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ABSTRACT 

 

Complex under-actuated multilink mechanism involves a system whose number of 

control inputs is smaller than the dimension of the configuration space. The ability 

to control such a system through the manipulation of its natural dynamics would 

allow for the design of more energy-efficient machines with the ability to achieve 

smooth motions similar to those found in the natural world.  This research aims to 

understand the complex nature of the Robogymnast, a triple link underactuated 

pendulum built at Cardiff University with the purpose of studying the behaviour of 

non-linear systems and understanding the challenges in developing its control 

system. 

  A mathematical model of the robot was derived from the Euler-Lagrange 

equations. The design of the control system was based on the discrete-time linear 

model around the downward position and a sampling time of 2.5 milliseconds.  

Firstly, Invasive Weed Optimization (IWO) was used to optimize the swing-up 

motion of the robot by determining the optimum values of parameters that control 

the input signals of the Robogymnast’s two motors. The values obtained from IWO 

were then applied to both simulation and experiment. The results showed that the 

swing-up motion of the Robogymnast from the stable downward position to the 

inverted configuration to be successfully achieved.   

Secondly, due to the complex nature and nonlinearity of the Robogymnast, a novel 

approach of modelling the Robogymnast using a multi-layered Elman neural 
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network (ENN) was proposed.  The ENN model was then tested with various inputs 

and its output were analysed. The results showed that the ENN model to be capable 

of providing a better representation of the actual system compared to the 

mathematical model. 

Thirdly, IWO is used to investigate the optimum Q values of the Linear Quadratic 

Regulator (LQR) for inverted balance control of the Robogymnast. IWO was used 

to obtain the optimal Q values required by the LQR to maintain the Robogymnast 

in an upright configuration. Two fitness criteria were investigated: cost function J 

and settling time T. A controller was developed using values obtained from each 

fitness criteria. The results showed that LQRT performed faster but LQRJ was 

capable of stabilizing the Robogymnast from larger deflection angles.  

Finally, fitness criteria J and T were used simultaneously to obtain the optimal Q 

values for the LQR. For this purpose, two multi-objective optimization methods 

based on the IWO, namely the Weighted Criteria Method IWO (WCMIWO) and 

the Fuzzy Logic IWO Hybrid (FLIWOH) were developed. Two LQR controllers 

were first developed using the parameters obtained from the two optimization 

methods. The same process was then repeated with disturbance applied to the 

Robogymnast states to develop another two LQR controllers. The response of the 

controllers was then tested in different scenarios using simulation and their 

performance was evaluated. The results showed that all four controllers were able 

to balance the Robogymnast with the fastest settling time achieved by WMCIWO 

with disturbance followed by in the ascending order: FLIWOH with disturbance, 

FLIWOH, and WCMIWO.
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CHAPTER 1 

Introduction 

 

1.1 Introduction 

Advancements in robotic technology have accelerated at an unbelievable rate in the 

past decade. From the powerful manipulators on the production floors to the first 

walking android, robotics has taken large leaps in terms of efficiency and flexibility. 

However, robots today still move far too conservatively, due to attempts to obtain 

full control authority of each limb at all times. This leads to inefficient and jerky 

motions. Humans and animals move much more aggressively by routinely 

executing motions which involve a loss of instantaneous control authority (Tedrake 

2009). Controlling nonlinear systems without complete control authority requires 

methods that can reason about and exploit the natural dynamics of our machines.  

 

1.2 Motivation 

Complex (under-actuated) multi-link structures provide useful test beds for 

evaluation, optimization and comparison of different control techniques. They are 

inherently nonlinear and present challenging modelling and control problems that 
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are commonly found in many real-life applications. In particular, the study of such 

systems will enable researchers to develop solutions that are aimed at addressing 

motion problems encountered by disabled and/or injured people experiencing limb 

impairment.   

 

1.3 Aim and Objectives 

This research is a study on improving and analysing the implementation of 

intelligent model-based control methods on complex multi-link mechanisms, 

focusing on the integration of artificial intelligence and knowledge-based systems. 

It aims to implement modelling, simulation and control of under-actuated 

mechanisms to gain in-depth understanding of modern control techniques and their 

applications and optimization for the benefit of industry and society. 

The above aim will be accomplished by fulfilling the following research objectives: 

1. Develop a swing-up method for the Robogymnast through the manipulation of 

its motors’ control signals.  

2. Apply a swarm-based optimisation technique to optimise the parameters of the 

control signals.  

3. Apply the optimised parameters for the swing-up on the real system.  

4. Develop and apply an alternative model of the system using neural networks. 

5. Analyse and validate the alternative model. 
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6. Develop and simulate controllers to balance the Robogymnast in an inverted 

configuration.  

7. Select the optimised parameters of the controllers using swarm-based 

optimisation techniques. 

8. Develop modified swarm-based multi-objective optimisation techniques to 

optimise the selection of the controller parameters. 

9. Validate the proposed controllers through simulation.   

 

1.4 Methodology 

To achieve the above objectives, the following methodology was adopted:  

 Review of previous work:  an extensive survey was performed of the state of the 

art in order to identify the main requirement for the control of and problems 

encountered in the control of complex multi-link mechanisms. This investigation 

also covers the study of control methods to be implemented and analysed. 

 The Euler-Lagrange approach is used to derive a mathematical model and 

dynamic equations of Robogymnast at the stable equilibrium point. 

 The swing-up control simulation is achieved using the MATLAB® software and 

its associated toolboxes. The parameters are optimised using the IWO and the 

findings are implemented on the real systems via a C++ program environment. 
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 The candidates for the alternative model are investigated and evaluated. The 

developed model is validated by comparing it with the mathematical model and 

data from experiments. 

 The problem of balancing the Robogymnast in an inverted configuration is 

investigated.  The LQR controller is developed and its parameters are selected 

using the conventional Invasive Weed Optimization (IWO) and the modified 

Multi Objective Optimization (MOO) IWO. The controllers are then validated 

via MATLAB® simulations. 

 

1.5 Thesis outline 

The remainder of the thesis is organized as follows:  

 

Chapter 2 reviews the background literature related to the field of complex multi-

link mechanisms. Problems related to complex multi-link mechanisms such as 

swing-up and balancing control are discussed. The chapter also provide reviews on 

artificial neural networks, optimisation algorithms and fuzzy logic.   

 

Chapter 3 presents the system description and mathematical modelling of the 

Robogymnast. The overall system is discussed and illustrated using figures and 

diagrams. The mathematical model of the Robogymnast in the downward position 

is derived in detail. 



5 
 

 

Chapter 4 describes the design of the Robogymnast’s swing-up controller. A 

technique to control the swing-up motion by manipulating the control signals’ 

parameters is proposed. The parameters of the control signals are then optimised 

using the IWO.  Results from simulations and experiments are presented. 

   

Chapter 5 elaborates the design of a neural network model of the Robogymnast. 

The purpose of this work is to provide a more accurate representation of the 

Robogymnast system. An analysis of the neural network model is performed and 

compared with that of the mathematical model.      

 

Chapter 6 presents the application of IWO in the design of LQR controllers for the 

upright balancing of the Robogymnast. This chapter investigates the use of the cost 

function (J) and settling time (Tst) as the fitness criteria of the IWO. Two controllers 

were designed based on the two fitness criteria and their performance is evaluated.  

 

Chapter 7 introduces two MOO methods (WCMIWO and FLIWOH) based on the 

IWO. The two MOO methods are used in the selection of the LQR controller 

parameters. External disturbances were applied to the MOO process with the 

objective of creating more robust controllers. Four controllers are proposed in this 

chapter and their performances are evaluated.   
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Chapter 8 lists the contributions of this research, summarises the conclusions 

reached and provides suggestions for further research.  

Figure 1.1 shows an outline of the thesis structure and the research objective which 

it addresses.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
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CHAPTER 2 

 

Background Review 

 

2.1 Introduction 

In this chapter, the literature associated with complex multi-link mechanisms and 

solutions to the inverted pendulum problem is reviewed and analysed. The swing-

up control and upright balancing problems are discussed and previous studies are 

examined. Most researchers opt to combine the study of the swing-up control with 

the upright balancing problem, while others approach the two problems separately.  

The remainder of this chapter is organized as follows. Section 2.2 sets out the 

background to the study. Section 2.3 discusses complex multi-link mechanisms and 

why the study of such mechanisms is important. Section 2.4 discusses the first 

problem, which is the swing-up control of the inverted pendulum. This is followed 

by Section 2.5, which presents a review of artificial neural network modelling and 

its components. Section 2.6 describes optimization algorithms and their categories. 

Section 2.7 discusses several popular stochastic optimization algorithms. An 

introduction to fuzzy logic is presented in Section 2.8. Multi-objective optimization 
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is discussed in Section 2.9 and Section 2.10 provides a review of the upright 

balancing problem. Finally, a summary of the chapter is given in Section 2.11. 

 

2.2 Background 

Many studies have investigated the dynamics of inverted pendulums (Chiu 2010). 

Most control experiments use the rail-cart structure when studying the inverted 

pendulum (Jaiwat and Ohtsuka 2014; Anderson 1989; Xiong and Wan 2010). 

However, swinging pendulums such as acrobot and Robogymnast are quickly 

gaining popularity due to their applications in walking robots (DeJong and Spong 

1994; Liu and Yamaura 2011).  

The study of inverted pendulums generally consists of two parts: swing-up motion 

and upright balancing. Pendulums such as the acrobot are difficult to control, due 

to being a four-dimensional, highly nonlinear, under-actuated control problem  

(Dracopoulos and Nichols 2012) .   

Various approaches have been taken to solve this problem. Classical control 

methods have been employed with varying success according to (Jose et al. 2015), 

while other studies employ intelligent control methods (Liu et al. 2008; Kawada et 

al. 2004). The literature review discusses all the components applied in the control 

and modelling of the Robogymnast.   
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2.3 Complex multi-link mechanism 

A mechanical linkage is an assembly of bodies connected together to manage forces 

and movement. The movement of a body, or link, is studied using geometry, so the 

link is considered to be rigid (Manickavelan et al. 2014). The connections between 

links are modelled as providing ideal movement, pure rotation or sliding, for 

example, and are called joints. A linkage modelled as a network of rigid links and 

ideal joints is called a kinematic chain (Manickavelan et al. 2014). A mechanism is 

defined as a connected system of links ensuring transmission and transformation of 

mechanical motion (Kolovsky et al. 2012). Complex multi-link mechanisms are 

mechanisms with a number of linkages that is less than the number of degrees of 

freedom (DOF) (Uicker et al. 2003). Complex multi-link mechanisms are also 

known as under-actuated mechanisms. Under-actuated mechanisms bring many 

advantages in energy, material and space consumption of numerous applications 

(Cheng et al. 2013).  In the field of academia, under-actuated mechanisms provide 

a useful test bed for the evaluation and comparison of different control techniques 

(Eldukhri and Pham 2010). Most under-actuated systems are not full-state feedback 

linearisable (FL) around any equilibrium point, and some are not even small-time 

local controllable (STLC). This makes the control of such systems a challenging 

problem (Lai et al. 2011). Control of such mechanisms forms one of the recent 

major research topics in control engineering and robotics (Takashiro and Yoshihiko 
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1997). A popular example of an under-actuated mechanism is the inverted 

pendulum. 

A pendulum is a body suspended from a fixed point so as to swing freely to and fro 

under the action of gravity, and is commonly used to regulate movements (Anon 

2000). However, because of their nonlinear nature, inverted pendulums have 

maintained their usefulness and are now used to illustrate many of the ideas 

emerging in the field of nonlinear control, such as swinging up and catching the 

pendulum. Pendulums are also excellently suited to illustrate hybrid systems and 

the control of chaotic systems (Åström and Furuta 2000). Numerous studies have 

been conducted on non-linear control using the double and triple link pendulum as 

a test bench. 

 

2.4 Swing-up control 

The swing-up control of a pendulum is a popular topic that has been extensively 

researched. The main problem is to determine and track a valid swing-up trajectory 

that accomplishes the boundary restrictions and minimises the effort made by the 

actuator on the base (Rubi et al. 2002). The acrobot, as seen in Figure 2.1, so named 

because of its similarity to a human acrobat, is an under-actuated unstable robot that 

is useful as a test bed for studying the theory and application of non-linear control 

(Brown and Passino 1997). The acrobot is a planar, two-link robot with an actuator 
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at the elbow (joint 2) but no actuator at the shoulder (joint 1). The task of the acrobot 

is to swing up, in the minimum time, from the initial stable pendant position to the 

inverted unstable position and to remain balanced in that position (Dracopoulos and 

Nichols 2015). 

 

Figure 2.1: The Acrobot adapted from (Spong 1994) 

 

Research conducted by Spong successfully produced a swing-up controller for the 

acrobot based on the method of partial feedback linearization of  “unstable zero 

dynamics” (Spong, 1994, 1995).  Spong also designed a controller to capture and 

balance the acrobot at the top of its swing using a linear quadratic regulator (Spong 

1994). In his research, Spong noted the fact that the entire swing-up motion is 

produced by the natural response of an automated system. This shows that by 

yy

xx

Joint 1Joint 1

Joint 2Joint 2
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making the motion of the second link dependent on the motion of the first link, the 

entire system can be made autonomous. Brown and Passino (1997) continued 

Spong’s research and developed intelligent controllers for swing-up and balancing 

of the acrobot. They developed and compared the performance of classical, fuzzy 

and adaptive fuzzy controllers for balancing the acrobot in its inverted equilibrium 

region. Two genetic algorithms were then used for tuning the balancing and swing-

up controllers. Their results show that the swing-up motion of the acrobot can be 

further optimized by tuning the control parameters through the use of Genetic 

Algorithms (GA). Awrejcewicz et al. (2012) presented a swing-up controller using 

a bang-bang control torque exerted about the suspension point.  

 

A skilled gymnast pointed out that in achieving an effective swing, the shoulders 

play a more important role than do the hips. Thus, to mimic gymnastic routines 

more realistically and to understand the control mechanism inside the routine  

better, one should model the gymnast on a high bar at least as a 3-DOF 

underactuated robot: that is, the gymnast’s shoulder should be modelled as an 

actuated joint as well as the hips (Xin and Kaneda 2007b).  Eldukhri and Pham used 

a new method for swing-up control of a triple link pendulum. This method does not 

require control signals to be derived in terms of measurements of variables such as 

speed and acceleration, but rather by manipulating the frequencies and amplitudes 

of oscillating functions applied to two motors mounted at the robot’s shoulder and 

hip joints (Eldukhri and Pham 2010). The Bees Algorithm, a population-based 
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search algorithm that emulates the foraging behaviour of honeybees, was later used 

to optimize the swing-up control of the robot. This was done by independently 

manipulating the amplitude and the frequencies of the control signals (Kamil et al. 

2012). This technique was reported to be successful in obtaining a smoother and 

faster swing-up motion.   

 

2.5 Artificial neural network modelling 

Artificial Neural Networks (ANN) are computational models of the brain (Pham 

and Liu 1995). A neural network consists of an interconnected group of artificial 

neurons, and it processes information using a connectionist approach to 

computation. In most cases an ANN is an adaptive system that changes its structure 

based on external or internal information that flows through the network during the 

learning phase. Modern neural networks are non-linear statistical data 

modelling tools. ANNs have been developed as generalizations of mathematical 

models of human cognition or neural biology, based on the assumptions that (Luma 

and Yaseen 2013): 

 

 Information processing occurs at many simple elements called neurons that are 

fundamental to the operation of ANNs. 

 Signals are passed between neurons over connection links. 

http://en.wikipedia.org/wiki/Artificial_neuron
http://en.wikipedia.org/wiki/Artificial_neuron
http://en.wikipedia.org/wiki/Connectionism
http://en.wikipedia.org/wiki/Computation
http://en.wikipedia.org/wiki/Adaptive_system
http://en.wikipedia.org/wiki/Non-linear
http://en.wikipedia.org/wiki/Statistical
http://en.wikipedia.org/wiki/Data_modeling
http://en.wikipedia.org/wiki/Data_modeling
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 Each connection link has an associated weight which, in a typical neural net, 

multiplies the signal transmitted. 

 Each neuron applies an action function (usually nonlinear) to its net input (sum 

of weighted input signals) to determine its output signal. 

 The units in a network are organized into a given topology by a set of 

connections, or weights, typically shown as lines in a network diagram. 

 

ANN are characterized by:  

 Architecture: its pattern of connections between the neurons.  

 Training algorithm: its method of determining the weights on the connections.  

 Activation function.  

 

ANNs are often classified as single layer or multilayer. In determining the number 

of layers, the input units are not conventionally counted as a layer, because they 

perform no computation. Equivalently, the number of layers in the net can be 

defined to be the number of layers of weighted interconnecting links between the 

slabs of neurons. This view is motivated by the fact that the weights in a net contain 

extremely important information. 

2.5.1 Types of neural network models 

 Feedfoward Neural Networks 
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In a Feedfoward Neural Network (FNN), all signals flow in one direction only, i.e. 

from lower layers (input) to upper layers (output). Feedforward networks consist of 

at least three layers of neurons: an input layer, a hidden layer and an output layer. 

The nodes of the input layer are passive, meaning that they do not modify the data. 

They receive a single value on their input and duplicate the value to their multiple 

outputs. The nodes of the hidden and output layers are active, meaning that they 

modify the data that they receive (Smith 1999).  Examples of feedfoward networks 

are multi-layer perceptron (MLP), the learning vector quantization (LVQ) network, 

the cerebellar model articulation control (CMAC) network and the group-method 

of data handling (GMDH) network (Pham and Liu 1995). Figure 2.2 illustrates the 

FFN of the Robogymnast.   

 

 Recurrent Neural Networks 

Recurrent neural networks were an important focus of research and development 

during the 1990s (Medsker and Jain 2001). In a Recurrent Neural Network (RNN), 

signals from neurons in upper layers are fed back to either its own layer or to 

neurons in lower layers via an extra layer called a context layer. Examples of RNNs 

include the Hopfield network, the Elman network and the Jordan network (Figure 

2.3). RNNs have dynamic memories where their outputs at a given instant reflect 

the current input as well as previous inputs and outputs (Pham and Liu 1995). 
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Figure 2.2: Feed-forward Neural Network Diagram of Robogymnast 
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Figure 2.3: Jordan Network (Wysocki and Lawryczuk 2015) 
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 Cellular Neural Networks 

A Cellular Neural Network (CNN) is an artificial neural network consisting of 

separate neurons or cells. It consists of simple analogue circuits (cells) arranged in 

a matrix (Namba and Zhang 2006) as seen in Figure 2.4. Each cell is made up of a 

linear capacitor, a non-linear voltage-controlled current source and a few resistive 

linear elements.  The structure of cellular networks is similar to that found in 

cellular automata: i.e. any cell in a cellular network is connected only to its 

neighbouring cells (Chua and Yang 1988a).  The adjacent cells can interact directly 

with each other. Cells not directly connected together may affect each other 

indirectly because of the propagation effects of the continuous-time dynamics of 

CNNs (Chua and Yang 1988b). Due to their computation efficiency, CNNs have 

been applied to various fields, such as image recognition (Namba and Zhang 2006) 

and estimation (Habtie et al. 2015).  

 

 

 



21 
 

 

Figure 2.4: A two-dimensional cellular neural network (Chua and Yang 1988b). 
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2.5.2 Learning Algorithm Categorization 

In all of the neural paradigms, the application of an ANN involves two phases: the 

learning phase and the recall phase. In the learning phase, the ANN is trained 

through the adaptation of its weights until it has learned its tasks, while the recall 

phase is used to solve the tasks. 

 

There are three types of learning algorithm (Pham and Liu 1995): 

 

 Supervised learning 

A supervised learning algorithm adjusts the strengths or weights of the inter-

neuron connections according to the difference between the desired and actual 

network outputs corresponding to a given input.  

 Unsupervised learning 

In unsupervised learning, the ANN is trained without teaching signals or targets. 

It is only supplied with examples of the input patterns that it will eventually 

solve. 

 Reinforcement learning  

Reinforcement learning is a special case of supervised learning that employs a 

critic only to evaluate the goodness of the neural network output corresponding 

to a given input.  
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2.6 Optimization Algorithms 

Optimization in the current context, means determining the best course of action 

amongst the different alternatives available in a decision-making problem. It can be 

regarded as a process of finding the optimal value of a function under a given set of 

circumstances, often called ‘constraints’ (Mohan and Deep 2009). An optimization 

algorithm is a procedure which is executed iteratively by comparing various 

solutions until an optimum or a satisfactory solution is found. With the advent of 

computers, optimization has become a part of computer-aided design activities. 

 

Each optimization problem consists of the following basic ingredients (Engelbrecht 

2005): 

 An objective function which represents the quantity to be optimized. 

 A set of unknowns or variables which affects the value of the objective function. 

 A set of constraints that restricts the values that can be assigned to the unknowns. 

 

The goal of an optimization method is then to assign values from the allowed 

domain to the unknowns, such that the objective function is optimized and the 

constraints are satisfied.  
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Two distinct types of optimization technique are widely used today, namely 

deterministic optimization and stochastic optimization (Heyman and Sobel 2003). 

The optimization techniques are classed by the type of algorithm implemented.  

 

 Deterministic Optimization 

Deterministic optimization techniques use specific rules for moving one solution to 

another. It embodies algorithms which rely heavily on linear algebra because they 

are commonly based on the computation of the gradient of the response variable. 

Deterministic optimization techniques are faster compared to stochastic 

optimization because they require a lower number of evaluations of the response 

variable to reach the solution. However, deterministic optimization algorithms look 

for a stationary point in the response variable: thus, the optimal solution eventually 

found could be a local optimum and not the global optimum. Deterministic 

algorithms are also intrinsically single objective (Cavazzuti 2013). 

 

 Stochastic Optimization 

Stochastic optimization techniques are of the same nature as probabilistic 

translation rules. These optimization techniques are more suitable for problems 

where the relation between the variables and the outputs is unknown. Stochastic 

optimization falls within the spectrum of the general-purpose type of approximation 

search techniques (Godfrey and Babu 2013).  

There are two classes of stochastic optimization: 
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i. Local Search 

In local search, a predefined solution is maintained and its neighbours are 

explored to find better quality solutions. 

 

ii. Population-based Search 

In population-based search, the single current solution is replaced by a 

population or collection of different current solutions. Members of this 

population are first selected to be current candidates and then changes are 

made to these current candidates’ solutions to produce new candidate 

solutions.  

 

For the Robogymnast swing-up optimisation problem, the stochastic optimization 

population-based search technique is selected due to its random nature and 

flexibility, which better suits the characteristic of the problem, such as the unknown 

relationship between the variable and the output. 
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2.7 Stochastic Optimization Methods 

 

2.7.1 Particle Swarm Optimization 

Particle swarm optimization (PSO), introduced by Eberhart and Kennedy (1995), is 

based on a social-psychological model of social influence and social learning (De 

Oca et al. 2006). In PSO, a number of simple entities (particles) are placed in the 

search space of some problem or function, and each evaluates the objective function 

at its current location. Each particle then determines its movement through the 

search space by combining some aspect of the history of its own current and best-

fitness location with those of one or more members of the swarm, with some 

random perturbations. The next iteration takes place after all particles have been 

moved (Poli et al. 2007). The collective behaviour that emerges is that of 

discovering optimal regions of a high dimensional search space following the main 

principle of swarm intelligence (Engelbrecht 2005): 

 Proximity principle  

 Quality principle 

 Principle of diverse response 

 Principle of stability 

 Principle of adaptability 
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The PSO pseudo-code is as shown below (Bharti and Singh 2015):  

Step 1:  Take the training data. 

Step 2: Initialize the particles’ population with their position and velocity 

parameters.  

Step 3:   Evaluate individual particle by calculating the fitness value: if fitness   

value > Pbest, then update current value as Pbest. 

Step 4:  Select the particle which has the best fitness value among all the particles. 

Step 5: Calculate particle velocity and position according to equations 3 and 4. 

Step 6:  Continue until either the minimum error is not attained or up to the 

maximum iterations. 

 

 

2.7.2 Ant Colony 

Ant colony optimization (ACO) takes its inspiration from the foraging behaviour 

of some ant species. These ants deposit pheromones on the ground in order to mark 

some favourable path that should be followed by other members of the colony. Ant 

colony optimization exploits a similar mechanism for solving optimization 

problems (Dorigo and Birattari 2010). In ACO, a number of ‘artificial ants’ build 

solutions to the considered optimization problem at hand and exchange information 

on the quality of these solutions via a communication scheme that is reminiscent of 

the one adopted by real ants. 
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 ACO algorithms are based on the following ideas (Parpinelli et al. 2002): 

 

 Each path followed by an ant is associated with a candidate solution for a given 

problem. 

 When an ant follows a path, the amount of pheromone deposited on that path is 

proportional to the quality of the corresponding candidate solution for the target 

problem. 

 When an ant has to choose between two or more paths, the path(s) with a larger 

amount of pheromone have a greater probability of being chosen by the ant. 

 

2.7.3 Intelligent Water Drops 

The Intelligent Water Drops (IWD) algorithm is a swarm-based optimization 

algorithm which mimics the dynamics of river systems and the actions of water 

drops in the rivers (Duan et al. 2008). The IWD is a population-based constructive 

optimisation algorithm that may be used for maximization or minimization 

problems.  The IWD has been used for the travelling salesman problem (TSP) and 

the multiple knapsack problem (MKP) with promising results (Shah-Hosseini 

2009b).  The IWDs are created with two main properties: velocity and soil.  The 

IWD begins its trip with an initial velocity and zero soil. From its current location 

to its next location, the IWD’s velocity is increased by an amount that is non-

linearly proportional to the inverse of the soil between the two locations. An IWD 
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needs a mechanism to select the path to its next location or step (Shah-Hosseini 

2009a).  In this mechanism, the IWD prefers paths with low soils to paths with high 

soils. Therefore, it can be said that soil is the source material of information such 

that the environment and water drops both have memories of soil (Shah-Hosseini 

2009b).  The algorithm of the IWD is as follows: 

1. Representation of the graph, which establishes the number of nodes of the 

problem that the water drop will visit and creates a route. 

2. Establish the number of iterations. 

3. Representation of static parameters, number of drops, initial velocity. 

4. Representation of dynamic parameters, the soil and velocity would change 

every time the drop moves across the nodes established. 

5. The condition is set: Did the drop visit all the nodes? If the answers is no, we 

go to number four. 

6. Save the best result. 

 

2.7.4 Bees Algorithm 

The Bees Algorithm (BA) is an optimization algorithm inspired by the natural 

foraging behaviour of honey bees to find the optimal solution (Pham et al. 2006). 

BA tries to model the natural foraging behaviour of honey bees. Honey bees use 

several mechanisms such as the waggle dance to optimally locate food sources and 
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to search for new ones. This makes them a good candidate for developing new 

algorithms for solving optimization problems (Özbakir et al. 2010).  

 

The main steps of the BA are listed as follows (Darwish 2009) and the flowchart is 

shown in Figure 2.5:  

1. Initialise the population with random solutions.  

2. Evaluate the fitness of the population.  

3. While (stopping criterion not met) // Forming new population.  

4. Select sites for neighbourhood search.  

5. Determine the patch size.  

6. Recruit bees for selected sites and evaluate their fitness.  

7. Select the representative bee from each patch.  

8. Amend the Pareto optimal set.  

9. Abandon sites without new information.  

10. Assign remaining bees to search randomly and evaluate their fitness.  

11. End While. 
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Figure 2.5: Flowchart of Basic Bees Algorithm (Ahmad 2012) 

 

2.7.5 Invasive weed optimisation 

Mehrabian and Lucas (2006) developed a new algorithm called Invasive Weed 

Optimisation (IWO). IWO is attractive due to its flexibility and robustness. A 

detailed explanation of IWO is provided in Chapter 4. 

 

Initialise a population of n scout bees

Evaluate the fitness of the population
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Assign the remaining bees to random 
search

New population of scout bees
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2.8 Multi-objective optimization 

Multi-objective optimization (MOO) is the process of optimizing systematically 

and simultaneously a collection of objective functions. It originally grew out of 

three areas: economic equilibrium and welfare theories, game theory and pure 

mathematics (Marler and Arora 2004). MOO has been extensively researched and 

applied in various applications (Mohamed et al. 2009; Taherkhorsandi et al. 2015; 

Akbari et al. 2012). There is now increasing interest in MOO, as most engineering 

design problems involve multiple and often conflicting issues (Pham and 

Ghanbarzadeh 2007). Formally, MOO refers to simultaneous optimization (i.e., 

maximization and/or minimization) of two or more objective functions, which are 

often in conflict with one another. This optimization problem can be stated as 

follows (Rangaiah and Bonilla-Petriciolet 2013): 

 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒 (𝑓1(𝑥), 𝑓2(𝑥),…… . 𝑓𝑛(𝑥))   (2.1) 

 

Subject to 

𝑔𝑖(𝑥) ≤ 0 𝑖 = 1,2… . , 𝑛𝑖 

ℎ𝑖(𝑥) = 0 𝑖 = 1,2… . , 𝑛𝑒   (2.2) 

𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑢 

where n is the number of objective functions to be simultaneously optimized, x is 

the vector of m decision variables (continuous and/or discontinuous) with lower 
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(𝑥𝑙) and upper (𝑥𝑢) bounds, 𝑛𝑖 and 𝑛𝑒 are the number of inequality (𝑔) and equality 

(ℎ) constraints, respectively. The feasible space, F, is the set of vectors x that 

satisfy all the constraints and bounds in equation (2.2). In contrast to the single-

objective optimization case, where the optimal solution is clearly defined, in MOO 

problems there is a whole set of trade-offs giving rise to numerous Pareto Optimal 

solutions (Parsopoulos and Vrahatis 2002). 

 

2.8.1 Types of multi-objective optimization 

The primary goal of MOO is to model a decision maker’s preference: thus, MOO 

methods are categorized depending on how the decision-maker articulates these 

preferences. MOO can be divided into three major categories (Marler and Arora 

2004): 

a) Methods with a priori articulation of preferences - these allow the user to specify 

preferences which may be articulated in terms of goals or the relative importance 

of different objectives. Examples of these methods are: 

 

• Weighted global criterion method 

• Weighted sum method 

• Lexicographic method 

• Weighted min-max method 

• Exponential weighted criterion 
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• Weighted product method 

• Goal programming methods 

• Bounded objective function method 

• Physical programming 

 

b) Methods for a posteriori articulation of preference - preferences are selected 

from a group of solutions through the use of an algorithm that is used to 

determine the representation of the generated Pareto optimal set. Examples of 

these methods are: 

• Physical programming 

• Normal boundary intersection (NBI) method 

• Normal constraint (NC) method 

 

c) Methods with no articulation of preferences - these methods do not require any 

articulation of preferences. Examples of these methods are: 

• Global criterion methods 

• Nash arbitration and objective product method 

• Rao’s method 
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2.9 Fuzzy Logic 

The main idea behind Fuzzy systems is that truth values (in fuzzy logic) or 

membership values are indicated by a value in the range 0-1, with 0 representing 

absolute falsity and 1 representing absolute truth, in contrast to classical set theory, 

according to which each element either fully belongs to the set or is completely 

excluded from the set. In other words, classical set theory represents a limited case 

of the more general fuzzy set theory (Klir and Yuan 1995).  

 

2.9.1 Fuzzy Sets 

A fuzzy set is a class of objects with a continuum of grades of membership (Zadeh 

1965). A fuzzy set Ã on the given universe U is that, for any uϵ U, there is a 

corresponding real number μÃ(u)ϵ[0,1] to u, where μÃ(u) is called the grade of 

membership of u belonging to Ã (Li and Yen 1995).  Fuzzy sets allow the elements 

in the set to have partial memberships within the range of 0-1. Thus, a fuzzy set is 

a generalization of an ordinary set by allowing a degree of membership for each 

element.   

 

2.9.2 Fuzzy Rules 

At the root of fuzzy set theory lies the idea of linguistic variables. A linguistic 

variable is a fuzzy variable. In fuzzy expert systems, linguistic variables are used in 
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fuzzy rules (Negnevitsky 2005). The fuzzy rules are normally expressed in a form 

that will allow the rules to be easily programmed. An example of a set of fuzzy 

rules is provided in Figure 2.6.  

 

 

Figure 2.6: A set of Fuzzy rules 

 

2.9.3 Fuzzy Inference 

The Inference Mechanism provides the mechanism for invoking or referring to the 

rule base such that the appropriate rules are fired. The steps of fuzzy reasoning 

performed by Fuzzy Inference Systems (FIS) are (Jang 1993): 

1. Compare the input variables with the membership functions on the premise 

part to obtain the membership values (or compatibility measures) of each 

linguistic label. (This step is often called fuzzification). 

2. Combine (through a specific T-norm operator, usually multiplication or 

min) the membership values on the premise part to get the firing strength 

IF J is High and T is High, THEN Q is NG 

IF J is AVG and T is High, THEN Q is NG 

IF J is Low and T is High, THEN Q is NG 

………………………………….. 

…………………………………… 

IF J is Low and T is Low, THEN Q is G 
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(weight) of each rule. Generate the qualified consequent (either fuzzy or 

crisp) of each rule depending on the firing strength.  

3. Aggregate the qualified consequents to produce a crisp output. (This step is 

called defuzzification.) 

There are two well established types of FIS, namely Mamdani-style inference and 

Sugeno-style inference (Kaur and Kaur 2012). Table 2.1 shows the comparison 

between the two FIS types.  
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Table 2. 1: Comparison between Mamdani FIS and Sugeno FIS (Hamam and Georganas 

2008) 

Mamdani  Sugeno 

Output membership function No output membership function 

Output distribution 

No output distribution, 

only ‘resulting action’: 

Mathematical combination of the 

rule strength and the output 

Crisp result obtained through 

defuzzication of rules’ consequent 

No defuzzification: crisp result is 

obtained using weighted average of 

the rules’ consequent 

Non-continuous output surface Continuous output surface 

MISO and MIMO systems Only MISO systems 

Expressive power and interpretable 

rule consequents 

Loss of interpretability 

Less flexibility in system design 
More flexibility in system design; 

more parameters in the output 
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2.10 Upright balancing of a pendulum 

In the past few years, the single inverted pendulum model has been falsified as an 

explanatory approach for a quiet (standing) human stance. Double inverted 

pendulum models have recently proven to be inappropriate. Human topology, with 

three major leg joints, suggests a natural way to examine triple inverted pendulum 

models as an appropriate approach (Günther and Wagner 2015). The dynamics of 

balancing a pendulum at the unstable position can be employed in the applications 

of controlling walking robots, rocket thrusters, etc. (Huang and Huang 2000; 

McGrath et al. 2015; Kuo 2007; Yamamoto et al. 2015). This makes it a very 

popular experiment for educational purposes in modern control theory (Grossimon 

et al. 1996; Awtar et al. 2002; Rahimi et al. 2013; Boubaker 2013). 

 

Most inverted pendulums are underactuated mechanical systems. This means that 

the angular acceleration and position of the pendulum cannot be controlled directly. 

Therefore, the techniques developed for fully actuated mechanical robot 

manipulators cannot be used to control inverted pendulums (Lozano et al. 2000).  

 

Furuta et al. (1984) designed a controller for an inverted triple link pendulum using 

attitude control. By controlling the angles of the upper two arms around specified 

values, the pendulum can be stabilized inversely with the specified attitude.   
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Medrano-Cerda et al. (1995) proposed a robust computer control system for 

balancing and attitude control of double and triple inverted pendulums. The 

controller was designed using a blend of state-space and frequency domain 

methods. Experimental results indicate that the controller was successful in 

stabilizing the triple link pendulum, but the system’s performance is greatly 

degraded due to backlash in the gearboxes.  

 

Another method to balance the inverted pendulum was proposed by Park et al. 

(2004) using Q-learning. Two mode Q-learning was used to stabilize the Zero 

Moment Point (ZMP) of a biped robot in the standing posture. The controller was 

successful in stabilizing the biped robot in both simulations and experiments. The 

two mode Q-learning was more successfully in balancing the biped robot compared 

to conventional Q-learning, but took a longer time. 

 

Based on the work done by Park et al. (2004), Raj and Kumar (2013) approached 

the inverted pendulum problem by using the Q-learning based reinforcement 

learning to balance a double inverted pendulum. They were able to prove through 

simulation that Q-learning is a simple but robust learning method. However, when 

implemented on the Robogymnast, the author discovered that the training process 

is far too difficult due to the numerous number of states a triple link pendulum has.  
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A paper published by Kamil et al. (2014) combined a Discrete-time Linear 

Quadratic Regulator (DLQR) controller and an integral control action to satisfy the 

required performance of the system. Kamil (2015) was able to prove through 

simulation results that the Robogymnast could be settled in the upright position for 

an acceptable amount of time (1 - 12 seconds).  

 

2.11 Summary 

Overviews of the various aspects that are applied in this thesis have been presented 

in this chapter. The literature review includes a discussion of the complex multi-

link mechanism and the problems associated with its control. The literature also 

includes the elements used in designing its controller. In the next chapter, the 

system description of the Robogymnast is discussed in detail and its mathematical 

model is derived.  
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CHAPTER 3 

 

System Description and Mathematical Modelling 

 

 

3.1 Introduction 

This chapter discusses the system description of the Robogymnast and the 

derivation of its mathematical model. The Robogymnast is a triple link 

pendulum and is classified as a complex multi-link mechanism. It can also be 

called an underactuated mechanism due to its lack of full actuation. This 

characteristic introduces challenges when designing a controller for the 

Robogymnast.  

The Robogymnast has three degrees of freedom, where two of the degrees of 

freedom are actuated while one is unactuated. Due to its complex nature, the 

design of controllers for the Robogymnast requires computer-simulated tests to 

ensure their functionality before implementing them on the real system itself.  

To achieve this, a mathematical model of the Robogymnast had to be derived.  

The mathematical model is derived based on the Euler-Lagrange equations of 

motion (Spong 1994; Eldukhri and Pham 2010).  The Euler-Lagrange equations 

describe the evolution of a mechanical system subject to holonomic constraints. 
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In order to determine the Euler-Lagrange equations in a specific situation, one 

has to form the Lagrangian of the system, which is the difference between the 

kinetic energy and the potential energy of the system (Spong et al. 2006).   

Section 3.2 presents a description of the entire system and explanations of its 

individual components. Dimensions and other physical details of the system are 

given. Schematic diagrams and sketches of the Robogymnast are also provided 

in this section. In Section 3.3, the derivation of the mathematical model of the 

system is presented and discussed. The step-by-step derivation from the Euler-

Lagrange equation to the state space model of the system is demonstrated in 

this section. A summary of the entire chapter is given in Section 3.4. 

  

3.2 System Description 

The triple link under-actuated mechanism (Robogymnast) is depicted in Figure 

3.1 (Eldukhri and Pham 2010). The frame of the Robogymnast is made from 

50mm diameter carbon fibre tubes weighing 0.213kg/m. Aluminium 

components are attached to the ends of each link to provide the structures for 

mounting sensors and actuators. Physical parameters of the system are designed 

according to the features of a human gymnast swinging on a freely rotating high 

bar with his hands firmly fixed to the bar. Each link represents a body part or a 

group of body parts on a human. Link 1 represents the arms (without elbows 
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and wrists). Link 2 represents the head and torso. Link 3 represents the legs 

(without knees and ankles). Joint 1 (hands) consists of a steel shaft mounted on 

ball bearings with a potentiometer mounted to measure the angle of rotation of 

link 1. Joints 2 (shoulders) and 3 (hip) are split into two sections. The first 

section is similar to joint 1 with a potentiometer to measure the relative angle 

of each link. The second section is the output shaft of the drive unit (DC 

motor/gearbox). The Robogymnast is controlled by a PC equipped with 

appropriate AD/DA converters. C++ programmes are used to transmit the 

input/output commands between the PC and Robogymnast (Kamil et al. 2012). 

Figure 3.2 shows the Robogymnast in its actual test environment. Figure 3.3 

illustrates the overall system of the Robogymnast, while Figure 3.4 shows the 

setup of the system’s experimental apparatus.  
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Figure 3.1: Robogymnast System Diagram (Kamil 2015) 
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Figure 3.2:  Robogymnast (a) Front view (b) Side view 

 

                           

(a)                                                       (b) 

Link 1 

Link 2 

Link 3 
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Figure 3.3:  Block diagram representation of the Robogymnast system (Eldukhri 

and Pham 2010) 
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Figure 3.4: Block diagram representation of the experimental apparatus           

(Kamil 2015) 
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The Robogymnast’s sensors (potentiometers) send analogue signals to the anti-

aliasing filters. The analogue signals consist of two types of information. The 

first is the sensor readings, which are considered as controllable disturbance, 

and the second type are the uncontrollable disturbances. The uncontrollable 

disturbances are high frequency signals, while the sensor readings are low 

frequency signals (Kamil 2015). The anti-aliasing filter is tasked with reducing 

the effects of the disturbances. The filtered signals are then sent to a signal 

amplifier to be amplified. The amplified analogue signals are then sent to an 

ADLINK DAQ-2501 AD/DA convertor to be converted to digital signals. The 

ADLINK AD/DA convertor has a resolution of 12 bits for analogue input and 

14 bits for analogue output. It has a conversion time of 1 microsecond and a 

settling time of less than 3 microseconds. From the AD/DA convertor, the 

signals are then sent to the controller. The controller is a computer (PC) that 

contains a C++ program. The controller program contains (Kamil 2015): 

 A state feedback controller 

 A discrete integrator 

 A reduced order observer 

 Offset adjustments in the control outputs. 



50 
 

 Scaling factors and sensor gains for the conversion of input signals from 

volts to radians.  

The controller uses the data obtained from the input channels for control action 

calculations. It then sends the control action signals to an AD/DA to be 

converted to analogue signals. The control action signals go through filters and 

amplifiers before being sent to a power amplifier. The power amplifier 

amplifies the control action signals and sends them to the actuators (motor 1 

and motor 2).  

 

 

Figure 3. 5:  Circuit diagram of 1st order filter in series with operational amplifier 

(Kamil 2015) 
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Figure 3.6:  Circuit diagram of the power amplifier (Kamil 2015) 

 

3.3 Mathematical Model 

For modelling purposes, the Robogymnast is regarded as a triple link pendulum 

in a stable equilibrium configuration (Eldukhri and Pham 2010), as seen in 

Figure 3.7. The standard method for deriving dynamical equations of multi-

rigid systems uses the Euler-Lagrange formula. This method involves only the 

derivatives of time, speed and position. The most important part of the 

Lagrangian equation is obtaining the kinetic and potential energy of the entire 

system (Gmiterko and Grossman 2009). In this section, the Robogymnast is 
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regarded as being in the downward (stable) position. The model of the 

Robogymnast in an inverted (unstable) position is discussed in Chapter 6.  

 

Figure 3.7:  Schematic representation of Robogymnast 

 

The mathematical model is derived using the Lagrange equation provide as 

equation (3.1) 

𝑑

𝑑𝑡
(

𝜕𝐾

𝜕�̇�𝑖
) −

𝜕𝐾

𝜕𝜃𝑖
+

𝜕𝐷

𝜕�̇�𝑖
+

𝜕𝑃

𝜕𝜃𝑖
= 𝑇𝑖      𝑖 = 1,2,3 (3.1) 

 

l1

l2

l3

a1

a2

a3

θ1

θ2

θ3

T1

T2

T3

m1, I1

m2,I2

m3,I3
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where K is the kinetic energy, P is the potential energy and D is the dissipation 

energy. The angle of the ith link, measured with reference to the vertical line, 

is represented by θi , while Ti is the torque associated with it. The variables of 

the equation can be broken down to the form of equations (3.2) to (3.4):  

𝐾 =
1

2
∑{𝐼𝑖𝜃𝑖 + 𝑚𝑖 [

𝑑

𝑑𝑡
( ∑ 𝑙𝑘 𝑠𝑖𝑛 𝜃𝑘 + 𝑎𝑖 𝑠𝑖𝑛 𝜃𝑖

𝑖−1

𝑘=𝑖−3

)]

2
3

𝑖=1

+ [
𝑑

𝑑𝑡
 ( ∑ 𝑙𝑘 𝑐𝑜𝑠 𝜃𝑘 + 𝑎𝑖 𝑐𝑜𝑠 𝜃𝑖

𝑖−1

𝑘=𝑖−3

)]

2

} 

 (3.2) 

 

𝑃 = ∑ 𝑚𝑖𝑔(𝑎𝑖 cos 𝜃𝑖 + ∑ 𝑙𝑘 cos 𝜃𝑘
𝑖−1
𝑘=𝑖−3 )3

𝑖=1  (3.3) 

𝐷 =
1

2
∑ (𝐶𝑖(�̇�𝑖 − 𝜃0)

2
)3

𝑖=1         (3.4)                                      

       

Since joint 1 has no actuator, the torque applied to it is effected by motors on 

joint 2 (Tm1) and joint 3 (Tm2), where 𝑇1 = −𝑇𝑚1, 𝑇2 = 𝑇𝑚1 − 𝑇𝑚2, 𝑇3 =

𝑇𝑚2 

The torque given by the motor is represented by 

𝑇𝑚1 = 𝐺1𝑢1 − 𝐼𝑝1(�̈�2 − �̈�1) − 𝐶𝑝1(�̇�2 − �̇�1) (3.5) 

𝑇𝑚2 = 𝐺2𝑢2 − 𝐼𝑝2(�̈�2 − �̈�1) − 𝐶𝑝2(�̇�2 − �̇�1) (3.6) 
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Solving equation (3.1) for 𝜃1 and linearizing around the point 𝜃1 = 𝜃2 = 𝜃3 ≈

0. 

𝐿1 = 
𝑑

𝑑𝑡
(
𝜕𝐾

𝜕�̇�1

) −
𝜕𝐾

𝜕𝜃1
+

𝜕𝐷

𝜕�̇�1

+
𝜕𝑃

𝜕𝜃1
− 𝑇1    

= [𝐼1 + 𝑚1𝑎1
2 + 2𝑚2𝑙1

2 + 2𝑚3𝑙1
2 + 𝐼𝑝1]�̈�1 + [−𝐶2 − 𝐶𝑝1]�̇�2 + [−𝑚1𝑎1𝑔 −

𝑚2𝑙1𝑔 − 𝑚3𝑙1𝑔]𝜃1 + 𝐺1𝑢1 (3.7) 

Solving equation (3.1) for 𝜃2 

𝐿2 = [𝑚2𝑙1𝑎2 + 𝑚3𝑙1𝑙2 − 𝐼𝑝1]�̈�1 + [𝐼2 + 𝑚2𝑎2
2 + 𝑚3𝑙2

2 + 𝐼𝑝1 + 𝐼𝑝2]�̈�2 +

[−𝐼𝑝2 + 𝑚3𝑙2𝑎3]�̈�3 + [−𝐶2 − 𝐶𝑝1]�̇�1 + [𝐶2 + 𝐶3 + 𝐶𝑝1 + 𝐶𝑝2]�̇�2 +

[−𝐶3 − 𝐶𝑝2]�̇�3 + [−𝑚2𝑎2 − 𝑚3𝑙2]𝑔𝜃2 − 𝐺1𝑢1 + 𝐺2𝑢2    (3.8)                              

Solving equation (3.1) for 𝜃3 

𝐿3 = [𝑚3𝑙1𝑎3 − 𝐼𝑝2]�̈�1 + [𝑚3𝑙2𝑎3 + 𝐼𝑝2]�̈�2 + [𝐼3𝑚3𝑎3
2]�̈�3 + [𝐶𝑝2]�̇�1 +

[−𝐶𝑝2 − 𝐶3]�̇�2 + [𝐶3 + 𝐶𝑝2]�̇�3 + [−𝑚3𝑎3𝑔]𝜃3 − 𝐺2𝑢2 (3.9) 

After rearranging the equations (3.7), (3.8) and (3.9), equation (3.10) is 

obtained. 

�̃� [

�̈�1

�̈�2

�̈�3

] + �̃� [

�̇�1

�̇�2

�̇�3

] + �̃� [

𝜃1

𝜃2

𝜃3

] + �̃� [
𝑢1

𝑢2

] = 0                

 (3.10) 
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Where 

�̃� = [

𝐽1 + 𝐼𝑝1 𝑙1𝑀2 − 𝐼𝑝1 𝑙1𝑀3

𝑙1𝑀2 − 𝐼𝑝1 𝐽2 + 𝐼𝑝1 + 𝐼𝑝2 𝑙2𝑀3 − 𝐼𝑝2

𝑙1𝑀3 𝑙2𝑀3 − 𝐼𝑝2 𝐽3 + 𝐼𝑝2

] 

 

�̃� = [

𝐶1 + 𝐶2 + 𝐶𝑝1 −𝐶2 − 𝐶𝑝1 0

−𝐶2 − 𝐶𝑝1 𝐶2 + 𝐶3 + 𝐶𝑝1 + 𝐶𝑝2 −𝐶3 − 𝐶𝑝2

0 −𝐶𝑝2 − 𝐶3 𝐶3 + 𝐶𝑝2

] 

 

�̃� = [

−𝑀1𝑔 0 0

0 −𝑀2𝑔 0

0 0 −𝑀3𝑔

]  ,    �̃� = [

𝐺1 0

−𝐺1 𝐺2

0 −𝐺2

] 

 

and 

𝑀1 = 𝑚1𝑎1 + (𝑚2 + 𝑚3)𝑙1, 𝑀2 = 𝑚2𝑎2 + 𝑚3𝑙2, 

𝑀3 = 𝑚3𝑎3, 𝐽1 = 𝐼1 + 𝑚1𝑎1
2 + (𝑚2 + 𝑚3)𝑙1

2
 

𝐽2 = 𝐼2 + 𝑚2𝑎2
2 + 𝑚3𝑙2

2
, 𝐽3 = 𝐼3 + 𝑚3𝑎3

2 

Parameter values given in Table 3.1 and Table 3.2 are then accordingly inserted 

into the equations.  
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Table 3.1: Parameters of the Robogymnast (Eldukhri and Pham 2010) 

Link 1 Link 2 Link 3 

l1(m) = 0.155 l2(m) = 0.180 l3(m) = 0.242 

a1(m) = 0.0426 a2(m) = 0.138 a3(m) = 0.065 

m1(kg) = 2.625 m2(kg) = 0.933 m3(kg) = 0.375 

I1(kgm2) = 0.014 I2(kgm2) = 0.018 I3(kgm2) = 0.002 

C1(Nms) = 0.0172 C2(Nms) = 0.0272 C3(Nms) = 0.035 

 

Table 3.2: Motor parameters (Eldukhri and Pham 2010) 

Motor 1 Motor 2 

Ip1(kgm2) = 0.0358 Ip2(kgm2) = 0.0358 

Cp1(Nms) = 7.73 Cp2(Nms) = 7.73 

G1(Nm/V) = 1.333 G2(Nm/V) = 0.625 

k1 = 246:1 k2 = 110.6:1 
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In order to arrange the equation in terms of relative angles (q) matrix W is 

introduced, where 

𝑊 = [

1 0 0

−1 1 0

0 −1 1

]     and     𝜃 = [

𝜃1

𝜃2

𝜃3

] 

 

thus 

𝑞 = [

𝑞1

𝑞2

𝑞3

] = [

𝜃1

𝜃2 − 𝜃1

𝜃3 − 𝜃2

] = 𝑊𝜃 

 

Equation (3.10) is then written as 

�̃�𝑊−1 [

�̈�1

�̈�2

�̈�3

] + �̃�𝑊−1 [

�̇�1

�̇�2

�̇�3

] + �̃�𝑊−1 [

𝑞1

𝑞2

𝑞3

] + �̃� [
𝑢1

𝑢2

] = [

0

0

0

] (3.11) 

Solving equation (3.11) for [�̈�1 �̈�2 �̈�3]
𝑇  gives: 

[

�̈�1

�̈�2

�̈�3

] = −𝑊�̃�−1�̃�𝑊−1 [

�̇�1

�̇�2

�̇�3

] − 𝑊�̃�−1�̃�𝑊−1 [

𝑞1

𝑞2

𝑞3

] − 𝑊�̃�−1�̃� [
𝑢1

𝑢2

] (3.12) 
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Assuming that 𝑥 = [𝑞 �̇�]𝑇 , the state-space modelling is then obtained from 

equation (3.12) as  

 

�̇� = [
03 𝐼3

−𝑊�̃�−1�̃�𝑊−1 −𝑊�̃�−1𝑁𝑊−1
] 𝑥 + [

03𝑥2

−𝑊�̃�−1𝐻
] [

𝑢1

𝑢2

] = 𝐴𝑥 + 𝐵𝑢 (3.13)     

𝑦 = [𝐼3 03]𝑥 = 𝐶𝑥                                                               

 (3.14) 

 

where  

03 = [

0 0 0

0 0 0

0 0 0

], 𝐼3 = [

1 0 0

0 1 0

0 0 1

] , 03𝑥2 = [

0 0

0 0

0 0

] 

 

and qy  is the output vector. 

 

After substituting the parameters with the values given in Tables 3.1 and 3.2, a 

numerical model of the Robogymnast is obtained using Matlab® M-files where  

𝐴 = [
03 𝐼3

𝐴21 𝐴22

], 𝐴21 = [

−36.42 −0.35 0.21

13.10 −22.06 −223

2.14 −1.50 −5.68

] 
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𝐴22 = [

−0.20 88.38 9.17

0.20 −168.29 7.70

0.02 7.69 −201.45

], 𝐵 =

[
 
 
 
 

03𝑥2

−15.19 −0.74

28.92 −0.62

−1.32 16.21]
 
 
 
 

 

The A, B and C matrices are then converted to discrete time using Matlab® 

with a sampling time of t=2.45ms and the matrix 𝐴𝑑 is obtained. 

𝐴𝑑 =

[
 
 
 
 
 
 
 
 

0.99 −2.43𝑒−3 −2.35𝑒−4 2.49𝑒−2 1.01𝑒−2 1.19𝑒−3

1.49𝑒−3 0.99 −2.72𝑒−4 3.78𝑒−5 5.87𝑒−3 2.15𝑒−4

2.55𝑒−4 −2.22𝑒−4 0.99 5.29𝑒−6 2.15𝑒−4 4.94𝑒−3

−0.77 −0.23 −2.39𝑒−2 0.99 0.52 6.36𝑒−2

7.59𝑒−2 −0.13 −1.43𝑒−2 2.63𝑒−3 1.55𝑒−2 2.00𝑒−3

1.32𝑒−2 −1.21𝑒−2 −2.85𝑒−2 3.96𝑒−4 2.05𝑒−3 6.54𝑒−3]
 
 
 
 
 
 
 
 

 

 

𝐵𝑑 =

[
 
 
 
 
 
 
 
 
−1.73𝑒−3 −9.66𝑒−5

−3.28𝑒−3 −1.75𝑒−5

−3.73𝑒−5 1.61𝑒−3

−8.88𝑒−2 −5.14𝑒−3

0.17 −1.83𝑒−4

3.91𝑒−4 7.99𝑒−2 ]
 
 
 
 
 
 
 
 

,    𝐶𝑑 = [

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

] 

 

The matrices A, B and C in equations (3.13) and (3.14) are then replaced with 

matrices Ad, Bd and Cd respectively to obtain discrete time equations (3.15) 

and (3.16): 
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𝑥(𝑘+1) = 𝐴𝑑𝑥𝑘 + 𝐵𝑑𝑢𝑘  (3.15) 

𝑦(𝑘+1) = 𝐶𝑑𝑥(𝑘+1) (3.16) 

 

3.4 Summary 

This chapter has provided a description of the Robogymnast’s system and its 

mathematical modelling. A detail description of the entire Robogymnast system 

and its components was given. The system’s process flow was described and 

illustrated. The derivation of the mathematical equation based on the Euler-

Lagrange approach was also demonstrated. A linearized equation of motion and 

a state-space equation of the Robogymnast in a downward position were 

produced from the derivation. The mathematical equation and the state-space 

equation are needed in order to observe and study the system’s behaviour with 

different types of controllers before implementing the controllers on the actual 

system. It will be utilised in Chapter 4, in which the swing-up control of the 

Robogymnast will be discussed.       
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CHAPTER 4 

Swing-Up Control of the Triple Link Pendulum 

 

4.1 Introduction 

Various motion controls have been implemented on inverted pendulums, such 

as swinging, swing-up and inverted balancing (Åström and Furuta 2000; Xin 

and Kaneda 2007a; Park et al. 2011; Yoshida 1999; Lee et al. 2015; Kharola 

et al. 2016; Xin and Yamasaki 2012; Eom and Chwa 2015; Xin and Kaneda 

2001; Rubi et al. 2002; Cheng et al. 2013; Kamil et al. 2012; Eldukhri and 

Pham 2010). In this chapter, Invasive Weed Optimization (IWO) is used to 

tune the parameters of the swing-up controller developed by Eldukhri and 

Pham (2010). The main goal of this chapter is to select the optimal control 

parameters to achieve the fastest swing-up motion for the Robogymnast.   

 

The remainder of the chapter is organized as follows. Section 4.2 introduces 

the swing-up control of the triple link pendulum and the equations related to 

its control signals. Section 4.3 discusses Invasive Weed Optimization (IWO), 

explaining its process. Section 4.4 describes the implementation of the IWO 

in tuning the control signal parameters of the swing-up control. Section 4.5 
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presents the IWO results. The control parameters are then implemented on the 

system and the simulation and experiment results are also presented in this 

section. Section 4.6 provides the discussion and conclusion of the results. A 

summary of the chapter is given in section 4.7.        

 

 

4.2 Swing-up control 

The swing-up motion of the Robogymnast (as seen in Figure 4.1) is a sequence 

of motions in which the Robogymnast swings from a stable pendant 

configuration to an inverted unstable configuration.  

 

 

Figure 4.1 Robogymnast in mid-swing 
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This is achieved by controlling the parameters of the input voltages to the two 

motors (Eldukhri and Pham 2010). The equations that govern the input 

voltages are 

𝑢1 = 𝐴1𝛼1 sin𝜙1   (4.1) 

𝑢2 = 𝐴2𝛼2 sin𝜙2   (4.2) 

 

Where 𝑢1 and 𝑢2 are the input voltages for motor 1 and motor 2. The voltages 

are controlled by adjusting the following parameters 

 

𝛼1(𝑛 + 1) = 𝛼1(𝑛) + ∆𝛼1  (4.3) 

  𝛼2(𝑛 + 1) = 𝛼2(𝑛) + ∆𝛼2                           (4.4) 

𝜙1(𝑛 + 1) = 𝜙1(𝑛) + (
𝜂

𝛿1
⁄ )        (4.5) 

𝜙2(𝑛 + 1) = 𝜙2(𝑛) + (
𝜂

𝛿2
⁄ )        (4.6) 

𝛿1(𝑛 + 1) = 𝛿1(𝑛) + ∆𝛿1        (4.7) 

𝛿2(𝑛 + 1) = 𝛿2(𝑛) + ∆𝛿2        (4.8) 

 

 ∆𝛼1 and ∆𝛼2 are the increments of amplitudes. ∆𝛿1 and ∆𝛿2 are the 

increments/decrements of the frequencies. Because 𝑢1 and 𝑢2 are sinusoidal 

cycle inputs (multiple of sampling intervals 𝑇𝑠 depending on the value of 𝛿1 

and 𝛿2), 𝜙1 and 𝜙2 vary between 0 and 2π with a step increment of 𝜂/𝛿1 and 

𝜂/𝛿2 respectively. At the end of each duty cycle, 𝛼1,  𝛼2, 𝛿1 and 𝛿2 are 
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increased by∆𝛼1, ∆𝛼2, ∆𝛿1 and ∆𝛿2 respectively. Voltages 𝑢1 and 𝑢2 have 

been limited to be between -10V and 10V in order to avoid damaging the 

motors.  The value of constant A1 is fixed at 3.4 and A2 is fixed at 2.5. The 

values of  𝛼1, 𝛼2, 𝛿1 and 𝛿2 are initially set at 1, while the value of constant η 

is set at 0.3142 (Eldukhri and Pham 2010). The dynamic behaviour of the 

Robogymnast during the swing-up motion was simulated using a MATLAB® 

program developed by the author using the discrete state space equations 

(equations (3.15) and (3.16)).  

 

 In previous work, Eldukhri and Pham (2010) achieved swing-up motion of 

the Robogymnast by varying the amplitudes and frequencies of 𝑢1 and 𝑢2 

using a single parameter δ whose periodic increment ∆𝛿 was obtained through 

trial and error.  Kamil et al. (2012) separated the increments of 𝛼 and δ into 

Δα and Δδ respectively. The Bees Algorithm was then employed to find the 

optimum values of Δα and Δδ. 

 

In this chapter, input signals 𝑢1 and 𝑢2 are each assigned their own α and δ 

parameters.  The IWO is then used to select the optimum values of ∆𝛼1 ,∆𝛼2,  

∆𝛿1 and ∆𝛿2. 
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4.3 Invasive Weed Optimization Algorithm 

Invasive Weed Optimization (lWO), first designed and developed by 

Mehrabian and Lucas, is a novel numerical stochastic optimization algorithm 

inspired by the colonization of invasive weeds (Madivada Hymavathi and Rao 

2012). The robustness and seeding characteristics of weeds has been 

incorporated to form a swarming optimization method that is simple, flexible 

and effective. IWO has some distinctive properties in comparison with 

traditional numerical search algorithms like reproduction, spatial dispersal 

and competitive exclusion (Mehrabian and Lucas 2006). The procedures 

required in order to implement IWO in an optimization algorithm are as 

follows: 

 

1- Randomly generate a finite population of seeds from the set of feasible 

solutions (initializing population). 

2- Calculate the fitness of the population. Every seed will then reproduce 

based on its fitness (reproduction). In this case, the number of seeds 

produced is directly proportional to its fitness level. 

3- The new seeds are then randomly distributed over the search area and 

grow into new plants (spatial dispersal) The mean of distribution is equal 

to the location of the parent plant, but the standard deviation (SD), σiter, 
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will be reduced from a specified initial value, σinitial, to the final value, 

σfinal, according to equation 4.7 (Ghalenoei et al. 2009). 

     𝜎𝑖𝑡𝑒𝑟 =
(𝑖𝑡𝑒𝑟𝑚𝑎𝑥−𝑖𝑡𝑒𝑟)𝑛

(𝑖𝑡𝑒𝑟𝑚𝑎𝑥)𝑛
 (𝜎𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝜎𝑓𝑖𝑛𝑎𝑙) + 𝜎𝑓𝑖𝑛𝑎𝑙   (4.7) 

 4- The process is continued until the maximum population is reached, where 

the lower fitness seeds are truncated (competitive exclusion). The process 

is continued until maximum iteration is reached. 

The flowchart of the IWO process is shown in Figure 4.2. 
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YES

Start

INITIALIZATION:

Generate parent plants for each variable

REPRODUCTION INCLUDING SPATIAL DISTRIBUTION

(Seeds+weeds)>PopMax

Competitive Exclusion:

Include only the fittest ‘PopMax’ of 

weeds and seeds in colony.

(Seeds+weeds)=Colony

Iter max?

End

NO

YES

NO

Include all the seeds and 

weeds in the colony

 

Figure 4.2: IWO Flow Chart (Madivada Hymavathi and Rao 2012) 
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4.4 Tuning the swing–up control parameters using IWO 

IWO was used to investigate the optimum values of the variables for the swing-up 

of the Robogymnast due to its simplicity and flexibility. The parameters of the IWO 

were set as in Table 4.1. The variables investigated are 𝛥𝛼1 and 𝛥𝛼2, which are the 

increments of amplitudes, while 𝛥𝛿1 and 𝛥𝛿2 are the increments/decrements of 

frequency.  The search range was obtained through trial and error by starting the 

search with the widest possible range and determining through observation where 

the optimum value for each variable is most likely to be found. The procedure is 

repeated until an acceptable range is obtained. This is done to speed up the search 

process of the IWO and to ensure that the optimum values are obtained.  
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Variable Value Description 

Number of initial 

plants (pinit) 
10 

Number of randomly 

chosen values from the 

solution space. 

Minimum number of 

seeds (SMin) 
0 

Minimum population 

of solutions 

Maximum number of 

seeds (SMax) 
500 

Maximum population 

of solutions 

Initial value of 

standard deviation      

(σinitial) 

0.04 

Standard deviation 

used for spatial 

distribution of plants. 

Final value of 

standard deviation 

(σfinal ) 

0.01 

Final standard 

deviation used for 

spatial distribution of 

plants. 

Maximum number of 

iteration (Itermax) 
5 Number of iterations 

Nonlinear 

Modulation Index (n) 
0.001 - 

Search range 

0<Δα1<0.7 

0<Δα2<0.2 

5.0<Δδ1<6.0 

5.0<Δδ2<6.0 

Search range used based 

on trial and error. 

Table 4.1: IWO Parameters 
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i. Compute fitness of each plant by determining the time taken 

for the Robogymnast to swing 180° using the discrete state 

space Equations 3.15 and 3.16. 

ii. Compute maximum and minimum fitness of colony.   

iii. For each individual plant in colony (p ϵ W) 

iv. Compute the number of seeds for p, corresponding to its 

fitness. 

v. Randomly select the seeds from the feasible solutions 

around the parent plant (p) in a neighbourhood with spatial 

distribution based on standard deviation obtained from 

equation 4.7 and mean (μ) equal to zero. 

vi. Add the generated seeds to the solution set, W 

vii. Sort the population p in descending order of their fitness. 

viii. If population>PopulationMax, truncate weeds with smaller 

fitness until: Population = PopulationMax. 

ix. Continue with next iteration.  

x. Repeat step ii until the maximum number of iterations. 

Optimum value variables are selected from fittest weeds 

 

Figure 4.3: Pseudo-code for IWO 
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Figure 4.4: Flowchart for Invasive Weed Optimization Algorithm 

No

Start

Set the parameters of the IWO pinit  =10, SMin=0, SMax= 500, σinitial 
=0.004, σfinal = 0.01, IterMax = 5, n=0.001, Δα1(min)=0, 

Δα1(max)=0.7, Δα2(min)=0, Δα2(max)=0.2, Δδ1 (min) = 5.0, Δδ1 (max) 
= 6.0 , Δδ2 (min) = 5.0, Δδ2 (max) = 6.0 

Randomly generate 10 sets of 4 values (seeds)for each parameter (Δα1, Δα2,Δδ1,Δδ2 ) 
using the spatial distribution formula (equation 4.7) and assign them as Initial plants 

(pinit)

Evaluate the fitness of each set of plants by determining the length of time it takes for the ϴ1 
to reach ≈180° 

Sort the set of plants in a descending order of fitness 

Produce next generation of plants from the remaining set 
seeds where the each set plant in the 1st fittest group 

producing 5 sets each, 2nd fittest group producing 4 sets each, 
3rd fittest group producing 2 sets each and the 4th group 

producing 1 set each.

Number of set seeds <Smax

Only keep the 500 fittest set seeds and 
eliminate the rest

The set plants are grouped into 4 groups base on their 
fitness. 

IterMax>5

End

Yes

No

Yes
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4.5 Results 

This section gives a review of the results obtained from the IWO search. The values 

are then applied to simulations and experiments and their results studied.  

4.5.1 IWO Results 

The parameters in Table 4.1 were applied to the IWO algorithm and used to search 

for the optimum values of ∆𝛼1, ∆𝛼2, ∆𝛿1 and ∆𝛿2. The results of the IWO algorithm 

shown in Table 4.2 were obtained by using an error of 0.55%. The values obtained 

were then applied to the MATLAB® program to simulate the dynamic behaviour 

of the Robogymnast in order to verify the IWO result. The system was simulated 

using the top four results 1: 

 

Set 1: Δα1=0.6924V, Δα2= 0.1966V, Δδ1=5.1984 rad-1, Δδ2= 5.1129 rad-1 

Set 2: Δα1=0.6872V, Δα2= 0.1726V, Δδ1=5.4428 rad-1, Δδ2= 5.9191 rad-1 

Set 3: Δα1=0.6616V, Δα2= 0.1699V, Δδ1=5.5194 rad-1, Δδ2= 5.9701 rad-1  

Set 4: Δα1=0.6635V, Δα2= 0.1827V, Δδ1=5.5506 rad-1, Δδ2= 5.9349 rad-1 

 

Simulation results in Figure 4.5 to 4.8 shows successful swing-up of the 

Robogymnast to an inverted configuration using the values obtained from the IWO, 

and these simulation results conform to IWO results.  

                                                           
1 The top four results are selected based on success in the experiment. 
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Table 4.2: IWO Results 

Δα1                            

(V) 

Δα2                         

(V) 

Δδ1                  

(rad-1) 

Δδ2                     

(rad-1) 

Angular Position of 

Robogymnast (ϴ1 Deg) 

Duration to reach the upright 

position(s) 

0.6924 0.1966 5.1984 5.1129 -179.003 

 

128.500 

 0.6833 0.1919 5.2013 5.1705 -179.018 

 

128.525 

 0.6872 0.1726 5.4428 5.9191 -179.032 

 

134.375 

 0.6627 0.1707 5.5217 5.9179 -179.192 

 

135.975 

 0.6615 0.1646 5.5168 5.9925 -179.059 

 

135.975 

 0.6593 0.1644 5.5170 5.9872 -179.084 

 

135.975 

 0.6524 0.1808 5.5171 5.9668 -179.078 

 

135.975 

 0.6616 0.1699 5.5194 5.9701 -179.063 

 

136.00 

 0.6662 0.1548 5.5470 5.9579 -179.125 136.525 

0.6596 0.1492 5.5463 5.9585 -179.098 136.525 

0.6648 0.1663 5.5501 5.9432 -179.217 136.525 

0.6635 0.1827 5.5506 5.9349 -179.244 

 

136.525 

 0.5468 0.0157 5.1284 5.1673 -179.2190 158.050 

0.5780 0.0011 5.1276 5.1721 -179.1363 158.050 
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4.5.2 Simulation Results 

 

Figure 4.5: Simulated angular position ϴ1 for Set 1 

 

Figure 4.6:  Simulated angular position ϴ1 for Set 2 
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Figure 4.7: Simulated angular position ϴ1 for Set 3 

 

 

Figure 4.8: Simulated angular position ϴ1 for Set 4 
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The fastest swing-up motion was achieved at using Set 1 parameters. The 

Robogymnast reached an angle of -179° in 128.5 seconds. All the swing-up motions 

displays similar pattern, where the swinging starts with high frequencies and ends 

with smaller frequencies but larger amplitudes.   

 

4.5.3 Experiment Results 

Values of the parameters obtained using IWO were applied to the actual system. 

The experiments conducted show that the Robogymnast will only be able to obtain 

a smooth swing-up motion if the motor voltages u1 and u2 have the same frequency, 

contrary to the simulation results. If the voltages are not in phase, the Robogymnast 

will not be able to achieve the natural frequency required for smooth swing-up 

motion. Thus, in order to obtain a satisfactory result, the assumption that Δδ2= Δδ1 

had to be made. The larger Δδ, the slower the frequency of the sinusoidal function 

applied for the two motors. In the real system, it has been observed that the system 

will perform better if the sinusoidal signals applied to the motors start at a relatively 

fast frequency. The value of Δδ obtained from the simulation results was divided by 

100 in order to achieve smooth motion and to avoid damaging the robot’s 

motor/gearbox structures caused by the inherent backlash in the gearboxes. Figures 

4.9 to 4.12 illustrates the performance the Robogymnast during experiments.  
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Figure 4.9: Measured angular position ϴ1 for Set 1. 

 

 

Figure 4.10: Measured angular position ϴ1 for Set 2 
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Figure 4.11:  Measured angular position ϴ1 for Set 3 

 

Figure 4.12: Measured angular position ϴ1 for Set 4 
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4.6 Discussion and Conclusion 

The simulation results obtained show that IWO could be used to find the optimal 

variables required to swing the Robogymnast more efficiently. The results show 

that the amplitude of u1 must be higher than u2, while the difference between Δδ1 

and Δδ2 ranges from 0.6% to 8.05% of each other. In all the results, u2 does not 

exceed the value of 6V, while u1 will reach the maximum value of 10V in about 

20 seconds. This shows that the value of u2 does not affect the swing of the 

Robogymnast as much as u1. The results also show that the higher the value of Δδ1 

and Δδ2, the faster the frequency of the swing decreases and the faster the 

Robogymnast will swing up to 180°. However, if the time taken to reach the 

upright position is relatively short, it may cause damage to the motor/gearbox 

structures (Kamil et al. 2012). Thus, a compromise must be made in order to obtain 

an optimized swing-up movement without damaging the Robogymnast. From 

observation, it would appear that Δα1, Δα2 and Δδ of 0.6872V, 0.1726V and 

0.05543 rad-1 respectively will give the smoothest swing-up motion. The 

experimental results vary when compared to the simulation result, as shown in 

Table 4.3. This may be caused by external factors such as friction, inertia and 

backlash.  
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*Value of Δδ is divided by 100 when applied in the experiment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3:  Simulation Results vs. Experimental Results 

Δα1              

(V) 

Δα2               

(V) 

Δδ1
* 

(rad-1) 

Δδ2
* 

(rad-1) 

Duration to reach the upright 

position 

(seconds) 

Simulation Experiment 

0.6924 0.1966 5.1984 5.1129 128.5 107.6 

0.6872 0.1726 5.4428 5.9191 134.4 112.0 

0.6616 0.1699 5.5194 5.9701 136.0 113.3 

0.6635 0.1827 5.5506 5.9349 136.5 114.7 
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Figure 4.13:  Flowchart of Robogymnast swing-up sequence 

Start

Set values of A1, A2, η, α1, α2, δ1, δ2, Δα1, 
Δα2, Δδ1, Δδ2   

Sensors send data on link locations through the A-D 
converter

Ø1 and Ø2>2π 

u1 = A1α1sin(Ø1), u2 = A2α2sin(Ø2)

Set maximum level for u1 and u2

Send u1 and u2 to D-A convertor

Delay

Sensors send data on link locations 
through the A-D convertor.

Stop command given or relative 
angle exceeds limit

Store data

End

Ø1=Ø2=0;
α1 = α1 + Δα1

α2 = α2 + Δα2

δ1= δ1 + Δδ1

δ2= δ2 + Δδ2

Ø1= η/δ1

Ø2= η/δ2

NO

Yes

No

Yes
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4.7 Summary 

In this chapter, Invasive Weed Optimization (IWO) was used to investigate the 

optimum values of the control parameters for the swing-up of the Robogymnast 

developed by Eldukhri and Pham (2010). Kamil et al. (2012) independently 

manipulated the amplitudes and the frequencies of the control signal. They also 

optimized the parameters (𝛥𝛼 and Δδ) of the two motor control signals (𝑢1  and 

𝑢2) using the swarm-based Bees Algorithm (BA). In this chapter, two parameters 

(∆𝛼1 and ∆𝛿1) were assigned to the control signal 𝑢1 and another two parameters 

(∆𝛼2 and ∆𝛿2) were assigned to the control signal 𝑢2.  IWO was used to optimize 

the swing-up motion of the robot by determining the optimum values of 

parameters that control the input sinusoidal voltage of the two motors. The values 

obtained from IWO were then applied to both simulation and experiment. Results 

showed that the swing-up of the Robogymnast from the stable downwards position 

to the inverted configuration was successfully accomplished. In the following 

chapter, the Artificial Neural Network Model of the Robogymnast will be 

discussed.  

 

 

 

 



83 
 

 

CHAPTER 5 

 

Artificial Neural Network Modelling of the Robogymnast 

 

 

5.1 Introduction 

A model is a precise representation of a system’s dynamics used to answer 

questions via analysis and simulation (Aström and Murray 2010). A mathematical 

model is a mathematical representation of a system (Spong et al. 2006). 

Mathematical modelling has long been essential in the study and design of 

dynamical systems. It provides an approximation of real-world conditions. It is also 

economical, as it provides the means of optimizing a design before actually building 

it. However, a mathematical model becomes less accurate as its complexity 

increases. This is because modelling is a process of simplification and deduction. 

Simplification involves loss of information about a situation (Schrodt and Johnson 

2004). The system being studied here is a complex multi-link under-actuated 

mechanism which requires a complex mathematical model that takes into 

consideration a great deal of information.  Under-actuated mechanisms provide a 
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useful test bed for the evaluation and comparison of different control techniques 

(Eldukhri and Pham 2010).  Eldhukri and Pham succeeded in swinging the 

Robogymnast from a stable pendant position to an inverted unstable configuration 

(Eldukhri and Pham 2010). This was further improved through the optimization of 

the control parameters by implementing  the Bees Algorithm (BA: Kamil et al. 

2012) and Invasive Weed Optimization (IWO) in Chapter 4. However, all the 

previous studies require tuning of the parameters in order to apply them to the real 

system. This shows that the mathematical model, though useful, is not sufficient 

when it comes to modelling the system. Proponents of neural networks claim that 

their versatility and robustness makes them suitable for various applications, such 

as modelling and control.  The neural network is commonly employed for nonlinear 

modelling of a system. Neural networks possess various attractive features such as 

massive parallelism, distributed representation and computation, generalization 

ability, adaptability and inherent contextual information processing (Jain et al. 

1996). Toha and Tokhi (2008) designed a Multi-Layer Perceptron neural network 

(MLP) model and an Elman recurrent Neural Network (ENN) model of a Twin 

Rotor Multi-input multi-output System (TRMS). The models were trained with the 

Levenberg-Marquardt (LM) method using experimental data to characterize the 

dynamic behaviour of the system. Both models yield very similar accurate results 

with the ENN model, providing slightly better prediction of the system’s behaviour. 

Gao et al. (1996) designed a modified ENN model of a dynamic system with 

random outputs and compared it with the conventional ENN. The modified ENN 
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consists of extra adjustable weights between the neurons of the context layer and 

the output layer, similar to that of a Jordan recurrent network (Pham and Karaboga 

1999). The modified ENN performed comparably to the conventional ENN but 

required only 121 iterations to converge compared to 603 iterations for the 

conventional model, thus making the training process faster. Zhang (2003) 

proposed a time series forecasting mechanism using a hybrid autoregressive 

integrated moving average (ARIMA) and ANN model. The model uses ARIMA to 

handle the linear parts of the time series and ANN to handle the nonlinear parts of 

the time series. Results prove that ANNs are flexible computing frameworks for 

modelling a broad range of nonlinear problems and can approximate a large class 

of functions with a high degree of accuracy. This chapter proposes an Elman neural 

network model of the Robogymnast and compares it with the mathematical model. 

The Elman neural network is a recurrent neural network model created by Jeffrey 

L. Elman (Elman 1990). It can be trained using various methods such as the 

standard back-propagation learning algorithm (Pham and Liu 1996; Pham and 

Karaboga 1999).   

This chapter proceeds as follows. Section 5.2 introduces the Elman Neural Network 

and its application in modelling the Robogymnast. Section 5.3 discusses the 

activation function and the justification for its selection. Section 5.4 then briefly 

explains the back-propagation algorithm.  The training of the ENN model is 

explained in section 5.5 with section 5.6 providing the results. In section 5.7, the 
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results are further discussed and conclusions are drawn. The final section provides 

a summary of the chapter. 

5.2 Elman Neural Networks 

The Elman Neural Network (ENN) model shown in Figure 5.1 is similar to the feed-

forward network in Figure 2.2, but has an extra layer called the context layer. The 

neurons in the context layer are used only to memorize the previous activations of 

the hidden units and can be considered to function as a one-step delay. The input 

layer consists of two neurons, which will receive the input voltages to the two 

motors of the robot gymnast, where u1 is the input voltage for motor 1 and u2 is the 

input voltage for motor 2. The hidden layer consists of six neurons which will 

produce six outputs that will represent the state vector of the robot gymnast. The 

six states are the relative angles 𝜃1, 𝜃2, 𝜃3, and their respective velocities �̇�1, �̇�2 and 

�̇�3. The output layer consists of three neurons representing the three output angles 

of the system. 

The ENN model can be represented using equations (5.1) and (5.2). 

𝑋(𝑘) =  𝑊𝑐𝑥𝑋(𝑘 − 1) + 𝑊𝑖ℎ𝑈(𝑘 − 1)                               (5.1) 

𝑌(𝑘) = 𝑊ℎ𝑜𝑋(𝑘)                                                                 (5.2) 

Where X is the output of the neurons in the hidden layer, Y is the output of the 

neurons in the output layer and U is the input for the model. Wcx , Wih , Who are the 
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weight matrices for the context layer, the input layer and the output layer 

respectively. It is important to highlight that the matrix Wcx refers to the weights 

from the context layer to the hidden layer. The outputs from the hidden layer to the 

context layer are unweighted. The ENN model was selected as the model for the 

Robogymnast because the position of its context layer allows the previous values 

of the state vector to be stored and reused as inputs for the next state vectors. This 

factor makes the behaviour of the ENN similar to that of the state space equation. 

It can be observed that Equation 5.1 and Equation 5.2 are similar to the discrete 

time equations (Equation 3.15 and Equation 3.16) where the Ad, Bd and Cd matrices 

are replaced by Wcx, Wih  and Who respectively. This makes it much easier to transfer 

the mathematical model to the ENN model without requiring any changes to the 

states.   
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Figure 5.1:  Elman Neural Network Diagram of Robogymnast 
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5.3 Activation Function 

An activation function is responsible for activating the neuron’s output. Many 

activation functions used in ANNs produce a continuous value rather than a discrete 

value (Youssef and Aly 2013). Two of the most popular activation functions used 

are the logistic activation function, more popularly referred to as the sigmoid 

function, and the identity activation function (linear activation function) (Jones 

2004).  

 

 The Logistic Activation (Sigmoid) Function 

𝑓(𝑛𝑒𝑡𝑗) =  
1

1 + 𝑒−𝑧
 

 

 The Identity Activation (linear) Function 

f(z) = z 

Where z is the value of the input to the neurons. 

Both types of activation function were implemented on the ENN model. However, 

the identity activation function appears to produce better results, while the logistic 

activation function experiences premature saturation as the input of the ENN model 

becomes non-linear. Due to its linearity, the identity activation function also 

requires less computation compared to the logistic activation function. This is a 

huge advantage when it comes to training large amounts of data. These two factors 
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are deemed to make it the best candidate for the activation function of the ENN 

model.  

5.4 Back-Propagation Algorithm  

The ENN modelling was trained using the Back-Propagation (BP) algorithm. The 

BP algorithm is based on the generalized delta rule proposed in 1985 by the PDP 

research group headed by Dave Rumelhart, based at Stanford University, 

California, U.S.A (Sharma et al. 2012). Before the BP can be used, it requires target 

patterns or signals, as it is a supervised learning algorithm. Training patterns are 

obtained from the samples of the types of inputs to be given to the multilayer neural 

network and their answers are identified by the user. The configuration for training 

a neural network using the BP algorithm is shown in Figure 5.2, in which the 

training is done offline. 
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Figure 5.2: Back-propagation Configuration
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The objective is to minimize the error between the target and actual output and to find 

ΔW (increment of weights). The error is calculated for every iteration and is back-

propagated through the layers of the ENN to adapt the weights. Equations (5.3) and 

(5.4) are used for the back-propagation of weight adjustment of the ENN model (Pham 

and Liu 1995). 

 

∆𝑊𝑖ℎ = 𝜂(𝑦𝑟(𝑘) − 𝑦𝐸𝑁𝑁(𝑘))𝑊ℎ𝑜
𝑇𝑈(𝑘)                                   (5.3) 

∆𝑊𝑐𝑥 = 𝜂(𝑦𝑟(𝑘) − 𝑦𝐸𝑁𝑁(𝑘))𝑊ℎ𝑜
𝑇𝑋𝑇(𝑘 − 1)                          (5.4) 

 

Where ∆𝑊𝑖ℎ , ∆𝑊𝑐𝑥 are the weight increments for 𝑊𝑖ℎ, 𝑊𝑐𝑥 and η is the learning rate 

of the learning process. 𝑦𝑟  and 𝑦𝐸𝑁𝑁 are the training data output and ENN output. 

Once the maximum number of iterations has been reached, the training is stopped, and 

the neural network is reconfigured in the recall mode to solve the task. 𝑊ℎ𝑜 is not 

adjusted and remains as the following to maintain the homogeneity of the output: 

 

𝑊ℎ𝑜 = [

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

] 
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5.5 Training the ENN Model 

The ENN model was trained using data from the swing-up control of the Robogymnast 

obtained from the experiments conducted in Chapter 4 and inputs generated by the 

simulation program. The back-propagation training of the model was done using a 

Matlab® program created by the author using the parameters in Table 5.1.  To make 

the learning process faster, the values of Ad and Bd are taken as initial values of Wcx  

and Wih  respectively. 

Back-propagation learning of ENN model algorithm: 

1. Read the ENN parameters (u1, u2, y1, y2, y3), plant parameters (number of inputs, 

number of layers, number of neurons, number of outputs), and change in load 

value. 

2.  Initialize the ENN weight matrices with initial values. 

3.  Set the initial state vector of the plant and the desired target vector.  

4.  Set the number of iterations. 

5.  Execute the feed-forward propagation for the neural network. 

6.  Find the error of the plant output. 

7.  Execute the back-propagation for the neural network. 

8.  Apply new weight increments to the currents weights. 

9.  Check whether the maximum number of iterations has been reached. 

10. If the maximum number of iterations has not been reached, repeat step 5 to step 

9; else end program.   
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Table 5. 1: Parameters of Back-Propagation Training of ENN Model 

Parameters of 

Neural Network 

Modelling 

Values Description 

Number of inputs 2 Input voltages 𝑢1 and 𝑢1 

Number of outputs 3 Output angle 𝑦1.𝑦2, 𝑦3 

Number of layers 4 
1 input layer, 1 hidden layer,  1context layer, 

1 output layer 

Number of neurons 

in hidden layer 
6 

6 neurons representing the 6 variables in the 

state vector. 

Number of neurons 

in context layer 
6 

The context layer acts as a step delay for the 

state vector. 

Number of 

samples 
20000 

All data is taken from a range of 0-20000 

data sets. 

Learning rate η 0.01 
Training parameter that controls the size of 

weight and bias changes during learning. 

Number of 

Iterations 
100 

The training is repeated perform until the 

maximum number of iterations is achieved. 
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Figure 5.3:  Flow Chart of Back-Propagation Training for Robogymnast 
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5.6 Results 

The training process yields the following weights: 

𝑊𝑐𝑥 =

[
 
 
 
 
 
 
 
 

0.99 −2.43𝑒−3 −2.34𝑒−4 2.49𝑒−2 1.01𝑒−2 1.20𝑒−3

1.49𝑒−3 0.99 −2.72𝑒−4 3.78𝑒−5 5.88𝑒−3 2.15𝑒−4

2.55𝑒−4 −2.22𝑒−4 1.00 5.30𝑒−6 2.15𝑒−4 4.95𝑒−3

−0.77 −0.23 −2.39𝑒−2 0.99 0.52 6.37𝑒−2

7.59𝑒−2 −0.13 −1.43𝑒−2 2.64𝑒−3 1.55𝑒−2 2.01𝑒−3

1.32𝑒−2 −1.21𝑒−2 −2.85𝑒−2 3.97𝑒−4 2.05𝑒−3 6.55𝑒−3]
 
 
 
 
 
 
 
 

 

 

𝑊𝑖ℎ =

[
 
 
 
 
 
 
 
 
−2.91𝑒−3 −1.62𝑒−4

−5.51𝑒−3 −2.94𝑒−5

−6.26𝑒−5 2.71𝑒−3

−0.15 −8.61𝑒−3

0.283 −3.08𝑒−4

−6.55𝑒−4 0.13 ]
 
 
 
 
 
 
 
 

  

 

The weights were then applied in Equations 5.1 and 5.2 with various inputs and their 

outputs analysed and compared with the experimental and the mathematical model 

outputs.  
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Figure 5.4: Measured angular position ϴ1 at Δα1=0.6924, Δα2= 0.1966, Δδ=0.051129 for  (a) 

Experimental;  (b) Mathematical Model;  (c) ENN Model 

 
(a) 

 

(b) 

 

(c) 
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Figure 5.5: Measured angular position ϴ1 at Δα1=0.6616, Δα2= 0.1699, Δδ=0.05512 for    

(a) Experimental;  (b) Mathematical Model;  (c) ENN Model 

 
(a) 

 

(b) 

 

(c) 
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Figure 5.6:  Measured angular position ϴ1 at Δα1=0.6635, Δα2= 0.1827, Δδ=0.05935 for   (a) 

Experimental; (b) Mathematical Model; (c) ENN Model 

 

 

(a) 

 
(b) 

 
(c) 
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The figures show that the ENN model displays swing-up characteristics that are 

comparable to the swing-up characteristics obtained from experimenting with the real 

system. For example, Figure 5.4 shows that the time taken for the ENN model to swing 

up to approximately 180° is 118.7 seconds, which is closer to the time taken by the 

experiment to achieve the same task, at 107.6 seconds, compared to 8499 seconds for 

the mathematical model. This comparison can be seen throughout Figure 5.5 and 

Figure 5.6.  

Table 5.2 presents the Root Mean Square (RMS) error and the Mean Absolute (MA) 

error of both models compared with the actual experimental data.  The ENN model 

(ENNM) obtains smaller values for both errors when compared to the Mathematical 

model (MM). 
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Table 5.2: Error Comparison 

Control Signals Root Mean Square Error (%) Mean Absolute Error (%) 

Δα1 (V) Δα2 (V) Δδ (rad-1) MM ENNM MM ENNM 

0.6924 0.1966 0.051129 57.4418 35.5183 41.3808 23.5414 

0.6872 0.1726 0.054430 64.4605 42.4171 48.024 28.7436 

0.6616 0.1699 0.05512 60.6531 40.6222 44.436 27.6083 

0.6635 0.1827 0.05935 65.3856 32.3343 48.1372 21.9021 
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5.7 Discussion and Conclusion 

The results show that the Robogymnast Elman neural network model provides a better 

representation of the actual system compared to the mathematical model. The ENN 

model is tested by comparing the system response output of the swing-up control 

motion of the Robot gymnast. The same input control parameters (∆𝛼1,∆𝛼2 ,∆𝛿)  are 

applied to the input voltages of both the mathematical model and the ENN model.  The 

output angle of the first link θ1 is then compared with that of the actual experimental 

output.  The output of the ENN closely resembles the experimental output in terms of 

shape and amplitude. The difficulty of training the modelling is caused by the non-

linearity of the system. The non-linearity of the system is caused by the input voltage 

being limited at ±10V, as shown in Figure 5.7. As the input voltages become limited 

at 10V, the swing angle ϴ1 still needs to increase to 180°. This makes the system non-

linear, as the increment of ϴ1 is no longer proportional to the amplitude of the input 

voltages. The system’s response is now more dependent on the change in the input 

signal frequency and the natural inertia of the system. 
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Figure 5.7:  Output of ϴ1 with its input voltages u1 and u2 
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While the mathematical model is useful for studying the behaviour of the system, 

it does not provide an accurate representation of the actual behaviour of the system 

in its environment. The mathematical model does not take into consideration 

external factors such as air resistance and friction caused by wear. In order to 

successfully achieve the swing-up, the system needs to operate at its natural 

frequency. To do so requires the motors to begin rotating back and forth at high 

frequencies. At high frequencies, it becomes more difficult to calculate the system's 

response, as any slight disturbance will cause the system to behave differently. The 

ENN model was trained using data from the actual experiment, thus taking into 

consideration the effects that external factors might have on the system’s behaviour. 

The ENN model provides a simple but useful alternative to the mathematical model 

and in this case improves on it. 

 

5.8 Summary 

A mathematical model is a representation of a system using mathematical equations 

and symbols. It is often used to describe a system and to study its behaviour. 

However, most mathematical models provide a useful but inaccurate representation 

of the actual system’s response. A neural network model would provide a more 

accurate representation of the actual system’s response because training is done 

using actual experimental data. This study focuses on modelling the response of the 
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Robogymnast. Due to the restrictions encountered by the mathematical model 

caused by the complex nature and nonlinearity of the Robogymnast, a novel 

approach of modelling the Robogymnast using neural networks was proposed in 

this chapter. A multi-layered Elman neural network model was used to represent 

the system. Inputs were applied to both the mathematical model and the neural 

network model and their outputs were compared and analyzed.  In the following 

chapter, the controller design for inverted balancing of the Robogymnast will be 

discussed.  
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CHAPTER 6 

Upright Balancing of the Robogymnast 

 

 

 

6.1 Introduction 

A number of researchers have studied the problem of stabilising inverted 

underactuated pendulums (Spong and Block 1995; Gawthrop and Wang 2006; 

Grossimon et al. 1996; Awtar et al. 2002). The balancing of a triple inverted 

pendulum is an important problem in robotics because it mimics the human body 

and its balancing mechanisms (Kamil et al. 2012). Brown and Passino (1997) 

developed intelligent controllers for balancing the acrobot by combining classical 

control, fuzzy and adaptive fuzzy controllers which swing, catch and balance the 

acrobot in an inverted position. A successful direct fuzzy balancing controller was 

then designed by emulating the action of the LQR.  Wang et al. (2014) employed 

an improved Artificial Bee Colony (ABC) algorithm to optimize the performance 

of the LQR. The optimized LQR was then used to balance a circular-rail double 

inverted pendulum. Simulation results proved that the improved ABC has 

outperformed the original ABC, as the LQR controller with improved ABC 

achieved a much shorter settling time. Kamil et al. (2014) designed a Discrete-time 

Linear Quadratic Regulator (DLQR) to balance the Robogymnast.  The DLQR 
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controller used is similar to the conventional LQR but with an 8-by-8 Q matrix 

instead of the usual 6-by-6 Q matrix typical of a triple link pendulum controller. 

The extra dimensions allow the DLQR to incorporate the angular accelerations of 

the first two links in determining the gain of the controller. This chapter presents 

two applications of IWO used to optimize the 6-by-6 Q-matrix of the LQR 

controller. The output of the optimization process is then tested and its performance 

analysed.  

 

Section 6.2 explains the modifications that have to be made to the ENN model 

discussed in Chapter 5 in order to represent the Robogymnast in the upright 

position. Section 6.3 discusses the Linear Quadratic Regulator and its equations. 

Section 6.4 demonstrates the application of the IWO in LQR controller design. 

Section 6.5 presents the application of the cost function (J) as the fitness criterion. 

In Section 6.6, the application of settling time (Tst) as the fitness criterion is 

discussed. The discussion and conclusion are given in Section 6.7 and Section 6.8 

provides a summary of the chapter.  
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6.2 Model of the Robogymnast in the upright position 

In this chapter, the Robogymnast is regarded as a triple link pendulum in an unstable 

upright configuration, as shown in Figure 6.1. In order to represent the system in 

this configuration, the matrix Wcx  in Equation 5.1 is expressed as follows:   

𝑊𝑐𝑥 =

[
 
 
 
 
 
 
 
 

0.99 −2.43𝑒−3 −2.34𝑒−4 2.49𝑒−2 1.01𝑒−2 1.20𝑒−3

1.49𝑒−3 0.99 −2.72𝑒−4 3.78𝑒−5 5.88𝑒−3 2.15𝑒−4

2.55𝑒−4 −2.22𝑒−4 1.00 5.30𝑒−6 2.15𝑒−4 4.95𝑒−3

𝟎. 𝟕𝟕 𝟎. 𝟐𝟑 𝟐. 𝟑𝟗𝒆−𝟐 0.99 0.52 6.37𝑒−2

−𝟕. 𝟓𝟗𝒆−𝟐 𝟎. 𝟏𝟑 𝟏. 𝟒𝟑𝒆−𝟐 2.64𝑒−3 1.55𝑒−2 2.01𝑒−3

−𝟏. 𝟑𝟐𝒆−𝟐 𝟏. 𝟐𝟏𝒆−𝟐 𝟐. 𝟖𝟓𝒆−𝟐 3.97𝑒−4 2.05𝑒−3 6.55𝑒−3]
 
 
 
 
 
 
 
 

 

Where the elements highlighted in the box have their polarities reversed compared 

to Equation 5.1. 

Matrices Who and Wih remained unchanged as in Chapter 5. 

 

 

6.3 Linear Quadratic Regulator 

The linear quadratic regulator (LQR) is a well-known design technique that 

provides practical feedback gains. It is a multivariable controller, as it can control 

displacement of the angles of the triple inverted pendulum at the same time (Sehgal 

and Tiwari 2012). Extensive research in the control field has shown on multiple 

occasions that LQR is well suited for inverted pendulum stabilization (Lee and 
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Perkins 2008). The objective of LQR is to find the minimum value of the following 

cost function: 

  

𝐽 = ∫ [𝑥𝑇(𝑡)𝑄𝑥(𝑡) + 𝑢𝑇(𝑡)𝑅𝑢(𝑡)]𝑑𝑡
∞

0
 (6.1) 

Where u(t) is unconstrained, Q is required to be a symmetric, positive semi-definite 

matrix and R is required to be a symmetric positive definite matrix. 𝑥 represents the 

states of the system and 𝑢 represents the control signals.  

For LQR, the input will be as follows: 

𝑢(𝑡) = −𝐹𝑥(𝑡) (6.2) 

where F is the gain matrix required by the LQR. By applying Equation 6.2 into the 

state space equation, the following equation will emerge: 

�̇� = (𝐴 − 𝐵𝐹)𝑥  (6.3) 

To obtain the value of F, the following equation is then applied: 

𝐹 = 𝑅−1𝐵𝑇𝑃  (6.4) 

Using the Algebraic Riccati Equation below, the value of P can be obtained: 

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0   (6.5) 

The value of F can then be obtained from Equation 6.4. 
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In order to implement an LQR controller, one must select suitable weighing 

matrices. For the Robogymnast, the value of Q will penalize the states, while the 

value of R will penalize the inputs. For this reason, the elements of the Q matrix 

were selected to be much larger than the elements of the R matrix.  

 

6.4 Application of IWO in LQR controller design 

The IWO is applied to find the global optimal solution for the LQR controller in 

order to minimize the settling time and voltage required for the Robogymnast to go 

from an unbalanced inverted configuration to a balanced upright configuration. Q 

and R are set as diagonal matrices: 

𝑄 =

[
 
 
 
 
 
𝑄1 0 0 0 0 0
0 𝑄2 0 0 0 0
0 0 𝑄3 0 0 0
0 0 0 𝑄4 0 0
0 0 0 0 𝑄5 0
0 0 0 0 0 𝑄6]

 
 
 
 
 

;                 𝑅 = [
𝑅1 0
0 𝑅2

] 

For the optimization process, the parameters R1 and R2 of the LQR controller are 

set at 1 and the values of Q are to be optimized. This is because, for this application, 

more weight is put on the control of the states than the inputs. In order to ensure 

that the Q matrix is a symmetric, positive semi-definite matrix, Q is set as: 

𝑄 = 𝑄𝑠𝑒𝑒𝑑𝑠𝑥 𝑄𝑠𝑒𝑒𝑑𝑠
𝑇                            (6.6) 
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Where Qseeds is a diagonal matrix consisting of IWO seeds (S1, S2, S3, S4, S5, S6) 

and 𝑄𝑠𝑒𝑒𝑑𝑠 
𝑇    is its transposed matrix: 

𝑄𝑠𝑒𝑒𝑑𝑠 =

[
 
 
 
 
 
𝑆1 0 0 0 0 0
0 𝑆2 0 0 0 0
0 0 𝑆3 0 0 0
0 0 0 𝑆4 0 0
0 0 0 0 𝑆5 0
0 0 0 0 0 𝑆6]

 
 
 
 
 

 

The optimization is applied for an initial deflection of absolute angles θ1=3°, θ2=3°, 

θ3=3°. This is the estimated maximum deflection angle that the Robogymnast can 

make before the system becomes incapable of bringing it back to a balanced upright 

configuration. The objective of the controller is to obtain a relative angle of 

q1≤0.001 rad, q2≤0.001 rad and q3≤0.001 rad. Where: 

[

𝑞1

𝑞2

𝑞3

] = [

𝜃1

𝜃2 − 𝜃1

𝜃3 − 𝜃2

]           (6.7) 
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6.5 LQR controller designed using cost function (J) as the fitness 

criterion 

This section presents descriptions and analysis of the proposed optimized LQR 

controller using the IWO and cost function J as the fitness criterion. Optimization 

is achieved by finding the minimum value of J. This is the fitness criterion used by 

most previous researchers (Asadi et al. 2016; Souza and Bigot 2016.). As seen in 

Equation 6.1, J is dependent on the sum of the states and control signal multiplied 

by their respective weights. This shows that the smaller the value of J, the more 

efficient the LQR controller will be. The parameters of the IWO procedure are as 

shown in Table 6.1. 
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Table 6. 1: IWO parameters with J as the fitness criterion  

Variable Value Description 

Number of initial plants 

(pinit) 
5 

Number of randomly chosen 

values from the solution space. 

Minimum number of 

seed sets (Smin) 
1 

Minimum population of 

solutions 

Maximum number of 

seed sets (Smax) 
500 

Maximum population of 

solutions 

Initial value of standard 

deviation (σinitial) 
0.1 

Standard deviation used for 

spatial distribution of plants. 

Final value of standard 

deviation (σfinal) 
0.01 

Final standard deviation used 

for spatial distribution of 

plants. 

Maximum number of 

iterations (Itermax) 
10 Number of iterations 

Nonlinear Modulation 

Index 
0.01 - 

Target angle 

q1<0.001 rad 

q2<0.001 rad 

q3<0.001 rad 

The angle where time is 

recorded and used as the fitness 

criterion 

Search range 

 

0-3000 

 

Search range used based on trial 

and error. 
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A seed set is a combination of six seeds that make up S1, S2, S3, S4, S5 and S6. 

The number of maximum seed sets is 500. This is to ensure that the number of seeds 

is not so large as to slow the search time. The maximum number of iterations is set 

as 10. After a number of trials, it is found that a larger number of iterations would 

not contribute any improvement to the search process. The target angle is set at 

0.001 rad, which is close enough to be considered stable and inverted. The search 

range is set at 0-3000 based on trial and error. It is found that the output of the LQR 

is more dependent on the ratio of the diagonal values of the Q matrix with respect 

to each other rather than the magnitude of each individual Q value.  
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Table 6.2: IWO Results using the cost function J as the fitness criterion 

                                                           
* Fitness Criterion 

Fitness 

Rank 
S1 S2 S3 S4 S5 S6 

Settling time,  

Tst   (s) 
J* 

1 500.677 150.253 500.310 250.035 50.040 0.000 8.88 1008.639 

2 150.307 100.439 250.916 300.783 150.435 200.882 26.35 1760.094 

3 50.061 500.107 400.436 250.645 150.673 100.191 6.38 2242.47 

4 500.348 150.587 300.658 500.002 100.174 150.002 16.80 3157.548 

5 200.348 400.587 350.658 300.002 150.174 450.002 11.75 3302.033 

6 250.348 300.587 150.658 450.002 100.174 450.002 25.38 3793.35 

7 50.061 200.107 200.436 250.645 400.673 100.191 27.38 4612.892 

8 150.061 350.107 250.436 100.645 400.673 350.191 15.68 5455.54 

9 500.307 150.439 200.916 300.783 400.435 300.882 22.58 5495.975 

10 990.407 297.172 990.041 494.901 99.013 391.785 9.300 5501.419 
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Table 6.2 shows the top ten best seed sets obtained from a population of 500. The 

minimum J obtained is 1008.639.  All values obtained are well within the search range 

previously set during the optimization process. It can be seen that the time for the 

Robogymnast to achieve a stable inverted configuration is not proportional to the 

values of J. The next subsection will present the simulation results when the values 

obtained from IWO results were applied to the LQR controller of the Robogymnast. 

 

6.5.1 Simulation results of LQR designed using IWO with cost function J as the 

fitness criterion 

The fittest seeds, which are S1=500.677, S2=150.253, S3=500.310, S4=250.035, 

S5=50.040 and S6=0.000, are selected for analysis. Using Equation 6.6, the Q matrix 

obtained from the seeds is: 

𝑄 =

[
 
 
 
 
 
2.5068𝑒5 0 0 0 0 0

0 0.2258𝑒5 0 0 0 0
0 0 2.5031𝑒5 0 0 0
0 0 0 0.6252𝑒5 0 0
0 0 0 0 0.0250𝑒5 0
0 0 0 0 0 0]

 
 
 
 
 

 

and the corresponding gain matrix is: 

𝐹 = −0.4430𝑒3 −0.1873𝑒3 −0.0358𝑒3 0.0803𝑒3 0.0423𝑒3 0.0053𝑒3

−1.3437𝑒3 −0.5900𝑒3 0.1729𝑒3 0.2528𝑒3 0.1330𝑒3 0.0153𝑒3 

In order to verify the effectiveness of the IWO algorithm, the parameters obtained are 

applied to a Matlab® program created by the author. The results are then compared 



117 
 

for three different configurations (Figure 6.1) in order to ensure that the optimization 

can be implemented in various configurations. 
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(a) 

 

 

(b) 

 

 

(b) 

 

 

 

 

(c) 

 
Figure 6.1: Configurations of Robogymnast  (a) θ1=-3°; θ2=-3°; θ3=-3°, (b) θ1=-3°; θ2=3°; θ3=-3°, 

(c) θ1=3°; θ2=3°; θ3=3° 
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Figure 6.2: Simulation of LQR with initial deflection of θ1=-3°; θ2=-3°; θ2=-3° 

 

 

Figure 6.2 illustrates the controlled system response and the voltages when the 

Robogymnast is in the upright position with the initial absolute angular position equal 

to [-3°, -3°, -3°] (Figure 6.1(a)). It is clear that the designed controller was able to 

stabilise the system and converge to the set values. The maximum voltage for motor 1 

(u1) and motor 2 (u2) are both shown as -12V. It can be seen that the time taken to 

reach a stable upright position is 8.875 seconds. 
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Figure 6.3: Simulation of LQR with initial deflection of θ1=-3°; θ2=3°; θ2=-3° 

 

 

The system response when the Robogymnast is in the upright position equal to [-3°, 

3°, -3°] (Figure 6.1(b)) is displayed in Figure 6.3. The time taken for the system to 

stabilise is 5.7 seconds, while the maximum control actions of motor 1(u1) and motor 

2 (u2) are 7.32V and -9.54V respectively.  
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Figure 6.4: Simulation of LQR with initial deflection of θ1=3°; θ2=3°; θ2=3° 

 

 

Figure 6.4 shows the reaction time and control effort when the initial absolute angular 

position of the Robogymnast is equal to [3°, 3°, 3°] (Figure 6.1(c)). It can be seen that 

the response is similar to Figure 6.2 but in the opposite direction.  

To further verify the effectiveness of the designed LQR controller, an external 

disturbance of 0.05 rad was applied to each of the Robogymnast links one at a time 

and its reaction was observed. The disturbance was applied about two seconds after 

the controller attempted to stabilize the system from an initial absolute angular position 

equal to [1.5°, 1.5°, 1.5°]. The objective of this test was to determine the robustness of 

the LQR controller using the parameters obtained using IWO.  
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Figure 6.5: Disturbance to Link 1 

 

From Figure 6.5, it can be seen that the system experiences a large displacement when 

a disturbance is applied to the first link. However, despite this, the controller is still 

able to balance the Robogymnast successfully.  
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Figure 6.6:  Disturbance to Link 2 

 

Figure 6.6 illustrates the reaction of the system when a disturbance is applied to the 

second link. The displacement caused by the disturbance is smaller compared to Figure 

6.5. The voltage requirements for both motors are also visibly smaller.   
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Figure 6.7: Disturbance to Link 3 

Figure 6.7 represents the reaction of the system when a disturbance is applied to the 

third link. The displacement in this figure is far less severe when compared to Figure 

6.5 and Figure 6.6. It can also be seen that when the disturbance is applied, u2 is 

significantly larger than u1. This indicates that most of the work is done by motor 2.  
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6.6 LQR controller designed using time (Tst) as the fitness criterion 

The result in Table 6.2 shows that the value of the cost function J is not proportional 

to the settling time (Tst) of the Robogymnast. This section proposes an LQR controller 

where the diagonal values of the Q matrix are selected using IWO with T as the fitness 

criterion. The optimized parameters of the LQR controller are selected based on the 

minimum Tst value. The IWO parameters used in this procedure are as in Table 6.1.   

Table 6.3 shows the top ten best seed sets obtained from a population of 500. The 

fastest settling time obtained was 5.10 seconds, while the slowest was 5.83 seconds, 

within a population of 500 seeds. All values obtained are within the search range 

previously set during the optimization process. Similar to the results shown in Table 

6.2, the time for the Robogymnast to achieve a stable inverted configuration is not 

proportional to the values of J. The next subsection will present the simulation results 

when the values obtained from the IWO results were applied to the LQR controller of 

the Robogymnast. 
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‡ Fitness Criterion 

Fitness 

Rank 
S1 S2 S3 S4 S5 S6 

Settling time,  

Tst  (s)‡ 
J 

 

1 1292.593 745.061 995.334 399.673 149.737 247.772 5.10 672.493 

2 1786.046 1090.479 1191.917 548.108 298.172 495.097 5.50 1557.780 

3 899.211 649.188 849.557 300.782 200.146 99.645 5.55 423.515 

4 1937.840 1537.127 1341.448 598.776 496.416 594.183 5.60 2546.645 

5 1387.852 1088.966 1045.013 496.238 346.738 148.509 5.68 1149.552 

6 1243.427 1493.460 1642.765 648.759 399.046 647.979 5.70 2367.704 

7 1927.856 2327.026 1336.946 894.068 743.335 346.987 5.71 4463.318 

8 1735.460 1936.290 1839.579 845.573 546.656 697.183 5.73 3759.826 

9 1941.855 1839.636 1642.401 847.866 547.446 496.372 5.75 3197.372 

10 1991.059 2134.856 2036.027 995.476 596.649 791.592 5.83 4771.564 

Table 6.3: IWO Results using Time (Tst) as the fitness criterion 
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6.6.1 Simulation results of LQR designed using IWO with Tst as the fitness 

criterion 

The fittest seeds, which are S1 = 1292.593, S2 = 745.061, S3 = 399.673, S4 = 

149.737, S5 = 149.737 and S6 = 247.772, are selected for analysis. Using Equation 

6.6, the Q matrix obtained from the seeds is: 

 

𝑄 =

[
 
 
 
 
 
16.708𝑒5 0 0 0 0 0

0 5.551𝑒5 0 0 0 0
0 0 9.907𝑒5 0 0 0
0 0 0 1.597𝑒5 0 0
0 0 0 0 0.224𝑒5 0
0 0 0 0 0 0.614𝑒5]

 
 
 
 
 

 

 

and the corresponding gain matrix is: 

𝐹 = −0.5790𝑒3 −0.2504𝑒3 −0.0306𝑒3 0.1057𝑒3 0.0556𝑒3 0.0070𝑒3

−0.1201𝑒3 −0.055𝑒3 0.0234𝑒3 0.0222𝑒3 0.0117𝑒3 0.0014𝑒3 
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Figure 6.8: Simulation of LQR with initial deflection of θ1=-3°; θ2=-3°; θ2=-3° 

 

Figure 6.8 clearly illustrates the controller’s ability to stabilise the Robogymnast 

when it is in the upright position with the initial absolute angular position equal to   

[-3°, -3°, -3°] (Figure 6.1 (a)). The maximum voltage for motor 1 (u1) is 12 volts, 

and for motor 2 (u2) is 6.290 volts. It can be seen that the time taken to reach a 

stable upright position is 5.1 seconds. 
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Figure 6.9: Simulation of LQR with initial deflection of θ1=-3°; θ2=3°; θ2=-3° 

 

Figure 6.9 shows the response of the system when the initial absolute angular 

position is equal to [-3°, 3°, -3°] (Figure 6.1(b)). The time taken for the system to 

stabilize is 3.10 seconds. The maximum voltage is -7.296 volts for motor 1 (u1) and 

1.927 volts for motor 2 (u2). 
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Figure 6.10: Simulation of LQR with initial deflection of θ1=3°; θ2=3°; θ2=3° 

 

Finally, Figure 6.10 displays the reaction of the system when the initial absolute 

angular position is equal to [3°, 3°, 3°] (Figure 6.1(c)). The reaction is similar to 

Figure 6.8 but in the opposite direction. 

 

As in section 6.5, an external disturbance was applied to each of the Robogymnast 

links one at a time and its reaction observed. The disturbance is applied about two 

seconds after the controller attempts to stabilize the system from an initial absolute 

angular position equal to [1.5°, 1.5°,1.5°].  
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Figure 6.11: Disturbance to Link 1 

 

Figure 6.11 illustrates that when a disturbance is applied to the first link, the 

controller quickly reacts to counter the displacement. The figure also reveals that 

u1 is larger than u2, indicating that most of the work is done by motor 1.  
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Figure 6.12: Disturbance to Link 2 

Figure 6.12 shows the reaction of the system when a disturbance is applied to the 

second link.  The displacement is not as severe as in Figure 6.11. The maximum 

voltage applied to motor 1 is still 12 volts, but its peak duration is about 0.4 seconds 

shorter than in Figure 6.11.  
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Figure 6.13: Disturbance to Link 3 

Figure 6.13 shows the effect that a disturbance on the third link has on the entire 

system. The displacement is small and the voltage requirements are minimal. 

 

6.7 Discussion and conclusion 

In the case of inverted balancing of the Robogymnast, it would appear that the LQR 

controller designed using parameters obtained by both methods can successfully 

bring the Robogymnast to an inverted and stable configuration. Using IWO with 

time (Tst) as the fitness criterion yields parameters that lead to a controller (LQRT) 

with a faster reaction time compared to the controller with parameters obtained 
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using IWO with J as the fitness criterion (LQRJ). Another distinguishable 

difference is that the required voltage for motor 2 (u2) is lower for LQRT. This 

condition is consistent throughout all of the three configurations used in the 

simulation. The results also reveal that most of the work is done by motor 1, thus 

resulting in a higher voltage u1.  In order to further analyse the performance of both 

controllers, more tests had to be done. Table 6.4 compares the performance of the 

two controllers in different initial angular configurations.  
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Table 6. 4: Comparison of the performance of the LQRJ and LQRT in different initial angular configurations. 

Deflection Angle Controller Jsum Tmax(s) u1max(V) u2max(V) Description/Purpose 

θ1=1°; θ2=1°; θ3=1 
LQRJ 605640 6.700 7.732 12.000 

To examine controller’s reaction at low deflection angles. 
LQRT 2725800 3.625 10.105 2.097 

θ1=1°; θ2=-1°; θ3=1° 
LQRJ 36148 4.425 2.441 3.180 

To examine controller’s reaction at low deflection angles. 
LQRT 144650 2.500 2.432 0.642 

θ1=3°; θ2=3°; θ3=3° 
LQRJ 9997600 8.875 12.000 12.000 

Figure 6.4 and 6.10 
LQRT 67249000 5.100 12.000 6.290 

θ1=3°; θ2=-3°; θ3=3° 
LQRJ 325330 5.700 7.322 9.541 

Opposite of Figure 6.3 and 6.9 
LQRT 1301800 3.100 7.296 1.927 

θ1=3.1°; θ2=3.1°; 

θ3=3.1° 

LQRJ 12677000 9.125 12.000 12.000 To examine the controller’s reaction when slightly higher deflection 

angle is applied. LQRT 98407000 5.350 12.000 6.499 

θ1=0°; θ2=4°; θ3=5° 
LQRJ 2020200 7.550 12.000 12.000 To examine the controller’s reaction when higher deflection angles are 

applied to link 2 and link 3. LQRT 10114000 4.100 12.000 3.432 

θ1=4°; θ2=0°; θ3=0° 
LQRJ 3482200 7.800 12.000 12.000 To examine the controller’s reaction when higher deflection angles are 

applied to link 1. LQRT 16846000 4.325 12.000 4.5471 

θ1=5.45°; θ2=0°; θ3=0° 
LQRJ 15839000 9.375 12.000 12.000 

To test maximum deflection angle the controller can recover from. 
LQRT 201070000 5.600 12.000 6.195 

θ1=5.65°; θ2=0°; θ3=0 
LQRJ 46030000 10.700 12.000 12.000 

To test maximum deflection angle the controller can recover from 
LQRT Inf Inf 12.000 12.000 

θ1=5.7°; θ2=0°; θ3=0° 
LQRJ Inf Inf 12.000 12.000 

To test maximum deflection angle the controller can recover from. 
LQRT Inf Inf 12.000 12.000 
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Table 6.4 reveals that controller LQRT performs consistently faster (43%-46% 

faster). However, controller LQRJ is capable of stabilizing the Robogymnast with 

a larger initial absolute angular position, as seen in Table 6.4. Voltage u1 for LQRJ 

is lower when all three initial absolute angular positions have the same polarity and 

LQRT requires significantly less voltage for motor 2. J is smaller due to the smaller 

state space values, while Tst has large state values, but these values settle in a shorter 

amount of time. Finally, both controllers show that J and Tst are not always 

proportional to each other.  

 

6.8 Summary 

The purpose of this chapter was to determine the best fitness criterion to be used 

when designing the LQR controller for the Robogymnast. The first fitness criterion 

is the J cost function. The second fitness criterion is the settling time (Tst) required 

to stabilize the Robogymnast. The fitness criteria were employed on the IWO and 

used to obtain optimum diagonal values of the Q matrix. Using the Q parameters 

obtained, two LQR controllers were designed and tested using simulation. 

According to the simulations, the Robogymnast is able to recover its balance from 

an initial unbalanced configuration. The controllers also prove to be robust enough 

to perform even when a slight disturbance is applied. The LQRT controllers has a 

faster reaction time, but LQRJ is capable of recovering from a larger angular 

position. LQRT also provides better efficiency in motor 2, thus reducing the 
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required voltage when balancing the Robogymnast. In the next chapter, a hybrid J 

and Tst fitness criterion is proposed to get the best of both controllers.  
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CHAPTER 7 

Multi-Objective Invasive Weed Optimization of the LQR 

Controller 

 

 

7.1 Introduction 

Multi-objective optimization has become an important part of optimization 

activities. Many real-world optimization problems are naturally posed as nonlinear 

programming problems having multiple conflicting objectives. A multi-objective 

optimization problem deals with more than one objective function (Deb 2014). Liu 

et al. (2008) designed an approach for weighting matrices for LQR based on a multi-

objective evolution algorithm. The algorithm uses the J function and pole placement 

as the objective function. Simulation results show that a shorter adjustment time 

and smaller amplitude value deviating from the steady state are achieved using the 

proposed approach. An optimal design of LQR weighting matrices based on 



139 
 

intelligent optimization methods such as Genetic Algorithms (GA), PSO, 

Differential Evolution (DE) and the Imperialist Competitive Algorithm (ICA) to 

solve the optimization problem of LQR for a robot manipulator was proposed by 

Ghoreishi et al. (2011). All results were compared by combining criteria like speed 

of response, the closed-loop pole locations and maximum level of control effort into 

an objective function to find the best weighting matrices in the LQR controller. An 

optimal trade-off design for a fractional order (FO)-PID controller is proposed with 

a Linear Quadratic Regulator (LQR)-based technique using two conflicting time 

domain objectives (Das et al. 2015). The research deals with problems such as 

choosing optimal weights and time delays in the LQR formulation. Khalaf et al. 

(2015) utilized Multi-Objective Invasive Weed Optimization (MOIWO) to design 

an impedance controller for a prosthesis test robot. The criteria for this optimization 

problem are the required amount of force and motion tracking. Simulation results 

showed that the solutions that were designed for motion tracking performed this 

task perfectly but failed to reproduce the desired forces, while the solution that was 

designed for force tracking deviated from the desired motion in order to produce 

the desired force.  

In this chapter, the diagonal values of the LQR Q matrix are selected using modified 

IWO algorithms. The first technique is the Weighted Criteria Method IWO 

(WCMIWO), which combines the values of the cost function (J) and settling time 

(Tst) into a single fitness criterion with the help of weights. The second technique 
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is the Fuzzy Logic IWO Hybrid (FLIWOH), which analyses the values of J and Tst. 

These two values are then evaluated and assigned a membership value, which will 

subsequently be used as the fitness criterion. The performance of the two techniques 

are then compared and analysed. The performance of the resulting controllers will 

also be analysed with and without disturbance applied to the system. The criteria 

that will be used to evaluate the controllers are the settling time, input voltages, the 

maximum angular deflection from which they can recover and ability to maintain 

an upright position with disturbance applied to the system. The chapter is organized 

as follows. In Section 7.2, Multi-Objective Optimization (MOO) and the various 

types of MOO methods are briefly discussed. The following section describes the 

WCMIWO and its results. This is followed by the description of the FLIWOH and 

its results. In Section 7.5, the previous methods are repeated with disturbance 

applied to the system. The findings and results are discussed in section 7.6. Finally, 

a summary of the chapter is provided in Section 7.7.   

 

7.2 Weighted Criteria Method Invasive Weed Optimization 

The WCMIWO technique uses both J and Tst in determining the fitness of each set 

of seeds. The fitness criterion JT is calculated using equation (7.3): 

 

𝐽𝑇 = (𝑊𝐽 𝑥 𝐽) + (𝑊𝑇 𝑥 𝑇𝑠𝑡)     (7.3) 
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where 𝑊𝐽 and 𝑊𝑇 are the multiplied weights of J and Tst respectively, whose values 

are selected through trial and error. The weights are necessary due to J being 

significantly larger than Tst, to ensure that J does not dominate the resulting fitness 

criterion JT. The set seeds are arranged in ascending order with the smallest value 

of JT as the fittest set seeds.  Table 7.1 shows the parameters of the WCMIWO 

process. The number of maximum seed sets is again selected to be 500. The 

maximum number of iterations is set at 10. The target angle is again set at 0.001 

rad, which is close enough to be considered stable and inverted. Table 7.2 shows 

the top ten best seed sets obtained from a population of 500. The minimum J value 

obtained is 100.183𝑒5 and the fastest time is 6.35 seconds.  
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Table 7.1: WCMIWO parameters 

Variable Value Description 

Number of initial plants 

(pinit) 
5 

Number of randomly chosen 

values from the solution 

space. 

Minimum number of seed 

sets (Smin) 
1 

Minimum population of 

solutions 

Maximum number of seed 

sets (Smax) 
500 

Maximum population of 

solutions 

Initial value of standard 

deviation (σinitial) 50 
Standard deviation used for 

spatial distribution of plants. 

Final value of standard 

deviation (σfinal) 
0.5 

Final standard deviation used 

for spatial distribution of 

plants. 

Maximum number of 

iterations (Itermax) 
10 Number of iterations 

Nonlinear Modulation Index 0.01 - 

Weight of J (WJ) 1e-6 Weightage of J 

Weight of T (WT) 10 Weightage of Tst 

Target angle 

q1<0.001 rad 

q2<0.001 rad 

q3<0.001 rad 

The angle where time is 

recorded and used as the 

fitness criteria 

Search range 

 

0-1000 

 

Search range used based on 

trial and error. 
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Table 7.2: WCMIWO Results 

Fitness 

Rank 
S1 S2 S3 S4 S5 S6 

Duration to reach 

the upright position, 

Tst (s) 
J x 𝟏𝟎𝟓 JT* 

1 50.348 500.587 400.658 250.002 150.174 100.002 6.35 222.964 85.80 

2 500.682 150.726 500.307 250.176 50.385 0.000 8.88 100.183 98.77 

3 200.307 400.439 350.916 300.782 150.435 450.882 11.78 329.936 150.74 

4 899.160 649.006 649.913 550.639 250.005 250.596 8.06 747.046 155.45 

5 540.079 647.506 890.389 494.867 199.148 491.786 8.00 777.002 157.70 

6 543.478 648.526 893.789 496.567 199.487 494.506 8.00 781.639 158.16 

7 545.477 649.126 895.788 497.567 199.687 496.106 8.03 784.371 158.69 

8 546.901 649.553 897.212 498.278 199.830 497.244 8.03 786.319 158.88 

9 548.008 649.885 898.319 498.832 199.940 498.130 8.03 787.835 159.03 

10 548.914 650.157 899.225 499.285 200.031 498.855 8.03 789.077 159.16 

                                                           
* Fitness Criterion 
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7.2.1 Simulation results of LQR designed using WCMIWO 

The fittest seeds, which are S1=50.348, S2=500.587, S3=400.658, S4=250.002, 

S5=150.174 and S6=100.002, are selected for analysis. Using Equation 6.6, the Q 

matrix obtained from the seeds is: 

𝑄 =

[
 
 
 
 
 
2.5068𝑒5 0 0 0 0 0

0 2.5059𝑒5 0 0 0 0
0 0 1.6053𝑒5 0 0 0
0 0 0 0.6250𝑒5 0 0
0 0 0 0 0.2255𝑒5 0
0 0 0 0 0 0.1000𝑒5]

 
 
 
 
 

 

and the corresponding gain matrix is: 

𝐹 = −0.5080𝑒3 −0.2172𝑒3 −0.0268𝑒3 0.0928𝑒3 0.0489𝑒3 0.0061𝑒3

−0.4273𝑒3 −0.1918𝑒3 0.0071𝑒3 0.0786𝑒3 0.0414𝑒3 0.0050𝑒3 

 

In order to verify the effectiveness of the WCMIWO algorithm, the parameters 

obtained are applied to a Matlab® program created by the author. The results are then 

compared for three different configurations, as shown in Figure 6.1, to ensure that the 

optimization can be implemented in various configurations. 
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Figure 7.1:  Simulation of LQR with initial deflection of θ1=-3°; θ2=-3°; θ2=-3° 

 

Figure 7.2:  Simulation of LQR with initial deflection of θ1=-3°; θ2= 3°; θ2 = -3° 
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Figure 7.3:  Simulation of LQR with initial deflection of θ1=3°; θ2=3°; θ2=3° 

 

Figure 7.1 shows the system’s response and reveals that the voltages required to bring 

the Robogymnast to a stable upright position with the initial absolute angular position 

equal to [-3°, -3°, -3°] are 12 volts for both motor 1 and motor 2. It can be seen that 

the time (T) taken to reach a stable upright position is 6.35 seconds. Figure 7.2 depicts 

the reaction of the Robogymnast as it attempts to stabilize itself from an initial 

absolute angular configuration equal to [-3°, 3°, -3°]. The maximum voltage required 

is 6.62 volts for motor 1 (u1) and 1.55 volts for motor 2 (u2).  Figure 7.3 shows the 

response of the system when the initial absolute angular position is equal to [3°, 3°, 

3°]. The time (T) taken for the system to stabilize is 6.35 seconds. The maximum 

voltage for motor 1 (u1) and motor 2 (u2) is 12 volts. An external disturbance of 0.05 
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rad was applied to each of the Robogymnast links one at a time and its reaction 

observed. The disturbance was applied about two seconds after the controller attempts 

to stabilize the system from an initial absolute angular position equal to [1.5°, 1.5°, 

1.5°]. The objective of this test was to determine the robustness of the LQR controller 

using the parameters obtained using IWO.  

 

Figure 7.4:  Disturbance to Link 1 
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Figure 7.5:  Disturbance to Link 2 

 

Figure 7.6:  Disturbance to Link 3 
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Figure 7.4 illustrates that when a disturbance is applied to the first link, the controller 

quickly reacts to counter the displacement. The figure reveals that the amount of work 

done by both motors is more or less the same. From Figure 7.5, it can be seen that the 

system experiences significant displacement when a disturbance is applied to the 

second link. However, despite this, the controller was still able to balance the 

Robogymnast successfully. Figure 7.6 represents the reaction of the system when a 

disturbance is applied to the third link. The displacement in this figure is far less 

severe when compared to Figure 7.4 and Figure 7.5. It can also be seen that when the 

disturbance is applied, u1 is larger than u2. This indicates that most of the work is done 

by motor 1.  

 

7.3 Fuzzy Logic Invasive Weed Optimization Hybrid 

In this section, a multi-objective Fuzzy Logic Invasive Weed Optimization Hybrid 

(FLIWOH) technique is proposed. This technique uses a combination of the IWO and 

fuzzy logic. IWO is used for searching and for the generation of new seeds. Fuzzy 

logic is used to determine the fitness of the seeds by evaluating the fitness 

memberships of the J and Tst criteria. Figures 7.7 and 7.8 show the flowchart of the 

FLIWOH algorithm.  
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Figure 7.7:  The main flowchart of the FLIWOH Algorithm 
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Figure 7.8: The flowchart of the Fuzzy Logic Algorithm 
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The fuzzy logic processor consists of two input variables and one output variable. 

Each of the input variables has three membership functions defined in the range of [0, 

1] (Figure. 7.9). The output variable consists of three membership functions within 

the range of [0, 5]. Two well-known Fuzzy rule-based Inference Systems are the 

Mamdani fuzzy method and the Takagi-Sugeno (T-S) fuzzy method (Chai et al. 2009). 

The Mamdani method is selected as the fuzzy inference engine due to its expressive 

power, making it easy to formalize and interpret. Another advantage is that it can be 

used for both Multiple Input Single Output (MISO) and Multiple Input Multiple 

Output (MIMO) systems, whereas the T-S method can only be used in MISO systems 

(Hamam and Georganas 2008). This allows the Mamdani method to be used in future 

works when MIMO systems are required. The fuzzy logic rules in Table 7.4 are then 

applied and the output membership function generates the output membership value 

(MVal). The set seeds are then arranged in ascending order based on their MVal 

values, where the smaller the value of MVal, the fitter the set of seeds. The set seeds 

then go through the rest of the conventional IWO process.  
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  Table 7.3: FLIWOH parameters 

Variable Value Description 

Number of initial 

plants (pinit) 
5 

Number of randomly 
chosen values from the 

solution space. 

Minimum number of 

seed sets (Smin) 
1 

Minimum population of 
solutions 

Maximum number of 

seed sets (Smax) 
500 

Maximum population of 
solutions 

Initial value of 

standard deviation 

(σinitial) 

50 
Standard deviation used 
for spatial distribution 

of plants. 

Final value of standard 

deviation (σfinal) 
0.5 

Final standard deviation 
used for spatial 

distribution of plants. 

Maximum number of 

iterations (Itermax) 
10 Number of iterations 

Nonlinear Modulation 

Index 
0.01 - 

Target angle 

q1<0.001 rad 

q2<0.001 rad 

q3<0.001 rad 

The angle where time is 
recorded and used as the 

fitness criterion 

Search range 
0-1000 

 

Search range used based 
on trial and error. 
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Table 7.4: Fuzzy Logic Rule 
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Figure 7.9: Fuzzy Logic Membership Functions 
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The parameters of the fuzzy logic membership functions are calculated as follows:  

𝑀𝑒𝑑𝐽 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐽𝑛𝑜𝑟𝑚) (7.4)       

𝑈𝐴𝑣𝑔𝐽 = 𝑀𝑒𝑑𝐽 + (0.25)(𝑀𝑒𝑑𝐽)  (7.5)     

 𝐿𝐴𝑣𝑔𝐽 = 𝑀𝑒𝑑𝐽 − (0.25)(𝑀𝑒𝑑𝐽)  (7.6)     

 𝑃𝐶𝐽1 = (0.25)(𝑀𝑒𝑑𝐽)      (7.7) 

𝑃𝐶𝐽2 = 1 − 𝑃𝐶𝐽1     (7.8) 

𝑀𝑒𝑑𝑇 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑇𝑛𝑜𝑟𝑚)    (7.9) 

𝑈𝐴𝑣𝑔𝑇 = 𝑀𝑒𝑑𝑇 + (0.25)(𝑀𝑒𝑑𝑇)   (7.10)      

 𝐿𝐴𝑣𝑔𝑇 = 𝑀𝑒𝑑𝑇 − (0.25)(𝑀𝑒𝑑𝑇)   (7.11)      

 𝑃𝐶𝑇1 = 0.25(𝑀𝑒𝑑𝑇)   (7.12) 

𝑃𝐶𝑇2 = 1 − 𝑃𝐶𝑇1    (7.13)  

The range of each membership function had to be re-calculated for each iteration due 

to the changing range of the seeds’ values. 𝐽𝑛𝑜𝑟𝑚 and  𝑇𝑛𝑜𝑟𝑚 are the normalized values 

of J and Tst. The values of J and Tst are normalized to ensure that their ranges fall 

between [0, 1].  Table 7.5 shows the top ten best seeds set obtained from a population 

of 500.
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Table 7.5: FLIWOH Results 

                                                           
** Fitness Criterion 

Fitness 

Rank 
S1 S2 S3 S4 S5 S6 

Duration to 

reach the 

upright position, 

Tst (s) 

J x 105 MVal** 

1 10.913 100.958 80.485 50.792 30.934 20.655 6.45 9.303 0.9152 

2 199.492 179.689 200.470 100.651 70.476 89.536 7.15 48.715 0.9153 

3 209.155 179.445 220.230 120.411 50.526 69.640 6.78 45.249 0.9153 

4 198.819 119.370 130.565 60.785 50.326 29.608 6.43 19.457 0.9155 

5 168.432 199.197 228.200 109.943 60.412 138.827 6.75 57.387 0.9157 

6 208.685 199.507 258.648 110.460 50.711 120.046 6.20 54.100 0.9159 

7 120.759 190.756 260.140 130.647 50.894 160.390 7.45 59.624 0.9230 

8 120.402 190.430 259.515 130.373 50.824 159.905 7.45 59.389 0.9232 

9 120.694 190.363 259.617 130.451 50.829 159.998 7.45 59.418 0.9232 

10 169.558 199.771 260.114 150.629 40.731 150.223 7.35 66.869 0.9263 



158 
 

7.3.1 Simulation results of LQR designed using FLIWOH 

The fittest seeds, which are S1=50.348, S2=500.587, S3=400.658, S4=250.002, 

S5=150.174 and S6=100.002, are selected for analysis. Using Equation 6.6, the 

Q matrix obtained from the seeds is: 

𝑄 =

[
 
 
 
 
 
0.1191𝑒3 0 0 0 0 0

0 10.1924𝑒3 0 0 0 0
0 0 6.4779𝑒3 0 0 0
0 0 0 2.5798𝑒3 0 0
0 0 0 0 0.9569𝑒3 0
0 0 0 0 0 0.4266𝑒3]

 
 
 
 
 

 

and the corresponding gain matrix is: 

𝐹 =
−508.2175 −217.2200 −26.5988 92.8740 48.8864 6.0772
−390.6186 −175.1066 6.8220 71.8430 37.8372 4.6029

 

The parameters obtained are subjected to the same tests as the WCMIWO 

parameters.   
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Figure 7.10: Simulation of LQR with initial deflection of θ1=-3°; θ2=-3°; θ2=-3° 

 

Figure 7.11: Simulation of LQR with initial deflection of θ1=-3°; θ2=3°; θ2=-3° 
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Figure 7.12: Simulation of LQR with initial deflection of θ1=3°; θ2=3°; θ2=3° 

 

Figure 7.10 illustrates the controlled system response and the voltages when the 

Robogymnast is in the upright position with the initial absolute angular position 

equal to [-3°, -3°, -3°]. The maximum voltage u1 is 12V, while u2 is significantly 

lower at 5.8159V. It can be seen that the time taken to reach a stable upright position 

is 6.375 seconds. Figure 7.11 shows the response of the system when the initial 

absolute angular position is equal to [-3°, 3°, -3°]. The time taken for the system to 

stabilize is 4.05 seconds. The maximum voltage is 6.7462 volts for u1 and 0.9909 

volts for u2. Figure 7.12 illustrates the controller’s ability to stabilise the 

Robogymnast when it is in the upright position with the initial absolute angular 

position equal to  [3°, 3°, 3°]. The maximum voltage for motor 1 (u1) is 12 volts, 
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and for motor 2 (u2) is 5.8159 volts. It can be seen that the time taken to reach a 

stable upright position is 6.375 seconds. 

An external disturbance of 0.05 rad or 2.87° was applied to each of the 

Robogymnast links one at a time and its reaction was observed. The disturbance 

was applied about two seconds after the controller attempted to stabilize the system 

from an initial absolute angular position equal to [1.5°, 1.5°, 1.5°]. Figure 7.13 

shows the effect a disturbance has on the system when applied to the first link. The 

system was able to counter the disturbance and stabilize the system successfully. 

Maximum voltage of u1 is more than double of voltage u2, thus showing that most 

of the work is done by motor 1. 

 

Figure 7.13: Disturbance to Link 1 

 



162 
 

 

Figure 7.14:  Disturbance to Link 2 

 

Figure 7.15:  Disturbance to Link 3 
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Figure 7.14 depicts the controller’s successful attempt to balance the Robogymnast 

when a disturbance is applied to the second link. It can be seen that motor 1 requires 

significantly larger voltage compared to motor 2. The controller is able to stabilize 

the robot in 7.375 seconds. Figure 7.15 displays the reaction of the system when a 

disturbance is applied to the third link. The displacement caused by the system is 

minor, thus requiring very small voltages for both motors.  

 

7.4 Training with disturbance 

In this section, the optimization procedures in sections 7.4 and 7.5 were repeated 

with minor disturbance applied to the system model. The disturbance consists of 

random values between the range [0.01 rad, 0.05 rad], which were multiplied with 

previous states and added to the present states. This is to simulate the application 

of external disturbance to the system.  It is expected that the increased difficulty in 

the optimization process would generate seeds that would perform much better 

when applied to the system without disturbance.  
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7.4.1 WCMIWO training with disturbance results 

The fittest seeds, which are S1=28.398, S2=26.475, S3=29.353, S4=11.210, 

S5=6.811 and S6=10.833, are selected for analysis. Using Equation 6.6, the Q 

matrix obtained from the seeds is: 

𝑄 =

[
 
 
 
 
 
806.4354 0 0 0 0 0

0 700.9120 0 0 0 0
0 0 861.5681 0 0 0
0 0 0 125.6577 0 0
0 0 0 0 46.3923 0
0 0 0 0 0 117.3512]

 
 
 
 
 

 

and the corresponding gain matrix is: 

𝐹 =
−551.7618 −237.6276 −27.8633 100.8604 53.0928 6.5943
−88.0097 −39.6871 12.5886 16.1881 8.5312 1.0046

 

Figures 7.16 to 7.18 shows the controller’s reaction when attempting to balance the 

Robogymnast in an inverted position from three different configurations as in 

Figure 6.1.  
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Figure 7.16: Simulation of LQR with initial deflection of θ1=-3°; θ2=-3°; θ2=-3° 

 

Figure 7.17: Simulation of LQR with initial deflection of θ1=-3°; θ2=3°; θ2=-3° 
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Figure 7.18: Simulation of LQR with initial deflection of θ1=-3°; θ2=-3°; θ2=-3° 

 

7.4.2 FLIWOH training with disturbance results 

 

The fittest seeds, which are S1=25.0659, S2=16.9821, S3=24.7988, S4=8.7119, 

S5=3.8212 and S6=9.9280, are selected for analysis. Using equation (6.6), the Q 

matrix obtained from the seeds is: 

𝑄 =

[
 
 
 
 
 
628.2976 0 0 0 0 0

0 288.3915 0 0 0 0
0 0 614.9822 0 0 0
0 0 0 75.8976 0 0
0 0 0 0 14.6019 0
0 0 0 0 0 98.5659]

 
 
 
 
 

 

and the corresponding gain matrix is: 
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𝐹 =
−550.7529 −236.9672 −27.5668 100.8604 52.9685 6.5779
−49.5513 −22.2015 12.8659 9.1323 4.8142 0.5500

 

The controller is tested in three different configurations as in Section 7.4.1 and the 

results are shown in Figures 7.19 to 7.21. 

 

Figure 7.19:  Simulation of LQR with initial deflection of θ1=-3°; θ2=-3°; θ2=-3 
 

 



168 
 

Figure 7.20: Simulation of LQR with initial deflection of θ1=-3°; θ2=3°; θ2=-3° 

 

Figure 7.21: Simulation of LQR with initial deflection of θ1=-3°; θ2=-3°; θ2=-3° 
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7.5 Discussion and conclusion 

The simulation results proved that the LQR controller designed using parameters 

obtained by both methods can successfully bring the Robogymnast to an inverted 

and stable configuration. WCMIWO and FLIWOH produced LQR controllers that 

have similar reaction times (within the range of less than 4%)  to each other but are 

slower compared to the LQR controllers trained with disturbance. The WCMIWO 

LQR controller uses between 1.26% to 8.62% less voltage for motor 1 (u1) 

compared to the other methods. However, it requires between 27.66% to 88.9% 

higher voltage for motor 2 (u2) when compared to the other methods, with FLIWOH 

with disturbance requiring the lowest voltage (u2) for motor 2 in almost all 

configurations. This result is consistent throughout the three configurations. In 

order to further analyse the performance of the controllers, more tests had to be 

done. Tables 7.6 and 7.7 compare the performance of the two controllers in different 

initial angular configurations 
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Table 7. 6: Comparison of the performance of controllers in different initial angular (small angles) configurations. 

Deflection Angle Method Jsum Tmax(s) u1max(V) u2max(V) Description/Purpose 

θ1=1°; θ2=1°; θ3=1 

WCMIWO 1313100 4.775 8.866 7.457 

To examine controller’s reaction at low 

deflection angles. 

FLIWOH 1649 4.600 9.272 1.939 

WCMIWO with Disturbance 3449 4.075 9.630 1.536 

FLIWOH with Disturbance 1745 4.250 9.613 0.865 

θ1=1°; θ2=-1°; θ3=1° 

WCMIWO 72391 3.175 2.221 0.517 

To examine controller’s reaction at low 

deflection angles. 

FLIWOH 94 3.125 2.249 0.330 

WCMIWO with Disturbance 196 2.850 2.308 0.366 

FLIWOH with Disturbance 109 3.050 2.303 0.374 

θ1=3°; θ2=3°; θ3=3° 

WCMIWO 22296000 6.35 12.000 12.000 

Figure 7.3 and 7.12 
FLIWOH 34779 6.375 12.000 5.816 

WCMIWO with Disturbance 81669 5.700 12.000 4.608 

FLIWOH with Disturbance 44946 6.025 12.000 2.595 

 WCMIWO 651520 4.075 6.662 1.550 

Opposite of Figure 7.2 and 7.11 
θ1=3°; θ2=-3°; θ3=3° 

FLIWOH 843 4.050 6.746 0.991 

WCMIWO with Disturbance 1766 3.675 6.924 1.097 

FLIWOH with Disturbance 979 4.000 6.909 1.121 

 WCMIWO 28180000 6.525 12.000 12.000 

To examine the controller’s reaction 

 θ1=3.1°; θ2=3.1°; θ3=3.1° 

FLIWOH 49311 6.650 12.000 6.010 

WCMIWO with Disturbance 123270 6.025 12.000 4.762 

FLIWOH with Disturbance 77390 6.475 12.000 2.700 
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Table 7. 7: Comparison of the performance of controllers in different initial angular (large angles) configurations. 

Deflection Angle Method Jsum Tmax(s) u1max(V) u2max(V) Description/Purpose 

θ1=0°; θ2=4°; θ3=5° 

WCMIWO 4526100 5.375 12.000 12.000 
To examine the controller’s reaction 

when higher deflection angles are 

applied to link 2 and link 3. 

FLIWOH 5751 5.200 12.000 3.298 

WCMIWO with Disturbance 12349 4.600 12.000 2.551 

FLIWOH with Disturbance 6220 4.800 12.000 1.325 

θ1=4°; θ2=0°; θ3=0° 

WCMIWO 7485100 5.575 12.000 12.000 
To examine the controller’s reaction 

when higher deflection angles are 

applied to link 1. 

FLIWOH 9819 5.450 12.000 4.277 

WCMIWO with Disturbance 20920 4.825 12.000 3.374 

FLIWOH with Disturbance 10680 5.050 12.000 1.909 

θ1=5.45°; θ2=0°; θ3=0° 

WCMIWO 33873000 6.700 12.000 12.000 

To test maximum deflection angle the 

controller can recover from. 

FLIWOH 1411751 6.800 12.000 12.000 

WCMIWO with Disturbance Inf Inf 12.000 12.000 

FLIWOH with Disturbance Inf Inf 12.000 12.000 

θ1=5.65°; θ2=0°; θ3=0° 

WCMIWO 71745000 7.375 12.000 12.000 

To test maximum deflection angle the 

controller can recover from. 

FLIWOH 2978200 7.500 12.000 12.000 

WCMIWO with Disturbance Inf Inf 12.000 12.000 

FLIWOH with Disturbance Inf Inf 12.000 12.000 

θ1=5.7°; θ2=0°; θ3=0° 

WCMIWO Inf Inf 12.000 12.000 

To test maximum deflection angle the 

controller can recover from. 

FLIWOH Inf Inf 12.000 12.000 

WCMIWO with Disturbance Inf Inf 12.000 12.000 

FLIWOH with Disturbance Inf Inf 12.000 12.000 
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Tables 7.6 and 7.7 show that all the controllers trained with disturbance achieved 

faster settling times compared to their counterparts that were not trained with 

disturbance. At small angles, voltage u1 is lower for WCMIWO, but at large angles 

this difference ceases to exist. Voltage u2 is lower for FLIWOH trained with 

disturbance at almost all configurations. Both controllers that were trained with 

disturbance were unable to recover the Robogymnast when the initial absolute 

angular position was equal to [5.45°, 0°, 0°].  Further tests showed that WCMIWO 

trained with disturbance can recover from a maximum initial angular position of 

[5.432°, 0°, 0°], while FLIWOH trained with disturbance can only recover from the 

initial angular position of [5.369°, 0°, 0°].  WCMIWO and FLIWOH can recover 

from a maximum initial angular position of [5.692°, 0°, 0°]. Table 7.8 shows the 

ranking of performance of the four controllers, where 1 is the best and 4 is the worst. 

Table 7.8: Ranking of Performance 
 

Method Settling 
Time 

Efficiency of 
motor 1 (u1) 

Efficiency of 
motor 2 (u2) 

Ability to upright 
from larger 

initial angles of 
deflection 

WCMIWO 4 1 4 1 

FLIWOH 3 2 3 1 

WCMIWO with 
Disturbance 1 3 2 2 

FLIWOH with 
Disturbance 2 3 1 3 
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Based on Table 7.8 the WCMIWO LQR controller has the highest ranking for the 

efficiency of motor 1 and the ability to achieve an upright position from larger initial 

angles. This makes it the most suitable controller for this application, largely 

because of the system’s dependency on u1 to maintain the Robogymnast in an 

upright position is larger than its dependency on u2. This can be seen from the 

results, as u1 is usually larger than u2. Since both u1 and u2 have a maximum limit 

of 12V, it is in its best interest that the required value of u1 be as small as possible. 

 

Table 7.9 shows the performance of the four controllers compared to the controllers 

LQRJ and LQRT in chapter 6.  As expected LQRT performs faster compared to the 

other techniques, while LQRJ performs the slowest. The results also show that 

LQRJ uses the least amount of voltage for u1 at small angles but uses the most 

amount of voltage at medium angles.  
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Table 7.9: Comparison with LQRJ and LQRT 
 

Deflection Angle Method Jsum Tmax(s) u1max(V) u2max(V) Remarks 

θ1=1°; θ2=1°; θ3=1 

LQRJ 605640 6.700 7.732 12.000 

Small angles 

LQRT 2725800 3.625 10.105 2.097 

WCMIWO 1313100 4.775 8.866 7.457 

FLIWOH 1649 4.600 9.272 1.939 

WCMIWO with Disturbance 3449 4.075 9.630 1.536 

FLIWOH with Disturbance 1745 4.250 9.613 0.865 

θ1=3°; θ2=-3°; θ3=3° 

LQRJ 325330 5.700 7.322 9.541 

Medium 

angles 

LQRT 1301800 3.100 7.296 1.927 

WCMIWO 651520 4.075 6.662 1.550 

FLIWOH 843 4.050 6.746 0.991 

WCMIWO with Disturbance 1766 3.675 6.924 1.097 

FLIWOH with Disturbance 979 4.000 6.909 1.121 

θ1=5.45°; θ2=0°; θ3=0° 

LQRJ 15839000 9.375 12.000 12.000 

Large angles 

LQRT 201070000 5.600 12.000 6.195 

WCMIWO 33873000 6.700 12.000 12.000 

FLIWOH 1411751 6.800 12.000 12.000 

WCMIWO with Disturbance Inf Inf 12.000 12.000 

FLIWOH with Disturbance Inf Inf 12.000 12.000 
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7.6 Summary 

The purpose of this chapter was to determine whether the multi-objective IWO 

could produce an LQR controller that takes into consideration the values of the J 

cost function and settling time (Tst). The first optimization method (WCMIWO) 

applies IWO for WCM optimization of the J and Tst values. Weight values were 

assigned to each variable and the resulting values were multiplied by each other to 

produce a single value which is used as the fitness criterion. The second 

optimization method (FLIWOH) is a hybrid IWO that employs fuzzy logic to attain 

a membership value which is used as the fitness criterion. Using the Q values 

obtained, two LQR controllers were designed and tested using simulation. Two 

other controllers were designed using the previous two methods but trained with 

minor disturbances. All four controllers successfully balanced the Robogymnast in 

an inverted configuration even when external disturbance was applied to it. The 

four controllers were examined and their performance evaluated.
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CHAPTER 8 

Conclusions, Contributions and Future Work 

  

This chapter summarises the conclusions and contributions of this research. It also 

provides suggestions for future work. 

 

8.1 Conclusions 

In conclusion, all the objectives in Chapter 1 have been met. 

 A swing-up method for the Robogymnast through the manipulation of its motor 

control signals was successfully designed. This was achieved by selecting the 

values of control parameters ∆𝛼1, ∆𝛼2, ∆𝛿1 and ∆𝛿2. Two parameters (∆𝛼1 and 

∆𝛿1) were assigned to control signal 𝑢1 and another two parameters (∆𝛼2 and 

∆𝛿2) were assigned to control signal 𝑢2. 

 A swarm-based optimisation technique was applied to optimise the parameters 

of the control signals. The IWO was used to optimize the swing-up motion of 
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the robot by determining the optimum values of parameters that control the 

input sinusoidal voltage of the two motors. 

 The optimised parameters were applied to the swing-up motion of the 

Robogymnast. The values obtained from IWO were then applied to both 

simulation and experiment. Results showed that the swing-up motion of the 

Robogymnast from the stable downward position to the inverted configuration 

was successfully accomplished. 

 A neural network model of the system was developed and applied. A multi-

layered ENN model was used to represent the system. The ENN was selected 

because its behaviour is similar to that of a state space equation. 

 The ENN model of the Robogymnast was analysed and validated. Inputs were 

applied to both the mathematical model and the neural network model and their 

outputs were analyzed and compared with the actual system’s behaviour.   

 Controllers to balance the Robogymnast in an inverted configuration were 

developed. Two LQR controllers were designed and their behaviour examined.   

 The optimised parameters of the controllers were selected using swarm-based 

optimization techniques. The fitness criteria chosen were the cost function J 

and settling time Tst. The fitness criteria were employed on the IWO and used 

to obtain optimum diagonal values of the Q matrix.   

 Modified swarm-based multi-objective optimisation techniques were 

developed to optimise the selection of the controller parameters. Two multi-

objective optimization methods based on IWO were proposed. The WCMIWO 
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is a weight criteria method, while the FLIWOH uses fuzzy logic to determine 

the fitness of the set seeds.   

 Four controllers were proposed using the MOO. The proposed controllers were 

validated through simulation. 

 

8.2 Contributions 

The novel contributions made in this study are as follows:  

1. Introduced a new method to manipulate the amplitudes and frequencies of 

the sinusoidal control signals of the motors by assigning four parameters 

(∆𝛼1, ∆𝛼2, ∆𝛿1 and ∆𝛿2) to control the amplitudes and frequencies of the 

control signals (Chapter 4). 

2. Employed a novel optimisation method (Invasive Weed Optimization) to 

find the optimal values of the control signals’ parameters to achieve smooth 

swing-up motion of the Robogymnast (Chapter 4). 

3. Applied the optimised parameters of the swing-control on the real system 

(Chapter 4). 

4. Created a neural network model of the Robogymnast as an alternative to the 

mathematical model (Chapter 5). 

5. Applied the neural network model of the Robogymnast to the upright 

balancing control (Chapter 6 and Chapter 7). 
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6. Developed an LQR controller by using IWO and incorporating the cost 

function (J) and settling time (Tst) as fitness criteria in its design (Chapter 

6).  

7. Designed two multi-objective optimisation techniques to optimize the LQR 

controller parameters (Chapter 7). 

8. Applied disturbance to the system during the optimisation procedure to 

create a more robust controller (Chapter 7). 

9. Analyzed the ability of the designed controllers to overcome external 

disturbance to the system (Chapter 7). 

10. Compared the performance of the controllers in different configurations of 

the Robogymnast (Chapter 6 and Chapter 7). 

 

8.3 Future work 

This section discusses some of the future works that can be implemented: 

1. Design a catching controller to ‘catch’ or hold the system as it swings close 

to the inverted position to assist in the transition from swing-up control to 

balancing control.  

2. Implement different control methods such as Q-learning in the design of a 

balancing controller for the Robogymnast.  
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3. Develop learning algorithms for the WCMIWO to make the weights 

adaptable based on the application. 

4. Analyze the Robogymnast system to determine any improvements that can 

be made.  

5. Perform a study on the dimensions of the Robogymnast in order to find a 

more optimal design of the mechanism. The length and weight of the links 

have to be re-evaluated. The material used (aluminium) should be replaced 

with stronger but lighter material.    

6. Analyze selection of actuators that would improve the motion of the 

Robogymnast. This might include replacing the actuator on joint 2 (shoulder 

joint) with more powerful ones. This is because based on the findings in the 

research, the power requirement for the actuator on joint 2 is greater than 

the actuator on joint 3 (hip joint). 

7.  Apply the proposed controllers on the Robogymnast system after 

implementation of points 4, 5 and 6. 
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APPENDIX  

 

Appendix A 

A.1. LM12CL 80W Operational Amplifier  

The LM12 is a power op amp capable of driving ±25V at ±10A while operating 

from ±30V supplies. The monolithic IC can deliver 80W of sine wave power into a 

4Ω load with 0.01% distortion. Power bandwidth is 60 kHz. Further, a peak 

dissipation capability of 800W allows it to handle reactive loads such as 

transducers, actuators or small motors without derating. Important features include 

the following:  

 

The IC delivers ±10A output current at any output voltage yet is completely 

protected against overloads, including shorts to the supplies. The dynamic safe area 

protection is provided by instantaneous peak temperature limiting within the power 

transistor array. The turn-on characteristics are controlled by keeping the output 

open-circuited until the total supply voltage reaches 14V. The output is also opened 

as the case temperature exceeds 150°C or as the supply voltage approaches the BV 

of the output transistors. The IC withstands over-voltages to 80V. This monolithic 

op amp is compensated for unity-gain feedback, with a small-signal bandwidth of 

700 kHz. Slew rate is 9V/μseconds, even as a follower. Distortion and capacitive-
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load stability rival that of the best designs using complementary output 186 

transistors. Further, the IC withstands large differential input voltages and is well 

behaved should the common-mode range be exceeded.  The LM12 establishes that 

monolithic ICs can deliver considerable output power without resorting to complex 

switching schemes. Devices can be paralleled or bridged for even greater output 

capability. Applications include operational power supplies, high-voltage 

regulators, high-quality audio amplifiers, tape-head petitioners, x-y plotters or other 

servo-control systems.  

 

The LM12 is supplied in a four-lead, TO-220 package with V− on the case. A gold-

eutectic die-attach to a molybdenum interface is used to avoid thermal fatigue 

problems. The LM12 is specified for either military or commercial temperature 

range. The LM12 is prone to low-amplitude oscillation bursts coming out of 

saturation if the high-frequency loop gain is near unity. The voltage follower 

connection is most susceptible. This glitching can be eliminated at the expense of 

small-signal bandwidth using input compensation. When a push-pull amplifier goes 

into power limit while driving an inductive load, the stored energy in the load 

inductance can drive the output outside the supplies. Although the LM12 has 

internal clamp diodes that can handle several amperes for a few milliseconds, 

extreme conditions can cause destruction of the IC. The internal clamp diodes are 

imperfect in that about half the clamp current flows into the supply to which 187 

the output is clamped, while the other half flows across the supplies. Therefore, the 
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use of external diodes to clamp the output to the power supplies is strongly 

recommended.  

 

 

 

 

A.2. E-Series Tachometer Generators  

The E-Series (Subminiature) 3 volts/1000 RPM DC tachometer generator is the 

smallest tach generator among those offering similar technical characteristics. 

Many outstanding features make it particularly suitable for use in all types of servo 

systems. Although its diameter is only 0.760‖, the E-Series provides up to 3 V/1000 

RPM output. Almost any Servo-Tek DC tachometer generator can be manufactured 

with special configurations, various electrical specifications and shaft 

modifications such as flats, pinions, holes, etc. 
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Appendix B 

B.1. Robogymnast Controller Program 

/************************************************************************

****/ 

/*                                                                          

*/   

/*                      Custom load subroutine for DAQ-2501 Card            

*/ 

/*                            Robotic Gymnast Controller                    

*/  

/*                                                                          

*/ 

/*       Manufacturing Engineering Centre, Cardiff School of Engineering    

*/ 

/*                - Copyright 2003 Cardiff University                       

*/ 

/*                                                                          

*/ 

/************************************************************************

****/ 

#include<iostream.h> 

#include<stdio.h> 

#include<float.h>  

#include<math.h>  

#include<conio.h> 

#include<iomanip.h> 

#include<fstream.h> 

#include<stdlib.h>  

#include <windows.h>  

#include <string.h> 

#include <time.h> 

#include "d2kdask.h" 

//#include "resource.h"   

#define DA_REF_VOL    10.0 

#define CHAN_NUM      All_Channels 

#define DA_POLAR      DAQ2K_DA_BiPolar 

#define DA_REFER      DAQ2K_DA_Int_REF 

#define AI_RANGE      AD_B_10_V 

#define PI            3.14159 

#define max_data      10000 

FILE  *infile1; 

FILE  *infile2; 

FILE  *infile3; 

FILE  *infile4; 

FILE  *infile5; 

  

void main(void) 

{ 

    I16 AIchcnt = 8, AOchcnt = 4, card_num=0, card_type, card, err, i=0; 

    I16 out_data[4], ch_num[4]; 

    U16 chan_data[8]; 

    int j;  

    long  delay,delay2,JJ;  

     float temp[6][8],temp1[3],EE[3]; 
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    double  Ref1, Ref2, F[2][8], vv[3],T1[2][6], L1[6][6], K1[2][4]; 

    double v[3],vvv[6], w[2], xx[6],U1_2[2], Uw[2], Ux[2], E1_2[2]; 

    double u1=0.0,u2=0.0,u3=0.0,Ref1n, Ref2n,Refn1_2[2],pot_gain, test; 

    F64 chan_voltage[8], chan_voltage_error0=0.0, 

chan_voltage_error1=0.0, 

chan_voltage_error2=0.0,chan_voltage_error3=0.0,chan_voltage_initial=0.0; 

    F64 theta0; 

    F32 out_voltage[4];  

  

    FILE *fp, *fopen(); 

    float U[max_data][2], X[max_data][6], I[max_data][2], V[max_data][3]; 

    int count=0; 

system( "cls" ); // Clear Screen  

//printf("\n\n\n\n"); 

printf("    ********************&&&&&&***************************\n"); 

printf("    *                                                   *\n"); 

printf("    *      ROBOTIC GYMNAST CONTROL SYSTEM               *\n"); 

printf("    *                                                   *\n"); 

printf("    *                                                   *\n"); 

printf("    *                                                   *\n"); 

printf("    *      CARDIFF SCHOOL OF ENGINEERING                *\n"); 

printf("    *                                                   *\n"); 

printf("    *           CARDIFF UNIVERSITY                      *\n"); 

printf("    *                                                   *\n"); 

printf("    *                                                   *\n"); 

printf("    *            HAFIZUL A. ISMAIL                       *\n"); 

printf("    *                                                   *\n"); 

printf("    *       &&&&&&&&&&&&&&&&&&&&&&&&&&                  *\n"); 

printf("    *                                                   *\n"); 

printf("    *                                                   *\n"); 

printf("    *    PRESS ANY KEY TO STOP THE PROGRAMME            *\n"); 

printf("    *                                                   *\n"); 

printf("    *                                                   *\n"); 

printf("    ********************&&&&&&***************************\n"); 

     

/************************************************************************

****/ 

/*    This part registers card and performs AD and DA auto-calibration      

*/ 

/************************************************************************

****/ 

  

    card_type = DAQ_2501; 

    if ((card=D2K_Register_Card(card_type,card_num))<0)  

    { 

        printf("Register_Card error=%d\n", card); 

        exit(1); 

    } 

  

      

/************************************************************************

********/ 

/* This part reads inputs from all channels                                     

*/ 

/************************************************************************

********/ 

     

    err = D2K_AI_CH_Config (card, CHAN_NUM, AI_RANGE); 
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    if (err!=NoError)  

    { 

       printf("D2K_AI_CH_Config error=%d", err); 

       exit(1); 

    } 

     

    err = D2K_AO_CH_Config (card, CHAN_NUM, DA_POLAR, DA_REFER, 

(F64)DA_REF_VOL); 

    if (err!=NoError)  

    { 

       printf("D2K_AO_CH_Config error=%d", err); 

       exit(1); 

    } 

  

    for(i=0; i<AOchcnt; i++) 

    { 

    ch_num[i] = i; 

    } 

  

  err = D2K_AO_Group_Setup (card, DA_Group_A, AOchcnt, &ch_num); 

    if (err!=NoError)  

    { 

       printf("D2K_AO_Group_Setup error=%d", err); 

       exit(1); 

    } 

     

    for(i=0; i<AIchcnt; i++)  

        {     

     

         

// Get AI Hexadecimal value and transform it to voltage // 

        err = D2K_AI_ReadChannel (card, i, &chan_data[i]); 

        if (err!=NoError)  

        { 

            printf("D2K_AI_ReadChannel No.%d", i, "error=%d", err); 

            exit(1); 

        } 

                 

        //transform AI value to voltage  

        err = D2K_AI_VoltScale (card, AI_RANGE, chan_data[i], 

&chan_voltage[i]);  

        if (err!=NoError)  

        { 

        printf("D2K_AI_VoltScale error No.%d", i, "error=%d", err); 

            exit(1); 

        } 

        } 

    //theta0=-chan_voltage[0]; 

    //for(i=1;i<2;i++){chan_voltage[i]=-chan_voltage[i];}; 

  

// Potentiometer gain = 10x(2xpi)/30 = 2x3.142/3 (10 turns with +15 V, -

15 V supply). 

// Amplifiers gain = 3.7 

// Overall gain = 2x3.142/(3x3.7) = 0.566 rad/V 

// All chan_voltage values should be multiplied by this gain to convert 

the angles from volts to radians. 
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// This section reads the Controller and the Observer Parameters from 

their files // 

  

  

infile1=fopen("F.txt","r"); // Controller F for u=-Fx 

  

for (i=0;i<2;i++) 

{ 

fscanf(infile1,"%f %f %f %f %f %f %f %f 

\n",&temp[i][0],&temp[i][1],&temp[i][2],&temp[i][3], 

       &temp[i][4],&temp[i][5],&temp[i][6],&temp[i][7]); 

  

}; 

for (i=0;i<2;i++) 

{ 

    for (j=0;j<8;j++) 

    { 

F[i][j]= (double) temp[i][j]; 

    } 

} 

  

fclose(infile1); 

  

/*for (i=0;i<2;i++) 

{ 

printf("%f %f %f %f %f %f %f %f 

\n",F[i][0],F[i][1],F[i][2],F[i][3],F[i][4],F[i][5], 

       F[i][6],F[i][7]); 

};*/ 

  

  

   

// This section reads the first choice of Observer parameters from their 

files 

  

infile2=fopen("K1.txt","r"); // Observer k1 for v(k+1)=Ev(k)+Hu(k)+KKy(k) 

  

for (i=0;i<2;i++) 

{ 

    fscanf(infile2,"%f %f %f 

%f\n",&temp[i][0],&temp[i][1],&temp[i][2],&temp[i][3]); 

}; 

  

for (i=0;i<2;i++) 

{ 

    for (j=0;j<4;j++) 

    { 

K1[i][j]= (double) temp[i][j]; 

    } 

} 

fclose(infile2); 

  

/*for (i=0;i<2;i++) 

{ 

    printf("%f %f %f %f\n",K1[i][0],K1[i][1],K1[i][2],K1[i][3]); 

};*/ 
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infile3=fopen("L1.txt","r"); // State Estimate xx=L*[y;v]=L1*y+L2*v 

  

for (i=0;i<6;i++) 

{ 

    fscanf(infile3,"%f %f %f %f %f %f 

\n",&temp[i][0],&temp[i][1],&temp[i][2],&temp[i][3], 

           &temp[i][4],&temp[i][5]); 

}; 

  

for (i=0;i<6;i++) 

{ 

    for (j=0;j<6;j++) 

    { 

L1[i][j]= (double) temp[i][j]; 

    } 

} 

fclose(infile3); 

  

/*for (i=0;i<6;i++) 

{    

    printf("%f %f %f %f %f %f 

\n",L1[i][0],L1[i][1],L1[i][2],L1[i][3],L1[i][4],L1[i][5]); 

     

};*/ 

  

  

  

infile4=fopen("T1.txt","r"); // Observer Transform v=T1x 

  

for (i=0;i<2;i++) 

{ 

    fscanf(infile4,"%f %f %f %f %f %f 

\n",&temp[i][0],&temp[i][1],&temp[i][2],&temp[i][3], 

           &temp[i][4],&temp[i][5]); 

}; 

  

for (i=0;i<2;i++) 

{ 

    for (j=0;j<6;j++) 

    { 

T1[i][j]= (double) temp[i][j]; 

    }  

} 

fclose(infile4); 

  

/*for (i=0;i<2;i++) 

  

{  

printf("%f %f %f %f %f %f 

\n",T1[i][0],T1[i][1],T1[i][2],T1[i][3],T1[i][4],T1[i][5]); 

     

};*/ 

  

  

  

infile5=fopen("EE.txt","r"); // Observer Eigenvalues 
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    fscanf(infile5,"%f %f \n",&temp1[0],&temp1[1]); 

  

for (i=0;i<2;i++) 

{ 

     

EE[i]=temp1[i]; 

//printf("%f\n",EE[i]); 

  

} 

fclose(infile5); 

  

  

  

test=4.0; // For adjusting the sampling time 

     

     

  

      

     

    count=0; 

    JJ=0; 

    delay2=5.80*1330000*0.7; 

    //initialization of the integral  

     

    for (i=0;i<2;i++) 

    { 

    {w[i]=0.0;}; 

    }; 

  

  

for (i=0;i<3;i++) 

    { 

        v[i]=0.0; 

    }; 

  

    //chan_voltage_error0=chan_voltage[0]; 

    //chan_voltage_error1=chan_voltage[1]; 

    //chan_voltage_error2=chan_voltage[2];  

    //chan_voltage_error3=chan_voltage[3]; 

    //printf("%f %f 

%f\n",chan_voltage[0],chan_voltage[1],chan_voltage[2]); 

     

    //(double)(chan_voltage[0])=((double)(chan_voltage[0])-

(double)(chan_voltage_error0));  

    //(double)(chan_voltage[1])=((double)(chan_voltage[1])-

(double)(chan_voltage_error1)); 

    //(double)(chan_voltage[2])=((double)(chan_voltage[2])-

(double)(chan_voltage_error2));  

    //(double)(chan_voltage[3])=((double)(chan_voltage[3])-

(double)(chan_voltage_error3)); 

     

    /*if( fabs((double)(chan_voltage[0]))*0.566 <= 0.01) 

        {(double)(chan_voltage[0])=0.0;} 

    if( fabs((double)(chan_voltage[1]))*0.105 <= 0.0215) 

        {(double)(chan_voltage[1])=0.0;} 

    if( fabs((double)(chan_voltage[2]))*0.105 <= 0.0215) 

        {(double)(chan_voltage[2])=0.0;} 
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   if( fabs((double)(chan_voltage[3]))*4.475 <= 0.08) 

        {(double)(chan_voltage[3])=0.0;}*/ 

    //printf("%f %f 

%f\n",chan_voltage[0],chan_voltage[1],chan_voltage[2]); 

  

    Ref1n=(double)(chan_voltage[1]); 

    Ref2n=(double)(chan_voltage[2]); 

    Ref1=(double)(chan_voltage[1]); 

    Ref2=(double)(chan_voltage[2]); 

   Ref1=0.0; 

   Ref2=0.0; 

     

//(double)(chan_voltage_initial)=((double)(chan_voltage[0])); 

  

  

  

  

       // Observer State Initialisation // 

  

for(j=0;j<2;j++) 

{ 

    for (i=0;i<4;i++) 

    { 

        if (i==0)  

     

        {(pot_gain=0.566);}  

     

        if (i==3) 

         

            {(pot_gain=4.475);} 

  

        else 

         

        {(pot_gain=0.105);}  

         

     

         

        v[j]+=1.0*T1[j][i]*(double)(chan_voltage[i])*(pot_gain); // v=Tx 

    }    

}; 

  

//Refn1_2[1]=0.0; 

  

//E1_2[1]=(Refn1_2[1]-(double)(chan_voltage[2]))*0.105; 

  

  

for (i=0;i<2;i++)  

        { 

            E1_2[i]=0.0; 

         

        }; 

  

  

//printf("%f\n",(double)(chan_voltage_initial)); 

  

  

  

// This is where the do loop starts 
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if ( (fabs((double)(chan_voltage[0]))<3.0)&& 

            (fabs((double)(chan_voltage[1]))<9.5)&& 

            (fabs((double)(chan_voltage[2]))<9.5)) 

             

{ 

do{ 

  

//printf("%f %f %f\n",chan_voltage[0],chan_voltage[1],chan_voltage[2]); 

  

  

// States Resetting // 

  

        for (i=0;i<6;i++)  

        { 

            xx[i]=0.0;  

            vvv[i]=0.0; 

        }; 

  

  

             

        for (i=0;i<2;i++)  

        { 

            Ux[i]=0.0; 

            Uw[i]=0.0; 

            vv[i]=0.0; 

        }; 

  

//printf("%f %f\n",v[0],v[1]);       

  

  

         

    // Reference Smoothing // 

  

    Ref1n=0.85*Ref1n+0.15*Ref1; 

    Ref2n=0.85*Ref2n+0.15*Ref2; 

    Refn1_2[0]=Ref1n; 

    Refn1_2[1]=Ref2n; 

     

         

     

    for (j=0;j<6;j++)  

    { 

        for (i=0;i<2;i++) 

        {  

    vvv[j]+=L1[j][i+4]*v[i];                    // vvv(k)=L2*vn(k) 

     

        } 

    //  printf("%f\n",vvv[j]); 

         

    }; 

    

     

for (j=0;j<6;j++)  

     

{ 

    for (i=0;i<4;i++) 

        {  
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        if (i==0)  

     

        {(pot_gain=0.566);}  

        else    

            if (i==3) 

         

            {(pot_gain=4.475);}   // this value if it is checking the 

velocity of first pendulum 

         

                else 

         

                {(pot_gain=0.105);} 

  

     

                xx[j]+=L1[j][i]*((double)(chan_voltage[i])*(pot_gain));         

// xe(k)=L1*y(k) 

  

  

    } 

         

    xx[j]=xx[j]+vvv[j]; 

//  printf("%f\n",xx[j]); 

        X[count][j]=(float)xx[j]; 

     

    }; 

//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@// 

     

    // Motor Control Equations (u=-F*xx) // 

   

    for (i=0;i<2;i++) 

     

    {    

        for (j=0;j<6;j++) 

        {  

            Ux[i]+=F[i][j]*xx[j]; 

        } 

     

        for (j=0;j<2;j++) 

        {  

            Uw[i]+=F[i][j+6]*w[j]; 

        } 

     

    }; 

  

  

  

for(i=0;i<2;i++) 

{ 

    U1_2[i]=-Ux[i]-Uw[i]; 

}; 

//  printf("%f %f\n",u1,u2); 

     u1=1.0*(U1_2[0]); 

    //u1=test; 

     u2=1.0*(U1_2[1]);  

    //u2=test; 

  

  // Preparation of Motor Controls (adjusting the Op Amp offsets) // 
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    /*  if (u1<0.0)  

        {u1=u1+0.15;} 

        if (u2<0.0)  

        {u2=u2+0.15;} 

         if (u2>0.0)  

        {u2=u2+0.035;}*/ 

        out_voltage[0]= (F32)(u1); 

        out_voltage[1]= (F32)(u2); 

        out_voltage[2]= (F32)(u3); 

  

  

// Sending Motor Controls // 

  

        U[count][0]=(float)out_voltage[0]; 

        for (i=0;i<AOchcnt;i++) 

        { 

            if (out_voltage[i]>10) out_voltage[i]=10; 

            if (out_voltage[i]<(-10)) {out_voltage[i]=-10;} 

        } 

         

         

        for(i=0; i<AOchcnt;i++) 

        { 

        out_data[i]= (U16)( ((out_voltage[i]*0.5) +10) / 20 * 4095 ); 

        } 

         

        err = D2K_AO_Group_Update (card, DA_Group_A, out_data); 

         

                         

        if (err!=NoError)  

        { 

            printf("D2K_AO_Group_Update error=%d", err); 

            exit(1); 

        } 

         

        U[count][1]=(float)out_voltage[1]; 

  

         

        // Delay to adjust the sampling time to 25 mse 

        for (delay=0;delay<delay2;delay++) 

        { 

        }; 

//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@// 

  

        // Observer Equation // 

     

        for (j=0;j<2;j++)  

    { 

        for (i=0;i<4;i++) 

    { 

    if (i==0)  

    {(pot_gain=0.566);} 

    else  

    {(pot_gain=0.105);} 

     if (i==3)  

    {(pot_gain=4.475);} 
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        vv[j]+=1.0*K1[j][i]*((double)(chan_voltage[i])*(pot_gain)); 

    //printf("%f\n",pot_gain); 

        }  

  

  

     

    v[j]=EE[j]*v[j]+vv[j];              // v(k+1)=Ev(k)+K1y(k), H=0 

  

    V[count][j]=(float)v[j]; 

  

  

    };  

   

//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@// 

  

    // Integrator Equation // 

  

    for(i=0;i<2;i++) 

    { 

        E1_2[i]=(Refn1_2[i]-(double)(chan_voltage[i+1]))*0.105; 

        //if(fabs(E1_2[i]) <= 0.005) 

        //{E1_2[i]=0.0;} 

     

    }; 

    //E1_2[1]=E1_2[1]/13; 

    for (i=0;i<2;i++) 

    { 

        w[i]=w[i]+10.0*0.01*E1_2[i]; // w(k+1)=w(k)+0.025*(yr-y) 

        //w[1]=w[1]+0.01*E1_2[1]; 

        I[count][0]=(float)w[i]; 

    };   

  

//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@// 

  

  

// Analogue Inputs Reading (Joint Angles) // 

  

        for(i=0; i<AIchcnt; i++)  

        {      

         

     

            err = D2K_AI_ReadChannel (card, i, &chan_data[i]); 

        if (err!=NoError)  

        { 

            printf("D2K_AI_ReadChannel No.%d", i, "error=%d", err); 

            exit(1); 

        } 

                 

    //transform AI value to voltage // 

  

        err = D2K_AI_VoltScale (card, AI_RANGE, chan_data[i], 

&chan_voltage[i]);  

        if (err!=NoError)  

        { 

        printf("D2K_AI_VoltScale error No.%d", i, "error=%d", err); 

            exit(1); 

        } 
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        }; 

        //for(i=1;i<2;i++){chan_voltage[i]=-chan_voltage[i];}; 

    //(double)(chan_voltage[0])=((double)(chan_voltage[0])-

(double)(chan_voltage_error0));  

    //(double)(chan_voltage[1])=((double)(chan_voltage[1])-

(double)(chan_voltage_error1)); 

    //(double)(chan_voltage[2])=((double)(chan_voltage[2])-

(double)(chan_voltage_error2));  

    //(double)(chan_voltage[3])=((double)(chan_voltage[3])-

(double)(chan_voltage_error3)); 

  

    /*if( fabs((double)(chan_voltage[0]))*0.566 <= 0.01) 

        {(double)(chan_voltage[0])=0.0;} 

    if( fabs((double)(chan_voltage[1]))*0.105 <= 0.0215) 

        {(double)(chan_voltage[1])=0.0;} 

    if( fabs((double)(chan_voltage[2]))*0.105 <= 0.0215) 

        {(double)(chan_voltage[2])=0.0;} 

     //if( fabs((double)(chan_voltage[3]))*4.475 <= 0.08) 

        //{(double)(chan_voltage[3])=0.0;}*/ 

     

    count=count+1; 

    //test=-test; 

  

      // printf("%f %f\n",v[0],v[1]); 

}while( (kbhit()==0)&&((fabs((double)(chan_voltage[0])))<3.0)&& 

            ((fabs((double)(chan_voltage[1])))<9.5)&& 

            ((fabs((double)(chan_voltage[2])))<9.5)&&(count<max_data)); 

  

    }  // End of IF Condition 

  

  

  

  

  

printf(" Analogue Inputs:  Ch1     Ch2      Ch3     Ch4     Ch5\n\n"); 

  

         

  

   

        // Release the I/O Card //  

     

     D2K_Release_Card(card); 

  

    if ((fp=fopen("motor_voltages.mat","w"))==0){printf("can't open a 

file\n");exit(1);} 

    for (i=0;i<max_data;i++) 

    { 

        fprintf(fp,"%.4f %.4f\n",U[i][0],U[i][1]); 

    }; 

     

    fclose(fp); 

    if ((fp=fopen("states.mat","w"))==0){printf("can't open a 

file\n");exit(1);} 

    for (i=0;i<max_data;i++) 

    { 

        fprintf(fp,"%.4f %.4f %.4f %.4f %.4f 

%.4f\n",X[i][0],X[i][1],X[i][2],X[i][3],X[i][4],X[i][5]); 

    }; 
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    fclose(fp); 

  

    if 

((fp=fopen("observer_states_Tacho1_Est23.mat","w"))==0){printf("can't 

open a file\n");exit(1);} 

    for (i=0;i<max_data;i++) 

    { 

        fprintf(fp,"%.4f %.4f %.4f\n",V[i][0],V[i][1], V[i][2]); 

    }; 

    fclose(fp); 

  

if 

((fp=fopen("integrator_states_Tacho1_Est23.mat","w"))==0){printf("can't 

open a file\n");exit(1);} 

    for (i=0;i<max_data;i++) 

    { 

        fprintf(fp,"%.4f %.4f\n",I[i][0],I[i][1]); 

    }; 

    fclose(fp);  

     

printf("%d this count after inc\n",count); 

} ; // End of the main Loop  

  

 

 

B.2. Robogymnast swing-up program 
 

  

  
%%Robogymnast Swinging%% 

  
%%Lagrange Eqn Matrix%% 

  
M1= (m1*a1) + (m2+m3)*l1; 
M2 = (m2*a2)+(m3*l2); 
M3= m3*a3; 
J1 = I1+(m1*a1*a1)+(m2+m3)*(l1*l1); 
J2= I2+(m2*a2*a2)+(m3*l2*l2); 
J3=I3+(m3*a3*a3); 

  
%%Lagrange%%  

  
M=[J1+Ip1 (l1*M2)-Ip1 l1*M3; (l1*M2)-Ip1 J2+Ip1+Ip2 (l2*M3)-Ip2; l1*M3 

(l2*M3)-Ip2 J3+Ip2]; 
N=[C1+C2+Cp1 -C2-Cp1 0; -C2-Cp1 C2+C3+Cp1+Cp2 -C3-Cp2; 0 -C3-Cp2 C3+Cp2]; 
P=-[M1*g 0 0; 0 M2*g 0; 0 0 M3*g]; 
H=[G1 0; -G1 G2; 0 -G2]; 

  

  
W= [1 0 0;-1 1 0;0 -1 1]; 
O3= [0 0 0; 0 0 0;0 0 0]; 
O3x2= [0 0; 0 0; 0 0]; 
A21= W*inv(M)*P*inv(W); 

A22= -W*inv(M)*N*inv(W); 
B21= -W*inv(M)*H; 
II3=[1 0 0; 0 1 0; 0 0 1]; 
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C =[II3 O3]; 
A=[O3 II3;A21 A22]; 
B=[O32;B21]; 
[Ad Bd Cd Dd]=robogymnastc2d(A,B,C,D,Ts); 
[yn xn un T]=motorvoltage_ori(Ad,Bd,Cd); 
ydeg=yn*(180/pi); 
xdeg=xn*(180/pi); 
subplot(3,1,1), plot(T,un(1,:)) 
  ylabel('u1(V)') 
subplot(3,1,2), plot(T,un(2,:)) 
  ylabel('u2(V)') 
subplot(3,1,3), plot(T,ydeg(1,:)) 
  ylabel('Theta1(Deg)') 
 xlabel('T(s)') 

 

  

 B.3. Motor controller subroutine program 
 
function [yn xn un Tt] = motorvoltage_ori(Ad,Bd,Cd) 

 

%motor input voltage generation 

angle1=1; 

angle2=1; 

alpha1=1; 

alpha2=1; 

delta1=0; 

delta2=0; 

  

inc_alpha1= 0.6616; 

inc_alpha2= 0.1699; 

inc_delta1= 5.512/100; 

inc_delta2= 5.512/100; 

target=(179/180)*pi; 

%delta=0; 

n=3.142*0.1; 

T=0; 

x=[0;0;0;0;0;0]; 

y=[0; 0; 0]; 

v=10; 

for i= 1:1000000; 

    if y(1,:)<target; 

      if y(1,:)>-target; 

         

        if angle1>2*pi; 

           angle1=0; 

           alpha1=alpha1+inc_alpha1; 

           delta1=delta1+inc_delta1; 

        end 

         

        if angle2>2*pi; 

           angle2=0; 

           alpha2=alpha2+inc_alpha2; 

           delta2=delta2+inc_delta2; 

        end 

         

     if angle1<=2*pi; 
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        T=T+0.025; 

        Tt(i)=T;   

       u1(i)=3*(alpha1)*sin(angle1); 

       u2(i)=2.5*(alpha2)*sin(angle2); 

        

       if u1(i)>=v; 

          u1(i)=v; 

       end    

       if u1(i)<=-v; 

           u1(i)=-v; 

       end 

       if u2(i)>v; 

           u2(i)=v; 

       end 

       if u2(i)<-v; 

        u2(i)=-v; 

       end 

          

       

        x=(Ad*x+Bd*[u1(i);u2(i)]); 

        y=Cd*x; 

        xt=[x]; 

        yt=[y]; 

        xn(:,i)=xt; 

        yn(:,i)=yt; 

         

       angle1=angle1+(n/delta1); 

       angle2=angle2+(n/delta2); 

       un=[u1;u2]; 

          

        end 

      end 

    end 

 

 

 

B.3. Invasive Weed Optimization of swing-up parameters  

%IWO Program for Robogymnast 

%This program is used to calculate optimized values of 4 variables  

%(alpha1,alpha2,delta1,delta2)based on Invasive Weed Optimization.  

%Original Author: H.A Ismail (GERMAN MALAYSIAN INSTITUTE,CARDIFF 

UNIVERSITY) 

%02/06/2014 

function [yIwo xn un T Tf TfxF SGF]=IWO3(Ad,Bd,Cd) 

  

  

itermax=5; 

iterz=(1:itermax); 

iter= iterz-1; 

sdAInit= 0.04; %Stand Dev for alpha1 

sdAFinal=0.01;  

sdA2Init= 0.04; %Stand Dev for alpha2 

sdA2Final=0.01;  

sdBInit= 0.04;  %Stand Dev for deltas 
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sdBFinal=0.01; 

  

NMI=0.001; 

MaxPop=500; 

Seeds=zeros; 

PP1= zeros; 

PP2= zeros; 

PP3 = zeros; 

PP4 = zeros; 

rng default; 

rand;  % returns the same value as at startup 

  

%Generating Parent Plants 

PP1 = 0+(0.7-0).*rand(10,1); %Setting search range for alpha1 

PP2 = 0+(0.2-0).*rand(10,1); %Setting search range for alpha2 

PP3 = 5+(6-5).*rand(10,1); %Setting search range for delta1 

PP4 = 5+(6-5).*rand(10,1); %%Setting search range for delta2 

  

 

PP=[PP1 PP2 PP4 PP4];  %Initial Population 

Seeds=PP; 

[sr sc]=size(Seeds); 

  

%Fitness test for parent plants  

for k=1:sr; 

[yt xn un T Tiwo]=motorvoltage_IWO3(Ad,Bd,Cd,Seeds,k); 

yIwo(:,k)=yt.*(180/pi); 

Tf(k)=[Tiwo;]; 

%Tf(: ,k)=Tiwo; 

end 

  

%Tfx=[PP1 PP2 PP3 PP4 Tf' yIwo']; 

Tfx=[PP1 PP2 PP3 PP3 Tf' yIwo']; 

SGF =sortrows(Tfx,5);     %Arrange based on fastest time 

  

%This part is to divide the population into 4 groups based on fitness 

  [sr sc]=size(SGF); 

   z2=sr/4; 

   z2=round(z2); 

   z1=1; 

    

%Beginning generation of Weeds    

  

for i=1:itermax; 

     

%Generating Standard Deviatons 

%rng default; 

%randn;  % returns the same value as at startup  

  

%Spatial Distribution Formula for IWO 

 sdA(i)=(((itermax-iter(i))^NMI)/(itermax^NMI))*(sdAInit-

sdAFinal)+sdAFinal;  

 sdA2(i)=(((itermax-iter(i))^NMI)/(itermax^NMI))*(sdAInit-

sdAFinal)+sdAFinal;  

 sdB(i)=(((itermax-iter(i))^NMI)/(itermax^NMI))*(sdBInit-

sdBFinal)+sdBFinal; 

  

 PP(1,4)=zeros; 
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      % Generating next seeds 

          for n=1:5  %Number of seeds generated (decreasing with fitness 

level)  

             if z2<sr 

             for m=z1:z2 

                PA1= SGF(m,1) + sdA(i).*randn(6-n,1); %alpha1 

                PA2= SGF(m,2) + sdA2(i).*randn(6-n,1); %alpha2 

                PD1= SGF(m,3) + sdB(i).*randn(6-n,1); %delta1 

                PD2= SGF(m,4) + sdB(i).*randn(6-n,1); %delta2 

                 

                PP=[PP; PA1 PA2 PD1 PD1];    %NewPopulation 

             end 

             z1=z2+1; %Next Group 

             z2=z2+z2; 

             end 

         end 

         if i==1; 

         PP(1,:)=[]; 

         end 

         Seeds=PP; 

         [sr sc]=size(Seeds);  

         

        %Fitness test 

         for k=1:sr; 

         [yt xn un T Tiwo]=motorvoltage_IWO3(Ad,Bd,Cd,Seeds,k); 

         yIwo(:,k)=yt.*(180/pi); 

          Tf(k)=[Tiwo;];  

         end 

          

         %Rearranging based on fitness 

          TfxF=[PP Tf' yIwo']; 

          SGF =sortrows(TfxF,5);   

                   [sr sc]=size(SGF);  

                    

         %Competive Exclusion     

                   if sr>MaxPop 

                       SGF((MaxPop+1):end,:)=[]; 

                       [sr sc]=size(SGF);  

                   end 

                    

        z2=sr/4; 

        z2=round(z2); 

        z1=1; 

                   

end 

  

  

 Alpha1= SGF(1,1) 

 Alpha2= SGF(1,2) 

 Delta1= SGF(1,3) 

 Delta2= SGF(1,4) 

 Time = SGF(1,5) 

 

end 
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B.4. Fuzzy Logic program for FLIWOH 

function [u]=Standard_IWOFLC(Jfl,Tfl,JW,TW)  

%Part_I :Member-ship Functions  

%Creates a new Mamdani-style FIS structure  

a=newfis('FL_LQR');  

  

  

  

MedJ=median(JW); 

         UAvgJ=MedJ+0.25*MedJ; 

         LAvgJ=MedJ-0.25*MedJ;  

         PCJ1=0.25*MedJ; 

         PCJ2=1-PCJ1; 

MedT=median(TW); 

         UAvgT=MedT+0.25*MedT; 

         LAvgT=MedT-0.25*MedT; 

         PCT1=0.25*MedT; 

         PCT2=1-PCT1; 

  

a=addvar(a,'input','J',[0 1]);  

a=addmf(a,'input',1,'Low','trapmf',[0 0 PCJ1 MedJ]);  

a=addmf(a,'input',1,'Avg','trimf',[LAvgJ MedJ UAvgJ]);  

a=addmf(a,'input',1,'High','trapmf',[MedJ PCJ2 1 1]);  

  

a=addvar(a,'input','T',[0 1]);  

a=addmf(a,'input',2,'Low','trapmf',[0 0 PCT1 MedT]);  

a=addmf(a,'input',2,'Avg','trimf',[LAvgT MedT UAvgT]);  

a=addmf(a,'input',2,'High','trapmf',[MedT PCT2 1 1]);  

  

 

a=addvar(a,'output','Quality',[0 5]);  

a=addmf(a,'output',1,'G','trapmf', [0 0 1 2.5]);  

a=addmf(a,'output',1,'Av','trimf', [2 2.5 3]);  

a=addmf(a,'output',1,'NG','trapmf', [2.5 3 5 5]);  

  

ruleList=[ 

1 1 1 1 1 

1 2 2 1 1 

1 3 3 1 1 

2 1 2 1 1 

2 2 2 1 1 

2 3 3 1 1 

3 1 2 1 1 

3 2 3 1 1 

3 3 3 1 1 

];  

a = addrule(a,ruleList);  

  

  

FLin=[Jfl,Tfl];%defining inputs to fuzzy  

u=evalfis(FLin,a);%evaluating output a.fis  

  

  

fuzzy(a)%--- displays the FIS Editor.% 
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note it will display FIS editor for %every time step so for 10 sec it 

will produce 1001 FIS editors.  

mfedit(a)%---- displays the Membership Function Editor.  

ruleedit(a)%--- displays the Rule Editor.  

ruleview(a)%--- displays the Rule Viewer. 

surfview(a)%---- displays the Surface View 
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