
for accidents based on the presence of both types of road user in
large numbers on the same link. This is a special case of a Hauer
model (Turner et al., 2006, sec. 2.3.2) which predicts accident rate
A from flows Q, and Q,, (in our case of motor vehicles and cyclists
respectively):

A=kQ¥Qy (7)

where we leave the model uncalibrated and set « = 3 = k = 1, thus
the output A is not a rate but can be interpreted as a ‘conflict score’
which we pass to a binary classifier to discriminate between low-
and high-risk roads, with the threshold chosen manually. The classi-
fier is tested on its ability to discriminate known incident sites from
points generated randomly on the network using SANET (Okabe and



162 CH.V. Cooper / Journal of Transport Geography 58 (2017) 157-165

Okunuki, 2015), removing those randomly generated points which
fall within 30 m of known incident sites. The model handles inaccu-
racy in the road traffic incident data by classifying each point based
on the highest conflict score existing within 30 m of that point.

3. Results

For the test of mode choice, the proportion of people choosing to
cycle to work correlated with urban density as measured by the number
of network links within a 4.5 km buffer, with R = 0.61. The relationship
is shown in Fig. 3. We thus conclude that the study area shows a strong
link between urban density and the decision to cycle, which validates
use of urban density measured in this manner as the basis of the flow
model.

For the motor vehicle sub-model, optimal correlation with measured
vehicle flows (R = 0.90) is achieved with an angular betweenness radi-
us of 28 km. The resulting flows are shown in Fig. 4.

For predictions of cycle flow, we present in Table 2 an exploration of
parameter space surrounding the route choice parameters derived from
Broach et al. That is to say, we tweak the model's sensitivity to vehicle
traffic, slope and angular distance. The parameters giving the best
model fit (R = 0.70) are a = 0.2, s = 1, t = 0.04. The optimal radius
for the cycle flow model is 3 km. This is on a similar scale to the optimal
radius for cycle mode choice prediction (4.5 km), though some variation
is to be expected as the models are calibrated to a different data sets -
cyclist counts and census data respectively. The correlation between
mode choice and urban density is also strong on the 3 km scale (R =
0.56).

Comparing with Broach's figures derived for Oregon, the inferred ef-
fect of slope and road traffic on cyclist route choice is very similar. The
effect of directness is reduced, which is to be expected as our model
measures all angular distance (i.e. bends in roads) as well as the angular
distance encountered at junctions. Additionally, the block street struc-
ture of Oregon allows for practical route planning which avoids angular
distance - as routes with more turns will typically be no shorter in dis-
tance — while the same cannot be said for Cardiff, where cyclists must
occasionally overcome their aversion to twisty routes if they wish to
pick the shortest path.

Although the difference in model performance for uncalibrated
and calibrated models is minor for the measured data points, this
should not be taken as an indicator that calibration is only adding
marginal quality, as the performance of the model is ultimately likely
to be limited by issues in the measurement of pedal cycle flows
(Gordon, 2014, and section 2.1 of the current paper). Rather, the
clear peaks in model performance for the calibrated values of t, s, a
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Fig. 3. Relationship between cycle mode choice and urban density for output areas in
Cardiff.

and radius indicate that the selected values are genuinely meaning-
ful, and thus that such calibration is a valid technique to use.

Fig. 5 shows a scatter plot of predictions from the optimal model,
against recorded flows which have not been corrected for the source
of data. The predicted flows are mapped in Fig. 6. A systemic bias is ev-
ident in recorded off-road flows which are higher than predicted; this
would be consistent both with the hypothesis that the DfT methodology
for recording pedal cycles on-road results in undercounting, and with
the hypothesis that off-road paths are more attractive than predicted.
Applying the regression model given in Eq. (5) thus improves correla-
tion to R = 0.78 for estimated oo = 1.87, 5 =0.64. This represents a
28% reduction in model error.

The road safety model (Fig. 7) predicted 75% of incident sites and
73% of non-incident sites (i.e. has 75% sensitivity, 73% specificity)
based on a threshold conflict score of 42 million.

4. Discussion and conclusions

The contribution of this study has been to present a methodology for
fine-scale, city-wide modelling of cyclist flows, by combining SpNA with
more behaviourally realistic foundations. The model is based on mini-
mal data that is generally available to the public. It provides reasonable
correlation with measured flows and is sensitive to the location and na-
ture of changes to infrastructure. A secondary novel aspect is the simu-
lation of link level motor traffic flows to feed into the simulation of
cyclist flows, thus accounting for the effect of one on the other.

For the models presented here to be useful in practice they are
enhanced by tools for managing any mismatch between measured
flows, model predictions and user expectations. To this end, the
SDNA + software includes features which allow users to establish why
the model predicts that links are, or are not used, when the user thinks
or measured flow data shows otherwise. To assist understanding of
how new infrastructure might integrate into the existing network,
visualisations can be filtered to display only trips that pass through a
specific link, thereby showing predicted behaviour associated with
new infrastructure.

As with any transport model, if applying this model elsewhere it is
best to recalibrate the parameters, but the model structure should gen-
eralize without modification: a betweenness model for motor vehicle
flows which informs a second betweenness model of cyclist flows
based on distance, angular distance, slope and motor traffic. Pilot work
in other locations shows smaller towns may not exhibit such strong cor-
relation between urban density and cycle transport demand, e.g. due to
site specific factors such as the location of a single large employer.
Including these factors would be a direction for future model improve-
ment. Also, as noted in Section 2.2, total betweenness weight scales with
the square of urban density: explicit calibration of this scaling effect may
also improve the model.

A more accurate assessment of model performance would be
achieved in a location where on-road and off-road cycle flows are re-
corded using the same methodology. While we have fitted a regression
parameter to account for data source, it is not clear to what extent this
also corrects for cyclists' preference for traffic free paths above and be-
yond the extent to which the route choice model already accounts for
aversion to traffic. If such an effect remains in a future study, then the
model is easily modified (1) by recalibrating for greater aversion to traf-
fic; (2) by calibrating a multivariate regression flow model with two
classes of cyclist, confident and unconfident, with differing aversion to
traffic; (3) by providing additional weight to traffic free paths as leisure
destinations in their own right.

Ultimately, we would like to answer the call of Krizek et al. (2009)
for medical-grade evidence of the effects of cycling infrastructure on
health, and more broadly, urban design on health. SpNA has already
shown some promise in this regard when predicting community cohe-
sion mediated by walkability (Cooper et al., 2014). In the case of cycling,
the links from models of flow to health cost/benefit ratios are already
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Fig. 4. sSDNA estimates of motor vehicle Annual Average Daily Traffic (AADT) used to inform cycle route choice model. 3-d model rendered in ArcGIS ArcScene; vertical exaggeration = 5.

partly quantified by the Health Economic Assessment Tool (or “HEAT”,
World Health Organization, 2014). The proportion of new flows gener-
ated by infrastructure, and the mean trip distance for cyclists, are both
inputs to HEAT which in principle can be predicted by this model. It is
also possible to compute the reduction of exposure to road traffic for
existing cyclists (a lesser benefit which is missing from the HEAT
model) and, if we take cycling culture to be an exogenous factor, we
can predict future cycling flows on links in the face of an increased ten-
dency for people to cycle longer distances. However, the approach of
computing cost-benefit for cycle projects has come under criticism
(Hollander, 2016) so it may be reasonable to stop short of such outputs,
instead using SpNA to visualise accessibility and flows through infra-
structure as one of many factors informing the decision making process.

In terms of the effect of infrastructure on demand for cycling, this
model addresses some questions, but leaves others open - much like
the varying results cited in the introduction (Ewing et al., 2014;
Goodman et al., 2014; Parkin et al., 2007; Pooley et al., 2011; Winters
et al.,, 2013). As we simulate the effect of urban density on demand,
and as new infrastructure can cause dramatic increase in density
(e.g. if it connects a dense area to a previously isolated one), we do
show an effect for new infrastructure that alters the spatial distribution
of urban density. It would be an improvement, however, to test an up-
dated model in which cycle demand is increased by the presence of
low-traffic or traffic free paths, irrespective of density. A model demon-
strating this effect on smaller than city scale remains elusive, and while
Parkin et al. (2007) shows the effect to be present at Local Authority

Table 2

Results of calibration: bivariate correlation between hybrid betweenness (radius 3 km)
and real flows as a function of traffic, slope and angular distance avoidance factors individ-
ually. Both variables are Box-Cox transformed.

t bivariate s bivariate  a bivariate
(s = 100, correlation (t = 4, correlation (t =4,  correlation
a=20) (r) a=20) (r) s =100) (r)

0 0.66 0 0.68 0 0.67
0.01 0.67 0.5 0.69 0.2 0.70
0.02 0.69 1 0.70 0.4 0.68
0.03 0.69 1.5 0.69 0.6 0.68
0.04 0.70 2 0.68 0.8 0.67
0.05 0.70 1.0 0.66
0.07 0.67

0.09 0.64

scale, Parkin's model is sensitive only to the total length of traffic free
paths rather than their location, and thus not useful for planning the
path locations.

With the aim of upgrading this effort to be sensitive to the location of
cycle paths - and thus useful to the planners designing them - we there-
fore propose further improvement of the SpNA model presented above by
(1) calibrating a trip length distribution rather than a simple maximum
length, and (2) measuring such lengths in terms of perceived effort rather
than Euclidean network distance - in SpNA terms, a hybrid radius.
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Fig. 6. Map of predicted cycle flows in Cardiff (2-d projection of 3-d model).
Appendix A. Configuration of sDNA + is necessary to specify perceived effort separately for links and junc-
tions, and also to compute the slope from 3d geometry data. Access to
The sDNA + hybrid metric below reproduces the cycle model de- geometry is provided by built-in variables euc (Euclidean distance),
rived from fine calibration. As such it uses the following parameters, ang (angular distance) and hg (height gain). Variables defined during

though these can be changed in the code:a = 0.2,s = 1,t = 0.04. It formula execution must be preceded with an underscore (_) to
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Fig. 7. Model of high-risk roads in Cardiff, overlaid by all road traffic incidents 2005-2012 which involved at least one cyclist and at least one motor vehicle.
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distinguish them from pre-existing data attached to the network. For
the cycle model, vehicle traffic flow data is pre-existing (having been
computed by the angular betweenness model) and referenced in this
case as aadt.

metric = hybrid; radii = 3000

linkformula =
_a=203,
_s=20.5,
_t=0.04,

_slope = hg/FULLeuc * 100,

_slopefac = _slope < 2?1:(_slope < 4?1.371:(_slope < 672.203:4.239)),
_trafficfac = 0.84 * exp(aadt/1000),

euc * (_slopefac™_s) * (_trafficfac*_t) + _a * 68/90 * ang;

juncformula=
_a=03,
_a*68/90 * ang

The configuration for the sSDNA vehicle traffic model used was
metr ic = angular;radii = 28000

To convert the output of this model into aadt as referenced in the
cyclist model, a conversion factor is calibrated by regression.
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