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Abstract Many natural structures are cellular solids at millimetre scale and fibre-reinforced composites at
micrometre scale. For these structures, mechanical properties are associated with cell strength, and phenomena
such as cell separation through debonding of the middle lamella in cell walls are key in explaining some important
characteristics or behaviour. To explore such phenomena, we model cellular structures with non-linear hyperelas-
tic cell walls under large shear deformations, and incorporate cell wall material anisotropy and unilateral contact
between neighbouring cells in our models. Analytically, we show that, for two cuboid walls in unilateral contact
and subject to generalised shear, gaps can appear at the interface between the deforming walls. Numerically, when
finite element models of periodic structures with hexagonal cells are sheared, significant cell separation is captured
diagonally across the structure. Our analysis further reveals that separation is less likely between cells with high
internal cell pressure (e.g. in fresh and growing fruit and vegetables) than between cells where the internal pressure
is low (e.g. in cooked or ageing plants).

Keywords Cellular solids · Finite element method · Fruit softening · Hyperelastic materials ·
Large strain deformation · Unilateral contact

1 Introduction

Most cellular solids are anisotropic due to the structural distribution of the cells as well as the aeolotropic properties
of cell wall material. For example, at millimetre scale, wood is a cellular structure, which can be modelled as a
hexagonal prismatic honeycomb, while at micrometre scale the cell walls are fibre-reinforced composites, made
up of fibres of crystalline cellulose embedded in an amorphous matrix of hemicellulose and lignin, with the fibre
direction nearer the cell wall axis. Features such as wood density, representing the relative quantity of the cell wall in
a given volume of wood tissue, and microfibril angle play important roles in the stiffness and load-bearing capacity
of this complex structure, and the impact of their variations on the tree biomechanical performance is non-trivial
[1–5]. While wood density varies significantly among wood species, the composition and strength of the cell wall
are less variable, and phenomena such as cell debonding, commonly known as “cell-peeling”, consisting in “the
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Fig. 1 a Gala apples. b
Schematic of fruit cells in
mutual contact. c Schematic
of debonded fruit cells

pulling apart of two halves of the cell wall which debond along the central lamella” are responsible for fast and
extensive crack propagation in many wood types [6].

Cells separation through debonding of the middle lamella in cell walls is also key in explaining the property or
behaviour of fruit and legumes during storage or cooking, and is decisive for the quality of food products [7–9]
(see Fig. 1). Tissue failure by cell shearing was also observed in apples when compressed tangentially [10]. Fruit
tissue is a hydrostatic structure in which individual fluid-filled cells provide resistance to compressive forces, and
the fluid pressure may also influence the elastic properties of the cell walls [11,12]. Physical evidence suggests
that the firmness of fruit (apple, pear, tomato) decreases during pre-harvest ripening, when the cell walls of the
fruit tissue become softer, and continues to decrease in post-harvest storage due to the loss of cell-to-cell contact,
even though the stiffness of the cell walls increases [13]. Ripening also involves a reduction in turgor pressure, and
other physiological and mechanical factors, such as changes in cell size, wall thickness, and composition, may also
contribute to changes in the strength and elasticity of the cell walls. For example, during cool storage, cells from
high-maturity fruit tend to lose intercellular adhesion but maintain cell wall integrity, while cells from low-maturity
fruit tend to maintain relatively high cell-to-cell adhesion but the strength of the cell wall declines, so the cells
are easily ruptured [14,15]. Cellular pressure also decreases after harvest, which causes cell wall relaxation and
could accelerate the process of loss of adhesion. However, both the cell wall strength and the intercellular adhesion
decline as fruit enters the over-ripe stage [16].

The relevant scale at which such phenomena occur, though beyond the capacity of the human eye, can be followed
by mechanical analysis and mathematical models based on microstructural evidence [17–19]. To effectively capture
cell wall debonding, mathematical models that account for the attachment between cells, which in some structures
may be sufficiently weak so that the cells separate, are required for improved predictions of large distortions and
failure in cellular structures. However, obtaining suitable models that are, at the same time, physically plausible,
mathematically tractable, and computationally feasible raises many theoretical and numerical challenges.

In this study, we model cellular structures with non-linear hyperelastic cell walls under large shear deformations
[20] and incorporate cell wall material anisotropy and unilateral contact between neighbouring cells in our struc-
tural models [21–25]. The theoretical and computational challenges raised by these models range from non-linear
deformation of the individual elastic cell walls, to the detection of contact and openings between individual cells,
to the resolution of non-linear equations for contact.

For the cell wall material, we consider one of the most common features of many cellular solids, namely trans-
verse isotropy, whereby the material has one axis of symmetry [26–28]. Theoretically, we analyse the mechanical
behaviour of two cuboid cell walls in unilateral, frictionless contact and subject to generalised shear deformation,
and find that, if the walls are in mutual contact in the undeformed state, then gaps can form at the interface between
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the sheared walls. Computationally, we extend our approach to the investigation of finite element models of periodic
structures with hexagonal cells and obtain that, when the structures are sheared, gaps appear between adjacent cell
walls, causing extensive cell separation diagonally across the structure. To efficiently simulate these, we extend the
successive deformation decomposition procedure proposed in [29], where seamless cellular structures were treated,
to structures with non-penetrative intercellular contact as follows: (i) first, a continuous deformation is computed
for the entire structure, as in a compact elastic solid, where only the external boundary conditions are imposed
while the cells remain in mutual contact; (ii) then, for the pre-deformed structure, the microstructural properties at
individual cell level, such as the unilateral contact between cell walls and the internal cell pressure, are taken into
account. For computer simulations, the two-step procedure proved significantly faster and more accurate than when
the external boundary conditions and contact constraints were imposed simultaneously in a single step.

Finally, we address the question as to what is the influence of the internal cell pressure on the intercellular
contact where debonding is possible? To answer this question, we impose uniform normal pressure on the internal
cell walls and obtain that separation is less likely between cells with high internal cell pressure than between cells
where the internal pressure is low. This is in agreement with physical observations that, under applied force, tissue
from high-maturity fruit (apple, pear) breaks down into small clumps of undamaged cells, while cell walls from
less mature fruit, which are relatively strongly attached to each other, will rupture [15].

Although the finite shear deformation of transversely isotropic hyperelastic solids was previously analysed in the
literature, a similar study of the simultaneous shear deformation of two transversely isotropic bodies under unilateral
contact has not been carried out before. Our computer simulations of cellular bodies with hyperelastic cell walls in
mutual non-penetrative contact under large shear deformation and the two-step strategy which we employ to solve
the multi-body contact problems more efficiently are also novel. Furthermore, our theoretical and numerical results
help explain the important role of internal cell pressure in some natural cellular structures where cell debonding
occurs. In Sect. 2, we briefly review the formulation of the boundary value problem with unilateral contact in finite
elasticity. In Sect. 3, we analyse theoretically the mechanical behaviour of two cuboids of fibre-reinforcedMooney–
Rivlin material in unilateral (frictionless) contact and subject to simultaneous generalised shear deformations, and
demonstrate the appearance of gaps at the potential contact zone. In Sect. 4, we present a set of computer models
representing groups of hexagonal cells in mutual unilateral contact for which we explore the effects of large strain
deformations assuming that the cell wall material is a fibre-reinforced Mooney-type composite.

2 Hyperelastic bodies in unilateral contact

We consider a system formed from two elastic bodies made from possibly different homogeneous hyperelastic
materials described by the strain energy density function Wi , i = 1, 2, respectively, and situated in mutual non-
penetrative contact on part of their boundary.We denote by�i , i = 1, 2, the two open, bounded, connected domains,
with Lipschitz continuous boundary, occupied by the two bodies, respectively (in particular, we assume that a unit
normal vector n exists almost everywhere on �i = ∂�i = �̄i \ �i , i = 1, 2), such that �1 ∩ �2 = ∅ (see Fig. 2).

Each body is subject to a finite elastic deformation

χ i : �i → R
3, i = 1, 2,

such that J = det
(
Gradχ i

)
> 0 on �i and χ i is injective on �i . The injectivity condition guarantees that

interpenetration of the matter cannot occur. However, since self-contact is permitted, the above deformation does
not need to be injective on �̄i .

If the spatial point x = χ i (X) corresponds to the place occupied by the particleX in the deformation χ i , i = 1, 2,
then, for the deformed bodies, the equilibrium state in the absence of a body load is described in terms of the Cauchy
stress by the Eulerian field equation

div σ (x) = 0. (2.1)
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Fig. 2 Schematic of two
elastic bodies in mutual
non-penetrative contact and
subject to external loading

1

2

external load

obstacle

The above governing equation is completed by a constitutive law for σ , depending on material properties, and
supplemented by boundary and contact conditions.

Since the domains occupied by the deformed bodies are generally unknown, the above equilibrium problem is
expressed as an equivalent problem in the reference configuration, with the independent variables X ∈ �1 ∪ �2.
The corresponding Lagrangian equation of non-linear elastostatics takes the form:

Div P(X) = 0 in �1 ∪ �2, (2.2)

where P is the first Piola–Kirchhoff stress tensor, such that

P = ∂Wi

∂Fi
− pF−T

i in �i , i = 1, 2,

where Fi = Grad χ i , i = 1, 2, and, if the material is incompressible, then p is the Lagrange multiplier associated
with the incompressibility constraint J = 1 [30, p. 104], commonly referred to as the arbitrary hydrostatic pressure
[31, p. 200]. In this case,

P = σF−T . (2.3)

For the two-body system, the general boundary value problem with unilateral contact conditions is to find the
displacement field u(X) = x−X, for all X ∈ �1 ∪ �2, such that the equilibrium equation (2.2) is satisfied subject
to the following conditions on the relatively disjoint, open subsets of the boundary {�D, �N, �C} ⊂ (∂�1 ∪ ∂�2),
such that (∂�1 ∪ ∂�2) \ (�D ∪ �N ∪ �C) has zero area [24,25]:

• on �D, the Dirichlet (displacement) condition

u(X) = uD; (2.4)

• on �N, the Neumann (traction) condition

P(X)N = gN(X), (2.5)

where N is the outward unit normal vector to �N, and gNdA = τda, where τ = σn is the surface traction
measured per unit area of the deformed state;

123



Cellular structures with fibre-reinforced cell walls

• on �C, the unilateral (non-penetrative) contact conditions, in the absence of friction forces:

η(X + u(X)) ≤ d, (2.6)

P(X)N · N ≤ g, (2.7)

(η(X + u(X)) − d) (P(X)N · N − g) = 0, (2.8)

P(X)N = −P(X′)N′ if χ(X) = χ(X′). (2.9)

For the contact with a rigid obstacle, η : R3 → R is the function describing the relative distance between the
body and the surface of the obstacle, N is the outward unit normal vector to this surface (oriented towards the
obstacle), d ≥ 0 is the maximum relative distance, which cannot be exceeded, between potential contact points,
and g ≥ 0 is the cohesion parameter. For self-contact, η = [u(X)] · N, where [u(X)] = u(X) − u(X′) denotes
the jump in the displacement at the points X �= X′ where self-contact may occur and N and N′ represent the
outward unit normal vectors to the boundary at those points, respectively. Then (2.6) represents the unilateral
contact condition setting the permitted mutual distance between potential contact points; (2.7) is the normal
force condition giving the allowed normal force acting at a contact point; (2.8) is the complementarity condition
that either the maximum relative distance or the maximum normal force should be attained at each point (note
that, in (2.8), if the maximum relative distance is reached, then the expression in the first bracket is equal to
zero, and when the maximum normal force is achieved, the second bracket is zero); and (2.9) states that, at the
points of self-contact, the action and reaction principle holds. In particular, d = 0 and g = 0 correspond to the
physical case of non-penetrative cohesionless contact.

3 Fibre-reinforced cell walls under shear deformation

The classical problem of generalised shear deformation involves finite plane deformations of a rectangular section
of a material in which straight lines parallel to the X1-axis are displaced relative to one another in the X2-direction,
straight lines parallel to the X1-axis are displaced relative to one another in the X2-direction, and the straight lines
parallel to the X2-axis in the undeformed state remain straight and parallel after the deformation. When a cuboid
cell wall is subject to generalised shear, the deformation takes the form:

x1 = X1 + f (X2), x2 = X2, x3 = X3, (3.1)

whereX = (X1, X2, X3) and x = (x1, y2, x3) are the Cartesian coordinates for the reference (Lagrangian, material)
and the deformed (Eulerian, spatial) representation, respectively, and f is a function to be determined (see Fig. 3).

In particular, for the simple shear deformation, (3.1) takes the form:

x1 = X1 + kX2, x2 = X2, x3 = X3, (3.2)

where k is a positive constant (see Fig. 4) [32–35]. In this case, the straight lines parallel to the X1- or the X2-axis
in the undeformed state remain straight and parallel after the deformation.

For a cuboid wall of incompressible Mooney–Rivlin material under deformation (3.1), Green and Adkins [36,
pp. 127–129] found that the straight lines parallel to the X1-axis deform in the shape of a quadratic parabola. Finite
element simulations of simple and generalised shear deformations of Mooney-type materials were presented in
[37,38].

Here, we consider two hyperelastic bodies made from a transversely isotropic material containing one family of
extensible fibres embedded in a Mooney–Rivlin material, which is described by the strain energy density function
[24,32,39]

W(I1, I2, I4) = C1

2
(I1 − 3) + C2

2
(I2 − 3) + C4

4
(I4 − 1)2 , (3.3)
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Fig. 3 Unit cube (left) deformed by generalised shear (right)
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Fig. 4 Unit cube (left) deformed by simple shear (right)

where I1, I2, I3 are the principal isotropic invariants, I4 is the anisotropic invariant, and C1 > 0, C2 > 0, and
C4 > 0 are constants. If the fibres are contained in the plane (X1, X2) and oriented in the direction

M =
⎡

⎣
cosψ

sinψ

0

⎤

⎦ , (3.4)

where ψ ∈ [0, π/2], in the reference configuration, then the stretch of the fibre λ4 under deformation (3.1) is given
by the parameter

I4 = λ24 = (CM) · M = ( f ′)2 sin2 ψ + 2 f ′ sinψ cosψ + 1.

The generalised shear of anisotropic incompressible materials was analysed by Merodio et al. [40] and Destrade
et al. [41].

Assuming that the bodies are initially in contact at a common interface, we wish to determine whether they will
separate if they are deformed simultaneously by the generalised shear (see Fig. 5). For the deformation (3.1), the
deformation gradient is equal to
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Fig. 5 Two unit cubes in unilateral contact (left) deformed by generalised shear (right), with the fibre directionM also shown

F =
⎡

⎣
1 f ′ 0
0 1 0
0 0 1

⎤

⎦ , (3.5)

where f ′ is the derivative of f with respect to X2. The associated left and right Cauchy–Green tensors are,
respectively,

B = FFT =
⎡

⎣
( f ′)2 + 1 f ′ 0

f ′ 1 0
0 0 1

⎤

⎦ , C = FTF =
⎡

⎣
1 f ′ 0
f ′ ( f ′)2 + 1 0
0 0 1

⎤

⎦ , (3.6)

and their principal invariants are

I1 = tr C = ( f ′)2 + 3, (3.7)

I2 = tr (Cof C) = 1

2

[
(tr C)2 − tr C2

]
= ( f ′)2 + 3, (3.8)

I3 = detC = 1. (3.9)

For a deforming body made of a homogeneous incompressible transversely isotropic hyperelastic material
described by the strain energy function W(I1, I2, I4), the Cauchy stress tensor can be represented as

σ = −pI + β1B + β−1B−1 + β4FM ⊗ FM, (3.10)

where β1 = 2∂W/∂ I1, β−1 = −2∂W/∂ I2, and β4 = 2∂W/∂ I4 are the material response coefficients, and p is a
Lagrange multiplier associated with the incompressibility constraint (3.9).

In particular, if the material is reinforced with fibres that are oriented in the direction (3.4), then

FM ⊗ FM =
⎡

⎣

(
f ′ sinψ + cosψ

)2
f ′ sin2 ψ + sinψ cosψ 0

f ′ sin2 ψ + sinψ cosψ sin2 ψ 0
0 0 0

⎤

⎦ . (3.11)

Then, by (3.6) and (3.11), the components of the Cauchy stress (3.10) take the form:

σ11 = −p + β1 + β−1 + β1( f
′)2 + β4

(
f ′ sinψ + cosψ

)2
, (3.12)

σ12 = (β1 − β−1) f
′ + β4

(
f ′ sin2 ψ + sinψ cosψ

)
, (3.13)

σ22 = −p + β1 + β−1 + β−1( f
′)2 + β4 sin

2 ψ, (3.14)

σ33 = −p + β1 + β−1, (3.15)
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σ13 = σ23 = 0, (3.16)

where

β1 = C1, β−1 = −C2, β4 = C4

[
( f ′)2 sin2 ψ + 2 f ′ sinψ cosψ

]
. (3.17)

Next, by the equilibrium equation (2.1), since (3.12)–(3.16) are satisfied, it follows that

∂σ11

∂x1
+ ∂σ12

∂x2
= 0, (3.18)

∂σ12

∂x1
+ ∂σ22

∂x2
= 0, (3.19)

∂σ33

∂x3
= 0, (3.20)

and substituting (3.12)–(3.15) into (3.18)–(3.20) yields

∂p

∂x1
= ∂

∂x2

[
(β1 − β−1) f

′ + β4

(
f ′ sin2 ψ + sinψ cosψ

)]
, (3.21)

∂p

∂x2
= ∂

∂x2

[
β1 + β−1

[
( f ′)2 + 1

]
+ β4 sin

2 ψ
]
, (3.22)

∂p

∂x3
= 0. (3.23)

Equation (3.23) shows that p is independent of x3, while Eq. (3.21) implies that p is a linear function of x1.
Next, integration of (3.22) with respect to x2 gives

p(x1, x2) = β1 + β−1 + β−1( f
′)2 + β4 sin

2 ψ + ax1 + c, (3.24)

where a and c are undetermined constants.
By (3.21) and (3.24),

d

dX2

[
(β1 − β−1) f

′ + β4

(
f ′ sin2 ψ + sinψ cosψ

)]
= a. (3.25)

The constant c remains to be obtained from the contact conditions.
Integrating and substituting β1, β−1, and β4 using (3.17) yields the following cubic equation in f ′:

C4( f
′)3 sin4 ψ + 3( f ′)2C4 sin

3 ψ cosψ +
(
C1 + C2 + 2C4 sin

2 ψ cos2 ψ
)
f ′ = aX2 + b, (3.26)

where b is an arbitrary constant.
In particular, if the fibres align in the X1-direction in the reference configuration, i.e. ψ = 0, then β4 = 0 and

(3.26) reduces to a linear equation in f , as in the isotropic case.
We now focus our investigation on the special case when the fibres align in the X2-direction, i.e. ψ = π/2. In

this case, by (3.24) and (3.17),

p(x1, x2) = C1 − C2 + (C4 − C2)( f
′)2 + ax1 + c, (3.27)
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and the stress components (3.12)–(3.15) take the form:

σ11 = (C1 + C2 − C4)( f
′)2 + C4( f

′)4 − ax1 − c, (3.28)

σ12 = (C1 + C2) f
′ + C4( f

′)3, (3.29)

σ22 = −ax1 − c, (3.30)

σ33 = (C2 − C4)( f
′)2 − ax1 − c. (3.31)

Equation (3.26) can be simplified as

C4( f
′)3 + (C1 + C2) f ′ = aX2 + b, (3.32)

and since C1 > 0, C2 > 0, and C4 > 0, a simple inspection of this equation shows that there is only one real
function f satisfying (3.32).

3.1 Possible shear deformations

Assuming that, during deformation, the points of coordinates (X1, 0, 0) remain fixed and those of coordinates
(1, X2, 0) are deformed into (1, X2 + k, 0), i.e.

f (0) = 0 and f ′(1) = k, (3.33)

the following two cases are distinguished:

(i) If a = 0, then f ′ = k is constant, and by (3.33), the deformation (3.1) reduces to a simple shear with

f = kX2. (3.34)

Substituting the above in (3.32) gives b = C4k3 + (C1 + C2)k.
(ii) If a �= 0 and the fibres are much stiffer than the matrix, so that C4 
 C1 + C2, then (3.32) can be written as

C4

[
( f ′)3 + C1 + C2

C4
f ′

]
= aX2 + b

and approximated as

C4( f
′)3 = aX2 + b.

Solving this equation in f ′ yields

f ′ =
(

a

C4

)1/3 (
X2 + b

a

)1/3

,

and integration with respect to X2 gives

f = 3

4

(
a

C4

)1/3 (
X2 + b

a

)4/3

.
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Then, by (3.33), b = 0 and a = C4k3, i.e.

f = 3k

4
X4/3
2 . (3.35)

3.2 The unilateral contact constraints

Now, we consider two unit cubes made up of the same fibre-reinforced material described by the strain energy
function (3.3) and occupying the reference domains [−1, 0]×[0, 1]×[0, 1] and [0, 1]×[0, 1]×[0, 1], respectively,
with the fibres aligning in the X2-direction (i.e.ψ = π/2). Assuming that the two cubes are sheared simultaneously
by (3.1), such that f (0) = 0, where f satisfies (3.34) for the first cube and (3.35) for the second cube, while, at the
interface between the two cubes, the contact conditions (2.6)–(2.9) are satisfied such that d = 0, we wish to verify
if it is possible for gaps to appear at the common interface (X1, X2, X3) ∈ {0} × [0, 1] × [0, 1].

Since gaps do not appear when the two bodies deform by the same deformation, we assume f1(X2) = kX2

as given by (3.34) for the first cube and f2(X2) = (3k/4)X4/3
2 as given by (3.35) for the second cube, such that

f1(0) = f2(0) = 0.Wewish to verify if, in this case, the contact conditions (2.6)–(2.9) are simultaneously satisfied.
The unit normal vector at any point on the curve (0, X2) is

N =
⎡

⎣
1
0
0

⎤

⎦ .

• The unilateral contact condition (2.6) between the deforming cubes is

0 ≤ [u] · N = f1(X2) − f2(X2), ∀X2 ∈ (0, 1), (3.36)

and, since

f1(X2) = kX2 > kX4/3
2 > (3k/4)X4/3

2 = f2(X2), for all X2 ∈ (0, 1), (3.37)

it follows that the condition (3.36) is satisfied.
• The normal forces condition (2.7) for each cube is

PN · N = σ11 − f ′
i σ12 ≤ g, ∀X2 ∈ (0, 1), i = 1, 2.

Equivalently, by (3.28)–(3.29),

PN · N = −C4( f
′
i )

2 − ax1 − c ≤ g, ∀X2 ∈ (0, 1), i = 1, 2, (3.38)

where x1 = X1 + fi (X2) for i = 1, 2.
Since X1 = 0 at the interface between the two bodies in the reference configuration, the condition (3.38) is
equivalent to

PN · N = −C4( f
′
i )

2 − a fi − c ≤ g, ∀X2 ∈ (0, 1), i = 1, 2. (3.39)

For the first cube, a = 0 and (3.39) takes the form:

PN · N = −C4k
2 − c1 ≤ g, (3.40)
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where the constant c1 remains to be determined.
For the second cube, a = C4k3 and (3.39) becomes

PN · N = −C4k
2X2/3

2 − 3

4
C4k

4X4/3
2 − c2 ≤ g, ∀ X2 ∈ (0, 1), (3.41)

where the constant c2 is to be determined.
• At X2 = 0, [u] · N = 0 and the action–reaction relation (2.9) implies

c2 = C4k
2 + c1. (3.42)

• By the complementarity condition (2.8), since by (3.37) the relative displacement across the interface between
the two cubes is strictly greater than zero for all X2 ∈ (0, 1), the corresponding normal contact stress must
satisfy

PN · N = g. (3.43)

For the first cube, (3.43) holds if and only if the equality in (3.40) is satisfied, i.e.

c1 = −C4k
2 − g. (3.44)

For the second cube, by (3.42) and (3.44),

c2 = −g, (3.45)

and (3.41) can be simplified as follows:

−C4k
2X2/3

2 − 3

4
C4k

4X4/3
2 ≤ 0, ∀ X2 ∈ (0, 1). (3.46)

Note that, by taking k → 0, the equality in (3.46) is satisfied to the first order in k, hence (3.43) holds for
sufficiently small k.

Since the contact conditions (2.6)–(2.9) with d = 0 are simultaneously satisfied for both cubes, we conclude
that, under the given assumptions, it is possible for gaps to appear at the common interface between the two cubes
when these are sheared simultaneously.

3.3 The cohesive effect of internal cell pressure

We now turn our attention to the normal stresses (3.38) at the external faces (X1, X2, X3) ∈ {−1, 1}×[0, 1]×[0, 1].
Assuming that the cells are filled and there is a normal force g0 ≤ g exerted by the cell core on the faces of the cell
walls, then, at these faces,

PN · N = −C4( f
′)2 − aX1 − a f − c = g0, ∀X2 ∈ (0, 1), (3.47)

where X1 ∈ {−1, 1}.
For the first cube, the normal stresses (3.47) are equal to that at the interface between the two cubes, i.e.

PN · N = −C4k
2 − c1 = g0. (3.48)
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For the second cube, (3.47) takes the form:

PN · N = −C4k
2X2/3

2 ± C4k
3 − 3

4
C4k

4X4/3
2 − c2 = g0, ∀ X2 ∈ (0, 1), (3.49)

and if k → 0, then these stresses are also equal to the normal stress at the interface between the two cubes to the
first order in k.

Consequently, if g0 = g, then gaps may appear at the interface between the two cubes, else if g0 < g, then the
cubes will remain in active contact everywhere on their interface.

In particular, when g = 0, if the cells are empty, i.e. g0 = 0, then the sheared cell walls may debond due to gaps
appearing between adjacent cell walls, whereas if the cells are filled and there is internal pressure g0 < 0 exerted
on the cell walls, then these walls remain in full contact during generalised shear deformation.

4 Numerical examples

In this section, we first illustrate numerically the shear deformation of two hyperelastic cuboid walls in unilateral
contact and then assess computationally the shearing effects in periodic cellular structures of hyperelastic material.
The numerical examples presented here were realised within the open-source Finite Elements for Biomechanics
(FEBio) software environment [42], and, in particular, the unilateral contact constraints were approximated numer-
ically using the inbuilt FEBio finite element implementation. In the computer simulations, the transverse isotropic
hyperelastic material is characterised by the strain energy function [43]

W(I1, I2, I4) = C1

2
(I1 − 3) + C2

2
(I2 − 3) + C4

4
(I4 − 1)2, (4.1)

where C1 = 0.1 MPa, C2 = 0.01 MPa, C4 = 1 MPa, and the fibre direction is parallel to the contact surface [13].

4.1 Debonding of cuboid walls

First, we consider two cuboid walls of hyperelastic material described by (4.1), occupying the domains (−1, 0) ×
(−1, 1) × (0, 1) and (0, 1) × (−1, 1) × (0, 1), respectively, in the undeformed state. The bodies remain in mutual
frictionless non-penetrative contact while deformed simultaneously by imposing the following external boundary
conditions: the lower horizontal faces are subject to a prescribed displacement in the X1-direction to the left and are
fixed in the X2-direction; the upper horizontal faces are subject to a prescribed displacement in the X1-direction to
the right and are fixed in the X2-direction; and all the external faces are fixed in the X3-direction. The undeformed
and deformed bodies are presented in Fig. 6a, where gaps across their interface are captured in the deformed state.
In Fig. 6b, for the two bodies, in addition to the above boundary conditions, normal pressure is also applied on the
two external side surfaces, causing the bodies to remain in full (active) contact after the deformation.

4.2 Debonding of hexagonal cells

To assess the independent influence ofmechanical features such as the intercellular contact and the internal cell pres-
sure on the collective behaviour of a group of cells under large strain deformations, we model periodic, honeycomb-
like structures with hexagonal cells of uniform cell size, occupying a thin square domain of (dimensionless) side
one in the X1 (horizontal)- and X2 (vertical)-directions, and 0.1 in the X3 (out-of-plane)-direction. Throughout the
structure, adjacent cells are in mutual frictionless non-penetrative contact, and each structure is deformed by impos-
ing the following external boundary conditions: the lower horizontal faces are subject to a prescribed displacement
in the X1-direction to the left and are fixed in the X2-direction; the upper horizontal faces are subject to a prescribed
displacement in the X1-direction to the right and are fixed in the X2-direction; and all the external faces are fixed
in the X3-direction.
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Fig. 6 Finite element representation of two cuboids of hyperelastic material in mutual unilateral contact, with dimensionless size
1 × 2 × 1 each in the undeformed state (left), and under generalised shear deformation (right), when the lateral external sides are
a free and b subject to uniform normal pressure. The colour bar indicates displacements in the X1 (horizontal)-direction. Note the
antisymmetry of the deformation with respect to the horizontal line separating each undeformed cuboid into unit cubes. (Color figure
online)

To reduce computational cost that ismostly due to the detectionof contact andopenings during these deformations,
we extend the successive decomposition procedure (SDP) for finite deformations of continuous cellular structures
introduced in [29] to elastic structures with unilateral intercellular contact, as follows:

(i) first, a continuous deformation is computed for the entire structure, as in a compact elastic solid, where only
the external boundary conditions are imposed while the cells remain in mutual contact;

(ii) then, for the pre-deformed structure, the microstructural properties at individual cell level, such as the unilateral
contact between cell walls and the internal cell pressure, are taken into account.

Formally, if x = χ(X) ∈ R
3 denotes the finite deformation from the reference state B0 to the final configuration

B, then, in step (i), we take x′ = χ ′(X) ∈ R
3 to be a continuous deformation, and in step (ii), we assume

the deformation mapping x′′ = χ ′′(x′) = χ
(
χ ′−1(x′)

)
from the continuously deformed state B′ to the final

configuration B where gaps between the cell walls can occur. This procedure is illustrated schematically in Fig. 7,
where F = dχ(X)/dX > 0, F′ = dχ ′(X)/dX > 0, and F′′ = dχ ′′(x)/dx > 0 denote the deformation gradients
for the associated invertible and orientation preserving mappings, such that F = F′′F′.

The undeformed model structures are represented in Fig. 8, where the finite element mesh is also displayed. The
sheared structures without internal cell pressure are shown in Fig. 9, where extensive cell separation diagonally
across the structure is captured. For the sheared structures with uniform internal cell pressure, in Fig. 10, strong
intercellular cohesion without significant gaps between cells can be observed. For these numerical simulations, the
two-step procedure proved significantly faster and more accurate than when the external boundary conditions and
contact constraints were imposed simultaneously in a single step.
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Fig. 7 Schematic of the successive deformation decomposition procedure

Fig. 8 Finite element models of undeformed structures with hexagonal cells of hyperelastic material in mutual unilateral contact

Fig. 9 Finite element representation of deformed structures showing significant cell separation diagonally across the structure in the
absence of internal cell pressure. The colour bar indicates horizontal displacement. (Color figure online)
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Fig. 10 Finite element representation of deformed structures showing strong intercellular cohesion throughout the structure with
uniform internal cell pressure. The colour bar indicates horizontal displacement. (Color figure online)

To explain the results, for the sheared structures analysed here, assuming simple shear deformation of the
entire structure in step (i), this deformation is equivalent to tension in the first principal direction combined with
compression in the second principal direction, where the two principal directions are situated near the two diagonals
of the deforming structure, respectively [31, pp. 101–104]. Then, when the intercellular contact is taken into account
in step (ii), the cells situated along the first principal direction will separate from each other, while those along the
second principal direction will be mutually compressed, as depicted in Fig. 9.

However, as demonstrated theoretically, if the internal cell pressure is sufficiently large, then the resulting normal
force will act as a cohesive force across the interface between adjacent sheared walls, precluding cell separation,
as shown in Fig. 10.

5 Conclusion

Many natural structures are cellular solids at millimetre scale and fibre-reinforced composites at micrometre scale
(e.g. plant stems, vegetables, fruit). For these structures, physical properties are associated with the mechanical
responses of the structural elements under applied forces, and phenomena such as cell separation through debonding
of the middle lamella in cell walls are key in explaining some important characteristics or behaviour.

To explore such phenomena, we model cellular structures with non-linear hyperelastic cell walls under large
shear deformations and incorporate cell wall material anisotropy and unilateral contact between neighbouring cells
in our models. Analytically, we show that, for two cuboid walls in unilateral contact and subject to generalised
shear, gaps can appear at the interface between the deforming walls. Numerically, when finite element models of
periodic structures with hexagonal cells are sheared, significant cell separation is captured diagonally across the
structure. To obtain the numerical results, we employ a successive deformation decomposition technique, in which
(i) first a continuous deformation is assumed throughout the structure; (ii) then, for the pre-deformed structure, the
microstructural properties at individual cell level, such as the unilateral contact between cell walls and the internal
cell pressure, are taken into account. The two-step procedure proves significantly faster and more accurate than a
one-step approach where the external boundary conditions and contact constraints are imposed simultaneously.

Our analysis further indicates that, under large deformations, separation is less likely between cells with high
internal cell pressure than between cells where the internal pressure is low. This is in agreement with the physical
observations that plant tissue under high turgor pressure (e.g. in fresh and growing fruit and vegetables) failed by
cell wall rupture, whereas tissue under low turgor (e.g. in cooked or ageing plants) failed by cell separation. The
way cells separate or break and release their content is critical for horticultural qualities, such as fruit texture, which
is of major interest to producers around the world. As markets impose increasingly stringent quality standards,
there is a demand for development of models that predict changes in fruit texture so that these processes can be
managed and controlled more effectively. Even though, in most cases, it is at a cellular level that the structural
basis of texture is best addressed, due to the inherent complexity and diversity of cellular structures, the explicit
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representation of all individual cells and their contact constraints in a structure with a very large number of cells
is not feasible computationally. Nonetheless, since local changes can generate changes in the overall structural
properties, the microstructural model with non-penetrative intercellular contact proposed here can be incorporated
in a multiple-scale approach suitable for use in large-scale finite element computations.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes
were made.
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