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Abstract. Repair-based techniques are a standard way of dealing with inconsis-
tency in the context of ontology-based data access where several inconsistency-
tolerant semantics have been mainly proposed for lightweight description log-
ics. In this paper we present a generic transformation from knowledge bases
expressed within existential rules formalism into an ASP program. We propose
different strategies for this transformation, and highlight the ones for which an-
swer sets of the generated program correspond to various kinds of repairs used in
inconsistency-tolerant inferences.

1 Introduction

Dealing with inconsistency in ontology-based query answering is one of the challenging
problems that received a lot of attention in recent years, (e.g. [2,7,11,17]). In such a
setting, inconsistency problem comes from the data, i.e. occurs when assertional facts
contradict constraints imposed by the ontological knowledge. In case of inconsistency,
standard inference is meaningless: All queries would be positively answered. In this
paper we focus on the mainstream approach that considers that the ontology, built by
experts, is correct, and that only data has to be repaired. Other approaches (e.g. [20])
rely upon the assumption that the database is reliable but the rules are not. The latter
assumption will not be explored in this paper and left for future work.

Many works (e.g. [12,16,18]), basically inspired by the approaches proposed in
database area (e.g. [1,9]) and in propositional logic (e.g. [8]), deal with inconsistency by
proposing several inconsistency-tolerant inferences, called semantics. These semantics
are based on the notion of assertional base repair which is closely related to the notion
of database repair [16] or maximally consistent subbase used in the propositional logic
setting. An ABox repair is simply an assertional subbase which is consistent with an on-
tology. Ontology-based consistent query answering (AR-semantics) [16] comes down
first to compute the set of repairs (i.e. all possible maximally consistent subsets of facts
consistent with the ontological knowledge) and then to check to which extent a query
can be entailed using these repairs. As shown in [16,10], the AR-semantics (also called
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universal entailment) is a hard task (co-NP complete) for lightweight DLs [16,19]. In
fact, inconsistency-tolerant semantics were introduced for the lightweight description
logics DL-Lite (e.g. [16]), and later extended to other description logics (e.g. [19]) or
existential rules (e.g. [17]). In this paper, we use existential rules (e.g. [5]) (also called
Datalog+/-) as ontology language that generalizes lightweight description logics, such
as DL-Lite and EL by allowing the use of any predicate arity as well as cyclic structures.

Recently the ASP framework [6], a convenient paradigm for knowledge represen-
tation and reasoning, especially when information is incomplete, has been enriched in
order to deal with existential variables [13]. ∃-ASP is a fragment of ASP that generalises
skolemized existential rules. It allows for enriching lightweight description logics with
non-monotonic features, and benefits from decidability results obtained for existential
rules. ∃-ASP has been naturally implemented on top of the ASP solver ASPeRiX1,
which does not rely on preliminary grounding to compute answer sets [15,14].

The paper first recalls the logical frameworks used in this paper: Existential rules
in Section 2, ∃-ASP in Section 3, and the best known notions of repair in Section 4.
Our contribution is presented in Section 5. We present a generic transformation from
knowledge bases expressed within existential rules formalism into an ASP program. We
propose different strategies for this transformation, and highlight the ones for which
answer sets of the generated program correspond to various kinds of repairs used in
inconsistency-tolerant inferences. The sound and complete ∃-ASP algorithm which is
central to ASPeRiX computations will be used to prove the one-to-one correspondence
between the answer sets of the generated program and the knowledge base repairs.

2 Existential Rules

We consider a vocabulary V consisting of three disjoint sets, the set P of predicate
names, the set F of function symbols (each provided with an arity) and the set C of
constants. Disjoint with V , we also consider a set X of variables. In what follows,
constants will be notated in lowercase and variables in uppercase. The set of terms is
defined inductively as follows: Constants and variables alike are terms, and if f ∈ F is
a function symbol of arity k and t1, . . . , tp are terms, then f(t1, . . . , tp) is also a term.
An atom is an object of form p(t1, . . . , tk), where p is a predicate name of arity k and
the ti are terms. An atom is said basic when none of its terms involve any function
symbol, and is said grounded when no variable is used to define any of its terms. A set
of atoms is said basic (resp. grounded) when all its atoms are basic (resp. grounded).

Homomorphisms A substitution is a mapping σ from a set of variables to a set
of terms. If A is a set of atoms and σ is a substitution, we note σ(A) the set of
atoms obtained, for each variable x appearing both in an atom of A and the domain
of σ, by replacing non-recursively each occurence of x in A by σ(x). For example,
let A = {p(f(X,Y ), Z), q(X, a)} and σ : X 7→ f(X, a), Y 7→ X . Then σ(A) =
{p(f(f(X, a), X), Z), q(f(X, a), a)}. Let F and Q be two sets of atoms. A homomor-
phism from Q to F is a substitution σ such that σ(Q) ⊆ F . If we note φ(A) the first-
order logics (FOL) formula obtained by the conjunction of the atoms in A, and Φ(A)

1 available at http://www.info.univ-angers.fr/pub/claire/asperix/
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the existential closure of φ(A), it is well known that Φ(F ) |= Φ(Q) iff there exists a
homomorphism from Q to F . Let σ be a bijective substitution from the variables of F
to a fresh set of constants (that appear neither in F nor in Q). The ground set of atoms
σ(F ) is called a grounding of F and it holds that Φ(F ) |= Φ(Q) iff Φ(σ(F )) |= Φ(Q).

Existential Rules An existential rule is of form B → H where both the body B and
the head H are sets of basic atoms. We often note such a rule B[X,Y ] → H[Y ,Z],
where the variables in X are those that appear only in the body, the variables in Y
(called the frontier) are those that appear both in the body and the head, and those in
Z (called existential variables) are those that appear only in the head. The FOL for-
mula associated with this existential rule is ∀X∀Y (φ(B) → (∃Zφ(H))). For exam-
ple, the FOL formula associated with p(X,Y ), r(X,Y ′, a)→ r(Y, Y ′, Z), p(Z,Z ′) is
∀X∀Y ∀Y ′(p(X,Y )∧ r(X,Y ′, a)→ (∃Z∃Z ′r(Y, Y ′, Z)∧ p(Z,Z ′))). Let R = B →
H be a rule with frontier Y and existential variables Z. Let us consider a substitution
σR that maps each existential variable Z ∈ Z to a functional term fRz (Y ). Then we say
that sk(R) = B → σR(H) is a skolemization ofR. LetR be the rule given in the exam-
ple, then sk(R)=p(X,Y ), r(X,Y ′, a)→r(Y, Y ′, fRZ (Y, Y ′)), p(fRZ (Y, Y ′), fRZ′(Y, Y ′)).

Derivations Consider now a set of atoms F and a skolemized existential rule R =
B → H . We say that R is applicable to F when there exists a homomorphism σ from
B to F . In that case, the application of R on F according to σ produces a set of atoms
α(F,R, σ) = F ∪ σ(H). Note that when F is ground, α(F,R, σ) is also ground. Let
R be the rule given in the previous example, and F = p(a, g(b)), r(a, g(b), a). The
substitution σ : X 7→ a, Y 7→ g(b), Y ′ 7→ g(b) is a homomorphism from B to F and
α(F,R, σ) = F ∪ {r(g(b), g(b), fRZ (g(b), g(b))), p(fRZ (g(b), g(b)), fRZ′(g(b), g(b)))}.

Let F be a set of atoms andR be a set of rules. AR-derivation from F is a (possibly
infinite) sequence F = F0, F1, . . . , Fi, . . . such that, ∀i > 0, there exists a rule R =
B → H ∈ R and a homomorphism σ from B to Fi−1 such that Fi = α(Fi−1, R, σ).
The result of a finite derivation F0, . . . , Fk is the set of atoms Fk, when it is infinite we
define it as the (infinite) union of all Fi. A derivation is said full when, for every rule
R = B → H ∈ R, for every homomorphism σ from B to its result, there exists some
Fi in the derivation such that Fi+1 = α(Fi, R, σ). Any fullR-derivation on F produces
the same result, and we call that result theR-closure of F and note itClR(F ) (or simply
Cl(F ) when there is no ambiguity on R). When we consider a set Π = F ∪ R as a
program (as in Section 3), we note Cl(Π) = ClR(F ).

Theorem 1. Let F and Q be two set of atoms, and R be a set of existential rules.
We note Fg a grounding of F and Rsk the skolemization of R. Then ClRsk

(Fg) is a
universal model, i.e., F,R |= Q iff there is a homomorphism from Q to ClRsk

(Fg).

Skolem Chase Deciding whether or not F,R |= Q is undecidable. However, for all
positive instances of the problem, a homomorphism fromQ to ClRsk

(Fg) can be found
after finitely many steps of a breadth first derivation. Such a derivation is called the
skolem chase. For a more precise relationship between the skolem chase and other
chases found in the litterature, the reader can refer to [4]. A lot of work has been de-
voted to predicting that the chase will stop. Acyclicity conditions on a set of existential
rules such as the ones presented in [3] ensure that the closure ClRsk

(Fg) will be finite.
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3 Existential ASP

Syntax An existential ASP (∃-ASP) rule is of form H ← B+, notB−1 , . . . , notB
−
k

where the positive body B+, the negative bodies B− and the head H are sets of ba-
sic atoms. Intuitively, such a rule means “if the positive body is verified, and none of
the negative bodies are, then we can conclude with the head”. To make our definitions
easier to read, and without loss of generality (see the safety condition in [13]), we con-
sider that all variables appearing in negative bodies also appear in the positive body. An
∃-ASP program is a setΠF of basic atoms and a setΠR of ∃-ASP rules. As for existen-
tial rules, we can skolemize ∃-ASP rules respecting the safety condition as follows: The
skolemization of the previous rule results in σ(H) ← B+, notB−1 , . . . , notB

−
k , where

σ(H) ← B+ is the skolemization of H ← B+, as defined for existential rules. The
skolemization of an ∃-ASP program is defined by the grounding ofΠF and the skolem-
ization of ΠR. For example, let r(X,Z) ← p(X,Y ), not q(X), not (r(Y, a), r(a, b))
be an existential ASP rule. Its skolemization is r(X, fRZ (X))← p(X,Y ), not q(X), not
(r(Y, a), r(a, b)).

Note that the skolemization of an existential ASP program (without function sym-
bol) is a standard ASP program with function symbols.

Semantics In what follows we consider Π an ASP program obtained from a skolem-
ized existential ASP program. Let CΠ be the set of constants appearing in Π and FΠ
be the set of function symbols appearing in Π . The Herbrand domain of Π is the
minimal set of ground terms HΠ such that CΠ ⊆ HΠ and, if f ∈ FΠ is a func-
tion symbol of arity k and h1, . . . , hk are in HΠ , then f(h1, . . . , hk) is also in HΠ . If
R = H ← B+, notB−1 , . . . , notB

−
k is a rule in Π and σ is a substitution from all its

variables in toHΠ , then the rule σ(R) = σ(H)← σ(B+), not σ(B−1 ), . . . , not σ(B−k )
is a grounding of R. The grounding of a program Π is the program obtained from all
possible groundings of all rules in Π . Not that the Herbrand domain (and thus the
grounding) of a finite Π is infinite as soon as Π contains a constant and a predicate
symbol of arity ≥ 1. Let us now consider the grounding ΠG of Π and a (possibly infi-
nite) set of ground atoms E. The reduct of ΠG with respect to E, denoted ΠG

|E , is the
minimal set that contains all (ground) atoms of ΠG and, for each skolemized ∃-ASP
rule R = H ← B+, notB−1 , . . . , notB

−
k in ΠG, if there is no B−i such that B−i ⊆ E,

then H ← B+ (called the positive part of R) is a skolemized existential rule of ΠG
|E .

Finally, E is an answer set (stable model) of Π when E = Cl(ΠG
|E). We define the

answer sets of an existential ASP program as the answer sets of its skolemization. Note
that it is not a neutral choice, for a semantic point of view (see the discussion in [4]
where using different chases can lead to different semantics and different answer sets).

Computation Given an ASP program Π , most solvers rely upon a 2-step algorithm
that first compute the groundingΠG ofΠ , then useΠG to build an answer setE (using
for instance a SAT solver). However, the grounding becomes infinite as soon as function
symbols (such as the ones obtained from our skolemization) are involved. Some solvers
can try to extract from the grounding rules that have no chance to be involved in the
second step, but doing that optimally would require to compute that second step, making
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the 2-steps separation useless. On the other hand, the ASP solver ASPeRiX [15,14] does
not require grounding to compute answer sets (indeed, using homomorphisms during
the computation is equivalent to generate the grounding effectively required at that step
of a computation). Since our proofs in Section 5 heavily rely upon the soundness and
completeness of that algorithm, we explain here its basic version.

In ASPeRiX, given a skolemized existential ASP program Π , a computation is an
incremental development of a (possibly infinite) binary tree. Each node of this tree
contains 3 fields: IN is the set of ground atoms that have been proven in the current
branch, OUT is a set of forbidden sets of ground atoms, and MBT (Must Be True) is a set
of mandatory disjunctions of sets of ground atoms. Initially, the tree contains a single
node, its root, whose IN field contains all ground atoms of Π , and whose fields OUT
and MBT are empty. At each step, the computation selects a leaf n of the tree and a rule
R = H ← B+, notB−1 , . . . , notB

−
k such that there exists a homomorphism σ from

B+ to IN(n) and (R, σ) has not already been evaluated on n nor on any of its ancestors.
Now we say that (R, σ) is evaluated on n and there is 3 possible outcomes. Blocked
case: If there exists a negative body B−i in R such that σ(B−i ) ⊆IN(n), meaning that
one of the negative bodies appears in IN(n), then this step produces nothing (but marks
this evaluation as done). Positive case: If R = H ← B+ contains no negative body,
then we update IN(n) with the result of the rule application, and do not change OUT
nor MBT. Then IN(n) = α(IN(n), R, σ) =IN(n) ∪ σ(H). Choice case: otherwise we
create two children n1 and n2 of n. In n1 we effectively apply the rule and forbid its
negative bodies to appear in the final result, in n2 we must prove that we have the right
not to apply it by finding one of the negative bodies in the final result. Then IN(n1) =
α(IN(n), R, σ) =IN(n)∪σ(H), OUT(n1) is the set of sets of atoms whose elements are
those of OUT(n) and the k sets of atoms σ(B−i ), for 1 ≤ i ≤ k, MBT(n1) =MBT(n)
and IN(n2) =IN(n), OUT(n2) =OUT(n), and MBT(n2) is the set of disjunctions of sets
of atoms whose elements are those of MBT(n) and the disjunction ∨1≤i≤k σ(B−i ).

Consider a (possibly infinite) branch of this tree. Similarly to what was done for
derivations, we define the result of that branch as the (possibly infinite) union, for all
nodes n in that branch, of the IN(n). When such a branch is finite, its result is IN(l),
where l is the leaf of the branch. A branch is said full when, for every rule R and every
homomorphism σ from B+ to the result of the branch, (R, σ) has been evaluated on
some node of the branch. If n is a node of a branch and B is a set of atoms, we say that
B satisfies OUT(n) when, for every set of atoms O ∈OUT(n), O 6⊆ B. In the same way,
we say that B satisfies MBT(n) when, for every disjunction M1 ∨ . . . ∨Mk ∈MBT(n),
there exists aMi such thatMi ⊆ B. A branch is said OUT-valid (resp. MBT-valid) when
its result satisfies OUT(n) (resp. MBT-(n)) for every node n in the branch. A branch that
is both OUT-valid and MBT-valid is said valid.

Theorem 2. Let Π be a skolemized existential ASP program. Then A is an answer set
of Π iff A is the result of a full valid branch in the computation of Π .

Properties It is first important to note that, when the positive part of rules satisfy the
acyclicity conditions presented in [4], then the computation produces a finite tree. In
that case, validity of a branch with leaf l admits a simpler characterization: A branch is
OUT-valid (resp. MBT-valid) when IN(l) satisfies OUT(l) (resp. MBT(l)).
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Then we point out the monotonic increase of the field IN: If a node n′ is a descen-
dant of a n, then IN(n) ⊆IN(n′). It follows that if there is a node n such that IN(n)
does not satisfy OUT(n), then no branch containing n is OUT-valid, so we can cut the
development of the computation tree for node n. Such an optimization is more difficult
to achieve using the MBT field, to stop the development of the computation tree for node
n, we have to prove that there exists a disjunction M1 ∨ . . . ∨Mk ∈MBT(n) and a set
of atoms Mi that will never be contained in the IN field of any descendant of n. Simple
arguments achieve that goal in the ASP programs we generate in Section 5.

4 The Notion of Repair

We now recall the definitions of repairs [1,16,10] rephrased within the framework of
existential rules. Let K = (F,R,N ) be a knowledge base where F is a set of ground
atoms, R is a set of existential rules, and N is a set of negative constraints , i.e. a set
of rules of form ⊥ ← B where B is a set of basic atoms and ⊥ is the absurd symbol.
We say that a set of atoms Y is consistent w.r.t. (R,N ) when (F,R,N ) 6|= ⊥, , i.e.
when Cl(Y,R ∪ N ) does not contain ⊥. Our knowledge base is thus consistent when
F is consistent w.r.t. (R,N ). Different kind of repairs can be considered when the
knowledge base is inconsistent. (Standard) repairs: A repair of K is an inclusion-
maximal subset F ′ of F that is consistent w.r.t. (R,N ), and we note F ′ ∈ R(K).
Closed repairs: If X is a set of atoms, we call ground positive closure of X and note
g+Cl(X) the restriction of Cl(X,R) to basic ground atoms (whose terms are only
constants, and not obtained with function symbols). A closed repair of K is a set of
basic ground atoms F ′′ = g+Cl(F ′), where F ′ is a standard repair of K, and we note
F ′′ ∈ CR(K). Repairs of closure: A repair of the closure of K is a standard repair F ′

of (g+Cl(F,R),R,N ), and we note F ′ ∈ RC(K).
Recently a unified framework combining modifiers (way of computing the repairs)

and inferences strategies has been proposed for querying ontological knowledge bases
represented with existential rules [2]. This framework covers the best known semantics
and introduces new ones. The semantics are denoted by 〈◦i, s〉 where ◦i is a modifier
and s ∈ {∀,∃,∩,maj} is an inference strategy. Within this framework ◦1 computes
the set of repairs, ◦5 computes the closed repairs and ◦7 computes the repairs of the
closure.

5 Computing Repairs with ∃-ASP

In this section we describe the transformation from a knowledge base K into a generic
∃-ASP program Π . Though this program computes “repairs” in the broad sense, two
configurable modules (namely selection and display) are used to obtain the intended
behaviour. In particular, we show that, given specific rules, this program can compute
the repairs, the closed repairs or the repairs of the closure of K. This transformation
relies upon the following steps: 1) K is put into its skolemized form, 2) the user selects
either the select or the display transformation scheme, 3) the transformation builds the
program Π , using an extended vocabulary, 4) we use an ASP solver to compute the
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answer sets of Π , 5) the restriction of those answer sets to the original vocabulary
provides the “repairs”.

5.1 Transformation Into ∃-ASP

Our knowledge base is built upon an original vocabulary V . For every predicate name
p ∈ V , we consider different versions of p that will be used in the extended vocabulary
of our ∃-ASP program: pi for initial predicate, pp for possible predicate, pn for forbid-
den predicate, pc for chosen predicate, ps for may be selected predicate, pv for valid
predicate, pg for ground predicate, and pd for display predicate. If A is a set of atoms
built upon the original vocabulary, we note Ax the set of atoms px(t) built upon the
extended vocabulary where p(t) is an atom of A. The ∃-ASP program Π is obtained as
follows:
Encoding of initial facts : Π contains Fi (every atom of F is considered as an initial
fact of the program Π).
Encoding of positive closure : For every predicate name in V , we have a rule of form
[P1:] pp(X) ← pi(X), those rules assert that every initial atom is possible; and for
every rule B(X) → H(X,Y ) in Rsk, we have a rule of form [R1:] Hp(X,Y ),
fct(Y1), · · ·, fct(Yk) ← Bp(X) where the Yi are the functional terms of the head
of the skolemized rule, those rules are used to encode the positive closure Cl(F,R)
with possible atoms, and to “mark” functional terms. Finally, for every predicate name
p ∈ V , we have a rule of form [P2:] pg(X) ← pp(X), notfct(X1), · · ·notfct(Xk)
asserting that every possible atom using no functional term is ground.
Selection strategy : Those configurable rules provide the user strategy to define which
atoms (of form ps) are selectable, i.e. can appear or not in the “repairs”. We provide
here two such strategies: SEL1 says that every initial atom is selectable. For every
predicate name p ∈ V , we have a rule [S1:] ps(X) ← pi(X). SEL2 says that every
ground possible atom is selectable. For every predicate name p ∈ V , we have a rule
[S2:] ps(X)← pg(X).
Choice rules : These rules are the core of our program, since they will build all pos-
sible subsets of selectable atoms. They say that every atom that is selectable and not
forbidden must be chosen. [P3:] pc(X)← ps(X), not pn(X).
Definition of contexts : For every atom p(t), the atom pv(t, c) asserts that p(t) is
valid in the context c. All chosen atoms are valid in the base context. This is encoded,
for each predicate name p ∈ V , by the rule [P4:] pv(X, base) ← pc(X). An atom
p(t) that is not chosen will be valid in its own context, encoded by the term ctx(p, t).
This is encoded, for each predicate name p ∈ V , by the rule [P5:] pv(X, ctx(p,X)),
context(ctx(p,X))← ps(X), not pc(X). Finally, we say that every atom valid in the
base context is also valid in any other context. For each predicate name p ∈ V , we
have the rule [P6:] pv(X, C) ← pv(X, base), context(C). The base context encodes
the chosen atoms. Every other context encodes the adding of one particular unchosen
atom to the already chosen ones. Intuitively, to obtain a repair we will have to prove
that the base context is consistent and that all other contexts are not, meaning that the
base context is maximal.
Context closure : Every atom that can be deduced from those valid in a particular
context will also be valid in that context. For every skolemized existential rule of the
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form B(X) → H(X), we obtain the rule [R2:] Hv(X, C) ← Bv(X, C). Then we
say that if a constraint is violated in a given context, then that context is absurd. For any
constraint in N of the form p1(X1), · · · , pk(Xk) → ⊥ we add the rule of form [C1:]
absurd(C)← p1v(X1, C), · · · , pkv(Xk, C).
Retropropagation of absurd contexts : Finally, we say that if the base context is
absurd, then every atom valid in that context is forbidden. For every predicate p ∈ V , we
have the rule [C2:] pn(X) ← pc(X), absurd(base). For other absurd contexts, only
selectable unchosen atoms of that specific context are forbidden. For every predicate
p ∈ V , we have the rule [C3:] pn(X)← not pc(X), ps(X), pv(X, C), context(C),
absurd(C).
Visualization strategy : Those configurable rules provide the user strategy to define
which atoms (of form pd) are displayable, i.e. can appear or not in the visualization of
the “repairs”. Whatever the strategy chosen, only displayable atoms that are valid in
the base context will be displayed (i.e. added using the original vocabulary). This is en-
coded, for each predicate name p ∈ V , by the rule [D:] p(X)← pd(X), pv(X, base).
We provide here two such strategies: DISP1 says that every initial atom is displayable.
For every predicate name p ∈ V , we have a rule [V1:] pd(X) ← pi(X). DISP2 says
that every ground possible atom is displayable. For every predicate name p ∈ V , we
have a rule [V2:] pd(X)← pg(X).

Example 1. Let K = (F ,R,N ) be a knowledge base such that F = {p(a), q(a)},
Rsk = {p(X)→ r(X, f(X)), q(X)→ s(X), r(X,Y )→ t(X)} and N = {r(X,Y ),
q(X)→⊥}. The original vocabulary of K contains the predicate names {p, q, r, t}.
The initial facts are pi(a). and qi(a).
The rules encoding the positive closure are those of form P1 for initialization (we
restricted those to the predicates appearing in initial form): pp(X) ← pi(X). and
qp(X) ← qi(X)., those of form R1 for propagation: rp(X, f(X)), fct(f(X)) ←
pp(X). sp(X) ← qp(X). tp(X) ← rp(X,Y ). and those of form P2 to detect ground
atoms: pg(X) ← pp(X), not fct(X). qg(X) ← qp(X), not fct(X). rg(X,Y ) ←
rp(X,Y ), not fct(X), not fct(Y ). sg(X) ← sp(X), not fct(X). tg(X) ← tp(X),
not fct(X).
Two selection strategies are possible. With SEL1 we have: ps(X) ← pi(X). and
qs(X)← qi(X). With SEL2 we have: ps(X)← pg(X). qs(X)← qg(X). rs(X,Y )←
rg(X,Y ). ss(X)← sg(X). and ts(X)← tg(X).
The choice rules are: pc(X) ← ps(X), not pn(X). qc(X) ← qs(X), not qn(X).
rc(X,Y ) ← rs(X,Y ), not rn(X,Y ). sc(X) ← ss(X), not sn(X). tc(X) ← ts(X),
not tn(X).
For the definition of contexts, we have the rules of form P4 defining the base con-
text: pv(X, base) ← pc(X). qv(X, base) ← qc(X). rv(X,Y, base) ← rc(X,Y ).
sv(X, base)← sc(X). tv(X, base)← tc(X). the rules of form P5 defining other con-
texts: pv(X, ctx(p,X)), context(ctx(p,X))← ps(X), not pc(X). qv(X, ctx(q,X)),
context(ctx(q,X))←qs(X), not qc(X). rv(X,Y, ctx(r,X, Y )),context(ctx(r,X, Y ))
← rs(X,Y ), not rc(X,Y ). sv(X, ctx(s,X)), context(ctx(s,X))← ss(X), not sc(X).
tv(X, ctx(t,X)), context(ctx(t,X)) ← ts(X), not tc(X). and the rules of form P6

encoding inheritance of base context: pv(X,C)← pv(X, base), context(C). qv(X,C)
← qv(X, base), context(C). rv(X,Y,C) ← rv(X,Y, base), context(C). sv(X,C)
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← sv(X, base), context(C). tv(X,C)← tv(X, base), context(C).
The context closure will be computed with the rules of form R2: rv(X, f(X), C) ←
pv(X,C). sv(X,C) ← qv(X,C). tv(X,C) ← rv(X,Y,C). and inconsistencies will
be detected by the rule of form C1: absurd(C)← rv(X,Y,C), qv(X,C).
Retropropagation of absurd contexts is handled by rules of form C2: pn(X) ←
pc(X), absurd(base). qn(X)← qc(X), absurd(base). rn(X,Y )← rc(X,Y ),
absurd(base). sn(X) ← sc(X), absurd(base). tn(X) ← tc(X), absurd(base). and
C3: pn(X)← not pc(X), ps(X), pv(X,C), context(C), absurd(C). qn(X)
← not qc(X), qs(X), qv(X,C), context(C), absurd(C). rn(X,Y )← not rc(X,Y ),
rs(X,Y ), rv(X,Y,C), context(C), absurd(C). sn(X)← not sc(X), ss(X), sv(X,C),
context(C), absurd(C). tn(X)← not tc(X), ts(X), tv(X,C), context(C), absurd(C).
Finally, display rules contain the rules of form D: p(X) ← pd(X), pv(X, base).
q(X) ← qd(X), qv(X, base). r(X,Y ) ← rd(X,Y ), rv(X,Y, base). s(X)← sd(X),
sv(X, base). t(X) ← td(X), tv(X, base). And the choice of strategy DISP1 with
rules: pd(X) ← pi(X). qd(X) ← qi(X). rd(X,Y ) ← ri(X,Y ). sd(X) ← si(X).
td(X) ← ti(X). or of strategy DISP2 with rules: pd(X) ← pg(X). qd(X) ← pg(X).
rd(X,Y )← rg(X,Y ). sd(X)← sg(X). td(X)← tg(X).

It is important to note that when the skolem chase halts for the original existential
rules KB (such fragments have been studied for instance in [4]) then the Skolem chase
also halts on the positive part of the generated ASP program, and thus (see properties
in Section 3) the ASPeRiX computation generates all answer sets in finite time.

5.2 General Form of the Computation Tree ofΠ

Let us now examine what is happening during a computation of such a program Π . We
first point out that we can evaluate rules in a particular order: 1) the positive closure
rules of form P1, 2) those of form R1, 3) those of form P2, 4) the selection rules, 5)
the choice rules P3, 6) the definitions of contexts of form P4, 7) those of form P5, 8)
those of form P6, 9) the context closure of form R2, 10) and those of form C1, 11) the
retropropagation rules C2 and 12) C3, and 13) the visualisation rules. Indeed, we can
check that, if i<j are two of those steps, no rule evaluated at step j can trigger a new
application of a rule that was evaluated at step i. This will not always be the case with
any selection rules provided by the user, but this property is satisfied by the strategies
SEL1 and SEL2 presented here. Among all equivalent computation trees, we will thus
consider those that respect that particular order: The natural computations of Π .

Proposition 1. Let K = (F ,R,N ) be a knowledge base, and let Π be the ∃-ASP
program obtained from the above encoding. At the end of Step 3 the natural computation
tree corresponding toΠ only has one finite branch that could lead to a full valid branch.

Proof. The computation of Π is a binary tree. Initially the root is s.t IN(root)=Fi,
OUT (root)=∅,MBT (root)=∅. After |Fi| applications of the rule P1, IN(root)=Fi∪
Fp, since the rule P1 is positive (the negative body of P1 is empty) OUT (root) and
MBT (root) are unchanged. (In the following in case of positive rule we do not specify
that the fields OUT and MBT do not change.) After a possible infinite number of
applications of the rule R1, IN(root)=Fi∪(Cl(F ,R))p∪{fct(t),t 6∈ basic terms of
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Cl(F)}. We develop the computation tree using the rule P2, starting from the root, for
each node n we look for a homomorphism σ in IN(root) s.t σ(Xi)=ti where ti is a
grounded term. Two cases hold:

– case 1: ∃ti such that fct(ti) ∈ IN(root). This is the blocked case of the computa-
tion tree given in Section 3. The node is not changed.

– case 2: @ti such that fct(ti) ∈ IN(root). This is the choice case in the com-
putation tree given in Section 3. The node n has two children n1 and n2 such
that IN(n1) = IN(n) ∪ {pg(t1, · · · , tk)}, OUT (n1) = OUT (n) ∪ {{fct(t1)},
· · ·, {fct(tk)}}, MBT (n1) = MBT (n) and IN(n2) = IN(n), OUT (n2) =
OUT (n), MBT (n2) =MBT (n) ∪ {fct(t1) ∨ · · · ∨ fct(tk)}.

Note that we get all fct(ti) that could be generated and there will be no other way to
obtain others. According to the properties in Section 3 none of the fct(ti) inMBT (n2)
can be proved therefore this branch cannot lead to a valid branch. At the end of Step 3,
the computation tree only has one branch that could lead to a valid branch and there-
fore to an anwser set. Since there is a finite number of atoms without function sym-
bol, this only branch is finite and l denotes its leaf and IN(l) = Fi ∪ (Cl(F ,R))p ∪
{fct(t)| t is a functional term of Cl(F ,R)} ∪ ({a ∈ Cl(F ,R)|a is a basic atom})g ,
OUT (l) = {{fct(t)}|t is a functional term of Cl(F ,R)} andMBT (l) =MBT (n).
As no further development of the computation tree can add any atom with predicate
name fct(t), the result of any branch having the node l as ancestor will satisfyOUT (l).
Thus, in the following, we will ignore OUT (l).

Example 2. (Example 1, continued) At the end of Step 3 the computation tree has
only one branch and l denotes its leaf. We have IN(l) = {pi(a), qi(a), pp(a), qp(a),
rp(a, f(a)), fct(f(a)),sp(a), tp(a), pg(a), qg(a), sg(a), tg(a)},OUT (l) = {{fct(a)}}
andMBT (l) = {fct(f(a))}. Note that this branch may lead to a full valid branch since
IN(l) satisfies OUT (l) and IN(l) satisfies MBT (l).

Proposition 2. Let K=(F ,R,N ) be a knowledge base, and let Π be the ∃-ASP pro-
gram obtained from the above encoding. Let X be the finite set of selectable atoms
obtained after Step 4. At the end of Step 5 the natural computation tree corresponding
toΠ has 2|X| finite branches (each one determined by the subset Y of the chosen atoms
in X).

Proof. As shown in Proposition 1 the computation tree corresponding to Π obtained at
the end of Step 3 only has one finite branch and l denotes its leaf. We start from l where
IN(l), OUT (l) and MBT (l) are given at the end of the proof of Proposition1. Step 4
proposes two strategies for selecting the predicates, in order to handle both cases, we
consider the set of atoms X provided by the selection rules and the field IN is updated
with X . Thanks to the proposed selection rules X is always finite. The application of
the rules P3 leads to the development of 2|X| sub-branches from l, each one encoding
a subset Y ⊆ X . The branch associated with Y has a leaf denoted by lY1 such that
IN(lY1) = IN(l) ∪ Y denoted by INY 1, OUT (lY1) = OUT (l) ∪ {{pn(t) | ps(t) ∈
Y }} and MBT (lY1

) =MBT (l) ∪ {(X\Y )n}.
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Proposition 3. Let K = (F ,R,N ) be a knowledge base, and let Π be the ∃-ASP
program obtained from the above encoding. Let lY1

be the leaf of a branch obtained
after Step 5 of the natural computation tree. Then lY1 can lead to at most one valid full
branch, which is finite.

Proof. We now consider the development of the computation tree from lY1 . The appli-
cation of the rules P4 introduces the base context and since they are positive only the
field IN is updated, thus IN(lY1

) = INY 1 ∪ {pv(t, base) | p(t) ∈ Y }. The rules P5

introduce the contexts different from the base context. These are choice rules however
like in the case of rules P2 no other application of rules can generate chosen predicates
(pc(t)) therefore there is only one branch that can eventually lead to a valid branch and
lY2 denotes its leaf. Note that is branch is finite because X is finite. Thus IN(lY2) =
IN(lY1) ∪ {pv(t, ctx(p, t)) | p(t) ∈ X\Y } ∪ {context(ctx(p, t)), | p(t) ∈ X\Y },
denoted by INY 2, the fields OUT and MBT are unchanged. The application of the
rules P6 updates the field IN , thus IN(lY2

) = INY 2 ∪ {pv(t, c)) | p(t) ∈ Y }, de-
noted by NY 3, where c is a constant different from base. The application of rules R2

updates the field IN , thus IN(lY2) = INY 3 ∪ {pv(t, base) | p(t) ∈ Cl(Y,R)} ∪
{pv(t, c) | c = ctx(q,u), c 6= base and p(t) ∈ Cl(Y ∪ {q(u)},R)}, denotes
INY 4. The application of the rules C1 updates the field IN , thus IN(lY2

) = INY 4∪
{absurd(base) |Cl(Y,R) violates a constraint} ∪{absurd(c) | c = ctx(q,u), c 6=
base and Cl(Y ∪ {q(u)},R) violates a constraint}, denoted by INY 5. The appli-
cation of the rules C2 updates the field IN , thus IN(lY2

) = INY 5 ∪ Yn if Cl(Y,R)
violates a constraint or IN(lY2) = INY 5 otherwise. The rules C3 introduce the for-
bidden predicates These are choice rules however like in the case of rules P4 no other
application of rules can generate chosen predicates (pc(t)) therefore there is only one
branch that can eventually lead to a valid branch. lY3

denotes its leaf. Note that this
branch is finite because X is finite. Thus IN(lY3

) = IN(lY2
) ∪ {pn(t) |Cl(Y ∪

pc(t),R) violates a constraint} denoted by INY 6, the fields OUT and MBT are
unchanged. Step 13 proposes two strategies for visualizing the predicates, with the strat-
egy DISP1 the field IN is updated such that IN(lY3

) = INY 6∪{pd(t) | pi(t) ∈ Fi},
while with the strategy DISP2 the field IN is updated such that IN(lY3

) = INY 6 ∪
{pd(t) | pg(t) ∈ (Cl(F ,R))p}. Finally the display rule D updates the field IN , thus
IN(lY3

) = INY 7 ∪ {p(t)} where p is valid in the base context and pd(t) has been
selected by a visualization strategy. At the end of Step 13, the branch associated with Y
is full. The computation is finite even if its nodes can require an infinite derivation.

5.3 Computation Tree ofΠ and Repairs

As a preliminary remark, and since all the branches of the computation tree are finite,
let us point out that we can thus use the characterization of the validity given in the
properties of Section 3 using the leaves of that tree. The branch associated with Y is
OUT − valid if and only if IN(lY3

) satisfies OUT (lY3
). Moreover, the branch associ-

ated with Y is MBT − valid if and only if IN(lY3
) satisfies MBT (lY3

).

Theorem 3. Let K=(F ,R,N ) be a knowledge base. Let Π be the ∃-ASP program ob-
tained fromK according to the above encoding. Let Y be a subset of the set of selectable
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atoms X . The full branch of the computation tree corresponding to Π , associated with
Y is valid if and only if Y is a maximal subset of X such that Cl(Y,R∪N ) 6|= ⊥.

Proof. By hypothesis Y⊆X , thus by Proposition 3 the computation tree provides a full
branch associated with Y and l denotes its leaf. We prove the first the direction by con-
traposition. IfCl(Y,R∪N )|=⊥ then ∃N∈N such thatCl(Y,R)|=N thus absurd(base)
∈ IN(l), thus ∀p(t)∈Y we have pn(t)∈IN(l) and pn(t)∈OUT (l) therefore the branch
associated with Y is not OUT − valid. Suppose now that Cl(Y,R∪N )6|=⊥ but there
exists p(t)∈X\Y s.t Cl(Y ∪{p(t)},R∪N )6|=⊥ thus pv(t, ctx(p, t))∈IN(l) and we
cannot obtain absurd(ctx(p, t)). However pn(t) could only be obtained from absurd(
ctx(p, t)), pn(t)6∈IN(l) but since p(t)∈X\Y , pn(t)∈MBT (l) therefore the branch is
not MBT -valid.

We now prove the other direction. Let Y be a maximal subset of X such that
Cl(Y,R ∪ N ) 6|= ⊥. Thus absurd(base) 6∈ IN(l) and ∀p(t) ∈ Y , pn(t) 6∈ IN(l).
Since OUT (l) = {{pn(t) | p(t) ∈ Y }} then the branch associated with Y is OUT −
valid. Y is maximal w. r. t. set inclusion thus ∀q(u) ∈ X\Y we haveCl(Y ∪{q(u)},R∪
N ) |= ⊥, thus absurd(ctx(q,u)) ∈ IN(l), thus qn(u) ∈ IN(l) and since q(u) ∈
X\Y then qn(u) ∈MBT (l) therefore the branch associated with Y is MBT -valid.

We did not discuss yet the effects of the selection and visualization strategies on the
results of our program. If we select the atoms with Strategy SEL1 then X is exactly the
set F . If we select the atoms with Strategy SEL2 then X is exactly the ground closure
of F . According to Theorem 3, using Strategy SEL1 the result of the branch associated
with Y is an answer if and only if Y is maximal consistent subset of F while using
Strategy SEL2 the result of the branch associated with Y is an answer if and only if
Y is maximal consistent subset of the ground closure of F . When displaying atoms
with Strategy DISP1 the restriction of the answer set associated with a branch Y to the
predicates of the original vocabulary is exactlyCl(Y,R)∩F while displaying the atoms
with Strategy DISP2 the restriction of the answer set associated with a branch Y to the
predicates of the original vocabulary is exactly Cl(Y,R). Let Π be an ∃-ASP program
obtained from the above encoding. Let AS be an answer set of Π , ρ(AS) denotes the
restriction of AS to the original vocabulary V and ρ(Π) = {ρ(AS) |AS ∈ AS(Π)}.

Corollary 1. Let K = (F ,R,N ) be knowledge base. Let Π1 be the ∃-ASP program
obtained from the above encoding using strategies SEL1and DISP1. Then ρ(Π1) is the
set of repairs of K. Let Π5 be the ∃-ASP program obtained from the above encoding
using strategies SEL1 and DISP2. Then ρ(Π5) is the set of closed repairs ofK. LetΠ7

be the ∃-ASP program obtained from the above encoding using strategies SEL2 and
DISP2. Then ρ(Π7) is the set of repairs of the closure of K.

Example 3. The selection strategy SEL1 allows one to select the predicates in F and
provides the set X={ps(a),qs(a)}. The computation tree develops 4 branches, each
one encoding a subset of Y of X . Only two of them are full valid branches. The se-
lection strategy SEL2 allows one to select the predicates in the grounded closure of
F and provides the set X={ps(a), qs(a), ss(a), ts(a)}. The computation tree devel-
ops 16 branches, each one encoding a subset of Y of X . Only two of them are full
valid branches. The visualization strategy DISP1 allows one to display valid predicates
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within the base context which belong to F while the visualization strategy DISP2 al-
lows one to display valid predicates within the base context which belong to grounded
closure of F . Using strategies SEL1 and DISP1 we obtain an ∃-ASP program denoted
by Π1 such that the answer sets restricted to the original vocabulary are {p(a)} and
{q(a)}. Note that they correspond to the repairs ofK. Using strategies SEL1 and DISP2
we obtain an ∃-ASP program denoted byΠ5 s.t the answer sets restricted to the original
vocabulary are {p(a), t(a)} and {q(a), s(a)}. Note that they correspond to the closed
repairs of K. Using strategies SEL2 and DISP1 we obtain an ∃-ASP program denoted
byΠ7 s.t the answer sets restricted to the original vocabulary are {p(a), s(a), t(a)} and
{q(a), s(a), t(a)}. Note that they correspond to the repairs of the closure of K.

5.4 Other Strategies

We have presented here a generic encoding of a knowledge baseK into an ASP program
that computes different kind of repairs of K, according to the different selection rules
and display rules we have chosen in that encoding. This generic ASP program could
take into account other possible select/display rules to achieve different outcome. For
instance, let us consider the following set of rules. Selection rules: The user defines all
“optional” atoms with rules of form ps(X)← pi(X)., where all atoms of F with pred-
icate name p are optional and ps(a) ← pi(a)., where the atom p(a) of F is optional
and then asserts that every atom of F that is not optional is mandatory. For every pred-
icate name p, there is a rule of form pv(X, base)← pi(X), notps(X). Display rules:
The user can use rules similar to the selection rules to display only optional atoms of
F . With such a set of select/display rules, the program Π will admit an answer set only
when the subset M of mandatory atoms of F (i.e. those that are not declared optional)
is consistent w.r.t. (R,N ), and in that case, if AS is an answer set of Π , ρ(AS) will be
an inclusion-maximal subset F ′ of F such that M ∪ F ′ is consistent w.r.t. (R,N ).

6 Conclusion

This paper presented a generic encoding in ∃-ASP of repair-based techniques for in-
consistent knowledge bases expressed within the formalism of existential rules. We
focused on three kinds of repairs that allow for computing query answering with the fol-
lowing semantics proposed in [2]: 〈◦1,∀〉 (corresponds to AR-semantics [16]), 〈◦1,∩〉
(corresponds to IAR-semantics [16]), 〈◦7,∀〉 (close to CAR-semantics [16]), 〈◦7,∩〉
(close to ICAR-semantics [16]) and 〈◦5,∩〉 (corresponds to ICR-semantics [10]). In-
deed these semantics can be rephrased in our framework as follows. Let K be a knowl-
edge base and let q and qv be first order formulas, where qv is obtained from q by
replacing each predicate p(t) occurring in q by pv(t, base) we have: 1) K|=〈◦1,∀〉q
iff ∀AS∈AS(Π1), qv∈AS. 2) K|=〈◦1,∩〉q iff qv∈∩ASi∈AS(Π1)ASi. 3) K|=〈◦7,∀〉q iff
∀AS∈ AS(Π7), qv∈ AS. 4): K|=〈◦7,∩〉q iff qv∈∩ASi∈AS(Π7)ASi. 5): K|=〈◦5,∩〉q iff
qv∈∩ASi∈AS(Π5)ASi.

A future work will be dedicated to the implementation and experimentation of the
proposed encoding with ASPeRiX [14]. Another interesting issue is the extension of
this encoding to the modifiers proposed within the unified framework for inconsistency-
tolerant query answering stemming from the selection modifier based on cardinality.
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