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The discretisation of benchmark viscoelastic flow problems in axisymmetric geometries using the spectral 

element method is considered. The computations are stabilized using the DEVSS-G/DG formulation of 

the governing equations. A decoupled approach is employed in which the conservation equations are 

solved for velocity and pressure and the constitutive equation (Oldroyd-B and Giesekus) are solved for 

the polymeric component of the extra-stress tensor. The method is validated for the start-up of transient 

Poiseuille flow for which an analytical solution exists. A comprehensive set of results is presented for flow 

past a fixed sphere for the Oldroyd B and Giesekus models. Excellent agreement is found with results in 

the literature on the drag experienced by the sphere. Evidence is provided which shows the existence of 

a limiting Weissenberg number due to the inability to resolve the high gradients in axial stress in the 

wake of the sphere through polynomial enrichment. The shear-thinning property of the Giesekus model 

leads to a reduction in drag compared to the Oldroyd B model at equivalent values of the Weissenberg 

number and viscosity ratio. The numerical simulations eventually fail to converge for the Giesekus model 

which suggests that factors other than solely extensional properties are responsible for this behaviour. 

The influence of the Reynolds number and, for the Giesekus model, the mobility parameter on the drag 

coefficient is also investigated and discussed. 

© 2017 The Authors. Published by Elsevier B.V. 
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. Introduction 

The computational simulation of flows involving viscoelastic

uids is a challenging task. The challenges present themselves in

he choices of both the constitutive model for the fluid, and the

umerical method used to approximate the solution in the chosen

eometry. The choice of model must be made carefully, depending

n the properties of the fluid and the dynamics of the flow which

ne wishes to simulate. The selected numerical method must be

obust in terms of stability and accuracy. Few analytical solutions

re available to validate the numerical method so it has become

tandard to use benchmark problems as a means of understanding

he chosen model and validating the numerical scheme employed. 

One established transient benchmark problem is that of a

phere of radius R S falling at constant speed V S inside a cylindrical

ube [1] . This problem is one of the oldest problems in the study
� All data for this research are openly available at http://doi.org/10.17035/d.2017. 
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f fluid dynamics. It dates back to the work of Stokes in the mid

800s [2] and has received continuing attention in the subsequent

iterature: a thorough history of the benchmark in the classical

ense can be found in [3] . It is common to consider the problem

n the frame of reference of the sphere and the walls, in the

ramework of the sphere, move upwards with uniform speed V S 

nd therefore in the opposite direction to the gravitational force. 

In the context of viscoelastic flows, despite the simplistic

ature of the geometry, this benchmark problem continues to

resent a challenging test for numerical schemes. The complex

ombination of shear and extensional flow regions and increas-

ngly thin boundary layers has made consistent experimental and

umerical results difficult to obtain [4] . The benchmark problem

s also of practical interest in the context of flow around obstacles,

or example in sedimentation, the settling of suspensions, rheom-

try and in industrial settings where particles are present (such as

ineral and chemical processing or combustion engines). 

It has become common that comparisons for this benchmark

re made for the particular configuration in which the ratio of

ube-to-sphere radius is 2 : 1 using the drag force, D computed

n the surface of the sphere when the flow has reached a steady

tate. It is typical to make comparisons using the value of the
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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drag factor 

D 

∗ = 

D 

6 πη0 R S V S 

(1)

normalised using the drag experienced by the sphere in an un-

bounded expanse of Newtonian fluid with viscosity η0 . However,

it has generally been agreed that, while useful, the drag factor

does not provide enough insight into the global accuracy of the

solution found by a numerical method [4,5] , particularly as certain

components of the stress do not feature in the calculation. It is

therefore wise to provide further insight into the quality of the

solution obtained using quantities such as the velocity and stress. 

There are numerical results available for many models in

the literature, with the upper-convected Maxwell (UCM) model

featuring heavily in the literature (for example, Rasmussen and

Hassager [6] , Crochet and Legat [7] , Baaijens et al. [8] ). Other

constitutive models considered include Oldroyd B, FENE-type, PTT

and Giesekus [4] . The present work is focused on the Oldroyd B

and Giesekus models. 

Among the studies published on this benchmark using the

Oldroyd B model (for example, see Lunsmann et al. [9] , Bodart

and Crochet [10] , Tamaddon-Jahromi et al. [11] ), only a few have

used high-order methods (such as spectral or hp -finite element

methods with high p ), with most methods relying instead on very

fine meshes (resulting in relatively high numbers of degrees of

freedom) in order to show mesh convergence. Examples of higher-

order methods applied to the problem are the spectral p -adaptive

strategy of Chauvière and Owens [5] and the hp -adaptive finite

element method of Fan [12] who together find agreement in the

limiting Weissenberg number for this model. As with the UCM

model there is a set of results which allows one to compile com-

prehensive tables of drag factors for comparison by other authors. 

In the case of the Giesekus model, there have been many

studies involving spheres, particularly in the investigation of

experimentally observed phenomena (for example, Baaijens et al.

[8] , Yang and Khomami [13] , Harlen [14] ). However, there exist

no definitive benchmark results available in the literature for the

Giesekus model, at least in the sense that they are available for

UCM and Oldroyd B models. 

The aim of this paper is to apply a high-resolution spectral el-

ement method to the problem of benchmark of uniform flow past

a fixed sphere for the Oldroyd B and Giesekus constitutive models,

with model parameters commonly used by other authors. Our

spectral element method is applied to a DEVSS-G/DG formulation

of the problem to provide stabilisation. We shall present results

which are convergent with respect to the spectral polynomial

order, p , using a minimal number of elements. These results

will add to those available in the literature for the Oldroyd B

model and provide a reference for the Giesekus model, where few

comprehensive results for this benchmark are available. A similar

method, with a different implementation, has been successfully

applied to the benchmark of flow past a cylinder [15] for these

constitutive models and this paper will extend the available results

with these techniques to the sphere benchmark problem. 

This paper is arranged as follows. In Section 2 we describe the

formulation of the governing equations including the DEVSS-G sta-

bilisation and an alternative treatment of the continuity equation

and also provide a brief discussion of the rheological behaviour

of the constitutive models considered. In Section 3 we state the

formulation of the sphere benchmark problem and how bound-

ary conditions will be applied. Section 4 details the numerical

methods applied to the temporal and spatial discretisations of the

governing equations and how this is handled computationally. In

Section 5 we present verification of our numerical scheme using

the analytical solution for transient start-up of Poiseuille flow

of an Oldroyd B fluid. This is followed by results for the sphere
enchmark for the Oldroyd B and Giesekus models. Finally, in

ection 6 we provide some concluding remarks. 

. Governing equations 

Consider the Navier-Stokes equations in dimensionless form 

e 
D u 

Dt 
= −∇ p + β∇ 

2 u + ∇ · τ + f , (2)

 · u = −μ

∫ 
�

pd�, (3)

here the field variables are velocity, u , pressure, p , and elastic

tress, τ , and μ > 0 is a constant. The dimensionless groups are

he Reynolds number, Re , and the viscosity ratio, β , which is the

atio of solvent to total viscosity. 

The alternative statement of the continuity Eq. (3) , proposed by

wynllyw and Phillips [16] is a means of removing the indetermi-

acy in the pressure. It also ensures that when the weak statement

f the problem is discretized, the pressure approximation is con-

istent with the choice of solution space, which requires that

ressure possesses vanishing mean. There are also benefits to be

ained in terms of the conditioning of the discrete problem albeit

t the expense of a loss of sparsity in the global discrete system. 

The system is closed by a constitutive law relating the elastic

tress to the rate-of-deformation tensor, d = 

1 
2 

(∇u + ∇u 

T 
)
. We

onsider the Giesekus [17] constitutive model for a viscoelastic

uid 

+ W e 

(
� 

τ + 

α

( 1 − β) 
τ2 

)
= 2 ( 1 − β) d (4)

here the dimensionless group We is the Weissenberg number

nd α > 0 is the mobility parameter. We note that the Oldroyd

 model [18] is a special case of (4) with α = 0 . We define the

pper-convected derivative of a general tensor field, G , by 

� 

 = 

∂G 

∂t 
+ u · ∇G − G · ∇u − ( ∇u ) 

T · G . (5)

.1. Model properties 

The rheological properties of the constitutive models consid-

red play an important role in terms of the type of behaviour

hat may be investigated using them. Two simple flows which

rovide insight into the model behaviour are uniaxial extension

nd simple shear, both of which are important mechanisms in

ows involving spheres, with shear occurring near the surface of

he sphere and extension occurring in the wake. 

The Oldroyd model predicts an infinite extensional viscosity at

 finite shear-rate (namely at ˙ ε = 

1 
2 We ). This is an undesirable and

nphysical property particularly when modelling flows involving

xtension. The Giesekus model does not suffer from this problem

nd predicts finite values at all extension rates with a limiting

alue [19] of 3 β + 2 ( 
1 −β) 
α for large extension rates. The Oldroyd

 model predicts a constant shear viscosity whereas the Giesekus

odel predicts shear-thinning, with the rate of thinning with

hear-rate increasing with the mobility parameter. The limiting

ehaviour of the Giesekus model is independent of the mobility

arameter and tends to the solvent viscosity, i.e. β , for large

hear-rates. The Oldroyd B model predicts a quadratic relationship

etween the first normal stress difference and shear-rate and

 zero second normal stress difference. At low shear-rates the

iesekus model predicts a quadratic relationship between the first

ormal stress difference and shear-rate. However, this becomes

inear at large shear-rates. The Giesekus model predicts a non-zero

econd normal stress difference, which tends to the value − ( 1 −β) 
We 

ith increasing shear-rate. 
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.2. DEVSS-G 

The governing equations are written in a modified but mathe-

atically equivalent form to stabilise the corresponding discretisa-

ion. A version of the DEVSS-G [20] method, proposed by Bogaerds

t al. [21] , is employed. In this formulation the components of the

elocity gradient tensor are introduced as additional variables. An

 

2 -projection of the velocity gradient, denoted by G , is introduced

s an additional variable in the system of equations in order to

ncrease the elliptic nature of the equations as follows 

e 
D u 

Dt 
− ( β + θ ) ∇ 

2 u + θ∇ · G + ∇p = ∇ · τ, (6) 

 · u + μ

∫ 
�

pd� = 0 , (7) 

 − ∇u = 0 . (8) 

here θ is the DEVSS-G stabilisation parameter, typically chosen

o be equal to ( 1 − β) to make the coefficient of ∇ 

2 u unity. 

This is an alternative to the original DEVSS-G formulation

roposed by Liu et al. [20] in that the stabilising term in the

omentum equation is the velocity gradient, rather than the

ate-of-strain tensor, G + G 

T . The reasoning for this choice is that

he method of Bogaerds et al. [21] complements our enforcement

f ∇ · ∇u 

T = 0 in the momentum Eq. (2) due to incompressibility.

f this constraint was not enforced, the Laplacian in (2) would

e replaced by ∇ ·
(∇u + ∇u 

T 
)

and so the stabilisation by the

ate-of-strain tensor appears to be more natural. 

. Formulation of problem 

We now consider the initial and boundary conditions re-

uired to solve this problem. For all cases considered, zero initial

onditions are applied on velocity and stress. 

We decompose the boundary into distinct sections 

= 
− ∪ 
+ ∪ 
W ∪ 
C ∪ 
S (9) 

here 
− and 
+ are inflow and outflow boundaries, 
W and
C are wall and sphere wall boundaries and 
S is the axis of

ymmetry. 

We prescribe velocity at inflow and outflow, apply no-slip

onditions on walls and axisymmetric boundary conditions along

he axis of symmetry 

 = u in on 
−, (10) 

 = u out on 
+ , (11) 

 = 0 on 
W , (12) 

 = 0 on 
C , (13) 

 · n = 0 on 
S . (14) 

here u in and u out are known and are chosen according to the

eometry and problem of interest. In the case of a moving wall, as

n the case of flow past a sphere, we set u in = u out and u = u in on
W . 

Further, we must prescribe a boundary condition on the elastic

tress at inflow 

= τ in on 
−, (15) 
here τ in is typically found by substituting the known velocity

olution into the constitutive equation and solving for τ . This is

airly trivial for the majority of boundary conditions we shall be

onsidering. There are solutions available for a limited range of

omplicated boundary conditions, such as transient pipeflow. 

. Numerical discretisation 

The system of equations is solved in both space and time and

herefore a discretisation of each is required. The following section

etails the numerical methods and approximations used to achieve

his. 

.1. Temporal discretisation 

Consider a uniform discretisation in time with timestep �t

o that t n = n �t is the n th timestep. Let f n = f ( x , t n ) denote the

valuation of a function, f ( x , t ), at timestep n . We decouple the

elocity-pressure equations from the constitutive equation by

reating the term ∇ · τ explicitly in the momentum equation.

urther, the DEVSS-G term is decoupled from the velocity-pressure

ystem and treated explicitly. An Operator Integration-Factor Split-

ing (OIFS) scheme [22] is used to treat the material derivative

n the momentum equation. We make use of a 2 nd -order OIFS2

pproximation of the material derivative given by 

D u 

Dt 
= 

∂u 

∂t 
+ u · ∇u ≈ 1 

�t 

( 

γ0 u 

n +1 −
1 ∑ 

q =0 

αq ̃  u 

n +1 
q 

) 

, (16) 

here γ0 = 

3 
2 , α0 = 2 and α1 = 

1 
2 are the multi-step coefficients

or OIFS2 and ˜ u 

n +1 
0 

and ˜ u 

n +1 
1 

are solutions to the pure-advection

nitial value problems (IVP) associated with OIFS. The solutions of

hese IVPs are found using a 4 th -order Runge-Kutta scheme. 

Explicit terms are extrapolated at 2 nd -order such that an

pproximation for an arbitrary function, F ( X , t ) at time t n +1 is

pproximated by 

 

n +1 ≈
1 ∑ 

q =0 

βq F 
n −q , (17) 

here β0 = 2 , β1 = −1 are the extrapolation coefficients. The

esulting OIFS2/EX2 semi-discrete velocity-pressure system is 

Reγ0 

�t 
u 

n +1 − (β+ θ ) ∇ 

2 u 

n +1 + ∇p n +1 = f n +1 

+ 

1 ∑ 

q =0 

(
Re 

�t 
αq ̃  u 

n +1 
q + βq 

(∇ · τn −q − θ∇ · G 

n −q 
))

, (18) 

 · u 

n +1 + μ

∫ 
�

p n +1 d� = 0 . (19) 

or the constitutive equation we employ a hybrid backward

ifference and extrapolation (BDF/EX) scheme [23] . Consider a

ifferential equation of the form 

∂X 

∂t 
( X , t ) = F 1 ( X , t ) + F 2 ( X , t ) , (20) 

here F 1 ( X , t ) is explicitly known at all time steps up to t n +1 

nd F 2 ( X , t ) is known only at time steps up to t n . The 2 nd -order

DF/EX approximation of (20) at time t n +1 is given by 

γ0 X 

n +1 − ∑ 1 
q =0 αq X 

n −q 

�t 
= F 1 

(
X 

n +1 
)

+ 

1 ∑ 

q =0 

βq F 2 
(
X 

n −q 
)

(21) 

here γ 0 , αq and βq are multi-step coefficients as given for

IFS2/EX2. The resulting BDF2/EX2 semi-discrete constitutive 
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equation is (
1 + W e 

γ0 

�t 

)
τn +1 − W e 

(
τn +1 · ∇ u 

n +1 + 

(∇ u 

n +1 
)T · τn +1 

)
= 2 ( 1 − β) d 

n +1 + W e 

1 ∑ 

q =0 

(
αq 

�t 
τn −q − βq u 

n +1 · ∇ τn −q 
)

−W e 
α

( 1 − β) 

1 ∑ 

q =0 

βq 

(
τn −q 

)2 
. (22)

4.1.1. Semi-implicit scheme 

In order to improve stability we implement a semi-implicit

scheme for the constitutive equation by applying a fixed-point it-

eration within each time step. Setting ̃  τ0 = τn , we solve iteratively

the following BDF2/FPI semi-discrete system for ̃  τ i +1 
, (

1 + W e 
γ0 

�t 

)˜ τ i +1 − W e 

(˜ τ i +1 · ∇ u 

n +1 + 

(∇ u 

n +1 
)T · ˜ τ i +1 

)
= 2 ( 1 − β) d 

n +1 + W e 

( 

1 ∑ 

q =0 

(
αq 

�t 
τn −q 

)
− u 

n +1 · ∇ ̃

 τ i 

) 

−W e 
α

1 − β

(˜ τ i 
)2 

. (23)

until | ̃  τ i +1 − ˜ τ i | < δ, where δ is some chosen tolerance. Once the

tolerance is reached, typically after a handful of iterations, we set

τn +1 = ̃

 τ i +1 . 

This scheme was preferred to the simpler BDF/EX2 scheme

since the explicit nature of that scheme limited the maximum

attainable Weissenberg number. When the BDF2/FPI scheme was

used the maximum attainable Weissenberg number increased,

allowing converged results for We > 1 to be obtained. The addi-

tional computational effort required for the fixed-point iteration

is relatively small, so this is an economical method of achieving a

semi-implicit discretization of the elastic stress. 

4.2. Spatial discretisation 

For the spatial discretisation of the equations we implement

the spectral element method (SEM) which is based on the weak

formulation of the governing equations. We define trial and test

spaces 

 := 

{ 

v ∈ 

[
H 

1 (�) 
]2 | v = w on ∂�D 

} 

(24)

 := 

{ 

v ∈ 

[
H 

1 (�) 
]2 | v = 0 on ∂�D 

} 

(25)

where w is the velocity condition on the Dirichlet bound-

ary, ∂�D . In the case of the sphere benchmark problem

∂�D = 
− ∪ 
+ ∪ 
W ∪ 
C with w as defined in Section 3 . 

Given these spaces and given τ and G , the resulting weak form

of Eqs. (6) and (7) is 

Find u ∈ V and p ∈ L 2 0 (�) such that, 

Re 

∫ 
�

v · D u 

Dt 
d� + (β+ θ ) 

∫ 
�

∇ u :∇ v d� −
∫ 
�

p∇ · v d�

= 

∫ 
�

f · v d� −
∫ 
�

τ :∇v d�

+ θ

∫ 
�

G :∇v d� ∀ v ∈ W (26)

∫ 
�

q ∇ · u d� = −μ

∫ 
�

q d�

∫ 
�

p d� ∀ q ∈ L 2 0 (�) . (27)
i

.2.1. Spectral element method 

We discretise the physical domain, �, into K non-overlapping

pectral elements such that � = 

⋃ K 
k =1 �k so that an integral

ver the domain may be decomposed into contributions over

ach spectral element. These contributions may then be mapped

24,25] from each element �k onto a reference element, D , via

he Jacobian of the mapping, J k . Integrals in the weak formulation

re approximated using Gauss-Lobatto-Legendre (GLL) quadrature

ules. A spectral representation of the field variables is applied

ithin the reference element with interpolation with respect to

he GLL points 

 

k 
a ( ξ , η) = 

N ∑ 

i =0 

N ∑ 

j=0 

(
u 

k 
i j 

)
a 
h i ( ξ ) h j ( η) , (28)

p k ( ξ , η) = 

N−1 ∑ 

i =1 

N−1 ∑ 

j=1 

p k ˜ i j ̃
 h i ( ξ ) ̃  h j ( η) , (29)

here the subscript a denotes the component of the vector field

nd h i ( ξ ) and ̃

 h i ( ξ ) are the velocity and pressure basis functions,

espectively, defined by 

 i (ξ ) = − (1 − ξ 2 ) L ′ N (ξ ) 

N(N + 1) L N (ξi )(ξ − ξi ) 
, 0 ≤ i ≤ N, (30)

nd 

 

 i (ξ ) = − (1 − ξ 2 
i 
) L ′ N (ξ ) 

N(N + 1) L N (ξi )(ξ − ξi ) 
, 1 ≤ i ≤ N − 1 . (31)

n these expressions L N ( x ) is the Legendre polynomial of degree N ,

nd ξ p is the p th GLL point in any one grid direction. 

.3. Discretisation of DEVSS-G terms 

A spectral representation of the velocity gradient G within each

pectral element is constructed using the internal GLL nodes in

he same way as the treatment of the pressure. Using only the

nternal nodes means that G can be calculated in each element

ndependently using an L 2 -projection of the velocity gradient.

herefore, we do not need to construct the global matrix to

olve for G , thus reducing the computational effort required. This

reatment also means that G is discontinuous across elements.

hile improving the computational efficiency this has also been

ound [26] to improve stability and accuracy when used in other

umerical schemes. 

The spectral representation of G in element �k is given by 

 

k 
ab ( ξ , η) = 

N−1 ∑ 

i =1 

N−1 ∑ 

j=1 

(
G 

k 
i j 

)
ab ̃

 h i ( ξ ) ̃  h j ( η) , (32)

here ab denotes the component of the tensor and (G 

k 
i j 
) ab =

 

k 
ab 

(
ξi , η j 

)
. Multiplying (8) by an appropriate test function, φ ∈

 L 2 ( �)] 5 , integrating over the whole domain and applying domain

ecomposition we obtain 

 

K ∑ 

k =1 

∫ 
�k 

G : φ d�

) 

ab 

= 

( 

K ∑ 

k =1 

∫ 
�k 

( ∇u ) : φ d�

) 

ab 

. (33)

apping onto the parent domain, applying the spectral represen-

ation of G and using GLL quadrature yields a linear system which

ay be expressed locally (in element �k ) for each component, ab ,

n the form ˜ 

 

k G 

k 
ab = ̂

 d 

k 
ab (34)

here ˜ M 

k is the local pressure mass matrix and 

̂ d 

k 
ab 

is the local

ector containing the contribution from the ab component of the

elocity gradient at each GLL point. Solution of this linear system

ields the local values of G on each element, which are then used

n turn for the solution of the velocity-pressure system. 
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Fig. 1. Meshes T1–T4 used for simulations of start-up Poiseuille flow. Test points marked with a red dot at A, B and C. Each spectral element contains the local GLL-mesh 

for N = 8 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Comparison of numerical and analytical solutions at the chosen test point for start-up of axisymmetric Poiseuille flow of an Oldroyd B fluid with β = 

1 
9 
, Re = 1 , 

We = 1 . Parameters used are �t = 10 −3 , mesh T 1, L = 64 , N = 8 . 
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Fig. 3. Comparison of numerical and analytical solutions at the chosen test point for start-up of axisymmetric Poiseuille flow of an Oldroyd B fluid with β = 

1 
9 
, Re = 1 , 

We = 10 . Parameters used are �t = 10 −3 , mesh T 1, L = 64 , N = 8 . 

Table 1 

Time-averaged velocity error, E u , at the test point using DEVSS-G, βs = 1 , for axisym- 

metric start-up flow of an Oldroyd B Fluid, We = 1 , β = 

1 
9 
, Re = 1 , L = 64 . 

Mesh �t N = 4 N = 8 N = 12 N = 16 

T1 0 .01 3.0658 ×10 −3 3.8300 ×10 −4 2.6086 ×10 −4 2.0473 ×10 −4 

0 .001 2.6895 ×10 −3 4.8375 ×10 −5 9.3640 ×10 −6 7.6030 ×10 −6 

0 .0 0 01 2.6857 ×10 −3 4.6010 ×10 −5 7.4053 ×10 −6 6.1005 ×10 −6 

T2 0 .01 2.5098 ×10 −4 2.7530 ×10 −4 2.6250 ×10 −4 2.0469 ×10 −4 

0 .001 1.0347 ×10 −4 8.7187 ×10 −6 8.0995 ×10 −6 7.7975 ×10 −6 

0 .0 0 01 1.0297 ×10 −4 7.3983 ×10 −6 5.8806 ×10 −6 6.1266 ×10 −6 

T3 0 .01 3.4506 ×10 −3 4.2757 ×10 −4 3.0421 ×10 −4 3.0489 ×10 −4 

0 .001 2.9456 ×10 −3 5.0135 ×10 −5 1.0230 ×10 −5 9.5129 ×10 −6 

0 .0 0 01 2.9402 ×10 −3 4.7455 ×10 −5 8.0047 ×10 −6 7.3162 ×10 −6 

T4 0 .01 3.4725 ×10 −4 3.0445 ×10 −4 3.0533 ×10 −4 3.0443 ×10 −4 

0 .001 1.0810 ×10 −4 9.7587 ×10 −6 9.0657 ×10 −6 9.2622 ×10 −6 

0 .0 0 01 1.0637 ×10 −4 8.2214 ×10 −6 6.8879 ×10 −6 7.7592 ×10 −6 

 

 

 

 

a  

a  

e

τ  
4.4. Discontinuous Galerkin treatment of constitutive equation 

We solve the constitutive equation spatially in strong form at

each GLL point separately within each spectral element. This gives

rise to a 4 × 4 linear system to solve, with the entries of the

system being determined by the values of the velocity gradient
nd values of the elastic stress at previous time steps. The solution

t these points allows us to use the spectral representation on

ach element 

e 
ab ( ξ , η) = 

N ∑ 

i =0 

N ∑ 

j=0 

(
τ e 

ab 

)
i j 

h i ( ξ ) h j ( η) . (35)
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Fig. 4. Meshes M1–M4. Each spectral element contains the local GLL-mesh with N = 8 . 

Table 2 

Drag factor for uniform flow of an Oldroyd B fluid past a 

fixed sphere in a cylinder with Re = 0 . 01 and β = 

1 
2 

. Per- 

formed on mesh M1 with timestep, �t = 10 −4 using DEVSS- 

G. Results from simulations which reached the time limit 

but did not meet the stopping criterion in Eq. (54) are 

marked with an asterisk. 

We N = 15 N = 16 N = 17 N = 18 

0 .1 5 .906026 5 .906027 5 .906027 5 .906027 

0 .2 5 .808245 5 .808245 5 .808245 5 .808245 

0 .3 5 .694340 5 .694340 5 .694340 5 .694340 

0 .4 5 .586113 5 .586113 5 .586113 5 .586113 

0 .5 5 .491800 5 .491800 5 .491800 5 .491800 

0 .6 5 .413134 5 .413133 5 .413133 5 .413132 

0 .7 5 .349204 ∗ 5 .349213 5 .349213 5 .349212 

Table 3 

Drag factor for uniform flow of an Oldroyd B fluid past a fixed 

sphere in a cylinder with Re = 0 . 01 and β = 

1 
2 

. Performed on 

mesh M2 with timestep, �t = 10 −4 using DEVSS-G. Results 

from simulations which reached the time limit but did not 

meet the stopping criterion in Eq. (54) are marked with an as- 

terisk. 

We N = 13 N = 14 N = 15 N = 16 

0 .1 5 .906026 5 .906027 5 .906027 5 .906027 

0 .2 5 .808245 5 .808245 5 .808245 5 .808245 

0 .3 5 .694340 5 .694340 5 .694340 5 .694340 

0 .4 5 .586113 5 .586113 5 .586113 5 .586113 

0 .5 5 .491801 5 .491801 5 .491800 5 .491800 

0 .6 5 .413131 5 .413134 5 .413134 5 .413133 

0 .7 5 .349203 5 .349211 5 .349213 5 .349213 

0 .8 5 .298236 5 .298250 5 .298259 5 .298262 

0 .9 5 .258296 5 .258318 5 .258334 5 .258343 

1 5 .227584 5 .227611 5 .227635 5 .227653 

1 .1 5 .204528 ∗ 5 .204543 ∗ 5 .204586 ∗ 5 .204597 ∗

1 .2 5 .187791 ∗ 5 .188075 ∗ 5 .187858 ∗ 5 .188740 ∗

T  

w  

l  

a

 

i  

L  

t  

m  

o  

e  

t  

G  

Table 4 

Drag factor for uniform flow of an Oldroyd B fluid past a fixed 

sphere in a cylinder with Re = 0 . 01 and β = 

1 
9 

. Performed on 

mesh M2 with timestep, �t = 10 −4 using DEVSS-G. Results 

from simulations which reached the time limit but did not 

meet the stopping criterion in Eq. (54) are marked with an as- 

terisk. 

We N = 13 N = 14 N = 15 N = 16 

0 .1 5 .872271 5 .872271 5 .872271 5 .872271 

0 .2 5 .693800 5 .693800 5 .693800 5 .693800 

0 .3 5 .483275 5 .483275 5 .483275 5 .483275 

0 .4 5 .280605 5 .280604 5 .280604 5 .280604 

0 .5 5 .101474 5 .101472 5 .101471 5 .101471 

0 .6 4 .949510 4 .949507 4 .949505 4 .949504 

0 .7 4 .823299 4 .823296 4 .823292 4 .823289 

0 .8 4 .719717 4 .719711 4 .719705 4 .719700 

0 .9 4 .635359 4 .635348 4 .635335 4 .635326 

1 4 .567085 ∗ 4 .567059 ∗ 4 .567061 ∗ 4 .567092 ∗

1 .1 4 .515530 ∗ 4 .511213 ∗ 4 .512671 ∗ 4 .520344 ∗

Table 5 

Drag factor for uniform flow of an Oldroyd B fluid past a fixed 

sphere in a cylinder with Re = 0 . 01 and β = 

1 
2 

. Performed on 

meshes M3 and M4 with timestep, �t = 10 −4 using DEVSS-G. 

Results from simulations which reached the time limit but did 

not meet the stopping criterion in Eq. (54) are marked with an 

asterisk. 

We N = 13 N = 14 N = 15 N = 16 

Mesh M3 

0 .9 5 .258340 5 .258349 5 .258348 5 .258345 

1 5 .227636 ∗ 5 .227660 ∗ 5 .227668 5 .227666 ∗

1 .1 5 .204575 ∗ 5 .204618 ∗ 5 .204640 ∗ 5 .204649 ∗

1 .2 5 .187806 ∗ 5 .187870 ∗ 5 .187914 ∗ 5 .187959 ∗

Mesh M4 

0 .9 5 .258296 5 .258319 5 .258335 5 .258344 

1 5 .227584 ∗ 5 .227611 5 .227635 5 .227652 ∗

1 .1 5 .204530 ∗ 5 .204569 ∗ 5 .204586 ∗ 5 .204596 ∗

1 .2 5 .187791 ∗ 5 .188074 ∗ 5 .187878 ∗ 5 .188702 ∗

c  

t

4

 

o  

b  

t  

b  

b  

g  
he only coupling between elements is via the convection term,

hich we treat using a discontinuous Galerkin (DG) method al-

owing for solution of the system on both an element-by-element

nd GLL point-by-point basis. 

The discontinuous Galerkin (DG) method was first introduced

n the 1970s for use with the neutron transport equation by

esaint and Raviart [27] , but was eventually used for the simula-

ion of viscoelastic fluid flows by Fortin and Fortin [28] . In their

ethod, the stress approximation was allowed to be discontinu-

us across elements. This allowed the stress to be solved on an

lement-by-element basis which can substantially reduce compu-

ational costs. A further advantage, when compared to continuous

alerkin interpolations, is that the velocity-stress compatibility
ondition is satisfied easily. In the following description we follow

he presentation by Owens and Phillips [4] . 

.4.1. Derivation of DG treatment of convection term 

A streamline upwinded discontinuous Galerkin (DG) treatment

f the constitutive equation is utilised, which allows the stress to

e discontinuous across elements. The stress between elements

hen only interacts in operations involving shared elemental

oundaries. We reconsider the convective derivative, multiplying

y an appropriate stress test function S ∈ � = 

[
L 2 ( �) 

]5 
and inte-

rating over �. The weak form of the convective derivative may
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Fig. 5. Evolution of the drag factor for uniform flow of an Oldroyd B fluid past a fixed sphere in a cylinder with Re = 0 . 01 and β = 

1 
2 

performed on mesh M2, with timestep, 

�t = 10 −4 using DEVSS-G. The deviation from an approximate average value is computed. 
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∑

 

be written in the form ∫ 
�

( u · ∇ τ) : S d� = 

K ∑ 

k =1 

∫ 
�k 

( u · ∇ τ) : S d�k . (36)

Applying the divergence theorem to the first term on the right-

hand side, we obtain, 

K ∑ 

k =1 

∫ 
�k 

( u · ∇ τ) : S d�k = 

K ∑ 

k =1 

∫ 

k 

( n · u ) τ : S d
k 

−
K ∑ 

k =1 

∫ 
�k 

( u · ∇S ) : τ d�k . (37)

Consider a particular element, �k , and suppose that there is

a point, x , on the edge of that element, �̄k which is shared with

the edge of a neighbouring element, �̄l . Since stress is allowed to

be discontinuous across elements, the value of the elastic stress is

not necessarily the same at an element interface when evaluated

using approximations in adjoining elements. 
With this in mind, we denote by τe ( x ) the value of the elastic

tress at x ∈ �̄l and by τi ( x ) the value at x ∈ �̄k . We call these the

xternal and internal stress tensors, respectively. We now define 

= 

{
αDG τe + ( 1 − αDG ) τ i on 
−

k 
\ 
−, 

αDG τ i + ( 1 − αDG ) τe on 
+ 
k 

\ 
+ , 
(38)

or some upwinding parameter, αDG ∈ [0, 1], where αDG = 1

orresponds to a fully upwinded formulation. 

Substituting (38) into (37) , applying integration by parts a

econd time and using the divergence theorem on the last term

ith τ ≡ τi on 
k \ 
− we obtain 

K 
 

k =1 

∫ 
�k 

( u · ∇ τ) : S d�k = 

K ∑ 

k =1 

∫ 
�k 

( u · ∇ τ) : S d�k 

+ αDG 

K ∑ 

k =1 

∫ 

−

k 
\ 
−

( n · u ) � τ� : S d
k 

+ ( 1 − αDG ) 

K ∑ 

k =1 

∫ 

+ 

k 
\ 
+ 

( n · u ) � τ� : S d
k (39)
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Fig. 6. Axial components of the polymeric stress along the wall of symmetry for uniform flow of an Oldroyd B fluid past a fixed sphere in a cylinder with Re = 0 . 01 and 

β = 

1 
2 

performed on mesh M2, with timestep, �t = 10 −4 using DEVSS-G. 
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here � τ� ≡ τe − τ i represents the jump in stress between el-

ments. By replacing the weak treatment of the convected

erivative in the constitutive equation with (39) we obtain the DG

ormulation. 

.4.2. Discretisation of convective term by DG method 

Up to this point, the discretisation of the constitutive equation

as been performed in strong form. The DG method requires

ntegration in order to create the jump term, so we require a way

o incorporate this change without impacting on the previously

escribed calculation of elastic stress. This can be achieved if we

alculate the DG convection term separately. First, we introduce

n intermediate variable 

 = u · ∇ τ. (40) 

iven that, at any particular timestep, we treat the convection

erms explicitly, we calculate an approximation of ̂ τ for a given

elocity and elastic stress field. 

Setting αDG = 1 in (39) we note that we may calculate ̂ τ on

n element-by-element basis. Dropping the summation over all

lements, we write the SEM approximation of each component,

b , of the left-hand side of the DG system, locally, in terms of the

atrix-vector multiplication ∫ 
�k ̂

 τ( x ) : S d�

)
ab 

= 

(∫ 
D ̂

 τk 
( ξ , η) : S det J k d ξd η

)
ab 

≈ M 

k ̂ τk 
ab , (41) 

here entries corresponding to a global inflow node must be set

o zero and removed from the linear system. 

Next, each non-zero component of the integral on the right-

and side of (39) may be expressed locally by means of the

atrix-vector multiplication ∫ 
�k 

( u · ∇ τ) : S d�

)
ab 

= 

(∫ 
D 

(
u 

k · ∇ τk 
)

: S det J k d ξd η
)

ab 

≈ ̂ E k τk 
ab , 

(42) 

here 

̂ E k 
)

kl,i j 
= 

(
u k r 

)
kl 

(
E k r 

)
i j,kl 

+ 

(
u k z 

)
kl 

(
E k z 

)
i j,kl 

. (43) 

his leaves only a term for the boundary integral, which may be

xpressed by 
∫ 

−

k 
\ 
−

( n · u ) � τk � : S d


)
ab 

= 

( 

4 ∑ 

m =1 

∫ 
D −m \ 
−

(
n 

k m · u 

k 
)
� τk � : S det J k m dξ

) 

ab 

≈
(
B k DG 

)
ab 

, (44) 

here the sum over m refers to the four edges of the parent

lement and J k m is the Jacobian of the edge mapping from edge

 of element �k to the parent edge [ −1 , 1 ] . The entries of (B k DG ) ab 

re given by 

(
B k DG 

)
ab 

]
i j 

= 

∑ 

( ξi ,η j ) ∈ D −m 

((
u k z 

)
i j 

(
n k m z 

)
i j 

+ 

(
u k m r 

)
i j 

(
n k m r 

)
i j 

)
×� τ k 

ab � i j det 
(
J k m 

)
m i j 

w m i j 
(45) 

ith 0 ≤ i, j ≤ N and where m ij is the 1-D GLL edge point cor-

esponding to the 2-D GLL grid point ( ξ i , ηj ). Note that the value

f 
[(

B k DG 

)
ab 

]
i j 

is zero unless the GLL node ij lies on an elemental

nflow interface. 

The DG contribution to each component of ̂  τk 
ab on each element

k may then be calculated by solving the following linear system 

 

k ̂ τk 
ab = ̂

 E k τk 
ab + 

(
B 

k 
DG 

)
ab 

. (46) 

his system is trivial to solve for the choice of stress test function

ince the matrix M 

k is diagonal. The contribution of each compo-

ent is then included on the appropriate right-hand side of the

onstitutive equation. When using the semi-iterative scheme, the

G contribution is updated at every iteration. 

.5. Global linear system 

Summing contributions over all elements and accounting for

hared boundaries the global matrix for the velocity-pressure sys-

em can be assembled. The global matrix may be written in block

orm, with matrices for each component of the co-ordinate system,

 , associated with operators within the governing equations. The

esulting block system is 
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Fig. 7. Evolution of the drag factor for uniform flow of an Oldroyd B fluid past a fixed sphere in a cylinder with Re = 0 . 01 and β = 

1 
2 

. Performed on meshes M3 and M4, 

N = 16 , with timestep, �t = 10 −4 using DEVSS-G. The deviation is computed by finding an approximate average value. 

 

 

 

̂
 

f̂  
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⎛ ⎜ ⎝ 

Reγ0 

�t 
M r + β( A r + A θ ) 0 −( B r + B θ ) 

0 

Reγ0 

�t 
M z + βA z −B z 

−( B r + B θ ) 
T −B 

T 
z μC 

⎞ ⎟ ⎠ 

⎛ ⎜ ⎝ 

u 

n +1 
r 

u 

n +1 
z 

p 

n +1 

⎞ ⎟ ⎠ 

= 

⎛ ⎝ ̂

 f n +1 
r ̂ f n +1 
z ̂ g 

n +1 

⎞ ⎠ (47)

where M a are the mass matrices, A a the stiffness matrices, B a 
the gradient matrix, B T a the divergence matrices and C the matrix

associated with the integral of pressure. The components of the

right-hand side are given by 

 f n +1 
r = M r f 

n +1 
r + 

Re 

�t 

1 ∑ 

q =0 

αq M r ̃  u 

n +1 
r q 

+ 

1 ∑ 

q =0 

βq 

(
E r 

(
τn −q 

rr + θG 

n −q 
rr 

)
+ E z 

(
τn −q 

rz + θG 

n −q 
rz 

)
+ E θ

(
τn −q 

θθ
+ θG 

n −q 

θθ

))
, (48)
s  
 

 

n +1 
z = M z f 

n +1 
z + 

1 ∑ 

q =0 

(
Re 

αq 

�t 
M z ̃  u 

n +1 
z q 

+ βq 

(
E r τ

n −q 
rz + E z τ

n −q 
zz 

))
, (49)

 

 

n +1 = 0 . (50)

nown boundary conditions are incorporated into the right-hand

ide of (47) where required. 

We solve the linear system using the PARDISO sparse direct

olver contained in the Intel MKL library [29] . Since the geometry

oes not change between time steps the matrices remain constant

hich allows us to pre-compute and store the LDL T decomposition

f the global matrix, using only forward and back substitution

or the subsequent solves. In the axisymmetric geometry, where

emory requirements are not prohibitively expensive, the use of

n efficient direct solver is preferable to the use of an iterative

olver. The dominant computational cost of performing the factor-

zation of the global matrix, O(M 

3 ) for a system of size M , needs

nly be performed once and the cost of each subsequent time

tep is significantly less at O(M 

2 ) . For a fully three-dimensional
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Fig. 8. Axial stress components along the wall of symmetry for uniform flow of an Oldroyd B fluid past a fixed sphere in a cylinder with Re = 0 . 01 and β = 

1 
2 

. Performed 

on mesh M4, with timestep, �t = 10 −4 using DEVSS-G. 
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roblem the use of a direct solver would be impractical due to

he memory required to store such a factorisation. In this case a

ulti-level iterative method would be more economical. 

. Results 

.1. Start-up of Poiseuille flow 

As an initial benchmark problem we consider Poiseuille flow in

 cylindrical pipe of length L and radius H . For an Oldroyd B fluid

here is an analytical solution for the start-up of Poiseuille flow

erived by Waters and King [30] . The non-trivial component of

elocity at time t is given (in our non-dimensionalisation, adapted

rom [31] ) by 

 z ( r, t ) = 

(
1 − r 2 

)
− 8 

∞ ∑ 

n =1 

J 0 ( rZ n ) 

J 1 ( Z n ) Z 
3 
n 

exp 

(
−αn t 

2 El 

)
G n ( t ) , (51) 

here Z n is the n th real and positive root of the Bessel function of

ero order, J 0 , El = 

We 
Re is the elasticity number, 

 n ( t ) = cosh 

(
βn t 

2 El 

)
+ 

[
1 + Z 2 n El ( β − 2 ) 

βn 

]
sinh 

(
βn t 

2 El 

)
, (52) 

nd 

n = 1 + ElβZ 2 n , βn = 

[
( 1 + ElβZ n ) 

2 − 4 ElZ 2 n 

]1 / 2 
, (53) 

ith β the viscosity ratio. 

While the planar solution to this problem has been widely

sed as a validation tool for numerical schemes, the axisymmetric

ersion has received less attention with the only statement of

he stress components of the problem to be found in the paper

y Ryan and Dutta [32] who derived an expression for the shear

tress. We make comparisons primarily with the velocity for the

urposes of validation, although we compare our stress solution

ith an approximate analytical solution for the elastic stress

y combining knowledge of the exact velocity solution with a

umerical approximation of the temporal derivatives of elastic

tress. We are able to compute the velocity and its gradients, so

e make use of a BDF scheme to compute the elastic stress using

reviously computed values (and the initial zero value to start). 

We fix the length of the pipe to be L = 64 and the radius to

e H = 1 . We impose zero initial conditions for stress and veloc-

ty and apply the analytical solution for velocity at inflow and
utflow and for stress only at inflow. No-slip and no-penetration

onditions are imposed on the wall and symmetry wall conditions

re applied at the centre of the cylinder, which is the bottom of

ur computational domain. We present the evolution of u r , τ rz 

nd τ zz at the test points marked C (centre line) and A (top wall),

espectively, in Fig. 1 . We choose Re = 1 and β = 

1 
9 and consider

 e = 1 , 10 . For the computation we consider four meshes, T1–T4,

hown in Fig. 1 and consider N = 4 , 8 , 12 and 16 . We set our

emporal timestep to be �t = 10 −3 and stop the stimulation after

0 time units. 

Fig. 2 shows the computed non-zero values of velocity (point

) and stress (point C) at their respective test points (marked in

ig. 1 ) at W e = 1 for moderate N on the mesh T1. There is excel-

ent agreement with the velocity and only the computed value of

zz overshoots the analytical solution in a noticeable manner. On

 single element, mesh T1, with N = 8 , L = 16 and �t = 10 −3 , the

ifference between our solution and the computed analytical solu-

ion at the first peak is −3 . 7764 × 10 −5 ( −0 . 00154% ) for velocity,

.0708 (0.88%) for τ zz and 0.0086 (0.4%) for τ rz . The largest error

s in the axial component of stress and is in line with results for

he planar case [33] . 

Fig. 3 shows the computed non-zero values of velocity and

tress at their respective test points at W e = 10 , which was chosen

o test the stability of the scheme at higher values of We . Again

here is good agreement for the velocity, although the error is now

ore pronounced for the stress with the numerical approximation

lightly undershooting the analytical solution at the first turning

oint. 

Table 1 shows the time-averaged velocity error at W e = 1 over

he whole domain for each mesh for different values of N . Fo-

using on the single element results at high N , the second-order

onvergence of the temporal scheme is clear when decreasing the

imestep from 0.01 to 0.001. Similarly, fixing the timestep at 0.001

e see an improvement with increasing N . 

We further note that the length of the channel, L , has an

mpact on the stability of the numerical solution. We chose L = 64

o eliminate these, but for shorter channel lengths, we see similar

ehaviour to that observed by Van Os and Phillips [33] . Further,

ne can see in Table 1 that increasing the number of downstream

lements (from mesh T1 to mesh T3) does not result in any

mprovement in accuracy. In fact, increasing the number of down-

tream elements for shorter channel lengths also impacted on the
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Fig. 9. Comparison of results for the benchmark flow past a fixed sphere in a cylinder for an Oldroyd B fluid with the literature. Values for present work are taken from 

Tables 6 and 7 . 

Table 6 

Drag factor for uniform flow of an Oldroyd B fluid 

past a fixed sphere in a cylinder with Re = 0 . 01 , 

β = 

1 
9 

. Comparison of results taken from Table 4 

and additional simulations performed on mesh M4 

at N = 16 . Results from simulations which reached 

the time limit but did not meet the stopping crite- 

rion in Eq. (54) are marked with an asterisk. Results 

which subsequently diverged are marked with a (D), 

these values are calculated at the timestep with the 

minimum value of S n . 

Present Work Bodart & Crochet [10] 

We Drag Factor We Drag Factor 

0 5 .9478 0 5 .9475 

0 .1 5 .8723 0 .1318750 5 .8224 

0 .2 5 .6938 0 .2078125 5 .6775 

0 .3 5 .4833 0 .3078125 5 .4666 

0 .4 5 .2806 0 .4078125 5 .2655 

0 .5 5 .1015 0 .5078125 5 .0885 

0 .6 4 .9495 0 .6078125 4 .9388 

0 .7 4 .8233 0 .7078125 4 .8147 

0 .8 4 .7197 0 .8078125 4 .7131 

0 .9 4 .6353 0 .9078125 4 .6306 

1 4 .5670 ∗ 1 .0078125 4 .5642 

1 .1 4 .5121 ∗ 1 .1078125 4 .5112 

1 .2 4 .4680 ∗ 1 .2078125 4 .4697 

1 .3 4.4252(D) 1 .3078125 −

 

 

 

 

 

 

 

Table 7 

Drag factor for uniform flow of an Oldroyd B fluid past a fixed sphere in a 

cylinder with Re = 0 . 01 , β = 

1 
2 

. Comparison of results taken from Tables 3 

and 5 . Results from simulations which reached the time limit but did not 

meet the stopping criterion in Eq. (54) are marked with an asterisk. Re- 

sults which subsequently diverged are marked with a (D), these values are 

calculated at the timestep with the minimum value of S n . 

We Present work Chauvière & Owens [5] Lunsmann et al. [9] 

0 5 .9478 5 .9475 5 .9472 

0 .1 5 .9060 − −
0 .2 5 .8082 − −
0 .3 5 .6943 − 5 .6937 

0 .4 5 .5861 − −
0 .5 5 .4918 5 .4852 −
0 .6 5 .4131 5 .4009 5 .4123 

0 .7 5 .3492 5 .3411 −
0 .8 5 .2983 5 .2945 −
0 .9 5 .2583 5 .2518 5 .2572 

1 5 .2276 5 .224 −
1 .1 5 .2046 ∗ 5 .2029 −
1 .2 5 .1887 ∗ 5 .1842 5 .1865 

1 .3 5.1765(D) 5 .1421 −
1 .4 − 5 .1240 −
1 .5 − − 5 .1529 
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S  
stability of the solution, which also agrees with the observations

of Van Os and Phillips [33] . Conversely, increasing the number of

cross-stream elements (from mesh T1 to mesh T2) does result in

an increase in accuracy and does not impact on stability. 

5.2. Flow past a fixed sphere 

We now consider the benchmark problem of flow past a fixed

sphere as described in Section 3 with Re = 0 . 01 and consider

β = 

1 
9 and β = 

1 
2 and increase We in increments of 0.1 until we

can no longer compute a solution. Calculations are performed on
eshes M1–M4, (see Fig. 4 ). Mesh M1 is a symmetric mesh fore

nd aft of the sphere comprising 26 elements while M2 features

dditional refinement in the wake of the sphere along the axis

f symmetry. Meshes M3 and M4, which derive from mesh M2,

re used for computations at values of We near the maximum

ttainable value and feature additional refinement radially out-

ards from the sphere and in the wake. We fix �t = 10 −4 and

erform refinement with N for each of these meshes. Note that

he geometry is represented precisely for all meshes through an

xact parametrisation the circular boundary. 

The numerical algorithm is terminated when S n < ε where 

 

n = 

1 

�t 

√ 

‖ p n − p n −1 ‖ 2 
L 2 ( �) 

+ ‖ u 

n − u 

n −1 ‖ 2 
H 1 ( �) 

+ ‖ τn −τn −1 ‖ 2 
L 2 ( �) 

‖ p n ‖ 2 
L 2 ( �) 

+ ‖ u 

n ‖ 2 
H 1 ( �) 

+ ‖ τn ‖ 2 
L 2 ( �) 

(54)
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Fig. 10. Components of elastic stress along the axis of symmetry for uniform flow of an Oldroyd B fluid past a fixed sphere in a cylinder. Model parameters β = 0 . 5 , 

Re = 0 . 01 . 
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nd ε is a threshold value, typically 10 −7 , or when a set time limit

f 40 is reached, i.e. n �t > 40. In the case where the time limit

s reached we will treat the final timestep as the steady state

esult, but will mark values obtained from such simulations with

n asterisk in our tables of results. 

The drag on the sphere is given by 

 = 2 πR 

2 
S 

∫ π

0 

((
p − 2 β∇ u zz − τzz 

)
cos θ

+ 

(
β( ∇ u rz + ∇ u zr ) + τrz 

)
sin θ

)
sin θdθ . (55) 

nd the drag factor is calculated using (1) in order to draw com-

arison with other results in the literature. As an initial validation

xercise we calculated the drag factor for steady-state Stokes flow

ast a sphere and obtained a converged value of 5.9474, which is

n agreement with results in the literature [9,34,35] . 

.2.1. Oldroyd B 

We begin by examining the drag results for the Oldroyd B

odel. Performing refinement with respect to N on mesh M1 we

each a maximum attainable Weissenberg number of W e = 0 . 7

or β = 0 . 5 , with results shown in Table 2 . Note that the result
or W e = 0 . 7 at N = 15 failed to meet the tolerance set on the

topping criterion in Eq. (54) within the prescribed time limit.

his means that the velocity, pressure or stress fields had not

onverged to steady state, although the computation had not di-

erged. In this case it is clear that the stress field had not reached

 steady state. Increasing N resolves this problem for this value of

e . However, we are unable to reach higher We for all simulations

espite further p -refinement. 

In Table 3 the drag factor is presented using similar refinement

n mesh M2 and are able to achieve results up to W e = 1 . 2 . A

teady state result which met our stopping criterion was not

ttained for We > 1. The additional refinement in the wake allows

he method to reach a higher attainable We compared to mesh M1.

his agrees well with other findings in the literature where addi-

ional refinement in the wake of the sphere was also found to be

ecessary in order to increase the maximum attainable We . Table 4

resents the drag factor on M2 for β = 

1 
9 . We obtain steady state

esults which meet the stopping criterion for 0 ≤ We ≤ 0.9. For

e > 0.9, a steady state approximation was not obtained. 

Despite not reaching a steady state according to our stopping

riterion, these results appear positive. However, near the maxi-

um attainable We , the drag is slowly diverging with time. Focus-
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Fig. 11. Components of elastic stress along the axis of symmetry for uniform flow of an Oldroyd B fluid past a fixed sphere in a cylinder. Model parameters We = 1 , Re = 0 . 01 . 

Table 8 

Comparison of number of degrees of freedom. An estimate of the degrees of freedom 

used for each field variable is included. 

K N u p τ G Total 

31 12 8712 3751 17424 18755 48642 

31 16 15584 6975 31168 34875 88602 

52 16 26176 11700 52352 58500 148728 

Bodart & Crochet ∼70 0 0 ∼10 0 0 ∼550 0 0 – 62623 

Chauvière & Owens, N = 8 . 13314 4900 26628 – 44842 

Adaptive SUPG-EE. ∼80 0 0 ∼2400 ∼160 0 0 – 26273 

Lunsmann et al. ∼170 0 0 ∼1500 ∼340 0 0 – 51354 
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N  
ing on β = 

1 
2 , Fig. 5 (a) shows that the computed drag oscillates

with increasing amplitude at W e = 1 . 1 and 1.2 away from a steady

value in time, with the increase in amplitude at W e = 1 . 2 being

most pronounced as can be seen clearly in Fig. 5 (b) where the de-

viation of the drag factor from the approximate centre of oscilla-

tion is shown. Furthermore, as shown in Fig. 5 (c) and (d), the am-

plitude of the oscillations increases with increasing N due to the

inability to resolve the stress in the wake or the thin stress bound-

ary layer on the sphere nearest the cylindrical wall. This is con-
rmed by examining the components of elastic stress which con-

ribute to the drag, shown in Fig. 6 , at the final timestep of the

imulation, for W e = 1 . 1 and 1.2. This shows that the dominant

ource of the numerical breakdown near the surface of the sphere,

ost likely due to the inability to resolve the thin boundary layer

hat develops. 

To investigate if this can be resolved with further mesh refine-

ent, the simulations are repeated on meshes M3 and M4. At fixed

 and relative to mesh M2, mesh M3 increases the number of
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Fig. 12. Comparison of τ zz at We = 1 . 2 , β = 

1 
2 

with results in the literature. 
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Table 9 

Drag factor for flow past a fixed sphere in a cylinder for a Giesekus fluid at Re = 

0 . 01 . Performed with timestep, �t = 10 −4 using DEVSS-G, βs = 1 . Collected from 

Tables of results within Section 5.2.2 . 

β = 

1 
9 

β = 

1 
2 

We α = 0 . 001 α = 0 . 01 α = 0 . 1 α = 0 . 001 α = 0 . 01 α = 0 . 1 

0 .1 5 .85454 5 .71976 5 .20328 5 .89599 5 .82188 5 .60472 

0 .2 5 .66254 5 .43594 4 .58572 5 .79023 5 .66614 5 .24331 

0 .3 5 .44242 5 .16094 4 .20120 5 .67023 5 .51530 5 .02777 

0 .4 5 .23256 4 .91556 3 .91824 5 .55706 5 .38097 4 .86667 

0 .5 5 .04752 4 .70415 3 .69245 5 .45841 5 .26557 4 .73752 

0 .6 4 .89028 4 .52447 3 .50490 5 .37568 5 .16781 4 .63034 

0 .7 4 .75903 4 .37213 3 .34538 5 .30777 5 .08520 4 .53948 

0 .8 4 .65044 4 .24254 3 .20757 5 .25277 5 .01511 4 .46132 

0 .9 4 .56096 4 .13154 3 .08716 5 .20863 4 .95519 4 .39332 

1 4 .48740 ∗ 4 .03564 2 .98105 5 .17347 4 .90346 4 .33360 

1 .1 4 .42836 ∗ 3 .95202 ∗ 2 .88688 5 .14568 ∗ 4 .85834 4 .28074 

1 .2 − − 2 .80282 5 .12387 ∗ 4 .81854 4 .23365 

1 .3 − − 2 .72738 ∗ − 4 .78314 4 .19142 

1 .4 − − 2 .65936 ∗ − 4 .75133 ∗ 4 .15336 

1 .5 − − − − 4 .72258 ∗ 4 .11888 

1 .6 − − − − − 4 .08750 

1 .7 − − − − − 4 .05881 

1 .8 − − − − − 4 .03250 

1 .9 − − − − − 4 .00827 

2 − − − − − 3 .98588 

m  
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t  
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t  

B  
egrees of freedom normal to the sphere surface. Mesh M4 in-

reases the number of degrees of freedom tangent to the sphere

urface. Table 5 shows the results at values of We leading to 1.3.

e fail to reach a steady state according to our stopping crite-

ion for all values of N above W e = 1 and are unable to reach

 e = 1 . 3 . The value of the drag we compute is only subtlely dif-

erent from that computed on mesh M2. However on Mesh M 4, as

ig. 7 (a) shows, the drag is no longer diverging over time at We

1.2. While the simulation broke down at W e = 1 . 3 , we find that

he drag is oscillating around a value of 5.1765 before diverging. As

an be seen from Fig. 7 (b), the deviation of the drag over time on

esh M3 shows very little improvement over mesh M2 and we do

ot see any apparent benefit from its use over mesh M2 in terms

f progressing the simulations in time or in the resolution of the

tress in the boundary layer at the top of the sphere nearest the

ylindrical wall. 

Mesh M4, however, yields a reduction in the oscillations in the

rag factor and yields some notable improvements, suggesting that

e had lacked sufficient resolution tangent to the sphere’s surface.

urther, Fig. 7 (c) and (d) show that increasing N no longer leads

o an increase in the amplitude of the oscillations. Note that the

xis range is fixed for the W e = 1 . 1 and W e = 1 . 2 plots to allow a

irect comparison. We no longer see the dramatic increase in the

mplitude of the oscillations when increasing We from 1.1 to 1.2

s with mesh M2. The amplitude of the oscillation for W e = 1 . 1

s reducing over time and the drag appears to be converging,

uggesting that the simulation would remain stable over a larger

ime limit. At W e = 1 . 2 , increasing N leads to a reduction in the

mplitude of the oscillations but with the varying amplitude it

s not so clear that the simulation would remain stable with an

ncreased time limit. However, the improvement over the other

eshes is clear, highlighting the importance of spatial refinement

n the appropriate manner even with high-order methods. 

Fig. 8 presents profiles of the components of the elastic stress

hich contribute to the drag at W e = 1 . 1 and W e = 1 . 2 computed

n mesh M4 for increasing N at the final timestep of the simu-

ation. Note that, unlike on the surface of the sphere, the stress

omponents in the wake are not fully resolved on this or any of

ur meshes and convergence with N has not been attained. 

Results obtained on mesh M4 are used to make comparisons

ith the literature in Tables 6 and 7 and Fig. 9 . Excellent agree-
 i  
ent for the drag factor is found with Chauvière and Owens

5] for β = 0 . 5 and Bodart and Crochet [10] for β = 

1 
9 . The limiting

alue of We for both β = 

1 
9 and β = 

1 
2 lies between 1.2 and 1.3.

his agrees with the findings in these papers. 

Plots of the stress along the axis of symmetry and surface of

he sphere are shown in Fig. 10 for β = 0 . 5 as a function of We

nd in Fig. 11 for W e = 1 as a function of β . A sharp increase in

he axial stress on the surface and in the wake of the sphere and

n the radial stress on the surface of the sphere is found as We

ncreases. Additionally, the overshoot in the axial stress extends

urther downstream as We increases, particularly from 1.1 to 1.2.

his suggests that the breakdown in simulations after W e = 1 . 2 is

ost likely due to the inability of the approximation to capture

he stress gradients around the sphere and in the wake region.

oth Yurun [12] and Chauvière and Owens [5] suggest that there

s a physical instability near W e = 1 . 3 at β = 0 . 5 (Yurun suggests
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Fig. 13. Components of elastic stress along the axis of symmetry for Giesekus fluid flow past a fixed sphere in a cylinder. Model parameters β = 0 . 5 , Re = 0 . 01 and We = 1 . 

Numerical parameters, �t = 10 −4 , N = 16 on mesh M2 using DEVSS-G with βs = 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n  

p  

a  

p  

o  

f  

c

 

t  

n  

d  

g  

r  

a  

i  

c  

 

r  

h  

o  

(  
it lies somewhere between 1.26 and 1.3) for the Oldroyd B model

- our results seem to support this. With decreasing β we see

that while the axial stress on the surface of the sphere is further

enhanced, the change in the wake of the sphere is minimal, which

explains why our simulations produce very similar maximum

achievable We and if sufficient mesh refinement is used to resolve

the boundary layer on the surface of the sphere, it is the stress in

the wake near the rear stagnation point which is the limiting fac-

tor for our computations. As Yurun [12] points out, this is where

the fluid undergoes a sudden change from shearing to extensional

behaviour. 

A comparison of τ zz with several results in the literature

[5,12,36] for W e = 1 . 2 , β = 0 . 5 is shown in Fig. 12 . Very good

agreement is obtained along the surface of the sphere, but there is

a lack of close agreement in this component of stress in the wake.

Note that the present method captures a very sharp gradient at

the rear stagnation point (see the inset in Fig. 12 ). 

Table 8 provides a comparison of the numbers of degrees of

freedom required by the method described in this paper with

those of Bodart and Crochet [10] , Lunsmann et al. [9] and Chau-

vière and Owens [5] . It should be noted that while the total
umber of degrees of freedom for the method described in this

aper appears to be high, the unknowns associated with the stress

nd velocity gradient tensors are decoupled from the velocity and

ressure unknowns and are not determined through the solution

f the global linear system. This means that only the degrees of

reedom associated with velocity and pressure make a substantial

ontribution to the computational effort required. 

As with the other authors, convergence of the axial stress in

he wake with mesh or polynomial refinement for W e = 1 . 2 has

ot been demonstrated at present. The lack of convergence may be

ue to a number of reasons including an inability to resolve steep

radients due to the substantial additional computational resources

equired or the breakdown of the axisymmetric assumption for

 value of We in this range. Sahin [37] found three-dimensional

nstabilities in the wake for the flow of an Oldroyd-B fluid past a

onfined cylinder. This has been confirmed by Damanik et al. [38] .

Any further attempts to resolve the stress gradients would

equire additional refinement using a combination of adaptive

 -refinement, using of hanging nodes, and adaptive p -refinement

n an element-by-element basis. This would allow very high-order

 N > 16) spectral elements to be used in regions that require
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Fig. 14. Components of elastic stress along the axis of symmetry for Giesekus fluid flow past a fixed sphere in a cylinder. Model parameters β = 0 . 5 , Re = 0 . 01 and α = 0 . 1 . 

Numerical parameters, �t = 10 −4 , N = 16 on mesh M2 using DEVSS-G with βs = 1 . 
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teep gradients to be resolved and low-order spectral elements

lsewhere. 

.2.2. Giesekus 

In this section we present results for the Giesekus model in

rder to provide benchmark results for others to use as a basis for

omparison and also to investigate the influence of the mobility

arameter on the drag. We consider values of the mobility param-

ter α = 0 . 001 , 0.01 and 0.1. Table 9 presents the drag factor for 0

We ≤ 2. There is a clear decrease in the drag factor at equivalent

e and β values when compared to the Oldroyd B model. The drag

eduction can be explained by the shear thinning behaviour of the

iesekus model. This reduces the strength of the stress boundary

ayer on the surface of the sphere nearest the wall and accounts

or the decrease in drag in comparison to the Oldroyd B model. 

At β = 

1 
2 , an increase in the mobility parameter results in a far

igher attainable Weissenberg number than the Oldroyd B model.

n fact we could attain converged results for We > 2 when α = 0 . 1 .

owever, for β = 

1 
9 , the attainable Weissenberg number is only

arginally higher at 1.4 compared to 1.1. This may at first appear

trange, as the behaviour in the wake of the sphere is reduced

y the extensional behaviour of the Giesekus model, and yet the
imulation still breaks down. One possible explanation is that the

xtensional viscosity, while remaining finite, experiences a high

ate of increase in the transition (under increasing elongation rate)

o the limiting value. The rate of increase of the extensional vis-

osity decreases with increasing α and β , allowing the simulations

t α = 0 . 1 and β = 0 . 5 to converge at higher values of We . 

Fig. 13 presents plots of the elastic stress components along

he axis of symmetry and surface of the sphere at W e = 1 and

= 0 . 5 with increasing α. Here we see the effect of the decreased

xtensional viscosity in the reduction of the axial stress in the

ake of the sphere. The reduction in the axial stress from the

ldroyd B model to Giesekus with α = 0 . 001 is minimal in the

ake. It is more pronounced at α = 0 . 01 and very prominent at

= 0 . 1 . This supports the suggestion above that the behaviour

f the axial stress, resulting from extensional properties of the

odel, enables higher Weissenberg numbers to be attained. 

Fig. 14 presents the same plots as above but this time for

= 0 . 5 , α = 0 . 1 and increasing We . This highlights the role of

he Weissenberg number in the growth of the axial stress in

he wake of the sphere. At W e = 2 the maximum axial stress

s approximately half that for the Oldroyd B value at W e = 1
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where simulations begin to break down. We speculate that further

increasing of We with these values of α and β will lead to an

increase in the axial stress until the stress gradients are too sharp

to be captured by polynomial refinement and the simulation will

break down, similar to the others. 

6. Conclusions 

We have presented a DG/DEVSS-G spectral element method for

axisymmetric viscoelastic flows and presented a comprehensive

set of results on the benchmark problem of flow past a sphere.

This axisymmetric problem is solved numerically and convergence

is demonstrated with respect to polynomial order. Increased

h -type convergence is also considered by increasing the number

of elements. The method allows high resolution modelling of vis-

coelastic flows and the numerical approximation of the drag factor

that agree closely with the available results in the literature. We

have also considered the Giesekus model for a range of mobility

parameter values and present them with the intention that other

researchers may validate against and make comparison with our

results. 

For the Oldroyd B model we have found excellent agreement

with the results available in the literature for the drag experienced

by the sphere. We have found that a combination of polynomial

enrichment and mesh refinement is required to attain results for

Weissenberg numbers greater than 1 and that, above this value,

the drag becomes increasingly oscillatory due to the difficulty

in capturing the stress at a steady state. The high resolution of

the spectral element method allows for detailed investigation

of the behaviour of the stress fields in the wake of the sphere

and provides additional evidence that the numerical breakdown

is, in part, caused by an inability to capture the high gradients

in the axial stress present in this region of elongational flow.

It is reasonable to suspect that the unphysical behaviour of the

Oldroyd B model may be the root of the problem. However, the

problem may also be related to the axisymmetric flow assumption

since three-dimensional simulations for the Oldroyd-B fluid past

a confined cylinder indicates three-dimensional instabilities in the

viscoelastic wakes [37,38] . 

For the Giesekus model, we find that there is a reduction in

drag experienced by the sphere when compared to the Oldroyd

B model at equivalent We and β . This is explained by the shear

thinning properties of the model. Additionally, we have found

that an increase in the mobility parameter leads to higher attain-

able Weissenberg numbers, but a breakdown in the numerical

simulation is still present at We < 2 for α < 0.1. This suggests

that the infinite extensional viscosity behaviour of the Oldroyd

B model is not the sole cause of numerical breakdown and that

other factors must be considered. For example, the fixed-point

iteration for updating the stress (see (23) ) is not a fully implicit

treatment of these terms in time and so this may be a source of

numerical instability. We have found that the high gradients in

the axial stress are still present in the wake of the sphere and that

growth with increasing We is delayed by increasing the mobility

parameter. Ultimately, it appears that numerical breakdown with

increasing We for methods using polynomial basis functions in this

benchmark problem is inevitable for the Giesekus model despite

the favourable extensional properties. 
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