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Summary (146 words): 

Personality is influenced by genetic and environmental factors1, and associated with mental 

health. However, the underlying genetic determinants are largely unknown. We identified 

six genetic loci, including five novel loci2,3, significantly associated with personality traits 

in a meta-analysis of genome-wide association studies (N=123,132-260,861). Of these 

genome-wide significant loci, extraversion was associated with variants in WSCD2 and 

near PCDH15, and neuroticism with variants on chromosome 8p23.1 and in L3MBTL2. 

We performed a principal component analysis to extract major dimensions underlying 

genetic variations among five personality traits and six psychiatric disorders (N=5,422-

18,759). The first genetic dimension separated personality traits and psychiatric disorders, 

except that neuroticism and openness to experience were clustered with the disorders. High 

genetic correlations were found between extraversion and attention-deficit/hyperactivity 

disorder (ADHD), and between openness and schizophrenia/bipolar disorder. The second 

genetic dimension was closely aligned with extraversion-introversion and grouped 

neuroticism with internalizing psychopathology (e.g., depression/anxiety).
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Main Text (2012 words)

The Five Factor Model (FFM) of personality, also known as “the Big Five” is 

commonly used to measure individual differences in personality. It models personality 

according to five broad domains4. Extraversion (versus introversion) reflects talkativeness, 

assertiveness and activity level. Neuroticism (versus emotional stability) denotes negative 

affect like anxiety and depression. Agreeableness (versus antagonism) measures 

cooperativeness and compassion. Conscientiousness (versus undependability) depicts 

order and discipline. Openness to experience (versus closedness) captures intellectual 

curiosity and creativity4,5. Personality phenotypes, measured by various questionnaires, are 

represented by continuous quantitative scores on each of the five traits4.

A meta-analysis of twin and family studies found that approximately 40% of the 

variance in personality could be attributed to genetic factors1. Genome-wide association 

studies (GWAS) have discovered several variants associated with FFM traits6-8. 

Neuroticism was reported to be associated with an intronic variant in MAGI1 (P=9.2610-

9, N=63,661)7, conscientiousness with an intronic variant in KATNAL2 (P=4.910-8, 

N=17,375)6, and openness with variants near RASA1 (P=2.810-8, N=17,375)6 and near 

PTPRD (P=1.6710-8, N=1,089)8. Recent UK Biobank studies (N=106,716-170,908) 

yielded several single nucleotide polymorphisms (SNPs) associated with neuroticism2,3.

Another large study, 23andMe, contains well-phenotyped data on personality and 

offers opportunity to identify additional genetic variants, since all five personality traits 

were measured in all individuals using the same personality inventory (Online Methods). 

We performed a meta-analysis based on GWAS summary statistics to identify genetic 

variants associated with FFM traits. We included participants with European ancestry from 
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23andMe (N=59,225) and two samples from the Genetics of Personality Consortium 

(GPC)6,7. GPC-1 (N=17,375)6 contains data on agreeableness, conscientiousness, and 

openness, whereas GPC-2 (N=63,661)7 contains information on extraversion and 

neuroticism.

Summary statistics of GWAS from 23andMe (available in Supplementary Data Sets 

1-5 for the top 10K SNPs) were combined with the two GPC samples separately, yielding 

a total of 76,600 and 122,886 subjects as the discovery/stage 1 sample. Eight linkage-

disequilibrium (LD)-independent SNPs (LD r2<0.05) were discovered exceeding GWAS 

significance (P<510-8) in the combined meta-analysis (Table 1 and Fig. 1).

To evaluate the consistency of association signals between 23andMe and GPC 

samples, we conducted genome-wide polygenic analyses using LD Score regression to 

examine genetic correlations (rg)9 of personality traits between the two samples. The 

estimated rg were highly significant (rg=0.86-0.96), suggesting that genetic effects are 

consistent and replicable between the samples at a polygenic level (Supplementary Fig. 1), 

and that a considerable number of SNPs below the GWAS significance threshold contain 

trait-associated genetic effects.

To assess replicability of the eight significant SNPs identified in the discovery/stage1 

sample, we obtained their summary statistics from three independent samples, including 

an independent 23andMe replication sample, UK Biobank cohort (only neuroticism) and 

an Icelandic sample from deCODE Genetics (Online Methods and Table 1). In the final 

combined meta-analysis, six SNPs remained GWAS significant. The other two fell just 

below GWAS significance but had consistent direction of effects in all samples, suggesting 

that these may be significant in larger samples. Overall, the directions of effects were 
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consistent for all eight SNPs between the discovery and replication tests, except two SNPs 

in the smaller (N=7,137) deCODE sample.

The strongest associations were detected for neuroticism within a subregion of 8p23.1, 

which spans ~4 Mb (Chr8: 8,091,701-11,835,712) with highly correlated SNPs in one big 

LD block (Fig. 2a). The 8p23.1 region comprises genes related to innate immunity and the 

nervous system, and is considered as a potential hub for cancer and developmental 

neuropsychiatric disorders10. Our conditional analysis indicated the existence of multiple 

associations (conditional P~10-7) independent of the top SNP within the 8p23.1 locus but 

these were not GWAS significant.

The UK Biobank studies also identified multiple associations with neuroticism in 

8p23.12,3, which were attributed to an inversion polymorphism2. Our association signals 

reside in the same inversion region, with an LD of r2=0.35 (LDlink) between the lead SNP 

found here and in the UK Biobank study3. Additionally, we identified an intronic variant 

of MTMR9 within 8p23.1 that was associated with extraversion, with opposite direction of 

association with neuroticism (Fig.2b). Together, these findings provide converging 

evidence for the association of 8p23.1 with personality.

For extraversion, we found a significant locus on 12q23.3 within WSCD2. This locus 

has been implicated in a GWAS of temperament in bipolar disorder11, and linkage 

analysis12, suggesting that 12q likely harbors important alleles for temperament and 

personality. Another SNP significantly associated with extraversion is near PCDH15, a 

member of the cadherin superfamily important for calcium-dependent cell-cell adhesion.

All six SNPs discovered here reside in loci for which genome-wide significant 

associations with other phenotypes have been reported (NHGRI GWAS catalog). For 
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example, we found a variant associated with neuroticism in L3MBTL2, a gene reported to 

be associated with schizophrenia13. Etiologically, neuroticism has been associated with 

schizophrenia risk14. Further, one gene in which we found a variant associated with 

extraversion, MTMR9 has been related to response to antipsychotic medications15. The 

SNP associated with conscientiousness in the discovery sample, though not significant in 

the final meta-analysis, was located in a locus linked to educational attainment16, and high 

conscientiousness was found to correlate positively with academic performance17.

These six SNPs have been found to be significantly associated with gene expression 

and all are listed as expression quantitative trait loci (eQTL) for brain tissues, to varying 

degrees (Supplementary Table 1). We performed a Bayesian test18 to examine whether 

GWAS signals co-localize with eQTL. The COLOC-estimated posterior probabilities18

(see Online Methods) indicated that one SNP-associated locus (rs57590327) and its 

corresponding eQTL (Supplementary Table 1) were probably attributable to a common 

causal variant (posterior probability=0.76). Another SNP (rs216273) showed evidence of 

independence with eQTL (posterior probability =0.75). For the rest of the SNPs, the 

posterior probability ranged between 0 and 0.45, failing to support any of the specified 

hypotheses. Our analyses did not show consistent evidence for these SNPs influencing 

personality traits through gene expression levels in the brain, but caution is warranted 

owing to the small eQTL sample (N=134).

Beyond identifying single genetic variants that each account for very little phenotypic 

variance, we estimated SNP-based heritability of the traits. All heritability estimates were 

significant in our 23andMe discovery sample, with the largest estimate for extraversion 

(0.18) (Supplementary Table 2). These findings extend those from a previous heritability 



7

analysis of FFM traits (N=5,011), in which SNP-based heritability estimates were 

significant for neuroticism and openness19. As expected, SNP-based heritability estimates 

were lower than those reported in family studies1.

Relationships among personality traits are also of interest. Although the FFM traits 

were derived through factor analysis and thus orthogonal in the original findings, most 

studies observe some degree of phenotypic correlation between traits19. Using 23andMe 

data, we found that neuroticism was inversely related to the other personality traits, 

whereas agreeableness, conscientiousness, extroversion, and openness were positively 

correlated. Almost all phenotypic correlations were highly significant, except for openness 

vs. conscientiousness (Supplementary Table 3). Genetic correlation patterns were 

congruent with phenotypic correlations but the association was more apparent in genetic 

structure, reflecting clear shared genetic factors contributing to the correlations (Fig. 3a).

A notable feature of personality is its link with a wide range of social, mental and 

physical health outcomes5. High levels of neuroticism, extraversion and openness have 

been associated with bipolar disorder20, and high neuroticism with major depression and 

anxiety21. Low agreeableness has been associated with narcissism, Machiavellianism and 

psychopathy22. In addition to phenotypic relationships, twin and GWAS studies have 

demonstrated genetic correlations between personality traits and psychiatric disorders3,21,23, 

though most focus on only neuroticism (Supplementary Note for details).

We thus sought to quantify the genetic correlations between the five personality traits 

and six psychiatric disorders from the Psychiatric Genomics Consortium: schizophrenia 

(N=17,115), bipolar disorder (N=16,731), major depressive disorder (N=18,759), ADHD 

(N=5,422) and autism spectrum disorder (N=10,263), and from Genetic Consortium for 
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Anorexia Nervosa (N=17,767) (see Online Methods and Supplementary Table 2). A pair-

wise genetic correlation matrix (1111) was constructed, which revealed several significant 

correlations (Fig. 3a, Supplementary Table 4). For example, neuroticism was highly 

correlated with depression, and extraversion with ADHD. To complement genetic 

correlation estimation via LD Score regression9, we compared the pattern of GWAS results 

by assessing whether signs of genetic effects were concordant between the top associations 

among these traits and disorders. The results of the sign tests of directional effects closely 

matched the genetic correlations (Supplementary Fig. 2).

Given the moderate and high genetic correlations, we subsequently conducted a 

principal component analysis (PCA) to extract principal components of genetic variation 

(Fig. 3b). We projected all phenotypes onto a two dimensional space spanned by the top 

two principal components (PC1 and PC2) of genetic variation. This loading plot 

summarizes the genetic relationships between personality traits and psychiatric disorders. 

The analysis integrates genomic information with traditionally defined phenotypes to better 

understand basic dimensions of the full range of human behavior, from typical to 

pathological, in line with the research strategy of the Research Domain Criteria (RDoC)24.

Our results indicate that openness, bipolar disorder, and schizophrenia cluster in the 

first quadrant (Fig. 3b). Interestingly, all three share phenotypic commonality in that they 

have been linked to heightened creativity and dopamine activity25,26. Most personality traits 

(conscientiousness, agreeableness and extraversion) cluster in the second quadrant. 

Neuroticism and depression are in the fourth quadrant. Autism and anorexia nervosa are 

captured by factors in higher dimensions and have relatively low loadings on the first two 

components, as indicated by short arrows on these two dimensions. Notably, ADHD has a 
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high genetic correlation with extraversion and low correlations with other psychiatric 

disorders (except bipolar disorder), as also shown in hierarchical clustering analysis in 

which ADHD clustered with personality traits rather than psychiatric disorders 

(Supplementary Fig. 3). This may indicate that ADHD, or some ADHD subtypes, represent 

a variant of extraversion personality trait. Of note, our ADHD data consists of cases ranging 

in age from 5-19 years old. Phenotypically, positive emotionality has been linked with a 

subgroup of children with ADHD27. Future genetic studies considering ADHD 

heterogeneity (e.g., subtypes, child/adult ADHD) may help characterize its diverse 

etiologies and relationships with personality traits.

Overall, we observed a systematic pattern with all psychiatric disorders showing 

positive loadings on PC1, and agreeableness and conscientiousness with negative loadings. 

A combination of low agreeableness and low conscientiousness is thought to reflect 

Eysenk’s psychoticism personality4. PC2 is closely aligned with extraversion-introversion 

which has been associated with externalizing/internalizing traits and 

activation/inhibition28,29. Internalizing traits (e.g., neuroticism, depression, anxiety and 

withdrawal)21 have negative loadings on PC2. Externalizing traits are predicted by high 

extraversion, low agreeableness and low conscientiousness29. 

These findings provide additional support for shared genetic influences between 

personality traits and psychiatric disorders3,21,23 and for the notion that personality traits 

and psychiatric disorders exist on a continuum in phenotypic and genomic space5,11. 

Maladaptive or extreme variants of personality may contribute to the persistence of, or 

vulnerability to, psychiatric disorders and comorbidity5,11,21,23. Further genomic research in 

which categorical disease entities are viewed as variants of quantitative dimensions in a 



10

polygenic framework may help elucidate this issue30.

Caveats of this study include that the sample size, while large, may still be 

underpowered to detect the majority of associated SNPs, given the conservative GWAS 

significance threshold. Because we used only summary statistics of GWAS, we cannot 

estimate non-additive genetic variance such as dominance and epistasis, and genetic 

contribution from structural (e.g., inversions) and rare variants. Additionally, genetic 

correlations indicate the degree of shared genetic influences across traits at the genome-

wide level, but other studies using different methods are needed to identify specific 

pleiotropic variants underlying the observed correlations.

In summary, by studying all FFM traits we found six replicable genetic variants 

associated with personality, five of which are novel and one replicates a recently published 

finding2,3. We also observed that personality traits are correlated at the genetic level, with 

neuroticism showing an inverse association with the other traits. Other novel aspects of 

this study include description of the genetic correlations among five personality traits and 

six psychiatric disorders, and depiction of their relationships through principal component 

analysis. Personality traits are likely influenced by many gene variants and by gene-

environment interactions. We are only in the beginning of understanding the genetics of 

personality and their relation to psychiatric disorders. The overall effort promises to have 

great relevance to public health.
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Data Availability Statement

The top 10K SNPs for five personality traits from the 23andMe discovery data set are 

available in Supplementary Data Sets 1-5. The full GWAS summary statistics for the 

23andMe discovery data set will be made available through 23andMe to qualified 

researchers under an agreement with 23andMe that protects the privacy of the 23andMe 

participants. Please contact David Hinds (dhinds@23andme.com) for more information 

and to apply for data access. 

https://mail.ucsd.edu/owa/redir.aspx?C=LfJDHkrJdP9bhX7qon-rGuoTdtRCSGboeANjBR7GxOm4nCMHWvjTCA..&URL=mailto%3adhinds%4023andme.com
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Figure Legends

Figure 1. Manhattan plots for personality traits in the combined sample of 23andMe 

and GPC data (discovery/stage1 sample).

Sample size: Agreeableness: N=76,551; conscientiousness: N=76,551; extraversion: 

N=122,886; neuroticism: N=122,867; openness: N=76,581. Number of SNPs: 

Agreeableness: N=2,165,398; conscientiousness: N=2,166,809; extraversion: 

N=6,343,667; neuroticism: N=6,337,541; openness: N=2,167,320. 

FFiigguurree 22.. RReeggiioonnaall aassssoocciiaattiioonn pplloott.. The figure shows the distribution 

of -log10(p-value) of SNPs on chromosome 8p of the significant SNPs for 

neuroticism (a) and extraversion (b) in the combined discovery analysis. 

These two SNPs (LD r2=0.5 in LDlink) have opposite signs of 's in GWAS 

results of neuroticism and extraversion. The opposite signals might be 

attributable to negative phenotypic association between neuroticism and 

extraversion. Regional plots with detailed annotation information for 

significant SNPs are also shown in Supplementary Fig. 4.

FFiigguurree 33.. GGeenneettiicc ccoorrrreellaattiioonnss bbeettwweeeenn ppeerrssoonnaalliittyy ttrraaiittss ((2233aannddMMee ssaammppllee))

aanndd ppssyycchhiiaattrriicc ddiissoorrddeerrss.. (a) The heat map illustrates genetic 

correlations between phenotypes. The values in the color squares 

correspond to genetic correlations. Asterisks denote genetic correlations 

significantly different from zero: * P<0.05; ** P<0.00091 (Bonferroni 

correction threshold). (b) The loading plot shows loadings of the 

personality traits and psychiatric disorders on the first two principal 
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components derived from the genetic correlation matrix on the left. A 

small angle between arrows indicates a high correlation between variables

and arrows pointing to opposite directions indicate a negative correlation

in the space of the two principal components.
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Table 1. LD-independent genetic variants significantly associated with personality traits 

SNP Chr

Closest 
gene

(region)
A1/
A2 Frq

Discovery/Stage 1 Replication/Stage 2 Final combined analysis of 
stage 1 and stage 2

23andMe
(N = ～59,200)

GPC
(N = 17,375/

63,661)† Combined analysis
23andMe replication

(N = ～39,500)
deCODE

(N = ～7,100)
UK Biobank
(N = 91,370)

 SE P-value  SE P-value P-value N  SE P-value  SE P-value  SE P-value P-value N R2 (%)
Conscientiousness
rs3814424 5q LINC00461* T/C 0.17 -0.289 0.050 9.7510-9 -0.138 0.131 0.294 2.9810-8 76,551 -0.051 0.051 0.313 -0.005 0.027 0.855 6.1910-7 123,132 0.0202
Extraversion
rs57590327 3p GBE1

(intergenic)
T/G 0.26 0.236 0.054 1.3710-5 0.026 0.006 2.0310-5 1.6110-9 122,886 0.088 0.052 0.091 0.007 0.019 0.713 1.2610-9 169,507 0.0217

rs2164273 8p MTMR9
(intron)

G/A 0.39 0.179 0.047 1.1410-4 0.024 0.006 4.0810-5 1.7910-8 122,845 0.093 0.045 0.037 0.021 0.018 0.255 1.6110-9 169,466 0.0215

rs6481128 10q PCDH15
(intergenic)

G/A 0.45 0.205 0.046 7.1010-6 0.018 0.005 0.0010 4.1510-8 122,886 0.154 0.045 5.5810-4-0.011 0.017 0.528 5.4410-10 169,507 0.0227

rs1426371 12q WSCD2
(intron)

A/G 0.28 -0.308 0.053 4.6510-9-0.023 0.006 2.5610-4 2.0910-11 122,886 -0.177 0.051 5.0910-4-0.037 0.021 0.077 9.5410-15 169,507 0.0354

rs7498702 16p RBFOX1
(intron)

C/T 0.29 -0.166 0.050 8.9410-4-0.026 0.006 1.1710-5 4.7310-8 122,886 -0.006 0.048 0.907 -0.005 0.018 0.777 1.8910-6 169,507 0.0134

Neuroticism
rs6981523 8p XKR6

(intergenic)
T/C 0.50 0.250 0.042 2.6810-9 0.022 0.006 1.0110-4 4.2510-12 122,867 0.138 0.042 1.0510-3 0.032 0.018 0.070 0.098 0.015 1.0410-10 3.1710-24 260,861 0.0395

rs9611519 22q L3MBTL2
(exon)
CHADL
(intron)

T/C 0.31 0.235 0.046 4.0510-7 0.020 0.007 0.003 1.8710-8 122,867 0.002 0.047 0.966 -0.002 0.023 0.931 0.053‡ 0.017‡ 0.0015‡ 9.1610-9 260,861 0.0127

Chr: chromosome; A1: effect allele; A2: non-effect allele; Frq: allele frequency of A1; : linear regression 

association coefficient; SE: standard error; N: sample size.  and SE may have varying scales in different 

cohorts; thus sample-based meta-analyses were used.

*SNP in non-protein coding region.

†The sample sizes of GPC1 and GPC2 are 17,375 and 63,661, respectively.

‡Due to absence of rs9611519 in the UK Biobank data, a proxy SNP (rs2273085, LD r2 = 0.99) was used.
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Online Methods

23andMe sample

The GWAS summary statistics were obtained from a subset of 23andMe participants. 

23andMe uses a survey design to collect a number of phenotypes including the personality 

traits reported here, and the sample has been described previously for other phenotypes31,32. 

We included only those participants (N=59,225) who showed >97% European ancestry as 

determined by analyzing local ancestry and comparing to three HapMap 2 populations33. 

Relatedness between participants was examined by a segmental identity-by-descent (IBD) 

method34 to ensure that only unrelated individuals (sharing less than 700 cM IBD) were 

included in the sample. All participants included in the analyses provided informed consent 

and answered surveys online according to a human subject research protocol, which was 

reviewed and approved by Ethical & Independent Review Services, an AAHRPP-

accredited private institutional review board (http://www.eandireview.com).

Additionally, we obtained independent replication results of GWAS from 23andMe 

replication sample. This sample included ~39,500 participants (N=39,452 for 

conscientiousness, 39,484 for extraversion and 39,488 for neuroticism) who met the same 

inclusion criteria as described above.

Genetics of Personality Consortium (GPC) sample

Genetics of Personality Consortium (GPC) is a large collaboration of GWAS for 

personality. Summary statistics of the PGC data used in the current study included the first 

meta-analysis of GWAS (GPC-1)6 for three traits (agreeableness, conscientiousness and 

openness) and the second meta-analysis of GWAS (GPC-2) for neuroticism7,35,36 and 

extraversion. The results of 10 discovery cohorts for GPC-1 and of 29 discovery cohorts 



22

for GPC-2 are available in the public domain, which respectively consist of 17,375 and 

63,661 participants with European ancestry across Europe, Australia and United States. 

These studies were performed with oversight from local ethic committees, and all 

participants provided informed consent6,7,35,36.

UK Biobank sample

UK (United Kingdom) Biobank is a large prospective cohort of more than 502,000 

participants (aged 40-69 years)3 with genetic data and a wide range of phenotypic data 

including social, cognitive, personality (neuroticism trait), lifestyle, and physical health 

measures collected at baseline. We used a subsample of this cohort for neuroticism 

replication. Exclusion criteria included UK Biobank genomic analysis exclusions, 

relatedness, gender mismatch, non-white UK ancestry and failure of quality control of UK 

BiLEVE genotyping3, resulting in a sample of 91,370 individuals. Association analysis was 

conducted using linear regression under a model of additive allelic effects with sex, age, 

array and the first eight PCs as covariates3. Informed consent was obtained from all 

participants and the study was approved by National Health Service National Research 

Ethics Service3.

deCODE sample

Icelandic participants (N=7,137 for extraversion, 7,136 for neuroticism and 7,129 for 

conscientiousness) were enrolled in various ongoing deCODE studies administering the 

NEO-FFI measure of the Big Five personality traits37,38. All deCODE studies were 

approved by the appropriate bioethics and data protection authorities and all participating 

subjects donating blood signed informed consent forms. The personal identities of 

participants from whom phenotype information and biological samples were obtained were 
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encrypted by a third-party system overseen by the Icelandic Data Protection Authority39. A 

generalized form of linear regression that accounts for relatedness between individuals was 

used to test the correlation between normalized NEO-FFI trait scores and genotypes.

Personality assessment

In the 23andMe sample, individuals completed a web-based implementation of the 

Big Five Inventory (BFI)40,41, with 44 questions. Scores for agreeableness, 

conscientiousness, extraversion, neuroticism, and openness were computed using 8 to10 

items per factor40. 

In GPC-1, scores of personality traits were based on the 60 item NEO Five-Factor 

Inventory (NEO-FFI) with 12 items per factor6,37. In GPC-2, harmonization of measures 

for neuroticism and extraversion across 9 inventories and 29 cohorts were performed by 

applying Item Response Theory (IRT) to avoid personality scores being influenced by the 

number of items and the specific inventory. Because the personality measures were not 

assessed similarly across GPC-2 cohorts, the harmonized/calibrated scores of personality 

are more comparable, thereby increasing power for meta-analysis of GWAS using fixed-

effect models7,35,36. As described in the main text, high genetic correlations between 

23andMe and GPC samples were found, suggesting a highly consistent pattern of 

associations despite the discrepancy in questionnaires (Supplementary Fig. 1).

In the UK Biobank sample, neuroticism was scored between 0 to 12 using the 12 items 

of the Eysenck Personality Questionnaire-Revised Short Form (EPQ-R-S)42 with high 

reliability and concurrent validity42.

In the deCODE sample, NEO-FFI personality trait scores37,38 were adjusted for sex 

and age at measurement and were then normalized to a standard normal distribution using 
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quantile normalization.

Distributions and correlations for personality scores in the 23andMe sample

Quantile-quantile (QQ) plots of covariate-adjusted personality scores to examine 

normality are shown in Supplementary Fig. 5. The distributions at the top tail deviates from 

normality due to the limited range of the scores and those at the bottom tail deviate due to 

the limited range (for neuroticism and extraversion) and/or extreme values. This violation 

of the normality assumption can be influential for genetic variants with very low minor 

allele frequencies (e.g., rare variants)43. However, this did not affect our results because 

our GWAS and LD Score regression9 only include common variants.

Pearson correlations, unadjusted and after adjusting for the covariates (age, sex, top 

five principal components for population structure correction44), were used to assess 

phenotypic correlations among the five traits (Supplementary Table 3).

Genotyping and imputation

In the 23andMe sample, DNA extraction and genotyping were performed on saliva 

samples by National Genetics Institute (NGI), a CLIA licensed clinical laboratory and a 

subsidiary of Laboratory Corporation of America. Samples have been genotyped on one of 

four genotyping platforms. The V1 and V2 platforms were variants of the Illumina 

HumanHap550+ BeadChip, including about 25,000 custom SNPs selected by 23andMe, 

with a total of about 560,000 SNPs. The V3 platform was based on the Illumina 

OmniExpress+ BeadChip, with custom content to improve the overlap with 23andMe's V2 

array, with a total of about 950,000 SNPs. The 23andMe's V4 platform in current use is a 

fully custom array, including a lower redundancy subset of V2 and V3 SNPs with additional 

coverage of lower-frequency coding variation, and about 570,000 SNPs. Samples that 
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failed to reach 98.5% call rate were re-analyzed. As part of 23andMe standard practice, 

individuals whose analyses failed repeatedly were re-contacted and asked to provide a new 

sample.

23andMe participant genotype data were imputed using the 1000 Genomes Project 

phase 1 version 3 reference panel45. The phasing and imputation for each genotyping 

platform were separated. First, chromosomal segments of no more than 10,000 genotyped 

SNPs, with overlaps of 200 SNPs, were phased using Beagle (version 3.3.1)46. Then, each 

phased segment was imputed against all-ethnicity 1000 Genomes Project haplotypes 

(excluding monomorphic and singleton sites) using a high-performance version of 

Minimac47 for 5 rounds and 200 states to estimate parameters. SNPs were filtered by 

procedures including Hardy-Weinberg equilibrium P<10−20 (stringent threshold for large 

sample size), call rate<95% and allele frequencies apparently different from European 

1000 Genomes Project reference data. A total of 13,341,935 SNPs was retained after 

filtering and excluding chromosome X, Y and mitochondria. We focus on autosomal SNPs, 

which are available for 23andMe, GPC and UK Biobank samples.

Genotyping in cohorts of GPC-16 and GPC-27,35 was conducted on Illumina or 

Affymetrix platforms. Quality control of genotype data was examined in each cohort 

independently, including checks for European ancestry, sex inconsistencies, Mendelian 

errors, high genome-wide homozygosity, relatedness, minor allele frequencies (MAF), 

SNP call rate, sample call rate and Hardy-Weinberg equilibrium6,7,35,36. Genotype data of 

GPC-1 were then imputed using HapMap phase II CEU as a reference panel including 

~2.5M SNPs6 and, alternatively, a reference panel from 1000 Genomes Project phase 1 

version 3 was used to impute the genotype data of GPC-27,35,36. Poorly imputed SNPs 
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(r2<0.3 or proper_info<0.36 or 0.47,35) and low MAF (<0.016 or N/5 7,35) were excluded 

in the meta-analyses, resulting in a total number of 1.1-6.6 million SNPs7,35 across cohorts.

In the UK Biobank first release genetic data of 152,729 participants (June 2015), about 

two thirds of the sample was genotyped using Affymetrix UK Biobank Axiom array (Santa 

Clara, CA, USA) and the remaining were genotyped using the Affymetrix UK BiLEVE 

Axiom array3. Outlier, multi-allelic and low-MAF (<1%) SNPs were excluded from 

phasing and imputation procedures. The reference panel of imputation was based on the 

1000 Genomes Phase 3 and UK10K haplotype panels3. Further quality control procedures 

were applied after imputation, yielding a total of 8,268,322 SNPs for further analyses3.

Genotyping, imputation methods and the association analysis method used in the 

deCODE sample are previously described48. A total of 676,913 autosomal SNPs were typed 

using Illumina SNP chips48. SNPs with low MAF (<0.1%) and low imputation information 

(<0.8) were excluded and 99.5% of SNPs remained after imputation.

Genome-wide association analysis

Association tests were performed by regressing personality traits on imputed dosages 

of SNPs in the 23andMe sample. Age, sex, and the top five principal components (PCs)44

for population structure correction were included as covariates and p-values were 

computed using likelihood ratio tests. For all five personality traits, the correlation structure 

of SNPs was determined by an LD matrix of 9,270,523 autosomal SNPs generated from 

European reference sample in 1000 Genomes Project phase 1 v3 within 1,000,000 base 

pairs (1 Mb)49,50 using Plink 1.0751. The original 13,341,935 SNPs were reduced into 

9,270,523 SNPs in our subsequent analyses (e.g., LD correlation structure is used to 

determine LD-independent SNPs). All SNPs' positions were mapped to Genome Reference 
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Consortium Human Build 37 (GRCh37) and UCSC Genome Browser on Human hg19 

assembly. We made QQ plots with GWAS summary statistics of the 23andMe sample. The 

QQ plots lie along the expected null line for large p-values (P>10-3), indicating that the 

GWAS results are not inflated by population stratification or cryptic relatedness. This 

pattern is consistent with the genomic inflation factors (λ)52 close to 1, as shown in 

Supplementary Fig. 6.

In each cohort of GPC-16 and GPC-27,35, linear regressions with covariates of sex, age 

and PCs were conducted for association tests using dosage data. The meta-analyses of 

GWAS results of cohorts for GPC-1 and GPC-2 were performed by the inverse-variance 

method using METAL53 released on the GPC website (see URLs). Given improved power 

for detection of genetic effects with larger sample sizes in GWAS, we performed a 

combined meta-analysis of 23andMe and GPC samples using METAL53 based on the 

sample-size based method. SNPs available in one cohort only were excluded. The totals of 

2,305,461, 2,305,682 and 2,305,640 SNPs were available for traits of agreeableness, 

conscientiousness and openness (respectively) in GPC-1, as well as 6,941,603 SNPs for 

extraversion and 6,949,614 SNPs for neuroticism in GPC-2. Genomic inflation factors (λ) 

are 1.01, 1.01, 1.03, 1.02 and 1.02 for agreeableness, conscientiousness, extraversion, 

neuroticism and openness, respectively.

Meta-analysis of 23andMe and GPC samples

Given improved power for detection of genetic effects with larger sample sizes in 

GWAS, we performed a combined meta-analysis of 23andMe and GPC samples using 

METAL53 based on the sample-size based method. To assess the quality of meta-analysis, 

SNPs with heterogeneity p-values<0.05 were excluded. Eight significant LD-independent 
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SNPs were identified after removing correlated SNPs at LD r2>0.05 that are within 1 Mb 

of the top SNP. In Table 1, the percentage of variance explained by each SNP is calculated 

using equation: (z2/(n-k-1+z2))100, where z is the z value for each SNP controlling for 

covariates, n is the sample size for each SNP and k is the number of covariates in the 

regression model (k=7 for age, sex, and top five PCs)54,55.

Conditional analysis within 1 Mb region of significant SNPs

We performed a conditional analysis56 within the 1 Mb genomic region of each of the 

six LD-independent SNPs. In our study, we used 1000 Genomes Project reference panel of 

European ancestry to estimate LD correlations (r2) and excluded SNPs correlated at LD 

r2>0.9 with the top associated SNP within 1 Mb window. We did not detect additional 

significant SNPs conditional on the top SNPs under the stringent GWAS threshold. 

However, for the significant loci in 8p, several SNPs still showed substantial association 

signals (P~10-7) conditioning on the top SNPs, rs6981523 or rs2164273. 

Regional association and annotation plot

The regional plot of chromosome 8p (Fig. 2) was constructed by a web-interface tool, 

LocusZoom57. In Fig. 2a and 2b, the most significant SNPs (rs6981523 and rs2164273) are 

shown in purple, otherwise the colors of the circles denote their correlations (LD r2) with 

the top SNP. The bottom panel displays gene symbol and location within the region derived 

from UCSC Genome Browser on Human hg19 assembly. The regional and annotation plots 

for other significant SNPs are also shown in Supplementary Fig. 4.

Genetic correlation analysis

We used the LD Score regression method to examine the pattern of genetic 

correlations (rg)9,58 across personality traits within/between 23andMe and GPC samples 
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(Fig. 3a, Supplementary Fig. 1 and Supplementary Table 4) based on GWAS summary 

statistics. The LD Score for each SNP measures the amount of pair-wise LD r2 with other 

SNPs within 1-cM windows from 1000 Genomes Project reference panel of European 

ancestry. All SNPs were filtered by LD Score regression built-in procedures, including 

INFO > 0.9 and MAF > 0.1, and merged to SNPs in HapMap 3 reference panel. 

Approximately 0.8-1.1 million SNPs (Supplementary Table 2) were retained to estimate 

genetic correlations. 

We also examined genetic correlations among the five traits, which have been 

estimated previously using a twin design59,60, and unrelated individuals' SNP data from a 

relatively smaller sample, in which many estimates did not converge19. Our LD Score 

regression analysis based on a large sample provided additional contribution to this effort.

We further quantified genetic correlations between personality traits and psychiatric 

disorders, including schizophrenia61, bipolar disorder62, major depressive disorder63, 

ADHD61, autism spectrum disorder61 and anorexia nervosa64. 

Query for eQTL Database

We queried eQTL evidence for our significant SNPs from Braineac65,66 (the Brain 

eQTL Almanac). The results are listed in Supplementary Table 1. We display the brain 

region with the lowest p-value among all 10 regions. To check the rank of eQTL p-values 

of six LD-independent SNPs in the Braineac database, we randomly selected 50,000 SNPs 

and queried the database to extract the lowest p-value for each SNP, resulting in a total of 

36,190 SNPs with eQTL results. In order to match allele frequency and distances to 

transcription start site (TSS) with the significant SNPs, the randomly selected SNPs were 

stratified into four groups: (1) within transcript, (2) downstream 0-200 kilobase pairs (kb), 
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(3) upstream 0-200 kb and (4) upstream 200-400 kb. SNPs that fell outside these ranges 

were removed. The SNPs in the ‘within transcript’ group were further stratified into three 

subgroups according to allele frequency. This procedure resulted in six distributions of 

eQTL p-values that matched the significant SNPs in terms of allele frequency and TSS, 

and these were used to determine the ranking of eQTL associations (see Supplementary 

Table 1 & 5). Two SNPs are ranked high for their significance as eQTL compared to 

randomly sampled eQTL markers with matched allele frequencies and distance to TTS 

from the Braineac database (top 10-20% ranking: rs6981523 and top 20-30% ranking: 

rs9611519; see Supplementary Table 5).

Colocalisation analysis between GWAS and eQTL

To investigate whether GWAS significant SNPs and their eQTL are colocalised with 

a shared candidate causal variant, we performed a colocalisation analysis, COLOC, that 

use Bayesian posterior probability to assess colocalisation18. The SNP-associated locus was 

defined as within a 1 Mb window18 for each of the six SNPs (Table 1). The prior 

probabilities that the locus is associated with only trait 1 (i.e., personality traits), only trait 

2 (i.e., eQTL) and both are respectively 10-5, 10-4 and 10-6. The posterior probabilities (PP0, 

PP1, PP2, PP3 and PP4) for five hypotheses (H0: no association with either trait; H1: 

association with trait 1, not with trait 2; H2: association with trait 2, not with trait 1; H3: 

independent association with two traits, two independent SNPs; H4: association with both 

traits, one shared SNP)18 were calculated to determine which hypothesis is supported by 

the data. A limitation of this analysis is the potentially low power in the small eQTL sample 

(N=134).

SNP concordant test for the top GWAS signals
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To investigate concordance of SNP effects between personality traits and psychiatric 

disorders, we followed a similar procedure described previously67,68 by counting the 

number of same direction effect sizes for the LD-independent top SNPs (P<10-4) in the 

pairwise phenotypes data and calculated the proportion of the same direction effects in the 

total number of LD-independent top SNPs. The one-sided p-value for the proportion of 

each pairwise phenotype was computed using a binomial test to examine the deviation from 

0.5 for the proportion. In Supplementary Fig. 2, a heat map of the proportions of the same 

direction effect for pairwise phenotypes shows a similar pattern with a heat map of genetic 

correlations in Fig 3a.

Hierarchical clustering analysis

We performed hierarchical clustering analysis using dissimilarity measures (1-genetic 

correlation) implemented in hclust function of R to investigate and display relationships 

between personality traits and psychiatric disorders. Based on genetic correlations, the 

more highly correlated phenotypes were grouped in the same clusters and displayed by a 

dendrogram (Supplementary Fig. 3), showing an agreement with classifications of the 

loading plot (Fig. 3b).
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Supplementary Figure 1

Genetic correlations of five personality traits between 23andMe discovery and GPC samples.



(a) The values in the colored squares are genetic correlations; (b) p-values of genetic correlations are shown in the table with values less 
than 0.05 written in bold. Asterisks further denote degree of significance: * P < 0.05; ** P < 0.002 (Bonferroni correction threshold). Note 
that Bonferroni correction is conservative here because of dependence among these tests. The estimated rg were highly significant (rg = 
0.86-0.96), with the exception of agreeableness, for which heritability estimate was too low to allow reliable estimation of estimating rg.



Supplementary Figure 2

SNP concordant test for the top GWAS signals.

The heat map illustrates the proportions of concordant (same direction) effect size for top SNPs (P < 10-4) between phenotypes. The 

values in the colored squares correspond to the proportions. The range of the total numbers of top SNPs for pairwise phenotypes in 
concordant test (denominator of the proportion) is 68-412 and the median is 149. The range of the numbers of top SNPs with concordant 
effect size for pairwise phenotypes in concordant test (numerator of the proportion) is 25-310 and the median is 70. The expected 
proportion under the null hypothesis is 0.5. Asterisks denote proportions significantly different from 0.5: * P < 0.05; ** P < 0.00091 

(Bonferroni correction threshold).



Supplementary Figure 3

Hierarchical clustering for personality traits (23andMe discovery sample) and psychiatric disorders.

The dendrogram shows that two major clusters correspond to the second quadrant versus the first and forth quadrants in the loading plot 
(Fig. 3b).



Supplementary Figure 4

Regional association and annotation plots for eight LD-independent SNPs identified in the discovery analysis.



The figure shows the distribution of -log10(p-value) of SNPs within  1 Mb of the significant SNP for conscientiousness, extraversion and 
neuroticism in the combined analysis. The most significant SNP is shown as a red diamond. Many genes are located in the neighborhood 
of 8p23.1 and 22q13.2 (c, g and h). The upper and middle panels have the same format as Fig. 2 (see Online Methods). In the bottom 
panel, annotation tracks were generated by a web-based application, LocusTrack1, and retrieved from UCSC Genome Browser on Human 
hg19 assembly. SNP track displays the top 5% associated SNPs within the region and is depicted by colors of association, r2, with the 
top SNP. Gene track shows gene annotation including protein-coding, non-coding and pseudo- genes from GENCODE version 19. GWAS 
track exhibits SNPs in NHGRI (National Human Genome Research Institute) Catalog of published GWAS. Conservation track reflects 
100 vertebrate conserved elements in terms of transformed log-odds scores (logarithm of probability of under the conserved model 
relative to the non-conserved model) from 0 to 10002. TFBS track contains computational transcription factor binding sites conserved 
across human, mouse and rat. Brain histone track maps the genome-wide distribution of H3K4me3 (trimethylated histone H3K4) in 
neuronal and non-neuronal prefrontal cortex chromatin3. DNaseI HS shows DNaseI hypersensitivity site related to chromatin accessibility 
for transcription factors binding4. Chromatin track displays regulatory activity predictions for 15 states in H1 human embryonic stem cells5.



Supplementary Figure 5

Quantile–quantile plots of covariate-adjusted personality phenotypes in the 23andMe discovery sample.



Supplementary Figure 6

Quantile–quantile plots and genomic inflation factor (λ) for the 23andMe discovery sample.

The genomic inflation factors are close to 1, indicating that the GWA results are not inflated by population stratification or cryptic 
relatedness. λ close to 1 is consistent with the Q-Q plots lying along the expected null line for large values of p (P > 10-3).
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Supplementary Table 1. The eQTL results for the significant SNPs

SNP Chr Position
Distance to 

transcript (bp) Gene Brain region P-value
Extraversion
rs57590327 3p12.2 82001712 190,810 GBE1 hippocampus 9.410-4

rs2164273 8p23.1 11168499 0 MTMR9 intralobular 
white matter

9.310-4 

rs6481128 10q21.1 56661362 0 PCDH15 medulla 9.310-4 
rs1426371 12q23.2 108629780 -325,469 ISCU cerebellar 

cortex
5.610-4 

Neuroticism
rs6981523 8p23.1 11061792 -185,500 FAM167A intralobular 

white matter
5.110-5 

rs9611519 22q13.31
-q13.33  

41613188 0 L3MBTL2 frontal cortex 7.010-5 

Position: NCBI GRCh37/UCSC hg19 SNP base-pair position.

Chr: chromosome.

Distance to transcript: base pair distance from SNP to the closest transcript (Affymetrix Human Exon 

1.0 ST) that is significantly linked to SNP variants. Negative distance denotes that the SNP is 

upstream to the transcript.

Gene: gene of the transcript.

Brain region: the brain region that has the most significant eQTL association in Braineac database.

Braineac is a web-based resource to investigate the linkage between genetic polymorphisms and 

variation in gene expressions in different brain regions. The Braineac has access to the UK Brain 

Expression Consortium (UKBEC) database containing 134 post-mortem brains from individuals free 

of neurodegenerative disorders6. The eQTL analysis was performed in 10 brain regions including 

cerebellar cortex, frontal cortex, hippocampus, medulla (specifically inferior olivary nucleus), 

occipital cortex (specifically primary visual cortex), putamen, substantia nigra, thalamus, temporal 

cortex and intralobular white matter.
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Supplementary Table 2. Heritability estimates of personality traits and psychiatric disorders
H2 SE 95% CI No. of SNPs N Reference

Personality traits

23andMe
Agreeableness 0.085 0.009 0.068, 0.102 1,143,408 59,176
Conscientiousness 0.096 0.009 0.079, 0.113 1,143,408 59,176
Extraversion 0.181 0.010 0.161, 0.201 1,143,408 59,225 see Online Methods
Neuroticism 0.119 0.016 0.087, 0.150 1,143,409 59,206
Openness to experience 0.107 0.009 0.090, 0.125 1,143,405 59,206
GPC
Agreeableness 0.015 0.029 0, 0.071 887,670 17,375 de Moor et al., 

Mol Psych, 20127

Conscientiousness 0.079 0.033 0.014, 0.144 887,659 17,375 de Moor et al., 
Mol Psych, 20127

Extraversion 0.049 0.008 0.034, 0.065 1,137,261 63,661 van den Berget al.,
Behav Genet, 20168

Neuroticism 0.036 0.008 0.021, 0.052 1,137,356 63,661 GPC, 
JAMA Psych, 20159

Openness to experience 0.121 0.029 0.065, 0.177 887,662 17,375 de Moor et al., 
Mol Psych, 20127

Psychiatric disorders
Schizophrenia 0.588 0.045 0.500, 0.676 840,441 17,115 PGC Cross-Disorder 

Group, Lancet, 201310

Bipolar disorder 0.456 0.043 0.371, 0.540 803,528 16,731 PGC Bipolar Group, 
Nat Genet, 201111

Major depressive disorder 0.160 0.030 0.102, 0.219 891,164 18,759 PGC MDD Group,
Mol Psych, 201312

Attention-deficit/
hyperactivity disorder
(ADHD)

0.236 0.099 0.041, 0.431 803,051 5,422 PGC Cross-Disorder 
Group, Lancet, 201310

Autism spectrum disorder 0.461 0.053 0.357, 0.566 935,985 10,263 PGC Cross-Disorder 
Group, Lancet, 201310

Anorexia nervosa 0.542 0.028 0.488, 0.596 1,047,144 17,767 Boraska et al., 
Mol Psych, 201413

H2: heritability estimated by LD Score regression.

SE: standard error of heritability.

N: sample size.

95% CI: 95% confidence interval of heritability.

No. of SNPs: total number of SNPs included in LD score regression.



Supplementary Table 3. Covariate-adjusted and unadjusted phenotypic 
correlations of five personality traits in the 23andMe sample

Unadjusted correlations (p-values),
Covariate-adjusted correlations (p-values)

AGR CON EXT NEU OPE
AGR 1

CON 0.213 (0),
0.161 (0)

1

EXT 0.162 (0),
0.151(0)

0.147 (0),
0.135 (0)

1

NEU -0.341 (0),
-0.342 (0)

-0.270 (0),
-0.258 (0)

-0.242 (0),
-0.256 (0)

1

OPE 0.080 (0),
0.093 (0)

0.007 (0.106),
0.012 (0.0003)

0.228 (0),
0.232 (0) 

-0.096 (0),
-0.083 (0)

1

AGR: agreeableness; CON: conscientiousness; EXT: extraversion; NEU: 

neuroticism; OPE: openness to experience.

Phenotypes were adjusted for GWAS covariates including age, sex and top five 

principal components.



Supplementary Table 4. P-values of genetic correlations between five personality traits and six psychiatric disorders
Personality traits Psychiatric disorders

AGR CON EXT NEU OPE SCZ BIP MDD ADHD ASD AN

P
er

so
na

lit
y 

tra
its

AGR
CON 0.0008**
EXT 2.410-5** 0.006*
NEU 1.110-9** 0.003* 2.810-13**
OPE 0.120 0.002* 1.310-12** 0.045*

P
sy

ch
ia

tri
c

di
so

rd
er

s

SCZ 0.648 0.028* 0.917 0.069 9.110-9**
BIP 0.313 0.020* 0.002* 0.861 1.210-7** 4.310-31**

MDD 0.011* 0.002* 0.772 1.410-8** 0.006* 1.210-7** 3.910-8**
ADHD 0.652 0.492 0.025* 0.694 0.187 0.868 0.357 0.623

ASD 0.004* 0.006* 0.565 0.293 0.134 0.087 0.401 0.330 0.510
AN 0.576 0.763 0.187 0.0005** 0.082 0.0003** 0.024* 0.131 0.726 0.428

AGR: agreeableness; CON: conscientiousness; EXT: extraversion; NEU: neuroticism; OPE: openness to experience; SCZ: schizophrenia; BIP: 

bipolar disorder; MDD: major depressive disorder; ADHD: attention-deficit/hyperactivity disorder; ASD: autism spectrum disorder; AN: anorexia 

nervosa.

P-values less than 0.05 are shown in bold. Asterisks denote degree of significance: * P < 0.05; ** P < 0.00091 (Bonferroni correction threshold). 

Note that Bonferroni correction is conservative here because of dependence among these tests.



Supplementary Table 5. The distributions of eQTL p-values in different positional categories and allele 
frequencies

Distance to TSS MAF
No. of 
SNPs

Ranges and percentiles of p-values
Minimum 5th 10th 20th 30th 40th 50th Maximum

Within transcript 0.26-0.34 683 3.210-23 8.410-7 1.610-5 6.510-5 1.610-4 2.910-4 5.010-4 1.010-1 
Within transcript 0.34-0.42 621 2.810-24 2.710-7 8.210-6 5.410-5 1.310-4 3.210-4 5.210-4 4.910-2 
Within transcript 0.42-0.50 527 2.210-29 7.910-7 6.010-6 5.310-5 1.410-4 2.910-4 4.810-4 2.210-2 
Upstream, 0-200kb 0.45-0.50 291 3.810-11 6.610-7 9.510-6 7.510-5 1.410-4 2.510-4 3.310-4 2.710-2 
Upstream, 200-400kb 0.23-0.33 799 6.710-9 2.010-5 4.110-5 1.110-4 2.010-4 3.010-4 4.410-4 6.210-2 
Downstream, 0-200kb 0.21-0.31 495 8.610-17 1.410-6 7.110-6 3.610-5 7.610-5 1.310-4 1.910-4 5.110-2 

Six distributions of eQTL p-values were generated to match the significant SNPs in terms of allele frequency 

(MAF) and distance to TSS. Each SNP is matched to one category according to its eQTL result in 

Supplementary Table 1.

rs57590327 is matched to downstream transcript 0-200 kb and MAF range 0.21-0.31.

rs2164273 is matched to within transcript and MAF range 0.34-0.42.

rs6481128 is matched to within transcript and MAF range 0.42-0.50.

rs1426371 is matched to upstream transcript 200-400 kb and MAF range 0.23-0.33.

rs6981523 is matched to upstream transcript 0-200 kb and MAF range 0.45-0.50.

rs9611519 is matched to within transcript and MAF range 0.26-0.34.



Supplementary Note

Our study extended work examining genetic correlations between personality traits 

and psychiatric disorders or symptoms. Most of the previous works use twin and family 

study designs and find correlations, such as for example: neuroticism showed positive 

genetic correlations with obsessive-compulsive symptoms14,15, schizotypy16, problem 

drinking17, major depression18-20, anxiety disorder21, phobia22 and various internalizing 

disorders23; extraversion showed positive genetic correlations with problem drinking17

and negative genetic correlations with major depression18,19, phobia22 and obsessive-

compulsive symptoms15; openness showed positive genetic correlations with major 

depression18 and problem drinking17, and negative genetic correlations with food 

neurophobia24; agreeableness and conscientiousness showed negative genetic 

correlations with problem drinking17 and major depression18. Beyond twin and family 

studies, recent genomic work reported positive genetic correlation with neuroticism and 

major depression25,26. The strength of our study is to investigate all five personality traits 

and six psychiatric disorders using genomic data.
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