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Reservoir characterization of sand-shale sequences has always challenged geoscientists due to the presence
of anisotropy in the form of shale lenses or shale layers. Water saturation and volume of shale are among
the fundamental reservoir properties of interest for sand-shale intervals, and relate to the amount of
fluid content and accumulating potentials of such media. This paper suggests an integrated workflow
using synthetic data for the characterization of shaley-sand media based on anisotropic rock physics
(T-matrix approximation) and seismic reflectivity modelling. A Bayesian inversion scheme for estimating
reservoir parameters from amplitude vs. offset (AVO) data was used to obtain the information about
uncertainties as well as their most likely values. The results from our workflow give reliable estimates
of water saturation from AVO data at small uncertainties, provided background sand porosity values
and isotropic overburden properties are known. For volume of shale, the proposed workflow provides
reasonable estimates even when larger uncertainties are present in AVO data.

1. Introduction

Sand-shale lithological sequences are a prospective
hydrocarbon bearing play type in petroleum explo-
ration (Quirein et al. 2012; Bjørlykke 2015; Diasty
et al. 2015; Javanshir et al. 2015; Asim et al. 2016).
Reservoir characterization of such lithological
sequences has always challenged the geoscientists
due to the presence of anisotropy and heteroge-
neity (Alves et al. 2014; Auchter et al. 2016; Kneller
et al. 2016). The accurate reservoir performance
prediction requires the use of reliable reservoir
models by incorporating all the available data (Lim
2005). Knowing this, the potential of exploiting
petroleum resources of a sand-shale sequence is
critically dependent upon the accurate estimation
of medium parameters, i.e., volume of shale (Vshale)

and water saturation (Sw). The productivity of a
sand-shale reservoir is strongly dependent on the
distribution and amount of the shale and water
within the sand (Sams and Andrea 2001).
There have been numerous attempts to estimate

these important reservoir properties from seismic,
well-log and core data (Patnode and Wyllie
1950; Winsauer and McCardell 1953; Wyllie and
Southwick 1954; Waxman and Smits 1968; Poupon
and Leveaux 1971; Van Golf-Racht 1982; Clavier
et al. 1984; Worthington 1985; Herron 1986; Sen
et al. 1988; Schwartz and Sen 1988; Bachrach 2006;
Sengupta and Bachrach 2007; Alimoradi et al.
2011; Dandekar 2013). These attempts focused
on developing a model based on the distribu-
tion of shale in pore space of the sandstone
(Soto et al. 2010). However, as shales are very
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Figure 1. A conceptual model describing the shaley-sand medium with shale lenses aligned horizontally making a VTI
medium.

heterogeneous and strongly anisotropic, core and
well data alone may not be sufficient to map the
subsurface shale sequences (Kumar and Hoversten
2012). Remote seismic measurements may play a
central role in helping to characterize sand-shale
media, but this will require a good understand-
ing of relevant rock physics and scaling issues (Ali
et al. 2011; Ali and Jakobsen 2011a, b; Kumar and
Hoversten 2012). For instance, Takahashi (2000)
have predicted sand-shale ratio based on statisti-
cal rock physics simulations of various bedding sce-
narios. Vernik et al. (2002) predicted net-to-gross
values from P and S impedance inversion results.
Stovas et al. (2004) used effective medium theory
combined with Gassmann theory to predict net-
to-gross and saturation from amplitude vs. offset
(AVO) attributes.
Rock-physics models are often used to link

seismic data to reservoir properties (Avseth et al.
2005). However, this requires statistical techniques
because simple rock-physics models using deter-
ministic approach cannot capture the complexity
of the sediment (Bachrach 2006). It is worth men-
tioning that seismic-based estimates of reservoir
properties can be quite uncertain, but inclusion
of rock physics modelling reduces the level of
uncertainty by reducing the number of unknown
parameters. In other words, rock physics modelling
represents a kind of regularization within
the context of seismic inversion (Ali and Jakobsen
2011a, b).
The objective of this paper is to propose

a methodology for estimating the parameters
(Vshale and Sw) of shaley-sand media using aniso-
tropic rock physics modelling and synthetic AVO
data. Our further aim is to investigate the
level of uncertainty for anisotropic AVO data to
recover these parameters. For this purpose, we
have assumed a reservoir model with shale lenses
embedded in sand background making a vertically
transversely isotropic (VTI) medium as shown in
figure 1.
Traditionally, sand-shale sequences are modelled

in the form of alternating layers (Luo et al. 2005;
Wang et al. 2006; Wang 2011), but our model

Figure 2. Schematic workflow diagram for estimation of
reservoir (shaley-sand) parameters from AVO data.

takes in to account the effect of shale in the form
of lenses. The layout of reservoir architecture for
which we have developed the rock physics model
is similar to a model described by Sayers (1998),
in which lenses are laterally/vertically continuous
over lengths smaller as compared to the seismic
wavelengths. Such types of models are very impor-
tant for sandstone reservoirs, where shale inclu-
sions are present in the form of lenses (Ikelle et al.
1993) and vary from millimetres to tens of meters
in thickness and from millimetres to kilometres in
lateral extent (Potter et al. 2012). A field exam-
ple of this assumed sand-shale model was referred
by Haldorsen et al. (1987). Assakao sandstone,
which contains a large number of near horizontal
non-continuous shale lenses. The depositional envi-
ronment was reported to be fluvial, mainly braided
streams, but also meandering (Haldorsen et al.
1987).
The workflow followed to meet the objectives

is given in figure 2. We have used anisotropic T-
matrix approximation for composite porous media
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(shaley-sand) along with relations of Wood (1955)
and Brown and Korringa (1975) to obtain effective
elastic properties (Jakobsen et al. 2003a, b; Ali
and Jakobsen 2011a, b). Shale lenses are modelled
in the form of ellipsoidal inclusions having large
aspect ratios. Rüger’s approximation of reflection
coefficients for VTI media was used to obtain
AVO data, i.e., reflection coefficients from top
of the reservoir (Rüger 1998; 2002). A Bayesian
inversion scheme for estimating reservoir parame-
ters (Vshale and Sw) from synthetic AVO data was
used to obtain the information about uncertainties
as well as the most likely values (Aster et al. 2005;
Tarantola 2005).
The outline of this paper is as follows. In

section 2, we discuss how to estimate the effective
elastic properties of shaley-sand media. Thereafter,
we explained how we can use these elastic proper-
ties to generate synthetic AVO data. In section 3,
we provide information on the Bayesian inver-
sion method for estimation of reservoir parameters
of shaley-sand media. We then present numerical
results and discussion in section 4. At the end of
the paper, we draw conclusions based on the out-
comes of forward and inverse modelling in the con-
text of reservoir characterization for shaley-sand
media.

2. Forward problem

The nonlinear forward problem is defined by

d = G(m). (1)

Here, d is a vector of observable quantities (AVO
data) and m is a vector of model parameters
related to Vshale and Sw over the model space M,
i.e., m ∈ M. The operator G is a combination of
rock physics modelling and seismic attribute gener-
ation. In the following subsections, we discuss the
rock physics modelling for the shaley-sand media.

2.1 Effective elastic properties of
shaley-sand formation

The rock physics modelling process provides a
realistic and systematic basis for seismic attribute
generation and interpretation (Avseth et al. 2005).
Rock physics models are a key in linking the
changes in lithology, porosity, permeability and
pore fluid to changes in the velocities and density
(Uden et al. 2004). Our shaley-sand reservoir model
consists of a porous matrix with a population of
high aspect ratio shale lenses with sand in the
background. Elastic properties of sand matrix have

Table 1. Showing elastic properties of solid mineral, dry porous matrix, fluid and isotropic
overburden used for calculation of reflection coefficients.

Density Shear modulus Bulk modulus C11 C44

Material (kg/m3) (GPa) (GPa) (GPa) (GPa)

Solid mineral (quartz) 2650 44 37 95.7 44

Dry porous matrix (sand) 2490 18 19.7 43.7 18

Fluid (water/brine) 1000 0.0 2.2 2.2 0.0

Isotropic shale (overburden) 2350 8.0 13.3 24 8.0

Figure 3. Variation of vertical velocities, Thomsen’s anisotropic parameters and effective density as a function of Sw for 20%
porosity and 30% Vshale. There is a negligible effect on VTI anisotropy parameters with the increase in Sw. The effective
density increases with increasing water saturation as pores are replaced with heavier fluid (water).
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been obtained from Rüger (2002) for the dry case,
which are listed in table 1 along with the proper-
ties of solid mineral, fluid and overburden. The
included shale lenses having aspect ratio of 1/10
within the sand matrix show horizontally aligned
orientation, thus making a transversely isotropic
(TI) medium with a vertical axis of symmetry
characterized by five independent elastic constants.
Moreover, the rationale behind known aspect ratio
of shale lenses stems out from the fact that such
information can potentially be obtained from geo-
logical field and core studies. The effective prop-
erties of a porous medium with inclusions (shale
lenses) for the dry case are calculated using the
T-matrix approach developed by Jakobsen et al.
(2003a) given in Appendix A. The effects of fluid
saturation on effective properties are modelled with
the help of anisotropic relations of Brown and
Korringa (1975) given in Appendix B.
A good understanding of the relevant rock

physics modelling plays a central role in the char-
acterization of sand-shale reservoirs and it should
give us realistic values of effective stiffness. The
tensors of the effective elastic stiffness constants
can be viewed as a function of model parameters
(Vshale, Sw) related to shaley-sand media. The five
independent elastic constants of a VTI medium can
be expressed in two notations, either in terms of
stiffness constants (C11, C13, C33, C55 and C66) or of
two vertical velocities (Vp, Vs) and three Thomsen
anisotropic parameters (γ, δ, ε) (Tsvankin 1997a,
b). Here, we have followed the second notation
and plotted these parameters and effective density
(ρ) of composite porous medium as a function
of Sw and Vshale (figures 3–4). Thomsen’s VTI
anisotropic parameters (ε, γ) representing P- and

S-wave anisotropies increase with increasing
anisotropy (shale lenses); whereas the anisotropic
parameter δ, which controls the near-angle wave
propagation decreases with increasing anisotropy
(shale lenses). On the other hand, increasing water
saturation has negligible impact on Thomsen’s
anisotropic parameters (figures 3–4). The variation
of Thomsen’s anisotropic parameters with satura-
tion depends largely on the storage porosity of the
background rock (Thomsen 1995; Cardona 2002).
Smaller storage porosity in the background rock
will result in a larger fluid pressure, and thus a
reduction in the anisotropy coefficients (Thomsen
1995; Cardona 2002).
In this study, we have assumed fixed storage

porosity of the background sand and homoge-
nous mixing of fluids (water + gas). We also
observed that the estimated P-wave and S-wave
velocities decrease with the increasing volume of
shale and water saturation. Moreover, the effective
density (ρ) of the shaley-sand medium increases
with increasing water saturation, as gas having low
density is being replaced by heavier fluid (water;
figure 3). Figure 4 also reveals that as the shale con-
tent increases, the effective density decreases due to
low density of shales as compared to sands. These
trends are more or less as expected, but there are
some nonlinear effects that would have been dif-
ficult to quantify without a suitable rock physics
model for the composite porous medium.

2.2 Seismic response of shaley-sand
formations

Surface seismic measurements play an important
role in mapping the subsurface, tracing shaley-sand

Figure 4. Variation of vertical velocities, Thomsen’s anisotropic parameters and effective density as a function of Vshale for
20% porosity and 20% Sw. P- and S-wave anisotropies (ε and γ) increase with increasing anisotropy due to shale lenses.
The vertical velocities decrease with increasing volume of shale. Effective density decreases with increasing Vshale, as sand
is being replaced by shale.
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facies changes and visualizing reservoirs. AVO
modelling has a great potential to provide impor-
tant information within the context of reservoir
characterization (Besheli et al. 2005). It is the most
widely used technique for hydrocarbon detection,
lithology identification and fluid parameter anal-
ysis (Feng and Bancroft 2006) Variations in the
elastic properties of rocks caused by the shaley-
sand medium can be modelled using synthetic
AVO data. Such a modelling technique will require
sophisticated processing steps to be performed on
seismic data due to the presence of multiples inter-
fering constructively and destructively with pri-
mary reflections in many cases. In this study,
we have used reflection coefficient as a seismic
attribute to detect variations in the elastic proper-
ties of shaley-sand media. The shale lenses in our
model are aligned horizontally in sand matrix to
make it a medium of VTI symmetry. To calcu-
late the reflection coefficients as a function of inci-
dence angle (i) for a plane wave scattered by a
medium with vertical symmetry axis, a linearized

Figure 5. PP reflection coefficients vs. angle of incidence
(AVO data) for 20% porosity, 20% Sw and 30% Vshale.
The overburden properties used for the computation of PP
reflection coefficients are given in table 1.

approximation is given by Rüger (1998, 2002) in
the form:

RVTI
P (i) =
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Here, Z is the P-wave impedance, G is the shear
modulus, VP0 and VS0 are the vertical P- and S-
wave velocities. The constants ε and δ are the
anisotropy parameters for VTI media. The symbol
Δ denotes contrast across an interface (ΔZ = Z2−
Z1) and a bar over a symbol Z denotes the aver-
age (Z=Z1+Z2

2
), where subscript 1 corresponds to

the upper-half space and subscript 2 corresponds
to lower-half space. Equation (2) can be used if
the anisotropy and the velocity across the reflector
are weak. An example of reflection coefficient data
obtained using equation (2) is shown in figure 5.
There is a rapid decreasing trend for increasing
incident angle till 30◦ for the reflection coefficient
curve before it begins to increase for higher angle
of incidence.

3. The inverse problem

The inverse problem consists of estimating the
model parameters m related to shaley-sand media
(Vshale, Sw) from the AVO data d, such that
G(m) = d. The solution to the inverse problem in
a Bayesian setting is given by the posterior proba-
bility distribution q(m|d) over the model space M.
q(m|d) basically carries all the information about
the model originating from two sources. The first
source is the data d and information is given by
the likelihood function. The second source is the
prior information, which is expressed through a

Figure 6. Variation of reflection coefficients as a function of angle for different percentages of Sw with 20% porosity, 30%
Vshale and overburden properties as given in table 1.
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probability density function. More specifically, the
posterior probability density function (PDF) repre-
sents the degree of belief about the possible values
of m before and after observing the data d defined
as (Aster et al. 2005):

q(m|d) = N.e−J(m), (3)

whereN is a normalization constant and the objective
function J(m) in the case of Gaussian statistics is
given by Aster et al. (2005) such as:

J(m) =
1

2
[(G(m)−d)

T
C−1

D (G (m)−d)

+ (m−mo)
T
C−1

M (m−mo)]. (4)

Here,mo is defined as the mean value of the a priori
distribution and CD and CM are the covariance
matrices for the data and the model parameters,
respectively. For the case of a non-informative
prior, equation (4) can be changed as follows:

J(m) =
1

2

[
(G(m)−d)

T
C−1

D (G (m)−d)
]
. (5)

In this study, we have considered a non-
informative prior distribution. The rationale
behind assuming a non-informative prior is that we
do not intend to constrain our inversion scheme by
incorporating prior information (obtained mostly
from log/core data) about Vshale and Sw. Therefore,
in this scenario under the principle of indifference,
all model parameter values have equal likelihood
and covariance matrix CM for the model space will
not be used in formulation of inverse problem. Also,
we have used the covariance matrix CD for the data
in the form when noise in the measured (seismic)
data is independent and normally distributed with
a standard deviation σ. So, with non-informative
prior and normally distributed measurement errors
(with standard deviation σ), the form of the objec-
tive function J(m) to be minimized is given by the
relation (Aster et al. 2005):

J(m) = min
n∑

i=1

((G (m))i −di)
2

2σ2
. (6)

The normalization constant N which appeared
in equation (3) can be found by integration.
Assume that the model parameters m are defined
in the model space M, i.e., m∈M, then the pos-
terior distribution will satisfy (Aster et al. 2005):∫

M

q (m|d)dm= 1 ⇒ N=
1∫

M
exp(−J (m)dm)

.

(7)

The inverse problem using the AVO data is
ill-conditioned and sometimes ill-posed, raising
questions about the reliability of the estimates
(Downton et al. 2007). Therefore, it is very

important to perform the uncertainty analysis of
the predicted estimates. To quantify the predic-
tion uncertainty in the estimates of model parame-
ters, an assessment of the full posterior distribution
q(m|d) is required. Since the number of parame-
ters to be inverted in this paper are small, we
have used numerical integration method (Ali et al.
2011, 2015) for full exploration of posterior distri-
bution q(m|d), which yields the marginal PDFs for
small dimensional problems (Tarantola 2005). Sub-
sequently, we present an adaptation of the numer-
ical integration method to the particular inverse
problem used in this study (inverting for Vshale and
Sw). The marginal PDFs for the volume of shale
and water saturation can be obtained in the fol-
lowing way. Let Vsh denote the volume of shale, Sw

denote the water saturation and M is the model
space for the parameters, the posterior distribution
satisfies equation (7) written as:∫ 1

0

∫ 1

0

q(Vsh, Sw) d vshd sw =1. (8)

The marginal distribution for the volume of shale
will then be obtained by integrating over all the
water saturation written as:

q(Vsh) =

∫ 1

0

q(Vsh, Sw) d sw. (9)

Similarly, the marginal distribution for water
saturation can be obtained by integrating over all
the volume of shale, such as:

q(Sw) =

∫ 1

0

q(Vsh, Sw) d vsh. (10)

Marginal PDFs obtained via numerical integration
require dense discretization of the model space.
Sparse discretization of model space may lead to
missing of important features of posterior distribu-
tion. This method is only useful when the computa-
tion of forward model is not much time consuming
and we have a small dimensional problem at our
hand. For high dimensional problems and time con-
suming forward problem, this method might prove
to be ineffective and one may use Monte Carlo
Markov chain methods (Ali et al. 2015).

4. Numerical results and discussion

We assumed a shaley-sand model with horizontally
aligned shale lenses (inclusions) with the main aim
to estimate the reservoir parameters (Vshale and
Sw) and their associated uncertainty from AVO
data. The elastic properties of dry porous matrix
(sand) and overburden (shale) properties used in
this study are given in table 1. The micro porosity
of shaley-sand model was assumed to be 20%. The
aspect ratio of shale lenses was set to be 1/10.
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Effective elastic properties of shaley-sand were
obtained by using the methodology discussed in
subsection 2.1. In our T-matrix rock physics mode-
lling, we have assumed an isotropic correlation
function for modelling shale lenses. This assump-
tion has nothing to do with the initial assumption
of strongly elliptic shale inclusion resulting in a
VTI medium. The correlation function only gives
the probability of finding the elliptic shale inclusion
or spatial distribution of elliptic shale inclusion. It
can have ellipsoidal or spherical symmetry repre-
sented by the choice of aspect ratios. An isotropic
(aspect ratio = 1) correlation function means that
there is an equal probability of finding the ellip-
tic shale inclusion in all directions. We can also
take an anisotropic correlation function, which will
mean that possibility of finding the elliptic shale
inclusion will change with the direction.
The sensitivity of effective elastic properties

(Vp, Vs, ε, δ and γ) and composite density (ρ) of
shaley-sand medium as a function of reservoir
parameters (Vshale and Sw) to be estimated are
presented in figures 3–4. Using the effective elas-
tic properties obtained via rock physics modelling,
AVO data in the form of reflection coefficients
as a function of incidence angle was generated
from Rüger’s approximation as described in sub-
section 2.2. We assumed an overburden composed
of isotropic shale with the properties listed in table
1. In reality, shales are often found to behave elas-
tically as transversely isotropic media with a ver-
tical axis of symmetry (Jakobsen and Johansen
1999, 2000), but this simplifying assumption of an
isotropic overburden does not affect the anisotropy
of the shaley-sand reservoir. However, this assump-
tion can affect the synthetic AVO data in terms of
changing values of reflection coefficients.
For the sensitivity of AVO data (reflection

coefficients) with the reservoir parameters (Vshale,

Sw), different reflection coefficient curves were
generated for varying percentages of one para-
meter keeping the other fixed. Figure 6 shows the
variation of reflection coefficient for a range of
Sw starting from 10–70% with fixed percentage of
Vshale equal to 30%. Similarly, figure 7 shows the
variation of reflection coefficient for a range of Vshale

starting from 10 to 90% with fixed percentage of
Sw equal to 20%. These different reflection (AVA)
curves help to explain two main things; intercept
(normal incidence P-wave reflectivity) and slope
of curve (gradient) explaining how amplitude of
reflection changes with angle. The gradient of each
reflection curve is almost same for different per-
centages of Sw showing less sensitivity. Reflection
curves for different percentages of Vshale behave dif-
ferently in a sense that most curves show increas-
ing trend with increase of Vshale. The increasing
trend is more pronounced at far offsets (21◦–40◦)

showing high sensitivity. We assumed that the true
Vshale and Sw are equal to 30 and 20%, respectively.
We then try to estimate the true values using the
calculated synthetic AVO data, i.e., the reflection
coefficient as a function of incidence angle under
significant amount of noise/uncertainty conditions.
In this particular case, the functional form of the
objective function J(m) can be written as:

J(m) =
40∑
i=1

[
Rc

i (m)−Ro
i

ΔRi

]2

. (11)

The right hand side of equation (11) is the misfit
between the observed and calculated reflection
coefficients summed over 0◦–40◦ polar angle of inci-
dence. The source of uncertainty in the seismic
data is linked to the acquisition and processing of
seismic data. In this study, we have assumed a stan-
dard deviation/uncertainty (incorporated through
denominator of the right hand side of equation 11)
of 10 and 30% for observed synthetic AVO data and
investigated how accurately one can recover the
true values of reservoir parameters under Bayesian
scheme of inversion discussed in section 3.
During the inversion process, full exploration of

posterior PDF has been performed and we have
computed all values of Sw for each value of Vshale

and vice versa. More specifically, we obtained sam-
ples of the posterior PDF on the basis of the numer-
ical integration using a constant (non-informative)
prior PDF. Figure 8 shows joint PDF for Sw and
Vshale at 10% uncertainty in measured AVO data.
Figure 9 shows the inversion result in the form of
marginal PDFs for reservoir parameters using AVO
data with 10% uncertainty. The peak of marginal
distributions for Vshale and Sw lies exactly at the
true values indicating that our workflow gives us
reliable estimates of reservoir parameters in this
case. Figure 10 shows joint PDF for Sw and Vshale

at 30% uncertainty in measured AVO data. At
30% standard deviation of synthetic AVO data, the
marginal PDF for Sw becomes unstable (different
local minima for our objective function), i.e., show-
ing more than one peak (figure 11). This character
suggests that as the noise in AVO data increases,
recovering Sw becomes more difficult. The peak
for marginal distribution of Vshale lies at the true
value suggesting that it can be recoverable even
at significant amount of uncertainty in AVO data
(figure 11).
A synthetic example related with the simultaneous

inversion of correlated Gaussian distribution
(Buland and Omre 2003) of Sw and Vshale on a map
(as in case of real data) having 100×100 grid blocks
is also presented (figure 12). The main aim here is
to investigate whether AVO data is able to recover
the trend of Sw and Vshale at 30% noise in the data.
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Figure 7. Variation of reflection coefficients as a function of angle for different percentages of Vshale with porosity = 20%,
Sw = 20% and overburden properties as given in table 1.

Figure 8. Joint posterior PDF for Sw and Vshale (10% uncertainty).

Figure 9. Marginal PDF via numerical integration method for Sw and Vshale (10% uncertainty).

We have presented both the maximum a posteriori
(MAP) solution using systematic search method
and the associated uncertainty for each grid block
(Tarantola 2005). Our results (figure 12) suggest
that it becomes difficult for AVO data to recover
the trend for Sw at 30% noise level. For Vshale,

our workflow is able to recover reliable trend even
at this high level of uncertainty. The associated
uncertainty in case of Vshale model is less compared
to the associated uncertainty of Sw model (figure 12),
which is in agreement with the inverted results of Sw

and Vshale in case of a single grid block (figures 8–11).
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The inversion results obtained in the form of
marginal PDFs for Vshale and Sw have narrow
peaks showing the sensitivity of model parameters
to uncertainty in the observed data. This can also
be attributed to the fact that the change in AVO
data (reflection coefficients) is large with change in
Vshale as compared to change in Sw (figures 6–7).
Hence, with the increase of uncertainty, there is
a very small change in the marginal distribution
for Vshale as compared to the marginal distribution
for Sw (figures 9 and 11). So, the inversion results
presented here should be looked in the context of
known (fixed) porosity for background sand along
with homogeneous mixing of the fluids (Reuss aver-
age). There may be quite different inversion results
if one wishes to model the variability in the elas-
tic properties of background sand (e.g., using a
range of porosity distribution) along with patchy
saturation of the fluid.
It is also important to mention that the testing of

workflow presented in this study requires the use of
synthetic dataset in the first place. In this research

work, we have presented and tested a workflow
for estimation of volume of shale and water
saturation from synthetic AVO data. It can be
interesting to apply this workflow on real data, as
it requires sophisticated processing steps on seis-
mic data. In other words, the workflow presented
here can be applied to the real data of shaley-sand
reservoirs by using pre-stack seismic reflection data
gathers at various angles. There are number of fac-
tors affecting amplitude of the seismic wave, which
require that information about reflection coeffi-
cients should be obtained via amplitude preserv-
ing migration in anisotropic media (Kiyashchenko
et al. 2003; Ursin 2004). The input to rock physics
modelling such as mineral/matrix, fluid, porosity
and overburden properties can be obtained via the
analysis (petrophysical and laboratory) of well log
and core data. The next step which can be reported
in a subsequent paper could be the direct inver-
sion of seismic waveform data instead of extracting
reflection coefficients for water and shale content
in conjunction with rock physics modelling.

Figure 10. Joint posterior PDF for Sw and Vshale (30% uncertainty).

Figure 11. Marginal PDF via numerical integration method for Sw and Vshale (30% uncertainty).
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Figure 12. Results of maximum a posteriori distribution for true and inverted reservoir parameters (Sw and Vshale). The
upper left and right plots show a Gaussian correlated distribution of reservoir parameters over 100×100 grid blocks, while
middle left and right plots show the inversion results at 30% uncertainty. The bottom left and right plots show the associated
uncertainty of the inversion results. The associated uncertainty in case of water saturation is large due to poor sensitivity
of reflection coefficient data with Sw.

5. Conclusions

Reservoir characterization of shaley-sand sequences
has always challenged the geoscientists due to
their limited seismic resolvability, heterogeneity
and anisotropy. Water saturation and volume of
shale are among the fundamental reservoir proper-
ties of interest for shaley-sand media which relate
to the amount of fluid content and accumulating
potentials.
Here, we have developed a workflow for reservoir

characterization of shaley-sand media by estima-
ting reservoir parameters (Vshale, Sw) from syn-
thetic AVO data provided that sand porosity and
overburden properties are known. Furthermore, we
have also investigated the level of uncertainty for
AVO data to recover these parameters. We have
also performed a simultaneous inversion for a cor-
related Gaussian distribution of Sw and Vshale to
recover their true trend using maximum a posteri-
ori (MAP) solution on a map having 100×100 grid
blocks.
Our numerical experiments suggest that one can

recover Vshale even at higher amount of uncertainty
in AVO data, as the peak for marginal distribution
lies mostly around the true value. For small amount
of uncertainty in AVO data, our workflow gives reli-
able estimates for Sw, but as the noise increases in
AVO data, it becomes difficult to recover Sw. For
application of this workflow on real data, amplitude
preserving migration algorithms should be used to
obtain the information about reflection coefficients
with angle of incidence.
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Appendix A

T-matrix approach for composite
porous media

The effective stiffness tensor C∗
d of a porous

medium with inclusions (shale lenses) for the dry
case is given by Jakobsen et al. (2003a):

C∗
d=C(0)+C1: (I4+C−1

1 :C2)
−1

, (A1)

where

C1=

N∑
r=1

v(r)t(r), (A2)

and

C2=

N∑
r=1

v(r)t(r): Gd:t
(r)v(r). (A3)
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In equation (A3) ‘:’ denotes the double scalar
product (Auld 1990), C(0) is the stiffness tensor
of the dry porous matrix, I4 is the (symmetric)
identity matrix for second-rank tensors, v(r) is the
volume concentration for inclusions of type r (shale
lenses) andGd tensor is given by the strain Green’s
function integrated over an ellipsoid determining
the symmetry of the correlation function for the
spatial distribution of inclusions (Ponte and Willis
1995; Jakobsen et al. 2003a). The T-matrix for a
single inclusion (shale lens) of type r is given by
Jakobsen et al. (2003a):

t(r) = (C
(r) −C(0)) : [I4−G(r): (C

(r)−C(0))]
−1

.
(A4)

Here, G(r) is a fourth-rank tensor given by the
strain Green’s function for a material with prop-
erties given by C(0) integrated over a characteris-
tic spheroid having the same shape as inclusions of
type r (Jakobsen et al. 2003a). C(r) is the stiffness
tensor for the inclusions of type r (stiffness tensors
of shale lenses) whose elastic properties for the sat-
urated case were used from Hornby et al. (1994)
given in table A1.

Appendix B

Fluid saturation effects

In order to calculate the effect of fluid saturation on
the effective properties of a shaley-sand medium,
we have used the anisotropic relations of Brown
and Korringa (1975), which can be written in the
symbolic or matrix notation given as:

S∗=S∗
d+

((S∗
d−Sm) : (I2 ⊗ I2) : (S

∗
d−Sm))

ϕo (I2·Sm·I2−1/Kf )−I2· (S∗
d−Sm) ·I2

.

(B1)
Here ⊗ denotes the dyadic product, Sm is the

compliance tensor of the solid mineral component
(properties of mineral quartz were used in the case
of shaley-sand model), S∗

d is the effective compli-
ance tensor for the dry shaley-sand medium and S∗

is the effective compliance tensor for the saturated
shaley-sand medium. ϕ◦ is the total porosity and I2
is the (symmetric) identity matrix for second-rank

Table A1. Elastic constants of shale used in
this study for modelling shale lenses (Jones
and Wang 1981; Hornby et al. 1994).

Cij GPa

C11 34.3 + 1.4

C33 22.7 + 0.9

C44 5.40 + 0.8

C66 10.6 + 1.6

C13 5.30 + 5.4

tensors. In the case of a composite porous medium
(shaley-sand), which is partially saturated with oil,
gas and water, Kf may be regarded as the bulk
modulus of an effective fluid given by Wood also
known as Reuss average (Wood 1955; Mavko et al.
2009):

1

Kf

=
Sw

Kw

+
So

Ko

+
Sg

Kg

, (B2)

where

Sw + So + Sg= 1. (B3)

Here Sw, So and Sg represent the saturation for
water, oil and gas and Kw,Ko and Kg represent
the bulk modulus for water, oil and gas. Before
proceeding further, it is important to clarify that
effects of fluid saturation were introduced in our
rock physics modelling prior to the modelling of
saturated shale inclusions. This means that the
fluid saturation effects are only for the background
porous sand body.
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