This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: https://orca.cardiff.ac.uk/id/eprint/97369/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Ku, Chee-Seng, Cooper, David Neil ORCID: https://orcid.org/0000-0002-8943-8484 and Patrinos, George P. 2017. The rise and rise of exome sequencing. Public Health Genomics 19 (6), pp. 315-324. 10.1159/000450991 file

Publishers page: http://dx.doi.org/10.1159/000450991
<http://dx.doi.org/10.1159/000450991>

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
The rise and rise of exome sequencing

Chee-Seng Ku1,2, David N. Cooper3, George P. Patrinos4

1 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
2 Saw Swee Hock School of Public Health, National University of Singapore, Singapore
3 Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
4 Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
Abstract

The advent of exome-sequencing since 2009 has contributed significantly towards new discovery of heritable germline mutations and de novo mutations for rare Mendelian disorders with hitherto unknown genetic etiologies. Exome-sequencing is an efficient tool to identify the disease mutations without the need of a multi-generational pedigree. Sequencing a single proband or multiple affected individuals have been shown successful in identifying disease mutations, but parents would be required in the case of de novo mutations. In addition to heritable germline and de novo mutations, exome-sequencing has also been succeeded in unraveling somatic driver mutations for a wide range of cancers through individual studies or international collaborative effort such as the Cancer Genome International Consortium. By contrast, the application of exome-sequencing in complex diseases is relatively limited, probably it is prohibitive expensive when it were to be applied to thousands of samples to achieve the statistical power to rare or low frequency variants (<1%). On top of research discoveries, the application of exome-sequencing as a diagnostic tool is also increasing evident. In this review, we summarize and discuss the progress in these areas for almost a decade.

Keywords: next generation sequencing, exome, Mendelian disorder, cancer, complex disease, diagnostic
Introduction

The advent of next-generation sequencing (NGS) technologies and sequence/target enrichment methods, designed to be used in tandem to capture all the protein-coding regions or exons, and some regulatory regions in the human genome, have ensured that the exome-sequencing approach is both technically feasible and cost-effective. This was amply demonstrated in the first publication to utilize exome-sequencing in an exploratory diagnostic context, an analysis that succeeded in identifying the known causal mutation for Freeman-Sheldon syndrome (Ng et al. 2009). This report spawned an exponentially increasing number of publications employing exome-sequencing to decipher the genetic basis of a range of human inherited diseases and sporadic cancers due to somatic mutations (Zhang 2014; Rabbani et al. 2012).

Since exome-sequencing is an approach that targets selected genomic regions, sequence enrichment is a prerequisite for library construction. The enrichment process is generally accomplished by means of PCR amplification and probe-target hybridization. In PCR amplification, primers are designed specifically for amplification, whereas probe-target hybridization employs probes to capture the targeted regions. Currently, exome enrichment methods are available from commercial vendors such as Agilent (e.g. SureSelect Human All Exon kit v4+UTR), NimbleGen (e.g. SeqCap EZ Human Exome v3) and Illumina (Nextera Rapid Capture Expanded Exome). Although exome enrichment generally focuses on protein coding regions, other important gene regulatory regions may also be included such as promoters, 5’UTRs and microRNAs, to enhance the potential for genetic discovery. Enrichment is essential for exome-sequencing. However, owing to the different efficiencies of both PCR amplification and probe hybridization, and the large number of genomic regions to be analysed, differential enrichment can ensue, thereby contributing to an uneven sequencing depth. This factor, together with sequencing and alignment biases, and the properties of the DNA sequence itself (e.g. GC-rich regions); can give rise to incomplete coverage in exome-sequencing. Generally, only 80-90% of the targeted regions are sequenced to an adequate sequencing depth i.e. 30-50x coverage for studies of germline variants (Meienberg et al. 2015; Chilamakuri
et al. 2014; Asan et al. 2011; Clarke et al. 2011). As a result of the biases introduced during enrichment for exome-sequencing, it requires a much higher sequencing depth compared to whole genome sequencing in order to achieve comparable performance in terms of the proportion of the coding regions to be covered sufficiently. For example, almost 98% of the coding regions have a minimal coverage of 20x when the whole genome was sequenced at an average of 87x depth, but not for exome-sequencing (Lelieveld et al. 2015). The proportion of false-positive single nucleotide variants (SNVs) was also found to be significantly higher for exome-sequencing (78%) than for whole genome sequencing (17%). However, these figures should be interpreted carefully in the context of several factors in the study design, which could potentially contribute to the difference e.g. the sequencing coverage, QC criteria, and analysis (Belkadi et al. 2015). Although it would appear that sequencing the whole genome has advantages in terms of these technical performance aspects (i.e. coverage of the coding region and SNV detection), this also comes at a cost (and other formidable challenges such as analysis and interpretation).

Therefore, with the limitations of the current exome-sequencing approach resulting in the presence of ‘gaps’ in the coding region coverage, interpretation of the results must be cautious, because incomplete coverage has the potential to compromise the sensitivity of variant detection. Indeed, true pathogenic variants might be missed in those regions with inadequate sequencing depth, leading to false negative results. This has important implications when exome-sequencing is applied ‘agnostically’ for discovery purposes in the context of diseases with unknown genetic etiology, where the disease mutations might easily go undetected. To address this issue, the overall (or average) sequencing depth should be increased, so as to ensure that the least sequenced regions are adequately covered. Alternatively, conventional PCR amplification and Sanger sequencing might be needed to sequence those regions characterized by a low sequencing depth (Sims et al. 2014).

In this article, we provide an overview of exome-sequencing and its applications in unraveling inherited germline and de novo mutations for Mendelian disorders, identifying somatic driver mutations in cancer, deciphering the genetics of
complex diseases, as well as its application as a diagnostic tool. We also discuss the contribution of exome-sequencing to new discoveries over the past 7 years.

Discovering germline variants for rare Mendelian disorders

Since the first proof-of-concept study employed exome-sequencing to identify the causal mutation for a rare Mendelian disorder, this strategy has been successfully replicated to elucidate the genetic basis of a considerable number of rare disorders e.g. Kabuki syndrome and Schinzel-Giedion syndrome (Bamshad et al. 2011; Ku et al. 2011). Once the variants are called in the exomes, the list of variants is shortened in the analysis pipeline by filtering against common SNVs derived from general population databases such as the 1000 Genomes Project, to identify the disease mutations. In general, non-protein-altering SNVs are also removed so that non-synonymous SNVs are exclusively prioritized in the first tier analysis. This strategy would inevitably preclude the capture of regulatory regions for sequencing. In order not to exclude variants of potential pathological significance, in the regulatory regions, promoters, UTRs, intron-exon splice sites should also be analyzed. Further filtering to identify causal mutations depends upon the mode of inheritance; for example, with a recessive disorder, one would necessarily focus on homozygous and compound heterozygous SNVs (Ben-Omran et al. 2015; Parolin et al. 2015; Chong et al. 2015). Single nucleotide polymorphism (SNP) information embedded within the exome-sequencing data has also been used for homozygosity mapping or analysis; this is important in order to narrow down regions harboring the mutations underlying recessive disorders (Carr et al. 2013).

Various bioinformatics tools, such as PolyPhen, SIFT and PhyloP, have also been used to predict the functional effects on the corresponding proteins of the SNVs and to ascertain the evolutionary conservation of the affected nucleotides/codons. There are strengths and shortcomings associated with the use of these individual predictive tools when applied alone, and sometimes the prediction results of these tools are inconsistent with each other (Dong et al. 2015). Thus, a new *in silico* bioinformatics tool has recently been developed with a better predictive power for the deleteriousness of mutations or disease causing mutations (Wu et al. 2014). This tool, known as SPRING (SnvPRioritization via the INtegration of
Genomic data), takes advantage of existing methods by integrating the functional effect scores calculated by SIFT, PolyPhen2, LRT, MutationTaster, GERP and PhyloP to predict disease SNVs. Additional association scores derived from a variety of genomic data sources such as gene ontology, protein-protein interactions, protein sequences, protein domain annotations and gene pathway annotations, were also included in the predictive model to further enhance its power to identify disease causing SNVs.

Exome-sequencing has been shown to work well for rare disorders which have previously been refractory to traditional linkage analysis. This is because the sequencing of unrelated probands, and comparison with their non-affected family members (if available), has been shown to be successful without the need for a multi-generational pedigree (Bamshad et al. 2011; Ku et al. 2011). Exome-sequencing has also been successful in identifying pathogenic mutations even in those cases where only a single patient is available. One of the first such successes was in the identification of two mutations impacting the MTHFD1 gene in an infant with an inborn error of folate metabolism affecting the MTHFD1 protein (Watkins et al. 2011). Exome-sequencing was performed on the single proband; the variants detected were first functionally annotated using a bioinformatics tool (i.e. ANNOVAR) and only those predicted to alter the amino acid sequence (namely non-synonymous SNVs, short indels and splice site SNVs) were retained for further analysis. In the next phase of filtering, common variants were removed; such variants are most unlikely to be the disease mutations themselves because of the rarity of the clinical phenotype. Finally, only those variants which were either homozygous or compound heterozygous were retained so as to identify the disease mutations because an autosomal recessive pattern of the disorder was suspected. This series of filtering steps led to the identification of variants located in five different genes, namely BRD4, MTHFD1, PCSK4, TBC1D3C and TTLL8. In order to identify the pathogenic mutations, further sequencing of these variants in the proband’s parents and the unaffected sibling was performed using Sanger sequencing. The mutations in TBC1D3C and BRD4 were considered to be false positives whereas PCSK4 was excluded because the unaffected sibling also inherited the same genotype as the patient, suggesting no involvement in pathology. Of the
two remaining genes, MTHFD1 was the most plausible candidate biologically, as it encodes a protein that is involved in cellular folate metabolism. Two mutations were identified in this gene, which were present in the compound heterozygous state in the patient; it was confirmed that the parents were heterozygous for each mutation respectively. In summary, this study demonstrated the power of the exome-sequencing approach for the discovery of novel disease mutations even when only a single patient was available for analysis (Watkins et al. 2011).

In addition to identifying heritable germline mutations underlying Mendelian disorders, exome-sequencing has also been shown to be a powerful technique for unraveling de novo mutations. The genetic etiologies of such Mendelian disorders occur sporadically in families had been largely elusive until the advent of the exome-sequencing approach. For dominant disorders, de novo mutations are commonly identified by sequencing trios of probands, the de novo mutations are detected in the probands but are, by definition, absent in their parents (Veltman et al. 2012; Ku et al. 2013a). One of the first studies to successfully identify disease-causing de novo mutations was in the context of Coffin–Siris syndrome. This is a rare congenital anomaly syndrome in which the majority of affected individuals are sporadic cases, strongly implying a dominant genetic basis for the disorder with underlying de novo mutations (Santen et al. 2012; Tsurusaki et al. 2012). An important advantage of applying exome-sequencing directly to trios is that it shortens the list of variants quite considerably because of the very small number of de novo mutations occurring in protein coding sequences at every generation. The application of exome-sequencing to study de novo mutations is not restricted to rare disorders, but has also been expanded to the study of more common conditions such as autism, schizophrenia and intellectual disability, which also led to exciting discoveries. De novo variants were found in ‘excess’ among cases in these disorders (Ku et al. 2013b).

In addition to individual studies designed to identify the genetic causes of Mendelian disorders, large-scale collaborative efforts and consortia have also leveraged the recent technological advances e.g. Centers for Mendelian Genomics and The Undiagnosed Diseases Program (Stray-Pedersen et al. 2014; Gonzaga-Jauregui et al. 2013). More than 140 papers have been published by the Centers for
Mendelian Genomics since its establishment (http://www.mendelian.org/publications). So, it is likely that discoveries of new causal mutations and genes underlying Mendelian disorders will continue apace. Identifying these causal mutations will not only enhance our understanding of the molecular pathology of Mendelian disorders, but the knowledge thereby obtained could also shed new insight into the common and complex forms of disorders (e.g. familial and complex forms of amyotrophic lateral sclerosis) involving similar genes and pathways. Knowledge of the underlying disease mutations will also facilitate the rapid and accurate diagnosis of Mendelian disorders and would be the first step toward developing novel therapeutics for treatment (Bamshad et al. 2012).

Deciphering cancer genomics

Another major application of exome-sequencing is in the field of cancer genomics, where it has been applied to a wide variety of cancer types resulting in the identification of recurrent somatic mutations (Watson et al. 2013) and frequently mutated genes (Karageorgos et al. 2015). Studying somatic mutations in cancer is very different from identifying germline variants, as it requires a considerably higher depth of sequencing to allow for tissue and genetic heterogeneity. This heterogeneity dilutes the signal from the somatic mutations, resulting in lowered frequencies of the mutations in the tumor tissue. The extent of the heterogeneity depends on the purity of the tumor tissue and the vagaries of the process of clonal evolution of the mutations; on average, the detection of a somatic mutation requires 500 – 1000x sequencing depth to achieve the necessary levels of sensitivity and specificity. It follows that sequencing of the entire cancer genome to this depth might be prohibitively expensive when scaled up to a larger sample size (Mwenifumbo et al 2013). Sequencing an adequate number of samples is important to identify recurrent mutations (i.e. identical mutations in multiple samples) or frequently mutated genes (i.e. different mutations are detected in the same genes in different samples). One example is the identification of frequently mutated genes such as TP53, PIK3CA and ARID1A by the exome-sequencing of 15 gastric adenocarcinomas (Zang et al. 2012). A recent study also identified recurrent
mutations in the tumor suppressor gene *CDC27* in an exome-sequencing study of 42 testicular germ cell tumors (*Litchfield et al. 2015*).

As in the context of other diseases, international collaborative efforts have accelerated the discovery of both driver mutations and cancer-associated genes, and initiated the process of deciphering the mutational landscape of different cancers to obtain an understanding of the underlying molecular biology. One of the largest cancer sequencing studies was performed as part of The Cancer Genome Atlas (which is an international collaborative effort to decipher the mutational landscape of a wide range of cancers), of which 4,742 tumor-normal pairs across 21 cancer types were analyzed (*Lawrence et al. 2014*). Somatic mutations in exome were analyzed and identified 33 novel genes that significantly mutated in cancer. This new set of genes revealed multiple pathways, which are important to understand the pathogenesis of cancer including genes related to cell proliferation, apoptosis, genome stability, chromatin regulation, immune evasion, RNA processing and protein homeostasis.

The International Cancer Genome Consortium was also established to sequence 50 different cancer types and subtypes in thousands of samples (*International Cancer Genome Consortium 2010*). In addition to whole-genome sequencing, exome-sequencing was also applied; this ‘hybrid approach’ allows an in-depth interrogation of somatic mutations in protein coding regions, at the same time as interrogating other mutations beyond the exome, and detecting structural rearrangements that would otherwise only be possible by employing the whole-genome sequencing approach (*Nakagawa et al. 2015*). This was nicely exemplified in identifying a novel insertional translocation on chromosome 17 that generated a pathogenic *PML–RARA* gene fusion when whole genome sequencing was applied to a patient’s leukemic bone marrow. This type of complex rearrangement would not have been detected by exome-sequencing approach, further demonstrating that whole genome sequencing represents a comprehensive analytical tool for the entire genome. Furthermore, this finding has important clinical implications confirming a diagnosis of acute promyelocytic leukemia and for the administration of appropriate treatment for the patient (*Welch et al. 2011*).
In addition to identifying somatic driver mutations for sporadic cancer, exome-sequencing was also succeeded in revealing new genes for familial form of cancer (Noetzli et al. 2015; Calvete et al. 2015; Comino-Méndez et al. 2011; Jones et al. 2009). Notably, it was applied to sequence 51 individuals with multiple colonic adenomas from 48 families identifying a homozygous germline nonsense mutation in the base-excision repair gene namely \textit{NTHL1}. This mutation was found in seven individuals from three families. Homozygosity of the mutation is consistent with the recessive inheritance of the adenomatous polyposis phenotype and progression to colorectal cancer showed in the three families. In contrast, the homozygote mutation was totally absent in controls i.e. the mutation was exclusively found in a heterozygous state in 2,329 controls, providing further evidence supporting its pathogenicity (Weren et al. 2015). Similar approach also led to the identification of new genes for other familial cancers such as \textit{MDH2} for familial paraganglioma (Cascon et al. 2015), and \textit{POT1} for familial glioma (Bainbridge et al. 2015).

Deciphering the genetic bases of complex diseases

The application of exome-sequencing has been increasingly evident in the context of both Mendelian disorders and cancer over the past few years. However, its application to dissecting the genetics of complex disease is still very limited (Wu et al. 2015). Exome-sequencing may be anticipated to identify rare SNVs with relatively large effect sizes (OR >2) associated with complex diseases, just as with genome-wide association studies (GWAS) which are primarily focused on common SNPs, but a significant proportion of the heritability of various complex phenotypes still remains unexplained. Applying exome-sequencing to hundreds or thousands of samples might require the effort of consortia, as has been amply demonstrated in the NHLBI (National Heart, Lung, and Blood Institute) Exome Sequence Project. Hundreds of ischemic stroke cases and controls were subjected to exome-sequencing in the discovery phase, and then followed by genotyping with a larger sample size for replication purposes. This effort identified SNVs in two novel genes associated with an increased risk of ischemic stroke conferring a larger effect size (OR >2) as compared to earlier GWAS which identified SNP associations with ORs rarely exceeding 1.5 (Auer et al. 2015). Similar success was also achieved for other
diseases. When exome-sequencing was applied to 2869 amyotrophic lateral sclerosis cases and 6405 controls, this is also a large scale international collaborative endeavor which led to the identification of a new gene namely \textit{TBK1}. The protein is known to bind to and phosphorylate a number of proteins involved in innate immunity and autophagy, thus revealing new pathogenesis pathways for the disease, and new targets for therapeutic interventions (Cirulli et al. 2015). As for age-related macular degeneration, an association at a novel missense SNV in \textit{UBE3D} gene was also found (Huang et al. 2015). Based on the same hypothesis that rare variants would be revealed via exome-sequencing, applying this approach to 9,793 patients with myocardial infarction has also proven it by identifying rare SNVs in \textit{LDLR} and \textit{APOA5} (Do et al. 2015).

However, one of the factors hampering the widespread adoption of exome-sequencing in the study of complex disease is likely to be the cost. This is because in order to attain the necessary statistical power to identify rare SNVs with larger effect sizes, thousands of samples would be required. As a result, utilizing exome arrays might represent a preferable option for GWAS. For example, the Infinium Human Exome BeadChip has been designed to genotype ~250,000 exonic SNVs representing diverse populations including European, African, Chinese, and Hispanic, and with the majority of SNVs having minor allele frequency <1%. This exome array has recently been applied in a very large scale study where >158,000 samples were genotyped (Wessel et al. 2015). As anticipated, focusing on rare exonic SNVs generated some novel findings. Indeed, a novel association of a low-frequency non-synonymous SNV in \textit{GLP1R} was found to be associated with several phenotypes such as lower fasting glucose, type-2 diabetes and insulin secretion (Wessel et al. 2015). In similar vein, using the exome array genotyping approach, sixteen SNPs located in 15 new genes/loci were found to be associated with psoriasis (Zuo et al. 2015), and three low frequency missense variants were also found to be associated with an increased risk of lung cancer (Jin et al. 2015).

Therefore, these studies have collectively showed that new discoveries could be made when a more focused and in depth approach (exome-sequencing or exome array genotyping) was applied to complex diseases. This is because exonic SNVs (especially the rare ones <1%) were not investigated comprehensively in the earlier
GWAS using whole-genome genotyping arrays based on linkage disequilibrium tagging SNP approach.

Diagnostic applications

The successful application of exome-sequencing is also evident in the context of disease diagnostics (Biesecker and Green 2014; Delanty and Goldstein 2013; Pyle et al. 2015; Sun et al. 2015). This was first shown in the diagnosis of congenital chloride-losing diarrhea in a patient suspected of having Bartter syndrome. Exome-sequencing successfully identified a homozygous missense variant in *SLC26A3*, a gene already known to be responsible for the disease (Choi et al. 2009). Exome-sequencing has also had a significant impact on patient management. This was nicely illustrated by the performance of an allogenic hematopoietic progenitor cell transplant in a child diagnosed with an X-linked inhibitor of apoptosis deficiency by exome-sequencing (Worthey et al. 2011).

Recent studies have also shown that exome-sequencing yields promising results in the clinical setting when applied to severe intellectual disability, for which a ~16% diagnostic yield was reported (de Ligt et al. 2012). A higher success rate of ~25% was reported by other studies for collections of different genetic conditions in large patient cohorts (Yang et al. 2014; Lee et al. 2014; Wright et al. 2015). More specifically, a molecular diagnosis rate of 25.2% was reported for 2000 patients (representing a collection of different suspected genetic conditions) whose exome-sequencing tests were performed (Yang et al. 2014). When this collection of different genetic conditions was divided into different phenotypic or disease groups, it was found that the molecular diagnosis rate for ‘neurological-related conditions’ (i.e. conditions that affect development or function of the nervous system which included developmental delay, speech delay, autism spectrum disorder and intellectual disability) was higher (~27%) than ‘non-neurological conditions’ (~20%). In this study, only the patients were subjected to exome-sequencing, not their parents (Yang et al. 2014).

On the other hand, sequencing child-parent trios is expected to yield a higher diagnostic rate for those diseases that are likely to be caused by de novo mutations, because of the ‘nature’ of de novo mutations, which can only be detected with
parents being sequenced together. This has also been demonstrated when exome-sequencing was performed on 814 patients with undiagnosed and suspected genetic conditions (Lee et al. 2014). These patients were divided into childhood and adult groups of which the most common clinical indication was developmental delay and ataxia respectively for the two groups. Two different approaches were applied to the patients and were cross-compared in terms of their clinical utility i.e. sequencing trios (both parents and their affected child), versus sequencing only the probands. Although the overall diagnosis rate for the 814 patients was 26%, there was a significant difference between the two approaches when applied to children with developmental delay. A rate of 41% was reported for sequencing the trios (for children with developmental delay), in contrast to only 9% for sequencing the probands alone (Lee et al. 2014). This marked difference in success rate was because de novo and compound heterozygous variants underlie the developmental delay phenotype; sequencing trios is a more effective way to detect such variants. This finding concurs with the findings of another study where the diagnostic rate was reported to be significantly higher in trios when exome-sequencing was applied to different genetic conditions such as ataxia, multiple congenital anomalies and epilepsy (Farwell et al. 2014).

Although other approaches such as whole-genome and targeted-gene sequencing have also been explored in the context of diagnostics, there are several advantages in utilizing exome-sequencing. In comparison to the whole-genome approach, exome-sequencing is more cost-effective as it sequences only 1-2% of the whole human genome. It is also analytically less challenging, since the focus is narrowed down to the approximately 20,000 to 30,000 SNVs identified per exome. It is also more readily interpretable as the variants are identified in protein coding regions, the best-studied and most easily interpretable portion of the human genome (Biesecker and Green 2014; Sun et al. 2015). Although existing data showed that about 85% of the mutations identified in Mendelian disorders were found in the protein coding regions, this finding has to be interpreted with caution. This is because previous studies have been focused on identifying mutations within the protein coding regions; thus, by design, most if not all of the mutations identified would have been found in these regions. The proportion of all mutations underlying
the rare Mendelian disorders that reside in non-protein-coding regions remains unknown. This proportion can only be determined when whole genome sequencing is brought to bear (which, in passing, also highlights the shortcoming of exome-sequencing in this context). Thus, in an attempt to generate a comprehensive view of all genetic variants (including noncoding variants, and structural variants), whole genome sequencing was applied to 16 unrelated patients with autosomal recessive retinitis pigmentosa. In addition to homozygous or compound heterozygous SNVs, there was a 2.3-kb deletion in *USH2A* and an inverted duplication of ~446 kb in *EYS*, which would have been gone undetected using exome-sequencing (Nishiguchi et al. 2013). Based on the motivation to explore beyond coding regions, whole genome sequencing was also applied to 85 quartet families (comprising parents and two-affected siblings with autism spectrum disorder) to interrogate the association of non-coding variants for the disorder (Yuen et al. 2015).

On the other hand, in comparison to the targeted-gene sequencing approach, exome-sequencing has been shown to be a powerful diagnostic tool for disorders characterized by a high degree of phenotypic/clinical heterogeneity, and/or locus heterogeneity (Xue et al. 2014; Rehm 2013). Disorders with phenotypic heterogeneity exhibit diverse clinical manifestations, which often overlap with other closely related disorders. This makes clinical diagnosis a challenging task, and yet an accurate clinical diagnosis is critical in guiding clinicians to select the correct disease-specific test for molecular diagnosis or confirmation. Unlike exome-sequencing, a disease-specific test is often developed using the targeted-gene sequencing approach where only known disease genes are included. Exome-sequencing can also be applied to diseases characterized by locus heterogeneity, where mutations in numerous genes have been implicated, but where each gene may only account for a small proportion of cases; some cases may not be explicable in terms of mutations in known genes. For example, in both Charcot-Marie-Tooth disease and retinitis pigmentosa, tens of candidate genes have already been identified, but a large proportion of cases still cannot be accounted for by mutations in the known genes (Zhao et al. 2015). Similarly, by applying targeted sequencing of 579 genes associated with myopathy on 43 patients presenting with early onset neuromuscular
disorders with unknown genetic causes, only 32 patients were identified for known or novel pathogenic variants. This means that still a substantial number of patients remained without molecular diagnosis even a larger number of genes were tested (Chae et al. 2015). Thus, in such a scenario, exome-sequencing would play a critical role as a diagnostic tool, and for the discovery of new mutations or genes. This is the dual role of exome-sequencing as both a diagnostic and discovery tool (Ku et al. 2012). Exome-sequencing is considered to be a ‘common or universal’ diagnostic test applicable to all genetic disorders caused by mutations in protein coding regions. Such a test obviates the need to develop individual tests for each single disorder.

Exome-sequencing is not however without its shortcomings. Sequencing all the protein coding regions increases the likelihood of generating incidental findings. These are the findings secondary to the original purpose of performing the genetic test. It is probably more straightforward if the incidental findings are clinically actionable, but it is controversial whether findings that are not clinically actionable should be disclosed by the clinicians ‘by default’ or whether the patients have the right to opt for non-disclosure. In addition, clinicians should be trained to obtain informed consent from patients, how to address the thorny issue of clinically actionable incidental findings, as well as to interpret the genetic results (including variants of unknown significance) and communicate the findings to patients (Jurgens et al. 2015; Clarke 2014; Frebourg 2014; Boycott et al. 2015; Shashi et al. 2015; Amendola et al. 2015). Although exome-sequencing has been shown to be very promising as a diagnostic tool, there are still challenges for its widespread implementation in the routine clinical laboratory. Quite apart from the infrastructure required to support exome-sequencing testing in the routine laboratory situation, one must also acquire the capability to analyze the data and interpret the results so as to determine the pathogenicity or otherwise of new (i.e. previously unreported) protein altering variants detected in known disease genes (Johansen et al. 2014).

The determination of the pathogenicity or otherwise of detected variants will often require further studies or the garnering of supporting evidence, such as observing the same variants in other patients with the same clinical phenotype, segregation analysis to show that the variants co-segregate with the affected family members, or in vitro studies to assess the functional impact of the variants. For
example, an amino acid changing mutation was identified in \textit{KCTD17} as the only exonic variant segregating in a dominant pedigree with seven individuals affected by myoclonus-dystonia (Mencacci et al. 2015). On the other hand, \textit{in vitro} models such as using cell lines to demonstrate functional effects have also been commonly employed. This was demonstrated in the case of the identification of two homozygous mutations in \textit{PYCR2} causing microcephaly and hypomyelination, where a lymphoblastoid cell line from one affected individual showed a strong reduction in the amount of \textit{PYCR2} expression. Further, knockdown of a zebrafish \textit{PYCR2} ortholog yielded a phenotype resembling the human microcephaly phenotype. This was reversed by wild-type human \textit{PYCR2} mRNA, but not by mutant mRNAs, further supporting the case for the pathogenicity of the identified variants (Nakayama et al. 2015).

Conclusions

Since its initial application, exome-sequencing has been widely applied, leading to major discoveries of novel mutations in particular Mendelian disorders (many hitherto uncharacterized molecularly) and cancer genetics. It is anticipated that this trend will continue, and should accelerate with the effort of international consortia. In addition to its widespread recruitment in research discovery, the role of exome-sequencing has also been shown to be a promising diagnostic tool in the clinical setting.

Conflict of interest

The authors declared no conflict of interest

References

Litchfield K, Summersgill B, Yost S, Sultana R, Labreche K, Dudakia D, Renwick A, Seal

Weren RD, Ligtenberg MJ, Kets CM, de Voer RM, Verwiel ET, Spruijt L, van Zelst-

26

