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Abstract 

The selective laser melting (SLM) of aluminium-based composites continues to be a 

challenge due to the high reflectivity, high thermal conductivity and oxidation of aluminium, all 

of which directly influence the thermal performance of each layer during SLM. Due to the 

extremely rapid melting and cooling rate of aluminium, however, it is difficult to measure thermal 

performance within practical SLM applications. A three-dimensional finite element simulation 

model is thus developed in this study to simulate the transient temperature distribution and molten 

pool dimensions of the premier layer during the SLM of Al-Al2O3 composite powder. In order to 

produce high-quality parts with minimum defects in a highly efficient manner, the predicted 

optimum volumetric energy density is found to be 40 J/mm3, with laser power 300 W, scanning 

speed 1000 mm/s, hatch spacing 150 μm and layer thickness 50 μm; the molten pool size that is 

produced is 165 μm in length, 160 μm in width and 77 μm in depth, with a predicted maximum 

temperature of around 3400°C. All of these factors may contribute to the creation of good 

metallurgic bonding.    

Introduction 

One of the main advantages of selective laser melting (SLM) is that the technique provides 

an integrated way of manufacturing three-dimensional metallic components from computer-aided 

design files using a layer-by-layer principle [1]. It also shows potential in the fabrication of 

advanced engineering components in order to meet the demanding requirements of the aerospace, 

automotive and biomedical industries [2].  

Due to its light weight, high specific strength and good corrosion resistance, aluminium is 

widely used in various domains, including within the automotive and aerospace industries [3]. 

Several studies have been conducted on the SLM of aluminium alloys [4]. In comparison with 

aluminium alloys, aluminium based composites exhibit better mechanical strength, wear resistance 
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and high temperature properties; the SLM of Al-Al2O3 nanocomposites is currently used in new 

applications within the automotive and aerospace industries [5]. The quality of the parts produced 

via SLM generally depends on the temperature distribution under various operating parameters, 

such as laser power, scanning speed, hatch spacing and scanning strategy [6]. In order to obtain 

the desired SLM components, further research is thus required to explore the relationship between 

process parameters and thermal behaviour during SLM [7]. It is difficult to measure thermal 

performance within practical SLM applications, however, due to the extremely rapid melting and 

cooling rate; researcher therefore consider numerical simulation to be a suitable approach for 

exploring these issues.   

This paper explores the thermal behaviour within a scan of the premier layer’s Al-Al2O3 

nanocomposites through the numerical simulation approach. It is important to scan the premier 

layer, as doing so not only determines the subsequent layers’ coating behaviour but also affects the 

dimensional accuracy and mechanical properties of the final parts. The properties of a part 

produced by this process therefore depend strongly on the quality of the premier layer, as that layer 

determines the nature and shape of the molten pool. Gaining an understanding of the thermal 

behaviour during the scanning of the premier layer is crucial for engineers in order to optimise the 

laser strategy and to improve component quality using SLM technology.  

This paper thus has two objectives: first, to develop a three-dimensional finite element 

model for the scanning of the premier layer’s Al-Al2O3 powder, and second, to employ different 

combinations of process parameters (such as laser power and scanning speed) to predict thermal 

behaviour and to explore the optimum volumetric energy density for fabricating high-quality 

components.  

Related work 

Researchers have employed finite element analysis (FEA), one of the most widely used 

numerical methods in use today, for temperature field analysis of various additive layer 

manufacturing processes. In early papers, Childs [8] investigated the influence of process 

parameters on the mass of melted single layers in SLM and found that an increase in scanning 

speed resulted in a larger melted mass. Matsumoto et al. [9] proposed a method for calculating the 
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distribution of temperature and stress in the SLM of single metallic layers; they found that the solid 

layer on the powder bed warped due to heating and cooling while the laser travelled on the track. 

When the neighbouring track began to solidify, large tensile stresses occurred at the side end of 

the solid part. Dai and Shaw [10] investigated the effect of the laser scanning strategy on residual 

stress and distortion and found that a scanning pattern with frequent 90° changes in the scanning 

direction at every turn could lead to a reduction of concave upwards and downwards distortions.  

More recently, Hussein et al. [11] developed a transient finite element model for the 

analysis of temperature and stress fields in single layers built without support in SLM. They found 

that the predicted length of the molten pool increased at higher scanning speeds, while both the 

width and depth of the molten pool decreased. Li and Gu [12] analysed thermal behaviour during 

the SLM of aluminium alloy powders and obtained the optimum molten pool width (111.4 μm) 

and depth (67.5 μm) for a specific combination of parameters (laser power 250 W and scan speed 

200 mm/s). Roberts et al. [13] employed an element birth-and-death strategy to analyse the 3D 

temperature field in multiple layers within a powder bed. Similar studies have explored the 

behaviour of other materials during SLM. For example, Kolossov et al. [14] proposed a 3D finite 

element model to predict the temperature distribution on the top surface of a titanium powder bed 

during the laser sintering process; their studies showed that changes in thermal conductivity 

determined the behaviour and development of thermal processes. In addition, Patil and Yadava [1] 

investigated the temperature distribution in a single metallic powder layer during metal laser 

sintering and found that temperature increased with increases in laser power and laser on-time, but 

decreased with increases in laser off-time and hatch spacing.  

A basic heat transfer model consists primarily of a heat source module and a thermal 

physics module. The fibre laser (Nd: YAG, λ=1.06 μm) employed in the SLM process normally 

operates in continuous-wave mode. The heat flux I(r) follows a Gaussian distribution and can be 

expressed as [11]: 

𝐼𝐼(𝑟𝑟) = 2𝐴𝐴𝐴𝐴
𝜋𝜋𝑟𝑟02

exp (−2𝑟𝑟2

𝑟𝑟02
)                                  (1) 

where A is absorptivity, P and r are laser power and radial distance from the laser centre, 

respectively, and r0 denotes the laser spot radius.   
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The absorptivity of a composite powder containing n components can be calculated using 

the following equation [15]: 

𝐴𝐴 = ∑ 𝐴𝐴𝑖𝑖𝛾𝛾𝑖𝑖𝑛𝑛
𝑖𝑖=1                                             (2) 

where Ai  and γi denote the absorptivity and volume fraction of a component, respectively. 

Tolochko et al. [15] measured the absorptivity of Al2O3 powder to be 3% under a pulsed Nd-YAG 

laser (λ=1.06μm pulse duration of 5ms, repetition rate up to 20Hz, energy content per pulse up to 

20J)  . In the present work, the nanocomposite powder was composed of 96 vol.% Al and 4 vol.% 

Al2O3 powder. Before the laser melting process, the employed aluminium plate was preheated to 

150°C (423K) to reduce the thermal distortion of the final parts; thus, considering the porosity of 

the powder bed, the temperature of the powder bed could be around 90°C. The corresponding 

absorptivity of Al was around 12%, which can be seen from Figure 1 [16]. The absorptivity of the 

Al-Al2O3 composite powder may then be determined using Eq. (2), yielding an absorptivity figure 

of 11.6%.  

 

Figure 1. Reflectivity of Al at 1.06 μm radiation [16].  

The porosity of the powder bed is crucial in SLM, as it affects both the thermal conductivity 

of the powder in the laser melting stage and the porosity of the final parts. Aboulkhair et al. [17] 

determined that the pores of the final parts can be categorised as metallurgical pores and keyhole 

pores. Metallurgical pores are spherically shaped and small in size (less than 100 μm); they are 

created at slow scanning speeds from gases trapped within the melt pool or are evolved from the 

powder during consolidation. These interstitial gases derive from the high porosity of the powder 

bed. Keyhole pores, in contrast, are irregularly shaped and large in size (greater than 100 μm), 
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which can be attributed to the rapid solidification of the metal without the complete filling of gaps 

with molten metal. Oxidation-caused pores can be classified as keyhole pores, because when a thin 

film meets another film, few non-melted powders will be trapped. The content of the metallurgical 

pores also decreases with an increase in the scanning speed, while keyhole pores increase as the 

scanning speed exceeds a critical speed. In general, the formation of metallurgical pores can be 

partially attributed to the powder bed porosity (φ) and can be expressed as [12]: 

𝜑𝜑 = 1 − 𝜌𝜌𝑝𝑝
𝜌𝜌𝑏𝑏

                              (3) 

where ρp and ρb represent the density of powder and bulk materials, respectively. The density of 

the bulk composite material can be calculated using the following equation: 

𝜌𝜌𝑏𝑏 = ∑ 𝜌𝜌𝑖𝑖𝛾𝛾𝑖𝑖𝑛𝑛
𝑖𝑖=1                            (4) 

Where ρi and γi denote the density and volume, respectively, of component i. The density ρb of 

2.75 g/cm3 is found when the composite powder comprises 96 vol.% Al and 4 vol.% Al2O3. The 

density of the powder 𝜌𝜌𝑝𝑝 can be evaluated by the apparent density, which is roughly 1.65 g/cm3. 

Thus, the porosity of the powder bed is calculated to be 40%, which is in agreement with the 

findings of Dong et al. [18], who suggested that the porosity can evolve from 50% (initial powder 

bed) to the minimum value of 0 (fully dense material) during the laser sintering process.  

Using a thermal physics module is necessary because SLM involves a phase-change 

process; this type of thermal analysis is thus a nonlinear transient analysis and a number of 

thermophysical properties should be determined for the ANSYS simulation. In order to analyse the 

phase transformation, the latent heat should be considered: this represents the heat energy that the 

system stores or releases during a phase change. To account for latent heat, the enthalpy of the 

material H as a function of the temperature is defined: it is the integral of material density 𝑝𝑝 times 

specific heat 𝑐𝑐(𝑇𝑇) with respect to temperature T: 

                𝐻𝐻 = ∫𝑝𝑝𝑐𝑐(𝑇𝑇)𝑑𝑑𝑇𝑇                      (5) 

Other thermophysical properties to consider include the density and thermal conductivity 

of the aluminium powder bed, which can be expressed as [19]: 

                   𝑘𝑘𝑝𝑝 = 𝑘𝑘𝑏𝑏(1 − 𝜑𝜑)                    (6) 
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where 𝑘𝑘𝑝𝑝  and 𝑘𝑘𝑏𝑏  denote the thermal conductivity of the powder bed and bulk materials, 

respectively; φ is the porosity of the powder bed. Typical solid thermophysical properties of 

aluminium and alumina are shown in Figure 2 [19].  

 

Figure 2. Thermophysical properties of Al and Al2O3 with temperature [20].  

 Within practical SLM applications, the volumetric energy density (ε) is used to 

systematically evaluate the influence of the process parameters that are employed; it can be 

expressed as [21]: 

𝜀𝜀 = 𝐴𝐴
𝑣𝑣ℎ𝑑𝑑

                                (7) 

where P denotes the laser power, v and h represent the scanning speed and hatch spacing, 

respectively, and d is the powder layer thickness. An optimal volumetric energy density is required 

to produce high-quality component; finite element thermal analysis provides an effective and 

simple approach for predicting the optimal combination of process parameters.    

Several existing studies( e.g. [8] [11] [13] )have employed this basic heat-transfer model 

to investigate the thermal behaviour in SLM of metal powders such as stainless steel and titanium 

alloys and have proposed FEA techniques to simulate the addition of layers with time. Few studies 
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have concentrated on the thermal behaviour of aluminium alloy powder during SLM, however 

(one example is [12]), and none have focused on Al composites. In addition, certain limitations of 

previous work still exist that offer interesting directions for future studies. First, since the substrate 

is normally preheated to a specific temperature to avoid thermal distortion, the effect of 

temperature on absorptivity should thus be considered during SLM modelling and numerical 

simulation. Second, the high temperature that is produced at the laser-material interface may cause 

vaporisation, and the recoil pressure induced by vaporisation will give rise to spatter; thus, the 

potential vaporisation should be considered during the optimisation of process parameters.  

To address this gap in the literature, this paper therefore investigates thermal behaviour 

during the scanning of the premier layer’s Al-Al2O3 composite. The temperature dependent 

absorptivity was considered in the modelling, and the vaporisation that is induced by excessively 

high surface temperatures was considered when optimising the laser power and scanning speed. 

The consideration of the temperature-dependent absorptivity and vaporisation during the 

modelling and numerical simulation may thus be considered to be the main novelty of this work.  

The Finite Element Model 

 This study used the ANSYS Multiphysics finite element package to build the premier 

layer’s scanning model and to conduct the heat transfer numerical simulation used in the study. 

The 3D finite element model that was developed does not rely on 2D assumptions. Figure 3 shows 

the model and the scanning strategy in the premier layer. A rectangular composite powder layer of 

5 x 1 x 0.05 mm was built on a 5 x 1 x 0.1 mm aluminium substrate. The nearly spherical ball-

milled composite powder offered around 40% porosity, which was considered when defining the 

thermophysical properties during the modelling. The composite powder layer was meshed with 

0.025 x 0.025 x 0.025 mm SOLID70 hexahedron element to improve calculation accuracy; coarse 

mesh was used for the substrate.   
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Figure 3. 3D finite element model and scanning strategy  

In order to reduce the simulation time, the premier layer that was built was reduced to three 

scanning tracks; a bidirectional scanning strategy was employed to conduct the simulation. The 

heat flux I(r) followed a Gaussian distribution (Eq. [1]); the laser radial distance r can be expressed 

as:  

                      𝑟𝑟 = �(𝑋𝑋 − 𝑎𝑎)2 + (𝑌𝑌 − 𝑏𝑏)2            (0 ≤ 𝑟𝑟 ≤ 𝑟𝑟0 )                 (8) 

where variables a and b can be determined as:          

(𝑎𝑎, 𝑏𝑏) = � 
(𝑣𝑣𝑣𝑣 − (𝑛𝑛 − 1)𝑙𝑙, (𝑛𝑛 − 1)ℎ)             (𝑛𝑛 = 1, 3, 5, . . . )

 (𝑛𝑛𝑙𝑙 − 𝑣𝑣𝑣𝑣, (𝑛𝑛 − 1)ℎ)                         (𝑛𝑛 = 2, 4, 6, . . . )                     (9) 
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where v and t denote the scanning speed and scanning time, respectively; n and l represent track 

number and track length, respectively, and h is the hatch spacing. When three tracks are simulated, 

the variables a and b can then be determined as:  

   (𝑎𝑎, 𝑏𝑏) =

⎩
⎪
⎨

⎪
⎧ (𝑣𝑣𝑣𝑣, 0)                         (0 ≤ 𝑣𝑣 ≤ 𝑙𝑙

𝑣𝑣
)

(2𝑙𝑙 − 𝑣𝑣𝑣𝑣, ℎ)               (𝑙𝑙
𝑣𝑣

< 𝑣𝑣 ≤ 2𝑙𝑙
𝑣𝑣

)

(𝑣𝑣𝑣𝑣 − 2𝑙𝑙, 2ℎ)             (2𝑙𝑙
𝑣𝑣

< 𝑣𝑣 ≤ 3𝑙𝑙
𝑣𝑣

)

                                    (10) 

In terms of Eq. (1), the heat-flux magnitude strongly depends on the laser power and 

powder absorptivity; Figure 4 shows the heat flux magnitude as a function of these two parameters. 

More specifically, when the absorptivity was fixed at 0.088 (at room temperature), the heat-flux 

magnitude was around 9 GW/m2 when the laser power was relatively low, at 200 W; the heat-flux 

magnitude increased to 14 GW/m2 when the laser power increased to 300 W; a 19 GW/m2 heat-

flux magnitude was reached when the laser power was increased to 400 W. Figure 4b shows the 

heat-flux magnitude increased from 14 GW/m2 to 18 GW/m2 when the powder absorptivity 

increased from 0.088 to 0.116. In general, a higher heat-flux magnitude leads to stronger laser 

energy and further generates higher temperatures at the laser-material interface.  

 

Figure 4. Heat-flux magnitude with laser power and absorptivity.  

The following assumptions are made in this simulation in order to create a mathematically 

tractable model:  
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• The composite powder bed was assumed to be homogeneous and continuous. 

• The heat flux from the laser beam was modelled as Gaussian-distributed heat flux and was 

given directly on the top of the composite powder bed.  

• The laser spot was assumed to have a circular shape. 

• The convective heat transfer coefficient between the environment and the powder bed was 

assumed to be a constant.  

• Radiation  was ignored.  

Due to the laser scanning-induced temperature gradient in the powder bed, heat transfer 

occurred via convection between the powder bed and the ambient environment. The ambient 

temperature was maintained at 20°C; the convective heat transfer coefficient (H) can be expressed 

in Z direction, as follows:  

−𝑘𝑘𝑝𝑝
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐻𝐻(𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑎𝑎)                       (11) 

where 𝑘𝑘𝑝𝑝 is thermal conductivity and 𝑇𝑇𝑠𝑠 𝑎𝑎𝑛𝑛𝑑𝑑 𝑇𝑇𝑎𝑎 denote the powder bed surface temperature and 

ambient temperature, respectively. In general, H is set as 10 W/(m2°C) in finite element simulation 

[11]. Both the heat-flux and thermal-convection loads should be applied on the top surface of the 

composite powder layer; in order to prevent heat flux from overriding the applied convection load, 

it is necessary to create surface effect elements. Thermal convection was thus applied on the 

surface effect elements, and the heat flux was applied on the powder layer surface. The finite 

element simulation parameters that are chosen to simulate the scanning of the premier layer’s 

composite powders are shown in Table 1.  

Table 1. Finite element simulation parameters. 

Parameters Value Parameters Value 

Absorptivity, A 11.6% Convective heat transfer 

coefficient, H 

10 W/(m2°C) 

Powder bed thickness, d 50 μm Laser power, P 200, 300, 400 W 

Laser spot radius, ro 35 μm Scanning speed, v 500, 1000,1250 and 1600 mm/s 

Ambient temperature, Ta 20°C Track length, l  4 mm 

Number of tracks  3 Hatch spacing, h 100 and 150 μm 
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Results and Discussion  

In order to fully melt an alumina particle, the maximum temperature induced by the laser 

radiation should be higher than the melting point of alumina (2040°C). Figure 5 shows the 

temperature variations of the midpoints in the three separate tracks under the following processing 

conditions: P=200 W, v=200 mm/s and h=100 μm. As the figure shows, the maximum temperature 

of the midpoints in the three tracks was more than 2200°C; track 2 and 3 demonstrated nearly the 

same maximum temperature, which was slightly higher than that of track 1. This can be attributed 

to the fact that the other two tracks would be pre-heated during the scanning of track 1. The 

simulation also showed a proper molten pool shape when the aforementioned process parameters 

were employed. In order to improve working efficiency within costly practical experiments, 

however, a higher laser power is generally preferred; the corresponding scanning speed and hatch-

spacing parameters tend to increase in order to generate proper temperature distribution and molten 

pool during the SLM of Al-Al2O3 composite powder.  
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Figure 5. Temperature variations of the midpoints in three tracks with time.   

 Figure 6 shows the maximum temperature variations of the three separate tracks when 

different combinations of laser power and scanning speed were employed. More specifically, 

Figures 6a and b show the temperature variations when laser power was fixed at 300 W, while the 

scanning speed increased from 1000 mm/s to 1600 mm/s. It may be seen that the maximum 

temperature at the starting point of track 1 dropped from 3050°C to 2950°C with a 600 mm/s 

141



increase in scanning speed. It is interesting to note that the maximum temperature increased 

dramatically at the beginning and kept steady afterwards, which could be explained by the fact that 

after roughly 1 mm length scanning, the solidification of the previous molten pool had finished 

due to the rapid cooling rate. The solidified metallic part exhibited much higher conductivity than 

the loose powder.  

 

Figure 6. Maximum temperature variation of the three tracks.     

A similar trend may also be observed at the beginning of track 2, but the maximum 

temperature decreased slightly until the end compared to the steady state in track 1; a 6°C 

temperature decrease was recorded between the peak and the end of track 2. This is perhaps 

because of the volume rise of the solidified part with the continued track scanning. Likewise, track 

3 showed a similar temperature variation trend as track 2, but offered an average 150°C and 100°C 

higher than track 2 at each scanning point under the scanning speeds of 1000 mm/s and 1600 mm/s, 

respectively. It may be concluded that when laser power was fixed, a relatively higher scanning 

speed generated a lower maximum temperature during the SLM due to lower laser energy input.  

 Figures 6c and d, in contrast, show the results of employing a laser power of 400 W while 

scanning speeds are set at 1000 mm/s and 1600 mm/s, respectively. The maximum temperature 
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variation of the three tracks exhibited a trend similar to the variation observed when the laser power 

was 300 W. It should be noted, however, that the increased 100 W in laser power led to roughly 

1000°C increase in temperature. The maximum temperatures in track 3 were 4657°C and 3522°C, 

as shown in Figures 6c and a, respectively, which indicates that when the scanning speed was fixed 

at 1000 mm/s, the increased laser power of 100 W led to a more than 1000°C temperature increase 

in the powder bed. The super high temperature tended to evaporate the liquid phase from the molten 

pool, however, and the recoil pressure induced by vaporisation could cause spatter and further 

decrease the layer thickness. It may also be concluded that the temperature generated was more 

sensitive to the laser power than to the scanning speed.  

In order to further investigate the transient temperature distribution during the scanning of 

the premier layer, the temperature variation of the midpoint in track 2 was investigated during the 

scanning of the three tracks when different combinations of laser power and scanning speed were 

used (Figure 7).  

 

Figure 7. Temperature variation of the midpoint in track 2.  
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 Figure 7a shows the temperature variation of the midpoint in track 2 when the laser power 

was fixed at 300 W. It may be seen that the temperature reached a peak of 3380°C at 0.006s when 

the scanning speed was at 1000 mm/s; a cooling rate of 1.54x107°C/s could then be determined. 

Likewise, when the scanning speed increased to 1600 mm/s, the peak reached 0.00375s with the 

temperature of 3215°C; the calculated cooling rate was 2.53x107 °C/s. It may be concluded that 

when the laser power was set at 300 W, the scanning speeds of both 1000 mm/s and 1600 mm/s 

could generate rapid cooling rates to produce very fine microstructures in the as-built parts. Figure 

7b shows the temperature variation of the midpoint in track 2 when the laser power is fixed at 400 

W and the determined peak temperature was 4473°C and 4299°C, respectively. Furthermore, the 

calculated cooling rate was 2x107°C/s and 3.37x107°C/s when the scanning speed was set at 1000 

mm/s and 1600 mm/s, respectively.  

 It may be concluded that when the laser power was fixed, a lower maximum temperature 

and higher cooling rate could be generated with an increase in scanning speed. When the scanning 

speed was fixed, however, both the maximum temperature and the heating/cooling rate increased 

dramatically with an increase in laser power. The cooling rates are generally thought to be more 

sensitive to scanning speed rather than to laser power. In order to determine the laser power and 

scanning speed that are best suited for SLM of the composite powder, one should not only consider 

the maximum temperature and cooling rate but also take into account the molten pool dimensions. 

Figure 8a shows the molten pool temperature contours of the midpoint in track 2 when the laser 

power and scanning speed were set at 300 W and 1000 mm/s, from which three dimensions of the 

molten pool were measured from both the top surface and the cross-sectional profile. The predicted 

molten length was 165 μm compared to the width of 160 μm. It should be noted that the predicted 

molten pool width could guarantee an overlapping between two adjacent tracks; this overlapping 

further contributed to a strong bonding of the two rapidly solidified tracks. Under the process 

conditions, the predicted molten pool depth was 77 μm greater than the single powder layer 

thickness (50 μm) which implies that strong metallurgical bonding had occurred between the 

powder bed and the substrate. 
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Figure 8. Molten pool dimensions of the midpoint in track 2 with laser power of 300W. 

 Figure 8b shows the predicted molten dimensions when the scanning speed increased to 

1600 mm/s, from which the molten pool had the same measured length and width of 140 μm. The 

predicted pool depth was around 51 μm, which was very close to the single powder layer thickness; 

this situation implied poor metallurgical bonding between the powder bed and the substrate. It 

should be noted that poor metallurgical bonding leads to higher porosity levels whereas good 

bonding lead to minimum porosity. Our simulation results are thought to be consistent with the 

experimental results in [22], where the measured porosity increased from 0.7% to 2.3% when the 

scanning speed varied from 1000 mm/s to 1600 mm/s while maintaining laser power at 170 W. 

Qiu et al. [23] also determined similar findings (Figure 9a), from which the porosity of the as-built 
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Ti6Al4V specimens was relatively low when the scanning speeds were below 2700 mm/s; the 

measured porosity did increase with an increase in scanning speed, however (but below 4250 

mm/s).  

 

Figure 9. (a) Variation of porosity with laser power fixed at 400 W; (b) spatter and pores induced 

by recoil pressure and Marangoni [23] [24].  

It should also be noted that the heat-affected zone (greater than 400°C) offered a significant 

difference in shape when the scanning speed increased from 1000 mm/s to 1600 mm/s. This can 

be explained by the fact that a lower scanning speed leads to a longer laser irradiation time, and 

the high temperature generated at the laser-material interface could be conducted to the rapidly 

solidified regions and produce a nearly elliptical heat-affected zone (Figure 8a). The predicted 

molten pool dimensions of the midpoint in track 2 are shown in Figures 8c and d when the laser 

power increased to 400 W. It may be seen that Figure 8c displays a similar heat-affected zone 

shape to Figure 8a, but it shows a much larger molten pool; this situation may be attributed this 

situation to higher laser energy input when a higher laser power was employed. Likewise, Figure 

8d shows a similar heat-affected zone to Figure 8b, as well as a larger molten pool size. 

Furthermore, the situations shown in Figure 8c and d could guarantee strong bonding behaviours 

of the two adjacent tracks and two powder layers. It should be noted, however, that the generated 

maximum temperatures of 4473°C and 4299°C could evaporate the fluid out of the molten pool, 

thus resulting in porosity and spatter, both of which could contribute to poor mechanical properties 

of the as-built parts. This observation appears to be consistent with Khairallah et al.’ findings [24] 

(Figure 9b), from which the recoil pressure induced by the vaporisation, together with the 

Marangoni convection, led to the spatter and depression of the molten pool. When the depression 
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collapsed, however,  porosity could be formed in the as-built parts; the formed pores were 

detrimental to mechanical properties (e.g. yield strength, elongation). 

 Experimental work was conducted using the Renishaw AM250 in order to validate the 

simulation results. The laser power was maintained at 200 W while scanning speed varied between 

200 mm/s and 600 mm/s (Figure 10). It can be seen that the measured melt pool with and depth 

decrease with an increase in scanning speed; the predicted melt pool depth decrease from 29 µm 

to 10 µm, which shows proper agreement with experimental results. It should be noted that, 

however, the track height that was produced using a layer thickness of 50 µm is less than the layer 

thickness and this might be attributed to the porosity of the powder bed and the spreading out of 

the melted metallic powder.  

 

Figure 10. Experimental validation with laser power of 200 W 

Conclusions 

 This study has developed a three-dimensional transient finite element model for predicting 

thermal behaviour during the scanning of the premier layer in SLM of Al-Al2O3 composite 

powders. The following conclusions have been drawn from the simulation results.  

• The maximum temperature at each scanning point decreased with an increase in scanning 

speed and rose with an increase in laser power. Apart from the first scanned track, the 
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maximum temperature in the other tracks increased at the beginning and then decreased 

until the track scan was completed.   

• The cooling rate was predicted to rise with an increase in both scanning speed and laser 

power, but it is thought to be more sensitive to scanning speed than to laser power. When 

laser power and scanning speed were fixed, however, the cooling rate that was determined 

remained constant; it was considered to be independent of the scanning positions. The 

dimensions of the molten pool are predicted to rise with an increase in laser power but 

decrease with an increase in scanning speed.  

• When the laser power was set at 400 W, the predicted maximum temperature was above 

4000°C when the scanning speeds employed were 1000 mm/s and 1600 mm/s. It is believed 

that he excessively high temperature resulted in vaporisation and other defects; in order to 

obtain high-quality parts, the recommended volumetric energy density is thus 40 J/mm3 

with laser power 300 W, scanning speed 1000 mm/s, hatch spacing 150 μm and layer 

thickness 50 μm. These findings will aid in developing an understanding of thermal 

behaviour during the SLM of AL-Al2O3 composites when optimising process parameters 

in order to produce high-quality parts with minimal defects and maximal efficiency.  
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