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Abstract: This paper proposes a novel solution to the problem of computing a set of topologically
inequivalent paths between two points in a space given a set of samples drawn from that space.
Specifically, these paths are homotopy inequivalent where homotopy is a topological equivalence
relation. This is achieved by computing a basis for the group of homology inequivalent loops in the
space. An additional distinct element is then computed where this element corresponds to a loop
which passes through the points in question. The set of paths is subsequently obtained by taking
the orbit of this element acted on by the group of homology inequivalent loops. Using a number of
spaces, including a street network where the samples are GPS trajectories, the proposed method is
demonstrated to accurately compute a set of homotopy inequivalent paths. The applications of this
method include path and coverage planning.
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1. Introduction

The task of path planning may be defined as computing a path or set of paths between two points
in a given space. Path planning has many applications. If the space in question is a street network,
path planning may act as a navigation aid for individuals. If the space in question is a robot
configuration space, path planning may be used to transform a robot configuration or pose into
a desired configuration or pose. Topological path planning is a type of path planning which does not
distinguish between paths which are topological equivalent. For example, topological path planning
in a space containing a single hole or obstacle would find at most two paths between any two locations
in the space—specifically, one which traverses to the right and one which traverses to the left of the
hole or obstacle. There exists many circumstances where it is most appropriate to perform topological
path planning as opposed to any other type of path planning. For example, when the space in question
is a street network, topological equivalent paths will correspond to traversing the same sequence of
streets. If the purpose of path planning is to act as a navigation aid, it is not appropriate to distinguish
between such paths.

From a computational perspective, path planning methods can broadly be divided into the
two categories of combinatorial and sample-based methods. Combinatorial methods model the space
using an exact but not necessarily accurate representation and subsequently search for paths within
this representation (Chapter 6 of [1]). These methods return exact solutions, but, given the requirement
for an exact representation of the space, they are not applicable in many cases. In addition, methods
in this category generally do not scale efficiently with the dimension and number of obstacles in
the space. Sample-baseds method overcome these challenges with the compromise of computing an
approximate solution. Such methods represent the space using a set of samples drawn from the space
and subsequently search for paths within this representation. This representation is an approximation,
and, consequently, methods in this category return approximate solutions.
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Despite the existence of a large number of methods for computing topologically inequivalent paths,
these methods are combinatorial in nature and therefore exhibit the limitations described above [2].
The problem of computing topologically inequivalent paths using a sample-based approach has only
recently been considered with [3] proposing the first such method. Specifically, the approach of [3]
formulate the problem of computing topologically inequivalent paths in terms of doing inference with
respect to co-homology, which is the dual of homology (Homotopy and homology are two fundamental
path equivalence relations which are topological in nature (see Section 3)).

In this paper, we propose a novel sample-based topological path planning method that formulates
the task in terms of doing inference with respect to homology. In particular, using techniques from the
field of computational topology, it is possible to compute a canonical representative for each element in
a generating set for the group of cycles which are homology inequivalent [4]. However, for the purposes
of path planning, one is not interested in cycles but instead paths which begin and end at specified
points. Overcoming this challenge represents the main contribution of this paper. To achieve this,
we propose computing a canonical representative of a cycle which goes through the points in question.
The orbit of this representative acted on by the cycles generated by the above generating set is then
computed. This orbit corresponds to a set of canonical representatives for topologically inequivalent
cycles which pass through the points in question. These cycles are subsequently transformed into
homology inequivalent paths between the points in question. By considering the relationship which
exists between homotopy and homology inequivalent paths, we demonstrate these paths to be also
homotopy inequivalent. Relative to that proposed in [3], the method proposed in this paper represents
a novel formulation of the problem—that is, in terms of doing inference with respect to homology as
opposed to co-homology. The proposed method also exhibits superior computational complexity.

The layout of this paper is as follows: Section 2 reviews related works on topological path planning;
Section 3 describes how the concept of topologically inequivalent paths may be defined formally
in terms of homotopy and homology theory; and Section 4 describes the proposed sample-based
topological path planning method. Finally, Sections 5 and 6 present results and draw conclusions from
this work, respectively.

2. Related Works

Topological path planning is a concept that exists in many research domains. In graph theory,
there exist many algorithms, such as breadth-first search, for computing topologically inequivalent
paths. How humans model the world is topological on some level and therefore topological path
planning has been studied extensively in the field of spatial cognition [5,6]. Topological path planning
has been demonstrated to have many applications in the robotics domain. For instance, it has been
demonstrated that an effective strategy for exploring or performing coverage planning of a space is to
identify the set of topologically inequivalent paths in that space and deploy a single robot along each [7].
Given the interest in topological path planning from all these domains, there exists a large spectrum of
methods for performing this task. In this section, we review the most widely used combinatorial and
sample-based methods.

Combinatorial methods for topological path planning generally operate as follows.
They first convert the combinatorial representation of a space into a corresponding graph representation.
Topologically inequivalent paths are subsequently determined by searching for paths in this graph
which satisfy specific criteria. [8] defined the h-signature of a path which is a vector such that two paths
which are topologically equivalent have the same h-signature. After converting the combinatorial
representation of the space into a graph representation, topologically inequivalent paths are determined
by searching for paths in this graph with different h-signatures. There exists many approaches
for computing a graph representation such that all inequivalent paths in the graph correspond
to topologically inequivalent paths in the original space. These graphs are commonly referred to
as topological maps or graphs [9]. The most commonly used strategy for computing a topological
graph is to compute the Generalized Voronoi Graph of the free space (GVG) which is related to the
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skeleton and forms a topological graph [10]. Another approach for computing a topological graph is
described in [11] and employs a strategy where the space is decomposed into trapezoids that are used
as platforms to construct the graph. A similar decomposition strategy based on mutual information is
proposed by [12].

Sample-based methods for topological path planning have only recently been considered and are
a consequence of recent advances in the domain of applied or computational topology [13]. In fact, the
first such method was recently proposed by [3] where the authors formulate the problem in terms of
doing inference with respect to co-homology, which is the dual of homology. Specifically, the authors
construct a graph representation of the space and search for paths in this graph with different signatures.
In contrast, the solution proposed in this paper formulates the problem in terms of doing inference
with respect to homology. Relative to that proposed by [3], this solution is more intuitive in nature and
has reduced computational complexity.

3. Homotopy and Homology Theory

Homotopy and homology are two fundamental equivalence relations which are topological in
nature. In the following, we describe each of these relations in turn and the relationships that exist
between them.

3.1. Homotopy Equivalence

Two paths are homotopic or homotopy equivalent if one can continuously deform into the other
without intersecting any objects; to be continuously deformed is defined formally in [14]. The set of
homotopy equivalence classes of paths in a topological space X, which begins and ends at a specified
base point p in that space has a group structure known as the fundamental group, which is denoted
π1(X, p). If the space in question is path connected, the fundamental groups corresponding to
two distinct points in the space are isomorphic (see Theorem 7.13 of [14]). Therefore, the fundamental
group of such a path connected space X is usually denoted π1(X), where the specification of a base
point is omitted. Refs. [2,8,15] proposed methods for computing sets of homotopy inequivalent paths
in two and three dimensions.

3.2. Homology Equivalence

Although homotopy equivalence classes are very appropriate in the context of path planning,
they can be difficult to compute especially in higher dimensions [15]. For this reason, many researchers
have begun to consider an alternative equivalence relation of homology [3,16]. Informally, two paths
are homology equivalent or homologous if the region they enclose does not contain any holes. In the
remainder of this subsection, we will formally define this concept and describe how we exploit the
relationship between homotopy and homology equivalence toward computing a set of homotopy
inequivalent paths.

Let K be an arbitrary simplicial complex such as a the Delaunay–Čech complex (see Appendix).
A k-chain c is defined by Equation (1) where each σi ∈ K is a k-simplex and each λi is an element of Z2

(integers modulo 2). Although we use Z2 coefficients, as is common in path planning [3], coefficients in
any field could be used:

c = ∑ λiσi. (1)

The chain group Ck(K) denotes the vector space over all k-chains. For a k-simplex σ = [v1, . . . , vk+1],
the boundary map ∂k is defined by Equation (2), where v̂i indicates that vi is deleted from the sequence.
The boundary map is a map from a k-simplex to a sum of its (k− 1)-simplex faces. For example,
consider the 2-simplex [v1, v2, v3]. The boundary map of this 2-simplex is the sum of 1-simplex faces
[v2, v3] + [v1, v3] + [v1, v2]. It can be easily proved that ∂k+1∂k = 0 :

∂kσ =
k+1

∑
i=1

[v1, . . . , v̂i, . . . , vk+1]. (2)
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The boundary map extends to the chain groups to form the chain complex C∗ as defined by
Equation (3) [17]:

. . . −→ Ck+1(K)
∂k+1−−→ Ck(K)

∂k−→ Ck−1(K) −→ . . . . (3)

A k-chain c ∈ Ck(K) is called a k-boundary if there exists some d ∈ Ck+1(K) such that c = ∂d
and a k-cycle if ∂c = 0. To illustrate these conditions, consider the simplicial complex K of Figure 1.
The 1-chain [v2, v3] + [v1, v3] + [v1, v2] ∈ C1(K) is a 1-boundary because it equals the boundary map of
the 2-chain [v1, v2, v3] ∈ C2(K). Furthermore, the 1-chain [v2, v3] + [v1, v3] + [v1, v2] ∈ C1(K) is a 1-cycle
because applying the boundary map gives 0.

Figure 1. A simplicial complex K is illustrated where red dots represent 0-simplices, blue lines
represent 1-simplices and green triangles represent 2-simplices.

The set of k-boundaries and k-cycles are denoted by Bk(K) and Zk(K), respectively. Both are
subgroups of Ck(K). As a consequence of ∂k+1∂k = 0, Bk(K) ⊆ Zk(K). The quotient group
Hk(K) = Zk(K)/Bk(K) is called the k-homology group of K. The rank of Hk(K) is called the kth
Betti number and intuitively equals the number of k-dimensional holes in K. Using this intuition,
the 0th Betti number corresponds to the number of connected components while the 1th Betti number
corresponds to the number of one-dimensional holes. Since we are using Z2 coefficients, a homology
group with rank n has order 2n [4] where the order corresponds to the number of homology classes.

The equivalence class of a k-cycle in Hk(K) is denoted [c] and is called a homology class.
Two k-cycles belonging to the same homology class are said to be homologous. For the purposes
of path planning, we are interested in the homology classes of H1(K) because these correspond to
trajectories in space.

Despite being a consequence of two distinct equivalence relations, the first homology and
fundamental groups of a path-connected space have a simple relationship. Specifically, for a path
connected space X containing a point p, there exists a surjective homomorphism from π1(X, p) to
H1(K), whose kernel is the commutator subgroup of π1(X, p). That is, H1(K) is isomorphic to the
Abelianization of π1(X, p). This homomorphism is known as the Hurewicz homomorphism [14,18].
In this paper, we exploit this relationship in the following manner. Our proposed path planning
method finds a set of homology inequivalent paths. Since the Hurewicz homomorphism is surjective,
these paths are also homotopy inequivalent.

4. Computing Homotopy Inequivalent Paths

This section describes the proposed sample-based topological path planning method. This method
contains a number of steps that are represented as a flow chart in Figure 2. The method first computes
a simplicial complex K representation of the space in question using a set of samples from that space.
This step is described in the Appendix. The method next constructs a representation of K known
as a filtration which determines attributes of the simplices of K. A generating set which generates
a canonical representative for each element in the homology classes of H1(K) is subsequently computed.
Finally, this generating set is used to compute the desired set of paths. These steps are described in
turn in the following subsections.
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Figure 2. A flow chart of the proposed sample-based topological path planning method is displayed.

4.1. Filtration

A sequence of simplicial complexes of the form defined in Equation (4) is called a filtration ofK [4].
To illustrate this concept, consider the simplicial complex K represented in Figure 3e. A subsequence
of a corresponding filtration is given by the sequence of simplicial complexes Kn−4, Kn−3, Kn−2, Kn−1

and Kn represented in Figure 3a–e, respectively:

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn−1 ⊆ Kn = K. (4)

(a) (b) (c) (d)

(e)

Figure 3. A subsequence of a filtration corresponding to a simplicial complex K is illustrated in
(a–e) where red dots represent 0-simplices, blue lines represent 1-simplices and green triangles
represent 2-simplices.
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In this work, we only consider filtrations where Ki−1 and Ki differ by a single simplex which we
denote σi. That is, Ki is obtained by adding σi to Ki−1. Let di denote the dimension of σi. When adding
σi to Ki−1 to obtain Ki, two possible changes of the homology may occur [19]. Either an element in
the di-homology group is created, in which case σi is termed a positive simplex, or an element of the
(di − 1)-homology group is destroyed, in which case σi is termed a negative simplex. To illustrate
this, consider the filtration represented in Figure 3 and the action of adding the 1-simplex [v1, v5]

to the simplicial complex represented in Figure 3b to obtain the simplicial complex represented in
Figure 3c. This action creates an element in the 1-homology group, that is a 1-dimensional hole, and,
therefore, [v1, v5] is a positive simplex. Now, consider the action of adding the 2-simplex [v1, v2, v5]

to the simplicial complex represented in Figure 3d to obtain the simplicial complex represented in
Figure 3e. This action destroys an element in the 1-homology group, and, therefore, [v1, v2, v5] is
a negative simplex.

For each negative simplex σj, we associate a positive simplex σi where i < j such that σj destroys
the element of the homology group created by σi. The pair (σi, σj) is called a persistence pair and the
value j− i its index persistence. In the context of the filtration represented in Figure 3, ([v1, v5], [v1, v2, v5])

is a persistence pair because adding [v1, v2, v5] destroys the element in the 1-homology group which
was created when [v1, v5] was added. The index persistence in this case is n− (n− 2) = 2.

A subset of positive simplices, which create an element of the homology group that is subsequently
not destroyed, is not paired. These are referred to as essential simplices [19]. In the context of the filtration
represented in Figure 3, the 1-simplex [v2, v5] is an essential simplex. Every simplex of K belongs
either to a persistence pair or is an essential simplex. For the purposes of this work, we are primarily
interested in essential 1-simplices because these create the elements of the 1-homology group H1(K).
The number of essential k-simplices is equal to the kth Betti number.

In this work, given a simplicial complex K we construct a corresponding filtration by ordering
the simplices in K such that simplices of lower dimension precede simplices of higher dimension
and simplices of the same dimension are ordered arbitrarily. We then define Ki to be that simplicial
complex which is obtained by adding the ith simplex σi in this ordering to Ki−1. Since simplices are
ordered by dimension, this corresponds to a valid filtration [4]. There exists a number of algorithms
for computing the persistence pairs and essential simplices for a given simplicial complex K [19–21].
In this work, we employ the algorithm of [21].

4.2. Computing Paths

The set of negative 1-simplices in the filtration of K forms a spanning tree of the 0-simplices
in K [22,23]. This property is illustrated by Figure 4a which displays the set of negative 1-simplices
corresponding to the filtration of Figure 3. When considering homology with Z2 coefficients, as we
do in this paper, the set of negative and essential 1-simplices in K form a graph with the following
property [22,23]. Each simple cycle that contains a single essential 1-simplex corresponds to an element
in a generating set for canonical representatives of elements in the homology classes of H1(K).
We denote this generating set as GK. The set generated by GK, denoted 〈GK〉, corresponds to canonical
representatives for all elements in the homology classes of H1(K). To illustrate these concepts, consider
again the filtration of Figure 3; this filtration has two essential 1-simplices of [v3, v5] and [v3, v5],
and, in turn, two elements in the corresponding generating set GK. These elements are the cycles
[v2, v3] + [v2, v5] + [v3, v4] + [v4, v5] and [v3, v4] + [v3, v5] + [v4, v5]. The group operator in the case of
Z2 coefficients corresponds to symmetric difference or exclusive OR. For example, applying the group
operator to the above elements [v2, v3] + [v2, v5] + [v3, v4] + [v4, v5] and [v3, v4] + [v3, v5] + [v4, v5] gives
the element [v2, v3] + [v2, v5] + [v3, v5].
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(a) (b)

Figure 4. The set of negative 1-simplices and the set of negative and essential 1-simplices in the filtration
of Figure 3 are displayed in (a,b), respectively.

The canonical representatives of elements in the homology classes of H1(K) correspond to cycles
in the space. However, for the purposes of path planning, one is not interested in cycles but paths in
the space which begin and end at specified points. We overcome this challenge as follows. Let p and q
be distinct 0-simplices in the simplicial complex K for which we wish to compute a set of homotopy
inequivalent paths between. Let [p, q] be an additional 1-simplex which is added to K to obtain a new
simplicial complex Kpq. To illustrate this construction, consider again the filtration of Figure 3 and the
case where p and q correspond to the 0-simplices, v2 and v4, respectively. In this case, Kpq corresponds
to that simplicial complex which is represented in Figure 5. A filtration of Kpq is defined in a similar
manner to that of K, except that [p, q] is the last simplex added.

Figure 5. The 1-simplex [p, q] is added to the simplicial complex of Figure 3.

It is evident that [p, q] is a positive 1-simplex in the filtration of Kpq and the canonical
representative that it corresponds to is a cycle which passes through p and q. We denote this canonical
representative as gpq. Therefore, the orbit of gpq acted on by 〈GK〉, which is denoted 〈GK〉

(
gpq
)

and defined in Equation (5) [24], corresponds to a set of canonical representatives for homology
inequivalent cycles which pass through p and q:

〈GK〉
(

gpq
)
=
{

gpqg : g ∈ 〈GK〉
}

. (5)

To illustrate this, consider again the simplicial complex Kpq represented in Figure 5, where p and
q correspond to the 0-simplices v2 and v4, respectively. The canonical representative gpq corresponds
to the cycle [v2, v3] + [v2, v4] + [v3, v4]. The orbit of gpq acted on by 〈GK〉 contains the cycles
[v2, v3] + [v2, v4] + [v3, v4], [v2, v3] + [v2, v4] + [v3, v5] + [v4, v5], [v2, v4] + [v2, v5] + [v3, v4] + [v3, v5] and
[v2, v4] + [v2, v5] + [v4, v5]. These cycles are homology inequivalent and all pass through p and q.
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The set of cycles in the orbit of gpq acted on by 〈GK〉 can be transformed into a set of homology
inequivalent paths between p and q by removing the 1-simplex [p, q] from each. For example,
removing the 1-simplex [v2, v4] from each of the above cycles gives a set of homology inequivalent
paths between v2 and v4. Specifically, these are the paths [v2, v3] + [v3, v4], [v2, v3] + [v3, v5] + [v4, v5],
[v2, v5] + [v3, v4] + [v3, v5] and [v2, v5] + [v4, v5]. By the Hurewicz homomorphism, all homology
inequivalent paths between p and q created using the above approach are also homotopy inequivalent.

4.3. Computational Complexity

In this section, we examine the computational complexity of the proposed path planning method.
We examine each of the steps in this method in turn. Computing the simplicial complex varies in
complexity depending on the type of simplicial complex used. In this work, a Delaunay–Čech complex
was used which requires exponential time to compute [25]. If computational complexity is a concern,
one could use an alternative simplicial complex, such as the Vietoris–Rips complex which can be
computed in linear space and time [26,27]. Using the method of [19], the set of negative and essential
1-simplices can be computed in polynomial time and space complexity. For a given essential 1-simplex,
we compute the corresponding element in the generating set for canonical representatives as follows.
We construct the spanning tree of negative 1-simplices. We next compute the single simple path which
exists between the two 0-simplices contained in the boundary of the essential 1-simplex in question.
The canonical representative is subsequently obtained by adding the essential 1-simplex to the set
of 1-simplices in this path. This can be computed in time and space complexity that is linear in the
number of samples using a breadth first search. This process is repeated for each essential 1-simplex,
and, therefore, the overall time and space complexity for computing the elements in the generating
set is polynomial. Computing the paths in question by computing the orbit is achieved in time that is
linear in the number of paths.

The proposed method exhibits superior computational complexity to that proposed by [3].
Having computed a simplical complex, the method of [3] subsequently requires searching for paths
in a graph where the size of the graph grows exponentially in the number of holes in the space.
Consequently, as noted by the authors, these graphs quickly grow too large to fit into memory. On the
other hand, having computed a simplical complex, the method proposed in this paper can compute
paths in polynomial time.

5. Results

The proposed path planning method has a single parameter r corresponding to the radius of
the Delaunay–Čech complex (see Equation (A4)). A commonly employed strategy for automatically
setting this parameter is through the application of persistent homology [16,28]. This approach basically
considers all values of r in a specified interval and only regards those elements of H1(K) which exist
for a sufficiently large range within this interval to be significant. For all results presented in this paper,
the parameter r was set manually; however, persistent homology could be employed to automate this
task if necessary.

Towards demonstrating the ability of the proposed method to discover homotopy inequivalent
paths, a number of simulated and real spaces were considered. We consider each of these in the
following two subsections. A comparison to the method proposed by [3] is accomplished by comparing
results achieved in homotopy equivalent spaces. It is demonstrated that both methods produce the
same set of paths up to homotopy equivalence with the proposed method computing these in a more
efficient manner.

5.1. Simulated Spaces

Figure 6 displays two thousand points uniformly sampled from a simulated space that is a subset
of R2. The 0th and 1th Betti numbers of this space are both zero. For two points located in the bottom
left and top right of this space, the proposed path planning method computed a set of homotopy
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inequivalent paths that contains a single element. The path in question is illustrated in Figure 6.
Given that there are no holes in this space, there exists at most one homotopy inequivalent path
between any two points. As such, the set of paths returned by the proposed method accurately models
the set of homotopy inequivalent paths in the space.

Figure 6. Two thousand samples are represented by red dots. For two points located in the lower
left and top right of the space, the single path returned by the proposed path planning method is
represented by a blue line.

Figure 7 displays two thousand points uniformly sampled from a simulated space that is also
a subset of R2. The 0th and 1th Betti numbers of this space are zero and one, respectively. For two points
located in the bottom left and top right of this space, the proposed path planning method computed
a set of homotopy inequivalent paths that contains two elements. The paths in question are illustrated
in Figure 6. This space is homotopy equivalent to those spaces represented in Figures 1 and 8 of [3],
where paths are computed between a similar pair of points. By comparing the results obtained by
both methods, it is evident that they return the same set of homotopy inequivalent paths.

Figure 7. Two thousand samples are represented by red dots. For two points located in the lower
left and top right of the space, the two paths returned by the proposed path planning method are
represented by blue and green lines.

Figure 8a displays two thousand points uniformly sampled from a simulated space that is a subset
of R2. The 0th and 1th Betti numbers of this space are zero and four, respectively. For two points
located in the top left and bottom right of this space, the proposed path planning method returned a set
of homotopy inequivalent paths containing twelve elements. A single path in this set is represented in
Figure 8a, while all elements in the set are represented in Figure 8b. Figure 8c displays the elements
of 〈GK〉. Through a comparison of Figure 8b,c, it is evident that the proposed method effectively
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transforms the cycles in 〈GK〉 into a corresponding set of suitable paths. As such, these paths effectively
explore the space.

(a) (b)

(c)

Figure 8. Two thousand samples are represented by red dots in (a). For two points located in the top
left and bottom right of the space, a single path returned by the proposed path planning method is
represented by a blue line in (a). All paths returned by the proposed method are represented by blue
lines in (b). The elements of 〈GK〉 are represented in (c).

The proposed path planning method can be applied to spaces of high dimension. To illustrate this,
the following simulated spaces were considered. Figure 9a displays ten thousand points uniformly
sampled from a simulated space which is a subset of R3. The 0th, 1th and 2th Betti numbers of this
space are one, one and zero respectively; this is, it is homeomorphic to a solid torus. For two points
located in the left and right of this space, the proposed path planning method returned a set of
homotopy inequivalent paths containing two elements. Figure 9b displays one of these paths which
traverses a path above the hole in the space. The other path in the set traverses a path below the hole
in the space.
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8

10
0246
810

(a) (b)

Figure 9. Ten thousand points sampled from a space are represented by red dots in (a). For two points
located in the left and right of the space, a single path is represented by a blue line in (b).
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Figure 10a displays ten thousand points uniformly sampled from a simulated space that is a subset
of R3. The 0th, 1th and 2th Betti numbers of this space are one, two and zero, respectively; that is, it is
homeomorphic to a solid two-holed torus. For two points located in the left and right of this space,
the proposed path planning returned a set of homotopy inequivalent paths containing four elements.
Figure 10b displays one of the paths in this set while all paths in the set are represented in Figure 10c.
It is evident that the set of all paths surround each hole in the space, and, as such, these paths effectively
explore the space.
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(c)

Figure 10. Two thousand samples are represented by red dots in (a). For two points located in the left
and right of the space, a single path returned is represented by a blue line in (b). All paths returned
are represented by blue lines in (c).

5.2. Real Spaces

To demonstrate the proposed path planning method on a real space, we considered the street
network for the city for Chicago which is a subset of R2. The samples in question correspond to
a publicly available dataset of GPS trajectories captured by 13 university shuttle buses serving the
University of Illinois at Chicago campus [29] (see Section 9.1; a website proving links to the data can
be found here (https://www.cs.uic.edu/bin/view/Bits/Software)).

The area in question contains a mixture of low-, mid- and high-rise buildings. As a consequence,
the GPS positional accuracy was error prone with some traces showing consistent errors over
100 m. From this dataset, 50 individual trajectories, containing 4432 individual GPS points, were
considered. Figure 11a displays the trajectories in question. For two points located in the right of this
space, a set of homotopy inequivalent paths were computed using the proposed method. Figure 11b
displays one of the paths in this set while all paths in the set are displayed in Figure 11c. Again, it is
evident that the set of all paths effectively explore the space.

https://www.cs.uic.edu/bin/view/Bits/Software
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(a)

(b)

(c)

Figure 11. A total of 4432 GPS points corresponding to 50 trajectories captures by vehicles traversing
the Chicago street network are displayed in (a). For two points represented by green dots and located
just to the right of center, a single path returned by the proposed path planning method is represented
by a blue line in (b). All paths returned by the proposed method are represented by blue lines in (c).

6. Conclusions

The paper proposes a novel sample-based path planning method for computing a set of homotopy
inequivalent paths between two points in a space. The fundamental contribution of this paper is the
insight that such a set of paths may be obtained by computing the orbit of a cycle passing through
the points in question acted on by the group of homology inequivalent loops. Results obtained on
simulated and real data demonstrate the utility of this method.

The paths computed using the proposed path planning method are not localized optimally.
For example, the path displayed in Figure 6 is not the shortest or smoothest path between the
points in question. As discussed by [30], computing localized paths using homology is challenging
because homology is a topological concept that does not consider such non-topological properties.
One potential solution to overcoming this challenge would be to subsequently optimize the localizing
of each computed path in a manner similar to that proposed by [31]. The authors hope to implement
such a solution in future work.
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Appendix A

In this section, we describe how a space may be reconstructed from a set of samples using
a combinatorial representation known as a simplical complex. Let X = {x1, . . . , xm} be a set of samples
from a space that is a subset of Rn. Let ‖.‖ denote the Euclidean norm and Br(x) = {y ∈ Rn|‖x− y‖ < r}
for r ≥ 0 denote a closed ball of radius r centred at x. The r-neighbourhood Xr, as defined by
Equation (A1), represents an intuitive means of reconstructing the space. However, this is an abstract
mathematical representation upon which computation is difficult. One solution to overcoming this
challenge is to reconstruct the space using a combinatorial representation known as a simplicial
complex upon which computations may be performed:

Xr =
n⋃

i=1

Br(xi). (A1)

A simplicial complex K is a family of finite subsets of a universal set such that, for each σ

in K, all subsets of σ are also in K. A set σ in K is called a k-simplex if |σ| = k + 1, where |.|
represents the cardinality of the set in question. The faces of a simplex σ correspond to all simplices τ

where τ ⊂ σ [13,32].
There exists a number of different simplicial complexes that may be used to reconstruct a space.

In this paper, we consider the Delaunay–Čech complex, which has the attractive property that it is
homotopy equivalent to Xr, where homotopy equivalence is an equivalence relation on topological
spaces (see Chapter 7 in [14]). The Delaunay–Čech complex is equal to the intersection of a Čech
complex and Delaunay triangulation, which we now describe in turn.

The Čech complex Cr(X) for r ≥ 0, as defined in Equation (A2), is the abstract simplicial
complex whose k-simplices correspond to unordered (k+1)-tuples of points {xα}k

0 whose closed r/2
neighbourhoods intersect [32]. The Čech complex Cr(X) is homotopy equivalent to Xr:

Cr(X) = {σ ⊆ X :
⋂
x∈σ

Br(x) 6= ∅}. (A2)

Let Vx denote the Voronoi cell containing x [4]. Consider the simplicial complex D(X), as defined
by Equation (A3), which corresponds to the Delaunay triangulation of X. This simplicial complex has
the attractive property that the maximum dimension of any simplex it contains is n the dimension of
the space. However, it does not have a scale parameter, and, therefore, it cannot accurately reconstruct
spaces containing holes. This issue may be addressed by considering the Delaunay–Čech complex
DCr(X) for r ≥ 0, which is defined by Equation (A4) and contains those simplices which lie at the
intersection of D(x) and Cr(X). The Delaunay–Čech complex is homotopy equivalent to Br(x) [25].
To illustrate the Delaunay–Čech complex, consider Figure A1a, which displays a set of samples from
a simulated space. The corresponding Delaunay–Čech complex for a given value of r is displayed
in Figure A1b:

D(X) = {σ ⊆ X :
⋂
x∈σ

Vx 6= ∅}, (A3)

DCr(X) = D(X)∩ Cr(X). (A4)
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(a) (b)

Figure A1. A set of samples from a simulated space are displayed in (a). The corresponding
Delaunay–Čech complex for a given value of r is displayed in (b) where red dots represent 0-simplices,
blue lines represent 1-simplices and green triangles represent 2-simplices.
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