
Earth Surf. Dynam., 5, 21–46, 2017
www.earth-surf-dynam.net/5/21/2017/
doi:10.5194/esurf-5-21-2017
© Author(s) 2017. CC Attribution 3.0 License.

Creative computing with Landlab: an open-source toolkit
for building, coupling, and exploring two-dimensional

numerical models of Earth-surface dynamics

Daniel E. J. Hobley1,2,3, Jordan M. Adams4, Sai Siddhartha Nudurupati5, Eric W. H. Hutton6,
Nicole M. Gasparini4, Erkan Istanbulluoglu5, and Gregory E. Tucker1,2

1Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, USA
2Department of Geological Sciences, University of Colorado, Boulder, USA

3School of Earth and Ocean Sciences, Cardiff University, Cardiff, UK
4Department of Earth and Environmental Sciences, Tulane University, New Orleans, USA

5Department of Civil and Environmental Engineering, University of Washington, Seattle, USA
6Community Surface Dynamics Modeling System (CSDMS), University of Colorado, Boulder, USA

Correspondence to: Daniel E. J. Hobley (hobleyd@cardiff.ac.uk)

Received: 20 August 2016 – Published in Earth Surf. Dynam. Discuss.: 14 September 2016
Revised: 24 November 2016 – Accepted: 14 December 2016 – Published: 16 January 2017

Abstract. The ability to model surface processes and to couple them to both subsurface and atmospheric
regimes has proven invaluable to research in the Earth and planetary sciences. However, creating a new model
typically demands a very large investment of time, and modifying an existing model to address a new prob-
lem typically means the new work is constrained to its detriment by model adaptations for a different problem.
Landlab is an open-source software framework explicitly designed to accelerate the development of new process
models by providing (1) a set of tools and existing grid structures – including both regular and irregular grids –
to make it faster and easier to develop new process components, or numerical implementations of physical pro-
cesses; (2) a suite of stable, modular, and interoperable process components that can be combined to create an
integrated model; and (3) a set of tools for data input, output, manipulation, and visualization. A set of example
models built with these components is also provided. Landlab’s structure makes it ideal not only for fully devel-
oped modelling applications but also for model prototyping and classroom use. Because of its modular nature, it
can also act as a platform for model intercomparison and epistemic uncertainty and sensitivity analyses. Landlab
exposes a standardized model interoperability interface, and is able to couple to third-party models and software.
Landlab also offers tools to allow the creation of cellular automata, and allows native coupling of such models
to more traditional continuous differential equation-based modules. We illustrate the principles of component
coupling in Landlab using a model of landform evolution, a cellular ecohydrologic model, and a flood-wave
routing model.

1 Introduction and motivation

Across a wide array of fields, researchers use numerical mod-
els to study processes that operate on and across the Earth’s
land surface and shallow subsurface. Science and engineer-
ing applications of these models of surface dynamics range
from short-term flood forecasting (e.g. Horritt and Bates,
2002) to simulating the evolution of Earth’s landscape over

geologic epochs (e.g. Tucker and Hancock, 2010). Mod-
els may focus on a theoretical understanding of processes
and their interaction, on management or engineering appli-
cations, or on predicting environmental responses to natural
or human-made perturbations. Although the processes and
temporal and spatial scales vary widely, the software behind
these models is often quite similar. For example, most Earth-
surface dynamics models manage data structures and algo-

Published by Copernicus Publications on behalf of the European Geosciences Union.

22 D. E. J. Hobley et al.: Creative computing with Landlab

Figure 1. Examples of surface-process models. (a) Computed depth-to-groundwater, from the GSEM coupled groundwater–surface water
model (Berger, 2000, image courtesy D. Entekhabi). (b) Computed patterns of soil erosion and sedimentation on agricultural fields, using
the SIMWE soil erosion model (Mitas and Mitasova, 1998). (c) Model of ice-age glacier extent over the Sierra Nevada, USA, using the
GC2D ice-flow model (Kessler et al., 2006). (d) Simulation of canyon erosion and fan-delta progradation in a region of active uplift (top)
and subsidence (bottom), using the CHILD landscape evolution model (Tucker and Hancock, 2010). (e) Model of simultaneous cratering and
fluvial erosion on the ancient Mars surface, with the MARSSIM model (Howard, 2007). (f) Simulation of pyroclastic flows at Tungurahua
volcano, Ecuador, using the VolcFlow model (Kelfoun et al., 2009).

rithms to represent a terrain surface and its connectivity, and
many include solution algorithms to compute flows of mass
(such as ice, liquid water, sediment, or chemical nutrients)
across terrain (Slingerland and Kump, 2011) (Fig. 1).

However, scientists who want to use an Earth-surface
model often build their own unique model from the ground
up, re-coding the basic building blocks of their model rather
than taking advantage of codes that have already been writ-
ten (Adams et al., 2014; Katz et al., 2015; Overeem et al.,
2013). This undoubtedly does produce novel software capa-
ble of fulfilling its designer’s needs, and can have advantages
in helping the programmer to acquire a total understanding
of the code base, but this approach also has many associ-
ated problems: many person hours are lost rewriting exist-
ing code, and the resulting software is often idiosyncratic, ad
hoc, undocumented, and unable to interact with other soft-
ware programs both in the same scientific community and
beyond. In particular, models are often initially written to
solve a very specific problem, rather than to provide a flexible
and reliable platform for solving a general class of problems
(Easterbrook, 2014). It may also become impossible for a
single programmer to maintain their grasp of their code base
once it exceeds a certain size. A result is that software devel-
opment often acts as a bottleneck to progress, with frequent
duplication of effort as research groups struggle to adapt ex-
isting software or develop new code from the ground up as
each new research problem emerges.

The Landlab modelling framework described here seeks to
mitigate these redundancies and lost opportunities and simul-
taneously lower the bar for entry into numerical modelling.
The approach is to create a user- and developer-friendly mod-
elling environment that provides scientists with the funda-
mental building blocks needed for modelling surface dynam-
ics on the Earth, and potentially beyond. The framework
takes advantage of the fact that nearly all surface-dynamics
models share a set of common software elements, despite
the wide range of processes and scales that they encompass
(Peckham et al., 2013; Slingerland and Kump, 2011). Pro-
viding these elements in the context of the popular scientific
programming language Python, and with strong user support
and community engagement, would contribute to accelerat-
ing progress in the diverse sciences of the Earth’s surface.

From the user’s perspective, Landlab enables the follow-
ing:

1. Rapid, easy creation of a number of distinct geomet-
ric grids, with all the connectivity between various el-
ements already defined, and the ability to create two-
dimensional data fields across a given grid.

2. Functions to operate on the values defined on such a
grid, enabling the solution of time-dependent numeri-
cal algorithms across them (e.g. differential equations,
cellular automata).

3. A mechanism for the control of boundary conditions
across a grid;

Earth Surf. Dynam., 5, 21–46, 2017 www.earth-surf-dynam.net/5/21/2017/

D. E. J. Hobley et al.: Creative computing with Landlab 23

4. Encapsulation of conceptual models for individual
Earth-surface processes into reusable components, with
a standard interface that allows operation across Land-
lab grids.

5. The ability to build a multi-process model by combining
together components.

6. The ability to quickly and efficiently build new com-
ponents, and to couple them with those components al-
ready in the library.

7. A straightforward and standardized input and output in-
terface, including the ability to import from and export
to common spatially distributed data formats such as
NetCDF and ESRI ASCII, as well as a plotting mod-
ule. This interface also enables coupling to third-party
models and software.

2 Approach

2.1 Guiding design principles

The design principles for Landlab have been guided both by
our observations of current software design practices in the
surface-system modelling community and by white papers
issued by existing organizations both within this community
(Adams et al., 2014; Overeem et al., 2013; Peckham et al.,
2013) and in the scientific software design community more
widely (Becker et al., 2015; Chue Hong, 2014; Katz et al.,
2015; NSF, 2012). Our key observations are as follows:

1. Many models exist that simulate Earth-surface pro-
cesses, and many of these share a very similar under-
pinning in terms of the basics of grid construction and
the suite of simulated processes. This set of models rep-
resents significant past duplicative effort in the surface
process modelling community. Although the reasons for
duplication are likely multiple and vary from group to
group, we note that we are unaware of previous ef-
forts to advertise a flexible, open-source programming
framework.

2. Orphaned or unmaintained codes are common in the re-
search community, having been built for a single pur-
pose and then set aside.

3. Although standardized frameworks for model interop-
erability are now in place (such as the framework de-
signed and maintained by the Community Surface Dy-
namics Modelling System, CSDMS, group; Hutton et
al., 2014; Overeem et al., 2013; Peckham et al., 2013),
many models are not compatible with these standards.
We hypothesize this is largely due to the effort required
by the original programmer to modify legacy code –
which in many cases was written before the standards
were established – to meet these new interoperability
criteria.

4. Existing model software tends to have a high bar to en-
try. Many models are written in compiled languages,
such as Fortran, C, and C++ (examples from the ge-
omorphology and sedimentary stratigraphy communi-
ties include CHILD: Tucker et al., 2001b; Sedflux: Hut-
ton and Syvitski, 2008; MARSSIM: Howard, 2007;
Fastscape: Braun and Willett, 2013; DAC: Goren et al.,
2014; SIBERIA: Willgoose et al., 1991a, b). This re-
quires the prospective user be fluent in these languages
before the code can be modified or, in many cases, even
used efficiently. Because many legacy codes were not
designed to be shared amongst the community, docu-
mentation, both in-line and external, tends to be idiosyn-
cratic at best and missing at worst.

5. In several instances, scientific software with a broad
user base exists but remains closed source. This includes
both tools for data analysis (e.g. ArcMap, Matlab) and
in some cases the modelling software itself (e.g. FLAC;
Itasca, 2000; Dionisos, Granjeon and Joseph, 1999).
Where software has to be purchased, this presents ob-
vious barriers to wide uptake of modelling approaches
using these tools in terms of financial cost for the
user. More importantly, all closed-source software also
presents significant barriers to code assessment in peer
review and to reproducibility of the work (Crick et al.,
2014; Katz et al., 2015).

These observations lead us to a set of key design principles
that have governed our development of Landlab:

a. Landlab should be a community resource, and thus fully
open source.

b. Landlab should provide a development environment
that is flexible, extensible, and highly reusable.

c. Landlab should be written in a language that allows
rapid development of new code.

d. Landlab should be fully compliant with the CSDMS
model interoperability standards (Peckham et al., 2013)
from the ground up, and this compliance should be built
into the low-level development framework itself. Thus,
for example, components written in Landlab will be au-
tomatically compliant with these standards.

e. Landlab should have a low bar to entry and be thor-
oughly documented. Tutorials should be present. It
should be possible for a beginner to use Landlab with-
out a full grasp of the underlying model architecture, in
a “plug and play” fashion.

f. Landlab’s code needs to be sustainable, as detailed be-
low.

www.earth-surf-dynam.net/5/21/2017/ Earth Surf. Dynam., 5, 21–46, 2017

24 D. E. J. Hobley et al.: Creative computing with Landlab

2.2 Low-level design choices

In turn, these guiding design principles directed early deci-
sions in terms of Landlab’s coding language, architecture,
and distribution.

2.2.1 Open-source availability

Landlab is licensed under the MIT free software license, an
approved license of the Open Source Initiative. This license
allows a user to deal in the software without restriction, in-
cluding without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of
the software. The source code and associated files are main-
tained in a Git version-control repository, for which the mas-
ter repository is presently hosted on the GitHub website,
https://github.com/landlab/landlab. Release versions are also
freely available through the pip and conda Python package
managers. The model repository maintained by CSDMS of-
fers links to Landlab documentation and to the GitHub repos-
itory, increasing Landlab’s visibility to the surface process
modelling community in particular. Web-based documenta-
tion is hosted at http://landlab.github.io. This includes both
developer-written summary documents and tutorials, as well
as reference-level documentation that is automatically gener-
ated from inline comments and examples in the code itself.

2.2.2 Programming language

Landlab is written in Python and exploits and includes as de-
pendencies a number of widely used scientific Python pack-
ages: numpy, scipy, matplotlib, nose, netCDF4, numpydoc,
cython, six, pyyaml, setuptools, and libgcc. The decision to
write in Python was explicitly made to lower the bar for entry
to Landlab, to increase the flexibility and reusability of the
code base, and to increase development speed both for the
core development team and for future users. Informal can-
vassing amongst the surface process community, especially
amongst graduate students and other early-career scientists
less likely to already be strongly wedded to a certain de-
velopment environment, revealed a marked preference for
– and greater familiarity with – Python over C++ (other
open-source languages were rarely mentioned). This chang-
ing preference for Python has also been noted for PhD stu-
dents in general, beyond just the field of surface process mod-
elling (Chue Hong, 2014). The choice of Python also means
that developers using Landlab can take advantage of that lan-
guage’s affinity for rapid development (Prechelt, 2000). In
particular, Python’s dynamic typing and interpreted rather
than compiled implementation remove the developer’s need
to deal explicitly with memory management (van Rossum
and Drake, 2001). Other advantages of this choice include
high portability between platforms, open-source language,
numerous existing scientific libraries, and support for selec-
tive optimization of time-critical parts of the code base us-
ing Cython and/or compiled-language extensions. Cython is

a compiled language that is a super-set of Python, and Cython
extension modules interact seamlessly with pure Python.
However, program modules written in Cython allow more
granular control of memory management than is the case in
pure Python, which can result in significant acceleration of
code. Cython is already in use within Landlab for sections of
the code that require long out-of-sequence iterations through
arrays, and other sections where pure Python would tend to
have poor performance. For example, Cython is used in the
construction of some of the grid element connectivity arrays,
in the FlowRouter and FastscapeEroder components, and in
the CellLab extension to Landlab (Tucker et al., 2016).

2.2.3 Code sustainability

A key objective for Landlab from inception has been that the
code base be sustainable (Adams et al., 2014; Becker et al.,
2015; Katz et al., 2015; Stewart et al., 2010). Following other
authors, we view sustainable software as that which is able to
continue effectively, sustaining or improving its functionality
through time while at the same time adding new users. Stew-
art et al. (2010) drew attention to a number of key features of
sustainable software, which we have sought to implement:

– Strong, consistent leadership. The authors of this paper
represent the core development team of Landlab.

– Rapid prototyping and evolutionary design. Landlab
was initially developed to fill the immediate research
needs of the core development team, giving it a strong
and well-defined initial direction. In this initial develop-
ment phase, we have emphasized long-term mountain
belt evolution modelling; steady- and nonsteady-flow
routing; eco-, surface, and shallow subsurface hydrol-
ogy; hillslope dynamics; cellular automaton modelling;
vegetation dynamics; and ecosystem dynamics. How-
ever, the explicitly modular nature of Landlab means
that it can readily adapt to new scientific objectives and
expand to meet new and as yet unforeseen demands in
the future.

– Modern and effective software engineering practices.
Landlab takes advantage of a number of best practice
processes, including extensive and automated unit test-
ing of key code functionality, a formal bug- and issue-
tracking record implemented through GitHub, cross-
team review of code changes before they are merged
into the master branch, and thorough code documen-
tation. A significant portion of our online documen-
tation is created semi-automatically from inline code
comments. This reduces duplication of information and
aids maintenance and updating of the documentation
as the code changes. Individual functions and classes
are documented automatically using Python’s docstring
functionality. General descriptive documentation and

Earth Surf. Dynam., 5, 21–46, 2017 www.earth-surf-dynam.net/5/21/2017/

https://github.com/landlab/landlab
http://landlab.github.io

D. E. J. Hobley et al.: Creative computing with Landlab 25

tutorials are created and maintained manually. Auto-
generated documentation is updated and posted to the
project website automatically as new code changes are
committed to the GitHub repository using “webhook”
functionality provided through the http://readthedocs.
org website.

– Sustained compatibility with underlying libraries, pro-
tocols ,and operating systems. Landlab is compatible
both with Python 2 and 3. The code base is tested au-
tomatically using Travis (Mac, Unix) and Appveyor
(PC) continuous integration platforms, across Python
versions 2.7, 3.4, and 3.5 (see also Sect. 4).

– Dissemination and community understanding. We have
sought to publicize Landlab widely at a number of
international conferences and workshops, classes, and
through collaborative networks. We estimate that, as of
mid-2016, approximately 330 potential users have now
seen or participated in Landlab-based presentations or
classes.

– Encouraging collaborative software development.
Landlab enables users to tailor its functionality to their
specific needs, through its modular design and flexible
grid and grid functions. We are already aware of a num-
ber of groups outside the core Landlab development
team working with Landlab for their own research
purposes.

A secondary aspect to sustainability is the ability to have
the software continue to be useable after the active devel-
opment cycle has ceased (Stewart et al., 2010). We antici-
pate that the choice of Python, minimal system and extension
package requirements, open-source availability of our code
base, and thorough documentation will sustain our code for
the foreseeable future.

3 Model architecture

Landlab has an essentially tripartite structure – a core grid
module, a library of process components, and a set of sup-
porting utilities (Fig. 2). The various subdivisions of the code
behave as Python modules and can be imported and used
within a Python environment independently.

3.1 Landlab’s gridding engine

Landlab provides the ability to create a two-dimensional sim-
ulation grid of a user-specified size and shape, with a sin-
gle line of code. Grids are represented as Python objects; a
grid object includes data describing its geometry and topol-
ogy, as well as a variety of methods and functions to manage
data and perform common numerical operations. (In object-
oriented programming parlance, a method is a procedure as-
sociated with an object; in this case, “method” means a func-

Grid

RasterModelGrid

VoronoiDelaunayGrid

HexModelGrid

RadialModelGrid

Data fields
interface

Supporting
functions

Components
Component
standard
interface

True process
simulation

components

Service components
(analyses & time series)

Surface analysis (e.g. SteepnessFinder)

Processes that are not spatially
resolved (e.g. PrecipitationDistribution)

ModelGrid base class

Utilities
Plotting

& visualization
Input/output

Esri ascii NetCDF VTK

CellLab-
CTS 2015
An interface
for cellular
automaton
modelling

General utilities for coding in Landlab
Decorators Misc. helper functions

The LANDLAB modelling framework

Figure 2. Schematic illustration of the structure of Landlab 1.0.
The three main divisions of the code are the grid, the components,
and supporting utilities. Structure within these three main divisions
is discussed in the main text.

tion that is defined within the grid class, and that can be ac-
cessed with the “grid.method()” syntax typical of other class
properties.)

Although Landlab grids are inherently two-dimensional,
in many cases it is nonetheless possible to create an effec-
tively one-dimensional simulation by creating a 3-by-N regu-
lar grid and closing the nodes along the top and bottom edges
(see Sect. 3.1.4). Three-dimensional grids are not possible in
Landlab at this time, though they may be supported in a fu-
ture release.

3.1.1 Grid types and elements

A Landlab grid is defined by a set of grid primitive elements:
nodes, links, cells, corners, faces, and patches (Fig. 3). In
terms of graph theory, these can be thought of as two inter-
locking and offset sets of points (nodes vs. corners), edges
(links vs. faces), and areas (patches vs. cells). The entire grid
can be generated from a description of the geometry of only
one of these element types – typically, a user might spec-
ify the locations of the nodes, and the grid object’s remain-
ing elements are automatically placed according to this node
framework.

Each element type shares unique one-to-one or one-to-
many geometric mappings with the other elements. Were the
grids to be infinite, these mappings would be perfectly re-
ciprocal – the topology and connectivity of each element
with respect to every other element would be identical ev-
erywhere it occurs. However, because these grids are finite,
we must arbitrarily decide whether the bounding elements
are the set of nodes, links, and patches or the set of corners,
faces, and cells. We have chosen the former (see Figs. 4, 5),
which means that for example, while all cells have nodes, not
all nodes have cells – as the nodes at the grid perimeter can-
not have cells defined around them. Table 1a lists the unique

www.earth-surf-dynam.net/5/21/2017/ Earth Surf. Dynam., 5, 21–46, 2017

http://readthedocs.org
http://readthedocs.org

26 D. E. J. Hobley et al.: Creative computing with Landlab

(a) Raster grid (b) Voronoi cells with
Delaunay triangulated nodes

Cell

Patch

Node

Corner

Face

Link

(c) Hexagonal grid

Figure 3. Geometry and topology of grid elements on various Landlab grids. Only one patch and its bounding links are shown for each
example to prevent the diagram from becoming cluttered. Links always point into the upper right semicircle, as described in the text.

Table 1. (a) One-to-one mappings of Landlab grid elements. (b) Primary one-to-many mappings of Landlab grid elements.

(a) Element 1 Element 2 Behaviour at grid perimeter

Node Cell Perimeter nodes lack cells
Link Face Perimeter links lack faces
Patch Corner Neither element defines the perimeter

(b) Element Connected Number of each connected element
elements by grid type:

Raster Voronoi–Delaunay Hexagonal

Node Link, patch 1 : 4 Variable 1 : 6
Link Node, patch 1 : 2 1 : 2 1 : 2
Patch Node, link 1 : 4 1 : 3 1 : 3
Cell Face, corner 1 : 4 Variable 1 : 6
Face Cell, corner 1 : 2 1 : 2 1 : 2
Corner Face, cell 1 : 4 1 : 3 1 : 3

one-to-one mappings of features, and emphasizes which el-
ement defines the grid edge in each case. Table 1b lists the
primary one-to-many relationships defined for each element
type, and lists the standard number of mapped elements (if
well defined) for each of the primary grid classes. Note that
this table only lists the most useful identities within the three-
element groupings node-link-patch and cell-face-corner. The
other identities also exist and can be reconstructed from the
one-to-one identities in Table 1a.

Data can be assigned to any element of the grid (see
Sect. 3.2, below). The grid classes also provide prop-
erties that define and describe the geometric interrela-
tionships amongst these grid elements (see, e.g., Fig. 4).
These mappings allow common geometric operations (such
as calculation of gradients across the grid, finding max-
imum/minimum/mean values of neighbours, upwinding
schemes, and flux divergences) to be achieved in typically
one or two lines of code.

Landlab provides native support for both regular and irreg-
ular grids (Figs. 3, 4). Treating both grid types natively within
Landlab allows the grid to be tailored to specific applications.
For example, raster grids provide compatibility with digital
elevation model data, and can in some cases allow better op-

timized process algorithms. Trigonal grids with hexagonal
cells provide an additional axis of symmetry, and obviate the
need for handling diagonal connections in certain types of
numerical algorithm (such as flow routing; e.g. Jenson and
Domingue, 1988). Irregular grids avoid some of the cardi-
nal direction artifacts than can form on regular grids, such as
linear networks and linear drainage divides, as well as conse-
quent biases in measured channel metrics like drainage den-
sity, river length, and channel slope (Braun and Sambridge,
1997).

Regular grids with quadrilateral cells are implemented as
rasters, and irregular grids and all other regular configura-
tions (e.g. hexagons) are implemented as Voronoi–Delaunay
interlocked meshes, as also used in the landscape evolu-
tion models CASCADE (Braun and Sambridge, 1997) and
CHILD (Tucker et al., 2001b). Grid subtypes are defined
within these broad families (Table 2). Landlab also imple-
ments a base grid class (“ModelGrid”) from which both the
raster and Voronoi–Delaunay grids are derived. This class de-
scribes the elements of the grid and allows their geometries
and topologies to be set but defines no rules for how to do
this. This base grid class is primarily intended as a frame-

Earth Surf. Dynam., 5, 21–46, 2017 www.earth-surf-dynam.net/5/21/2017/

D. E. J. Hobley et al.: Creative computing with Landlab 27

(a) Raster grid

01

2

3
4 5

6 7
8

9

00

12

3 45

8

6
7

16

9 10

1312
14

11
15

17 18
19

20

0

1

3

2

5
4

6
7 8

9
1011

positive
link orientation

0 1 2 3

4 5 6 7

8 9 10 11

0 1 2

3 4 5

0 1 2

3 4 5 6

7 8 9

10 11 12 13

14 15 16 raster.links_at_node[[6, 7]]
 = [[9, 12, 8, 5],
 [-1, 13, 9, 6]]

raster.links_at_patch[0]
 = [4, 7, 3, 0]

voronoi.neighbors_at_node[3:6] = [[5, 6, 9, 8, 4, 2, 0],
 [8, 1, 2, 3, -1, -1, -1],
 [7, 6, 3, 0, -1, -1, -1]]

voronoi.angle_of_link[[0, 1, 2]] = [6.0974, 5.2275, 1.3141]

Landlab rotational
ordering

0 1 2

3 4 5
0 1

0 1

2 3 4

5 6 raster.faces_at_cell
 = [[3, 5, 2, 0],
 [4, 6, 3, 1]]

(i) nodes, links, and patches

(ii) corners, faces, and cells

(b) Voronoi grid

(i) nodes and links (ii) link directions
 and patches

(c) Grid ordering and
 directional conventions

Elements
ordered by
y, then x

Figure 4. Standard ordering schemes and conventions in Landlab. Examples are shown for both a small RasterModelGrid (a) and a small
VoronoiDelaunayGrid (b). Point elements (nodes, corners) are numbered in black plain text, areas (patches, cells) in black italics, and linear
elements (links, faces) in grey italics. Symbols are as in Fig. 3. In all grid types, elements are ordered by y then x according to their geometric
centres. Directional elements (links, faces) always point towards the top right quadrant. Rotational ordering is always anticlockwise from the
positive x axis (right/east). This includes angle measurements. Examples of calls to grid properties are shown alongside each grid type to
illustrate the expression of these ordering rules in practice. Note that corners, faces, and cells are not shown in panel (b) for clarity.

work from which to derive new grid architectures, rather than
as a usable grid type in isolation.

Although the grid primitive element set is shared between
the various grid types, the implementation of the geometries
is slightly different. For example, core nodes in a raster grid
will always have exactly four links, whereas they may have
any number of links in a Voronoi-centred irregular grid (Ta-
ble 1b, Fig. 3). Similarly, methods defined for the grid may
be polymorphic or overloaded to optimize functionality for
each grid type.

3.1.2 Grid standardization and conventions

All Landlab grids share an identical scheme for the number-
ing of their elements. All elements are numbered from the
bottom left of the grid, starting with an ID of 0. All features
are ordered first by y coordinate, then by x, taking the mid-
point (for linear features such as faces or links) or geometric
centre (for areas such as cells or patches) for non-point ele-
ments as necessary (Fig. 4).

For rotational ordering, Landlab adopts the mathemati-
cal standard convention of anticlockwise from the positive
x axis (i.e. the right-hand rule). This applies not only to al-
most all measured angles (unless otherwise explicitly noted)

www.earth-surf-dynam.net/5/21/2017/ Earth Surf. Dynam., 5, 21–46, 2017

28 D. E. J. Hobley et al.: Creative computing with Landlab

Table 2. Currently implemented grid types in Landlab.

Grid type Grid parent Notes

Base None The base class; a grid defining the elements but without any
internal geometry or topologic connectivity imposed.

Raster Base Regular grid with identical, square or rectangular cells.

Rectilinear Raster Regular grid with quasi-rectangular cells whose size can vary
across the grid.

D8 raster Raster As for raster, but with diagonal connections between nodes.

D8 rectilinear Rectilinear As for rectilinear, but with diagonal connections between nodes.

Voronoi–Delaunay Base Irregular grid with polygonal cells and triangular patches. Each
node has n≥ 3 links.

Radial Voronoi–Delaunay Irregular grid where nodes form concentric, evenly spaced rings
around a central node.

Hex Voronoi–Delaunay Regular grid with identical, regular hexagonal cells and equilat-
eral triangle patches. Each core node has exactly six links.

Cell

Node (core) FaceActive Link

Inactive LinkNode (open boundary)

Node (closed boundary)

Figure 5. Interplay of node and link boundary conditions on a
Landlab example grid. Because nodes rather than corners define
the outer margin of the grid structure, the perimeter nodes lack
cells, and the perimeter links lack faces (see main text). These
aberrant nodes and links are automatically set as boundary ele-
ments. Landlab defaults to setting the condition of any such node to
FIXED_VALUE_BOUNDARY and any such link to INACTIVE.

but also to the ordering of elements around other elements
(such as links around a node), and to the ordering of grid
edges where needed (i.e. the standard order is right, top, left,
bottom edges). Simple ordering examples are illustrated in
Fig. 4.

We extend this same rotational convention to define the di-
rectionality of all linear elements (such as links and, where
necessary, faces), when such directionality is required. The
positive direction is associated with the top-right (first) quad-
rant; in other words, the positive direction is the one that
points more right than down or more up than left. This is
shown in more detail in Fig. 4b. This kind of directionality is
important for example in the definition of fluxes along links
into and out of nodes. In the case of link directions, Landlab
provides masking arrays that can describe the local orienta-
tion of each link with respect to another feature; for instance,
link_dirs_at_node describes whether a link points into
(+1) or out of (−1) any given node. The use and utility of
such data structures is illustrated in Sect. 5.

3.1.3 Mappings and grid characteristics

Landlab uses a standardized grammar to describe the meth-
ods and Python properties in the grid classes that provide in-
formation about the mapping of grid elements onto other el-
ements, and to obtain information about the grid (e.g. areas,
lengths, gradients). The intention of this standardization is to
not only make it easier for users to quickly find the method
they require but also provide information on the computa-
tional efficiency of the operation. Some of this information
is summarized in Table 3.

Grid characteristics

Landlab grids provide Python properties to describe
the geometric characteristics of the elements them-
selves, for instance position and dimension. These prop-
erties are denoted by the preposition “of”, as in, for
example, width_of_face, length_of_link, and

Earth Surf. Dynam., 5, 21–46, 2017 www.earth-surf-dynam.net/5/21/2017/

D. E. J. Hobley et al.: Creative computing with Landlab 29

Table 3. Standard grid method and property naming conventions, listed in approximate order of operation speed.

Name contains Refers to Operation speed

at Connectivity of grid elements Lookup
of Property of grid or grid element Lookup (may require allocation on 1st use)
has, is, are Logical test on grid property Memory allocation
get, create Memory allocation of grid property Memory allocation
set Update boundary conditions Calculation; internal consistency checks
map Map several pieces of data from several elements Several calculations & memory allocations

onto a single element to which they all connect
calc Perform a calculation using data defined on Several calculations & memory allocations

grid elements

area_of_cell. Use of the word of tells the user that an
array of floats (or, more rarely, integers) denoting a grid
characteristic is the expected return. (See for example use
of angle_of_link in Fig. 4b.) Of is also used to access
many counted characteristics of the grid as a whole, such
as number_of_nodes. All these properties return pre-
allocated arrays or single values already stored in memory,
and can be expected to be fast.

Grid element mappings

The grid also provides numerous Python properties that
describe the connectivity and associations of elements with
one another. These are denoted by the preposition at. Ex-
amples include face_at_link, link_at_face,
links_at_node, patches_at_node, and
node_at_cell. Use of at tells the user that an array
of element IDs is the expected return (see Fig. 4 for exam-
ples of usage). The Landlab boundary condition interface
also uses at; for instance, status_at_node returns
an array containing the boundary condition status (as an
integer code) of the grid nodes. All these properties return
pre-allocated arrays, and can be expected to be fast.

“has”, “is”, and “are” methods

Use of has, is, or are in a method name indicates that the
method in question applies a logical test to grid properties.
These are not simple lookups, as in the case of at and of prop-
erties, but can still be expected to be fairly fast. The returned
object will either be a Boolean or an array of Booleans.
Examples include is_boundary, are_all_core, and
has_field.

“get” and “create” methods

Landlab’s design philosophy seeks a balance between speed
of access of information about the grid, and memory usage.
To this end, only the most commonly used arrays of grid
characteristics accessed by at and of properties are created
at grid instantiation. In other cases, these arrays are allocated

in memory at the first time of usage in code, then referenced
from that point on at subsequent calls of the property. Meth-
ods in the grid that begin with get or create are called by
these properties the first time they themselves are used, and
construct the necessary arrays in memory. These methods
are typically intended for call only by a well-defined sub-
set of other methods internal to grid, and not directly by the
user; i.e. in programmer’s parlance they are “private”. We
use the standard Python practice of beginning such methods
with a leading underscore in the name, which tells the vari-
ous Python user interfaces not to report them in standard lists
of grid methods.

Computational methods

Landlab provides a large number of grid methods to allow
easy completion of common and frequently repeated analy-
ses of the values on the grid. These are denoted by names that
begin with calc, to denote methods that calculate a new value
from provided data, or map, which apply some standard rule
to map multiple values for connected elements to a single
value on the shared element to which they connect. For in-
stance, calc methods might allow calculation of gradients at
links from data defined at nodes (calc_grad_at_link),
or flux balances at a node from fluxes defined at incom-
ing and outgoing links (calc_flux_div_at_node).
Map methods might return means of values at links
around nodes (map_mean_of_links_to_node),
or minima of node values attached to each link
(map_min_of_link_nodes_to_link), or
the maximum slope of links leaving each node
(map_downwind_node_link_max_to_node).
More complex mapping schemes are also available, to
allow for instance the mapping of data from topographically
upwind or downwind elements only (for example, map_
value_ at_ upwind_ node_ link_ max_ to_
node). All these methods require active calculation and
memory allocation of new values.

www.earth-surf-dynam.net/5/21/2017/ Earth Surf. Dynam., 5, 21–46, 2017

30 D. E. J. Hobley et al.: Creative computing with Landlab

Boundary condition control

Grid methods that allow user control of boundary conditions
use the word “set”. Boundary condition handling is described
further in Sect. 3.1.4, below.

General rules

Words are separated by single underscores. Nouns are typ-
ically singular, both describing the element and its char-
acteristic, e.g. area_of_cell, not areas_of_cells.
The exceptions are cases in which more than one thing is
associated with each element, such as links_at_node,
faces_at_cell. Any grid property can be expected to be
a fast lookup operation if called repeatedly; methods may re-
quire additional memory allocation.

3.1.4 Grid boundary condition handling

Also provided are methods to facilitate boundary condition
handling (Fig. 5). Nodes can have one of four boundary
condition types: fixed value (Dirichlet), fixed gradient (Neu-
mann), looped, or closed. A node that is not defined as a
boundary is known as a core node. The boundary condi-
tions defined on the nodes determine whether each connect-
ing link is active (allows flux along it), fixed (allows flux,
but flux value is fixed) or inactive (flux is forbidden), as
shown in Table 4a. Each of these boundary conditions is
associated with an integer value, which can be seen in the
boundary condition arrays grid.status_at_node and
grid.status_at_link (Table 4b).

We should emphasize that this framework is provided for
user’s convenience; it can be easily ignored if a user wishes
to implement a different scheme for boundary condition han-
dling. Further, the appropriate boundary conditions depend
on the physical scenario that the user is modelling.

The edges of a Landlab grid are always defined by bound-
ary nodes. Because perimeter nodes lack cells (Sect. 3.1.1),
this means not every boundary node necessarily has a cell,
and may also not have the standard number of links, patches,
etc. (Table 1b). Conversely, any core node can always be ex-
pected to have a cell and a standard connectivity as described
in that table. Likewise, inactive links at the grid perime-
ter lack faces, but each active link always intersects, and is
uniquely associated with, a single face (Fig. 5). Thus, cells
share the boundary conditions of nodes (core vs. boundary)
and faces share the boundary conditions of links (active vs.
inactive). Note also that nodes that are in the interior of a
grid (i.e. not perimeter nodes) can also be assigned as bound-
ary nodes, and that whether or not this occurs depends on
the shape of the area that the user is modelling. For exam-
ple, a user may wish use a grid that represents a drainage
basin, with the basin’s interior consisting of core nodes, a
single node representing the outlet (flagged as a fixed-value
or fixed-gradient boundary), and the remainder of the nodes
flagged as closed boundaries.

Table 4. (a) Link boundary condition status as dictated by node
boundary condition status. (b) Integer values associated with each
boundary condition status.

(a) Nodes at link ends Link status Carries flux?

Core – core Active Yes
Core – fixed value Active Yes
Core – fixed gradient Fixed Yes
Core – looped Active Yes
Core – closed Inactive No
Boundary – boundary Inactive No

(b) Element type Status Integer value

Node Core 0
Node Fixed value 1
Node Fixed gradient 2
Node Looped 3
Node Closed 4
Link Active 0
Link Fixed 2
Link Inactive 4

The grid itself is responsible for keeping track of and
ensuring internal consistency between boundary condition
properties. The standard numpy setters and getters are over-
ridden for the boundary condition data structures to ensure
this internal consistency without the user’s involvement. For
example, if a user changes a node’s status from core to fixed-
value boundary, the gridding engine will automatically up-
date the status of the relevant links.

3.2 Spatially distributed data and data fields

A key element of any model of surface processes is a de-
scription of how the state variables and surface character-
istics vary across the domain. Such data can include both
scalar measurements at a point or over an area (such as to-
pographic elevation, water depth, sediment cover fraction,
vegetation type) and directional vector data, for instance, de-
scribing fluxes across the surface or gradients in scalar val-
ues. Landlab uses data constructs called data fields within the
grid to store and handle this information.

A prominent advantage of the field system is that data
may be associated with any of the grid elements: node, cell,
link, face, patch, or corner. Data fields are one-dimensional
numpy arrays whose length matches the number of elements
in question. By indexing these arrays with the IDs of ele-
ment subsets, the values at specific locations and on each
element type can be recovered. This scheme readily allows
the storage of both scalar and vector data by exploiting the
geometric relationships between the node–link–patch (and
cell–face–corner, if desired) groupings, as in a traditional
staggered-grid scheme (Harlow and Welch, 1965; Slinger-
land et al., 1994). Scalar data can be stored at nodes. Because

Earth Surf. Dynam., 5, 21–46, 2017 www.earth-surf-dynam.net/5/21/2017/

D. E. J. Hobley et al.: Creative computing with Landlab 31

links describe the connectivity between nodes, vector infor-
mation describing fluxes or gradients between nodes is read-
ily stored on links; the link’s orientation provides an implied
unit vector, while the associated value represents the vector’s
magnitude. There are also a number of use cases in which
values can usefully be stored on patches, for instance, in rep-
resenting resolved means of vector values at the bounding
links. This data structure also lends itself to the implementa-
tion of some cellular automata. For instance, pairwise transi-
tion automata (Narteau et al., 2001, 2009) represent the states
of cells on a grid as paired “doublets”, with rules prescribed
to govern the rates of transition between each doublet type.
These are readily implemented in Landlab by mapping the
pair states onto the links of a Landlab grid, and representing
the corresponding automaton cell states at grid nodes (Tucker
et al., 2016).

In terms of implementation in the code, Landlab fields are
represented as a dictionary of Python dictionaries within the
grid object. The keys to the first dictionary are strings of the
names of the grid elements (viz., “node”, “link”, “patch”,
“cell”, “face”, “corner”); the keys to the dictionaries that
these return are Landlab field names. Users are free to cre-
ate field names as they wish. However, Landlab maintains a
standard format and name list which is widely used by the
Landlab component library (Table S1 in the Supplement),
and users are strongly encouraged to adopt this scheme to
enhance standardization and interoperability throughout the
software. Our standard naming scheme echoes that of the
community standards adopted by the Community Surface
Dynamics Modeling System (CSDMS). Our rationale fol-
lows theirs, aiming to remove ambiguity in the identifica-
tion of different types of numerical information (Peckham,
2014; Peckham et al., 2013). However, given the potential
for high frequency of name usage in Landlab code, and our
ability to easily assess potential ambiguities between differ-
ent components, we place more value on name brevity at
the expense of total unambiguity as compared with the for-
mal CSDMS Standard Names (https://csdms.colorado.edu/
wiki/CSN_Searchable_List). Nonetheless, we maintain one-
to-one mappings with the CSDMS Standard Names to en-
able automated implementation of the CSDMS Basic Model
Interface (BMI; see Sect. 3.4.1).

The general format for Landlab names is
“thing_described__quantity_described”. This approach
is more generally known as the object–attribute–value
paradigm: the first word or phrase describes the object,
the second word or phrase describes the attribute, and
the variable’s content is its value. A double underscore
separates the object from the attribute. An example might
be “surface_water__discharge”. A full list of names used in
Landlab components as of version 1.0 can be found in the
Supplement as Table S1. A version of this list up to date
with the current release version can be found on the Landlab
website.

Units can be attached to grid fields. They are recorded in
a further dictionary-like structure, which is a property of the
element container. This means they can be accessed with syn-
tax like grid['node'].units['field__name'].

Landlab offers some degree of “syntactic sugar” for its
field name interface – i.e. the field interface is made more
user-friendly by the addition of more readable grid prop-
erties to query the fields at each element type, rather than
requiring the user to access the both dictionaries directly.
For instance, grid.at_node['my_field_name']is
equivalent to grid['node']['my_field_name'].
In addition, Landlab also provides convenient short-
cuts to create new fields of ones (grid.add_ones),
zeros (grid.add_zeros), and from existing data
(grid.add_field).

3.3 Components

Components are Python objects that simulate processes
within Landlab. A typical Landlab component provides a nu-
merical representation of a single process. For instance, a
component might compute the flow of water across a terrain
surface using a particular flow law and numerical solution
method. Components also exist in Landlab that produce only
spatially invariant time series, or that produce time-invariant
steady-state solutions across a surface. A prominent example
would be the FlowRouter component, which calculates the
steady-state accumulation of water discharge and upstream
total drainage area through a drainage basin. The latter cate-
gory also includes a number of analytical tools that produce
spatial statistics for a surface; for example, components to
calculate the steepness (Wobus et al., 2006) or chi index (Per-
ron and Royden, 2012) for a channel network.

Multiple components can be used together, allowing the
simulation of multiple processes acting on a single grid. For
example, components simulating hillslope processes and flu-
vial geomorphic processes can be easily implemented to-
gether to create a “custom” landscape evolution model. In
some cases, the output from one component may form the
input to another, as for example when combining flow rout-
ing and sediment transport components, or soil moisture and
vegetation growth components. The design of each compo-
nent is intended to work in a “plug-and-play” fashion, where
each component couples simply and quickly to others. This
is permitted by a standardized interface for each component,
as described in Sect. 3.3.1. Examples of coupled component
systems can be seen in Sect. 5.

Landlab provides a suite of existing components that can
be deployed by users. Future versions of Landlab will add
further components designed by the core development team.
However, we anticipate that users of Landlab will also de-
vise new components of their own, allowing the exploration
of new processes within Landlab. In keeping with the open-
source ethos of the project, we would encourage such users
to in turn commit their work back to the master fork of Land-

www.earth-surf-dynam.net/5/21/2017/ Earth Surf. Dynam., 5, 21–46, 2017

https://csdms.colorado.edu/wiki/CSN_Searchable_List
https://csdms.colorado.edu/wiki/CSN_Searchable_List

32 D. E. J. Hobley et al.: Creative computing with Landlab

lab, for the use of others. Documentation and advice for this
process can be found on the Landlab website.

3.3.1 Component standard interface

Landlab components have standardized interfaces, which are
designed to enhance interoperability both internally to Land-
lab (between components, or between components and Land-
lab utilities) and between Landlab and external interfaces like
the CSDMS Basic Model Interface (Peckham et al., 2013)
(see also Sect. 3.4.1). The Landlab standardized component
interface consists of the following:

– An initialization method, with the standard argument
signature __init__(self, grid, x=a, y=b,
z=c, ..., ∗∗kwds), where grid is a Landlab grid
object; x, y, and z are component-specific keyword ar-
guments with default values a, b, and c; and ∗∗kwds
is an optional keyword argument dictionary. The grid
object passed during instantiation is accessed during
the running of the component, and its data fields are
updated automatically. A component may have any
number of component-specific keyword arguments. The
variable names of these arguments are not standard-
ized but rather generally unique to each component. The
component-specific arguments are, however, required to
have default values. The names of the keyword argu-
ments make explicit the data requirements of the com-
ponent in order to run. However, the ∗∗kwds argument
alternatively allows these parameters to be set from a
dictionary of model parameters. In other words, this
component could be initialized in two equivalent ways:

>>> ld = LinearDiffuser(grid,
linear_diffusivity=1.0,
method='simple')

or

>>> paramdict = {
'linear_diffusivity': 1.0, 'method':
'simple'}
>>> ld = LinearDiffusivity(grid,

**paramdict)

– A run method, with the standard argument signature
run_one_step(dt, ∗args, ∗∗kwds), where dt
is an interval of time over which to execute the compo-
nent before returning a result, and ∗args and ∗∗kwds are
an argument list and dictionary respectively, specific to
each component. These latter items allow any additional
arguments necessary for the model to run to be passed
in. If dt is not required for a component to run, it may
be omitted.

– A standard set of properties for the component:
name, input_var_names, output_var_names, var_units,
var_mapping, and var_definition. These properties de-
scribe the fields that the component interacts with, the
units of each, which element each field is defined on,
and a brief summary of what each field represents.

All components inherit from the base class Component.
This base class enables and regulates the standardized prop-
erties and interface that are available for every Landlab com-
ponent. It also provides methods designed to streamline the
creation of the output data fields when a component is instan-
tiated.

Landlab version 1.0 provides a standard component library
as part of its installation. A full list of components available
in version 1.0 can be found in Table 5. Although these ex-
isting components are largely Earth-surface focused, we em-
phasize that Landlab permits modelling of the evolution of
almost any two-dimensional system that lends itself to de-
scription by discretized systems of differential equations or
cellular automaton rules.

3.3.2 Timestepping and interaction of components

For most existing Landlab components, the component is re-
sponsible for controlling its own internal numerical stabil-
ity. A timestep parameter dt is passed to each component
that operates in a time-dependent fashion; this timestep can
be thought of as the “coupling timescale”, and it represents
the frequency of interaction between components if more
than one is coupled (Fig. 6). However, it is not necessarily
the stable timescale, which will vary between components.
Each component is responsible for calculating its own stable
timestep under the model run conditions, and internally sub-
dividing the imposed dt in order to ensure the model run does
not become unstable. The user is responsible for selecting an
appropriate coupling timescale – too short, and a model run
will take more steps than necessary for each component to be
stable; too large, and information transfer between the com-
ponents will be limited, possibly introducing an additional
source of numerical error.

Note also that where components employ implicit solu-
tions, there may be no internal limit to the timestep at all
(e.g. the Fastscape algorithms of Braun and Willett, 2013, for
stream power). In such cases, Landlab will make no check on
the imposed timestep, and the user must ensure that the im-
posed dt is appropriate under the boundary and initial condi-
tions that they are running. For instance, the Braun–Willett
algorithm ceases to behave in a truly timestep-independent
fashion under transient conditions, but in a way that still
permits timesteps larger than would be imposed under an
explicit Courant condition (for more details see their Ap-
pendix B). However, those authors did not propose an alter-
native scheme to limit the timestep in such cases, and con-
sequently Landlab also does not. A user of this component

Earth Surf. Dynam., 5, 21–46, 2017 www.earth-surf-dynam.net/5/21/2017/

D. E. J. Hobley et al.: Creative computing with Landlab 33

Table 5. Components available in Landlab v.1.0.

Component name Process simulated/analysis performed Key reference

LinearDiffuser Linear diffusion of topography Culling (1963)
PerronNLDiffuse Nonlinear hillslope diffusion Perron (2011)
Flexure Simple lithospheric flexure under loading Lambeck (1988), Hutton and

Syvitski (2008)
gFlex A more complex flexure model, utilizing gFlex Wickert (2016)
FlowRouter A convergent flow router, following the Fastscape

algorithms
Braun and Willett (2013)

DepressionFinderAndRouter A lake filler that can route flow across depressions Tucker et al. (2001a)
SinkFiller An algorithm to fill depressions in a surface Tucker et al. (2001b)
OverlandFlow A shallow overland flow approximation de Almeida et al. (2012),

Adams et al. (2016)
KinematicWaveRengers A solution to the depth varying Manning equation for

surface flow
Julien et al. (1995), Rengers et
al. (2016)

SoilInfiltrationGreenAmpt Infiltrate surface water into a soil following the Green–
Ampt method

Julien et al. (1995), Rengers et
al. (2016)

SoilMoisture Compute local inter-storm water balance and root-zone soil
moisture saturation fraction

Laio et al. (2001)

PotentialEvapotranspiration Calculate potential evapotranspiration across a surface ASCE-EWRI (2005), Zhou et
al. (2013)

Radiation Calculate total incident shortwave solar radiation Bras (1990)
Vegetation Calculate above-ground live and dead biomass, and leaf

area index
Istanbulluoglu et al. (2012),
Zhou et al. (2013)

VegCA Cellular automata algorithm to simulate spatial
organization of PFTs

Zhou et al. (2013)

PrecipitationDistribution Generate a storm sequence of intervals and intensities Eagleson (1978)
FireGenerator Produces intervals between fire events, following a Weibull

distribution
Polakow and Dunne (1999)

StreamPowerEroder Implements fluvial erosion according to stream power,
using the Fastscape algorithms

Braun and Willett (2013)

FastscapeEroder An alternative implementation of the Fastscape stream
power algorithms

Braun and Willett (2013)

DetachmentLtdErosion An implementation of stream power erosion not based on
Fastscape

Howard (1994)

SedDepEroder Sediment-flux-dependent shear stress based fluvial incision Hobley et al. (2011)
SteepnessFinder Calculates steepness indices for a channel network Wobus et al. (2006)
ChiFinder Calculates the chi index along a channel network Perron and Royden (2012)

is assumed to have read the component documentation and
taken on board that this is potentially an issue, as well as
taken steps to check that their output is behaving sensibly and
is not highly sensitive to changes in the supplied timestep.
We reiterate that it is ultimately the user’s responsibility to
check that the provided dt is appropriate to the modelling
scenario at hand.

3.3.3 Parallelization

Together, the componentized nature of Landlab and the level
of flexibility afforded to the user conspire to rule out the idea
of Landlab as a whole being highly optimized through paral-
lelization. However, there is great potential for parallelization
of Landlab at the component level, since the run methods of
each component are entirely self-contained. As proof of con-

cept, the Flexure component has already been parallelized
(see online code and documentation). Although in Landlab
version 1.0 we have not had a compelling enough use case to
invest significant time in such work, many of the components
already in the library would be amenable to parallelization in
this style, and this could be done in future releases.

3.4 Utilities and interfaces

In addition to the grid, which governs the topology and con-
nectivity of spatial data, and the components, which describe
how spatial data change with time, Landlab also offers tools
that control input and output, including data input and ex-
port, translation between widely used data formats, plotting,
and the BMI external model interface. Landlab can read and
write data files in NetCDF4, VTK, and ESRI ASCII data for-

www.earth-surf-dynam.net/5/21/2017/ Earth Surf. Dynam., 5, 21–46, 2017

34 D. E. J. Hobley et al.: Creative computing with Landlab

Driver imposed
timestep, dt

Component 1,
stable timestep dt1

Component 2,
stable timestep dt2 = dt1

Component 3,
stable timestep dt3 > dt

Component 4,
 unconditionally stable

dt

dt1

dt2

dt3

In
fo

rm
at

io
n

ex
ch

an
ge

In
fo

rm
at

io
n

ex
ch

an
ge

In
fo

rm
at

io
n

ex
ch

an
ge

Time passing

Figure 6. Interaction of timescales between a Landlab driver and a
set of components. In this example, a driver that implements com-
ponents 1–4 has a time loop of length dt, and dt is the timescale that
is passed to the components. Components 1 and 2 implement nu-
merical schemes that have maximum stable timesteps shorter than
dt. In these cases, the imposed dt interval is internally subdivided to
ensure the model remains stable. Here, we see two possible ways a
component might do this, either always taking the largest timestep
possible then a short timestep to finish (component 1) or by divid-
ing the imposed timestep into the minimum number of equal length
internal steps, dtint, where dtint < dtstable (component 2). Even if a
component could run for a timestep longer than dt (e.g. compo-
nents 3 and 4), under an explicit-time Landlab driver script like this,
its steps will be truncated at dt. Once all the components have run
for dt, they sequentially update their output fields in the grid with
their changes. This is the only time that information can be passed
actively between each component (and the driving script, if it also
makes changes to the grid fields within the loop); each component
cannot “feel” changes being made by any other until dt has elapsed.
Hence dt is best thought of as the “coupling timescale”.

mats. These options are intended to allow interoperability
with third-party software, especially geographical informa-
tion systems, and also to allow Landlab data to be manipu-
lated in and displayed with specialized visualization software
(such as ParaView).

Landlab’s standard interfaces also allow it to interact more
easily with software frameworks developed by the geo-
science and hydroscience communities. For instance, Land-
lab is already embedded within the Hydroshare collabo-
ration environment, http://www.hydroshare.org. This means
that Landlab models can be created and run within the Hy-
droshare data and modelling environment and can take ad-
vantage of that environment’s shared data platform and meta-
data systems.

3.4.1 Dynamic model interaction and the Basic Model
Interface

As noted in previous sections, Landlab has been designed
from conception to be fully compliant with the Community
Surface Dynamics Modelling System’s Basic Model Inter-
face (BMI) (Peckham et al., 2013). The BMI concept al-
lows any two models describing the changes caused by sur-
face processes to be coupled together, regardless of the va-
garies of model gridding schemes, programming languages,
or other low-level design choices. It does this by means
of a standard interface (the Basic Model Interface, sensu
stricto), which is callable for any BMI compliant model
or component and includes generically applicable functions
such as initialize, update (i.e. run one timestep),
and get_current_time. The interface allows informa-
tion about the current state of a simulation to be passed back
and forth between running models in a manner that is agnos-
tic in terms of implementation details.

The Landlab framework is designed such that the Land-
lab standard component interface can also expose a full BMI
interface; in other words, all Landlab components are also
BMI-compliant components. This means that by choosing
Landlab as their model development environment, users also
gain the ability to couple their models immediately with any
other model in the CSDMS repository of BMI-compliant
codes. This choice will also enhance the utility of Landlab to
users who wish to implement component functionality along-
side some other model using the CSDMS BMI or Web Mod-
eling Tool (WMT) (Piper et al., 2015).

4 Validation, testing, and documentation

Landlab makes extensive use of Python’s native documenta-
tion and code testing systems in order to test and validate
the code base and to keep our documentation up to date.
The development team exploits a combination of this Python
“doctesting” and unit testing techniques to simultaneously
test and document the code base. Doctests are code exam-
ples that can be included in the docstring that describes each
Python method, and they list the expected output from each
line of code as part of the documentation. Crucially, this code
is then actually run whenever testing of the code base is trig-
gered (for instance, by calling landlab.test()), and any
doctests for which the output does not match the expected
solution are recorded as either an error (tested function does
not run cleanly) or a fail (output does not match). Because
doctests are part of each function’s docstring, they are also
then automatically scraped from the code and included in the
online documentation as examples for the user. In this way
doctests allow us to help ensure Landlab functionality does
not break as the code base evolves, while at the same time
documenting for the user the way in which a given method,
function, property, or component can be used.

Earth Surf. Dynam., 5, 21–46, 2017 www.earth-surf-dynam.net/5/21/2017/

http://www.hydroshare.org

D. E. J. Hobley et al.: Creative computing with Landlab 35

Landlab also includes suites of unit tests. These are test
scripts written specifically to exercise particular aspects of
the code, and to check the output of that test against known
correct solutions. Examples of when this is useful can occur
in longer or more involved code, especially in components,
where various different configurations of grid types and ini-
tial and boundary conditions need to be tested to ensure the
component is robust under various different conditions. Unit
tests differ from doctests in that they are not intended to be
user-facing, although they are run alongside them when test-
ing of the code base is triggered.

Almost all core Landlab functionality of both grid meth-
ods and components is now tested in this way. As of this
version, around 1400 separate tests are run on the code each
time testing is triggered, and the tests cover 80 % of the code
base. Most of the remaining uncovered code is either chal-
lenging to adequately test (for example, plotting functions),
not part of the core Landlab functionality (such as helper
scripts involved in building releases), or deprecated. Tests
are triggered automatically and remotely through the web-
based applications Travis (Mac/Linux) and Appveyor (PC)
whenever a new commit is made to either a branch or the
master version of the code repository on GitHub, or when a
new release of the code is built. These tests are performed
on a range of supported Python versions, including both ver-
sions 2 and 3. Tests can also be triggered manually on a local
machine by running a testing script included with Landlab, or
by calling landlab.test() from an interactive Python
environment.

5 Creating models with Landlab

We here illustrate some of the key functionality of Landlab
by example, demonstrating its applicability across a variety
of types of problem. We hope to emphasize here that Land-
lab is not a landscape evolution model (although it can be
used to create them) – rather, it presents a framework under
which a wide variety of different models can be implemented
using its tools, including hydrologic, ecologic, and sedimen-
tological models, as well as landscape evolution models. This
section illustrates four possible contrasting model designs
that can be implemented within the Landlab framework: a
very simple “toy” geomorphic diffusion code that demon-
strates the core functionality of the grid; a coupled stream
power–hillslope diffusion model driven with a stochastic se-
quence of storms, illustrating some of Landlab’s compo-
nents; a cellular automaton, demonstrating a fundamentally
different style of model implementation that is also enabled
by Landlab’s design; and a flood wave routing model, run
on real topographic data ingested by Landlab. We hope that
these examples will also serve as an illustration of the po-
tential power of the Landlab framework to enable novel or
under-explored process interaction studies (e.g. of vegetation

on landscape evolution; of surface hydrology on stochastic
surface processes).

5.1 A simple diffusion model

Although Landlab provides “off the shelf” process simula-
tion code in the form of the components, Landlab also facil-
itates the design of models without using the components.
The Landlab grids provide mapping, gradient, and diver-
gence functions to make implementation of, for instance,
finite-difference or finite-volume methods both concise and
straightforward.

Here we illustrate this functionality using a simple finite-
volume diffusion scheme, which here is representing the
downslope flow of soil on hillslopes (Culling, 1963). We
wish to represent the evolving form of a diffusional hillslope
that is undergoing a constant uplift (1 mm yr−1) with refer-
ence to a relative base level. In this case, the grid is radial
and so roughly circular in plan view. Use of this particular
configuration is intended in part to demonstrate the flexibil-
ity of Landlab’s design, although this radial grid arrangement
could perhaps be thought of in terms of response to a rising
volcanic mound or salt diapir or another similar scenario with
a radially symmetric uplift field.

The governing equations for this example are

∂η

∂t
= U −∇qs, (1)

qs =−D∇η, (2)

where η is land-surface elevation, t is time, U is the rate of
vertical motion (“uplift”) of rock relative to base level, qs is
volumetric sediment flux per unit slope width, and D is a
transport coefficient with dimensions of length squared per
time.

For our example model, Eq. (2) will be discretized and
solved using a finite-volume solution scheme. Consider a cell
of surface area a that is surrounded by N neighbouring cells
(Fig. 7). We can integrate Eq. (1) over the surface area of the
cell:∫
a

∂η

∂t
da =

∫
a

Uda−
∫
a

∇qsda. (3)

Applying the divergence theorem to the last term on the right,
and evaluating the other two integrals,

a
∂η

∂t
= Ua−

∮
p

qs(p)ndp, (4)

where η is the average elevation within the cell, p represents
position along the perimeter of the cell, and n is a unit vector
normal to the perimeter and pointing outward. The last term
is a line integral that represents adding up all the inflows and
outflows of mass along the cell’s perimeter. If the cell is a

www.earth-surf-dynam.net/5/21/2017/ Earth Surf. Dynam., 5, 21–46, 2017

36 D. E. J. Hobley et al.: Creative computing with Landlab

1211

17

 7

1319

15

20

24

52

50 4851

47

SOIL

SOIL SOIL

SOIL

SO
IL

SO
IL

SO
IL

SO
IL

Calculating gradients at links:
>>> grad = grid.calc_grad_at_link(elev)
>>> grid.links_at_node[12]
array([20, 24, 19, 15])
>>> grad[grid.links_at_node[12]]
array([-0.2, 0.2, -0.1, 0.3])

Calculating fluxes from gradients:
>>> q = -0.01 * grad
>>> q[20]
0.002
>>> q[15]
-0.003

Calculating flux divergence:
>>> divq = grid.calc_flux_div_at_node(q)
>>> divq[12]
0.0002

Node spacing = 10 m

Figure 7. Schematic illustration showing how Landlab’s grid ge-
ometry may be used to construct a finite-volume numerical scheme.
White squares represent nodes, with example node IDs given for
a 5× 5 raster grid. Grey ovals show the centre points of the links,
with the link IDs given. In this example, we assume that we have a
node field called “elev” whose values represent the altitude of the
land surface at various node locations (example values shown in
italics next to each node). Black arrows indicate direction of soil
flow (in the downhill direction). A finite-volume solution for a dif-
fusion model can be implemented by (1) calculating the gradient
at each pair of adjacent nodes and assigning it to the correspond-
ing link (lines 1–3 in the code snippet below); (2) multiplying by
a transport-rate coefficient (and −1) to obtain unit flux (lines 4–6);
and (3) multiplying the unit flux at each cell face by the width of
that face, adding up the inflows and outflows, and dividing by cell
area to obtain flux divergence (lines 7 and 8).

polygon with N faces, this last term can be replaced by a
summation:

∂η

∂t
= U −

1
a

N∑
k=1

qskwk (5)

where qsk is the unit flux at face k, positive outward, and wk
is the width of face k.

We will implement this solution in Landlab by assigning
to each node i the value of the average elevation within its
cell, ηi (for notational convenience, we will drop the use of
the overbar below). To calculate the flux at each face, we first
need to calculate the topographic gradient at each face. We
will do this by taking the elevation difference between each
neighbouring pair of nodes, dividing by the length of the link
that connects them, and then assigning the resulting gradient
value to the relevant link. The gradient at link j is therefore
calculated as

Gj =
ηHj − ηTj

Lj
, (6)

where ηHj and ηTj are the elevation values at link j ’s head
and tail nodes, respectively, and Lj is the length of link j .
In Landlab’s gridding engine, the calculation of link-based
gradients in a node-based scalar quantity like η is handled
by the grid method calc_grad_at_link, which takes a
node array or field name as an argument and returns a link ar-
ray. Figure 7 illustrates how values of η defined at nodes can
be used to calculate gradients at links, and then the gradients
can be used to calculate the net flux into and out of a cell.

In our diffusion example, the summation of fluxes along
the cell faces is calculated as follows:

N∑
k=1

qskwk =
D

ai

N∑
k=1

δikGkwk, (7)

where δik indicates the direction of link k relative to the cell
i: if δik =−1, the link points outward from the cell; if δik =
+1, the link points inward.

To calculate flux divergence using this finite-volume
approach, Landlab provides the general grid method
calc_flux_div_at_node, which takes a link-based ar-
ray of unit fluxes as an input and returns a node array that
contains the sum of in/out fluxes (divided by cell area) at
each node (Fig. 7). Values at perimeter nodes, which lack
cells, are ignored. In keeping with the standard definition of
the divergence operation, the function returns positive values
where the net flux is outward and negative values where it is
inward.

In the diffusion example shown in Fig. 8, the time deriva-
tive is discretized using a simple forward-Euler explicit
method, such that the values of elevation at the new timestep
t + 1 are calculated from values at the old timestep:

ηt+1
i = ηti +1t

[
U +

D

ai

N∑
k=1

δikGkwk

]
, (8)

where the superscript indicates timestep, and the
quantity in brackets is evaluated at timestep t . The
code to implement the model is shown in Fig. 8.
Note the use of the calc_grad_at_link and
calc_flux_div_at_node methods (and note also
that U = 0 in this example).

Earth Surf. Dynam., 5, 21–46, 2017 www.earth-surf-dynam.net/5/21/2017/

D. E. J. Hobley et al.: Creative computing with Landlab 37

1. >>> from landlab import RadialModelGrid, imshow_grid
2. >>> from matplotlib.pyplot import show
3. >>> mg = RadialModelGrid(num_shells=10, dr=10.)
4. >>> z = mg.zeros('node')
5. >>> qs = mg.zeros('link')
6. >>> diffusivity = 1.e-2
7. >>> dt = 0.2 * mg.length_of_link.min() ** 2. / diffusivity
8. >>> for i in range(500):
9. ... z[mg.core_nodes] += 0.001*dt
10. ... g = mg.calc_grad_at_link(z)
11. ... qs[mg.active_links] = -diffusivity * g[mg.active_links]
12. ... dqsdx = mg.calc_flux_div_at_node(qs)
13. ... dzdt = -dqsdx
14. ... z[mg.core_nodes] += dzdt[mg.core_nodes] * dt
15. >>> imshow_grid(mg, z, grid_units=('m', 'm'), var_name='Elevation (m)')
16. >>> show()

100 50 0 50 100
X (m)

100

50

0

50

100

Y
(m

)

0

25

50

75

100

125

150

175

200

225

El
ev

at
io

n
(m

)

Code to implement a simple diffusion model on a radial Landlab grid:

Figure 8. A simple finite-volume hillslope diffusion model imple-
mented in Landlab. Values adopted here are within typical terres-
trial ranges for hillslope length (∼ 100 m, controlled from line 3),
hillslope diffusivity (0.01 m2 yr−1, line 6) (Fernandes and Diet-
rich, 1997), total time of run (around a million years, since dt
is ∼ 1833 years, lines 7–8), and uplift rate relative to base level
(0.001 m yr−1, line 9).

An advantage of the finite-volume approach is that it can
be applied to cells of any shape. For instance, it can be used
with hexagonal cells, or with Voronoi polygons as in the ex-
ample in Fig. 8.

This model can be implemented in Landlab and plotted
in as few as 16 lines of code (Fig. 8). Here, line 1 imports
the Landlab classes and functions we will use, and line 2
imports the show() function from matplotlib that will let us
display the plot. Line 3 instantiates the Landlab grid object.
This example uses a RadialModelGrid, but the same code
would work with any grid type. Lines 4–6 initialize data for
the model run. z will be the land surface elevation at each
node; qs will be the volumetric sediment flux per unit width
along each link. Note that this implementation is consciously
not using data stored as Landlab fields in order to illustrate
that this is not a requirement; however, it would be trivial
to modify lines 4 and 5 to create the data as fields on the
grid, and the remainder of this script would be unchanged.
Line 7 is the first line that actually begins the calculations
that perform the diffusion. This line calculates a Courant–
Friedrichs–Lewy (CFL) stability condition (Slingerland and
Kump, 2011) for the maximum stable timestep for the finite-
volume scheme we are about to implement.

1. >>> from landlab import RadialModelGrid, imshow_grid
2. >>> from landlab.components import LinearDiffuser
3. >>> from matplotlib.pyplot import show
4. >>> mg = RadialModelGrid(num_shells=10, dr=10.)
5. >>> z = mg.add_zeros('node', 'topographic__elevation')
6. >>> dt = 2000. # no longer the stable timestep
7. >>> ld = LinearDiffuser(mg, linear_diffusivity=1.e-2)
8. >>> for i in range(500):
9. ... z[mg.core_nodes] += 0.001*dt
10. ... ld.run_one_step(dt)
11. >>> imshow_grid(mg, z, grid_units=('m', 'm'), var_name='Elevation (m)')
12. >>> show()

Code to implement a simple diffusion model on a radial Landlab grid, using
Landlab components:

Figure 9. Hillslope diffusion implemented in Landlab using a com-
ponent. Compare to Fig. 8. Note that this version is more concise,
and that timestep stability is now handled internally within the com-
ponent.

Lines 8–14 implement a time loop, within which the dif-
fusion occurs. The core (i.e. interior) nodes of the grid are
uplifted at a rate of 0.001 length units per time unit relative
to base level. Lines 10–14 implement the meat of the differ-
encing scheme, where we use a staggered grid to solve the
discretized diffusion equation (Eq. 8). The depth-integrated
fluxes on the links are calculated as the product of the diffu-
sivity parameter D and the topographic gradient at the links
(lines 10, 11), taking care to calculate the flux only on ac-
tive links. The flux divergence is then calculated at each
node based on the fluxes on the links to which is it adjoined
(line 12). Note that Landlab enables each of these operations
to be performed with a single grid method. The final lines of
the code invoke the standard Landlab plotter, then display the
output. Although we have not specified any particular units
in our calculation, in line 15 we assert that the length unit is
metres and the time unit is years.

Note that this same result could have been achieved even
more concisely using Landlab’s in-built LinearDiffuser com-
ponent. The equivalent code is shown in Fig. 9. Not only
are the implementation details of the scheme now handled
entirely within the component, but so also is internal sub-
division of the provided timestep to meet the necessary sta-
bility conditions for the simulation. Additionally, the eleva-
tion data are now passed into the component as the field
“topographic__elevation” – which is attached to the grid –
rather than as a separate variable (lines 5, 7), as discussed in
Sect. 3.2.

5.2 Coupling diffusion to stream power with a storm
sequence

The next example illustrates a simple model for the evolution
of an eroding and uplifting landscape, explicitly representing
channel incision and hillslope processes. In this model, we
also explicitly represent time variability of water input to the
system (i.e. storms). In technical terms, the example is de-
signed to show in more detail the use and coupling of sev-
eral Landlab components: the FlowRouter, the StreamPow-
erEroder, the DepressionFinderAndRouter, the LinearDif-

www.earth-surf-dynam.net/5/21/2017/ Earth Surf. Dynam., 5, 21–46, 2017

38 D. E. J. Hobley et al.: Creative computing with Landlab

fuser, and the PrecipitationDistribution classes. The aim here
is to demonstrate how Landlab couples components and to
illustrate several different component styles.

Here, channel incision processes are represented by the
stream power law (Howard, 1994; Lague, 2014; Whipple and
Tucker, 1999), which says that incision rate, E, of a stream
is proportional to a product of powers of channel discharge,
Q, and local channel bed slope, S. In this version, we also
include an incision threshold, C, below which incision is for-
bidden:

E =KQmSn−C if C <KQmSn

E = 0 if C ≥KQmSn.
(9)

In this case m= 0.5, K = 1×10−5 m−0.5 yr−0.5, C = 1×
10−5 m yr−1, which are fairly typical and widely adopted
values for a generic erosional upland landscape (Harel et
al., 2016; Tucker and Whipple, 2002). Here we also adopt
n= 1. This is primarily to maintain dimensionally sensible
units for K while still honouring the widely observed ratio
of m/n∼ 0.5, interpreted from channel concavities of natu-
ral rivers at apparent topographic steady state. Nonetheless,
we note n> 1 in some global data compilations for stream
power where C = 0, and suggest our incorporation of an ex-
plicit erosion threshold makes our choice of n= 1 reason-
able (Harel et al., 2016). We shall see that this set of values
together produces a plausible total landscape relief of order
1 km for catchments of maximum length ∼ 5 km, which is
within the range expected for real catchments of this scale
in tectonically active regions. Other forms of stream-power-
based incision rules are also possible using this component,
but these are not illustrated here.

The Landlab StreamPowerEroder and FlowRouter compo-
nents deployed here use the “Fastscape” algorithms of Braun
and Willett (2013). This solution scheme is implicit and order
n, and permits arbitrarily long, numerically stable timesteps
to be taken. The Fastscape algorithm requires out-of-order
(i.e. upstream order) iteration through the nodes, but pure
Python code has relatively poor speed performance when ex-
ecuting explicit loops or iterations through arrays. For this
reason, both the stream power and flow routing components
also use compiled Cython (see Sect. 2.2) to accelerate these
speed bottlenecks in the code. (The release version of Land-
lab distributes this code in pre-compiled form to users.) The
run method of the component performs as order n, and as
expected is unaffected by grid type (in this demonstration,
raster vs. hex grids). The initialization of the grid and compo-
nents adds a very small overhead which also increases close
to linearly with grid size (Fig. 10; code in the Supplement as
Script S2). This overhead reflects the calculations necessary
to build the data structures describing the grid’s connectiv-
ity, and is significantly greater for Voronoi grids compared to
rasters, due to the iterative calculations required to assemble
Voronoi grid-connectivity arrays.

The final topographies from the raster and hexagonal im-
plementations of this pure stream power component are

0 5000 10000 15 000 20 000 25000
Number of nodes

0.0

0.5

1.0

1.5

2.0

Ti
m

e
(s

)

50
100
150
200
250
300
350
400

0

450

Ti
m

e
(s

)

RasterModelGrid, total run time
HexModelGrid, total run time
RasterModelGrid, time spent in loop
HexModelGrid, time spent in loop

RasterModelGrid, initialization time
HexModelGrid, initialization time

(a)

(b)

Figure 10. Performance of a Landlab-built model of landform evo-
lution, using the StreamPowerEroder, FlowRouter, and Precipita-
tionDistribution components on grids of different types and sizes.
Runs were performed on a mid-2014 MacBook Pro, and each data
point represents the mean of five runs. (a) Total time for a simula-
tion of 3 million years, implementing a stochastic storm sequence
of around 3000 distinct stormy intervals. Both the total time to run
and the time spent in the loop in the code that iterates forward in
time are shown, and they are practically indistinguishable in most
cases. The time to run the components is close to linear with number
of nodes, as expected for the Fastscape algorithms (see main text).
(b) The time spent initializing the grids and components in each
case (i.e. the total time less the time spent in loop from panel a).
Setting up a Voronoi-based grid is more computationally expensive
than a raster, but both are quick in absolute terms, and both are close
to linearly scaled with the number of nodes. In both graphs, small
deviations from linear scaling occur, probably related to the interac-
tion of Python’s dynamic memory management with the size of the
random access memory on the individual machine.

shown in Fig. 11. The code can be seen in the Supplement as
Script S3. It conforms to a typical form for a Landlab driver
script:

1. Import necessary Python libraries, including from
Landlab.

2. Instantiate a grid object.

3. Create input fields and set the grid initial and boundary
conditions.

4. Instantiate the components.

5. Perform a loop to run the components.

6. Finalize, plot, save, and/or export.

Earth Surf. Dynam., 5, 21–46, 2017 www.earth-surf-dynam.net/5/21/2017/

D. E. J. Hobley et al.: Creative computing with Landlab 39

Figure 11. Simulated topographies produced from a simple stream
power-based fluvial incision rule, combining the StreamPow-
erEroder, FlowRouter, and PrecipitationDistribution components.
The same model set up is implemented on both a RasterModel-
Grid (a) and a HexModelGrid (b), using the same random seed to
generate the topography. Note the vertical–horizontal asymmetry in
channel network planform visible in panel (b), an expected outcome
of the three axes of mirror symmetry running though a hexagonal
grid. The linearity of these catchment planforms is enhanced by the
presence of an erosion threshold.

In this case, the model is driven by a stochastic storm gen-
erator (the PrecipitationDistribution class), based on that sug-
gested by Eagleson (1978) and similar to the one underly-
ing the CHILD landscape evolution model (Tucker and Bras,
2000; Tucker et al., 2001b). Unlike CHILD, but in keep-
ing with Eagleson’s original derivation, here an explicit in-
verse relationship between storm length and intensity is built
into the distribution, by calculating storm water depth as a
gamma-distributed random variable and then deriving storm
intensity as the quotient of depth and (exponentially dis-
tributed) duration. This approach prevents unrealistic long-
duration, high-intensity events from being sampled (Eagle-
son, 1978). The PrecipitationDistribution class provides a
method that yields tuples of interval durations and rainfall

intensities as a true Python generator – in other words, the
code block below the generator will repeat with fresh val-
ues for each iteration until the total time is elapsed, at which
point the loop will cease (see lines 46–53 in the code). This
makes the implementation of the “run” loop both efficient
and concise, as well as being a classically “Pythonic” way to
implement this kind of loop. In this instance, the parameters
for the PrecipitationDistribution have been chosen to repre-
sent a mean annual rainfall rate of around 5 m yr−1, and with
rainfall occurring around 10 % of the time.

The switch between grid types involves changing a single
line of code (see the logical test at lines 15–18). Note that
although the total number of nodes and the number of rows
and columns is identical in both cases, the hexagonal grid is
rectangular rather than square due to the single axis of mirror
symmetry present in a tessellation of regular hexagons. (The
HexModelGrid class provides flags allowing control both of
the orientation of this symmetry axis, and also the shape of
the perimeter of the grid – rectangular or hexagonal.)

The addition of the linear diffusion component, Lin-
earDiffuser, is performed simply by creating an instance of
that class and then incorporating its run method into the
loop (code S4, lines 40 and 49). As in previous examples,
each component is responsible for managing its own inter-
nal numerical stability – in this case, if the LinearDiffuser
run method receives an input dt that exceeds the Courant–
Friedrichs–Lewy stability limit, that timestep will be inter-
nally subdivided as necessary within the component.

In this example, because diffusion can occur indepen-
dently of stream incision, it is possible that diffusion can
sever the flow paths of the FlowRouter and create internal
basins. Because of this possibility, this version of the code
also includes a lake-filling algorithm, implemented as the
component DepressionFinderAndRouter. The lake-filling al-
gorithm identifies closed depressions in the topography then
reroutes flow across them, and is based on the algorithm of
Tucker et al. (2001b). The final topography of the coupled
stream power and linear diffusion model is shown in Fig. 12.

5.3 Landlab as a cellular automaton

Much of this paper focuses on Landlab as a tool for the im-
plementation of numerical solutions to two-dimensional par-
tial differential equations, as many geomorphic process laws
(sensu Dietrich et al., 2003) have been couched in the lan-
guage of differential equations. However, Landlab can also
act as a powerful environment for the implementation of cel-
lular models. Landlab provides a set of tools for the con-
struction of “continuous-time stochastic” (CTS) cellular au-
tomata (CA). This interface within the main body of Landlab
is known as CellLab-CTS (Tucker et al., 2016). It enables
efficient creation of CTS models: a user needs only to spec-
ify the states and transition rules and write a short Python
script to initialize and run a CellLabCTSModel object. Fig-

www.earth-surf-dynam.net/5/21/2017/ Earth Surf. Dynam., 5, 21–46, 2017

40 D. E. J. Hobley et al.: Creative computing with Landlab

Figure 12. Simulated topographies produced from a coupled hill-
slope and channel evolution model, combining the StreamPow-
erEroder, FlowRouter, and LinearDiffuser components. A storm
sequence is provided by the PrecipitationDistribution component,
and discharge is routed across depressions in topography using De-
pressionFinderAndRouter. Stream power parameters are identical
to those in Fig. 11. The same model setup is implemented on both
a RasterModelGrid (a) and a HexModelGrid (b), using the same
random seed to generate the topography. Despite the differences in
grid organization, planform drainage pattern remains fairly similar
between the two cases.

ure 13 shows output from a CellLab-CTS model implement-
ing a lattice-grain algorithm (Tucker et al., 2016).

Landlab can also be used to construct traditional discrete-
timestep cellular automata. An example is provided by devel-
oping an ecohydrology model in Landlab (Fig. 14a, code S5),
which is in part an implementation of the Cellular Automata
Tree-Grass-Shrub Simulator (CATGraSS) (Caracciolo et al.,
2016a, b, 2014; Zhou et al., 2013). CATGraSS couples lo-
cal vegetation dynamics, which simulate biomass production
based on local soil moisture and potential evapotranspiration,
and plant establishment and mortality based on competition
for resources and space at each cell of a gridded model do-
main. Each cell in the domain can be occupied by one plant

functional type (PFT): each cell is flagged as Tree, Shrub,
Grass or Bare (left unoccupied).

CATGraSS is driven by rainfall pulses and solar radiation.
In Landlab, the model is implemented as a set of interact-
ing components, each of which describes a different element
of the coupled system: PrecipitationDistribution, Radiation,
PotentialEvapotranspiration, SoilMoisture, Vegetation, and
VegCA. This means that each process can also operate in iso-
lation, outside the context of this example model. The Precip-
itationDistribution component simulates the random arrival
of storm pulses. Precipitation characteristics are based on
the seasonal rainfall statistics of a region and characterized
by exponential distributions of storm and inter-storm dura-
tion, and a gamma distribution of water depth as a function
of storm duration. Storm pulses recharge the soil moisture
storage, represented as a single bucket (Laio et al., 2001).
The Radiation component calculates daily average extra-
terrestrial and clear-sky shortwave radiation incident on a flat
surface, based on latitude and day of the year (ASCE-EWRI,
2005). This component also calculates daily radiation ratio,
defined as the ratio of cosine of solar angle of incidence for
the true sloped surface to that for a flat surface (Bras, 1990).
The Radiation component does not explicitly calculate dif-
fused and reflected radiation. The PotentialEvapotranspira-
tion component uses the radiation ratio to calculate spatial
net radiation using daily maximum and minimum tempera-
ture, and potential evapotranspiration (ASCE-EWRI, 2005;
Zhou et al., 2013). The SoilMoisture component models lo-
cal root-zone soil moisture dynamics depending on the PFT
that occupies the corresponding cell at a given time (Laio
et al., 2001). The Vegetation component simulates temporal
dynamics of above-ground live and dead biomass, as well
as leaf area index (LAI). It does this by computing net pri-
mary productivity (NPP) based on the concept of water-use
efficiency (WUE) that relates NPP to actual evapotranspira-
tion (ET) and vegetation foliage loss due to water stress and
senescence (Istanbulluoglu et al., 2012; Zhou et al., 2013).
The VegCA component handles the spatial organization of
PFTs, through plant establishment, competition, and mortal-
ity, by combining deterministic and probabilistic rules. Plant
establishment is driven by seed dispersal and water stress,
while mortality is related to water stress, plant age, and dis-
turbances (Zhou et al., 2013).

This example ecohydrology model and its constituent
components can work both on grids imported from a digi-
tal elevation model (DEM) using the read_esri_ascii
utility (see also Sect. 5.4) and on synthetic grids created us-
ing the RasterModelGrid library. In the example illustrated
in Fig. 14b and c, we use the example ecohydrology model
(code S5) to simulate plant competition in a semi-arid basin
in Sevilleta, New Mexico, USA, modelling the plant species
found in this area (Zhou et al., 2013). Because of the stochas-
tic nature of the simulations in this example, potential evap-
otranspiration is represented by a sinusoidal function of day
of the year (Zhou et al., 2013). The domain is initialized with

Earth Surf. Dynam., 5, 21–46, 2017 www.earth-surf-dynam.net/5/21/2017/

D. E. J. Hobley et al.: Creative computing with Landlab 41

Time = 40 Time = 500 Time = 1000

Figure 13. Example of a CellLab-CTS model. Here the CellLab-CTS framework has been used to implement a model of granular mechanics.
The model has eight node states, representing air (white), a resting grain (light grey), and a grain moving in each of the six lattice directions
(all coded as dark grey). Grid edges and immobile walls are treated as CLOSED_BOUNDARY Landlab boundary conditions (black).
Transition rules are used to model grain motion, grain collision, and gravity (from Tucker et al., 2016).

Figure 14. Implementation of an ecohydrology model in Landlab. (a) Schematic illustration of coupling among different Landlab compo-
nents for the CaTGraSS application. (b) Demonstration of the model on a flat surface with semi-arid climate similar to that of Sevilleta, New
Mexico, USA (Zhou et al., 2013). This figure plots percentage of space occupied by each PFT with time. (c) Spatial organization of PFTs
at different times during the model run. These plots illustrate competition between different PFTs for space and resources. Trees die early
within the first 300 years due to unfavourable climatic conditions and competition from shrubs and grass. The ecosystem swings between
shrub-dominant and grass-dominant states for the next 1600 years.

randomly assigned PFTs with random spatial distribution of
ages (Fig. 14ci). All PFTs initially have an identical cover
fraction in the domain. Local vegetation dynamics are simu-
lated at inter-storm timesteps, and plant competition is mod-
elled at annual timesteps. In the simulations, trees are out-
competed by drought-tolerant shrubs and grasses in the first
few hundred years, consistent with regional observations in
central New Mexico (Zhou et al., 2013). Shrubs and grasses

coexist in the modelled domain with alternating periods of
shrub and grass dominance. Note that shrubs cluster as they
propagate in space due to seed dispersal from mature shrub
plants.

www.earth-surf-dynam.net/5/21/2017/ Earth Surf. Dynam., 5, 21–46, 2017

42 D. E. J. Hobley et al.: Creative computing with Landlab

5.4 Landlab as a hydrological modelling environment

Landlab also contains several surface water flow generators,
including an explicit two-dimensional solution for the shal-
low water equations. The OverlandFlow component has been
adapted from the flood inundation model described by de
Almeida et al. (2012). Their algorithm was derived for use on
structured grids, and the Landlab implementation only works
with the RasterModelGrid library. Water discharge is calcu-
lated on each active link within the model domain, simulating
a hydrograph at each link location.

In many flood-wave routing models, a small timestep must
be used to prevent instabilities, which often manifest as
“checkerboard” patterns of water depth, from emerging. To
maximize computational performance of the OverlandFlow
component, an adaptive timestep is used to find the largest
timestep that adheres to the CFL stability condition (Hunter
et al., 2005). To further enhance the stability, the Overland-
Flow component also contains stability criteria so that the
component can operate not only on low-slope, urban areas
but also on steeper terrain, such as mountainous watersheds
(Adams et al., 2016). The OverlandFlow component was de-
signed for structured grids, and it assumes water can only
move in the four cardinal directions. This is easily accom-
modated within Landlab, and several other components (e.g.
the FlowRouter and others in the example presented below)
can also be optionally instructed using keywords to only use
node neighbours in these cardinal directions.

An example script running the OverlandFlow component
can be seen in the Supplement as Script S6. It follows a sim-
ilar pattern to scripts outlined in earlier parts of this sec-
tion, with import of the Landlab and other Python classes
and functions needed, followed by grid creation, compo-
nent instantiation, component execution in a loop, and then
finalization and plotting. Notably, this script uses an im-
ported digital elevation model (DEM) of a real landscape
over which to route flow, which is ingested into Landlab us-
ing the read_esri_ascii function contained in Land-
lab’s input and output utilities. Use is made of Landlab’s na-
tive boundary handling system to designate nodes of the grid
outside of the irregularly shaped catchment as closed, exclud-
ing them from the calculations.

This example combines the OverlandFlow component
with the SinkFiller. The SinkFiller is run on the initial to-
pography prior to the simulated storm, and fills any local de-
pressions present in the surface. This has been done to enable
full drainage of all the water from the network, and to permit
evaluation of the full water budget at the outlet. However,
in general the OverlandFlow component will happily run on
landscapes that do contain pits. In this example, a rainfall rate
of 25 mm h−1 was run over the watershed DEM for 1 h. The
resulting hydrograph (water discharge over time) is plotted
at the outlet. Water depth across the domain is also plotted to
show the wave front propagating downstream (Fig. 15). As
expected, the total hydrograph duration is several times the

length of the storm, and the peak in the hydrograph lags be-
hind the storm itself significantly, in this case by more than
an hour.

6 Conclusions

Landlab is an open-source, Python-based software toolkit de-
signed to accelerate the development of new process models.
It consists of a gridding engine, a set of components describ-
ing individual surface processes, and a set of utilities for data
input, output, and visualization. Landlab not only permits the
creation of models by combination of existing components
but is also optimized to aid in the design of new process com-
ponents. The code base is thoroughly documented both on-
line and within the code itself, and each release undergoes an
automated testing procedure to ensure its robustness. A set
of tutorials and examples to help learn about Landlab is also
provided.

Landlab is explicitly designed to interface with other soft-
ware, and in particular, with other models of surface pro-
cesses. It exposes a CSDMS Basic Model Interface. It can
serve as a platform to develop both continuum-based and
cellular-automaton-style models, and potentially to have the
two model styles interact on the same grid. We illustrate
some of the functionality of Landlab and its existing compo-
nents with a suite of examples drawn from geomorphology,
ecology, and hydrology. The examples provided in this paper
illustrate the wide diversity of scientific questions that can be
addressed using Landlab-built models.

7 Code availability

This text describes Landlab version 1.0.2 (“Rapunzel”),
which was released in November 2016. The source code
for this version is maintained in a Git repository hosted
on GitHub at https://github.com/landlab/landlab/releases/
tag/v1.0.2 (the latest development version of Landlab is al-
ways available at http://github.com/landlab/landlab). Land-
lab can also be installed as a release version, including pre-
compiled binary files containing Cython extensions, through
the conda and pip Python package management systems, as
described in the online documentation. Documentation and
installation instructions for the most current release version
of Landlab are provided at http://landlab.github.io. Software
dependencies are listed at https://landlab.github.io under “In-
stall”. To the best of our knowledge, Landlab will operate on
any system that meets these software requirements; as of the
time of writing, Landlab is known to work on, and is tested
for, recent-generation Mac, Linux, and Windows platforms
running Python 2.7, 3.4, and 3.5. Landlab and its components
are distributed under an MIT open-source license.

Earth Surf. Dynam., 5, 21–46, 2017 www.earth-surf-dynam.net/5/21/2017/

https://github.com/landlab/landlab/releases/tag/v1.0.2
https://github.com/landlab/landlab/releases/tag/v1.0.2
http://github.com/landlab/landlab
http://landlab.github.io
https://landlab.github.io

D. E. J. Hobley et al.: Creative computing with Landlab 43

D
is

ch
ar

ge
 (m

 s
)

3
-1

Figure 15. Demonstration of OverlandFlow component capabilities. The example shows development of a hydrograph in a catchment
drawn from an airborne lidar-derived DEM of the Spring Creek catchment in central Colorado, USA. The run uses a constant rainfall rate of
25 mm h−1 and a storm duration of 1 h. The hydrograph persists for almost eight model hours, and water depth as plotted at several intervals
after the start of the precipitation event: 1 (the end of the storm), 2, 3, and 8 h.

8 Data availability

Code to reproduce figures as found in this manuscript is
either presented within this main text or can be found in
the Supplement. The Spring Creek DEM data presented
in Fig. 15 are a subset of the lidar dataset for Raleigh
Peak, Colorado: May 2010 (NCALM, 2010). Lidar data ac-
quisition and processing completed by the National Cen-
ter for Airborne Laser Mapping (NCALM – http://www.
ncalm.org). NCALM funding provided by NSF’s Division
of Earth Sciences, Instrumentation and Facilities Program.
EAR-1043051. The lidar data have been cropped to a specific
sub-basin and filled to remove pits, as described in the main
text. The cropped and filled version of the data may be found
as an ASCII-formatted text file in the dataset Adams (2016)
as the file “SpringCreek_DEM.asc”.

The Supplement related to this article is available online
at doi:10.5194/esurf-5-21-2017-supplement.

Acknowledgement. This research was supported by the US
National Science Foundation (ACI-1147454 (GET), ACI-1450409

(GET), ACI-1450338 (NMG), ACI-1147519 (NMG) ACI-1450412
(EI), ACI-1148305 (EI), and EAR-1246761 (through an NCED2
postdoctoral fellowship to DEJH)). We thank B. Campforts,
W. Schwanghart, and A. Wickert for their helpful reviews of an
earlier version of this paper, and S. Mudd for serving as editor on
the manuscript. Landlab could not exist without the wider open-
source software in science movement, and particularly open-source
enthusiasts who are members of the surface process modelling
community. We are particularly indebted to the members of the
CSDMS Integration Facility for the best practices put forward and
advice offered.

Edited by: S. Mudd
Reviewed by: A. Wickert and B. Campforts

References

Adams, J. M.: landlab/pub_adams_etal_gmd v0.2 (Data set), Zen-
odo, doi:10.5281/zenodo.162058, 2016.

Adams, J. M., Nudurupati, S. S., Gasparini, N. M., Hobley, D. E. J.,
Hutton, E., Tucker, G. E., and Istanbulluoglu, E.: Landlab: Sus-
tainable Software Development in Practice, The Second Work-
shop on Sustainable Software for Science: Practice and Experi-
ences (WSSSPE2), New Orleans, LA, USA, 16 November 2014,
doi:10.6084/m9.figshare.1097629.v6, 2014.

www.earth-surf-dynam.net/5/21/2017/ Earth Surf. Dynam., 5, 21–46, 2017

http://www.ncalm.org
http://www.ncalm.org
http://dx.doi.org/10.5194/esurf-5-21-2017-supplement
http://dx.doi.org/10.5281/zenodo.162058
http://dx.doi.org/10.6084/m9.figshare.1097629.v6

44 D. E. J. Hobley et al.: Creative computing with Landlab

Adams, J. M., Gasparini, N. M., Hobley, D. E. J., Tucker, G. E.,
Hutton, E. W. H., Nudurupati, S. S., and Istanbulluoglu, E.: The
Landlab OverlandFlow component: a Python library for comput-
ing shallow-water flow across watersheds, Geosci. Model Dev.
Discuss., doi:10.5194/gmd-2016-277, in review, 2016.

ASCE-EWRI: The ASCE standardized reference evapotranspira-
tion equation, in: Standardization of Reference Evapotranspira-
tion Task Committee Final Report, edited by: Allen, R. G., Wal-
ter, I. A., Elliot, R. L., Howell, T. A., Itenfisu, D., Jensen, M. E.,
and Snyder, R. L., Technical Committee report to the Environ-
mental and Water Resources Institute of the American Society of
Civil Engineers from the Task Committee on Standardization of
Reference Evapotranspiration, Reston, VA, USA, 2005.

Becker, C., Chitchyan, R., Duboc, L., Easterbrook, S., Pen-
zenstadler, B., Seyff, N., and Venters, C. C.: Sustain-
ability design and software: the karlskrona manifesto, in:
IEEE/ACM 37th IEEE International Conference on Soft-
ware Engineering, Florence, Italy, 16–24 May 2015, 467–476,
doi:10.1109/ICSE.2015.179, 2015.

Berger, K. P.: Surface water–groundwater interaction: the spatial or-
ganization of hydrologic processes over complex terrain, PhD
thesis, Massachusetts Institute of Technology, Cambridge, MA,
USA, 242 pp., 2000.

Bras, R. L.: Hydrology: an introduction to hydrologic science,
Addison Wesley Publishing Company, Boston, Mass., USA,
643 pp., 1990.

Braun, J. and Sambridge, M.: Modelling landscape evolution on ge-
ological time scales: a new method based on irregular spatial dis-
cretization, Basin Res., 9, 27–52, 1997.

Braun, J. and Willett, S. D.: A very efficientO(n), implicit and par-
allel method to solve the stream power equation governing flu-
vial incision and landscape evolution, Geomorphology, 180–181,
170–179, doi:10.1016/j.geomorph.2012.10.008, 2013.

Caracciolo, D., Noto, L. V., Istanbulluoglu, E., Fatichi, S.,
and Zhou, X.: Climate change and Ecotone boundaries:
Insights from a cellular automata ecohydrology model in
a Mediterranean catchment with topography controlled
vegetation patterns, Adv. Water Resour., 73, 159–175,
doi:10.1016/j.advwatres.2014.08.001, 2014.

Caracciolo, D., Istanbulluoglu, E., and Noto, L. V.: An Ecohydro-
logical Cellular Automata Model Investigation of Juniper Tree
Encroachment in a Western North American Landscape, Ecosys-
tems, doi:10.1007/s10021-016-0096-6, in press, 2016a.

Caracciolo, D., Istanbulluoglu, E., Noto, L. V., and Collins, S. L.:
Mechanisms of shrub encroachment into Northern Chihuahuan
Desert grasslands and impacts of climate change investigated us-
ing a cellular automata model, Adv. Water Resour., 91, 46–62,
doi:10.1016/j.advwatres.2016.03.002, 2016b.

Chue Hong, N.: We are the 92 %, The Second Workshop on
Sustainable Software for Science: Practice and Experiences
(WSSSPE2), New Orleans, LA, USA, 16 November 2014,
doi:10.6084/m9.figshare.1243288.v1, 2014.

Crick, T., Hall, B. A., and Ishtiaq, S.: “Can I Implement Your Algo-
rithm?”: A Model for Reproducible Research Software, The Sec-
ond Workshop on Sustainable Software for Science: Practice and
Experiences (WSSSPE2), New Orleans, LA, USA, 16 November
2014, arXiv:1407.5981v2 [cs.SE], 2014.

Culling, W.: Soil creep and the development of hillside slopes, J.
Geol., 71, 127–161, 1963.

de Almeida, G. A. M., Bates, P., Freer, J. E., and Souvignet, M.:
Improving the stability of a simple formulation of the shallow
water equations for 2-D flood modeling, Water Resour. Res., 48,
W05528, doi:10.1029/2011WR011570, 2012.

Dietrich, W. E., Bellugi, D. G., Sklar, L. S., Stock, J. D., Heim-
sath, A. M., and Roering, J. J.: Geomorphic Transport Laws for
Predicting Landscape Form and Dynamics, in: Prediction in Ge-
omorphology, Geophysical Monograph-American Geophysical
Union, Washington, DC, USA, 135, 1–30, 2003.

Eagleson, P. S.: Climate, soil, and vegetation: 2. The dis-
tribution of annual precipitation derived from observed
storm sequences, Water Resour. Res., 14, 713–721,
doi:10.1029/WR014i005p00713, 1978.

Easterbrook, S. M.: Open code for open science?, Nat. Geosci., 7,
779–781, doi:10.1038/ngeo2283, 2014.

Fernandes, N. F. and Dietrich, W. E.: Hillslope evolution by diffu-
sive processes: The timescale for equilibrium adjustments, Water
Resour. Res., 33, 1307–1318, doi:10.1029/97WR00534, 1997.

Goren, L., Willett, S. D., Herman, F., and Braun, J.: Coupled
numerical–analytical approach to landscape evolution model-
ing, Earth Surf. Proc. Land., 39, 522–545, doi:10.1002/esp.3514,
2014.

Granjeon, D. and Joseph, P.: Concepts and Applications of a 3-D
Multiple Lithology, Diffusive Model in Stratigraphic Modeling,
in: Numerical Experiments in Stratigraphy Recent Advances in
Stratigraphic and Sedimentologic Computer Simulations, SEPM
Special Publications No. 62, SEPM, Tulsa, OK, USA, 197–210,
1999.

Harel, M. A., Mudd, S. M., and Attal, M.: Global analy-
sis of the stream power law parameters based on world-
wide 10Be denudation rates, Geomorphology, 268, 184–196,
doi:10.1016/j.geomorph.2016.05.035, 2016.

Harlow, F. H. and Welch, J. E.: Numerical Calculation of Time-
Dependent Viscous Incompressible Flow of Fluid with Free Sur-
face, Phys. Fluids, 8, 2182–2189, 1965.

Hobley, D. E. J., Sinclair, H. D., Mudd, S. M., and Cowie, P. A.:
Field calibration of sediment flux dependent river incision, J.
Geophys. Res., 116, F04017, doi:10.1029/2010JF001935, 2011.

Horritt, M. S. and Bates, P. D.: Evaluation of 1D and 2D numerical
models for predicting river flood inundation, J. Hydrol., 268, 87–
99, doi:10.1016/S0022-1694(02)00121-X, 2002.

Howard, A. D.: A detachment-limited model of drainage basin evo-
lution, Water Resour. Res., 30, 2261–2285, 1994.

Howard, A. D.: Simulating the development of Martian highland
landscapes through the interaction of impact cratering, fluvial
erosion, and variable hydrologic forcing, Geomorphology, 91,
332–363, doi:10.1016/j.geomorph.2007.04.017, 2007.

Hunter, N. M., Horritt, M. S., Bates, P. D., Wilson, M. D., and
Werner, M. G. F.: An adaptive time step solution for raster-based
storage cell modelling of floodplain inundation, Adv. Water Re-
sour., 28, 975–991, 2005.

Hutton, E. W. H. and Syvitski, J. P. M.: Sedflux 2.0:
An advanced process-response model that generates three-
dimensional stratigraphy, Comput. Geosci., 34, 1319–1337,
doi:10.1016/j.cageo.2008.02.013, 2008.

Hutton, E. W. H., Piper, M. D., Peckham, S. D., Overeem, I., Ket-
tner, A. J., and Syvitski, J. P. M.: Building Sustainable Software
– The CSDMS Approach, The Second Workshop on Sustainable
Software for Science: Practice and Experiences (WSSSPE2),

Earth Surf. Dynam., 5, 21–46, 2017 www.earth-surf-dynam.net/5/21/2017/

http://dx.doi.org/10.5194/gmd-2016-277
http://dx.doi.org/10.1109/ICSE.2015.179
http://dx.doi.org/10.1016/j.geomorph.2012.10.008
http://dx.doi.org/10.1016/j.advwatres.2014.08.001
http://dx.doi.org/10.1007/s10021-016-0096-6
http://dx.doi.org/10.1016/j.advwatres.2016.03.002
http://dx.doi.org/10.6084/m9.figshare.1243288.v1
http://dx.doi.org/10.1029/2011WR011570
http://dx.doi.org/10.1029/WR014i005p00713
http://dx.doi.org/10.1038/ngeo2283
http://dx.doi.org/10.1029/97WR00534
http://dx.doi.org/10.1002/esp.3514
http://dx.doi.org/10.1016/j.geomorph.2016.05.035
http://dx.doi.org/10.1029/2010JF001935
http://dx.doi.org/10.1016/S0022-1694(02)00121-X
http://dx.doi.org/10.1016/j.geomorph.2007.04.017
http://dx.doi.org/10.1016/j.cageo.2008.02.013

D. E. J. Hobley et al.: Creative computing with Landlab 45

New Orleans, LA, USA, 16 November 2014, arxiv:1407.4106v2
[cs.SE], 2014.

Istanbulluoglu, E., Wang, T., and Wedin, D. A.: Evaluation of
ecohydrologic model parsimony at local and regional scales
in a semiarid grassland ecosystem, Ecohydrology, 5, 121–142,
doi:10.1002/eco.211, 2012.

Itasca: FLAC: fast Lagrangian analysis of continua, Version 4,
Itasca Consulting Group Inc., Minneapolis, USA, 2000.

Jenson, S. K. and Domingue, J. O.: Extracting Topographic Struc-
ture from Digital Elevation Data for Geographic Information
System Analysis, Photogramm. Eng. Rem. S., 54, 1593–1600,
1988.

Julien, P. Y., Saghafian, B., and Ogden, F. L.: Raster-based
hydrologic modeling of spatially-varied surface runoff, J.
Am. Water Resour. As., 31, 523–536, doi:10.1111/j.1752-
1688.1995.tb04039.x, 1995.

Katz, D. S., Choi, S.-C. T., Wilkins-Diehr, N., Hong, N. C., Ven-
ters, C. C., Howison, J., Seinstra, F., Jones, M., Cranston, K. A.,
Clune, T. L., De Val-Borro, M., and Littauer, R.: Report on the
Second Workshop on Sustainable Software for Science: Practice
and Experiences (WSSSPE2), Journal of Open Research Soft-
ware, 4, e7, doi:10.5334/jors.85, 2015.

Kelfoun, K., Samaniego, P., Palacios, P., and Barba, D.: Test-
ing the suitability of frictional behaviour for pyroclastic flow
simulation by comparison with a well-constrained eruption at
Tungurahua volcano (Ecuador), B. Volcanol., 71, 1057–1075,
doi:10.1007/s00445-009-0286-6, 2009.

Kessler, M. A., Anderson, R. S., and Stock, G. M.: Modeling to-
pographic and climatic control of east-west asymmetry in Sierra
Nevada glacier length during the Last Glacial Maximum, J. Geo-
phys. Res, 111, F02002, doi:10.1029/2005JF000365, 2006.

Lague, D.: The stream power river incision model: evidence,
theory and beyond, Earth Surf. Proc. Land., 39, 38–61,
doi:10.1002/esp.3462, 2014.

Laio, F., Porporato, A., Ridolfi, L., and Rodriguez-Iturbe, I.: Plants
in water-controlled ecosystems: active role in hydrologic pro-
cesses and response to water stress II. Probabilistic soil moisture
dynamics, Adv. Water Resour., 24, 707–723, doi:10.1016/S0309-
1708(01)00005-7, 2001.

Lambeck, K.: Geophysical Geodesy, The Slow Deformations of the
Earth, Clarendon Press, Oxford, UK, 718 pp., 1988.

Mitas, L. and Mitasova, H.: Distributed soil erosion simulation for
effective erosion prevention, Water Resour. Res., 34, 505–516,
doi:10.1029/97WR03347, 1998.

Narteau, C., Le Mouël, J. L., Poirier, J. P., Sepúlveda, E., and Shnir-
man, M.: On a small-scale roughness of the core–mantle bound-
ary, Earth Planet. Sc. Lett., 191, 49–60, doi:10.1016/S0012-
821X(01)00401-0, 2001.

Narteau, C., Zhang, D., Rozier, O., and Claudin, P.: Setting the
length and time scales of a cellular automaton dune model from
the analysis of superimposed bed forms, J. Geophys. Res.-Earth,
114, F03006, doi:10.1029/2008JF001127, 2009.

NCALM: Raleigh Peak, Colorado: May 2010, CO10_Tucker (Data
set), doi:10.5069/G9TM782F, 2010.

NSF: A vision and strategy for software for science engineer-
ing and education, available at: https://www.nsf.gov/pubs/2012/
nsf12113/nsf12113.pdf (last access: 24 November 2016), 2012.

Overeem, I., Berlin, M. M., and Syvitski, J. P. M.: Strategies for
integrated modeling: The community surface dynamics mod-

eling system example, Environ. Modell. Softw., 39, 314–321,
doi:10.1016/j.envsoft.2012.01.012, 2013.

Peckham, S. D.: The CSDMS Standard Names: Cross-Domain
Naming Conventions for Describing Process Models, Data Sets
and Their Associated Variables, in: Proceedings of the 7th In-
ternational Congress on Environmental Modelling and Software,
15–19 June 2014, San Diego, California, USA, edited by: Ames,
D. P., Quinn, N. W. T., Rizzoli, A. E., ISBN: 978-88-9035-744-2,
2014.

Peckham, S. D., Hutton, E. W. H., and Norris, B.: A
component-based approach to integrated modeling in the geo-
sciences: The design of CSDMS, Comput. Geosci., 53, 3–12,
doi:10.1016/j.cageo.2012.04.002, 2013.

Perron, J. T.: Numerical methods for nonlinear hillslope transport
laws, J. Geophys. Res, 116, F02021, doi:10.1029/2010JF001801,
2011.

Perron, J. T. and Royden, L.: An integral approach to bedrock
river profile analysis, Earth Surf. Proc. Land., 38, 570–576,
doi:10.1002/esp.3302, 2012.

Piper, M., Hutton, E. W. H., Overeem, I., and Syvitski, J. P.: WMT:
The CSDMS Web Modelling Tool, 2015 Fall Meeting, AGU,
San Francisco, CA, USA, 14–18 December 2015, IN13B–1841,
2015.

Polakow, D. A. and Dunne, T. T.: Modelling fire-return interval T:
stochasticity and censoring in the two-parameter Weibull model,
Ecol. Model., 121, 79–102, 1999.

Prechelt, L.: An empirical comparison of C, C++, Java, Perl,
Python, Rexx and Tcl for a search/string-processing program,
Technical Report 2000-5, University of Karlsruhe, Karlsruhe,
Germany, 34 pp., 2000.

Rengers, F. K., McGuire, L. A., Kean, J. W., Staley, D. M., and
Hobley, D.: Model simulations of flood and debris flow timing
in steep catchments after wildfire, Water Resour. Res., 52, 6041–
6061, doi:10.1002/2015WR018176, 2016.

Slingerland, R. L. and Kump, L.: Mathematical Modeling of Earth’s
Dynamical Systems, Princeton University Press, Princeton, NJ,
USA, 231 pp., 2011.

Slingerland, R. L., Harbaugh, J. W., and Furlong, K.: Simulating
Clastic Sedimentary Basins: Physical Fundamentals and Com-
puter Programs for Creating Dynamic Systems, Prentice-Hall,
Englewood Cliffs, NJ, USA, 220 pp., 1994.

Stewart, C. A., Almes, G. T., and Wheeler, B. C. (Eds.): Cyber-
infrastructure Software Sustainability and Reusability: Report
from an NSF-funded workshop, Indiana University, Blooming-
ton, IN, USA, available at: http://hdl.handle.net/2022/6701 (last
access: 24 November 2016), 2010.

Tucker, G. E. and Bras, R. L.: A stochastic approach to modeling
the role of rainfall variability in drainage basin evolution, Water
Resour. Res., 36, 1953–1964, 2000.

Tucker, G. E. and Hancock, G. S.: Modelling landscape evolution,
Earth Surf. Proc. Land., 35, 28–50, doi:10.1002/esp.1952, 2010.

Tucker, G. E. and Whipple, K. X.: Topographic outcomes
predicted by stream erosion models: Sensitivity analysis
and intermodel comparison, J. Geophys. Res, 107, 2179,
doi:10.1029/2001JB000162, 2002.

Tucker, G. E., Lancaster, S. T., Gasparini, N. M., Bras, R. L., and
Rybarczyk, S. M.: An object-oriented framework for distributed
hydrologic and geomorphic modeling using triangulated irregu-
lar networks, Comput. Geosci., 27, 959–973, 2001a.

www.earth-surf-dynam.net/5/21/2017/ Earth Surf. Dynam., 5, 21–46, 2017

http://dx.doi.org/10.1002/eco.211
http://dx.doi.org/10.1111/j.1752-1688.1995.tb04039.x
http://dx.doi.org/10.1111/j.1752-1688.1995.tb04039.x
http://dx.doi.org/10.5334/jors.85
http://dx.doi.org/10.1007/s00445-009-0286-6
http://dx.doi.org/10.1029/2005JF000365
http://dx.doi.org/10.1002/esp.3462
http://dx.doi.org/10.1016/S0309-1708(01)00005-7
http://dx.doi.org/10.1016/S0309-1708(01)00005-7
http://dx.doi.org/10.1029/97WR03347
http://dx.doi.org/10.1016/S0012-821X(01)00401-0
http://dx.doi.org/10.1016/S0012-821X(01)00401-0
http://dx.doi.org/10.1029/2008JF001127
http://dx.doi.org/10.5069/G9TM782F
https://www.nsf.gov/pubs/2012/nsf12113/nsf12113.pdf
https://www.nsf.gov/pubs/2012/nsf12113/nsf12113.pdf
http://dx.doi.org/10.1016/j.envsoft.2012.01.012
http://dx.doi.org/10.1016/j.cageo.2012.04.002
http://dx.doi.org/10.1029/2010JF001801
http://dx.doi.org/10.1002/esp.3302
http://dx.doi.org/10.1002/2015WR018176
http://hdl.handle.net/2022/6701
http://dx.doi.org/10.1002/esp.1952
http://dx.doi.org/10.1029/2001JB000162

46 D. E. J. Hobley et al.: Creative computing with Landlab

Tucker, G. E., Lancaster, S. T., Gasparini, N. M., and Bras, R.
L.: The Channel-Hillslope Integrated Landscape Development
Model (CHILD), in: Landscape Erosion and Evolution Model-
ing, Springer US, Boston, MA, USA, 349–388, 2001b.

Tucker, G. E., Hobley, D. E. J., Hutton, E., Gasparini, N.
M., Istanbulluoglu, E., Adams, J. M., and Nudurupati, S. S.:
CellLab-CTS 2015: continuous-time stochastic cellular automa-
ton modeling using Landlab, Geosci. Model Dev., 9, 823–839,
doi:10.5194/gmd-9-823-2016, 2016.

van Rossum, G. and Drake, F. L.: Python reference manual, avail-
able at: http://www.python.org (last access: 24 November 2016),
2001.

Whipple, K. X. and Tucker, G. E.: Dynamics of the stream-power
river incision model: Implications for height limits of moun-
tain ranges, landscape response timescales and research needs,
J. Geophys. Res, 104, 17661–17674, 1999.

Wickert, A. D.: Open-source modular solutions for flexural isostasy:
gFlex v1.0, Geosci. Model Dev., 9, 997–1017, doi:10.5194/gmd-
9-997-2016, 2016.

Willgoose, G., Bras, R. L., and Rodriguez-Iturbe, I.: A
coupled channel network growth and hillslope evolution
model: 1. Theory, Water Resour. Res., 27, 1671–1684,
doi:10.1029/91WR00935, 1991a.

Willgoose, G., Bras, R. L., and Rodriguez-Iturbe, I.: A cou-
pled channel network growth and hillslope evolution model:
2. Nondimensionalization and applications, Water Resour. Res.,
27, 1685–1696, doi:10.1029/91WR00936, 1991b.

Wobus, C. W., Whipple, K. X., Kirby, E., Snyder, N. P., Johnson, J.,
Spyropolou, K., Crosby, B. T., and Sheenan, D.: Tectonics from
topography: Procedures, promise, and pitfalls, in: Tectonics, Cli-
mate, and Landscape Evolution, edited by: Willett, S. D., Hovius,
N., Brandon, M. T., and Fisher, D., Geological Society of Amer-
ica Special Paper 398, Geological Society of America, Boulder,
CO, USA, 55–74, 2006.

Zhou, X., Istanbulluoglu, E., and Vivoni, E. R.: Modeling the ecohy-
drological role of aspect-controlled radiation on tree-grass-shrub
coexistence in a semiarid climate, Water Resour. Res., 49, 2872–
2895, doi:10.1002/wrcr.20259, 2013.

Earth Surf. Dynam., 5, 21–46, 2017 www.earth-surf-dynam.net/5/21/2017/

http://dx.doi.org/10.5194/gmd-9-823-2016
http://www.python.org
http://dx.doi.org/10.5194/gmd-9-997-2016
http://dx.doi.org/10.5194/gmd-9-997-2016
http://dx.doi.org/10.1029/91WR00935
http://dx.doi.org/10.1029/91WR00936
http://dx.doi.org/10.1002/wrcr.20259

	Abstract
	Introduction and motivation
	Approach
	Guiding design principles
	Low-level design choices
	Open-source availability
	Programming language
	Code sustainability

	Model architecture
	Landlab's gridding engine
	Grid types and elements
	Grid standardization and conventions
	Mappings and grid characteristics
	Grid boundary condition handling

	Spatially distributed data and data fields
	Components
	Component standard interface
	Timestepping and interaction of components
	Parallelization

	Utilities and interfaces
	Dynamic model interaction and the Basic Model Interface

	Validation, testing, and documentation
	Creating models with Landlab
	A simple diffusion model
	Coupling diffusion to stream power with a storm sequence
	Landlab as a cellular automaton
	Landlab as a hydrological modelling environment

	Conclusions
	Code availability
	Data availability
	Acknowledgement
	References

