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Subduction megathrust slip speeds range from slow creep at plate convergence 13 

rates (centimetres per year) to seismic slip rates (metres per second) in the largest 14 

earthquakes on Earth. The deformation mechanisms controlling whether fast slip 15 

or slow creep occurs, however, remain unclear. Here, we present evidence that 16 

pressure solution creep - fluid-assisted, stress-driven mass transfer - is an 17 

important deformation mechanism in megathrust faults. We quantify megathrust 18 

strength using a laboratory-constrained microphysical model for fault friction, 19 

involving viscous pressure solution and frictional sliding. We find that at plate-20 

boundary deformation rates, aseismic, frictional-viscous flow is the preferred 21 
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deformation mechanism at temperatures above 100 ˚C. The model thus predicts 22 

aseismic creep at temperatures much cooler than the onset of crystal plasticity, 23 

unless a boundary condition changes. Within this model framework, earthquakes 24 

may nucleate when a local increase in strain rate triggers velocity-weakening slip, 25 

and we speculate that slip area and event magnitude increase with increasing 26 

spacing of strong, topographically derived irregularities in the subduction 27 

interface.  28 

Understanding why some megathrust segments accommodate displacement by 29 

earthquake slip versus aseismic creep is a major challenge. Geophysically observed 30 

variation in seismic style along active subduction megathrusts, involving a continuum 31 

of slip speeds from plate boundary creep rates to earthquake slip1, arises from processes 32 

within a fault zone in subducting sediments on top of potentially rugged ocean floor2-6. 33 

Dominantly creeping margins are characterised by low seismic coupling coefficients - 34 

the observed seismic moment release rate over that required by plate motion vectors - 35 

and lack of earthquake moment magnitudes ≥ 8.0 (Supplementary Figure S1)7,8. Thus, 36 

some margins produce small to medium magnitude earthquakes, but the total moment of 37 

these earthquakes is insufficient to explain total geodetically observed displacement, 38 

and they must therefore be accompanied by aseismic creep9.   39 

The megathrust interface is commonly inferred as seismogenic to a depth where 40 

temperature exceeds the 350˚C required for crystal plasticity in quartz, or to the 41 

intersection with the hanging wall Moho, whichever is shallower10. However, geodetic 42 

inversions8,11-14 reveal aseismic creep shallower than both the 350˚C isotherm and the 43 

hanging wall Moho. The question thus arises: how do some megathrust segments, such 44 
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as north Hikurangi11, the southern Japan Trench12, southern New Hebrides13, southern 45 

Kermadec Arc13, and the Manila Trench14 accommodate detectable displacement by 46 

aseismic creep in addition to moderate size earthquakes, both originating at a similar 47 

depth range? This observation requires average creep rates of centimetres per year at 48 

temperatures less than 350˚C. Identifying the associated creep mechanism is critical for 49 

recognising where megathrust displacement can occur without great earthquakes, and 50 

by contrast, interpret where great earthquakes may occur. 51 

The mechanism of creep at seismogenic zone conditions 52 

Tectonic mélanges comprising sheared trench-fill and ocean floor sediments have 53 

been interpreted as megathrust fault rocks (Fig. 1a)3-6,15. Deformation structures 54 

developed at seismogenic pressure-temperature (P – T) conditions include both 55 

discontinuities, such as faults and tensile fractures, and continuous structures such as 56 

folds, boudins and foliations. One possible interpretation is that faults and associated 57 

fractures represent seismic deformation styles, whereas continuous features characterise 58 

slower, distributed, aseismic mechanisms recorded as creep5,6,15. In this interpretation, 59 

the mechanism accommodating deformation in continuous structures is responsible for 60 

aseismic creep.  61 

In exhumed subduction thrusts, cleavage defined by fine-grained phyllosilicates 62 

wraps around rigid quartz clasts (Fig. 1b). Comparable microstructures are reported in 63 

borehole samples from the creeping segment of the continental San Andreas transform 64 

fault16,17. Mass balance calculations on San Andreas samples indicate pressure solution, 65 

involving fluid-assisted, stress-driven mass transfer, as the cleavage-forming process16. 66 
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If empirical rates can be extrapolated, pressure solution is fast enough to account for 67 

aseismic sliding16,18.  68 

Pressure solution is also widely inferred as the dominant cleavage-forming 69 

process in mudrocks and phyllites sampled from exhumed subduction thrusts6,19-21. As 70 

an example, we consider a sample representative of sheared, cleaved mudstone from an 71 

inferred exhumed megathrust in the Chrystalls Beach Complex, New Zealand21(Fig. 1a-72 

e), where cleavage defined by illite-muscovite developed at T < 300˚C (ref. 22). In this 73 

sample, cleavage seams are depleted in Si and enriched in Al (Fig. 1c; Supplementary 74 

Figure 2). If cleavage develops by pressure solution, more soluble elements, such as Si, 75 

are dissolved, whereas less soluble elements, such as Al, are retained. Thus, the 76 

observations in the Chrystalls Beach sample are consistent with cleavage formation by 77 

pressure solution. Stress shadows around quartz clasts lack evidence for opening of pore 78 

space (Fig. 1d), and are sites of local silica enrichment (Fig. 1e). In addition to 79 

formation of phyllosilicate cleavage, mass-transfer processes are therefore illustrated by 80 

silica enrichment and clast elongation through mineral growth in pressure shadows (Fig. 81 

1d,e).   82 

Microphysical model for fault gouge strength  83 

The observations on exhumed megathrust rocks indicate that one of the 84 

microscopic processes that controls macroscopic frictional behaviour is viscous pressure 85 

solution. Indeed, microphysical modelling studies have shown that experimental 86 

observations on shear deformation at low strain rates in rocks comprising rigid clasts in 87 

a phyllosilicate matrix can be explained by frictional-viscous flow: frictional sliding 88 
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along cleavage planes coupled to viscous (time-dependent) pressure solution of 89 

intervening rigid clasts23,24,25. The microstructures reported in these experimental studies 90 

are essentially identical to those seen in samples from the exhumed Chrystalls Beach 91 

Complex (Fig. 1b-e). Frictional-viscous flow is restricted to low strain-rates (and/or 92 

high T); at higher strain rates (or lower T), slip is activated on anastomosing 93 

phyllosilicates, and microphysical models predict an importance of compaction by 94 

pressure solution24,25. Here, we use the model by Den Hartog and Spiers25, coupled to 95 

analytical thermal gradients26(Methods), to predict megathrust shear strength. This 96 

microphysical model is based on friction experiments performed on materials and at 97 

conditions representative for subduction megathrusts. Following this model, we assume 98 

a matrix-supported megathrust shear zone where frictional sliding occurs on aligned 99 

phyllosilicates, accommodated by pressure solution shear of intervening quartz grains or 100 

dilatation (Fig. 1f). In this model, the relation between shear strain rate and shear stress 101 

is derived by considering stress balances at the microscale for a unit cell defined in Fig. 102 

1f. The megathrust shear strain rate (𝛾) is related to the slip velocity (V) assuming strain 103 

is distributed through a shear zone thickness (w) and therefore 𝛾 = 𝑉/𝑤.   104 

Each unit cell consists of quartz clasts, which are uniformly distributed such that 105 

horizontal rows overlap, and phyllosilicate foliations that are on average parallel to the 106 

shear plane, but locally curve around rigid clasts (ref. 25; Fig. 1f; Supplementary Figure 107 

3), resembling the natural microstructure (Fig. 1b). Slip along foliation is assumed to be 108 

a frictional process governed by the frictional resistance of phyllosilicates, which varies 109 

with temperature and normal stress according to experimental data for illite and 110 

muscovite27-31(Methods). Depending on the conditions (e.g. slip velocity, temperature, 111 

normal stress), the frictional resistance predicted by the model either decreases 112 
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(velocity-weakening) or increases (velocity-strengthening) as slip accelerates. Whereas 113 

velocity-weakening behaviour is potentially unstable, and can promote fast earthquake 114 

slip, velocity-strengthening behaviour is inferred to lead to stable sliding, recorded as 115 

aseismic creep32-34. In the microphysical model used here25, velocity-strengthening flow 116 

occurs when easy shear of quartz clasts by thermally activated pressure solution, in 117 

series with rate-independent slip on planar phyllosilicates, leads to non-dilatant 118 

deformation (frictional-viscous flow). Velocity-weakening slip occurs when difficult 119 

pressure solution shear of quartz results in increased shear stress and slip is activated on 120 

curved phyllosilicate cleavages. This slip along curved foliation results in dilatation at 121 

the clast-matrix interface under extension (Fig. 1f), which at steady state is balanced by 122 

compaction via pressure solution.  123 

Application of flow law to natural subduction zones 124 

We apply boundary conditions appropriate for the northern Hikurangi margin, a 125 

megathrust shown to deform predominantly by aseismic creep, at least over the last few 126 

decades11. Pore fluid factors (λ = Pf/σv, where Pf is pore fluid pressure and σv is vertical 127 

stress) of 0.8 and 0.95 are imposed to test variations between moderate and high fluid 128 

pressure conditions. We distribute a steady creep rate of 40 mm yr-1 over a 1 - 100 m 129 

thick subduction thrust shear zone, a range representing strain rates from 10-11 to 10-9 s-130 

1, and a range in deforming thickness typical of exhumed mélanges and drilled 131 

subduction megathrusts15. Quartz grain size varies from 10 to 100 µm, based on Fig. 1b-132 

e. All model parameters are listed in Supplementary Table S1. 133 
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The frictional-viscous flow strength of quartz-phyllosilicate mixtures as a function 134 

of depth is compared to frictional strengths of mono-mineralic quartz and illite-135 

muscovite faults (Fig. 2a,b). At all considered conditions, frictional sliding in quartz 136 

requires higher shear stress than any slip mechanism in phyllosilicates or quartz-137 

phyllosilicate mixtures; we therefore note that frictional sliding in quartz is an unlikely 138 

deformation mechanism in phyllosilicate-rich megathrust shear zones. For both high 139 

and moderate fluid overpressure, there is a depth below which frictional-viscous flow 140 

requires a lower shear stress than that required for frictional sliding in mono-mineralic 141 

phyllosilicate fault gouges (Fig. 2a,b). For deforming zones of 100 m thickness, 142 

frictional viscous flow becomes favourable at 8 – 10 km depth in moderate fluid 143 

pressure conditions (Fig. 2a), and at 12 – 16 km depth under high fluid pressure (Fig. 144 

2b). In both cases, frictional-viscous flow becomes favourable at T ≥ 100 ± 20 ºC (Fig. 145 

2c), where the corresponding shear stress, τ, is ≤ 10 MPa at high fluid pressure, and ≤ 146 

20 MPa at moderate fluid pressure (Fig. 2a,b). For a 1 m thick deforming zone, higher 147 

strain rates make frictional-viscous flow less favourable; at high fluid pressure, 148 

frictional sliding of phyllosilicates remains favourable until a depth of ~ 26 km (T < 200 149 

˚C, τ < 20 MPa), whereas at lower fluid pressures, frictional sliding also requires higher 150 

stresses and frictional-viscous flow becomes favourable from 16 km depth (T < 150 ˚C, 151 

τ ~ 40 MPa).  152 

Calculated temperatures define low thermal gradients, partly because very low 153 

stresses reduce temperatures relative to models with Byerlee friction (Fig. 2c). In our 154 

warmest model, where λ = 0.8, shear zone width is 1 m, and quartz grain size 100 µm, 155 

shear heating makes up approximately 30 % of the heat budget; for the coldest model, 156 
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with λ = 0.95, shear zone width of 100 m, and quartz grain size 10 µm, less than 10 % 157 

of the heat budget is contributed by shear heating. Hikurangi is also a cool margin in the 158 

global spectrum of subduction zone thermal models, where model temperatures35 159 

compare to Fig. 2c. Compared to a recent numerical model36, calculations here with λ = 160 

0.8 are cooler at depths below ~ 10 km, whereas λ = 0.95 gives consistently lower 161 

temperatures.  162 

Aseismic frictional-viscous flow is the predicted deformation style at T ≥ 100 ˚C, 163 

when average plate boundary shear strain rates are accommodated in a hundreds of 164 

metres thick shear zone (Fig. 2a,b). Generation of run-away earthquake slip requires a 165 

change in these boundary conditions. This is because, at low strain rates, pressure 166 

solution of quartz clasts accommodates local finite strain around the rigid clasts created 167 

by slip on surrounding, planar phyllosilicate cleavages (Figs. 1d,e, 3a,b)25. At higher 168 

strain rate, pressure solution requires greater driving stress, bulk fault zone strength 169 

increases, and eventually dilatant, velocity-weakening behaviour occurs, allowing 170 

potentially unstable slip25 (Fig. 3a,b). At each depth increment in Fig. 2, we calculate 171 

the friction coefficient as a function of strain rate, as shown for a depth of 30 km in Fig 172 

3b. The strain rate required for a change from velocity-strengthening to velocity-173 

weakening behaviour increases with depth (Fig. 3c). At depths greater than 15 km, 174 

where frictional-viscous flow generally becomes favourable (Fig. 2), velocity-175 

strengthening behaviour occurs at strain rates slower than 10-12 s-1 and shear zone 176 

widths greater than tens of metres at 40 mm yr-1 slip rates (Fig. 3c). At a depth of 30 177 

km, where frictional-viscous flow is preferred for all our considered conditions with a 178 

plate boundary slip rate (Fig. 2a,b), the shear strain rates required for velocity-179 

weakening behaviour range from 10-9 to 10-4 s-1 (Fig. 3b,c).  180 
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At shallow depths, although commonly interpreted as a velocity-strengthening 181 

region10,34, potentially seismic slip is predicted at strain rates as low as 10-12 s-1 at 5 km 182 

depth, and 10-16 s-1 at the surface (Fig. 3c). This is because shear deformation by 183 

pressure solution of quartz is difficult at low temperature, yielding dilatant behaviour. 184 

At greater depths, where T ≥ 100 ± 20 ºC, low strain rate frictional-viscous flow is the 185 

predicted deformation mechanisms (Fig. 2), because a high quartz solubility yields 186 

efficient dissolution and re-precipitation at this temperature (Ref. 37, Supplementary 187 

Figure 4). This potential change in deformation mechanism is reflected in exhumed 188 

accretionary prisms, where mélange deformation at T < 100 ˚C is dominated by 189 

distributed cataclasis, whereas a pressure solution cleavage and localised slip surfaces 190 

are prevalent in rocks deformed at T > 150˚C (Refs. 6,21,38,39). In central and northern 191 

Hikurangi, the margin we used for our thermal calculations, it is uncertain whether a 192 

near-surface velocity-strengthening zone and updip limit of seismicity is present, as 193 

slow slip events may propagate to the trench40; the downdip limit of the interseismically 194 

locked zone is here at less than 10 km depth11. This downdip limit of the locked zone is 195 

in agreement with the onset of velocity-strengthening frictional-viscous flow at 10 km 196 

depth and T ≤ 100˚C, in a margin of moderate fluid overpressure and distributed shear 197 

(Fig. 2a,c).  198 

Following Den Hartog and Spiers25, we conclude that frictional-viscous flow 199 

involving pressure solution is a viable mechanism of velocity-strengthening, stable 200 

creep. We consider the recently discovered phenomenon of slow slip along subduction 201 

megathrusts41,42, defined as geodetically observed displacement that is faster than plate 202 

convergence rates but too slow to generate seismic waves, as a form of unstable slip43. 203 

Shallow slow slip, as observed near the trench in northern Hikurangi40, may therefore be 204 
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a manifestation of unstable, dilatant shear at T < 100˚C (the ‘potentially seismic slip’ in 205 

Fig. 3c). Deeper slow slip events occurring down-dip of the locked zone and at depths ≥ 206 

30 km, such as in Cascadia, are either independent of, or possibly load, the seismogenic 207 

region44. The application of the microphysical model predicts velocity-strengthening 208 

behaviour at such depths; thus, as for earthquakes, slow slip faster than steady-state 209 

plate convergence rates requires a local change in conditions, possibilities of which we 210 

discuss in the next section. Under the local triggering conditions, slow slip likely 211 

reflects competition between deformation modes within a heterogeneous fault zone45, 212 

but may be an expression of either localised frictional sliding or distributed shearing 213 

flow; differentiating between these basic geometries requires currently missing 214 

knowledge of the deforming thickness during slow slip events.  215 

Relating creep to subduction of rugged vs. smooth slab topography 216 

Large earthquakes (Mw ≥ 8.0) have been associated with subduction of smooth sea 217 

floor, because a lack of barriers to slip – such as local topography, seamounts, and 218 

horst-and-graben structures – allows for large rupture areas2,46. By comparison, 219 

subduction of rugged ocean floor has been suggested to lead to smaller earthquakes 220 

because rupture areas are geometrically constrained2,12,36. We therefore consider the 221 

implications of the model results for two end-member subducting plates, with (i) 222 

smooth and (ii) rugged topography2,36,46.  223 

(i) Smooth subducting slabs lack geometrical barriers to rupture propagation and 224 

the fault zone has similar thickness and strain rate at all depths (Fig. 4a). However, 225 

small-scale heterogeneities may locally elevate strain rates, causing velocity-weakening 226 
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behaviour (Fig. 3b,c), and triggering rupture propagation over a large area without 227 

hindrance by large-scale barriers4. (ii) Rugged subducting ocean floor also deforms 228 

predominantly via creep by frictional-viscous flow, and small-scale heterogeneities may 229 

again lead to local velocity-weakening behaviour. However, in this case, strong, 230 

topographically derived irregularities on the interface create barriers to earthquake 231 

propagation, constraining earthquakes to smaller slip areas and therefore moderate 232 

magnitudes (Fig. 4b). At and around such barriers, local brittle deformation occurs to 233 

accommodate subduction of the topographic feature2,12. Extrapolating from continental 234 

strike slip faults47, we suggest that geometrical barriers - such as deformed, subducting 235 

seamounts - that result in a discontinuity of potential slip surfaces by more than ~ 4 km, 236 

are likely to arrest rupture propagation. Moreover, because of numerous stress and 237 

strain-rate peaks, megathrusts associated with rugged subducting topography may 238 

appear strong in stress calculations from heat flow measurements36 or Coulomb wedge 239 

mechanics48, relative to fault segments where smooth subducting slabs allow large slip 240 

areas on a through-going weak surface or a system of anastomosing slip surfaces. A 241 

caveat to this broad, end-member interpretation is that subducting topography and 242 

megathrust structure may evolve with depth. For example, subducting seamounts may 243 

be progressively destroyed if they are indeed areas of increased brittle deformation2, and 244 

the microscale geometry within the fault zone can change through development of 245 

through-going fault surfaces, mineral precipitation and reactions, and evolving grain 246 

shapes and sizes, through progressive deformation, metamorphism and fluid flow49. As 247 

such, the subduction thrust is a dynamic structure, displacing a footwall with inherently 248 

complex geometry, and accurate predictions require high-resolution subsurface data. 249 
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In summary, our model offers an explanation for why megathrusts creep in some 250 

places, and slip seismically in others. It implies that creep by frictional-viscous flow is 251 

the preferred deformation mechanism of most if not all subduction thrust interfaces, 252 

below some depth determined by thermal structure, strain rate, and fluid pressure (Figs. 253 

2,3; Supplementary Figure 4). However, earthquakes may nucleate at local 254 

heterogeneities where the behaviour is velocity-weakening50. Slip area and earthquake 255 

magnitude should then depend on the spacing of strong, topographically derived 256 

irregularities in the subduction interface, with giant earthquakes requiring this spacing 257 

to be large.   258 

 259 
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Figure captions 403 

Figure 1: Example of pressure solution microstructures in a sample from the Chrystalls 404 

Beach Complex, New Zealand. 405 

a, Photograph of outcrop-scale mélange shear zone with sandstone lenses in cleaved 406 

mudstone matrix. b, Photomicrograph (plane-polarised light) of sample from mélange 407 

matrix, cleavage wraps around quartz clasts. c, Close-up of cleavage seams, rectangle 408 

shows location of element maps of Si and Al; warm and cold colours show high and 409 

low relative abundance, respectively. d Backscatter electron image of quartz clasts in 410 

phyllosilicate matrix, accompanied by composite element map in e. f, Model 411 

microstructure where matrix (grey) deforms by frictional sliding along foliations 412 

(dashed lines), and clasts (black) deform by pressure solution25. All panels show dextral 413 

sense of shear. 414 

Figure 2: Strength curves calculated along a subduction thrust interface with properties 415 

representative of the northern Hikurangi margin. 416 

The pore fluid factor λ = Pf/σv, where Pf is pore fluid pressure and σv is vertical stress, is 417 

moderate (0.8) in a and high (0.95) in b. The curves labelled ‘microphysical model' 418 

represent the strength of a fault where deformation occurs by slip on phyllosilicate 419 

surfaces and pressure solution of intervening quartz. Microphysical model predictions 420 

depend on grain size, D, and shear zone thickness, w, as shown in the legend, and 421 

thermal profiles as shown in c, including initial thermal structure where the frictional 422 

coefficient, µ, is 0.6.  Supplementary Table S1 reports the full list of parameters. 423 

 424 
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Figure 3: Relations between slip velocity and frictional behaviour 425 

a, Schematic relationship between friction coefficient and strain rate in the 426 

microphysical model used here, indicating a change from velocity-strengthening to 427 

velocity-weakening at high strain rate25. b, quantifies friction coefficient at a fixed 428 

depth, as a function of strain rate or shear zone width at a fixed slip velocity, whereas c 429 

combines calculations of friction coefficient vs. strain rate at all considered depths, to 430 

depict the depth-dependent strain rates where a change from velocity-strengthening to 431 

velocity-weakening is predicted (parameters as in Fig. 2). 432 

Figure 4: Representations of the effect of frictional-viscous flow on megathrust seismic 433 

style.  434 

Subduction interfaces related to smooth (a) and rugged (b) topography on subducting 435 

oceanic crust. Inferred transient and steady-state strain rate variations along these 436 

interfaces are shown below, as is the inferred depth vs. creep strength profile as based 437 

on Fig. 2 and down-dip variation in shear zone width. 438 

 439 



Author’s final submitted version 

21 

 

Method 440 

Element Maps 441 

Element maps (Fig. 1c,d,e; Supplementary Figure 2) were plotted from energy 442 

dispersive spectroscopy (EDS) data, which give relative abundance of elements, 443 

measured on a carbon-coated, 30 µm thick sample. Maps in Fig. 1c were collected using 444 

an electronprobe microanalyser at the University of Cape Town, with beam conditions 445 

of 15 kV, 18.5 nA, 12 ms dwell time, and spot size of 1 µm. Electron backscatter 446 

images in Fig. 1d, and map in Fig. 1e were acquired using a Zeiss Sigma HD scanning 447 

electron microscope in the School of Earth & Ocean Sciences at Cardiff University. The 448 

EDS data for these element maps were acquired with an beam accelerating voltage of 20 449 

kV, nominal beam current of 4.7 nA, and a 20 ms dwell time. Resulting pixels are 450 

approximately 1 µm. 451 

Pressure-temperature estimates 452 

To calculate the shear stress predicted by the microphysical model as a function of 453 

depth, approximations of temperature, T, and effective normal stress, σn´, as functions 454 

of depth are required. Because the subduction thrust interface is gently dipping, σn´ is 455 

approximated as the effective vertical stress51,52 so that 456 

        (1) 457 σ n´ = ρgz(1−λ)
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where ρ is the average density of overlying rock, taken as 2650 kg/m typical of 458 

quartzofeldspathic rocks, g is gravitational acceleration, λ is pore fluid factor as defined 459 

in the main text, and z is depth.  460 

Temperature (in ˚C) is calculated according to the analytical derivation of Molnar 461 

and England26, as also applied to the Hikurangi margin by McCaffrey et al.53, that sums 462 

advective, radiogenic, and shear heating terms where  463 

      (2) 464 

in which the dimensionless parameter S is defined as 465 

        (3) 466 

In these formulations, Km and Ks are mantle and accretionary prism conductivities, 467 

respectively, T0 is temperature at the base of the lithosphere, κ is thermal diffusivity, t0 468 

is the age of the subducting oceanic crust at the trench, Ar is average radioactive heat 469 

production rate in the forearc materials, τ is shear stress, and b is a geometrical factor. ts 470 

is the time to subduct the slab to depth z, approximated as  where V is 471 

slip velocity, assuming the megathrust accommodates the trench-normal component of 472 

the plate convergence vector, and δ is the average dip angle of the subduction thrust 473 

interface. Values for all the above parameters are listed in Supplementary Table 1. To 474 

obtain the shear heating term in the initial thermal structure, τ is estimated as σn´ 475 

multiplied by a frictional coefficient of µ = 0.6, estimating the lower end of the Byerlee 476 

T = Km

SKs

T0z
πκ t0 + ts( )

+
Arz
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2SKs
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τVz
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range54. After calculating shear stress according to the microphysical model, the 477 

calculated shear stress as a function of depth is used to re-calculate the thermal 478 

structure, which is then used to re-calculate shear stress. The change in thermal structure 479 

from the first calculation to calculations involving shear stresses from the microphysical 480 

model can be seen in Fig. 2c.  481 

Temperature-dependent mono-mineralic friction 482 

Values for the friction coefficient for phyllosilicates were determined assuming 483 

the dominant phyllosilicate mineral to be illite and muscovite at temperatures below and 484 

above 300 °C, respectively, and by assuming that temperature rather than effective 485 

normal stress dominantly affects the friction coefficient. The friction coefficient of illite 486 

as a function of temperature was determined by fitting a linear trend line to a 487 

combination of the data by Tembe et al.55 at 20°C and the data of Den Hartog et al.27 at 488 

200, 350 and 500°C, all representing final friction values (at 9.21 and ~40 mm shear 489 

displacement, respectively) at a sliding velocity of 1 µm/s. Note that the sliding velocity 490 

at ~40 mm shear displacement in the experiments of Den Hartog et al.27 was 10 µm/s, 491 

and we thus recalculated it to 1 µm/s using the value for Δµ/ΔlnV, or (a-b), for a 492 

velocity step from 10 to 1 µm/s obtained in the same experiment. Similarly, the friction 493 

coefficient of muscovite as a function of temperature was determined by fitting two 494 

linear trendlines (joining at 600°C) to the data by Den Hartog et al.28 at 200, 400 and 495 

600°C and the data by Van Diggelen et al.29 at 400, 500 and 700°C. These data 496 

represent close to final friction coefficients, those by Den Hartog et al.28 taken at a shear 497 

strain of 50 and recalculated for 1 µm/s by the method described for illite and those by 498 

Van Diggelen et al.29 reported for the 0.5 µm/s step, which occurred at near steady state 499 
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friction. The resultant empirical function for phyllosilicate friction coefficient, µph, 500 

becomes 501 

    (4) 502 

This definition for the phyllosilicate friction coefficient was used to construct the 503 

strength profiles for pure phyllosilicates and as input to the microphysical model. 504 

The friction coefficient of quartz, for plotting the frictional strength of mono-505 

mineralic quartz aggregates in Fig. 2a,b, is estimated based on the room temperature 506 

data of Tembe et al.55, data at 140 ˚C of Den Hartog and Spiers30 and the data at 400-507 

600 ˚C of Niemeijer et al.31. Based on similar arguments as for creating an empirical 508 

function of phyllosilicate friction as a function of temperature, we obtain a function for 509 

quartz friction, µqtz: 510 

     (5) 511 

Microphysical model by Den Hartog and Spiers25 512 

The microphysical model used to calculate the strength profiles (Fig. 2) was 513 

derived by Den Hartog and Spiers25. The model describes the steady state frictional 514 

behaviour of sheared illite-quartz mixtures, and assumes a matrix-supported shear zone 515 

consisting of phyllosilicates and quartz clasts (Supplementary Figure 3). The quartz 516 

µph
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clasts are uniformly distributed, arranged such that horizontal rows of clasts overlap. On 517 

average, the phyllosilicates are aligned parallel to Y-shear bands, but locally 518 

anastomose around the rigid clasts. Note that the Y-shear bands considered in the model 519 

by Den Hartog and Spiers25 will on average be parallel to the megathrust interface, 520 

which implies that foliation that is parallel to these shear bands, described as 521 

“horizontal” in the model, will be gently dipping in the megathrust setting. 522 

Within the model microstructure, shear deformation occurs either within the “clast 523 

body” zones containing a horizontal phyllosilicate foliation and quartz clasts (Type B 524 

zones, Supplementary Figure 3) or in the “clast overlap” regions containing 525 

anastomosing phyllosilicates and overlapping quartz clast edges (Type O zones, 526 

Supplementary Figure 3). The horizontal foliation in the Type B zones abuts against the 527 

quartz clasts, so that sliding on this foliation requires serial simple shear of the clast 528 

“bodies”. Shear of the clasts is assumed to occur by thermally activated deformation. By 529 

contrast, in the Type O zones, the foliation anastomoses around the clast “overlaps”. In 530 

these zones, deformation can occur either by slip on the phyllosilicates at the zone 531 

margins accommodated by shearing of the clast overlaps, or by slip on the curved 532 

foliation accompanied by dilatation at extensional clast-matrix interface sites. Sliding on 533 

the foliation is assumed to be a purely frictional process, which implies that slip on the 534 

curved foliation will not occur unless a critical value of the macroscopic shear stress, 535 

τdil, is attained. When slip is activated, it will cause dilatation and porosity development. 536 

Den Hartog and Spiers25 assumed that developing porosity concentrates at the 537 

extensional quartz-illite interfaces (Supplementary Figure 3), resulting in a decrease in 538 

the clast overlap distance, and hence in the mean inclination of the curved foliation. 539 

This in turn causes a decrease in the rate of dilation per unit horizontal displacement on 540 
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the inclined foliation, i.e. a decrease in the dilatation angle ψdil, with increasing porosity. 541 

Den Hartog and Spiers25 assumed that the appearance of porosity, via clast/matrix 542 

debonding, initiates compaction by thermally activated deformation of the clasts, which 543 

accelerates as porosity increases. At steady state, dilation due to slip on the curved 544 

foliation and compaction by the thermally activated mechanism must balance. This 545 

competition between dilatation and compaction is of key importance since it will lead to 546 

higher steady state porosities, a flatter foliation and lower frictional strength as sliding 547 

velocity increases, and hence to velocity-weakening slip. This as opposed to non-548 

dilatant deformation, where the serial nature of deformation implies that the velocity-549 

dependence of friction is governed by thermally activated deformation of the quartz 550 

clasts which is by definition velocity-strengthening. Dilatation, when active, is assumed 551 

to continue until a limiting or critical state porosity is reached. 552 

The model by Den Hartog and Spiers25 does not strictly apply to muscovite. 553 

However, in the absence of a microphysical model for the steady state frictional 554 

behaviour of muscovite-quartz fault gouge, and since muscovite-quartz gouge shows 555 

broadly similar behaviour to illite-quartz gouge28, we have applied this model also at 556 

temperatures >300°C where muscovite is expected to be the dominant phyllosilicate. 557 

Model calculations 558 

The reader is referred to Den Hartog and Spiers25 for the derivation of the 559 

equations governing the steady state frictional behaviour of the model microstructure 560 

shown in Supplementary Figure 3 and described below. 561 
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Den Hartog and Spiers25 derive their equations for the unit cell shown in 562 

Supplementary Figure 3b, which has a horizontal dimension equal to horizontal clast 563 

spacing: 564 

         (6) 565 

where kf is a factor accounting for clast shape, D is grain size (clast diameter), fqtz 566 

is the volume fraction of quartz clasts, and x0 is the vertical overlap of the clasts at zero 567 

porosity defined by Den Hartog and Spiers25 as 568 

        (7) 569 

As porosity, φ, increases due to dilatational slip on the curved foliation, this 570 

overlap decreases from x0 to an instantaneous value x according to the relation x = (x0-571 

φD]/(1-φ). The decrease in overlap in turn leads to a decrease in the width, d, of 572 

overlapping clast segments (Supplementary Figure 3b), given d = 2√(Dx-x2). 573 

During non-dilatant deformation at low slip velocities and/or high temperatures, 574 

thermally activated shear deformation of the quartz clasts will be easy. The total 575 

resistance to slip on the horizontal foliation will then be lower than the shear stress to 576 

activate slip and dilatation on the anastomosing foliation. Under these conditions, Den 577 

Hartog and Spiers25 assumed that non-dilatant deformation takes place by the parallel 578 

processes of (i) slip on the horizontal foliation with serial shear of the clast bodies in the 579 

B zones of the microstructure plus (ii) slip on the horizontal phyllosilicates with serial 580 
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shear of clast overlaps at the margin of the O zones. Equilibrium between the shear 581 

stresses supported by the B and O zones (τB and τO, respectively) requires τm = τB = τO 582 

where τm is the macroscopic shear stress. The shear stresses in the B and O zones were 583 

derived by Den Hartog and Spiers25: 584 

       (8) 585 

      (9) 586 

where τph is the shear stress needed to drive frictional slip on the horizontal 587 

phyllosilicate foliation and τqtz-b and τqtz-o are those needed to drive thermally activated 588 

clast body and overlap deformation, respectively. Aqtz-b represents the average horizontal 589 

area occupied by a single clast body within zone B of the unit cell, and is given Aqtz-b = 590 

[(¼πD2 – 2A’seg)D]/(D - 2x), where A’seg = [16x2(D – x) + 3x3]/[12√(Dx – x2)] (Ref. 56) 591 

is the area of an individual clast segment located in the overlap zone of the cell in the 592 

plane of Supplementary Fig. 3 and Aqtz-o = dD = 2D√(Dx–x2) is the area over which the 593 

overlap is displaced by slip at its base. Note that τph = µphσn´ where µph is defined by 594 

equation (4).   595 

The parallel shear processes (i, ii) operating in the O and B zones mean that the 596 

total, measured shear strain rate during non-dilatant deformation is , where 597 

 and  denote the shear strain rate contributed to the unit cell by each zone 598 

respectively (i.e.  and  are determined by taking into account the thickness of the 599 

B or O zone relative to the unit cell thickness). Note that the serial coupling of rate-600 
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independent slip on the phyllosilicates with thermally activated deformation of clasts 601 

implies that  and , where,  and  are the shear strain 602 

rate contributions to the unit cell due to thermally activated deformation of the clast 603 

bodies and clast overlaps, respectively. Thermally activated deformation was assumed 604 

to occur via pressure solution by Den Hartog and Spiers25, yielding: 605 

       (10) 606 

       (11) 607 

Where A is a shape factor, I is the product of the dissolution rate coefficient k+ 608 

and molar volume Ω of quartz, and R is the gas constant.  609 

Following Den Hartog and Spiers25, we obtained τm as a function of , by first 610 

imposing , defined as  where w is the shear zone width. We next solved 611 

 together with τm = τB = τO to obtain  or . We subsequently used 612 

 to determine τqtz-b via equation (10). The value of τqtz-b obtained, then yielded τB 613 

= τm through equation (8). Note that in the current calculations we prevented  from 614 

taking a negative value in the non-dilatant regime57. 615 

At high slip rates or low temperatures, thermally activated shear deformation of 616 

the quartz clasts is difficult, leading to an increase in the total resistance to shear on the 617 

horizontal foliation. In the model microstructure of Den Hartog and Spiers25 this would 618 
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ultimately activate slip on the curved phyllosilicates in the overlap (O) zones of the 619 

microstructure. The measured shear strength in that case is equal to that required to 620 

activate slip on the anastomosing foliation, τdil, derived by Den Hartog and Spiers25 to 621 

be   622 

       (12) 623 

where tanΨfr is a straight line approximation of the curved foliation, i.e.  624 

       (13) 625 

Stress equilibrium between B and O zones means that in the dilatant case τm = τdil 626 

= τB = τO. The total shear strain rate , in turn, is given , or 627 

equivalently , where  is the shear strain rate contribution to 628 

the unit cell by dilatant slip on the curved phyllosilicates. This mechanism produces an 629 

associated dilational strain rate, , which Den Hartog and Spiers25 defined following 630 

the classical soil mechanics approach to granular flow, i.e. 631 

      (14) 632 

Den Hartog and Spiers25 defined the dilatation angle Ψdil as the steepest portion of 633 

the curved, i.e. sinusoidal, foliation: 634 
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       (15) 635 

This angle (Ψdil) decreases with increasing porosity, reaching zero at a limiting or 636 

“critical state” porosity, defined φc = x0/D when x = 0.  637 

The porosity generated by dilatant slip will induce compaction by thermally 638 

activated deformation of the quartz clasts at a rate . Taking compaction as positive, 639 

the total, measured compaction strain rate is therefore given . At 640 

steady state, dilatation and compaction must balance, resulting in a steady state porosity 641 

corresponding to the condition that  or . Following Den Hartog and 642 

Spiers25,  is given by: 643 

       (16) 644 

Compaction occurs by pressure solution transfer from compressively stressed 645 

illite-quartz interfaces to debonded (dilated) interfaces (pore walls) with surface area 646 

Apore, written Apore = (Apore-c/2)(φ/φc)n where φc and Apore-c are the porosity and pore area 647 

per clast at the critical state. Den Hartog and Spiers25 derived that Apore-c = (πD2)/2. 648 

To calculate τm as a function of  in the dilatant regime, we followed the 649 

procedure by Den Hartog and Spiers25 and incremented the porosity from 0 to φc and 650 

calculated the corresponding values of tanΨdil and tanΨfr using equations (15) and (13). 651 

Using tanΨfr, equation (12) gives τdil. The corresponding shear strain rate  is 652 

tanΨdil =
π fqtz
2k f

−
π

2 1−φ( )

compε!

dilcompm εεε !!! −=

0=mε! dilcomp εε !! =

compε!

!εcomp =
2I !σ nΩ
RT

Apore

D− x( )DL

mγ!

mγ!



Author’s final submitted version 

32 

 

calculated via  and using the flow laws in equations (10) and 653 

(11). Here,  is obtained via equation (14) and using the steady state condition 654 

, where  is calculated using equation (16). 655 

In our calculations, we assumed cylindrical quartz clasts (kf = 0.25) of either 10 or 656 

100 µm in diameter, taking up a volume fraction of 0.45. Following Den Hartog and 657 

Spiers25, we assume that pressure solution is controlled by the interfacial reactions of 658 

dissolution and precipitation and can be described using the empirical equation for the 659 

dissolution rate coefficient provided by Tester et al.37:  660 

       (17) 661 

with T in Kelvin. We used a shape factor A of π in our calculation of the clast body 662 

shear strain rate, while a factor of 2 was used in the original model. We also follow the 663 

assumption that the porosity can be characterised by an exponent n of 0.3 (Ref. 25). 664 

To determine our shear strength versus depth profiles predicted by the 665 

microphysical model, we selected σn´, T and the corresponding µph at each depth. Using 666 

this input, we obtained τm as a function of  (incorporating both non-dilatant and 667 

dilatant deformation) following the above procedure. We next used the assumed 668 

subduction velocity of 40 mm/yr and shear zone thickness (1 to 100 m in the current 669 

calculations) to select relevant  and determined τm at that shear strain rate. 670 

The result of our calculations, shown in Fig. 2, yield dilatant deformation at 671 

shallow depths and low temperatures for the shear strain rates explored in this study. 672 
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With increasing depth and temperature shear deformation of the quartz clasts by 673 

pressure solution becomes easier, resulting in a transition to non-dilatant deformation. 674 

To illustrate this effect, we show the calculated values of τph, τqtz-b (for non-dilatant 675 

shear), and the inferred shear stress as a function of depth, for the scenario where D is 676 

100 µm, w is 100 m, and λ is 0.95, in Supplementary Figure 4. For any given set of 677 

conditions, the transition to non-dilatant deformation depends on strain rate, and we plot 678 

the strain rate at which the transition occurs, as a function of depth, in Fig. 3c. 679 

Code and data availability 680 

Code and additional data are available from the authors on request. 681 
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Supplementary Figure S1: Plot of maximum moment magnitude, Mmax, against seismic coupling 
coefficient, χ. The data are from the compilation of Heuret et al. (2011), but limiting the maximum 
seismic coupling coefficient to 1.0. Examples in the main text are highlighted in solid circles. Note 
that Hikurangi in this plot includes both northern and southern Hikurangi, and that the Mw7.7 event 
in the Heuret et al. (2011) compilation may have included significant slip on a splay fault in the 
overlying accretionary prism (Wallace et al., 2009). Thus, both the coupling coefficient and the 
maximum magnitude may be overestimated. The southern Japan Trench is not highlighted despite 
being mentioned in the main text, as the area referred to is relatively small, but described in detail 
by Mochizuki et al. (2008); it is not added to retain consistency in the plotted data.  
 
Data in Fig. S1 were compiled by Heuret et al. (2011) using data from the Harvard CMT catalogue 
for Mw ≥ 5.5 earthquakes from the 1976-2007 time period, including 1900-1975 for Mw ≥ 7.0 
events in the Centennial catalogue of (Engdahl and Villasenor, 2002). Earthquake locations were, if 
possible, relocated from the EHB catalogue of Engdahl et al. (1998). Thus, Heuret et al. (2011) 
extracted earthquakes with locations and, if available, nodal planes that align with the subduction 
thrust interface. From this data set, they defined the seismogenic zone of a number of megathrust 
interfaces, 49 for which they provide both Mmax and χ.  
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For the 49 subduction interfaces plotted in Fig. S1, Mmax is the largest subduction thrust 
earthquake identified in the Heuret et al. (2011) compilation, i.e. that occurred between 1900 and 
2007, and fell on the inferred megathrust interface. We note that overestimates may occur, through 
inclusion of poorly located events, that were not actually megathrust events, particularly events 
prior to 1964 that were not relocated in the EHB catalogue. 
 
To calculate χ, the amount of seismic slip and the rate of plate convergence must be estimated for 
each region. Defining seismic moment of a single earthquake as M0 = GLWu, where G is shear 
modulus (50 GPa), L and W are the length and width of the rupture area, and u is average slip, the 
seismic slip rate for a time period T is vs = Su/T = SM0/(GLWT) (Brune, 1968). The seismic 
coupling coefficient, χ, can be defined as the ratio of vs to the subduction velocity as defined by 
global plate kinematic models, and was calculated accordingly by Heuret et al. (2011).      
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Supplementary Figure S2: Scanning electron microscope images of Chrystalls Beach sample. 
Minor pore space development in pressure shadows can be seen in BSE images in the left column, 
and silica enrichment in pressure shadows can be discerned from EDS maps in the right column. 
The middle column shows little CL variation within most quartz clasts. 



	
  
	
  

	
  
Supplementary Figure S3: Model microstructure assumed for phyllosilicate-quartz gouge 
undergoing shear deformation. a. Shows the representative microstructure, and the definition of 
clast body zones (B), clast overlap zones (O), and the unit cell as referred to in the method, and 
originally defined by Den Hartog and Spiers (2014, 25 in main text). In this figure, σn’ is the 
effective normal stress, τm is the macroscopic shear stress, mγ!  is the macroscopic or imposed shear 
strain rate and mε!  is the macroscopic rate of compaction. b. Shows the definition of the 
microstructural variables; the key variables are referred to and defined in the Methods. Note that the 
curved foliation is drawn with an exaggerated amplitude for clarity. Figure taken from Den Hartog 
and Spiers (2014, Ref 25 in the main text). 
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Supplementary Figure S4: Figure showing details of calculated parameters, for the scenario where 
quartz clast size, D, is 100 µm, shear zone width, w, is 100 m, and the pore fluid factor, 𝜆, is 0.95. a. 
calculated values of phyllosilicate frictional resistance, τph, shear stress required for simple shear of 
quartz clast bodies, τqtz-b (for non-dilatant shear), and the inferred shear stress for frictional-viscous 
flow at the given strain rate of v/w = 1.3×10-11 s-1, as a function of depth. b. Temperature as a 
function of depth. c. Dissolution rate constant for quartz in water, k+, as a function of depth. 
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Supplementary Table S1 List of parameter values used in the calculations performed in this paper.  
Parameter Meaning Value 

Temperature and stress 
Ar Average radiogenic heat production in the forearc 10-6 W m-3 
b Geometric constant  1.0 
Km Mantle conductivity 3.3 W m-1 K-1 
Ks Accretionary prism conductivity 2.55 W m-1 K-1 
t0 Age of subducting oceanic crust at the trench 80 Ma 

T0 Temperature at the base of the lithosphere 1300 ˚C 
V Average fault slip rate 40 mm yr-1 
δ Average dip of subduction thrust interface 15˚ 

λ Pore fluid factor 0.8 or 0.95 
κ Thermal diffusivity 10-6 

ρ Average density above the shear zone 2650  kg m-3 

Microphysical model 
A Shape factor in the clast body shear strain rate 

equation 
π 

D Clast diameter (grain size) 10 or 100 µm 
fqtz Volume fraction of quartz 0.45 
kf Constant depending on the 3-D clast shape, ¼ for 

cylinder 
0.25 

k+ Dissolution rate coefficient = 276 × exp(-90100/[R x T (K)]) mol m-2 s-1 
n Exponent in relation describing pore area, pore shape 

evolution parameter 
0.3 

R Universal gas constant 8.31462 J mol-1 K-1 

w Average shear zone thickness 1 - 100 m 
µph Friction coefficient within phyllosilicates 0-300°C: = 0.3199 + 9.101 x 10-4 T (°C) 

300-600°C: = 0.2997 + 6.180 x 10-4 T (°C) 
600-700°C: = 1.9967 – 2.244 x 10-3 T (°C) 

Ω Molar volume of quartz 2.27×10-5 m3 mol-1 
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