
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/97340/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Han, J., Schmidt, A., Zhang, T., Permentier, H., Groothuis, G. M. M., Bischoff, R., Kühn, F. E., Horvatovich,
P. and Casini, A. 2017. Bioconjugation strategies to couple supramolecular exo-functionalized palladium

cages to peptides for biomedical applications. Chemical Communications 53 (8) , pp. 1405-1408.
10.1039/C6CC08937B 

Publishers page: http://dx.doi.org/10.1039/C6CC08937B 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



Bioconjugation strategies to couple supramolecular exo-functionalized 

palladium cages to peptides for biomedical applications 

 

J. Han,a A. Schmidt,b T. Zhang,a H. Permentier,a G. M. M. Groothuis,c R. Bischoff,a F. E. Kühn,b P. Horvatovicha,*and 

A. Casinic,d,* 

 
aDepartment of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Antonius 
Deusinglaan 1, 9713 AV Groningen, The Netherlands. E-mail: p.l.horvatovich@rug.nl 

 

b Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstr. 
4, 85747 Garching bei München, Germany. 
c. Dept. Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, 
Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands 
d School of Chemistry, Cardiff University, Park Place, CF10 3AT Cardiff, United Kingdom. E-mail: casinia@cardiff.ac.uk 
 

 

Supramolecular Pd2L4 cages (L = ligand) hold promise as drug delivery systems. With the idea of achieving targeted delivery 

of the metallacages to tumor cells, the bioconjugation of exo-functionalized self-assembled Pd2L 4 cages to peptides 

following two different approaches is reported for the first time. The obtained bioconjugates were analyzed and identified 

by high-resolution mass spectrometry. 

 

Chemotherapy is one of the main modalities of treatment for cancer patients. However, its success rate remains limited, 

primarily due to limited selectivity of drugs for the tumor tissue, often resulting in severe toxicity, as well as to the development 

of multi-drug resistance caused by the heterogeneous biology of the growing tumors. 

 

In general, an important challenge in cancer treatment is to find a technology for targeted delivery and controlled release of 

drugs to eradicate tumor cells while sparing normal ones. Therefore, considerable efforts have been devoted to the 

development of drug delivery systems that can overcome the above mentioned issues related to anticancer drugs used in 

chemotherapy.1, 2 In some cases, it was also possible to achieve a synergistic anticancer effect of different therapeutic 

modalities combined in one drug delivery system.3 Within this framework, an increasing number of reports has appeared on 

tethering anticancer compounds to or encapsulating them in a wide range of functional molecules or nanomaterials with or 

without targeting groups.4-6 Thus, lipid nano-systems, such as liposomes and micelles along with virus-inspired vectors and 

polymeric particles, as well as inorganic nanoparticles, have been studied to deliver bioactive compounds to the target tissues. 

 

In this context, supramolecular chemistry offers new opportunities for improved drug delivery systems, its principal aim 

being to create nanoscale structures while exerting control over their size and shape, and to emulate biological systems with 

synthetic ones.7 

 

Interestingly, coordination-driven self-assembly utilizes the spontaneous formation of metal-ligand bonds in solution to 

drive mixtures of molecular building blocks to single, unique 2D metallocycles or 3D metallacages based on the directionality of 

the precursors used. The supramolecular coordination complexes (SCCs) obtained via this process are characterized by well-



defined internal cavities and relatively facile pre- or post-self-assembly functionalization.8 These properties augment the 

modularity of the directional bonding design strategy to provide structures with unprecedented fine-tuning possibilities, 

spatially and electronically. In spite of the numerous advantages of SCCs, these systems have been the least-explored of the 

supramolecular material categories for biomedical applications, both as drug delivery systems and as anticancer agents. 

 

A specific and attractive area of SCCs is the self-assembly of M2L4 (M =metal, L = ligand) metallacages,9 which can enclose a 

wide range of small molecules within their cavity, such as ions 10-14  and neutral molecules. 15-21 In addition, the properties of the 

M2L4 coordination cages can be optimized by functionalization of the ligand framework with the aim to target molecular system 

to a specific cell/tissue type or to enhance detection. Recently, we investigated fluorescent Pd2L4 cages (with L being exo-

functionalized bipyridyl ligands) as drug delivery systems for cisplatin, which proved to be active in cancer cells, while showing 

low ex vivo toxicity in healthy rat liver tissue.15 The obtained Pd(II) metallacages showed fluorescence properties due to the 

used ligand system. Similarly, exo-functionalized cages with naphthalene or anthracene groups, or featuring Ru (II) pyridine 

complexes, were studied with the aim to image their fate in cells via fluorescence microscopy.22, 23 

 

Selective accumulation of metallacages in tumors has been hypothesized to occur via the enhanced permeability and 

retention (EPR) effect,24 which has been widely used in cancer therapy for delivery via passive targeting. In fact, the EPR effect 

has been predominantly shown to be involved in the passive targeting of drugs with a molecular weight of more than 40 kDa 

and for low molecular weight drugs presented in drug-carriers such as polymeric conjugates, liposomes, polymeric 

nanoparticles, and micellar systems to solid tumors.25 However, for supramolecular metallacages, with molecular weight of ca. 

2-3 KDa, the EPR effect is not likely to influence their delivery. Therefore, it can be assumed that successful conjugation of cell-

specific ligands to the cage, including tumor-targeting peptides (TTPs) that are specific for tumor related surface markers, such 

as membrane receptors,4, 26could improve target specificity and efficacy. However, so far this concept has never been 

explored, and only Fujita et al. have been published on the non-covalent peptide coating on self-assembled M12L24 

coordination spheres.27 

 

The synthesis of three Pd2L4 cages and their bioconjugation to a model peptide is reported in this work. To the best of our 

knowledge this is the first attempt to bioconjugate M2L 4 cages to peptides. The selected cages feature COOH or NH2 groups in 

exo position for coupling to the peptide by amide bond formation (Fig. 1, C1a, C1b, C1c). It is also investigated whether a longer 

aliphatic linker between the COOH group and the cage favours coupling of the targeting moiety by reducing possible steric 

hindrance. 

 

It is worth mentioning that we have opted for this classical bioconjugation method instead of the modern click-chemistry 

approach, since the latter may lead to interference of Cu2+ ions with the stability of the self-assembled cage. In fact, click 



chemistry makes often use of copper in the concentration range 50-250 µM or higher,28 which would be ca. equivalent to the 

necessary concentration of Pd2+ precursor and resulting metallacage, therefore, leading to possible ligand exchange reactions. 

 

The bioconjugation was performed using two different approaches: i) direct tethering of the metallacage to the peptide 

(Approach I); or ii) initial anchoring of the ligand to the peptide, followed by metallacage self-assembly (Approach II) (Fig. 1). 

Formation of the metallacage-peptide constructs was assessed via high-resolution electrospray mass spectrometry in most 

cases coupled to high performance liquid chromatography (LC-MS). The obtained results are discussed in relation to the 

advantages and disadvantages of the reported bioconjugation approaches, and constitute the proof of concept for further 

studies using peptides selected for targeting properties (e.g. cyclic RGD peptides or affimers). 

 

Synthesis 

The rigid bidentatepyridyl ligands L1a-L3a (see Fig. 1) were synthesized using Sonogashira cross-coupling. Reaction of the 

ligands L1a-L3a with the Pd precursor [Pd(NCCH3)4](BF4)2 in a 2:1 ratio in DMSO resulted in the coordination cages 

[Pd2(L)4](BF4)4 C1a-C3a, respectively, within one hour. The synthesis of the carboxy-functionalized ligand L1a and cage C1a,22 

as well as of the amine-based ligand L3a and cage C3a were previously reported,15 while ligand L2a and cage C2a were 

synthesized for the first time following a similar procedure and characterised by NMR and mass spectrometry (Fig. S1-S5 in the 

Supplementary material). In the 1H NMR spectrum of C2a, the pyridyl proton signals (Ha-Hd) are significantly shifted downfield 

upon cage formation (Fig. S3). Additional proof for successful cage formation of C2a is given by diffusion-ordered NMR 

spectroscopy (DOSY) revealing a Dligand/ Dcomplex ratio of about 2:1 being in line with literature values.15 High-resolution ESI–

MS analysis of C2a shows the expected isotope abundance distribution, with the most intense peaks at m/z = 405.8232, 

569.7655 and 897.1510, which can be assigned to [Pd2(L2a)4]4+, [Pd2(L2a)4(BF4
-)] 3+ and [Pd2(L2a)4(BF4

-)2]3+, respectively (See 

Fig. S5 and Table S1 in the Supplementary material). 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 1. Scheme of the two different bioconjugation approaches applied in this study: i) direct tethering of the metallacage to the peptide 

(Approach I); or ii) initial anchoring of the ligand to the peptide, followed by metallacage self-assembly in situ (Approach II). Theoretically, both 

approaches can produce bioconjugated Pd2L4 cages tethered to four peptide units. 

 

Bioconjugation 

Initially, the direct bioconjugation of cages C1a and C2a to the protected model peptide Ac-NLEFK-Am (acetylated (Ac) 

at the N-terminal and amidated (Am) at the C-terminus) (Approach I, Fig. 1) was attempted via activation of C1a or C2a with 

DCC (N',N'-dicyclohexyl carbodiimide) and NHS (N-hydroxysuccinimide) as described in the experimental section. Subsequently, 

the peptide was added to the intermediate product solution in bicarbonate buffer (pH=9.2) and stirred for 1 h. In the case of 

the NH2 exo-functionalized cage C3a, bioconjugation was carried out by adding EDC to the mixture of model peptide and C3a in 

MES buffer (pH=4.7). 

 

Representative results for cage C1a are reported in Fig. S6 in the Supplementary material. The result from MS analysis 

shows that Approach I gives low yield of the bioconjugate product C1c (quadruply charged ion m/z = 1050.5178). Moreover, a 

variable number of peptide units were coupled to the cage. Specifically, cages tethered to either one, two or three peptide 

moieties were detected, corresponding to the most abundant peaks C1c-1 (triply charged, m/z = 727.66), C1c-2 (quadruply 

charged, m/z = 713.89; triply charged, m/z = 951.40), C1c-3 (quadruply charged, m/z = 882.17; triply charged, m/z = 1175.16), 

respectively. In the MS spectrum, the most abundant peaks were attributed to [C1c-3+DCC] species (quadruply charged, m/z = 

934.02; triply charged, m/z = 1244.84), corresponding to one DCC moiety coupled to the carboxylic acid group of the model 

peptide after formation of C1c-3. 

 

Similar results were obtained when bioconjugating cage C2c, featuring the longer linker between the cage and the COOH 

group (data not shown). In the case of cage C3a, the activating agent EDC was utilized to promote coupling to the model 

peptide but most of the peptide appeared to undergo cyclization reactions under these conditions preventing successful 

bioconjugation. 

 

In general, the obtained results show that it is difficult to both control the number of peptides coupled to the Pd2L4 cage 

and efficiently separate the mixture of different types of bioconjugated cages using Approach I. 

 

Therefore, Approach II (Fig. 1) was attempted where the carboxylic acid groups of ligands L1a or L2a were first activated via 

EDC (1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide) and sulfo-NHS (N-hydroxysulfosuccinimide) treatment. Afterwards, the 

coupling reaction was accomplished by incubating the protected model peptide with 0.5% TEA for 0.5 h (pH=7). In the case of 

the NH2 exo-functionalized ligand L3a, bioconjugation was achieved by adding EDC directly to a solution of L3a and the model 

peptide in MES buffer (pH = 4.7). The chromatogram obtained to analyze the bioconjugation reaction of ligands L1a and L2a are 

depicted in Fig. S7 (panels A and C), and show almost complete conversion of the ligands into the desired products. In fact, L1b 

(L1a-peptide) and L2b (L2a-peptide) are obtained, with a yield higher than 90%. The results show no significant difference in 

yield of coupling reaction using the ligand with longer aliphatic linker. Fig. S7 (panels B and D) show the MS spectrum of the 



bioconjugate products L1b (singly charged, m/z = 997.45; doubly charged, m/z = 499.22) and L2b (singly charged, m/z = 

1025.59; doubly charged m/z = 513.32) obtained by ion trap MS. 

 

The amino-functionalized ligand L3a forms bioconjugate L3b (L3a-peptide, singly charged, m/z = 968.59; doubly charged, 

m/z = 484.80) less efficiently (singly charged, m/z = 968.59; doubly charged, m/z = 484.80) most likely due to formation of 

internal cyclization and dimerization from the model peptide (Fig. S7, panels E and F). Thus, only L1b and L2b were selected to 

achieve self-assembly of the bioconjugated cages. 

 

Subsequently, the bioconjugated cages C1c or C2c were formed in situ using a 2:1 ratio of L1b or L2b and the Pd2+ 

precursor [Pd(NCCH3)4](BF4)2 in DMSO. Representative extracted ion chromatograms and mass spectrum for the bioconjugate 

cage C2c is reported in Figure 2. Fig. S8 in the Supplementary material shows the mass spectrum of bioconjugated cage C1c. 

The results show that both the bioconjugate ligands L1b and L2b are converted into cage molecules tethered to four peptide 

units with a yield higher than 95%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. In situ self-assembly of the bioconjugated cage C2c with peptide Ac-NLEFK-Am analysed by MS with 75% acetonitrile and 0.1% formic 

acid infused at 50 µL/min. (A) Extracted ion signals of bioconjugated ligand L2b (green) and of bioconjugated cage C2c (red) at 10 min after self-

assembly. (B) Mass spectrum and molecular structure of the bioconjugated product C2c.



Table 1. Main peaks identified in the mass spectra of C2c and their corresponding CID fragments. The m/z values refer to the most intense 

isotopomer, since the monoisotopic peak has low intensity. No additional peaks were observed in the mass spectrum of the self-assembly 

reaction of C2c. 

 

 Reaction and  m/z Error 
CID fragment 

 

observed ions Measured Theoretical /ppm 
  

 [C2c]4+ :    1025.52 (L2b) 

 [Pd2(L2b)4]4+ 
1078.1852 1078.1839 1.2 1129.48 

     1640.11 

 [C2c-H]3+ :    1025.57 (L2b) 

 [Pd2(L2b)4-H]3+ 
1437.2448 1437.2430 1.3 1129.25 

     1641.56 

 

The identity of peaks from C1c and C2c were confirmed by comparison of the experimental and theoretical isotopic patterns, 

and by CID MS/MS analysis using high resolution MS (Table 1 and Fig. S9 for cage C2c, Table S2 and Fig. S10 for cage C1c, 

respectively). Fig. S9 shows that collision induced dissociation (CID) fragmentation of the quadruply charged precursor ion (m/z 

= 1078.19) and triply charged precursor ion (m/z = 1437.25) of bioconjugated cage C2c leads to dissociation into singly-charged 

product ions of [L2b+H]+ (m/z = 1025.52 and m/z = 1025.57, respectively). Similarly, Fig. S10 shows that CID fragmentation of 

the quadruply charged precursor ion (m/z = 1050.40) and the triply charged precursor ion (m/z = 1399.54) of bioconjugated 

cage C1c, which leads to dissociation into singly charged product ions of [L1b+H]+ (m/z = 997.45 and m/z = 997.24, 

respectively). 

 

Conclusions  

With the aim of implementing supramolecular metallacages as drug delivery systems, we report the first example of 

bioconjugation of self-assembled Pd2L4 cages to the model linear peptide Ac-NLEFK-Am. The obtained results open the 

possibility of efficient bioconjugation of metallacages to peptides which could be extended to targeting moieties such as cyclic 

RGD peptides or affimers, and possibly also to antibodies. This opportunity is particularly attractive in the case of metallacages 

encapsulating anticancer drugs (e.g.: cisplatin) in order to efficiently target them to cancer cells. Two approaches of 

bioconjugation of metallocages to peptides have been attempted, both based on amide bond formation between the carboxylic 

acid (or amine) serving as exo- functionalized ligand/cage and the amine (or carboxylic acid) groups of the model peptide side 

chains. So far the best results were achieved with Approach II, where first the coupling of the peptide to the ligands 

constituting the cages was performed, followed by in-situ reconstitution of the Pd2L4 cages via self-assembly. No major 

advantages were noticed in the use of a long-linker COOH moiety for bioconjugation in both approaches. Instead, improved 

bioconjugation efficiency was observed in the case of the exo-functionalization with carboxylic acids compared to amino 

groups. In the latter case, formation of peptide cyclic by-products prevented efficient bioconjugation under the applied reaction 

conditions. Nevertheless, NH2 functionalization may still be suitable for bioconjungation of the cages with peptides of different 

sequences and with antibodies, and will certainly be considered in future studies.  



Future research in our group will focus on tethering Pd2L4 cages to targeting peptides and to investigate the activity of the 

supramolecular bioconjugates in cancer cells and tissues. 
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