
i 
 

Nicotinamide Adenine Dinucleotide biosynthesis 

enzymes in rheumatoid arthritis 

 

 

Thesis submitted in accordance with the requirement of Cardiff 

University for the degree of Doctor in Medicine by 

 

Abdul Nazeer Moideen 

 

October 2016 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 
 

DECLARATION 
 
This work has not been submitted in substance for any other degree or award at this 
or any other university or place of learning, nor is being submitted concurrently in 
candidature for any degree or other award. 
 
 
Signed ………………………………………… (candidate) Date………………………... 
 
 
STATEMENT 1 
 
This thesis is being submitted in partial fulfillment of the requirements for the degree 
of ………………………… (insert MCh, MD, MPhil, PhD etc, as appropriate) 
 
Signed…………………………………………(candidate) Date ………………………… 
 
 
STATEMENT 2 
 
This thesis is the result of my own independent work/investigation, except where 
otherwise stated. 
Other sources are acknowledged by explicit references.  The views expressed are 
my own. 
 
Signed…………………………………………(candidate) Date ………………………… 
 
 
STATEMENT 3 

 
I hereby give consent for my thesis, if accepted, to be available online in the 
University’s Open Access repository and for inter-library loan, and for the title and 
summary to be made available to outside organisations. 
 
Signed…………………………………………(candidate) Date ………………………… 
 
 
STATEMENT 4: PREVIOUSLY APPROVED BAR ON ACCESS 
 
I hereby give consent for my thesis, if accepted, to be available online in the 
University’s Open Access repository and for inter-library loans after expiry of a bar 
on access previously approved by the Academic Standards & Quality 
Committee.  
 
Signed…………………………………………(candidate) Date ………………………… 

  



iii 
 

Acknowledgements 

First and foremost, I would like to thank my supervisors Mari Nowell, Anwen Williams 

and Simon Jones for their continued guidance, support and above all patience. I have 

truly appreciated your guidance, dependable advice and consistent contributions. 

 

I would also like to thank my colleagues Laura Evans, Louise Osgood, Gareth Jones, 

Christopher Thomas and Valerie O’Donnell for their continued support and advice. 

 

I would also like to thank my dear wife, Finnu Naduthopil, for her perseverance, 

patience and support. You are truly amazing. 

 

  



iv 
 

Summary 

Introduction: Synovial fibroblasts (SF) display a ‘hyperactive’ phenotype in patients 

with rheumatoid arthritis (RA). Nicotinamide adenine dinucleotide (NAD+) plays a role 

in cell metabolism, but may also be a key molecule in maintaining this ‘activated’ 

phenotype. NAD+ can be synthesised from precursor vitamin molecules, nicotinamide 

(Nam), nicotinic acid (NA) and Tryptophan (TRP); with their respective 

phosphoribosyl transferases (NAMPT, NAPRT, QAPRT) and Indoleamine (IDO) 

being the rate limiting enzymes involved in these pathways. NAMPT and IDO are 

known to be elevated in RA synovial tissue (ST). However, the expression and 

regulation of other NAD+ biosynthesis enzymes are unknown.  

Methods: RA, OA and normal ST were obtained from joints of patients undergoing 

surgery and expression of NAD+ biosynthesis enzymes were quantified using qPCR. 

Synovial fibroblasts were cultured and stimulated with 10ng/ml of TNF-α, IL-1β, OSM 

& IFN- and the expression of NAD+ biosynthesis enzymes were quantified using 

qPCR. 

Results: qPCR analyses showed that all NAD+ biosynthesis enzymes tested were 

constitutively expressed in synovial tissue ex vivo and in vitro, with the exception of 

NMN adenyltransferase (NMNAT)-3. NAMPT, IDO, QAPRT, NADSYN and NMNAT-

2 were all upregulated in RA ST compared to normal tissue, however only NAMPT 

was significantly upregulated in RA compared to OA and normal, (NAMPT reached 

statistical significance when patients on anti-TNF therapy were excluded). Moreover, 

NAMPT was found to be upregulated in ST of young actively developing individuals, 

decreasing with age. Expression of NAD salvage enzymes, NAMPT and NMNAT-2 in 

ST correlated with each other and de novo NAD enzymes, IDO, QAPRT, NADSYN 

and NMNAT-2 were also correlated with each other in ST. NAMPT and IDO were 

both significantly upregulated in vitro following stimulation with OSM & IFN- but only 

NAMPT and NMNAT-2 were upregulated following stimulation with TNF-α & IL-1β. 

NAPRT expression was found to be low in RA ST and there was no upregulation 

following stimulation by OSM, IFN-, TNF-α & IL-1β.  

Conclusion: The data presented in this thesis emphasises NAMPT and IDO as a 

potential therapeutic target in rheumatoid arthritis.  
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Chapter 1 – General Introduction 
 

1.1. Rheumatoid Arthritis 

RA is a systemic inflammatory disease which affects about 1% of world population 

(Gabriel 2001). It is an autoimmune condition affecting multiple joints and the 

inflammatory process particularly affects the synovial membrane. Joint pain, swelling 

and redness are common symptoms leading to erosion of bone and cartilage (Fig 1.1) 

resulting in joint deformity (Fig 1.2). Extra-articular manifestations can affect multiple 

organs such as lung (Colby 1998), heart (Gabriel 2010), kidneys (Lawson and 

Maclean 1966) and skin (Sibbitt and Williams 1982). RA can begin at any age and is 

associated with fatigue, weight loss and prolonged stiffness after rest. There is 

substantial economic burden for patients and health services with a third of affected 

patients losing their job by five years despite treatment (Barrett et al. 2000; Young et 

al. 2002). Total direct cost for patients receiving biologic therapy was about €19,308 

(£16,784) and those not receiving biologic agents was €2666 (£2317) per year 

(Cimmino et al. 2011). 

 

 

Fig 1.1. Diagramatic representation of a synovial joint. Comparison of normal joint (A) to joint 

in RA (B).  
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Fig 1.2. Clinical photography of bilateral rheumatoid hands demonstrating significant 

deformity; multiple swollen joints, radial deviation of wrist and ulnar deviation of fingers. 

 

1.2. Criteria for diagnosis 

According to the 2010 Rheumatoid Arthritis Classification Criteria (Aletaha et al. 2010) 

(American College of Rheumatology / European League against Rheumatism 

collaboration) ‘definite RA’ is based on the confirmed presence of synovitis 

(inflammation of synovial membrane) in at least 1 joint, absence of an alternate 

diagnosis that better explains the synovitis, and achievement of a total score of 6 or 

greater (of a possible 10) from individual scores in 4 domains; these domains include 

[a] The number and site of involved joints (score range 0 – 5), [b] Any serologic 

abnormalities (score range 0 – 3), [c] An elevated acute phase response (score range 

0 – 1) and finally, [d] the symptom duration (2 levels: range 0 – 1) (table 1.1). Although 

patients with a score of <6/10 are not classifiable as having RA, their status can be 

reassessed and the criteria might be fulfilled cumulatively over time. 
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Criteria Score 

a  Joint involvement§ 

1 large joint¶ 0 

2 – 10 large joints 1 

1 – 3 small joints (with or without involvement of large joints)# 2 

4 – 10 small joints (with or without involvement of large joints)  3 

>10 joints (at least 1 small joint)**  5 

b Serology (at least 1 test result is needed for classification)†† 

Negative RF and negative ACPA 0 

Low-positive RF or low-positive ACPA 2 

High-positive RF or high-positive ACPA 3 

c 
 

 

Acute-phase reactants (at least 1 test result is needed for 
classification)‡‡ 

Normal CRP and normal ESR   0 

Abnormal CRP or abnormal ESR   1 

d            Duration of symptoms§ 

<6 weeks 0 

>6 weeks 1 

Table 1.1. The 2010 American College of Rheumatology/European League against 

Rheumatism classification criteria for rheumatoid arthritis (Aletaha et al. 2010).  
§ Joint involvement refers to any swollen or tender joint on examination, which may be 

confirmed by imaging evidence of synovitis. Distal interphalangeal joints, first 

carpometacarpal joints, and first metatarsophalangeal joints are excluded from assessment. 

Categories of joint distribution are classified according to the location and number of involved 

joints, with placement into the highest category possible based on the pattern of joint 

involvement. 
¶ “Large joints” refers to shoulders, elbows, hips, knees, and ankles. 
# “Small joints” refers to the metacarpophalangeal joints, proximal interphalangeal joints, 

second through fifth metatarsophalangeal joints, thumb interphalangeal joints, and wrists. 
** In this category, at least 1 of the involved joints must be a small joint; the other joints can 

include any combination of large and additional small joints, as well as other joints not 

specifically listed elsewhere (e.g., temporomandibular, acromioclavicular, sternoclavicular, 

etc.). 
†† Negative refers to IU values that are less than or equal to the upper limit of normal (ULN) 

for the laboratory and assay; low-positive refers to IU values that are higher than the ULN but 

≤3 times the ULN for the laboratory and assay; high-positive refers to IU values that are >3 

times the ULN for the laboratory and assay. Where rheumatoid factor (RF) information is only 

available as positive or negative, a positive result should be scored as low-positive for RF. 

ACPA = anti-citrullinated protein antibody. 
‡‡ Normal/abnormal is determined by local laboratory standards. CRP = C-reactive protein; 

ESR = erythrocyte sedimentation rate. 
§§ Duration of symptoms refers to patient self-report of the duration of signs or symptoms of 

synovitis (e.g., pain, swelling, tenderness) of joints that are clinically involved at the time of 

assessment, regardless of treatment status.  
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1.3. Aetiology 

The exact aetiology for the development of RA is unclear and various factors have 

been hypothesised to trigger the onset of the disease. Discovery of rheumatoid factor 

in the serum of patients with RA in 1957 led to the belief that RA might be an 

autoimmune disease caused by self-reactive autoantibodies (Franklin et al. 1957), 

but not all patients of RA have positive autoantibodies. RA has also been known to 

run in families leading to the belief that there might be a genetic link; Human leukocyte 

antigen (HLA)-DR genes which reside in the major histocompatibility complex (MHC) 

and participate in antigen presentation have been strongly associated with the 

disease (Stastny 1976; Nepom et al. 1989). Environmental factors are also believed 

to have an effect on the induction, severity and rate of progression of the disease; 

recent studies have strongly implicated smoking as an important risk factor for the 

development of the disease in HLA-DR4 positive individuals (Heliovaara et al. 1993; 

Klareskog et al. 2007; Sugiyama et al. 2010). Finally, infective organisms such as 

Epstein Barr virus have been implicated in the onset of RA, but no single organism 

have been proven to be responsible (Ferrell et al. 1981; Saal et al. 1999; Carty et al. 

2004).      

 

1.4. Clinical manifestation 

RA primarily affects synovial joints, although extra-articular manifestations can 

involve the skin, lung, kidneys, heart and eyes. Joints become swollen, tender, warm 

and stiff with synovitis leading to erosion of bone and cartilage causing deformity and 

loss of function. Rheumatoid nodules are the most characteristic extra-articular 

feature - a typical rheumatoid nodule may be a few millimetres to a few centimetres 

in diameter and is usually found over bony prominences such as elbow, heel and 

knuckles. Other skin manifestations include pyoderma gangrenosum, erythema 

nodosum and palmar erythema. Interstitial lung disease, fibrosis and pleural effusions 

are recognised complications of rheumatoid disease. Renal amyloidosis can occur as 

a consequence of chronic inflammation and RA can affect glomerulus of kidney 

directly through development of vasculopathy. Patients are prone to develop 

atherosclerosis and myocardial infarction, indeed cardiovascular mortality in patients 

with RA is up to 50% higher than the general population (Meune et al. 2009). Other 

cardiac complications include pericarditis, endocarditis, valvulitis and fibrosis. 

Patients with RA can also present with inflammation of the sclera leading to 

episcleritis. Patients are often anaemic but may also have neutropaenia and 
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thrombocytosis. Fatigue, fever, malaise, morning stiffness, loss of appetite and loss 

of weight are also common symptoms.  

1.5. Histopathology 

Key histological features of RA include synovial lining layer hypertrophy, sublining 

infiltration with mononuclear cells, increased vascularity and fibrin deposition (Fig 1.3 

A-C). The surface of the lining layer is often covered with fibrin deposits generated 

from the activation of fibrinolytic system by synovial fluid (Fig 1.3D). The lining layer 

may be completely replaced by a fibrin cap and in highly inflamed tissue, this fibrin 

may extend deep into the sublining layers. In the early stage of the disease, the 

sublining infiltrate may be minimal or modest (Willemze et al. 2008) which may include 

macrophages (Kraan et al. 1998) and natural killer cells (Tak et al. 1994). Diffuse 

mononuclear infiltrates and small lymphoid aggregates are seen in both early and late 

RA; however, aggregates resembling lymphoid follicles with germinal centres are 

typically seen only in well-established cases (Fig 1.3A). Pannus, the highly destructive 

tissue present at the interface between synovium, cartilage and bone is a 

characteristic feature of erosive RA and contains large numbers of macrophages, 

fibroblasts and osteoclasts that express high levels of proteases (Fig 1.3E) (Hitchon 

and El-Gabalawy 2011). These cells cause resorption of bone leading to bone 

erosions and in turn leads to invasion of cells from synovial membrane.   
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Figure 1.3. Histopathology of RA synovitis. (A) lymphoid aggregate; (B) Diffuse lymphocytes 

infiltrate; (C) Hyperplasia of the lining layer; (D) Fibrin cap replacing a denuded lining layer 

(arrows). (E) Interface between pannus tissue and bone in a patient with RA, showing the 

synovial lesion invading the adjacent bone (rectangle). Adapted from Hitchon and El-

Gabalawy (2011) (Hitchon and El-Gabalawy 2011). 

  

E 

Lymphocyte infiltrate 

Lining hyperplasia 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=3263474_TORJ-5-107_F3.jpg
http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=3263474_TORJ-5-107_F3.jpg
http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3263474_TORJ-5-107_F2.jpg
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1.6. Cytokines in synovial inflammation 

Cytokines are proteins secreted by specific cells which carry signals locally from one 

cell to another. Studies have shown that in RA there is increased production of pro 

and anti-inflammatory cytokines with high expression found in synovial fluid (Fontana 

et al. 1982; Di Giovine et al. 1988; Hopkins et al. 1988; Hopkins and Meager 1988; 

Houssiau et al. 1988) and tissues (Buchan et al. 1988; Firestein et al. 1990; Chu et 

al. 1991a; Field et al. 1991). The chronicity of RA could be due to an imbalance 

between these pro and anti-inflammatory cytokines.  Cytokines are implicated in each 

phase of pathogenesis of RA by promoting autoimmunity, maintaining chronic 

synovitis and by causing the destruction of adjacent joint tissues (McInnes and Schett 

2007). With the onset of RA, T helper 1 (TH1) and TH17 cells produce inflammatory 

cytokines and chemokines such as interferon- (IFN-), interleukin-1 (IL-1) and 

interleukin–17 (IL-17) which leads to the stimulation of macrophages, synovial 

fibroblasts (Schulze-Koops and Kalden 2001) and chondrocytes (Liacini et al. 2002) 

(Fig 1.4).  

 

 

 

 

 

 

 

 

 

 

 

Fig 1.4. Cell types and cytokine pathway involved in the destruction of bone and cartilage in 

RA.                                                                                                   
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B-cells are also stimulated to produce immunoglobulin such as rheumatoid factor and 

anti-cyclic citrullinated peptide which leads to further activation of macrophages and 

synovial fibroblasts (Nardella et al. 1983; Lu et al. 2010). Whether the T-cell activates 

the B-cell or vice-versa has been a matter of much debate over many years 

(Takemura et al. 2001; Vita et al. 2002; Firestein 2003; Raza et al. 2005). Thus 

stimulated fibroblasts and macrophages release a number of cytokines, most notably, 

tumour necrosis factor-α (TNF-α), IL-1, interleukin-6 (IL-6) and oncostatin M (OSM) 

which ultimately leads to continuing synovial inflammation, bone erosions, cartilage 

damage, and endothelial cell proliferation. 

1.6.1 TNF- α 

TNF-α is a potent cytokine that stimulates a variety of cells and is produced mainly 

by activated macrophages and also by fibroblasts, B cells and T cells. TNF-α is highly 

expressed in serum (Tetta et al. 1990), synovial fluid (Tetta et al. 1990) and synovial 

tissues (Chu et al. 1991b) in patients with RA. It has both autocrine effect as well as 

a paracrine inducer of other inflammatory cytokines such as IL-1, IL-6, IL-8 and 

granulocyte-monocyte colony stimulating factors (Haworth et al. 1991; Butler et al. 

1995). TNF-α contributes to joint destruction and synovitis in RA by inducing 

resorption of bone and cartilage (Saklatvala et al. 1984; Bertolini et al. 1986), 

stimulating growth of fibroblast (Vilcek et al. 1986) and inducing prostaglandin E2 and 

collagenase secretion from synovial cells (Dayer et al. 1985).  TNF is also a potent 

inducer of adhesion molecules such as VCAM-1, ICAM-1 and E-selectin (Nakada et 

al. 1998) which leads to endothelial cell migration and inflammation.  

1.6.2 IL-1β 

IL-1β was one of the first cytokine which was isolated from synovial fluid in RA and 

its level in serum correlated with clinical disease activity (Eastgate et al. 1988). It is 

produced mainly by macrophages and monocytes. It is a potent cytokine which 

mediates the destruction of bone and cartilage (Joosten et al. 1999) and impairs their 

repair (van de Loo and van den Berg 1990). Injection of murine recombinant IL-1 into 

mice knee joints led to enhanced loss of proteoglycan and also inhibition of 

proteoglycan synthesis (van de Loo and van den Berg 1990). IL-1 is more potent than 

TNF-α in causing cartilage destruction in vivo. There appears to be synergism in the 

action of TNF and IL-1. In rats with collagen induced arthritis (CIA), a combination 

therapy with IL-1 receptor antagonist (IL-1Ra) and PEGylated soluble tumour 

necrosis factor receptor type I (PEG sTNFRI) resulted in additive effect on clinical and 
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histologic parameters than when treated with either agents alone (Bendele et al. 

2000).  

1.6.3 IL-6 

IL-6 is a 26kDa protein that was discovered in 1986 which features pleiotropic activity 

(Kishimoto 2006). IL-6 levels were found to be elevated in synovial fluid and synovial 

tissues in RA (Hirano et al. 1988) and serum levels correlated with disease activity 

(Madhok et al. 1993). In mice with CIA, excess serum production of IL-6 was observed 

within 24hrs of type II collagen immunisation with the development of arthritis 

subsequently. However when these mice were treated with anti-IL-6R monoclonal 

antibody it inhibited the development of arthritis in a dose dependant manner (Takagi 

et al. 1998). IL-6 has been shown to induce T cell growth and differentiation by 

augmenting IL-2 receptor expression and IL-2 production (Kishimoto 2006). IL-6 plays 

an important role in inflammation by increasing the expression of ICAM-1 and by 

inducing the production of chemokines such as MCP-1 and IL-8 in inflamed joints 

(Suzuki et al. 2010). IL-6 along with soluble IL-6R stimulates osteoclasts and 

regulates receptor activator of nuclear factor kappa -B ligand (RANKL) and 

osteoprotegrin (OPG) leading to bone resorption and joint destruction (Kotake et al. 

1996; Palmqvist et al. 2002).     

1.6.4 IL-17 

Interleukin-17 is a T cell derived pro-inflammatory cytokine. In mice with CIA, the 

incidence and severity of the disease was marked in IL-17+/+ mice when compared 

with IL-17-/- (Nakae et al. 2003). IL-17 expression is increased in RA synovium and 

RA synovial fluid (Ziolkowska et al. 2000; Kehlen et al. 2002). IL-17 induces the 

production of IL-6 and IL-8 from RASF and is mediated via NF-B and 

phosphatidylinositol 3-kinase (Hwang et al. 2004). IL-17 induces the inhibition of 

proteoglycans from cartilage and also type I collagen from synovium and bone 

(Chabaud et al. 2000). Patients with RA who did not respond to anti-TNF therapy 

were found to have increased levels of serum IL-17 when compared to responders 

suggesting a possible role for targeting therapy (Chen et al. 2011a). 

1.6.5 Oncostatin M 

Oncostatin M (OSM), an IL-6 family cytokine, is significantly expressed in the synovial 

fluid of patients with RA (Hui et al. 1997; Manicourt et al. 2000). It is produced by 

activated monocytes, T-lymphocytes (Zarling et al. 1986) and also by synovial tissue 
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macrophages (Okamoto et al. 1997; Cawston et al. 1998). OSM mRNA is also highly 

expressed in synovial tissues of RA patients (Okamoto et al. 1997). Injecting human 

OSM into goat joints causes cartilage re-sorption and inhibition of proteoglycan 

synthesis, suggesting its role in the pathogenesis of RA (Bell et al. 1999). Mice with 

CIA had increased expression of OSM mRNA and treatment with anti-OSM antibody 

led to amelioration of clinical severity and number of affected paws (Plater-Zyberk et 

al. 2001). Furthermore, OSM promotes angiogenesis, endothelial cell migration 

(Fearon et al. 2006) and synergises with IL-1β to promote extracellular matrix turnover 

and cartilage degradation (Li et al. 2001; Fearon et al. 2006). 

1.6.6 IFN- 

IFN- is a naturally occurring cytokine with antiviral, anti-proliferative and immune-

modulatory properties. They are produced by T helper 1 cells in RA which then act 

on macrophages to release other cytokines. Levels of IFN- mRNA are found to be 

high in the synovial fluid (Bucht et al. 1996) and synovial tissue (Cañete et al. 2000) 

in RA. Initially IFN- was felt to be an anti-inflammatory cytokine. A study by Page et 

al have shown that IFN- down regulated the IL-1β driven production of MMP-1 & -3 

in vitro and also reduced the expression of IL-1β in arthritic joint and prevented 

cartilage damage in antigen induced arthritis (AIA) mice (Page et al. 2010). IFN- 

receptor knockout mice had accelerated onset of CIA than the wild types (Vermeire 

et al. 1997). Similar accelerated onset of CIA was also seen in wild type mice treated 

with monoclonal antibodies against IFN- (Vermeire et al. 1997). However, 

controversy exists with regards to the exact function of IFN- in inflammation. IFN- 

has been found to stimulate the production of TNFα (Yocum et al. 1989) and IL-1 

(Donnelly et al. 1990) by the synovial mononuclear cells. It induces the expression of 

chemokine CX3CLI by RA osteoblast in synergistic fashion with TNF-α (Isozaki et al. 

2008).    

1.7. Signalling pathways 

Pathogenesis of RA is clearly very complex, with T-lymphocytes, macrophages, 

synovial fibroblasts and chondrocytes being involved in releasing and responding to 

a large variety of cytokines. These cytokines transmit signal from the cell membrane 

to the nucleus via various complex signalling pathways such as Janus kinases (JAK), 

signal transducer and activator of transcription (STAT), nuclear factor-B (NF-B), 

mitogen-activated protein kinases (MAPK) and phosphoinositide 3’ kinases (Fig 1.5). 
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Fig 1.5. Schematic drawing of signal transduction pathways and transcription. Upon exposure 

of a cell to a proinflammatory environment, several regulatory enzymes are phosphorylated 

and activated. As a result, an intracellular signalling cascade is activated to transmit the signal 

from a receptor, which affect the expression of genes for cytokines, matrix metalloproteinases, 

apoptosis regulating molecules, proliferation, etc. (Adapted from Senolt et al (2009)) 

 

1.7.1. JAK-STAT signalling 

In mammals four different kinds of JAKs; JAK1, JAK2, JAK3 and Tyk2 (Wilks 1989; 

Firmbach-Kraft et al. 1990; Partanen et al. 1990; Cance et al. 1993) and seven 

STATs; STAT1-4, STAT5a & 5b and STAT6 have so far been identified (Fu 1992; Fu 

et al. 1992; Schindler et al. 1992; Veals et al. 1992). STAT1, STAT4 and Jak3 

expression has been found to be significantly expressed in RA synovium in the lining 

and sublining layers (Walker et al. 2006). The binding of a ligand (e.g. IFN, IL-6) to 

the extracellular domain of its receptor complex activates associated JAKs, leading 

to the tyrosine phosphorylation of receptors, which generate docking site(s) for STATs 

through the STAT’s SH2 domain. This leads to phosphorylation and dimerization of 

the STAT transcription factors, which then dissociate from the receptor cytoplasmic 

domain and translocate to nucleus where they modulate the expression of target 

 

Extracellular signals - cytokine 
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genes (Fig. 1.5). Different JAKs and STATs have been linked to different cytokines, 

and these are summarised in Table 1.2 below.  

Signalling 
molecule 

Known activating cytokines 

JAK 1 INF, IL-6, OSM, IL-2, IL-4, IL-7, IL-9, IL-10, IL-15 and IL-11 

JAK2 IFN-, IL-3, GM-CSF, prolactin, erythropoietin and thrombopoietin 

JAK3 IL-2, IL-4, IL-7, IL-9 and IL-15 

Tyk2 IL-6, OSM, IL-11, IL-12, IFN-α/β, IL-10, IL-13 

STAT1 IFN, IL-6, IL-10 

STAT2 IFN-α/β & λ 

STAT3 IL-6, IL-2, IL-10, OSM 

STAT4 IL-12, IL-23 

STAT5 IL-2, prolactin, OSM 

STAT6 IL-4, IL-13 
Table 1.2. Jak-STAT signalling molecules linked to different cytokines (Imada and Leonard 

2000; Ortmann et al. 2000). Cytokines which have been used in this study have been 

highlighted in bold.  

 

1.7.2. Nuclear Factor B (NF-B) Signalling 

NF-B is present in the cytoplasm of a cell in its inactive form as it is bound by an 

inhibitory protein, IB (Fig. 1.5). In response to extracellular signalling by various 

cytokines (including TNF-α/β, IL-1 α/β, IL-2, M-CSF and GM-CSF), IB gets 

phosphorylated and degraded, releasing the NF-B which enters the nucleus and 

activates NF-B regulated target genes. This process is eventually terminated by the 

NF-B induced synthesis of IB and consequently, cytoplasmic sequestration of this 

transcription factor (Li and Verma 2002). Immunohistochemical studies have shown 

NF-B to be present within the synovial sublining region and also in endothelium in 

patients with RA with negligible staining in normal synovial samples (Handel et al. 

1995). 

1.7.3. Mitogen Activated Protein (MAP) Kinases 

MAP kinases consist of three kinase families – extracellular signal-regulated kinase 

(ERK), c-Jun N-terminal kinase (JNK) and p38 (Schett et al. 2000; Schmitz et al. 

2002; Radziwill 2007). All three kinases are abundantly seen in RA with ERK 

activation predominantly seen in cells of sublining regions and around synovial 

microvessels, while p38 activation is predominantly seen in the synovial lining and in 

endothelial cells of synovial microvessels. JNK activation is mainly seen in 

mononuclear cell infiltrates of the sublining regions of the synovium (Schett et al. 

                                                           
 Text in bold are the cytokines of interest in this study 
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2000). Following activation of MAP kinases (e.g., by TNF-α, IL-1 & IL-6), MAPK are 

phosphorylated and enter the nucleus to bind to the promoter regions of several 

genes.  

1.8. Action of Cytokines 

Following activation by cytokines via various signalling pathways, cells such as 

monocytes, macrophages, T-lymphocytes and synovial fibroblasts are induced to 

produce more cytokines such as TNF-α, IL-1, IL-6, IFN and granulocyte-monocyte 

colony stimulating factor (GM-CSF). However, there are a number of other soluble 

factors that are also produced, that have significance in RA. 

1.8.1. Leucocyte Recruitment 

Cytokines result in leucocyte recruitment by increasing the expression of extracellular 

adhesion molecules such as ICAM-1 and by release of chemo-attractant proteins 

(chemokines) such as CCL2, CCL5, CCL8, CCL15 and CXCL8 (Haringman et al. 

2006). Chemokines activate integrins (molecules on leucocytes) which mediates 

adhesion of leucocytes to vascular endothelium through ICAM or VCAM. Once 

adherent, chemokines induces changes in leucocytes leading to its migration across 

the endothelium into the inflammatory sites (Adams and Rlloyd 1997). 

1.8.2. Tissue Degradation 

Cytokines such as IL-1 and TNF activate NF-B in synovial fibroblasts inducing matrix 

metalloproteinase (MMP) -1, -3 and -13 (Liacini et al. 2002; Brentano et al. 2007; 

Evans et al. 2011). MMPs initially breakdown type II collagen and the resultant 

proteoglycans released is further broken down by various proteases. In addition to 

collagen degradation, aggrecan is also degraded resulting in degradation of cartilage 

(Rannou et al. 2006). RANKL is expressed by a variety of cells in RA including T-

lymphocytes and synovial fibroblast. Stimulation of these cells by cytokines such as 

TNF-α and M-CSF leads to activation and maturation of osteoclast which results in 

bone erosions and destruction (Takayanagi et al. 2000).  

1.8.3. Angiogenesis 

Cytokines such as TNF-α, IL-1, IL-15, and IL-18 play major roles in regulating 

angiogenesis in RA synovium (DeBusk et al. ; Angiolillo et al. 1997; Park et al. 2001; 

Voronov et al. 2003; Kim et al. 2009). Angiogenic properties of these cytokines may 

be mediated through secondary angiogenic mediators such as vascular endothelial 
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growth factor (VEGF), platelet derived growth factor (PDGF), insulin-like growth 

factor, transforming growth factor-β and fibroblast growth factor (FGF) (Koch 1998; 

Szekanecz et al. 1998; Szekanecz and Koch 2001; Rosengren et al. 2010). These 

angiogenic factors lead to endothelial cell activation, increased vascular permeability, 

breakdown of basement membrane, endothelial cell migration and proliferation at the 

site of stimulus and remodelling to form new capillaries (Clavel et al. 2003). 

Hyperplasia of the synovial cells leads to an increase in the distance between the 

proliferating synovial cells and blood vessels leading to hypoperfusion and local tissue 

hypoxia which also stimulates angiogenesis (Paleolog 2002). Angiogenesis leads to 

further infiltration of inflammatory cells and production of inflammatory mediators 

perpetuating synovitis and pannus formation.  

1.9. Nicotinamide Adenine Dinucleotide (NAD+) 

NAD+ is a metabolite that is an important cofactor and secondary messenger for a 

number of cellular processes which are essential for cell survival. NAD+ is involved in 

energy production, genomic stability, calcium metabolism and apoptosis. In 

eukaryotes, NAD+ is synthesised from vitamins such as nicotinamide, tryptophan and 

nicotinic acid via salvage, de novo and Preiss-Handler pathway respectively with 

NAMPT, IDO, QAPRT and NAPRT as the rate limiting enzymes (Fig 1.6). Little is 

known about two of the enzymes (NAMPT and IDO) in RA, but very little about other 

NAD+ biosynthesis enzymes and this thesis hopes to address this gap in our 

knowledge.    

1.10. NAMPT  

Nicotinamide phosphoribosyl transferase (NAMPT) is a 52kD protein which was 

initially discovered as a factor enhancing the effect of stem cell factor and IL-7 on pre-

B-cell colony formation and was therefore initially termed as pre-B-cell colony 

enhancing factor (PBEF) (Samal et al. 1994).  In 2005, Fukuhara et al reported that 

an adipokine or visceral fat derived hormone mimicked insulin like function and 

termed it visfatin (Fukuhara et al. 2005). Two independent reports, Rongvaux et al 

(2002) and Revollo et al (2004) since demonstrated that PBEF was mammalian 

NAMPT, with both reports reporting similar Km values (substrate concentration at 

which the rate of reaction reaches 50% the maximum values of [X]). Therefore, three 

different nomenclatures – NAMPT, PBEF and visfatin have so far been given to this 

protein. However, NAMPT has been approved as the official nomenclature of the 

gene and the protein by both the HUGO Gene Nomenclature Committee (HGNC) and 

the Mouse Genomic Nomenclature Committee (MGNC).  



15 
 

 

Fig 1.6. Pathway of NAD+ biosynthesis.  

IDO – indoleamine, QaPRT – quinolinic acid phosphoribosyl transferase, NaPRT – 

nicotinic acid PRT, NMNAT – nicotinamide mononucleotide adenyl transferase, 

NADSYN – NAD synthetase, NamPT – nicotinamide PRT.   
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In mammals, NAMPT has two forms – intracellular and extracellular (iNAMPT and 

eNAMPT respectively) (Revollo et al. 2007a). While the function of iNAMPT has been 

firmly established as an essential nicotinamide adenine dinucleotide (NAD+) 

biosynthesis enzyme (Rongvaux et al. 2002; Revollo et al. 2004), the physiological 

role of eNAMPT remains controversial.  

1.9.1. iNAMPT 

iNAMPT is the rate limiting enzyme in the synthesis of NAD+ from nicotinamide. NAD+ 

is also produced by different vitamins such as tryptophan, nicotinic acid and 

nicotinamide riboside. Please refer to section 3.1 for detailed information regarding 

NAD+ biosynthesis.  

1.9.2. eNAMPT 

There is debate in the literature as to whether NAMPT is exclusively an enzyme or a 

dual protein with both enzymatic and cytokine-like activity. Moschen et al (2007) 

demonstrated that eNAMPT induces the production of IL-1β, TNF-α and IL-6 from 

CD14+ monocytes. It also increased the surface expression of co-stimulatory 

molecules CD54, CD40 and CD80 (Moschen et al. 2007). NAMPT has been shown 

to induce the above effect involving p38, MEK1 and NF-B pathways, and this effect 

can be inhibited by MAKP inhibitors (Moschen et al. 2007). Li et al (2008) have also 

demonstrated that eNAMPT protects macrophages from endoplasmic reticulum (ER) 

stress-induced apoptosis by activating an IL-6/STAT3 signalling pathway via a 

nonenzymatic mechanism.    

eNAMPT is positively secreted through a non-classical secretory pathway by fully 

differentiated mouse and human adipocytes (Revollo et al. 2007b), and also by 

human and rat primary hepatocytes (Imai and Kiess 2009). It has been shown that 

fully differentiated adipocytes are a natural producer of eNAMPT, which is capable of 

converting circulating nicotinamide to nicotinamide mononucleotide (NMN) (see 

section 3.1) (Revollo et al. 2007b). Some believe that NMN can be carried by the 

blood to distant tissues or organs, to be internalised in the cell and then converted to 

NAD+ by NMN acetyl transferase (NMNAT) inside cells (Imai 2009b). 

1.9.3. Relation of NAMPT to arthritis & inflammation 

NAMPT functions as an essential enzyme in the biosynthesis of NAD+ that enhances 

cellular resistance to genotoxic stress and may confer to cells of the immune system 

the ability to survive during stressful situations such as inflammation (Rongvaux et al. 
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2008). NAMPT expression is upregulated on activation of immune cells such as 

monocytes, macrophages, dendritic cells, T cells, and B cells when stimulated with 

lipopolysaccharide, TNF-α, IL-1β, or IL-6 (Rongvaux et al. 2002; Iqbal and Zaidi 2006; 

Busso et al. 2008). Abnormal NAMPT expression has been demonstrated in cells and 

tissues in a number of diseases with NAMPT showing high expression in chronically 

inflamed tissues such as inflammatory bowel disease (Moschen et al. 2007), 

rheumatoid tissue (Nowell et al. 2006), atherosclerotic plaques (Dahl et al. 2007) and 

has potential implications in the pathogenesis of acute lung injury (Shui et al. 2005).  

Elevated levels of NAMPT have been reported in serum and synovial fluids of patients 

with RA (Nowell et al. 2006; Otero et al. 2006; Brentano et al. 2007; Meier et al. 2012) 

and its level correlate with C-reactive protein levels (Otero et al. 2006; Brentano et al. 

2007) and clinical disease activity in patients with RA (Brentano et al. 2007). NAMPT 

gene expression is significantly increased in synovial tissues, peripheral blood 

mononuclear cells (PBMC) and peripheral blood granulocytes in patients with RA 

(Nowell et al. 2006; Brentano et al. 2007; Matsui et al. 2008; Meier et al. 2012). 

Immunohistochemical study of synovial tissue in RA has shown NAMPT to be present 

within the cytoplasm and nucleus of synovial apical cells which are predominantly 

fibroblast like and macrophage like cells and also within the endothelial cells lining 

the capillaries (Nowell et al. 2006).  

In mouse models of arthritis, synovial expression of NAMPT is increased by four fold 

in antigen induced arthritis (AIA) (Nowell et al. 2006) with increased levels also seen 

in serum and paws of mice with CIA (Busso et al. 2008; Evans et al. 2011). Inhibiting 

NAMPT using a small molecule inhibitor, APO866, effectively halts the progression 

of CIA and also improves the clinical score in diseased mice (Busso et al. 2008; Evans 

et al. 2011).  

NAMPT promotes the expression of MMP-3, CCL2 and CXCL8 by activated human 

fibroblasts in vitro and this effect is inhibited by APO866 (Evans et al. 2011). In RA, 

NAMPT has been shown to activate human leucocytes to induce proinflammatory 

cytokines including IL-1β, IL-6 and TNF-α (Brentano et al. 2007; Moschen et al. 2007; 

Neumann et al. 2011).  

A study by Jia et al (2004) has shown that NAMPT is expressed in neutrophils and 

monocytes in response to activation by lipopolysaccharide, TNF-α and IL-1β. 

Preventing NAMPT translation with an antisense oligonucleotide blocks the inhibition 

of apoptosis of activated neutrophils, suggesting a requisite role for NAMPT in 

delaying neutrophil apoptosis (Jia et al. 2004). These factors within the synovial fluid 
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of RA are believed to prolong the neutrophil lifespan and activity, which then 

contributes to inflammatory process.  

These evidence suggests that aberrant NAMPT activity is likely to have an effect on 

how inflammatory cells respond to chronic inflammation and clearly has a part in the 

development of synovitis and joint destruction.  

1.10. Current Treatment 

According to NICE guidelines (NICE 2009) when patients are diagnosed with RA, the 

first line of treatment is a combination of disease modifying anti-rheumatoid drugs 

(DMARDs) including methotrexate and at least one other DMARD, plus short term 

glucocorticoids. When patients fail more than two different DMARD treatments, then 

biologics are initiated.  

1.10.1 Disease Modifying Anti-Rheumatoid Drugs (DMARDs) 

Methotrexate was originally developed as a folate antagonist for the treatment of 

cancer. The first reported use of methotrexate in RA was in 1950s (Gubner et al. 

1951). In 1980s, four well designed, blinded, placebo controlled studies established 

the use of methotrexate in RA (Thompson et al. 1984; Andersen et al. 1985; Weinblatt 

et al. 1985; Williams et al. 1985). Sulfasalazine was developed in the 1930s, 

specifically for RA, by combining an antibacterial agent (sulfapyridine) and an anti-

inflammatory agent (5-aminosalicylic acid) (Svartz 1942). The exact mechanism of 

action of sulfasalazine is unknown but it is believed to have anti-inflammatory or 

immunomodulatory properties (Smedegård and Björk 1995; Krakauer 2015). 

Leflunomide was approved by FDA in 1988 as an oral therapy for treatment of active 

RA. Leflunomide inhibits de novo pyrimidine synthesis, resulting in inhibition of T-cell 

proliferation and suppression of TNF-induced cellular responses, as well as inhibition 

of matrix metalloproteinases and osteoclasts (Breedveld and Dayer 2000). 

Hydroxychloroquine sulphate and chloroquine phosphate are Quinine based drugs 

used in the treatment of RA. The exact mechanism of action is unknown but it is 

believed to alkalinise macrophage lysosomes and also stabilise lysosomal 

membranes, thereby inhibiting the release of lysosomal enzymes. It has also been 

postulated that hydroxychloroquine inhibits stimulation of toll-like receptors which are 

responsible for inducing inflammatory responses through activation of the innate 

immune system (Kyburz et al. 2006). 
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1.10.2 Biologics 

According to the National Cancer Institute, a biological drug is defined as ‘a substance 

that is made from a living organism or its products and is used in the prevention, 

diagnosis, or treatment of cancer and other diseases’ (NCI). Biological drugs include 

antibodies, interleukins and vaccines. Since the late 1990s, advances in molecular 

biology led to the development of biologics which has led to new treatment 

opportunities in RA. Anti-TNF biologic therapy has revolutionised the way we treat 

patients with RA (table 1.3), though anti-TNF medications are very expensive, costing 

upto £10,000 per person annually (NICE 2007).  

1.10.2.1. Side Effects 

Biologics interfere with the immune system, hence, should be avoided in patients with 

severe infections. Patients should be tested for prior TB infections as  biologics may 

cause reactivation of latent disease (Dixon et al. 2010). Anti-TNF should be avoided 

in patients with symptomatic congestive heart failure (Chung et al. 2003). However a 

Cochrane review by Singh et al (2011) didn’t show any statistically significant 

difference of experiencing heart failure in patients taking biologics to placebo. Anti-

TNF therapies are also not recommended for patients with multiple sclerosis (Mohan 

et al. 2001) and current or previous lymphoma. Long term use of anti-TNF increases 

the risk of developing cancer such as lymphoma (Geborek et al. 2005), however 

recent evidence suggest that the risk of developing cancer amongst patients on 

biologics is low when compared to patients on DMARDs (Ramiro et al. 2014).   

Patients on anti-TNF have increased risk of developing infections and hence they 

need to be stopped prior to any surgery. However, this could lead to increase pain 

from inflamed joints and therefore strategies need to be employed involving the pain 

team and rheumatologist in minimising the effects of cessation of these medications.    
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Biologic 

Name 

Target Structure Administration 

Anti-TNF 

Etanercept TNF Dimeric fusion protein: 
extracellular portion of 
human p75 TNF receptor 
linked to the Fc region of 
IgG1 

Subcutaneous injection: 
Once or twice weekly 

Infliximab TNF Chimeric human-murine 
monoclonal antibody: Fc 
portion of human IgG1 
and murine Fab 
fragment to TNF 

Intravenous infusion: 
once every six weeks 

Adalimumab TNF Recombinant human 
monoclonal antibody 
specific to TNF 

Intravenous infusion: 
once every two weeks 

Certolizumab 
pegol 

TNF PEGylated Fab’ 
fragment of humanised 
antibody to TNF 

Subcutaneous 
injection:  
Every two weeks  

Golimumab TNF Human IgG1 
monoclonal antibody to 
TNF 

Subcutaneous 
injection:  
once a month 

IL-1 Inhibitor 

Anakinra IL-1 Recombinant IL-1 
receptor antagonist 

Subcutaneous dose: 
daily  

IL-6 receptor antagonist 

Tocilizumab IL-6R Human antibody to IL-6 
receptor 

Intravenously: 
every four weeks 

B-cell antibody 

Rituximab CD20 Human/mouse chimeric 
antibody to CD20 (found 
on the surface of B-
cells) 

Intravenously: 
two doses given two 
weeks apart every six 
months 

B-Cell T-cell co-stimulation inhibitor 

Abatacept CD28 Recombinant human 
fusion protein of CTLA-4 
and the Fc domain of 
IgG1 

Intravenously: 
every four weeks 

Table 1.3. Biologics used in the treatment of RA 
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1.10.3. Small Molecule Inhibitors 

Small molecules are low molecular weight compounds (<1 kDa) that have a biological 

effect (Stanczyk et al. 2008). The advantages of small molecules are that, due to their 

small size, they are able to get inside the cell. Many small molecules can also be 

manufactured at relatively short duration and are thus cost effective, and finally, many 

can be manufactured to be orally available.  

Small molecules act by targeting intracellular signalling proteins, surface receptors or 

enzymes and modulate their function. An inhibitor of MAP kinase p38 is currently in 

phase II clinical trials for RA, however in a randomised controlled trial, pamapimod (a 

p38 MAP kinase inhibitor) was less effective than methotrexate (Cohen et al. 2009).  

Inhibitors of Syk (spleen tyrosine kinase) kinase have proved more successful; 

Fostamatinib, a Syk kinase inhibitor, in a randomised controlled trial, achieved 

remission in half of the patients after 12 weeks of oral administration (Weinblatt et al. 

2008). Inhibitors of JAK/STAT pathways have also proved effective; a JAK3 inhibitor 

(tofacitinib or CP-690,550) in phase II clinical trials, has shown to have achieved 

remission in a third of the subjects after 24 weeks of administration (Kremer et al. 

2012). A small molecule inhibitor against the cell surface A3 adenosine receptor 

(CF101) has shown to improve signs and symptoms in patients with RA but did not 

achieve statistical significance in a phase II clinical trial (Silverman et al. 2008).  

Biological heterogeneity between patients necessitates that one drug doesn’t fit all, 

combinations of biological agents may be required and treatment needs to be 

individualized. Identification of new and more cost-effective therapies is a priority and 

small molecule inhibitors and anti-NAMPT strategy may well benefit several, if not all 

individuals affected by arthritis. Novel targets are therefore actively being pursued. 

1.10.4.   NAMPT inhibitors 

NAMPT can be inhibited by a small molecule inhibitor, FK866 or APO866 (Hasmann 

and Schemainda 2003), inducing cell death in a number of cancer cell lines (Hasmann 

and Schemainda 2003; Nahimana et al. 2009; Olesen et al. 2010). APO866 has 

shown some therapeutic pre-clinical success in treating proliferative disease by 

blocking tumour growth (Muruganandham et al. 2005) and collagen-induced arthritis 

(Evans et al. 2011). APO866 is specific to NAMPT and shows no specificity to other 

phosphoribosyl transferases. APO866 is currently undergoing Phase II clinical trials 

for treatment of advanced melanoma, B-chronic lymphocytic leukaemia and 

cutaneous T-cell lymphomas.  
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Although APO866 has been investigated mostly as an anticancer drug, some studies 

have shown that APO866 has considerable efficacy in preclinical studies in models 

of experimental arthritis (Busso et al. 2008; Evans et al. 2011), experimental 

autoimmune encephalitis (Bruzzone et al. 2009) and hepatitis (Moschen et al. 2011). 

In an experimental model of RA and CIA, APO866 reduced the mean arthritis severity 

score of animals and decreased pro-inflammatory cytokine secretion in affected joints 

and its activity was comparable to Etanercept (Busso et al. 2008). Evans et al (2011) 

showed that treatment with APO866 in mice with established disease significantly 

reduced the mean arthritis severity score, reduced synovial inflammation, cartilage 

destruction and halted bone erosion. In addition, APO866 reduced the activity of 

MMP-3, CCL2, and RANKL in vivo, and inhibited the production of CCL2 and RANKL 

in synovial explants (Evans et al. 2011). The fact that APO866 does not impair 

autoantibody production in this experimental model suggests that the beneficial 

effects of APO866 is due to impaired production of pro-inflammatory (TNF-α, IL-1β) 

and pro-degradatory (MMP-3, RANKL) factors locally within joint tissues (Busso et al. 

2008; Evans et al. 2011; Nowell et al. 2012). 

Although APO866 is a potent inhibitor of NAMPT, it has low bioavailability, short half-

life, dose limiting thrombocytopaenia and had a tendency to bind to plasma proteins 

(Holen et al. 2008). Alternatives are available such as CB30865, which is a 

subnanomolar cytotoxic compound (Skelton et al. 1998; Skelton et al. 1999), and 

CHS-828 / GMX1778, a pyridyl cyanoguanidine (Schou et al. 1997). CHs-828 has 

showed potent anti-tumour activity in a number of tumour cell lines (Hjarnaa et al. 

1999) and has led to phase I clinical trial for solid tumours (Ravaud et al. 2005).  

1.11. Summary and Objectives of thesis. 

NAMPT is a novel protein which is an enzyme required for NAD+ biosynthesis. 

Whether NAMPT is purely an enzyme or enzyme with cytokine like activity has been 

a matter of debate. NAMPT is also elevated in serum and synovial fluid of patients 

with RA and significantly, in mice with CIA. NAMPT concentration steadily increases 

in paws over time and following treatment with NAMPT inhibitor, APO866, only 28% 

of the animals showed signs of arthritis compared to 100% of animals who were not 

treated (Evans et al. 2011). 

As NAD+ is important for cell metabolism, it is possible that NAMPT is regulated 

inappropriately in chronic diseases such as RA to maintain a hyperactive and 

protective phenotype by enhanced NAD+ bioavailability. It may be possible that 

manipulating NAMPT activity via small molecule inhibition may be a viable and cost 
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effective treatment strategy in RA, with normal tissues continuing to produce NAD+ 

via alternate pathways e.g. the nicotinic acid pathway.  

However, aside from IFN-induction of IDO (Indoleamine 2, 3 Dioxygenase), and the 

known effect of a number of cytokines on NAMPT expression, it is not known whether 

any other NAD+ biosynthesis enzymes are [1] cytokine-inducible in vitro, or are [2] 

upregulated in vivo in diseased (arthritic) tissue.  

The working hypothesis for this thesis is that IDO and NAMPT are inducible in 

inflammatory arthritis tissue and therefore ideal of targeted therapies.  

Therefore, the aim of chapter 3 is to characterise NAD+ biosynthesis enzyme 

expression in synovial tissue derived from patients with RA, OA and non-arthritic 

individuals.  Chapter 4 explores the effect of pro-inflammatory cytokines on NAD+ 

biosynthesis enzyme expression in vitro in RA synovium.  
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Chapter 2 – Materials & Methods 
 

2.1 Materials 

RNAlater® solution for transporting and storing tissues was obtained from Life 

technologies™. General reagents for processing RNA e.g. NAOH and Ethanol etc 

were obtained from Sigma-Aldrich (Dorset, UK) unless stated otherwise. TRIzol® was 

obtained from Invitrogen™ (Massachusetts, USA). RNeasy® Mini kit was obtained 

from Qiagen Ltd (Manchester, UK).  

All reagents for cDNA synthesis and qPCR analysis were obtained from PrimerDesign 

Ltd (Southampton, UK).  

Primers for Nicotinamide, Quinolinic acid and Nicotinic acid phosphoribosyl 

transferase (NAMPT, NAPRT, QAPRT respectively), Indoleamine 2, 3 dioxygenase 

(IDO), Nicotinamide mononucleotide adenyltransferase (NMNAT1, 2 & 3), NAD 

synthetase (NADSYN) were custom designed and verified by PrimerDesign Ltd 

(Southampton, UK). Primer sequences (forward primer, reverse primer) and 

estimated melting temperature Tm are outlined in table 2.4. SYBR® green reference 

gene assays (Ubiquitin C (UBC), Actin β (ACTB) and 18s) were purchased from 

PrimerDesign Ltd (Southampton, UK). 

Dulbecco’s Modified Eagle Medium (DMEM) / F-12 (1:1 mix of DMEM and Ham’s F-

12), Fetal calf serum and penicillin/streptomycin were obtained from Invitrogen™ 

(Massachusetts, USA). 

 

2.2 Methods 

2.2.1 Ethical Approval and sample collection  

Ethical approval was obtained from Research Ethics Committee (REC) for Wales 

(REC reference – 10/MRE09/28, patient information sheet and consent enclosed in 

appendix). Synovial tissue samples were obtained from patients who were 

undergoing surgery on their joints such as total knee or hip replacements, 

trochleaplasty, arthroscopic ACL reconstruction, surgeries on foot and ankle. All RA 

patients fulfilled the Rheumatoid Arthritis classification criteria (Table 1.1). OA was 

diagnosed according to clinical features. The characteristics of the RA, OA and 

normal healthy patients are shown in table 2.1. 
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 RA  

(n = 17) 

OA  

(n = 20) 

Normal  

(n = 16) 

Age, mean (range), years 61.61 (31 – 77) 72.75 (47 – 91) 21.06 (1 – 47) 

Sex (F/M) 14/2 10/7 8/7 

Synovial sample    

       Knee 7 18 12 

       Hip 4 - 1 

       Ankle 1 - - 

       Foot 3 - - 

       Shoulder - - 2 

       Elbow 1 - - 

Medication    

       NSAIDs 5 - - 

       DMARDs 8 - - 

         Plus steroids 2 - - 

         Plus anti-TNF 4 - - 

Table 2.1. Characteristics of patients in the study. N = number of patients in each group, their 

gender, the joint the sample was taken from and if they were on any medications.  

 

2.2.2 Synovial tissue processing 

Synovial tissues obtained were collected in RNAlater® solution (Life Technologies), 

which stabilises and protects cellular RNA, and stored at -800C prior to RNA 

processing and analysis. 

2.2.3 RNA Extraction using the ‘Hybrid’ Method’ 

The hybrid method combines the Invitrogen TRIzol® method with Qiagen RNeasy® 

spin columns to get high-quality, high yield RNA. Plasticware and distilled water 

(dH2O) used for RNA extraction were rendered RNase free by autoclave. The mortar 

and pestle were cleaned sequentially with 3M NaOH, 70% ethanol and distilled water 

respectively.  

Synovial tissue was disrupted under liquid nitrogen using a mortar and pestle and 

transferred to 1ml of TriZol® (Invitrogen™). Samples were vortexed and incubated at 

room temperature for 5 minutes and mixed with 200µl chloroform. After 5min the 

sample was centrifuged at 10,000 rpm at 40C for 15min. The aqueous phase, 

containing the RNA, was transferred carefully to a new micro-centrifuge tube (i.e. 
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without disturbing the aqueous/organic interface) to avoid DNA contamination. An 

equal volume of 70% ethanol was added and mixed by pipetting (ethanol promotes 

selective binding of RNA to the RNeasy membrane). 700µl of the sample was 

transferred to an RNeasy® (Qiagen) spin column and centrifuged at 10,000 rpm for 

15 seconds. 350µl of buffer RWI (Qiagen), containing a guanidine salt and ethanol, 

was added to the column and centrifuged at 10,000 rpm for 15 seconds. 80µl of 

DNase I incubation solution (10µl DNase I stock solution in 70µl buffer RDD from the 

Qiagen RNase-Free DNase Set) was added directly to the column membrane at 20-

300C for 15min to digest any residual DNA that may be present. 350µl of buffer RWI 

was added and the column centrifuged for 15 seconds at 10,000 rpm to remove any 

DNase I. The column was transferred to a new collection tube, and 500µl of buffer 

RPE (Qiagen) was added and spun at 10,000 rpm for 30 seconds to wash spin 

column membrane of any contaminants, followed by 500µl buffer RPE (Qiagen) and 

spun for 2min at 10,000 rpm to wash spin column membrane (long centrifugation 

dries the spin column membrane ensuring that no ethanol is carried over during RNA 

elution). 30µl of RNase free water was added directly onto column membrane and 

allowed to sit at room temperature for 10min before spinning for 1min at 10,000 rpm 

to elute RNA. It is then stored at -800C to prevent the loss of RNA at room 

temperature.  

2.2.4 RNA Quantification using Nanodrop 

1µl of RNA was quantified using a Nanodrop® ND-1000 spectrophotometer (Thermo 

Scientific). The volume of RNA solution required for 0.1µg RNA was calculated in 

preparation for reverse transcription.  

2.2.5 Reverse Transcription (RT) of mRNA to cDNA 

Reverse Transcription was performed using nanoScript reverse transcription kit from 

PrimerDesign Ltd, Southampton, UK. 1µl RT primer mix (0.5µl of Oligo-dT + 0.5µl of 

random nonamer) was added to 0.1µg of each sample of RNA, and the total volume 

made up to 10µl by adding RNase/DNase free water (random primers will bind 

anywhere in the genome and allow reverse transcriptase to fill up the gaps leading to 

higher yields whereas oligo-dT will bind to poly-A tail of the RNA before transcribing 

RNA. As poly-A tail is located at the extremity of the gene it will lead to full transcripts. 

The combination of oligo-dT primers and random primers will provide the highest 

yields and longest transcripts). Samples were heated to 650C for 5min (to denature 

RNA secondary structure) and immediately cooled on ice to let the primer anneal to 

RNA. A master mix containing RT reaction, 10mM dNTPs, 100mM DTT, 
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PrimerDesign Ltd RT enzyme (enzyme activity not disclosed) and RNase/DNase free 

water was made (Table 2.2) and 10µl added to each sample of RNA mix. One RNA 

sample was also made without the RT enzyme (-RT) to account for genomic DNA 

contamination.   

Components 1 Sample -RT 

nanoScript 10X Buffer 2.0µl 2.0µl 

dNTP mix 10mM 1.0µl 1.0µl 

DTT 100mM 2.0µl 2.0µl 

RNase/DNase free water 4.0µl 5.0µl 

nanoScript Reverse Transcriptase enzyme 1.0µl 0µl 

Total Volume 10.0µl 10.0µl 

Table 2.2. Protocol for DNA synthesis. 

Samples were incubated at 250C for 5min (to maximise annealing efficiency as oligo 

dT have a lower Tm) and 550C for 20min for reverse transcription of RNA to cDNA. 

The reaction was heat inactivated by incubating at 750C for 15min. Samples were 

diluted 1:10 with RNase free water and stored at -200C.  

2.2.6 Quantitative Real Time Polymerase Chain Reaction (qPCR) 

qPCR was carried out using an ABI 7900HT RT-PCR machine and associated SDS 

2.4 software. All primers were designed and synthesised by PrimerDesign Ltd, 

Southampton, UK. qPCR was used to quantify the expression of genes accurately. 

During PCR the DNA was amplified exponentially during each cycle and quantified in 

real time. Each cycle consists of denaturation, annealing and extension steps (table 

2.5). During denaturation process the temperature was raised to 950C to melt double 

stranded DNA to single strand. Temperature was lowered to 600C for the primer 

specific to gene of interest to bind to that gene. Temperature was raised to 720C, the 

optimum temperature for the polymerase, to allow the enzyme to bind and copy the 

DNA strand. 

2.2.6.1 Normalisation 

Although qPCR is quite accurate in quantification of gene expression, a number of 

errors might occur due to sample to sample variation of mRNA, variation in RNA 

integrity, variation in amount of starting material, different reverse transcription and 

PCR efficiencies (Bustin and Nolan 2004). To control for errors of qPCR, one of the 

most simple and popular method is normalisation to a reference gene (Huggett et al. 
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2005). Reference genes (also referred to as ‘housekeeping’ genes) are measured 

alongside the gene of interest.      

2.2.6.2 geNorm 

Historically, GAPDH (glyceraldehyde-3-phosphate dehydrogenase), ACTB (actin β), 

B2M (beta-2-microglobulin) and HPRT1 (hypoxanthine-guanidine phosphoribosyl 

transferase) were commonly used as reference genes for normalisation during PCR. 

However, variability in these reference genes have been noted due to response to 

experimental treatment and due to innate and natural variability between tissues and 

individuals (Schmittgen and Zakrajsek 2000; Dheda et al. 2004).  Therefore, the use 

of all reference genes used for any particular experiment needs to be validated at the 

outset. geNorm is a popular algorithm used to determine the most stable reference 

gene among a panel of tested reference gene in a given sample (Vandesompele et 

al. 2002). geNorm uses the geometric mean of the expression of a reference gene 

based on principles and formula described by Vandesompele et al (2002) and the 

reference genes are ranked according to their stability - measure ‘M’ - i.e.,  the 

average pairwise variation of a particular gene with all other control genes 

(Vandesompele et al. 2002). Genes with lowest M values have the most stable 

expression. The authors’ also determined pairwise variation ‘V’ for every control gene 

which is the standard deviation of the logarithmically transformed expression ratios 

with all other control genes (Vandesompele et al. 2002). geNorm program identifies 

the least stable (i.e., highest M value) reference gene and recalculates a new M value 

for the remaining reference genes. The algorithm first selects a pair of two candidate 

reference gene that have the smallest variability in ratios amongst all possible pairs 

of genes. Then the next stable reference gene is identified which has the highest 

agreement with the rest of the candidate genes and with geometric mean of the first 

two selected genes (n/n+1) until the addition of n+1 gene makes no significant effect 

on normalising factor. A value of 0.15 is taken, below which inclusion of additional 

genes is not required.  

2.2.6.3 Reference gene determination using geNorm with PerfectProbe™ detection 

15µl mix containing qPCR reagents (1µl of gene specific primer with Taqman® probe 

mix, 10µl of 2x master mix and 4µl of RNase free water) were added to each well of 

a 96 well qPCR plate. 5µl of either of cDNA sample, -RT or RNase free water was 

added to each well. Samples were analysed in duplicates. Reference genes 

investigated were human GAPDH, CYC1, YWHAZ, ACTB, UBC and 18s with 

Taqman® fluorophore using PerfectProbe™ technology 
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(http://www.primerdesign.co.uk/perfect_probe.html). qPCR was performed as 

outlined in table 2.3. Data was collected using FAM channel. geNorm analysis was 

carried out using qbasePLUS software (Biogazelle) (Fig 2.1).  

Stage Number of 

cycles 

Time Temperature Data 

Collection 

Enzyme 

activation 

1 10 minutes 950C No 

Denaturation 

50 

15 seconds 950C No 

Annealing 30 seconds 500C Yes 

Extension 15 seconds 720C Yes 

Table 2.3. Two step qPCR protocol used for PerfectProbe™ qPCR 

 

  

Official gene 
symbol 

Accession 
number 

Anchor 
Nucleotide 

Context length sequence 
(bp) 

UBC NM_021009 452 192 

18S M10098 235 99 

ACTB NM_001101 1195 106 

YWHAZ NM_003406 2585 150 

CYC1 NM_001916 929 207 

GAPDH NM_002046 1087 142 
Table 2.4. Details of reference genes with Taqman® fluorophore attached. (Primer sequence 

details not provided)  
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Fig 2.1. Determination of optimal reference gene.  No optimal number of reference targets 

could be determined, as variability between sequential normalisation factors (based on the n 

and n+1 least variable reference target) is relatively high (geNorm V > 0.15). We therefore 

used 3 reference targets with lowest M values (h18s, hUBC and hACTB), as the use of multiple 

reference targets results in more accurate normalisation compared to the use of a single non-

validated reference target. 
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2.2.6.4 Gene of interest qPCR with SYBR® green detection 

A plate layout was prepared to avoid any doubt during pipetting. All samples for qPCR 

were performed in duplicates to avoid any pipetting errors. All pipetting was performed 

under a laminar hood using filter tips and pipettes designated for qPCR use only to 

avoid DNA contamination. A 15µl mix containing qPCR reagents (1µl of gene specific 

primer with SYBR® green probe, 10µl of 2x master mix [Precision Plus mastermix 

from PrimerDesign, Southampton, UK containing Taq Polymerase enzyme and 

magnesium chloride based buffer] and 4µl of RNase free water) was pipetted to each 

well of a 96 well qPCR plate and 5µl of cDNA was added to each well.  Negative 

controls (RNase free water; to detect primer dimers and contamination and –RT 

sample (mix containing sample that has not been reverse transcribed); to detect 

genomic DNA contamination) were included in each analysis. The qPCR plate was 

sealed with a clean optical film to avoid evaporation. The plate was spun to ensure 

components were thoroughly mixed, collected to the bottom of the plate with air 

bubbles removal. qPCR was performed as outlined in table 2.6. 
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Primer Name Sense Primer (Tm) Antisense Primer (Tm) Product 

size 

Suggested Tm Dissociation curve Actual Tm 

NAMPT TTCCCACTACTCC
AGCCTAAG (56.8) 

TTTGTGTAAAGGGCA
GGTTAATAAA (56.5) 

94 69.7 Appendix 1a 80 

NAPRT GTGGTGCTGTCCG
AGAGG (57.2) 

GGAAAAGTGAGTGAT
TCGTGTTG (57.2) 

111 78.9 Appendix 1b 88 

QAPRT CCCCAGCCCTTGA
TTTCTCC (58.4) 

GGTGTCATCCTCTTC
CGGTTTA (58.3) 

93 74.7 Appendix 1c 83 

NMNAT1 AGTCCTTTGCTGT
TCCCAATT (56.3) 

AGCACATCCGATTCA
TAGATAAAC (55.9) 

127 73 Appendix 1d 82 

NMNAT2 ATTGCTGTCTTGT
GCTTTGTG (56.2) 

CGTAGCTGGTACTAG
ATTTTGATAAA (56.5) 

115 71.1 Appendix 1e 80 

NADSYN CCAAAAACAGAGG
AGCAAGATAC 
(56.4) 

GGTGTCCGACTCGTA
ATAATGAT (56.9) 

89 72.6 Appendix 1f 82 

IDO CAGTCCGTGAGTT
TGTCCTTT (56.7) 

CAGGAATCAGGATGT
ACTTAGTCA (56.5) 

129 75.6 Appendix 1g 84 

Table 2.5.  Characteristics of primers obtained from PrimerDesign Ltd showing forward and reverse sequence, product size, suggested melting 

temperature(Tm), actual Tm during experiment. NAMPT – nicotinamide phosphoribosyl transferase, NAPRT – nicotinic acid PRT, QAPRT – quinolinic acid 

PRT, NMNAT1 & 2 – nicotinamide mononitrate adenyl transferase, NADSYN – nicotinamide adenine dinucleotide synthetase, IDO – indoleamine acetic acid. 
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Stage Number of 
Cycles 

Time Temperature Data 
collection 

Ramp 
rate 

Enzyme activation 1 10 min 950C No 100% 

Denaturation 
50 

15 sec 950C No 100% 

Annealing/Extension 60 sec 600C Yes 100% 

Dissociation curve 1 

15 sec 950C No 100% 

15 sec 600C No 100% 

15 sec 950C Yes 2% 
Table 2.6. Two step qPCR protocol used for SYBR® green qPCR. 

SYBR® green will bind to any amplified double stranded DNA and bias could be 

introduced in the reaction in the presence of primer dimers or unspecified products; 

primer dimer arises when there is low concentration of target DNA or complimentary 

bases within or between primers (3’-3’ or 5’-5’ dimer). To check for artefacts during 

amplification, a dissociation curve step was added to every qPCR run as a quality 

control measure to check the specificity of qPCR (Fig 2.2). The principle is that every 

product has a different dissociation temperature depending on size and base content. 

As temperature slowly raises from 600C to 950C, the whole amplified product 

dissociates at certain temperatures, resulting in drop of fluorescence. Primer dimers 

or unspecified products melt at the different temperatures, resulting in a separate 

peak(s) to the specific product (example of a dissociation curve with primer dimers is 

shown in Fig 2.3). Only samples which had similar melting temperature, i.e., with 

single peaks were used for analyses (example shown in Fig 2.2). qPCR which 

showed anomalies in the dissociation were excluded from analyses.  

2.2.6.5 ΔΔCt method 

The relative quantity of cDNA in a sample was calculated according to ΔΔCt method. 

The Baseline is calculated in a sample as the average background and is calculated 

according to the noise level in the early cycles, when there is no detectable increase 

in fluorescence, due to qPCR products. The Threshold is calculated as the level of 

fluorescence above baseline, at which the signal can be considered not to be 

background. The Ct value is defined as the cycle in which there is significant increase 

in reporter signal, above the threshold i.e., the cycle in which the amplification curve 

crosses the threshold.  

Once a Ct value is obtained for a specific product in a sample following qPCR, ΔCt is 

calculated as the difference between the Ct values of target gene and reference gene 

for each sample. 

  ΔCt = Cttarget – Ctreference gene 
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Then the difference between the ΔCt of a sample and the ΔCt of the calibrator is 

calculated to obtain ΔΔCt value. One of the sample of a normal patient was used as 

a calibrator throughout our study.  

  ΔΔCt = ΔCtcalibrator - ΔCtsample 

Relative quantity (RQ) was calculated for each sample using the formula RQ = 2-ΔΔCt 

(First described by Livak K in Applied Biosystems user bulletin No.2 in 1997 and 

subsequently published as a journal article (Livak and Schmittgen 2001)).  

 

 

Fig 2.2. Dissociation curve of NAMPT showing single peaks following qPCR analysis. X axis 

corresponds to the temperature of the cycle and y axis corresponds to fluorescence.  
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Fig 2.3. Dissociation curve showing primer dimer which peaks early around 720C followed by 

the peak of the specific product during qPCR. 

 
2.2.7 Tissue collection 

Human synovial tissue was collected at the time of surgery (total knee or hip 

replacements, trochleaplasty, arthroscopic ACL reconstruction, surgeries on foot and 

ankle) and stored in synovial fibroblast culture medium (SFCM); DMEM: F12 culture 

medium containing 10% foetal calf serum (FCS) and 100g/ml Penicillin/streptomycin 

(All media purchased from Invitrogen™) and stored at 40C in preparation for tissue 

culture.  

2.2.8 Tissue culture 

Synovial tissue was digested in culture medium containing 1mg/ml collagenase and 

spun slowly for an hour at 370C to release the cells. The sample was centrifuged at 

1000 rpm for 10 minutes and supernatant aspirated. 5ml SFCM was added to 

terminate digestion, mixed well and the cell suspension plated out in one T25 flask. 

Cells were incubated at 370C in 5% carbon dioxide (CO2) environment. The culture 

media was changed every 72hrs until cells were more than 70% confluent. To 

passage the cells, the culture media was aspirated and cells washed twice with 

phosphate buffer saline solution (PBS) prior to the addition of 1ml of trypsin, incubated 

for 2-3 minutes in the incubator. Cells were observed under microscope to confirm 

they were free from anchoring to the base of the flask. 5ml of SFCM was added to it 
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and the sample transferred to a universal container and spun at 1000 rpm for 5 

minutes. Supernatant was aspirated and 5ml of SFCM was added, mixed well and 

plated out into two T75 flask, another 10ml of SFCM was added and incubated at 

370C in 5% carbon dioxide (CO2) environment. The procedure was repeated until the 

cells had undergone three passages to obtain cells of same phenotype before being 

utilised for experiments. Cells not being utilised were stored in 10% dimethyl sulfoxide 

(DMSO) and 90% FCS and cryopreserved in liquid nitrogen. 

2.2.9 Stimulation with Cytokines for mRNA analysis. 

For cytokine stimulation experiments, synovial fibroblasts (SF) from patients with 

rheumatoid arthritis were cultured in SFCM in 6 well plates and incubated at 370C in 

5% carbon dioxide (CO2) environment until 70% confluent when they were serum 

starved for 48 hours. SF were stimulated with cytokines for 0, 2, 4, 6, 8 and 10 hours 

in triplicate. At the end of time course experiment, 1ml of Tri-reagent® was added and 

incubated at room temperature for 5 min. Cells were transferred to an eppendorf and 

RNA was extracted using hybrid method as described in section 2.2.3. RNA thus 

obtained was quantified using Nanodrop method (sec 2.2.4) and reverse transcripted 

into cDNA (sec 2.2.5) and qPCR analysis performed as described in section 2.2.6.4. 

2.2.10 Statistical Analysis 

Statistical analysis was performed using GraphPad Prism version 6. D'Agostino & 

Pearson omnibus normality test was performed to check if the data was normally 

distributed. One way ANOVA with bonferroni’s correction was performed to compare 

the expression of NAD+ biosynthesis enzymes between RA, OA and normal synovial 

tissues. Pearson’s correlation was performed to look at the strength of relationship 

between the expressions of NAD+ biosynthesis enzymes. 
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Chapter 3 – Expression of NAD+ biosynthesis enzyme 

in rheumatoid synovium 

3.1 Nicotinamide Adenine Dinucleotide (NAD+) 

Nicotinamide adenine dinucleotide (NAD+) plays an integral role in cell survival. For 

instance, it takes part in a number of reduction-oxidation (redox) reactions involving 

it in cellular processes from breakdown and release of energy from proteins, 

carbohydrates and fats to fatty acid synthesis. NAD+ is also used as a substrate for 

NAD+-consuming enzymes such as sirtuins, poly (ADP-ribose) polymerases (PARP) 

and ADP-ribosyl cyclases, which are involved in gene expression, apoptosis and Ca2+ 

mobilisation (Belenky et al. 2007; Nowell et al. 2012).  

3.1.1 NAD+ Biosynthesis 

NAD+ is synthesised from various vitamins such as nicotinamide, tryptophan, 

nicotinamide riboside and nicotinic acid (Bogan and Brenner 2008) and from three 

main pathways; namely de novo, salvage and Preiss-Handler (Preiss and Handler 

1957; Bogan and Brenner 2008) pathways (Fig 3.1).  

There are a number of important enzymes involved in NAD+ biosynthesis; Quinolinic 

acid PRT (QAPRT) is the rate limiting enzyme for the de novo NAD+ synthesis 

pathway, using tryptophan as the precursor vitamin (Bogan and Brenner 2008); 

Nicotinic acid PRT (NAPRT) is the rate limiting enzyme in the Preiss-Handler 

pathway, with nicotinic acid as the precursor vitamin (Bogan and Brenner 2008). 

Nicotinamide is also generated during NAD+ consuming reactions and can be 

recycled to NAD+ via salvage pathway with NAMPT being a rate limiting enzyme (Fig 

3.1). 
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Fig 3.1. NAD+ biosynthesis pathway. Taken from Bogan et al (2008) 

Na – nicotinic acid, Nam – nicotinamide, NR – nicotinamide riboside, NMN – nicotinamide 

mononucleotide, NAD+ - nicotinamide adenine dinucleotide, Quin – quinolinic acid, Trp – 

Tryptophan, QPRT – quinolinic acid phosphoribosyl transferase (PRT), NMNAT – 

nicotinamide mononucleotide adenyl transferase, NADSyn – NAD synthetase, NAMPT – 

nicotinamide PRT, NAPRT – nicotinic acid PRT. The enzymes which will be investigated in 

this chapter are circled in red. 

 

3.1.2 Expression and distribution of NAD+ biosynthesis enzymes 

3.1.2.1 NAMPT 

As discussed in section 1.9 in chapter 1, NAMPT is present in both intracellular and 

extracellular regions. NAMPT has the highest expression in human liver, bone 

marrow, peripheral blood leucocytes and muscle, whilst kidney and heart show 

intermediate levels of intracellular NAMPT (Samal et al. 1994; Friebe et al. 2011). 

Adipose tissue has been shown to abundantly express extracellular NAMPT 

(Fukuhara et al. 2005) (Fig 3.2) and NAMPT is also found in lung, placenta, intestines, 

pancreas and synovial tissue (Samal et al. 1994; Nowell et al. 2006; Nowell et al. 

2012).  
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3.1.2.2 IDO 

IDO is expressed in humans in brain, kidney, liver, adipose tissue, placenta and 

various immune cells throughout the body such as dendritic cells, monocytes, 

macrophages and microglial cells (Manuelpillai et al. 2005; Mándi and Vécsei 2012; 

Favennec et al. 2015) 

3.1.2.3 Other NAD enzymes 

QAPRT, NMNAT 1-3 (nicotinamide mononucleotide adenyl transferase) and 

NADSYN (NAD synthetase) are found in high concentration in human liver and brain 

where these convert tryptophan to NAD+ (Feldblum et al. 1988; Okuno et al. 1988).  

NAPRT is highly expressed in liver, kidney, heart and small intestine with moderate 

expression in lungs (Hara et al. 2007).  
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Fig 3.2. Diagram to highlight areas in normal, healthy human tissue that naturally express high 

levels of the different NAD+ biosynthesis enzymes investigated in this study (Feldblum et al. 

1988; Okuno et al. 1988; Samal et al. 1994; Nowell et al. 2006; Friebe et al. 2011; Mándi and 

Vécsei 2012; Nowell et al. 2012; Favennec et al. 2015). 
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3.1.3 NAD+ biosynthesis and role in inflammation 

Increased intracellular NAD+ levels protect cells such as lymphocytes, human 

embryonic kidney cells, smooth muscle cells, cardiac and skeletal myocytes from 

genotoxic stress induced apoptotic cell death caused by DNA alkylating and PARP 

activating agents and reactive oxygen species (Pillai et al. 2005; van der Veer et al. 

2005; Yang et al. 2007; Fulco et al. 2008; Rongvaux et al. 2008). Synthesis of TNF-

α and IL-6 in monocytes (when stimulated by lipopolysaccharide in vitro) relies on 

intracellular NAD+ levels produced via the NAD salvage pathway (Van Gool et al. 

2009). Interestingly, intracellular NAD+ levels and TNF-α production can be restored 

by adding nicotinamide mononucleotide or nicotinic acid by diverting synthesis of 

NAD+ via the Preiss-Handler pathway using NAPRT as the rate limiting enzyme (Van 

Gool et al. 2009). 

It is believed that NAMPT is the main NAD+ biosynthesis enzyme up regulated 

following increased demand for NAD+ in the proliferating cells (Bruzzone et al. 2009). 

Thus it is hypothesised that inhibiting NAMPT could deprive proliferating cells of NAD+ 

leading to its death (Bruzzone et al. 2009). This property could be used as a possible 

targeted therapy in RA where cells like synovial fibroblasts are highly proliferative 

(reviewed by Nowell et al. 2012). As APO866 exclusively inhibits NAMPT activity, 

nicotinic acid has been shown to counteract APO866 toxicity in normal healthy tissue 

by producing NAD+ via Preiss-Handler pathway (Olesen et al. 2010). As the NAD+ 

synthesis via Preiss-Handler pathway is unable to meet its increased demand in 

highly proliferative cells, addition of nicotinic acid would only rescue normal healthy 

tissue (Olesen et al. 2010).   

3.2 Aims of chapter 3 

A number of studies have confirmed elevated levels of NAMPT in RA synovial tissue 

and fluid (Nowell et al. 2006; Brentano et al. 2007; Matsui et al. 2008; Meier et al. 

2012). However, the expression and relationship between other NAD+ biosynthesis 

enzymes in synovial tissue has yet to be defined. This chapter aims to characterise 

the expression of the principle enzymes involved in NAD+ biosynthesis in RA, OA and 

normal ‘healthy’ synovial tissues to gain a better understanding of the significance of 

any elevated NAMPT in the RA synovium. 
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3.3 Methods 

3.3.1 Synovial tissue sample and patient characteristics 

Synovial samples were obtained during surgery as outlined in methods chapter 

section 2.2.1. Samples were taken from patients who had RA, OA or from normal 

healthy individuals. The number of patients, age, gender, joint and medications are 

as outlined in table 2.1. 

3.3.2 qPCR analysis of NAD+ biosynthesis enzymes in synovial tissue 

mRNA was extracted from synovial samples and reverse transcribed to cDNA as 

described in chapter 2 section 2.2.3 and 2.2.5 respectively. qPCR analysis was 

performed as outlined in chapter 2 section 2.2.6.4 and expression of NAMPT, 

NAPRT, QAPRT, NMNAT 1, 2 & 3, NADSYN and IDO were determined. Genorm 

analysis was performed as outlined in section 2.2.6.3 to determine optimum reference 

gene. Analysis identified that optimal number of targets for synovial tissues were 3 

(Fig 2.1) with Ubiquitin C (UBC), Actin β (ACTB) and 18s as the most stably 

expressed genes in this tissue to be used as reference genes for these analyses (Fig 

2.1).  

3.4 Statistical analysis of NAD+ biosynthesis enzyme expression in synovial tissue 

sample 

Statistical analysis was performed using GraphPad Prism 6 software. One way 

ANOVA with bonferroni’s correction was performed to compare the expression of 

NAD+ biosynthesis enzymes between two groups (i.e. RA vs OA, RA vs Normal and 

OA vs Normal synovial tissues). Graphs were presented in the form of vertical scatter 

plot with mean. Correlation between the expressions of individual NAD+ biosynthesis 

enzymes was performed using Pearson correlation. P value of <0.05 was considered 

significant.  
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3.5 Results 

Analyses of the enzymes involved in NAD+ biosynthesis showed that NAMPT, 

NAPRT, QAPRT, NMNAT 1 & 2, NADSYN and IDO were all detected and 

constitutively expressed in all synovial tissues with the exception of NMNAT3.  

3.5.1 NAD+ biosynthesis enzyme expression in normal healthy synovial tissue 

During assay of NAD+ biosynthesis enzymes it was noted that some of the synovial 

tissues from normal, healthy tissues displayed unusually high expression of NAMPT 

(Fig 3.3a). On closer inspection, this trend was noticed only in tissues from patients 

under the age of 16 years.  

When tissue enzyme expression was plotted against age in years of donor, NAMPT 

was highly expressed (RQ value = 15) in normal pre-pubertal subjects and gradually 

decreased over time by adulthood (i.e. >16yrs, Figure 3.3a). In contrast, the other 

NAD+ biosynthesis enzymes analysed (NAPRT, IDO, QAPRT and NADSYN) showed 

no significant pattern of gene expression relative to age (Figure. 3.3); NMNAT- 1 &-2 

were highly variable between subjects, with no significant trend in expression 

apparent over age (Figure 3.3 d & e).  

The results of NAD+ biosynthesis enzymes expression from patients under the age of 

16 was therefore excluded from subsequent comparative analyses. 

One patient who had a very recent trauma (fracture), showed abnormally high 

expression of all the enzymes. It was felt trauma could have contributed to this and 

was therefore excluded from the analysis.  
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Fig 3.3. Relative quantity (RQ) of NAD+ biosynthesis enzymes in synovial tissues from normal 

healthy patients in relation to their age. RQ was calculated using 18s, UBC and ACTB as the 

house keeping genes. Graph was plotted using non-linear regression and third order 

polynomial equation 

 

 

 



45 
 

3.5.2 NAD+ biosynthesis enzyme expression in RA synovial tissue 

3.5.2.1 Comparison of NAD+ biosynthesis enzyme expression in synovial tissue 

between RA and normal healthy patients 

When compared to expression in normal, adult healthy synovial tissue, all NAD+ 

biosynthesis enzymes investigated displayed elevated expression in RA with the 

exception of NAPRT (Fig 3.4), but none of them were statistically significantly 

elevated. Some of the patients were on anti-TNF medication. When they were 

excluded from analysis there was statistically significant (p = 0.0106) increased 

relative expression of NAMPT in RA synovial tissue compared to synovium from 

healthy donors (Fig 3.5). There was 40-fold increased expression of IDO in RA 

synovial tissue when compared to normal however this was not statistically significant 

(p = 0.0676) (Fig 3.4). Although the expression of QAPRT, NMNAT2 and NADSYN 

were also elevated in RA synovial tissue their expression levels were not statistically 

significant (p = 0.2370, 0.0706 & 0.0878 respectively) when compared to OA synovial 

tissue (Fig 3.4 & 3.5). 

3.5.2.2 Comparison of NAD+ biosynthesis enzyme expression in synovial tissue 

between RA and OA patients 

Expression of NAD+ biosynthesis enzymes were found to show increased expression 

in RA synovial tissue when compared to OA synovial tissue with the exception of 

NAPRT (Fig 3.4). Only IDO showed nearly statistically significantly enhanced 

expression in RA synovial tissue when compared to OA synovial tissue (p = 0.0504) 

(Fig 3.4f). However, when patients who were on anti-TNF medication were excluded 

from analysis, the expression of NAMPT was found to be statistically significant in RA 

synovial tissue when compared to OA synovial tissues (p = 0.0251) (Fig 3.5a) with no 

change in the expression levels of other NAD+ enzymes. Although the expression of 

QAPRT, NMNAT2 and NADSYN were also elevated in RA synovial tissue their 

expression levels were not statistically significant (p = 0.1883, 0.2225 & 0.2910 

respectively) when compared to OA synovial tissue (Fig 3.4 & 3.5).  
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Fig 3.4. Relative quantity (RQ) (mean) of NAD+ biosynthesis enzymes investigated in synovial 

tissues taken from patients with Rheumatoid Arthritis (RA), Osteoarthritis (OA) and normal 

healthy subjects (NORM). 18s, UBC & ACTB were used as reference genes. One-way 

ANOVA test with bonferroni’s test was used to check for statistical significance. * - P<0.05 
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Fig 3.5. Relative quantities (RQ) (mean) of NAD+ biosynthesis enzymes in synovial tissues 

taken from OA, normal healthy subjects and anti-TNF naïve RA patients. 18s, UBC & ACTB 

were used as reference genes. Unpaired t test was used to check for statistical significance. 

* - P<0.05 
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3.5.3 Correlation between the expression of NAD+ biosynthesis enzymes 

Dependencies of each of the NAD+ enzymes investigated were carried out by 

correlation analysis. It was found that there was significant relationship between 

NAMPT and QAPRT (p < 0.0001), NMNAT2 (p < 0.0001), NADSYN (p = 0.0002) and 

IDO (p = 0.0059) (Fig 3.6a). There was also significant correlation between QAPRT 

and NMNAT2 (p = 0.0099), NADSYN (p < 0.0001) and IDO (p < 0.0001) (Fig 3.6b) 

and between the expression of NMNAT2 and NADSYN (p = 0.0226) and IDO (p = 

0.0269) and between NADSYN and IDO (p < 0.0001) (Fig 3.6 c). In this study there 

was no significant correlation between the expressions of NAPRT and NMNAT1 with 

the rest of the NAD+ biosynthesis enzymes  

 

Enzyme NAMPT QPRT NMNAT1 NMNAT2 NADSYN IDO NAPRT 

NAMPT        

QPRT ***       

NMANT1 n.s. n.s.      

NMNAT2 *** ** n.s.     

NADSYN *** *** n.s. *    

IDO ** *** n.s. * ***   

NAPRT n.s. n.s n.s. n.s n.s n.s  
Table 3.1. Correlation between expressions of NAD+ biosynthesis enzymes. *=p<0.05, **-

p<0.01, ***=p<0.001 
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Fig 3.6 (a). Correlation between NAD+ biosynthesis enzymes investigated in this study. RQ 

values of NMNAT 1-2, NADSYN, IDO, NAPRT and NAMPT were plotted against each other. 

Correlation of NAMPT/QAPRT, NAMPT/NMNAT2, NAMPT/NADSYN, NAMPT/IDO were 

found to be significant (p<0.05). 
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Fig 3.6 (b). Correlation between NAD+ biosynthesis enzymes investigated in this study. RQ 

values of NMNAT 1-2, NADSYN, IDO, NAPRT and NAMPT were plotted against each other. 

Correlation of QAPRT/NMNAT2, QAPRT/NADSYN, QAPRT/IDO were found to be significant 

(p<0.05).   
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Fig 3.6 (c). Correlation between NAD+ biosynthesis enzymes investigated in this study. RQ 

values of NMNAT 1-2, NADSYN, IDO, NAPRT and NAMPT were plotted against each other. 

Correlation of NMNAT2/NADYN, NMNAT2/IDO, NADSYN/IDO were found to be significant 

(p<0.05) 
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3.6 Discussion 

3.6.1 NAD+ biosynthesis enzyme expression in synovial tissue 

This study has explored for the first time, the gene expression of NAD+ biosynthesis 

enzymes in normal healthy and diseased synovial tissues.  

A number of studies have shown NAMPT to be elevated in inflammation (Dahl et al. 

2007; Moschen et al. 2007; Moschen et al. 2011) including RA (Nowell et al. 2006; 

Otero et al. 2006; Brentano et al. 2007; Matsui et al. 2008; Rho et al. 2009). In RA, 

NAMPT has been shown to be elevated in serum (Otero et al. 2006; Brentano et al. 

2007; Matsui et al. 2008; Rho et al. 2009), synovial fluid (Nowell et al. 2006; Brentano 

et al. 2007; Meier et al. 2012) and synovial tissues (Nowell et al. 2006; Brentano et 

al. 2007; Matsui et al. 2008; Meier et al. 2012). Previous studies have used a number 

of different methods to quantify NAMPT expression, including detection by 

immunohistochemistry (Nowell et al. 2006; Brentano et al. 2007; Meier et al. 2012), 

western blot of tissue (Brentano et al. 2007), in situ hybridisation (Brentano et al. 

2007), ELISA (Rho et al. 2009; Meier et al. 2012), enzyme immunoassay (EIA) 

(Nowell et al. 2006; Otero et al. 2006; Matsui et al. 2008) and RT-PCR (Brentano et 

al. 2007; Matsui et al. 2008).  

Some studies have also investigated the expression of IDO in RA synovial tissue 

(Malone et al. 1994; Zhu et al. 2006; Park et al. 2011) but there have been no studies 

in literature (at the time of this writing) which have characterised the expression of 

QAPRT, NAPRT, NADSYN and NMNAT in synovium. In this study qPCR was used 

to study the gene expression of NAD+ biosynthesis enzyme in synovium and for the 

first time has compared the gene expression of NAD+ biosynthesis enzyme from 

synovial tissues of patients with RA with patients with OA and normal healthy 

subjects.  

3.6.2 NAMPT in synovial tissue 

3.6.2.1 NAMPT in developing healthy synovial tissue 

In this study, the expression of NAMPT was found to be high in synovial tissue of 

young actively-developing healthy subjects, which gradually decrease over time with 

age. Studies in literature have shown NAMPT dependent NAD+ biosynthesis 

regulates many cellular and physiological function of Sirt1 (Imai 2009a, b) and the 

NAMPT/Sirt1 pathway plays an important role in cellular differentiation and 

maturation. Over expression of NAMPT is observed in maturing human vascular 
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smooth muscle cells (SMC) (van der Veer et al. 2005) and increasing the expression 

of NAMPT in these cells, aids in their maturation (van der Veer et al. 2005) and  

lifespan (van der Veer et al. 2007). In contrast, decreasing the level of NAMPT impairs 

survival and maturation of SMC in vitro (van der Veer et al. 2005). It’s possible 

therefore, that like SMCs, NAMPT is similarly overexpressed in young actively-

developing and maturing synovial tissues and may well be related to the 

differentiation and maturation state of the synovial tissue under investigation. 

3.6.2.2 NAMPT in normal and diseased synovial tissue 

In this study the expression of NAMPT was found to be high in the synovium of 

patients with RA compared to OA & normal healthy patients. On closer inspection it 

was evident that some of the RA patients (n = 4) had received anti-TNF medications 

(e.g., etanercept). When these patients were excluded from analysis, NAMPT 

expression in synovial tissue from RA patients was statistically significantly enhanced 

when compared to tissue from OA and normal patients (Fig 3.5a). TNF is known to 

regulate the expression of NAMPT in neutrophils and macrophages ex-vivo (Jia et al. 

2004; Iqbal and Zaidi 2006) and it is possible that the anti-TNF medication in these 

patients prevented the over expression of NAMPT in the synovial tissues. A study 

performed by Klaasen et al (2012) showed a significant reduction in serum NAMPT 

levels after patients with RA were treated for 16 weeks with adalimumab, a 

recombinant human monoclonal antibody specific to TNF. Furthermore, this reduction 

in serum NAMPT has been observed in patients treated with other biologics – for 

example, treatment with rituximab (a chimeric monoclonal antibody against the 

protein CD20 on B-cells) significantly reduces the serum levels of NAMPT in patients 

with RA with levels comparable to healthy controls, notably, a lack of change of serum 

NAMPT in these patients predicts worsening of disease activity (Šenolt et al. 2011). 

In this study the expression of NAMPT was found to be high in synovial tissue from 

OA when compared to normal healthy patients, however it was not statistically 

significant. Laiguillon et al (2014) have also shown NAMPT to be expressed in human 

OA synovium, cartilage and subchondral bone with increased expression in synovial 

tissue. NAMPT was also found to be highly expressed in synovial fluid of patients with 

OA and NAMPT expression positively correlated with severity of OA, degradation 

marker of collagen II and aggrecan (Duan et al. 2011).  
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3.6.3 NMNAT in synovial tissue 

All enzymes studied (NAMPT, QAPRT, NAPRT, NMNAT 1 & 2, NADSYN and IDO 

were detected with the exception of NMNAT3. The lack of detection of this particular 

enzyme may be due either to low expression of NMNAT3 in synovial tissue or an 

issue with the design of the primer used in the qPCR analysis. 

NMNAT is present as three isoforms in humans. NMNAT-1 is a homohexamer 

consisting of 279 amino acids with a molecular mass of 31.9 kDa (Werner et al. 2002; 

Berger et al. 2005; Di Stefano et al. 2010). NMNAT-2 is a homodimer consisting of 

307 aminoacids and has 34% sequence homology to NMNAT-1 with a molecular 

mass of 34.4 kDa (Raffaelli et al. 2002; Di Stefano et al. 2010). NMNAT-3 is a 

homotetramer and contains 252 amino acids. It has 50% and 34% sequence 

homology to NMNAT-1 & -2 respectively with molecular mass of 28.3 kDa (Zhang et 

al. 2003; Di Stefano et al. 2010). NMNAT-1 is localised to the nucleus and NMNAT-2 

& -3 are localised to Golgi complex and mitochondria respectively (Zhang et al. 2003; 

Berger et al. 2005). Interestingly, the tissue distribution of all three isoforms are 

different (table 3.2). Also of interest is that NMNAT-2 expression is high in tissues 

where NMNAT-3 is not detected and vice versa. This mirrors the observations in the 

RA synovial tissue as this study showed increased expression of NMNAT-2 in RA 

synovial tissue whilst NMNAT-3 could not be detected.  

This study showed elevated expression of NMNAT-2 in RA synovium compared to 

normal healthy tissue. It is natural to hypothesise that any increase in NAMPT 

expression would need to be associated with an increased expression of NMNAT to 

convert the NAMPT product, NMN, to NAD+ (Fig 3.7). Indeed, this study showed a 

significant correlation between the expression of NMNAT-2 and NAMPT mRNA in RA 

synovial tissues [Fig 3.6 (a)]. This observation suggests that increases in the enzyme 

expression of NAD+ salvage pathway (i.e. both NAMPT and NMNAT) would likely be 

accompanied by an associated increase in NAD+ production. 

NMNAT-1 and -3 has been found to be weakly expressed in tumour cell lines 

(Emanuelli et al. 2001; Zhang et al. 2003) whereas NMNAT-2 activity is increased in 

liver cancer and neuroblastoma (Sorci et al. 2007). Pan et al (2014) have shown that 

p53 induces NMNAT-2 and to some extent NMNAT-1 & -3. These observations 

suggest that NMNAT may be regulated differently in diseased tissues and the next 

chapter will investigate the effect of cytokine stimulation of fibroblasts on NMNAT 

expression.  
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Fig 3.7. NAD+ synthesis via the salvage pathway. NAMPT – nicotinamide phosphoribosyl 

transferase, NMNAT – nicotinamide mono nucleotide adenyl transferase, NAD – nicotinamide 

adenine dinucleotide.  

 

Tissues NMNAT1 NMNAT2 NMNAT3 Reference 

Skeletal 
muscle 

+++ ++ + 
(Emanuelli et al. 2001; Fernando 

et al. 2002; Zhang et al. 2003; 
Yalowitz et al. 2004) 

Heart +++ ++ + 
(Emanuelli et al. 2001; Fernando 

et al. 2002; Zhang et al. 2003; 
Yalowitz et al. 2004) 

Kidney +++ - ++ 
(Emanuelli et al. 2001; Fernando 

et al. 2002; Zhang et al. 2003; 
Yalowitz et al. 2004) 

Lung - - +++ 
(Fernando et al. 2002; Zhang et 
al. 2003; Yalowitz et al. 2004) 

Spleen + - +++ 
(Emanuelli et al. 2001; Zhang et 
al. 2003; Yalowitz et al. 2004) 

Placenta - - + 
(Fernando et al. 2002; Zhang et 
al. 2003; Yalowitz et al. 2004) 

Thymus + NT - 
(Emanuelli et al. 2001; Zhang et 

al. 2003) 

Liver ++ - - 
(Emanuelli et al. 2001; Fernando 

et al. 2002; Zhang et al. 2003; 
Yalowitz et al. 2004) 

Brain + +++ - 

(Emanuelli et al. 2001; Fernando 
et al. 2002; Raffaelli et al. 2002; 
Zhang et al. 2003; Yalowitz et al. 

2004) 

Pancreas ++ ++ - 
(Fernando et al. 2002; Zhang et 
al. 2003; Yalowitz et al. 2004) 

Table 3.2. Summary of tissue expression of different isoforms of NMNAT detected by Northern 

blot analyses with associated reference. +, weak expression to +++, strong expression; NT – 

not tested. 

 
3.6.4 IDO in synovial tissue 

In this study, it was found that IDO was also significantly expressed in synovial tissue 

from patients with RA compared to OA and normal synovial tissues (Fig 3.4f). This 

finding is similar to observations seen in other studies by Zhu et al (2006) and Park 

et al (2011).  
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Fig 3.8. NAD+ biosynthesis from Tryptophan via the de nova pathway. IDO – indole amine 2,3-

dioxygenase, QaPRT – quinolinic acid phosphoribosyl transferase, NMNAT – nicotinamide 

mono nucleotide adenyl transferase, NADSYN – NAD synthetase. 

 

IFN- is a well-known inducer of IDO (Mellor and Munn 2004). Indeed, in chronic 

immune activation, IFN- is released by TH-1 helper cells which leads to activation of 

IDO and increased degradation of tryptophan (Schroecksnadel et al. 2003). The 

extent of increased tryptophan degradation corresponds to the severity of RA 

(Schroecksnadel et al. 2006).  

In addition, it is believed that tryptophan degradation via IDO leads to inhibition of cell 

proliferation resulting in modulation of cellular immune response; studies have shown 

inhibition of T cell proliferation by macrophages (Munn et al. 1999) and dendritic cells 

(Hwu et al. 2000) following tryptophan degradation by IDO. IFN- mediated activation 

of IDO and enhanced tryptophan depletion has shown to inhibit IL-1β induced 

collagenase and stromelysin gene expression in fibroblast which were reversed by 

the addition of exogenous tryptophan (Varga et al. 1995). This suggests that inhibition 

of IL-1β induced collagenase and stromelysin gene expression in fibroblast was 

directly due to reduction of local tryptophan concentration rather than the 

accumulation of kynurenine and other tryptophan metabolites.  

3.6.4.1 IDO – the good? 

In collagen induced arthritis (CIA) in mice, IDO was found to be significantly 

upregulated in the dendritic cells in draining lymph nodes and the severity of the 

disease was found to be high in IDO deficient (Indo-/-) mice when compared to 

C57BL6/J mice (Criado et al. 2009).  IDO gene transfer using adenoviral vectors 

encoding IDO ameliorated ankle arthritis in CIA by reduction of synovial IL-17 

production and induction of CD+ T-cell apoptosis (Chen et al. 2011b). Following CIA 

in Indo-/- mice there was increased production of IFN- and IL-17 in the lymph nodes 

and increased infiltration of Th1 and Th17 cells in the arthritic joints suggesting that 

IDO mediated tryptophan catabolism regulates Th1/Th17 in collagen induced arthritic 

joints (Criado et al. 2009).  
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3.6.4.2 IDO – the bad? 

Inhibition of IDO by 1-methyl-tryptophan (1-MT) in-vivo resulted in increased 

incidence and severity of collagen induced arthritis in mice when compared with 

vehicle treated mice (Szanto et al. 2007; Criado et al. 2009). From above studies it is 

clear that increased IDO activity leads to suppressive effects on the activation of T 

cells. However, the effect of IDO on B cell function is not clearly understood. When 

K/BxN murine RA model was treated with 1-MT there was amelioration of arthritis 

symptoms rather than exacerbation (Scott et al. 2009). There was no difference in 

the percentage of T regulatory cells nor in the levels of Th1/Th2/Th17 cytokines, but 

there was a decrease in autoantibody titres (Scott et al. 2009).  

These findings suggest that the activity of IDO is very complex in not only being 

immunosuppressive but also supporting the development of B cell mediated 

inflammation and therefore warrants further investigation.  

3.6.5 QAPRT in synovial tissue 

In this study there was increased expression of QAPRT in RA synovial tissue when 

compared to synovial tissues in OA and normal healthy subjects, however there was 

no statistically significant difference (Fig 3.4). QAPRT is the rate limiting enzyme 

which catalyses the conversion of quinolinic acid to nicotinic acid mononucleotide (Fig 

3.8 above).  

There are no studies in the literature at the time of writing this thesis showing that 

expression of QAPRT differs in diseased synovial tissues. However, studies have 

shown marked differences in QAPRT expression in other diseases – both increases 

and decreases; QAPRT is highly expressed in malignant gliomas with higher levels 

seen with increasing malignancy (Sahm et al. 2013). QAPRT was induced when 

glioma cells were treated with alkylating agents, irradiation and hydrogen peroxide in 

a dose dependant manner (Sahm et al. 2013). QAPRT was also induced when 

quinolinic acid was injected into rat striata (Foster et al. 1985). Reduced QAPRT 

activity has also been found at the epileptic foci in human brain (Feldblum et al. 1988) 

whereas increased activity is found in post-mortem brain of patients with Huntington 

disease when compared to normal subjects (Foster et al. 1985). When human skin 

fibroblasts were stimulated with IFN- and TNF-α there was no change in the 

expression of QAPRT, however, when stimulated simultaneously with both IFN- and 

TNF-α there was downregulation of QAPRT when compared to untreated controls 

(Asp et al. 2011). 
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Studies have shown that microglial cells over express QAPRT to synthesise NAD+ 

when depletion of NAD+ occurs following NAMPT inhibition, irradiation or when 

treated with alkylating agents (Sahm et al. 2013). There is also an increase demand 

for NAD+ in highly proliferative tissue such as the RA synovial tissue. It is possible 

that the increased expression of QAPRT in this study could be to increase the 

synthesis of NAD+ through the de novo pathway as the other enzymes required for 

NAD+ synthesis through this pathway such as IDO, NMNAT and NADSYN are also 

highly expressed in the synovial tissue in RA (Fig 3.8).  Also, there was significant 

correlation in the expression of QAPRT and IDO (p<0.0001), NMNAT2 (p=0.009) and 

NADSYN (p<0.0001) (Fig 3.6a) in this study. It is possible that QAPRT may be 

regulated by cytokines and this will be investigated in the next chapter by stimulating 

human synovial tissues with inflammatory cytokines found in RA (TNF-α, IL-1β, IFN-

 and OSM). 

3.6.6 NADSYN in synovial tissue 

In this study NADSYN was found to be significantly elevated in RA synovial tissues 

when compared to normal. So far the regulation and involvement of NADSYN in 

human diseases has not been characterised in any studies. In the next chapter the 

upregulation of NADSYN seen in RA synovial tissue in this study will be investigated 

further by looking at any regulation due to cytokines normally seen in RA (TNF-α, IL-

1β, IFN- and OSM).   

3.6.7 NAPRT in synovial tissue 

This study found no statistically significant differences in NAPRT expression between 

RA, OA and normal synovial tissues. NAPRT converts nicotinic acid (NA) to NA 

mononucleotide (NaMN) which is then converted to NA adenine dinucleotide and 

finally into NAD+ via the Preiss Handler pathway (Fig 3.9).  

 

Fig 3.9. Synthesis of NAD+ from nicotinic acid via Preiss-Handler pathway. NAPRT – nicotinic 

acid phosphoribosyl transferase, NMNAT – nicotinamide mono nucleotide adenyl transferase, 

NADSYN – NAD synthetase. 

 

NA is known to be a better precursor in elevating NAD+ levels than Nam (Hara et al. 

2007). In cells expressing endogenous NAPRT, addition of NA at concentration as 

low as 5-10µM almost doubles (200%) the intracellular NAD+ content whereas in cells 
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expressing NAMPT, addition of Nam at millimolar concentration only increases 

intracellular NAD+ content by 130% (Hara et al. 2007). This is due to a lack of 

feedback inhibition of NAPRT by NAD+ in contrast to NAMPT (Hara et al. 2007; 

Galassi et al. 2011). This property has been demonstrated to protect normal tissues 

from cytotoxicity of NAMPT inhibitors (such as APO866) by the co-administration of 

NA. For example, studies have shown that cancers and brain tumours demonstrating 

low NAPRT expression respond well to NAMPT inhibitors whilst normal tissues were 

rescued from death by replenishing the NAD+ levels through the addition of NA 

(Watson et al. 2009; Olesen et al. 2010).  

In this study the expression of NAPRT was very low in synovial tissue whilst the 

expression of NAMPT was high in RA synovial tissue, thus the protective action of 

NA on normal tissues by replenishing NAD+ levels using NAPRT could potentially be 

a viable option if NAMPT inhibition is used for the treatment of RA.,    

3.6.8 Correlation of NAD+ biosynthesis enzymes in the salvage pathway 

There was significant correlation between NAMPT and NMNAT-2, QAPRT, NADSYN 

& IDO in synovial tissue (Fig 3.6a). The relationship between NAMPT and NMNAT-2 

is interesting, as any increases in intracellular NAMPT would need an associated 

increase in NMNAT to have an impact on intracellular NAD+ (Fig 3.7). 

As described above, there is a large body of evidence in literature demonstrating that 

NAMPT is an inducible enzyme, but there is little on NMNAT 1-3. The next chapter 

will investigate the regulation of expression of NMNATs by cytokine stimulation of the 

synovial fibroblast (i.e. TNF-α, IL-1β, IFN- and OSM).  

NMNAT-3 was not detected in any of the synovial tissues hence no correlation could 

therefore be performed. Unlike NMNAT-2, there was no correlation between the 

expression of NAMPT and NMNAT-1 in this study. This suggests therefore that 

NMNAT-2 is the most important enzymes of the three NMNAT isoforms in synovial 

tissues for the NAD+ salvage pathway.   

3.6.9 Correlation of NAD+ biosynthesis enzymes in the de novo pathway 

QAPRT, NADSYN and IDO are all enzymes involved in the de novo pathway (Fig 

3.8). It is well known that IDO is regulated by IFN- (section 3.6.4), and QAPRT has 

been shown to be regulated by cytokine activity (section 3.6.5). To date NADSYN 

have not been shown to be regulated by cytokine activity 
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All enzymes that were investigated in this study that are involved in the de novo 

pathway were correlated with each other (Fig 3.6b & c). Their related expressions 

may reflect their required in tandem expression for controlled NAD+ availability via 

this pathway. The correlation of expression with NAMPT suggests that factors that 

are regulating NAMPT expression may also regulate the expression of QAPRT, 

NADSYN and IDO in a similar manner. The next chapter will specifically investigate 

the effect of a number of inflammatory cytokines (TNF-α, IL-1β, IFN- and OSM) 

although other factors such as oxidative stress, heat, NAD+ and other metabolites 

within the pathway could also have a role to play in their regulation.  

3.6.10 Correlation of NAD+ biosynthesis enzymes in the Preiss-Handler pathway 

In this study there was very low expression of NAPRT in RA, OA and normal synovial 

tissue and there was no correlation between the expressions of NAPRT with any of 

the NAD+ biosynthesis enzymes tested. To date there are no studies in the literature 

which have investigated the regulation of expression of NAPRT. However, as with the 

other enzymes investigated in this chapter, stimulation of NAPRT by inflammatory 

cytokines usually seen in RA such as TNF-α, IL-1β, IFN- and OSM will be 

investigated further in the next chapter.  
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3.7 Summary 

In this chapter the gene expression of various NAD+ biosynthesis enzymes were 

characterised in RA, OA and normal synovial tissues.  

The main findings were: 

 NMNAT-3 could not be detected in any of the tissues. All other enzymes were 

detected ex vivo. 

 NAMPT expression is highly expressed in pre-pubertal actively growing 

normal healthy synovial tissue, a characteristic that appears to be unique to 

NAMPT. 

 When patients with RA receiving anti-TNF treatment for their arthritis are 

excluded from analyses, NAMPT expression is statistically significantly 

elevated in RA synovial tissue compared to tissue from patients with OA and 

normal joints.  

 In synovial tissue, the expression of the enzymes involved in the NAD salvage 

pathway investigated in this study, namely NAMPT and NMNAT-2 significantly 

correlate with each other, but does not correlate with NMNAT-1 

 NAMPT expression in synovial tissue is also significantly correlated with 

QAPRT, NADSYN and IDO 

 In synovial tissue, the expression of enzymes involved with the de novo NAD 

pathway investigated in this study, namely, QAPRT, NMNAT-2, NADSYN and 

IDO, all significantly correlate with each other. 

 Notably, NAPRT and NMNAT-1 do not correlate with any of the other enzymes 

investigated in this study. 

Due to the known effect of cytokines such as TNF-α, IL-1β, IL-6, LPS and OSM on 

NAMPT expression in synovial fibroblasts (Nowell et al. 2006; Brentano et al. 2007), 

the effect of inflammatory cytokines common to RA upon the regulation of these 

enzymes will be explored in the next chapter. 
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Chapter 4 - Effect of cytokines on NAD+ biosynthesis 

enzymes on RA synovial fibroblasts 
  

4.1 Introduction 

4.1.1 Normal Synovium 

Synovial tissue (ST) consists of superficial intimal lining layer and deep synovial 

sublining layer. The intimal lining layers of normal synovium is of 1-2 cells thickness, 

predominantly consisting of CD55+ fibroblast-like cells (mesenchymal origin) and 

CD68+ macrophages (haemopoeitic origin) (Smith et al. 2003). Sublining cells 

consists of few blood vessels, fat cells, few fibroblasts and macrophages, CD3+ T 

lymphocytes, HLA-DR+ cells and no B lymphocytes (Lindblad and Hedfors 1987b; 

Smith et al. 2003; Singh et al. 2004). T lymphocytes are predominantly seen in the 

peri-vascular area and occasionally found to be diffuse (Lindblad and Hedfors 1987b; 

Singh et al. 2004). Pro-inflammatory cytokines such as TNF-α, IL-6, IL-1β & IFN- are 

detected in normal synovium however its far less than in RA synovium (Smith et al. 

2003). However, there is high expression of IL1ra (natural antagonist to IL-1 thus 

resulting in suppression of inflammation in normal synovial tissue (Smith et al. 2003).     

 

Fig 4.1. Schematic representation of normal synovium  

4.1.2 Synovium in OA 

Synovium in OA patients exhibit 3-4 layer thick synovial lining cells covered with 

fibrotic tissue (Lindblad and Hedfors 1987a; Haraoui et al. 1991). Macrophages are 

the predominant cells in the lining layer with T cells found in the sublining layer (de 

Lange-Brokaar et al. 2012). There are abundant CD68+ cells followed by HLA-DR+ 

cells in the lining and sublining layers (Saito et al. 2002). CD4+/CD8+ ratio is increased 

in OA synovial tissue (5:1) when compared to normal synovial tissue (2:1) (Saito et 
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al. 2002). B cells and plasma cells are also detected in OA ST but are low compared 

to RA (Lindblad and Hedfors 1987a; Revell et al. 1988). Various cytokines have been 

detected in OA ST such as IL-1β (Smith et al. 1997; Benito et al. 2005), TNF-α (Smith 

et al. 1997; Benito et al. 2005), IL-6 (Farahat et al. 1993; Doss et al. 2007), IFN- 

(Dolhain et al. 1996; Ishii et al. 2002), IL-8 (Furuzawa-Carballeda and Alcocer-Varela 

1999), IL-10 (Furuzawa-Carballeda and Alcocer-Varela 1999), IL-18 (Tanaka et al. 

2001) and TGF-β (Ning et al. 2011). In fact, the cytokine profiles between OA and RA 

synovium are similar with the difference being quantitative and not qualitative 

(Farahat et al. 1993; Schlaak et al. 1995). Indeed, the NAD+ biosynthesis enzyme 

expression profile observed in the previous chapter was similar between OA and RA 

with increased expression in RA (section 3.5.2).  

4.1.3 Synovium in RA 

In RA, there is hyperplasia of the synovial lining cells that are 4-6 cells thick containing 

macrophages and fibroblasts and covered by fibrous tissue (Haraoui et al. 1991; 

Schumacher et al. 1994). CD68+ and HLA-DR+ cells are found infiltrating the lining 

and sublining layers. There is infiltration of T and B lymphocytes, plasma cells and 

macrophages in the sublining layers (Smeets et al. 1998) and CD4+ T lymphocytes 

are found scattered throughout the synovium with clusters formed around blood 

vessels and sometimes forming lymphoid follicle like structures (Haraoui et al. 1991). 

CD8+ T lymphocytes are frequently found in the deeper zones of lining cell layers. 

There is increased expression of VEGF in the synovial lining cells and increased 

neovascularisation of the subintimal layer (Fava et al. 1994). Synovial fibroblasts in 

RA also develop into an aggressive phenotype (pannocytes) where they hypertrophy 

and invade bone and cartilage leading to its destruction or erosion (pannus). There is 

an increased expression of phosphorylated signalling effectors such as phospho-p38, 

phospho-STAT-1, -3 and -5 in synovial fibroblasts (Galligan et al. 2009). Expression 

of cytokines are abundant in RA synovium compared to OA and normal tissue. IL-1β 

(CHU et al. 1992; Farahat et al. 1993), TNF-α (CHU et al. 1992; Farahat et al. 1993), 

IL-6 (CHU et al. 1992; Farahat et al. 1993), IL-10 (Kirkham et al. 2006), IL-16 (Kirkham 

et al. 2006), IL-17 (Kirkham et al. 2006), GM-CSF (CHU et al. 1992; Farahat et al. 

1993), TGF-β (CHU et al. 1992), OSM (Okamoto et al. 1997) and IFN- (Kirkham et 

al. 2006) are all expressed highly in RA synovial tissue. 
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4.1.4 Synovial fibroblasts in in vitro studies 

Cells obtained from synovial tissue following enzymatic dispersion contain both 

macrophages and fibroblasts. Following several passages, macrophages are 

eliminated leaving only the fibroblasts in the culture. Synovial fibroblasts proliferate 

and survive over a long period of time in culture. They can be easily stored in liquid 

nitrogen for prolonged periods and can be cultured again after thawing. However, 

after 10 – 12 passages the rate of growth diminishes and the cells become senescent 

(reviewed by Firestein 1996). Synovial fibroblasts obtained from arthritic or normal 

joints show anchorage independent growth in vitro (Lafyatis et al. 1989). They grow 

as monolayer cells in anchorage independent conditions during early passage and 

growth is not influenced by IL-1, TNF-α & IFN- (Lafyatis et al. 1989). Synovial 

fibroblasts from RA tissue can also sustain cytokine producing activity in vitro over 

several passages (Bucala et al. 1991). Interestingly, when RA synovial fibroblasts are 

engrafted into SCID mice, they have been shown to attach and invade cartilage 

suggesting that synovial fibroblasts maintain their invasive and destructive behaviour 

over long periods of time, even in the absence of T cells or other human cells (Müller-

Ladner et al. 1996). 

Synovial fibroblasts are thought to mediate many of factors involved in RA pathology 

and have been used as a model system for RA for many years. Their ease of culture 

makes them an ideal model to study the effects of cytokines on NAD enzyme 

synthesis. 

4.1.5 Promoter regions of NAD+ enzymes and their induction 

4.1.5.1 NAMPT Promoter and induction 

NAMPT has two distinct promoter regions which consists of binding sites for AP-2 

(activator protein) and LF-1 (lymphoid enhancer binding factor) proximally; NF1 

(nuclear factor) and NF-B distally whereas SP1 (Specificity protein 1), NF-IL-6, AP-

1, GR (glucocorticoid receptor), HRE (hypoxia inducible factor responsible elements) 

and cAMP response element (CRE) binding protein were found throughout 

(Ognjanovic et al. 2001; Luk et al. 2008) (Fig 4.2). There are also two STAT binding 

sites in the proximal and distal promoter regions (Nowell et al. 2006).  

NAMPT can be induced by a number of cytokines including TNF-α, IL-1β, IL-6 (with 

sIL-6R) and OSM in vitro (Ognjanovic et al. 2001; Nowell et al. 2006; Brentano et al. 

2007).   
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Fig 4.2. Schematic representation of promoter region in NAMPT gene. The line marked nt 

(nucleotides) represents the distance from the transcription initiation site.  NF – nuclear factor. 

(Adapted from Luk et al (2008)). 

4.1.5.2 IDO promoter and induction 

IDO has a distinct promoter region with two interferon-stimulated response elements 

(ISREs) and three gamma-interferon activating sequence (GAS) element with binding 

sites for interferon responsive factor (IRF)-1, STAT-1 and NF-B (CHON et al. 1995; 

Konan and Taylor 1996; Fujigaki et al. 2006; Robinson et al. 2006) (Fig 4.3) 

 

Fig 4.3. Schematic representation of promoter region in IDO gene. GAS - gamma-interferon 

activating sequence, ISRE - interferon-stimulated response element, IRF - interferon 

responsive factor. Adapted from Chon et al (1995), Konan and Taylor (1996), Fujigaki et al 

(2006) and Robinson et al (2006).  

 

IDO is highly induced by IFN- and its expression is synergistically enhanced in the 

presence of TNF-α, IL-1β and LPS in vitro (Hissong and Carlin 1997; Babcock and 

Carlin 2000; Currier et al. 2000; Robinson et al. 2003; Fujigaki et al. 2006).  
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4.1.5.3 NMNAT promoter and induction 

In Drosophila there is a single NMNAT gene which contains a heat shock element in 

its promoter region and has been shown to be inducible by heat shock factor and 

hypoxia inducible factor 1α (Ali et al. 2011). In humans, NMNAT2 has two p53 

response elements in its promoter region (Pan et al. 2014). P53 significantly induces 

NMNAT-2 and to lesser extend NMNAT-1 & -3 in human non-small lung cancer cell 

line compared to normal tissue (Pan et al. 2014). However, there are no studies in 

the literature that has examined the induction of NMNAT by cytokines.  

4.1.5.4 QAPRT, NADSYN & NAPRT promoters and induction 

To date there are no studies in the literature which have characterised response 

elements in the promoter regions of QAPRT, NADSYN nor NAPRT. Unlike NADSYN 

and NAPRT however, QAPRT has been shown to be sensitive to IFN- and TNF-α, 

co-stimulation (Sahm et al. 2013).  

4.1.6 Choice of cytokines for synovial fibroblast stimulation 

Both NAMPT and IDO have STAT and NF-B binding sites in their promoter regions 

and IDO has known binding sites for IRF-1 (see section 4.1.5). TNF-α and IL-1β both 

result in binding of NF-B to DNA with IFN- activating the binding of STAT-1 and 

OSM STAT-3 & -5 (see table 1.2). TNF-α, IL-1β, IFN- and OSM are commonly seen 

in synovial fluid and synovial tissues in RA (CHU et al. 1992; Farahat et al. 1993; 

Kirkham et al. 2006) and are all known to induce NAMPT (Nowell et al. 2006; 

Brentano et al. 2007) and synovial fibroblasts have been shown to express their 

respective cell receptors on their cell surface (Nowell et al. 2006). 

The known effect of these cytokines on NAMPT and IDO in synovial fibroblasts and 

their known dysregulation in RA made them the choice cytokines for use in this study. 

4.1.7 Aims of chapter 4 

The effect of cytokines such as TNF-α, IL-1β, IFN- and OSM on NAMPT and IDO is 

well known, however, the regulation of the other NAD+ enzymes such as NMNAT, 

NADSYN and NAPRT by these cytokines is unknown.  

This chapter aims to characterise the effect of OSM, IFN-, TNF-α and IL1-β on the 

NAD+ biosynthesis enzymes to gain insight into their regulation in diseased synovial 

tissue.   
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4.2 Methods 

4.2.1  Stimulation with Cytokines and qPCR analysis 

Synovial fibroblasts (SF) from patients with rheumatoid arthritis (n = 3) were cultured 

in SFCM in 6 well plates and serum starved for 48 hours (refer to section 2.2.9). SF 

were stimulated with either 10ng/ml Oncostatin M (OSM), Interferon  (IFN), 

Interleukin - 1β (IL-1β) or Tumour Necrosis factor α (TNF-α) for 0, 2, 4, 6, 8 and 10 

hours.  

At the end of time course, supernatant was removed and mRNA extracted from the 

cells using the hybrid method (refer to section 2.2.3). 

mRNA thus obtained was quantified using Nanodrop method (refer to section 2.2.4) 

and reverse transcripted into cDNA (refer to section 2.2.5). 

 qPCR analysis performed as described in section 2.2.6.4 and NAD enzyme 

expression was normalised against h18s, ACTB and UBC (refer to section 2.2.6.1). 
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4.3 Results 

4.3.1 NAD+ biosynthesis enzyme expression in RA synovial fibroblasts 

All enzymes in the NAD+ biosynthesis pathway were constitutively expressed in vitro 

(with the exception of NMNAT-3). 

4.3.2  Induction of NAMPT and IDO by cytokines.  

Following stimulation with OSM the expression of NAMPT rapidly increased in the 

first two hours after which the levels remained steady for up to eight hours when levels 

were observed to decrease. Only mild increases in expression of NAMPT were 

observed following stimulation with IFN-, IL1-β & TNF-α (Fig 4.4). In contrast, 

following stimulation with IFN-, IDO expression was very rapid and substantial and 

continued to be upregulated even after 10hrs. (Fig 4.10). IDO also showed significant 

expression following stimulation with OSM, however, there was no change in IDO 

expression following stimulation with either TNF-α or IL1-β. 

4.3.3 Induction of other NAD enzymes by cytokines 

NMNAT-2 was weakly upregulated following stimulation with TNF-α and IL1-β, 

however, no upregulation was seen with either OSM & IFN- (Fig 4.9). In synovial 

fibroblasts, neither NAPRT, QAPRT, NADSYN nor NMNAT-1 were upregulated 

following stimulation by OSM, IFN-, TNF-α and IL1-β (Fig 4.5 – 4.8)   
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Fig 4.4. In vitro analysis of the relative quantity (RQ) of the NAD+ biosynthesis enzyme, 

NAMPT, in synovial fibroblasts derived from RA patients synovial tissue (n=3 independent 

patients). Serum starved cells were stimulated with 10ng/ml of OSM and IFN (STAT 

activating cytokines) and 10ng/ml of TNFα and IL1β. RQ was calculated using 18s, UBC and 

ACTB as the reference genes. 
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Fig 4.5. In vitro analysis of the relative quantity (RQ) of the NAD+ biosynthesis enzyme, 

QAPRT, in synovial fibroblasts derived from RA patients synovial tissue (n=3 independent 

patients). Serum starved cells were stimulated with 10ng/ml of OSM and IFN (STAT 

activating cytokines) and 10ng/ml of TNFα and IL1β. RQ was calculated using 18s, UBC and 

ACTB as the reference genes. 
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Fig 4.6. In vitro analysis of the relative quantity (RQ) of the NAD+ biosynthesis enzyme, 

NAPRT, in synovial fibroblasts derived from RA patients synovial tissue (n=3 independent 

patients). Serum starved cells were stimulated with 10ng/ml of OSM and IFN (STAT 

activating cytokines) and 10ng/ml of TNFα and IL1β. RQ was calculated using 18s, UBC and 

ACTB as the reference genes. 
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Fig 4.7. In vitro analysis of the relative quantity (RQ) of the NAD+ biosynthesis enzyme, 

NADSYN, in synovial fibroblasts derived from RA patients synovial tissue (n=3 independent 

patients). Serum starved cells were stimulated with 10ng/ml of OSM and IFN (STAT 

activating cytokines) and 10ng/ml of TNFα and IL1β. RQ was calculated using 18s, UBC and 

ACTB as the reference genes.  
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Fig 4.8. In vitro analysis of the relative quantity (RQ) of the NAD+ biosynthesis enzyme, 

NMNAT1, in synovial fibroblasts derived from RA patients synovial tissue (n=3 independent 

patients). Serum starved cells were stimulated with 10ng/ml of OSM and IFN (STAT 

activating cytokines) and 10ng/ml of TNFα and IL1β. RQ was calculated using 18s, UBC and 

ACTB as the reference genes. 
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Fig 4.9. In vitro analysis of the relative quantity (RQ) of the NAD+ biosynthesis enzyme, 

NMNAT2, in synovial fibroblasts derived from RA patients synovial tissue (n=3 independent 

patients). Serum starved cells were stimulated with 10ng/ml of OSM and IFN (STAT 

activating cytokines) and 10ng/ml of TNFα and IL1β. RQ was calculated using 18s, UBC and 

ACTB as the reference genes. 
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Fig 4.10. In vitro analysis of the relative quantity (RQ) of the NAD+ biosynthesis enzyme, IDO, 

in synovial fibroblasts derived from RA patients synovial tissue (n=3 independent patients). 

Serum starved cells were stimulated with 10ng/ml of OSM and IFN (STAT activating 

cytokines) and 10ng/ml of TNFα and IL1β. RQ was calculated using 18s, UBC and ACTB as 

the reference genes. 
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4.4 Discussion 

In this study it was found that in synovial fibroblast monolayer culture, the NAD+ 

enzymes were not all regulated by the cytokines tested in the same manner; NAMPT 

was upregulated by all four (OSM, IFN-, TNF-α and IL-1β) cytokines; IDO was 

upregulated by both IFN- and OSM; NMNAT-2 was upregulated (albeit very weakly) 

by TNF-α & IL-1β; QAPRT, NAPRT, NMNAT-1, -3 and NADSYN expression was 

unaffected by any of the cytokines tested in vitro.  

4.4.1 NAMPT regulation by cytokines in synovial fibroblasts  

The NAMPT gene has large promoter region that contains binding sites for NF-B, 

STAT-1 & STAT-3 (Ognjanovic et al. 2001; Nowell et al. 2006; Luk et al. 2008). In 

synovial fibroblasts, NAMPT has been shown to be upregulated in vitro by IL-6/sIL-

6R and OSM - two STAT-activating cytokines (Nowell et al. 2006).  The observation 

of OSM-induced NAMPT expression in synovial fibroblasts is not new (Nowell et al. 

2006) and Brentano et al (2007) have also demonstrated increased expression of 

NAMPT following stimulation of synovial fibroblasts with IL-1β and TNF-α. Studies 

have also shown NAMPT to be highly expressed following stimulation by TNF-α, IL-

1β and IL-6 in various cell lines (table 4.1). 

 

Cytokines Cell Types 

TNF-α Neutrophils, peripheral blood monocytes, adipose tissue, amniotic 
epithelial cell line, activated immune cells such as monocytes, 
macrophages, dendritic cells, T cells and B cells 

IL-1β Neutrophils, peripheral blood monocytes, human gingival 
fibroblasts, amniotic epithelial cell line, activated immune cells 
such as monocytes, macrophages, dendritic cells, T cells and B 
cells. 

IL-6 Amniotic epithelial cell line, activated immune cells such as 
monocytes, macrophages, dendritic cells, T cells and B cells 

Table 4.1. Upregulation of NAMPT in different cell lines by TNF-α, IL-1β a and IL-6 

(Ognjanovic et al. 2001; Rongvaux et al. 2002; Jia et al. 2004; Iqbal and Zaidi 2006; Hector et 

al. 2007; Busso et al. 2008; Damanaki et al. 2014). 

 

In the previous chapter NAMPT was found to be significantly elevated in RA synovial 

tissue when compared to normal healthy subjects and when patients who were on 

anti-TNF medications were excluded from the study the expression of NAMPT was 

found to be statistically significant in RA synovial tissue when compared to OA 

synovial tissues (refer to section 3.5.2.2). In this study NAMPT was observed to be 
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upregulated following stimulation with OSM, IFN-, TNF-α and IL-1β in RA synovial 

tissue. As there is an increased expression of TNF-α, IL-1β, and OSM in synovial fluid 

and tissue of RA patients (refer to section 1.6), these may well contribute to 

maintaining high levels of NAMPT observed in the RA tissue in the previous chapter.   

4.4.2 IDO regulation by cytokines in synovial fibroblasts  

IDO has two distinct promoter regions with binding sites for interferon responsive 

factor (IRF)-1, STAT-1 and NF-B (see section 4.1.5.2). IDO was found to be 

upregulated by IFN- & OSM in this study, suggesting strong regulation by STATs. 

Although IDO has a binding site for NF-B, the results from this chapter showed no 

increased expression of IDO following stimulation with either TNF-α or IL-1β in 

synovial fibroblasts. A study by Park et al (2011) showed similar findings where the 

IDO expression remained unchanged in RA synovial fibroblasts following stimulation 

with TNF-α. This is also similar to other studies in macrophage and monocytes which 

indicate no upregulation of IDO following stimulation with TNF and IL-1 alone. 

Interestingly in these cells, IDO expression is increased when TNF-α & IL1-β are co-

stimulated with IFN- (see section 4.1.5.2), however co-stimulatory experiments of 

this kind were not carried out during the course of this study.  

4.4.3 NMNAT-2 regulation by cytokines in synovial fibroblasts  

In this study, it appeared that NMNAT-2 was weakly upregulated by TNF-α & IL-1β 

but not by IFN- or OSM. However, the results are not conclusive and warrant further 

investigation.  

Interestingly, there are presently no studies in the literature that indicate that NMNAT-

2 is upregulated by any cytokines. 

Human NMNAT-2 has two P53 response elements in its promoter region and it is 

inducible by P53 (Pan et al. 2014). Furthermore, NMNAT-2 and P53 are positively 

correlated in colorectal cancer cells (Cui et al. 2016). P53 is overexpressed in RA 

synovial tissue and in RA synovial fibroblasts (Firestein et al. 1996; Tak et al. 1999).  

Hence, it is plausible that overexpression of NMNAT-2 observed in synovial tissue 

described in the previous chapter (refer to section 3.5.2) could be P53 dependant.  

NMNAT-2 is also inducible by heat shock factor and hypoxia inducible factor (HIP) 1α 

(Ali et al. 2011). As there is also enhanced expression of heat shock protein and HIP-

1α in RA synovial tissue (Schett et al. 1998; Roelofs et al. 2006; Huang et al. 2009)  

expression of NMNAT-2 may therefore be HIP1a and/or Heat shock dependent. 
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4.4.4 QAPRT regulation by cytokines in synovial fibroblasts  

In the previous chapter QAPRT was found to be elevated in RA synovial tissue 

compared to synovial tissue in OA and normal healthy subjects. However, this study 

showed no evidence of induction of QAPRT in RA synovial tissue by stimulation with 

neither OSM, IFN-, TNF-α nor IL-1β.  

Other studies have indicated that QAPRT can be induced by quinolinic acid (Foster 

et al. 1985). Therefore, it is possible that the increased IDO seen in this study (refer 

to section 3.5.2) could lead to increased quinolinic acid in the RA synovial tissue 

which may impact the expression of QAPRT in vivo. This hypothesis could easily be 

addressed in vitro in follow-on studies.  

Studies involving human dermal fibroblasts have also shown that QAPRT expression 

is unchanged when stimulated by IFN- or TNF-α alone but, in combination, QAPRT 

has been found to be downregulated in these cells (Asp et al. 2011). Again, the effect 

on co-stimulation could be performed in follow-on studies.   

4.4.5 NADSYN regulation by cytokines in synovial fibroblasts  

NADSYN was found to be upregulated in RA synovial tissue compared to OA and 

healthy synovial tissue (refer to section 3.5.2) however, in vitro analysis was unable 

to demonstrate any increase in expression of NADSYN following stimulation with 

OSM, IFN-, TNF-α and IL-1β. There are currently no studies in the literature which 

have characterised the regulation of NADSYN. Oxidative stress, metabolites, heat 

stress factors, hypoxia inducible factors are all good candidates and further studies 

would be required to evaluate NADSYN induction. 

4.4.6 Other NAD enzyme regulation by cytokines in synovial fibroblasts   

Similar to the expression observed in synovial tissue described in the previous 

chapter, NMNAT-3 was not detected in synovial fibroblasts.  

In this study there were no observed changes in the expression of NMNAT-1 and 

NAPRT following stimulation with neither TNF-α, IL-1β, IFN- nor OSM.  

The previous chapter showed that neither NMNAT-1 nor NAPRT were differentially 

regulated in RA synovial tissue compared to normal synovium (refer to section 3.5.2) 

and these studies showed no induction by OSM, IFN-, TNF-α and IL-1β. 
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4.5 Summary 

In this chapter the induction of NAD+ biosynthesis enzymes following stimulation with 

OSM, IFN-, TNF-α and IL-1β was characterised in human RA synovial fibroblasts. 

The main findings were 

 NMNAT-3 was not detected in vitro in synovial fibroblasts. 

 NAMPT was upregulated in vitro following stimulation with OSM, IFN-, TNF-

α and IL-1β with the highest expression of NAMPT seen following stimulation 

with OSM. 

 IDO was upregulated in vitro following stimulation with IFN- and OSM, but 

not TNF-α and IL1-β, with exponential increases seen in synovial fibroblasts 

upon IFN- stimulation 

 NMNAT-2 was weakly upregulated in vitro following stimulation with TNF-α 

and IL-1β but not by OSM and IFN-. 

 QAPRT, NAPRT and NADSYN were detected in synovial fibroblasts in vitro, 

but showed no change in expression following stimulation with OSM, IFN-, 

TNF-α and IL-1β. 
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Chapter 5 – General Discussion and conclusions 
 

Rheumatoid arthritis is a chronic inflammatory condition of the synovial joint affecting 

around 1% of the adult population (Gabriel 2001) with substantial economic burden 

for patients and health services (Barrett et al. 2000; Young et al. 2002). It is well 

established that one drug doesn’t fit all patients, and identification of new and more 

cost-effective therapies, as well as characterizing patients to target for personalized 

treatment is actively being pursued.  

NAMPT is a rate limiting enzyme in the synthesis of NAD+ via salvage pathway. It is 

known that NAMPT is elevated in synovial tissue in RA and its involvement in the 

pathogenesis of RA could possibly be due to either by directly acting as an 

inflammatory cytokine (eNAMPT) or by maintaining a high NAD+ levels in the inflamed 

cells (iNAMPT). It is also known that NAMPT is regulated by inflammatory cytokines 

such as IL-1β, IL-6, IL-8 and TNF-α and the synthesis of TNF-α and IL-6 in monocytes 

(when stimulated by lipopolysaccharide in vitro) relies on intracellular NAD+ levels 

produced via the NAD salvage pathway (Van Gool et al. 2009).  

IDO is known to be upregulated in RA (Zhu et al. 2006; Park et al. 2011), however, 

the consequence of its upregulation is debated in the literature. Some authors believe 

IDO to be anti-inflammatory where as others believe IDO to be involved in the 

pathogenesis of inflammatory arthritis (refer to section 3.6.4). 

However, it was not known, prior to this thesis, whether the expression of some of the 

other NAD+ biosynthesis enzymes (NMNATs, NAPRT, QAPRT and NADSYN) 

differed in their expression in rheumatoid arthritis tissue and if they were sensitive to 

cytokine induction in vitro. 

In this study, in order to gain insight into the regulation of NAD+ biosynthesis enzymes 

in synovial tissue, the expression of the principle enzymes involved in NAD+ 

biosynthesis were characterised by quantifying the mRNA expression using qPCR ex 

vivo in RA, OA and normal ‘healthy’ synovial tissues; and in vitro following cytokine 

(OSM, IFN-, TNF-α and IL1-β) induction of RA synovial fibroblasts.  
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5.1. The principles finding in this study were: 

 All the NAD+ biosynthesis enzymes investigated in this study were expressed 

ex vivo in rheumatoid synovial tissue and in vitro in synovial fibroblasts except 

NMNAT-3. 

  NAMPT is highly expressed in pre-pubertal actively growing normal healthy 

synovial tissue, a characteristic that appears to be unique to NAMPT. 

 The expression of the enzymes involved in the NAD+ salvage pathway 

investigated in this study, namely NAMPT and NMNAT-2 are significantly 

elevated in RA synovial tissue when compared to normal, healthy synovial 

tissue and their expression significantly correlate with each other.  

 There was no statistical significant difference in the expression of enzymes in 

the salvage pathway between RA and OA. However, when patients with RA 

receiving anti-TNF treatment for their arthritis were excluded from analyses, 

NAMPT expression was statistically significantly elevated in RA synovial 

tissue compared to tissue from patients with OA. However, there was no 

change in the expression of rest of the NAD+ biosynthesis enzymes that were 

investigated following exclusion of these patients.  

 NAMPT is upregulated following stimulation with OSM, IFN-, TNF-α and IL-

1β and NMNAT-2 was weakly upregulated following stimulation by TNF-α and 

IL-1β but not by OSM or IFN-. 

 The expression of enzymes involved with the de novo NAD+ pathway 

investigated in this study, namely, QAPRT, NMNAT-2, NADSYN and IDO, 

were elevated in RA synovial tissue when compared to normal healthy 

synovial tissue and significantly correlate with each other in synovial tissue.  

 IDO was upregulated following stimulation with IFN- and OSM with 

exponential increase seen with IFN- and NMNAT-2 was weakly upregulated 

by TNF-α and IL-1β, however, QAPRT and NADSYN showed no change in 

expression following stimulation with OSM, IFN-, TNF-α and IL-1β. 

 Of the expression of enzymes involved with the Preiss-Handler NAD pathway, 

namely, NAPRT, NADSYN and NMNAT1-3, only NADSYN and NMNAT-2 

were significantly elevated in RA synovial tissue compared to normal. Neither 

NAPRT nor NMNAT-1 were significantly elevated in RA synovial tissue and 

did not correlate with any of the other enzymes investigated in this study. 
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5.2. NAD+ Biosynthesis enzymes via salvage pathway 

 
Fig 5.1. NAD+ synthesis via the salvage pathway. NAMPT – nicotinamide phosphoribosyl 

transferase, NMNAT – nicotinamide mono nucleotide adenyl transferase, NAD – nicotinamide 

adenine dinucleotide. 

In this study, the expression of NAMPT was found to be high in synovial tissue of 

young actively-developing healthy subjects, which gradually decrease over time with 

age. This finding is quite unique to this study as no other studies have described this 

type of finding before. It’s possible that the overexpression seen could be related to 

the differentiation and maturation state of the synovial tissue as similar upregulation 

of NAMPT has been observed during maturation of smooth muscle cells (SMC) (van 

der Veer et al. 2005). This warrants further study to understand the relevance of NAD+ 

in developing tissues as this may have profound implication in future therapies 

targeting NAD/NAMPT inhibition in Juvenile idiopathic arthritis as this may impair their 

growth and maturation.  

In this study both salvage pathway NAD+ enzymes, NAMPT and NMNAT-2, were 

elevated in RA synovial tissue when compared to normal and the expression of two 

enzymes significantly correlated with each other. NMNAT-3 could not be detected in 

synovial tissue and there was no increased expression of NMNAT-1 in the RA 

synovial tissue when compared to OA and normal healthy synovium.  

The relationship between NAMPT and NMNAT-2 is interesting, as any increases in 

intracellular NAMPT would be associated with an increase in NMNAT to have an 

impact on intracellular NAD+ (Fig 5.1). It would be of interest to further investigate this 

association by investigating the impact of increased NAMPT / NMNAT-2 levels and 

NAD+ concentration in both in vitro and ex vivo studies. It would also be of interest to 

assess the correlation between cytokines and NAD+ biosynthesis enzymes in RA 

synovial tissues. 

In vitro studies have shown that TNF-α upregulates the expression of NAMPT. 

Interestingly when some of the patients in the study receiving anti-TNF medications 

were eliminated from analyses, NAMPT expression in RA synovial tissue was 

significantly elevated when compared to OA and normal synovial tissue. However, 

NMNAT-2 is weakly upregulated by TNF-α and eliminating patients who were 

receiving anti-TNF made no difference to the expression of NMNAT-2 in RA synovial 
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tissue when compared to OA. In the literature so far there have been no studies which 

investigated the correlation of cytokine expression in serum or synovial tissue with 

NAD+ biosynthesis enzyme expression and this warrants further investigation.  

The evidence presented in Chapter 4 clearly show NAMPT and NMNAT-2 are 

regulated differently in synovial fibroblasts. The NAMPT gene has a large promoter 

region that contains binding sites for NF-B, STAT-1 & STAT-3 (Ognjanovic et al. 

2001; Nowell et al. 2006; Luk et al. 2008), whereas NMNAT-2 is inducible by P53, 

heat shock factor and hypoxia inducible factor 1α (Ali et al. 2011; Pan et al. 2014). In 

RA there is increased expression of TNF-α, IL-1β, and OSM in the synovial fluid and 

synovial tissue and these may well contribute to maintaining high levels of NAMPT 

observed in the RA tissue. There is also evidence of increased expression of P53, 

heat shock protein and HIP-1α in RA synovial tissue (Firestein et al. 1996; Schett et 

al. 1998; Tak et al. 1999; Roelofs et al. 2006; Huang et al. 2009) hence, it is plausible 

that overexpression of NMNAT-2 observed in RA synovial tissue in this study could 

be dependent on these factors and could easily be investigated in future studies. 

Finally, NAMPT expression in RA synovial tissue and serum correlates with c-reactive 

protein (CRP) and disease activity (Brentano et al. 2007) and its expression in serum 

is associated with increased levels of radiographic joint damage in RA (Rho et al. 

2009). Therefore, it would be interesting to investigate if increasing NAD+ 

concentration in serum or synovial tissue is associated with increased disease activity 

as measured by CRP and disease activity score in 28 joints.  

5.3. NAD+ Biosynthesis enzymes via de novo pathway 

Fig 5.2. NAD+ biosynthesis from Tryptophan via the de nova pathway. IDO – indole amine 2,3-

dioxygenase, QaPRT – quinolinic acid phosphoribosyl transferase, NMNAT – nicotinamide 

mono nucleotide adenyl transferase, NADSYN – NAD synthetase. 

 
In this study it was found that there was increased expression of NAD+ biosynthesis 

enzymes of the de novo pathway such as IDO, NMNAT-2 and NADSYN in RA 

synovial tissue when compared to normal. QAPRT was also found to be 
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overexpressed in RA synovial tissue when compared to normal, however, it was not 

found to be statistically significant and it’s possible that the sample size was not large 

enough to find a meaningful difference. Expressions of all these enzymes in de novo 

pathway investigated in this study correlated with each other. Their related 

expressions may reflect their required in tandem expression for controlled NAD+ 

availability via this pathway. It is plausible that the increased expression of enzymes 

involved in the de novo pathway in the RA synovial tissue found in this study may 

replenish the NAD+ used up in the actively proliferating tissue such as that seen in 

RA. Further investigation would be required to prove this hypothesis. 

In this study, IDO was found to be upregulated following stimulation with IFN- and 

OSM. Although IDO has a binding site for NF-B, the results from chapter 4 showed 

no increased expression of IDO following stimulation with either TNF-α or IL-1β in RA 

synovial fibroblasts. Interestingly, IDO is upregulated when cells are co-stimulated 

with TNF-α or IL-1β in the presence of IFN- (Babcock and Carlin 2000; Robinson et 

al. 2003; Fujigaki et al. 2006). Co-stimulatory experiments of this kind were not carried 

out during the course of this study and would be of interest for future studies. 

Although QAPRT and NADSYN were overexpressed in RA synovial tissue they could 

not induced in RA synovial fibroblasts in vitro following stimulation with inflammatory 

cytokines. QAPRT is inducible by quinolinic acid (Foster et al. 1985), therefore, it is 

possible that the increased IDO seen in this study could lead to increased quinolinic 

acid in the RA synovial tissue which may impact the expression of QAPRT in vivo. 

This hypothesis could easily be addressed in in vitro follow-on studies.  Sahm et al 

(2013) have demonstrated that QAPRT expression is increased when there is 

depletion of NAD+ in microglial cells by NAMPT inhibition, irradiation and alkylating 

agents . This finding further endorses the hypothesis that increased expression of de 

novo enzymes seen in RA synovial tissue is required for increased requirement for 

NAD+ in this tissue.  

The correlation of expression of enzymes of the de novo pathway with NAMPT 

outlined in chapter 3, suggests that factors that are regulate NAMPT expression may 

also regulate the expression of IDO, QAPRT, NMNAT-2 and NADSYN in a similar 

manner. Therefore, there are a number of factors other than the inflammatory 

cytokines used in this study which may be involved in the regulation of NAD+ 

biosynthesis enzymes such as oxidative stress, heat, and hypoxia inducible factors 

and this warrants further investigation. 
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Unfortunately, there are currently no studies in the literature that characterise the 

regulation of NADSYN, which could be used to explain the observed increase in 

NADSYN expression seen in RA synovial tissue. Again it is possible that factors such 

as oxidative stress, heat, and hypoxia inducible factors, may have a role to play in its 

regulation and further studies could reveal the mechanism of induction. 

5.4. NAD+ biosynthesis enzyme via Preiss-Handler pathway 

 

Fig 3.9. Synthesis of NAD+ from nicotinic acid via Preiss-Handler pathway. NAPRT – nicotinic 

acid phosphoribosyl transferase, NMNAT – nicotinamide mono nucleotide adenyl transferase, 

NADSYN – NAD synthetase. 

 
 
In this study it was found that there was very low expression of NAPRT in RA, OA 

and normal synovial tissue. It was also observed that there was no change in the 

expression of NAPRT following stimulation by TNF-α, IL-1β, IFN- or OSM and the 

expression of NAPRT do not correlate with the expression of other NAD+ biosynthesis 

enzymes. To date there are no studies in the literature which have characterised the 

regulation of expression of NAPRT. NAPRT is normally highly expressed in liver, 

kidney, heart and small intestine with moderate expression in lungs (Hara et al. 2007) 

and NAPRT is unlikely to have any impact on RA disease pathology because of lack 

of change seen in RA synovial tissues and synovial fibroblasts. 

Nicotinic acid (NA) is known to be a better precursor  for NMN in elevating NAD+ levels 

than Nam (Hara et al. 2007) (refer to section 3.6.7). Inhibition of NAMPT would affect 

both normal and highly proliferative tissues such as cancer and RA tissues. However, 

if the proliferative tissue expresses low NAPRT levels, addition of nicotinic acid along 

with the NAMPT inhibitor may be able to replenish NAD+ concentrations via the Preiss 

Handler pathway in normal healthy tissue but not in proliferative diseased tissue, thus 

protecting the normal tissue from cytotoxicity of NAMPT inhibitors. Indeed, in vitro 

and in vivo studies have shown that cancers and brain tumours demonstrating low 

NAPRT expression respond well to NAMPT inhibition whilst normal tissue is rescued 

from cell death by replenishing intracellular NAD+ levels through the addition of NA 

(Watson et al. 2009; Olesen et al. 2010). In this study the expression of NAPRT was 

low in synovial tissue and the expression of NAMPT was high in RA synovium, thus 

the protective action of co-administration of NA (i.e. healthy cells are able to replenish 
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NAD+ levels via NAPRT) could potentially be a viable option if NAMPT inhibition is 

used for the treatment of RA. 

5.5. Future directions 

This study has demonstrated that the NAD+ biosynthesis enzyme mRNA expression 

is elevated in the synovial tissue samples in RA patients and some are also elevated 

following stimulation with cytokines. However, further work is required to investigate 

if elevated mRNA levels translate to functional enzymes being over expressed in 

these tissues and ultimately NAD+ synthesis and its related compounds. Thus it would 

be interesting to measure the levels of cellular NAD+ and its related compounds in 

normal and RA synovial fibroblasts and the impact on the concentration of NAD+ and 

NMN in RA synovial fibroblasts upon increasing concentrations of NAMPT to the 

synovial culture medium. It would also be interesting to investigate the concentration 

of NAD+ and its related compounds in synovial fibroblasts following stimulation with 

cytokines. Previous studies have demonstrated that liquid chromatography/tandem 

mass spectrometer (LC/MS/MS) employing an electrospray ionisation (ESI) is very 

sensitive and specific to detect and quantify NAD+ and related compounds such as 

NMN, NAMN, NAM or NA (Yamada et al. 2006) and this would be the method of 

choice for such experiments.  

In RA there is increased expression of NAMPT in synovial tissue and its expression 

is also increased following stimulation with TNF-α, IL-1β, and OSM. Previous studies 

have shown that expression of NAMPT is increased with increasing dose of TNF-α, 

IL-1β, and OSM in the synovial tissue (Evans and Nowell; unpublished). Therefore, it 

would be interesting to investigate the effect of titrating the doses of inflammatory 

cytokines on the RA synovial fibroblasts and assessing the expression of NAD+ 

biosynthesis enzymes with qPCR analysis. Studies have shown that IDO expression 

was synergistically increased when co-stimulated with a TNF-α or IL-1β in the 

presence of IFN- in monocytes and macrophages (Babcock and Carlin 2000; 

Robinson et al. 2003; Fujigaki et al. 2006). As there are a number of cytokines which 

are expressed inside a rheumatoid joint, future studies involving co-stimulating RA 

synovial fibroblasts with various different cytokines and investigating the NAD 

biosynthesis enzyme expression would be important. 

In this study QAPRT and NADSYN were found to be highly expressed in RA synovial 

tissue but we were unable to demonstrate their expression following stimulation of 

RA synovial tissue with inflammatory cytokines. Therefore, it would be interesting to 



87 
 

determine the principle pathways involved in their induction and this could be 

achieved by exposing the synovial fibroblasts to a combination of cytokines, oxidation, 

heat and hypoxia inducible factors.   

The enzymes involved in the de novo pathway of NAD+ biosynthesis which were 

tested such as IDO, QAPRT, NMNAT-2 and NADSYN were all elevated and their 

expression correlated with each other. The increased expression of the enzymes 

involved in the de novo pathway in the RA synovial tissue found in this study is likely 

to replenish the NAD+ but could easily be confirmed by using an IDO inhibitor such 

as 1-methyl-tryptophan, then measuring the concentration of NAD+ in the cells. 

The expression of NAPRT was low in the RA synovial tissue in this study and 

therefore addition of nicotinic acid is unlikely to replenish NAD+ via Preiss Handler 

pathway in the RA synovial tissue. This could be confirmed by adding a NAMPT 

inhibitor and nicotinic acid to RA synovial fibroblast culture and measuring the 

concentration of NAD+ using LC/MS/MS.    

Finally, animal experiments could also be performed involving mice with CIA and 

identifying the maximum dose of NAMPT inhibitors which can be used either alone or 

in combination with nicotinic acid and assessing whether the combination therapy 

reduces the cytotoxic effect of NAMPT inhibitors whilst reducing the symptoms 

associated with CIA. Upon sacrificing the animal, it would be interesting to look at 

various tissue distribution of NAPRT and also the concentration of NAD+ in them.  

5.6. Conclusions  

Taken together, the results presented in this thesis and observations published in the 

literature suggest that NAD+ biosynthesis enzymes are upregulated in rheumatoid 

arthritis and may maintain an activated phenotype by increased NAD+ availability. 

Observation in animal models have shown that use of NAMPT inhibitors such as 

APO866 caused a significant reduction of arthritis in CIA murine model (Evans et al. 

2011) and clinical scores can be reduced in a dose dependant manner (Busso et al. 

2008).  

Although NAMPT inhibitors effectively reduced NAD+ levels and caused tumour cell 

death in in vitro and in vivo studies, clinical trials involving at least three NAMPT 

inhibitors such as APO866, CHS-828 and GMX1777 have been limited by toxicities 

such as thrombocytopaenia, gastrointestinal symptoms and skin rash (reviewed by 

Sampath et al. 2015). Additional toxicities involving retina and heart have been 
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observed in rodent safety studies involving newer NAMPT inhibitors such as GNE-

617. Therefore, alternative strategies for improving the therapeutic index of NAMPT 

inhibitors need to be explored. 

Olesen et al (2010) have shown that in tissues which express high NAMPT and low 

NAPRT, addition of nicotinic acid to a NAMPT inhibitor will protect normal tissues 

from cytotoxicity of NAMPT inhibitors. Observations within this thesis have shown that 

RA synovial fibroblasts express low NAPRT with high NAMPT and therefore nicotinic 

acid could possibly be used to protect normal tissues in the event of a NAMPT 

inhibitor being used as a potential treatment strategy.  

In this thesis it was observed that expression of NAMPT in normal synovial tissues 

was found to be high in young and actively developing individuals. Any future 

therapies targeting NAD/NAMPT would therefore need to be carefully considered in 

younger patients (e.g. in patients with JIA) and these preliminary observations 

warrants further investigation in a larger cohort of younger patients to understand the 

relevance of NAD+ in developing tissues. 
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