

INTELLIGENT MODEL-BASED CONTROL OF

COMPLEX MULTI-LINK MECHANISMS

A thesis submitted to Cardiff University in the candidature for the

degree of

Doctor of Philosophy

By

Hafizul Azizi Bin Ismail, B.Eng., M.Eng.

School of Engineering

Cardiff University

United Kingdom

DECEMBER 2016

i

ABSTRACT

Complex under-actuated multilink mechanism involves a system whose number of

control inputs is smaller than the dimension of the configuration space. The ability

to control such a system through the manipulation of its natural dynamics would

allow for the design of more energy-efficient machines with the ability to achieve

smooth motions similar to those found in the natural world. This research aims to

understand the complex nature of the Robogymnast, a triple link underactuated

pendulum built at Cardiff University with the purpose of studying the behaviour of

non-linear systems and understanding the challenges in developing its control

system.

 A mathematical model of the robot was derived from the Euler-Lagrange

equations. The design of the control system was based on the discrete-time linear

model around the downward position and a sampling time of 2.5 milliseconds.

Firstly, Invasive Weed Optimization (IWO) was used to optimize the swing-up

motion of the robot by determining the optimum values of parameters that control

the input signals of the Robogymnast’s two motors. The values obtained from IWO

were then applied to both simulation and experiment. The results showed that the

swing-up motion of the Robogymnast from the stable downward position to the

inverted configuration to be successfully achieved.

Secondly, due to the complex nature and nonlinearity of the Robogymnast, a novel

approach of modelling the Robogymnast using a multi-layered Elman neural

ii

network (ENN) was proposed. The ENN model was then tested with various inputs

and its output were analysed. The results showed that the ENN model to be capable

of providing a better representation of the actual system compared to the

mathematical model.

Thirdly, IWO is used to investigate the optimum Q values of the Linear Quadratic

Regulator (LQR) for inverted balance control of the Robogymnast. IWO was used

to obtain the optimal Q values required by the LQR to maintain the Robogymnast

in an upright configuration. Two fitness criteria were investigated: cost function J

and settling time T. A controller was developed using values obtained from each

fitness criteria. The results showed that LQRT performed faster but LQRJ was

capable of stabilizing the Robogymnast from larger deflection angles.

Finally, fitness criteria J and T were used simultaneously to obtain the optimal Q

values for the LQR. For this purpose, two multi-objective optimization methods

based on the IWO, namely the Weighted Criteria Method IWO (WCMIWO) and

the Fuzzy Logic IWO Hybrid (FLIWOH) were developed. Two LQR controllers

were first developed using the parameters obtained from the two optimization

methods. The same process was then repeated with disturbance applied to the

Robogymnast states to develop another two LQR controllers. The response of the

controllers was then tested in different scenarios using simulation and their

performance was evaluated. The results showed that all four controllers were able

to balance the Robogymnast with the fastest settling time achieved by WMCIWO

with disturbance followed by in the ascending order: FLIWOH with disturbance,

FLIWOH, and WCMIWO.

iii

ACKNOWLEDGEMENTS

Alhamdullilah. I would like to thank Dr. Michael Packianather, Dr. Roger

Grosvenor and Dr. Eldaw Eldhukhri for the countless supervision and help that they

had offered from day one of my PhD until this thesis is successfully produced. I

would also like to thank my colleagues Dr. Haider Kamil and Mr. Abdul Syafiq

Abdull Sukor for all their comments and suggestions.

Also, special thanks to the Malaysian Government especially Majlis Amanah

Rakyat (MARA) and German Malaysian Institute (GMI) for sponsoring my studies

and family while I am on study leave.

I would like to give my deepest appreciation to my loving parents, Mr. Ismail

Borhan and Mrs. Hasnah Nordin, my parents-in-law, Mr. Ahmad and Mrs. Rodziah

Lebai Mat for all their sacrifices and prayers. I would also like to thank my sisters

for making me believe that I can achieve my dreams.

To the Malaysian community of Cardiff, especially Dr. Awanis and Mr. Arbaq,

thank you for making my stay in Cardiff a time to be cherished for the rest of my

life.

Last but not least, I thank my beloved wife, Hafisoh for all her love and support and

my son Aariz for brightening up my day with all his smiles and laughter.

iv

DEDICATION

Thank you Allah for giving me the strength and opportunity to gain

knowledge.

To

My Wife, Hafisoh

My Son, Aariz Rahil

My Parents, Ismail Borhan and Hasnah Nordin

My sisters, Jaja, Yan, Nora, Shira and Adik

My brother in-law Zamir

My nieces Odah, Nana and Rowa

Thank you for being my stars in the dark night.

v

DECLARATIONS AND STATEMENTS

DECLARATION

This work has not previously been accepted in substance for any degree and is not

concurrently submitted in candidature for any degree.

Signed …………………….….… (Hafizul A. Ismail) Date……….……….

STATEMENT 1

This thesis is being submitted in partial fulfilment of the requirements for the

degree of Doctor of Philosophy (PhD).

Signed …………………….….… (Hafizul A. Ismail) Date……….……….

STATEMENT 2

This thesis is the result of my own independent work/investigation, except where

otherwise stated. Other sources are acknowledged by explicit references.

Signed …………………….….… (Hafizul A. Ismail) Date……….……….

STATEMENT 3

I hereby give consent for my thesis, if accepted, to be available for photocopying

and for inter-library loan, and for the title and summary to be made available to

outside organisations.

Signed …………………….….… (Hafizul A. Ismail) Date……….……….

vi

CONTENTS

Abstract ... i

Acknowledgements ... iii

Dedication .. iv

Declarations and Statements .. v

Contents ... vi

LIST OF FIGURES ... x

LIST OF TABLES .. xiv

Abbreviations .. xvi

List of Symbols .. xix

Chapter 1 Introduction ... 1

1.1 Introduction ... 1

1.2 Motivation ... 1

1.3 Aim and Objectives ... 2

1.4 Methodology .. 3

1.5 Thesis outline ... 4

1.6 Publications .. 8

Chapter 2 Background Review .. 9

2.1 Introduction ... 9

2.2 Background .. 10

2.3 Complex multi-link mechanism .. 11

2.4 Swing-up control ... 12

2.5 Artificial neural network modelling .. 15

2.5.1 Types of neural network models ... 16

2.5.2 Learning Algorithm Categorization .. 22

2.6 Optimization Algorithms ... 23

vii

2.7 Stochastic Optimization Methods .. 26

2.7.1 Particle Swarming Optimization ... 26

2.7.2 Ant Colony .. 27

2.7.3 Intelligent Water Drops .. 28

2.7.4 Bees Algorithm ... 29

2.7.5 Invasive weed optimisation .. 31

2.8 Fuzzy Logic ... 32

2.8.1 Fuzzy Sets ... 35

2.8.2 Fuzzy Rules ... 35

2.8.3 Fuzzy Inference ... 36

2.9 Multi-objective optimization ... 32

2.9.1 Types of multi-objective optimization .. 33

2.10 Upright balancing of a pendulum .. 39

2.11 Summary .. 41

Chapter 3 System Description and Mathematical Modelling 42

3.1 Introduction ... 42

3.2 System Description .. 43

3.3 Mathematical Model .. 51

3.4 Summary .. 60

Chapter 4 Swing-Up Control of the Triple Link Pendulum 61

4.1 Introduction ... 61

4.2 Swing-up control ... 62

4.3 Invasive Weed Optimization Algorithm .. 65

4.4 Tuning the swing–up control parameters using IWO 68

4.5 Results ... 72

4.5.1 IWO Results .. 72

4.5.2 Simulation Results ... 74

4.5.3 Experiment Results ... 76

4.6 Discussion and Conclusion .. 79

viii

4.7 Summary .. 82

Chapter 5 Artificial Neural Network Modelling of the Robogymnast 83

5.1 Introduction ... 83

5.2 Elman Neural Networks .. 86

5.3 Activation Function ... 89

5.4 Back-Propagation Algorithm ... 90

5.5 Training the ENN Model ... 93

5.6 Results ... 96

5.7 Discussion and Conclusion .. 102

5.8 Summary .. 104

Chapter 6 Upright Balancing of the Robogymnast .. 106

6.1 Introduction ... 106

6.2 Model of the Robogymnast in the upright position 108

6.3 Linear Quadratic Regulator ... 108

6.4 Application of IWO in LQR controller design .. 110

6.5 LQR controller designed using cost function (J) as the fitness criterion . 112

6.5.1 Simulation results of LQR designed using IWO with cost function J as

the fitness criterion ... 116

6.6 LQR controller designed using time (Tst) as the fitness criterion 125

6.6.1 Simulation results of LQR designed using IWO with Tst as the fitness

criterion .. 127

6.7 Discussion and conclusion... 133

6.8 Summary .. 136

Chapter 7 Multi-Objective Weed Optimization of the LQR Controller 138

7.1 Introduction ... 138

7.2 Weighted Criteria Method Invasive Weed Optimization 140

7.2.1 Simulation results of LQR designed using WCMIWO 144

7.3 Fuzzy Logic Invasive Weed Optimization Hybrid 149

7.3.1 Simulation results of LQR designed using FLIWOH 158

ix

7.4 Training with disturbance .. 163

7.4.1 WCMIWO training with disturbance results 164

7.4.2 FLIWOH training with disturbance results .. 166

7.5 Discussion and conclusion... 169

7.6 Summary .. 175

Chapter 8 Conclusion, Contribution and Future Work 176

8.1 Conclusions ... 176

8.2 Contributions ... 178

8.3 Future work.. 179

Appendix .. 181

References .. 203

x

 LIST OF FIGURES

Figure 1. 1: Thesis structure and research objectives ... 7

Figure 2.1 : The Acrobot (Spong 1994) 13

Figure 2.2: Feed Forward Neural Network Diagram of Robogymnast 18

Figure 2.3: Jordan Network (Wysocki and Lawrynczuk 2015) .. 19

Figure 2.4: A two-dimensional cellular neural network (Chua and Yang 1988b). 21

Figure 2.5: Flowchart of Basic Bees Algorithm (Ahmad 2012) 31

Figure 2.6: A set of Fuzzy rules .. 36

Figure 3.1: Robogymnast System Diagram .. 45

Figure 3.2: Robogymnast (a) Front view (b) Side view .. 46

Figure 3.3: Block diagram representation of Robogymnast overall system 47

Figure 3.4: Block diagram representation of the experimental apparatus 48

Figure 3.5: Circuit diagram of 1st order filter in series with operational amplifier 50

Figure 3.6: Circuit diagram of the power amplifier ... 51

Figure 3.7: Schematic representation of Robogymnast ... 52

Figure 4.1: Robogymnast in mid-swing... 62

Figure 4.2: IWO Flow Chart (Madivada Hymavathi and Rao 2012) 67

Figure 4.3: Pseudo-code for IWO ... 70

Figure 4.4: Flowchart for Invasive Weed Optimization Algorithm 71

Figure 4.5: Simulated angular position ϴ1 for Set 1 ... 74

Figure 4.6: Simulated angular position ϴ1 for Set 2 .. 74

Figure 4.7: Simulated angular position ϴ1 for Set 3 ... 75

file:///D:/Hafizul/Dropbox/Hafizul_PhD/Thesis/Done/Proofread/HAIsmailThesis_change3.docx%23_Toc453850303
file:///D:/Hafizul/Dropbox/Hafizul_PhD/Thesis/Done/Proofread/HAIsmailThesis_change3.docx%23_Toc453850304

xi

Figure 4.8: Simulated angular position ϴ1 for Set 4 ... 75

Figure 4.9: Measured angular position ϴ1 for Set 1. .. 77

Figure 4.10: Measured angular position ϴ1 for Set 2 ... 77

Figure 4.11: Measured angular position ϴ1 for Set 3 .. 78

Figure 4.12: Measured angular position ϴ1 for Set 4 ... 78

Figure 4.13: Flowchart of Robogymnast swing-up sequence .. 81

Figure 5.1: Elman Neural Network Diagram of Robogymnast 88

Figure 5.2: Backpropagation Configuration ... 91

Figure 5.3: Flow Chart of Back Propagation Training for Robogymnast........................ 95

Figure 5.4: Measured angular position ϴ1 at Δα1=0.6924, Δα2= 0.1966, Δδ=0.051129 for

(a)Experimental; (b) Mathematical Model; (c) ENN Model 97

Figure 5.5: Measured angular position ϴ1 at Δα1=0.6616, Δα2= 0.1699, Δδ=0.05512 for

(a)Experimental; (b) Mathematical Model; (c) ENN Model 98

Figure 5.6: Measured angular position ϴ1 at Δα1=0.6635, Δα2= 0.1827, Δδ=0.05935 for

(a)Experimental; (b) Mathematical Model; (c) ENN Model 99

Figure 5. 7: Output of ϴ1 with its input voltages u1 and u2 .. 103

Figure 6.1: Configurations of Robogymnast (a) θ1=-3°; θ2=-3°; θ3=-3°, (b) θ1=-3°; θ2=3°;

θ3=-3°, (c) θ1=3°; θ2=3°; θ3=3° 118

Figure 6.2: Simulation of LQR with initial deflection of θ1=-3°; θ2=-3°; θ2=-3° 119

Figure 6.3: Simulation of LQR with initial deflection of θ1=-3°; θ2=3°; θ2=-3°............. 120

Figure 6.4: Simulation of LQR with initial deflection of θ1=3°; θ2=3°; θ2=3° 121

Figure 6.5: Disturbance to Link 1 ... 122

Figure 6.6: Disturbance to Link 2 ... 123

Figure 6.7: Disturbance to Link 3 ... 124

file:///D:/Hafizul/Dropbox/Hafizul_PhD/Thesis/Done/New_version%20-%20Copy/Combined_20160405.docx%23_Toc447725556
file:///D:/Hafizul/Dropbox/Hafizul_PhD/Thesis/Done/New_version%20-%20Copy/Combined_20160405.docx%23_Toc447731345
file:///D:/Hafizul/Dropbox/Hafizul_PhD/Thesis/Done/New_version%20-%20Copy/Combined_20160405.docx%23_Toc447731345

xii

Figure 6.8: Simulation of LQR with initial deflection of θ1=-3°; θ2=-3°; θ2=-3° 128

Figure 6.9: Simulation of LQR with initial deflection of θ1=-3°; θ2=3°; θ2=-3°............. 129

Figure 6.10: Simulation of LQR with initial deflection of θ1=3°; θ2=3°; θ2=3° 130

Figure 6.11: Disturbance to Link 1 ... 131

Figure 6.12: Disturbance to Link 2 ... 132

Figure 6.13: Disturbance to Link 3 ... 133

Figure 7.1: Simulation of LQR with initial deflection of θ1=-3°; θ2=-3°; θ2=-3° 145

Figure 7.2: Simulation of LQR with initial deflection of θ1=-3°; θ2= 3°; θ2 = -3° 145

Figure 7.3: Simulation of LQR with initial deflection of θ1=3°; θ2=3°; θ2=3° 146

Figure 7.4: Disturbance to Link 1 .. 147

Figure 7.5: Disturbance to Link 2 .. 148

Figure 7.6: Disturbance to Link 3 .. 148

Figure 7.7: The main flowchart of the FLIWOH Algorithm ... 150

Figure 7.8: The flowchart of the Fuzzy Logic Algorithm... 151

Figure 7.9: Fuzzy Logic Membership Functions .. 155

Figure 7.10: Simulation of LQR with initial deflection of θ1=-3°; θ2=-3°; θ2=-3° 159

Figure 7.11: Simulation of LQR with initial deflection of θ1=-3°; θ2=3°; θ2=-3°........... 159

Figure 7.12: Simulation of LQR with initial deflection of θ1=3°; θ2=3°; θ2=3° 160

Figure 7.13: Disturbance to Link 1 ... 161

Figure 7.14: Disturbance to Link 2 ... 162

Figure 7.15: Disturbance to Link 3 ... 162

Figure 7.16: Simulation of LQR with initial deflection of θ1=-3°; θ2=-3°; θ2=-3° 165

Figure 7.17: Simulation of LQR with initial deflection of θ1=-3°; θ2=3°; θ2=-3°........... 165

xiii

Figure 7.18: Simulation of LQR with initial deflection of θ1=-3°; θ2=-3°; θ2=-3° 166

Figure 7. 19: Simulation of LQR with initial deflection of θ1=-3°; θ2=-3°; θ2=-3 167

Figure 7. 20: Simulation of LQR with initial deflection of θ1=-3°; θ2=3°; θ2=-3°.......... 168

Figure 7. 21: Simulation of LQR with initial deflection of θ1=-3°; θ2=-3°; θ2=-3° 168

xiv

LIST OF TABLES

Table 2. 1: Comparison between Mamdani FIS and Sugeno FIS (Hamam and Georganas

2008) ... 38

Table 3.1: Parameters of the Robogymnast 56

Table 3.2: Motor parameters 56

Table 4.1 : IWO Parameter 69

Table 4.2: IWO Results 73

Table 4.3: Simulation Results vs. Experimental Results ..80

Table 5. 1: Parameters of Back-Propagation Training of ENN Model 94

Table 5.2: Error Comparison ...101

Table 6. 1: IWO parameters with J as the fitness criterion ... 113

Table 6.2: IWO Results using the cost function J as the fitness criterion 115

Table 6.3: IWO Results using Time (Tst) as the fitness criterion.................................... 126

Table 6. 4: Comparison of the performance of the LQRJ and LQRT in different initial

angular configurations. ... 135

Table 7.1: WCMIWO parameters ... 142

Table 7.2: WCMIWO Results .. 143

Table 7.3: FLIWOH parameters ... 153

Table 7.4: Fuzzy Logic Rule ... 154

Table 7.5: FLIWOH Results ... 157

Table 7. 6: Comparison of the performance of controllers in different initial angular

(small angles) configurations. ... 170

file:///D:/Hafizul/Dropbox/Hafizul_PhD/Thesis/Done/Proofread/HAIsmailThesis_change5.docx%23_Toc455055809

xv

Table 7. 7: Comparison of the performance of controllers in different initial angular

(large angles) configurations. ... 171

Table 7.8: Ranking of Performance .. 172

Table 7.9: Comparison with LQRJ and LQRT…………………………………………174

xvi

ABBREVIATIONS

ABC Artificial Bee Colony

ACO Ant Colony Optimization

Acrobot Acrobat Robot

AD/DA Analogue to Digital/Digital to Analogue

ANN Artificial Neural Network

ARIMA
Autoregressive Integrated Moving

Average

BA Bees Algorithm

BP Back Propagation

C Capacitor

CMAC Cerebellar model articulation control

CNN Cellular Neural Network

DC Direct Current

DE Differential Evolution

DLQR Discrete Linear Quadratic Regulator

DOF Degree of Freedom

ENN Elman Neural Network

ENNM Elman Neural Network Model

FIS Fuzzy Inference Systems

FL Feedback Linearisable

FLIWOH
Fuzzy Logic Invasive Weed

Optimization Hybrid

FNN Feed Forward Neural Network

FO Fractional Order

GA Genetic Algorithm

GMDH Group Method of Data Handling

xvii

ICA Imperialist Competitive Exclusion

Inf Infinite

IWD Intelligent water drops

IWO Invasive Weed Optimization

LQR Linear Quadratic Regulator

LQRJ Linear Quadratic Regulator (J)

LQRT Linear Quadratic Regulator (T)

LVQ Learning vector quantization

MA Mean Absolute

MIMO Multiple Input Multiple Output

MISO Multiple Input Single Output

MKP Multiple Knapsack Problem

MLP Multi Layer Perceptron

MM Mathematical Model

MOIWO
Multi Objective Invasive Weed

Optimization

MOO Multi Objective Optimization

NBI Normal Boundary Intersection

NC Normal Constraint

PC Personal Computer

Pot Potentiometer

PSO Particle Swarming Optimization

R Resistor

RMS Root Mean Square Error

RNN Recurrent Neural Network

Robogymnast Robot gymnast

STLC Small Time Local Controllable

xviii

TRMS
Twin Rotor Multi-Input Multi-Output

System

T-S Takagi-Sugeno

TSP Travelling Salesman Problem

WCMIWO
Weighted Criteria Method Invasive

Weed Optimization

ZMP Zero Moment Point

xix

LIST OF SYMBOLS

∅i
Angle of ith sinusoidal control

signal

∅i
Angle of ith sinusoidal control

signal

A1,A2,η,Δα1,Δδ1, Δα2,Δδ2 Constant values

ai Centre of gravity of ith link

ai Centre of gravity of ith link

AVG Average

Ci
Viscous friction coefficient of the

ith joint

Cpi

Viscous friction coefficient of ith

motor/gearbox reflected at the out-

put shaft of the gearbox dissipation

energy

D Dissipation energy

e Error

F Gain matrix

g Acceleration of gravity (9.81m/s2)

g Acceleration of gravity (9.81m/s2)

G Good

Gi Static gain of ith motor/gearbox

Ii
Moment of inertia of ith link around

its centre of gravity

Ipi

Moment of inertia of ith motor/

gearbox reflected at the output shaft

of the gearbox

iter Iteration

itermax Number of maximum iterations

J Performance index

xx

J Cost function

JT
Combined fitness criterion of J and

Tst

K Kinetic energy

ki Ratio of the ith gearbox

ki Ratio of the ith gearbox

li Length of the ith link

mi Mass of the ith link

MVal Membership value of Quality

n Nonlinear modulation index

NG No Good

P Potential energy

p Plant

pinit
Number of randomly chosen values

from the solution space

Q ,R Weight matrices

qi Relative angle of ith link

qi Relative angle of ith link

s Seconds

Si ith seed

SMax Maximum population of solutions

SMin Minimum population of solutions

Ti Generalised torque at angle θi

Tmi Torque generated by the ith motor

Ts Sampling time

Tst Settling time

ui
Input voltage from computer to ith

driving motor

xxi

W Colony

Wcx Context layer weight matrix

Who
Output layer weight matrix

Wih
Input layer weight matrix

WJ Weightage of J

WTst Weightage of Tst

y
Output signal from Robogymnast to

computer

yi ith output

αi,δi ith Variable values

η Learning rate

θi
Angle of ith link from the vertical

line

μ Mean

σfinal
Final standard deviation used for

spatial distribution of plants

σinitial
Standard deviation used for spatial

distribution of plants

1

CHAPTER 1

Introduction

1.1 Introduction

Advancements in robotic technology have accelerated at an unbelievable rate in the

past decade. From the powerful manipulators on the production floors to the first

walking android, robotics has taken large leaps in terms of efficiency and flexibility.

However, robots today still move far too conservatively, due to attempts to obtain

full control authority of each limb at all times. This leads to inefficient and jerky

motions. Humans and animals move much more aggressively by routinely

executing motions which involve a loss of instantaneous control authority (Tedrake

2009). Controlling nonlinear systems without complete control authority requires

methods that can reason about and exploit the natural dynamics of our machines.

1.2 Motivation

Complex (under-actuated) multi-link structures provide useful test beds for

evaluation, optimization and comparison of different control techniques. They are

inherently nonlinear and present challenging modelling and control problems that

2

are commonly found in many real-life applications. In particular, the study of such

systems will enable researchers to develop solutions that are aimed at addressing

motion problems encountered by disabled and/or injured people experiencing limb

impairment.

1.3 Aim and Objectives

This research is a study on improving and analysing the implementation of

intelligent model-based control methods on complex multi-link mechanisms,

focusing on the integration of artificial intelligence and knowledge-based systems.

It aims to implement modelling, simulation and control of under-actuated

mechanisms to gain in-depth understanding of modern control techniques and their

applications and optimization for the benefit of industry and society.

The above aim will be accomplished by fulfilling the following research objectives:

1. Develop a swing-up method for the Robogymnast through the manipulation of

its motors’ control signals.

2. Apply a swarm-based optimisation technique to optimise the parameters of the

control signals.

3. Apply the optimised parameters for the swing-up on the real system.

4. Develop and apply an alternative model of the system using neural networks.

5. Analyse and validate the alternative model.

3

6. Develop and simulate controllers to balance the Robogymnast in an inverted

configuration.

7. Select the optimised parameters of the controllers using swarm-based

optimisation techniques.

8. Develop modified swarm-based multi-objective optimisation techniques to

optimise the selection of the controller parameters.

9. Validate the proposed controllers through simulation.

1.4 Methodology

To achieve the above objectives, the following methodology was adopted:

 Review of previous work: an extensive survey was performed of the state of the

art in order to identify the main requirement for the control of and problems

encountered in the control of complex multi-link mechanisms. This investigation

also covers the study of control methods to be implemented and analysed.

 The Euler-Lagrange approach is used to derive a mathematical model and

dynamic equations of Robogymnast at the stable equilibrium point.

 The swing-up control simulation is achieved using the MATLAB® software and

its associated toolboxes. The parameters are optimised using the IWO and the

findings are implemented on the real systems via a C++ program environment.

4

 The candidates for the alternative model are investigated and evaluated. The

developed model is validated by comparing it with the mathematical model and

data from experiments.

 The problem of balancing the Robogymnast in an inverted configuration is

investigated. The LQR controller is developed and its parameters are selected

using the conventional Invasive Weed Optimization (IWO) and the modified

Multi Objective Optimization (MOO) IWO. The controllers are then validated

via MATLAB® simulations.

1.5 Thesis outline

The remainder of the thesis is organized as follows:

Chapter 2 reviews the background literature related to the field of complex multi-

link mechanisms. Problems related to complex multi-link mechanisms such as

swing-up and balancing control are discussed. The chapter also provide reviews on

artificial neural networks, optimisation algorithms and fuzzy logic.

Chapter 3 presents the system description and mathematical modelling of the

Robogymnast. The overall system is discussed and illustrated using figures and

diagrams. The mathematical model of the Robogymnast in the downward position

is derived in detail.

5

Chapter 4 describes the design of the Robogymnast’s swing-up controller. A

technique to control the swing-up motion by manipulating the control signals’

parameters is proposed. The parameters of the control signals are then optimised

using the IWO. Results from simulations and experiments are presented.

Chapter 5 elaborates the design of a neural network model of the Robogymnast.

The purpose of this work is to provide a more accurate representation of the

Robogymnast system. An analysis of the neural network model is performed and

compared with that of the mathematical model.

Chapter 6 presents the application of IWO in the design of LQR controllers for the

upright balancing of the Robogymnast. This chapter investigates the use of the cost

function (J) and settling time (Tst) as the fitness criteria of the IWO. Two controllers

were designed based on the two fitness criteria and their performance is evaluated.

Chapter 7 introduces two MOO methods (WCMIWO and FLIWOH) based on the

IWO. The two MOO methods are used in the selection of the LQR controller

parameters. External disturbances were applied to the MOO process with the

objective of creating more robust controllers. Four controllers are proposed in this

chapter and their performances are evaluated.

6

Chapter 8 lists the contributions of this research, summarises the conclusions

reached and provides suggestions for further research.

Figure 1.1 shows an outline of the thesis structure and the research objective which

it addresses.

7

Figure 1. 1: Thesis structure and research objectives

General introduction

An extensive literature review on

relevant studies for each research topic

System Description

Modelling of the Robogymnast

Investigate the problem of the swing-up

motion.

Optimization of the parameters of the

Robogymnast swing-up control using

Invasive Weed Optimization

Implementing the optimized parameters

on the real system

Design a neural network model of the

Robogymnast

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Analyse and compare performance of

neural network model with the

mathematical model

Analyse and compare performance of

neural network model with the

mathematical model

Chapter 5

Design controllers for upright balancing

of the Robogymnast

Investigate the use of cost function (J)

and settling time (Tst) as the fitness

criteria for Invasive Weed

Optimization.

Investigate the use of cost function (J)

and settling time (Tst) as the fitness

criteria for Invasive Weed

Optimization.

Chapter 6

Design two swarm based multi-

objective optimization methods.

Apply the two multi-objective

optimization methods to select optimum

parameters value for the LQR controller

.

Analyze the performance of the

designed controllers

Chapter 7

Conclusions and future workChapter 8

Research objective 1

Research objective 3

Research objective 4

Research objective 6

Research objective 8

Research objective 9

Research objective 2

Research objective 5

Research objective 7

Research objective 8

8

1.6 Publications

Journal (Accepted for publication):

Ismail, H.A., Packianather, M.S., Grosvenor, R.I., Multi-Objective Invasive

Weed Optimization of the LQR Controller. In International Journal of Automation

and Computing (IJAC).

Conferences: -

Ismail, H.A., Packianather, M.S., Grosvenor, R.I. and Eldhukri, E.E., 2015,

November. The application of IWO in LQR controller design for the

Robogymnast. In SAI Intelligent Systems Conference (IntelliSys), 2015 (pp. 274-

279). IEEE.

Ismail, H.A., Eldhukhri, E.E. and Packianather, M.S., 2014, July. Invasive weed

optimization of swing-up control parameters for robot gymnast. In 2014

IEEE/ASME International Conference on Advanced Intelligent Mechatronics(pp.

88-93). IEEE.

9

CHAPTER 2

Background Review

2.1 Introduction

In this chapter, the literature associated with complex multi-link mechanisms and

solutions to the inverted pendulum problem is reviewed and analysed. The swing-

up control and upright balancing problems are discussed and previous studies are

examined. Most researchers opt to combine the study of the swing-up control with

the upright balancing problem, while others approach the two problems separately.

The remainder of this chapter is organized as follows. Section 2.2 sets out the

background to the study. Section 2.3 discusses complex multi-link mechanisms and

why the study of such mechanisms is important. Section 2.4 discusses the first

problem, which is the swing-up control of the inverted pendulum. This is followed

by Section 2.5, which presents a review of artificial neural network modelling and

its components. Section 2.6 describes optimization algorithms and their categories.

Section 2.7 discusses several popular stochastic optimization algorithms. An

introduction to fuzzy logic is presented in Section 2.8. Multi-objective optimization

10

is discussed in Section 2.9 and Section 2.10 provides a review of the upright

balancing problem. Finally, a summary of the chapter is given in Section 2.11.

2.2 Background

Many studies have investigated the dynamics of inverted pendulums (Chiu 2010).

Most control experiments use the rail-cart structure when studying the inverted

pendulum (Jaiwat and Ohtsuka 2014; Anderson 1989; Xiong and Wan 2010).

However, swinging pendulums such as acrobot and Robogymnast are quickly

gaining popularity due to their applications in walking robots (DeJong and Spong

1994; Liu and Yamaura 2011).

The study of inverted pendulums generally consists of two parts: swing-up motion

and upright balancing. Pendulums such as the acrobot are difficult to control, due

to being a four-dimensional, highly nonlinear, under-actuated control problem

(Dracopoulos and Nichols 2012) .

Various approaches have been taken to solve this problem. Classical control

methods have been employed with varying success according to (Jose et al. 2015),

while other studies employ intelligent control methods (Liu et al. 2008; Kawada et

al. 2004). The literature review discusses all the components applied in the control

and modelling of the Robogymnast.

11

2.3 Complex multi-link mechanism

A mechanical linkage is an assembly of bodies connected together to manage forces

and movement. The movement of a body, or link, is studied using geometry, so the

link is considered to be rigid (Manickavelan et al. 2014). The connections between

links are modelled as providing ideal movement, pure rotation or sliding, for

example, and are called joints. A linkage modelled as a network of rigid links and

ideal joints is called a kinematic chain (Manickavelan et al. 2014). A mechanism is

defined as a connected system of links ensuring transmission and transformation of

mechanical motion (Kolovsky et al. 2012). Complex multi-link mechanisms are

mechanisms with a number of linkages that is less than the number of degrees of

freedom (DOF) (Uicker et al. 2003). Complex multi-link mechanisms are also

known as under-actuated mechanisms. Under-actuated mechanisms bring many

advantages in energy, material and space consumption of numerous applications

(Cheng et al. 2013). In the field of academia, under-actuated mechanisms provide

a useful test bed for the evaluation and comparison of different control techniques

(Eldukhri and Pham 2010). Most under-actuated systems are not full-state feedback

linearisable (FL) around any equilibrium point, and some are not even small-time

local controllable (STLC). This makes the control of such systems a challenging

problem (Lai et al. 2011). Control of such mechanisms forms one of the recent

major research topics in control engineering and robotics (Takashiro and Yoshihiko

12

1997). A popular example of an under-actuated mechanism is the inverted

pendulum.

A pendulum is a body suspended from a fixed point so as to swing freely to and fro

under the action of gravity, and is commonly used to regulate movements (Anon

2000). However, because of their nonlinear nature, inverted pendulums have

maintained their usefulness and are now used to illustrate many of the ideas

emerging in the field of nonlinear control, such as swinging up and catching the

pendulum. Pendulums are also excellently suited to illustrate hybrid systems and

the control of chaotic systems (Åström and Furuta 2000). Numerous studies have

been conducted on non-linear control using the double and triple link pendulum as

a test bench.

2.4 Swing-up control

The swing-up control of a pendulum is a popular topic that has been extensively

researched. The main problem is to determine and track a valid swing-up trajectory

that accomplishes the boundary restrictions and minimises the effort made by the

actuator on the base (Rubi et al. 2002). The acrobot, as seen in Figure 2.1, so named

because of its similarity to a human acrobat, is an under-actuated unstable robot that

is useful as a test bed for studying the theory and application of non-linear control

(Brown and Passino 1997). The acrobot is a planar, two-link robot with an actuator

13

at the elbow (joint 2) but no actuator at the shoulder (joint 1). The task of the acrobot

is to swing up, in the minimum time, from the initial stable pendant position to the

inverted unstable position and to remain balanced in that position (Dracopoulos and

Nichols 2015).

Figure 2.1: The Acrobot adapted from (Spong 1994)

Research conducted by Spong successfully produced a swing-up controller for the

acrobot based on the method of partial feedback linearization of “unstable zero

dynamics” (Spong, 1994, 1995). Spong also designed a controller to capture and

balance the acrobot at the top of its swing using a linear quadratic regulator (Spong

1994). In his research, Spong noted the fact that the entire swing-up motion is

produced by the natural response of an automated system. This shows that by

yy

xx

Joint 1Joint 1

Joint 2Joint 2

14

making the motion of the second link dependent on the motion of the first link, the

entire system can be made autonomous. Brown and Passino (1997) continued

Spong’s research and developed intelligent controllers for swing-up and balancing

of the acrobot. They developed and compared the performance of classical, fuzzy

and adaptive fuzzy controllers for balancing the acrobot in its inverted equilibrium

region. Two genetic algorithms were then used for tuning the balancing and swing-

up controllers. Their results show that the swing-up motion of the acrobot can be

further optimized by tuning the control parameters through the use of Genetic

Algorithms (GA). Awrejcewicz et al. (2012) presented a swing-up controller using

a bang-bang control torque exerted about the suspension point.

A skilled gymnast pointed out that in achieving an effective swing, the shoulders

play a more important role than do the hips. Thus, to mimic gymnastic routines

more realistically and to understand the control mechanism inside the routine

better, one should model the gymnast on a high bar at least as a 3-DOF

underactuated robot: that is, the gymnast’s shoulder should be modelled as an

actuated joint as well as the hips (Xin and Kaneda 2007b). Eldukhri and Pham used

a new method for swing-up control of a triple link pendulum. This method does not

require control signals to be derived in terms of measurements of variables such as

speed and acceleration, but rather by manipulating the frequencies and amplitudes

of oscillating functions applied to two motors mounted at the robot’s shoulder and

hip joints (Eldukhri and Pham 2010). The Bees Algorithm, a population-based

15

search algorithm that emulates the foraging behaviour of honeybees, was later used

to optimize the swing-up control of the robot. This was done by independently

manipulating the amplitude and the frequencies of the control signals (Kamil et al.

2012). This technique was reported to be successful in obtaining a smoother and

faster swing-up motion.

2.5 Artificial neural network modelling

Artificial Neural Networks (ANN) are computational models of the brain (Pham

and Liu 1995). A neural network consists of an interconnected group of artificial

neurons, and it processes information using a connectionist approach to

computation. In most cases an ANN is an adaptive system that changes its structure

based on external or internal information that flows through the network during the

learning phase. Modern neural networks are non-linear statistical data

modelling tools. ANNs have been developed as generalizations of mathematical

models of human cognition or neural biology, based on the assumptions that (Luma

and Yaseen 2013):

 Information processing occurs at many simple elements called neurons that are

fundamental to the operation of ANNs.

 Signals are passed between neurons over connection links.

http://en.wikipedia.org/wiki/Artificial_neuron
http://en.wikipedia.org/wiki/Artificial_neuron
http://en.wikipedia.org/wiki/Connectionism
http://en.wikipedia.org/wiki/Computation
http://en.wikipedia.org/wiki/Adaptive_system
http://en.wikipedia.org/wiki/Non-linear
http://en.wikipedia.org/wiki/Statistical
http://en.wikipedia.org/wiki/Data_modeling
http://en.wikipedia.org/wiki/Data_modeling

16

 Each connection link has an associated weight which, in a typical neural net,

multiplies the signal transmitted.

 Each neuron applies an action function (usually nonlinear) to its net input (sum

of weighted input signals) to determine its output signal.

 The units in a network are organized into a given topology by a set of

connections, or weights, typically shown as lines in a network diagram.

ANN are characterized by:

 Architecture: its pattern of connections between the neurons.

 Training algorithm: its method of determining the weights on the connections.

 Activation function.

ANNs are often classified as single layer or multilayer. In determining the number

of layers, the input units are not conventionally counted as a layer, because they

perform no computation. Equivalently, the number of layers in the net can be

defined to be the number of layers of weighted interconnecting links between the

slabs of neurons. This view is motivated by the fact that the weights in a net contain

extremely important information.

2.5.1 Types of neural network models

 Feedfoward Neural Networks

17

In a Feedfoward Neural Network (FNN), all signals flow in one direction only, i.e.

from lower layers (input) to upper layers (output). Feedforward networks consist of

at least three layers of neurons: an input layer, a hidden layer and an output layer.

The nodes of the input layer are passive, meaning that they do not modify the data.

They receive a single value on their input and duplicate the value to their multiple

outputs. The nodes of the hidden and output layers are active, meaning that they

modify the data that they receive (Smith 1999). Examples of feedfoward networks

are multi-layer perceptron (MLP), the learning vector quantization (LVQ) network,

the cerebellar model articulation control (CMAC) network and the group-method

of data handling (GMDH) network (Pham and Liu 1995). Figure 2.2 illustrates the

FFN of the Robogymnast.

 Recurrent Neural Networks

Recurrent neural networks were an important focus of research and development

during the 1990s (Medsker and Jain 2001). In a Recurrent Neural Network (RNN),

signals from neurons in upper layers are fed back to either its own layer or to

neurons in lower layers via an extra layer called a context layer. Examples of RNNs

include the Hopfield network, the Elman network and the Jordan network (Figure

2.3). RNNs have dynamic memories where their outputs at a given instant reflect

the current input as well as previous inputs and outputs (Pham and Liu 1995).

18

Figure 2.2: Feed-forward Neural Network Diagram of Robogymnast

Hidden Layer

u1u1

u2u2

y1y1

y2y2

y3y3

Input Layer Output Layer

19

Figure 2.3: Jordan Network (Wysocki and Lawryczuk 2015)

1

K

q-1

u(k-1)

y(k-1)

y(k)

w0
(2)

w1
(2)

w2
(2)

 w1,0
(1)

 wK,0
(1)

 w1,1
(1)

 wK,1
(1)

 w1,2
(1)

 wK,2
(1)

.

1

1

20

 Cellular Neural Networks

A Cellular Neural Network (CNN) is an artificial neural network consisting of

separate neurons or cells. It consists of simple analogue circuits (cells) arranged in

a matrix (Namba and Zhang 2006) as seen in Figure 2.4. Each cell is made up of a

linear capacitor, a non-linear voltage-controlled current source and a few resistive

linear elements. The structure of cellular networks is similar to that found in

cellular automata: i.e. any cell in a cellular network is connected only to its

neighbouring cells (Chua and Yang 1988a). The adjacent cells can interact directly

with each other. Cells not directly connected together may affect each other

indirectly because of the propagation effects of the continuous-time dynamics of

CNNs (Chua and Yang 1988b). Due to their computation efficiency, CNNs have

been applied to various fields, such as image recognition (Namba and Zhang 2006)

and estimation (Habtie et al. 2015).

21

Figure 2.4: A two-dimensional cellular neural network (Chua and Yang 1988b).

C(1,1) C(1,2) C(1,3) C(1,4)

C(2,1) C(2,2) C(2,3) C(2,4)

C(3,1) C(3,2) C(3,3) C(3,4)

C(4,1) C(4,2) C(4,3) C(4,4)

22

2.5.2 Learning Algorithm Categorization

In all of the neural paradigms, the application of an ANN involves two phases: the

learning phase and the recall phase. In the learning phase, the ANN is trained

through the adaptation of its weights until it has learned its tasks, while the recall

phase is used to solve the tasks.

There are three types of learning algorithm (Pham and Liu 1995):

 Supervised learning

A supervised learning algorithm adjusts the strengths or weights of the inter-

neuron connections according to the difference between the desired and actual

network outputs corresponding to a given input.

 Unsupervised learning

In unsupervised learning, the ANN is trained without teaching signals or targets.

It is only supplied with examples of the input patterns that it will eventually

solve.

 Reinforcement learning

Reinforcement learning is a special case of supervised learning that employs a

critic only to evaluate the goodness of the neural network output corresponding

to a given input.

23

2.6 Optimization Algorithms

Optimization in the current context, means determining the best course of action

amongst the different alternatives available in a decision-making problem. It can be

regarded as a process of finding the optimal value of a function under a given set of

circumstances, often called ‘constraints’ (Mohan and Deep 2009). An optimization

algorithm is a procedure which is executed iteratively by comparing various

solutions until an optimum or a satisfactory solution is found. With the advent of

computers, optimization has become a part of computer-aided design activities.

Each optimization problem consists of the following basic ingredients (Engelbrecht

2005):

 An objective function which represents the quantity to be optimized.

 A set of unknowns or variables which affects the value of the objective function.

 A set of constraints that restricts the values that can be assigned to the unknowns.

The goal of an optimization method is then to assign values from the allowed

domain to the unknowns, such that the objective function is optimized and the

constraints are satisfied.

24

Two distinct types of optimization technique are widely used today, namely

deterministic optimization and stochastic optimization (Heyman and Sobel 2003).

The optimization techniques are classed by the type of algorithm implemented.

 Deterministic Optimization

Deterministic optimization techniques use specific rules for moving one solution to

another. It embodies algorithms which rely heavily on linear algebra because they

are commonly based on the computation of the gradient of the response variable.

Deterministic optimization techniques are faster compared to stochastic

optimization because they require a lower number of evaluations of the response

variable to reach the solution. However, deterministic optimization algorithms look

for a stationary point in the response variable: thus, the optimal solution eventually

found could be a local optimum and not the global optimum. Deterministic

algorithms are also intrinsically single objective (Cavazzuti 2013).

 Stochastic Optimization

Stochastic optimization techniques are of the same nature as probabilistic

translation rules. These optimization techniques are more suitable for problems

where the relation between the variables and the outputs is unknown. Stochastic

optimization falls within the spectrum of the general-purpose type of approximation

search techniques (Godfrey and Babu 2013).

There are two classes of stochastic optimization:

25

i. Local Search

In local search, a predefined solution is maintained and its neighbours are

explored to find better quality solutions.

ii. Population-based Search

In population-based search, the single current solution is replaced by a

population or collection of different current solutions. Members of this

population are first selected to be current candidates and then changes are

made to these current candidates’ solutions to produce new candidate

solutions.

For the Robogymnast swing-up optimisation problem, the stochastic optimization

population-based search technique is selected due to its random nature and

flexibility, which better suits the characteristic of the problem, such as the unknown

relationship between the variable and the output.

26

2.7 Stochastic Optimization Methods

2.7.1 Particle Swarm Optimization

Particle swarm optimization (PSO), introduced by Eberhart and Kennedy (1995), is

based on a social-psychological model of social influence and social learning (De

Oca et al. 2006). In PSO, a number of simple entities (particles) are placed in the

search space of some problem or function, and each evaluates the objective function

at its current location. Each particle then determines its movement through the

search space by combining some aspect of the history of its own current and best-

fitness location with those of one or more members of the swarm, with some

random perturbations. The next iteration takes place after all particles have been

moved (Poli et al. 2007). The collective behaviour that emerges is that of

discovering optimal regions of a high dimensional search space following the main

principle of swarm intelligence (Engelbrecht 2005):

 Proximity principle

 Quality principle

 Principle of diverse response

 Principle of stability

 Principle of adaptability

27

The PSO pseudo-code is as shown below (Bharti and Singh 2015):

Step 1: Take the training data.

Step 2: Initialize the particles’ population with their position and velocity

parameters.

Step 3: Evaluate individual particle by calculating the fitness value: if fitness

value > Pbest, then update current value as Pbest.

Step 4: Select the particle which has the best fitness value among all the particles.

Step 5: Calculate particle velocity and position according to equations 3 and 4.

Step 6: Continue until either the minimum error is not attained or up to the

maximum iterations.

2.7.2 Ant Colony

Ant colony optimization (ACO) takes its inspiration from the foraging behaviour

of some ant species. These ants deposit pheromones on the ground in order to mark

some favourable path that should be followed by other members of the colony. Ant

colony optimization exploits a similar mechanism for solving optimization

problems (Dorigo and Birattari 2010). In ACO, a number of ‘artificial ants’ build

solutions to the considered optimization problem at hand and exchange information

on the quality of these solutions via a communication scheme that is reminiscent of

the one adopted by real ants.

28

 ACO algorithms are based on the following ideas (Parpinelli et al. 2002):

 Each path followed by an ant is associated with a candidate solution for a given

problem.

 When an ant follows a path, the amount of pheromone deposited on that path is

proportional to the quality of the corresponding candidate solution for the target

problem.

 When an ant has to choose between two or more paths, the path(s) with a larger

amount of pheromone have a greater probability of being chosen by the ant.

2.7.3 Intelligent Water Drops

The Intelligent Water Drops (IWD) algorithm is a swarm-based optimization

algorithm which mimics the dynamics of river systems and the actions of water

drops in the rivers (Duan et al. 2008). The IWD is a population-based constructive

optimisation algorithm that may be used for maximization or minimization

problems. The IWD has been used for the travelling salesman problem (TSP) and

the multiple knapsack problem (MKP) with promising results (Shah-Hosseini

2009b). The IWDs are created with two main properties: velocity and soil. The

IWD begins its trip with an initial velocity and zero soil. From its current location

to its next location, the IWD’s velocity is increased by an amount that is non-

linearly proportional to the inverse of the soil between the two locations. An IWD

29

needs a mechanism to select the path to its next location or step (Shah-Hosseini

2009a). In this mechanism, the IWD prefers paths with low soils to paths with high

soils. Therefore, it can be said that soil is the source material of information such

that the environment and water drops both have memories of soil (Shah-Hosseini

2009b). The algorithm of the IWD is as follows:

1. Representation of the graph, which establishes the number of nodes of the

problem that the water drop will visit and creates a route.

2. Establish the number of iterations.

3. Representation of static parameters, number of drops, initial velocity.

4. Representation of dynamic parameters, the soil and velocity would change

every time the drop moves across the nodes established.

5. The condition is set: Did the drop visit all the nodes? If the answers is no, we

go to number four.

6. Save the best result.

2.7.4 Bees Algorithm

The Bees Algorithm (BA) is an optimization algorithm inspired by the natural

foraging behaviour of honey bees to find the optimal solution (Pham et al. 2006).

BA tries to model the natural foraging behaviour of honey bees. Honey bees use

several mechanisms such as the waggle dance to optimally locate food sources and

30

to search for new ones. This makes them a good candidate for developing new

algorithms for solving optimization problems (Özbakir et al. 2010).

The main steps of the BA are listed as follows (Darwish 2009) and the flowchart is

shown in Figure 2.5:

1. Initialise the population with random solutions.

2. Evaluate the fitness of the population.

3. While (stopping criterion not met) // Forming new population.

4. Select sites for neighbourhood search.

5. Determine the patch size.

6. Recruit bees for selected sites and evaluate their fitness.

7. Select the representative bee from each patch.

8. Amend the Pareto optimal set.

9. Abandon sites without new information.

10. Assign remaining bees to search randomly and evaluate their fitness.

11. End While.

31

Figure 2.5: Flowchart of Basic Bees Algorithm (Ahmad 2012)

2.7.5 Invasive weed optimisation

Mehrabian and Lucas (2006) developed a new algorithm called Invasive Weed

Optimisation (IWO). IWO is attractive due to its flexibility and robustness. A

detailed explanation of IWO is provided in Chapter 4.

Initialise a population of n scout bees

Evaluate the fitness of the population

Select m sites for neighbourhood search

Determine the size of the neighbourhood

Recruit Bees for the selected sites

Select the representative bee for each
patch

Assign the remaining bees to random
search

New population of scout bees

32

2.8 Multi-objective optimization

Multi-objective optimization (MOO) is the process of optimizing systematically

and simultaneously a collection of objective functions. It originally grew out of

three areas: economic equilibrium and welfare theories, game theory and pure

mathematics (Marler and Arora 2004). MOO has been extensively researched and

applied in various applications (Mohamed et al. 2009; Taherkhorsandi et al. 2015;

Akbari et al. 2012). There is now increasing interest in MOO, as most engineering

design problems involve multiple and often conflicting issues (Pham and

Ghanbarzadeh 2007). Formally, MOO refers to simultaneous optimization (i.e.,

maximization and/or minimization) of two or more objective functions, which are

often in conflict with one another. This optimization problem can be stated as

follows (Rangaiah and Bonilla-Petriciolet 2013):

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒 (𝑓1(𝑥), 𝑓2(𝑥),…… . 𝑓𝑛(𝑥)) (2.1)

Subject to

𝑔𝑖(𝑥) ≤ 0 𝑖 = 1,2… . , 𝑛𝑖

ℎ𝑖(𝑥) = 0 𝑖 = 1,2… . , 𝑛𝑒 (2.2)

𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑢

where n is the number of objective functions to be simultaneously optimized, x is

the vector of m decision variables (continuous and/or discontinuous) with lower

33

(𝑥𝑙) and upper (𝑥𝑢) bounds, 𝑛𝑖 and 𝑛𝑒 are the number of inequality (𝑔) and equality

(ℎ) constraints, respectively. The feasible space, F, is the set of vectors x that

satisfy all the constraints and bounds in equation (2.2). In contrast to the single-

objective optimization case, where the optimal solution is clearly defined, in MOO

problems there is a whole set of trade-offs giving rise to numerous Pareto Optimal

solutions (Parsopoulos and Vrahatis 2002).

2.8.1 Types of multi-objective optimization

The primary goal of MOO is to model a decision maker’s preference: thus, MOO

methods are categorized depending on how the decision-maker articulates these

preferences. MOO can be divided into three major categories (Marler and Arora

2004):

a) Methods with a priori articulation of preferences - these allow the user to specify

preferences which may be articulated in terms of goals or the relative importance

of different objectives. Examples of these methods are:

• Weighted global criterion method

• Weighted sum method

• Lexicographic method

• Weighted min-max method

• Exponential weighted criterion

34

• Weighted product method

• Goal programming methods

• Bounded objective function method

• Physical programming

b) Methods for a posteriori articulation of preference - preferences are selected

from a group of solutions through the use of an algorithm that is used to

determine the representation of the generated Pareto optimal set. Examples of

these methods are:

• Physical programming

• Normal boundary intersection (NBI) method

• Normal constraint (NC) method

c) Methods with no articulation of preferences - these methods do not require any

articulation of preferences. Examples of these methods are:

• Global criterion methods

• Nash arbitration and objective product method

• Rao’s method

35

2.9 Fuzzy Logic

The main idea behind Fuzzy systems is that truth values (in fuzzy logic) or

membership values are indicated by a value in the range 0-1, with 0 representing

absolute falsity and 1 representing absolute truth, in contrast to classical set theory,

according to which each element either fully belongs to the set or is completely

excluded from the set. In other words, classical set theory represents a limited case

of the more general fuzzy set theory (Klir and Yuan 1995).

2.9.1 Fuzzy Sets

A fuzzy set is a class of objects with a continuum of grades of membership (Zadeh

1965). A fuzzy set Ã on the given universe U is that, for any uϵ U, there is a

corresponding real number μÃ(u)ϵ[0,1] to u, where μÃ(u) is called the grade of

membership of u belonging to Ã (Li and Yen 1995). Fuzzy sets allow the elements

in the set to have partial memberships within the range of 0-1. Thus, a fuzzy set is

a generalization of an ordinary set by allowing a degree of membership for each

element.

2.9.2 Fuzzy Rules

At the root of fuzzy set theory lies the idea of linguistic variables. A linguistic

variable is a fuzzy variable. In fuzzy expert systems, linguistic variables are used in

36

fuzzy rules (Negnevitsky 2005). The fuzzy rules are normally expressed in a form

that will allow the rules to be easily programmed. An example of a set of fuzzy

rules is provided in Figure 2.6.

Figure 2.6: A set of Fuzzy rules

2.9.3 Fuzzy Inference

The Inference Mechanism provides the mechanism for invoking or referring to the

rule base such that the appropriate rules are fired. The steps of fuzzy reasoning

performed by Fuzzy Inference Systems (FIS) are (Jang 1993):

1. Compare the input variables with the membership functions on the premise

part to obtain the membership values (or compatibility measures) of each

linguistic label. (This step is often called fuzzification).

2. Combine (through a specific T-norm operator, usually multiplication or

min) the membership values on the premise part to get the firing strength

IF J is High and T is High, THEN Q is NG

IF J is AVG and T is High, THEN Q is NG

IF J is Low and T is High, THEN Q is NG

…………………………………..

……………………………………

IF J is Low and T is Low, THEN Q is G

37

(weight) of each rule. Generate the qualified consequent (either fuzzy or

crisp) of each rule depending on the firing strength.

3. Aggregate the qualified consequents to produce a crisp output. (This step is

called defuzzification.)

There are two well established types of FIS, namely Mamdani-style inference and

Sugeno-style inference (Kaur and Kaur 2012). Table 2.1 shows the comparison

between the two FIS types.

38

Table 2. 1: Comparison between Mamdani FIS and Sugeno FIS (Hamam and Georganas

2008)

Mamdani Sugeno

Output membership function No output membership function

Output distribution

No output distribution,

only ‘resulting action’:

Mathematical combination of the

rule strength and the output

Crisp result obtained through

defuzzication of rules’ consequent

No defuzzification: crisp result is

obtained using weighted average of

the rules’ consequent

Non-continuous output surface Continuous output surface

MISO and MIMO systems Only MISO systems

Expressive power and interpretable

rule consequents

Loss of interpretability

Less flexibility in system design
More flexibility in system design;

more parameters in the output

39

2.10 Upright balancing of a pendulum

In the past few years, the single inverted pendulum model has been falsified as an

explanatory approach for a quiet (standing) human stance. Double inverted

pendulum models have recently proven to be inappropriate. Human topology, with

three major leg joints, suggests a natural way to examine triple inverted pendulum

models as an appropriate approach (Günther and Wagner 2015). The dynamics of

balancing a pendulum at the unstable position can be employed in the applications

of controlling walking robots, rocket thrusters, etc. (Huang and Huang 2000;

McGrath et al. 2015; Kuo 2007; Yamamoto et al. 2015). This makes it a very

popular experiment for educational purposes in modern control theory (Grossimon

et al. 1996; Awtar et al. 2002; Rahimi et al. 2013; Boubaker 2013).

Most inverted pendulums are underactuated mechanical systems. This means that

the angular acceleration and position of the pendulum cannot be controlled directly.

Therefore, the techniques developed for fully actuated mechanical robot

manipulators cannot be used to control inverted pendulums (Lozano et al. 2000).

Furuta et al. (1984) designed a controller for an inverted triple link pendulum using

attitude control. By controlling the angles of the upper two arms around specified

values, the pendulum can be stabilized inversely with the specified attitude.

40

Medrano-Cerda et al. (1995) proposed a robust computer control system for

balancing and attitude control of double and triple inverted pendulums. The

controller was designed using a blend of state-space and frequency domain

methods. Experimental results indicate that the controller was successful in

stabilizing the triple link pendulum, but the system’s performance is greatly

degraded due to backlash in the gearboxes.

Another method to balance the inverted pendulum was proposed by Park et al.

(2004) using Q-learning. Two mode Q-learning was used to stabilize the Zero

Moment Point (ZMP) of a biped robot in the standing posture. The controller was

successful in stabilizing the biped robot in both simulations and experiments. The

two mode Q-learning was more successfully in balancing the biped robot compared

to conventional Q-learning, but took a longer time.

Based on the work done by Park et al. (2004), Raj and Kumar (2013) approached

the inverted pendulum problem by using the Q-learning based reinforcement

learning to balance a double inverted pendulum. They were able to prove through

simulation that Q-learning is a simple but robust learning method. However, when

implemented on the Robogymnast, the author discovered that the training process

is far too difficult due to the numerous number of states a triple link pendulum has.

41

A paper published by Kamil et al. (2014) combined a Discrete-time Linear

Quadratic Regulator (DLQR) controller and an integral control action to satisfy the

required performance of the system. Kamil (2015) was able to prove through

simulation results that the Robogymnast could be settled in the upright position for

an acceptable amount of time (1 - 12 seconds).

2.11 Summary

Overviews of the various aspects that are applied in this thesis have been presented

in this chapter. The literature review includes a discussion of the complex multi-

link mechanism and the problems associated with its control. The literature also

includes the elements used in designing its controller. In the next chapter, the

system description of the Robogymnast is discussed in detail and its mathematical

model is derived.

42

CHAPTER 3

System Description and Mathematical Modelling

3.1 Introduction

This chapter discusses the system description of the Robogymnast and the

derivation of its mathematical model. The Robogymnast is a triple link

pendulum and is classified as a complex multi-link mechanism. It can also be

called an underactuated mechanism due to its lack of full actuation. This

characteristic introduces challenges when designing a controller for the

Robogymnast.

The Robogymnast has three degrees of freedom, where two of the degrees of

freedom are actuated while one is unactuated. Due to its complex nature, the

design of controllers for the Robogymnast requires computer-simulated tests to

ensure their functionality before implementing them on the real system itself.

To achieve this, a mathematical model of the Robogymnast had to be derived.

The mathematical model is derived based on the Euler-Lagrange equations of

motion (Spong 1994; Eldukhri and Pham 2010). The Euler-Lagrange equations

describe the evolution of a mechanical system subject to holonomic constraints.

43

In order to determine the Euler-Lagrange equations in a specific situation, one

has to form the Lagrangian of the system, which is the difference between the

kinetic energy and the potential energy of the system (Spong et al. 2006).

Section 3.2 presents a description of the entire system and explanations of its

individual components. Dimensions and other physical details of the system are

given. Schematic diagrams and sketches of the Robogymnast are also provided

in this section. In Section 3.3, the derivation of the mathematical model of the

system is presented and discussed. The step-by-step derivation from the Euler-

Lagrange equation to the state space model of the system is demonstrated in

this section. A summary of the entire chapter is given in Section 3.4.

3.2 System Description

The triple link under-actuated mechanism (Robogymnast) is depicted in Figure

3.1 (Eldukhri and Pham 2010). The frame of the Robogymnast is made from

50mm diameter carbon fibre tubes weighing 0.213kg/m. Aluminium

components are attached to the ends of each link to provide the structures for

mounting sensors and actuators. Physical parameters of the system are designed

according to the features of a human gymnast swinging on a freely rotating high

bar with his hands firmly fixed to the bar. Each link represents a body part or a

group of body parts on a human. Link 1 represents the arms (without elbows

44

and wrists). Link 2 represents the head and torso. Link 3 represents the legs

(without knees and ankles). Joint 1 (hands) consists of a steel shaft mounted on

ball bearings with a potentiometer mounted to measure the angle of rotation of

link 1. Joints 2 (shoulders) and 3 (hip) are split into two sections. The first

section is similar to joint 1 with a potentiometer to measure the relative angle

of each link. The second section is the output shaft of the drive unit (DC

motor/gearbox). The Robogymnast is controlled by a PC equipped with

appropriate AD/DA converters. C++ programmes are used to transmit the

input/output commands between the PC and Robogymnast (Kamil et al. 2012).

Figure 3.2 shows the Robogymnast in its actual test environment. Figure 3.3

illustrates the overall system of the Robogymnast, while Figure 3.4 shows the

setup of the system’s experimental apparatus.

45

Figure 3.1: Robogymnast System Diagram (Kamil 2015)

P
o

t

M
o

to
r/

ge
ar

b
o

x
C

o
u

p
lin

g

Arms

Hip

Shoulders

Legs

B
al

l b
ea

ri
n

gs

Torso

46

Figure 3.2: Robogymnast (a) Front view (b) Side view

(a) (b)

Link 1

Link 2

Link 3

47

Figure 3.3: Block diagram representation of the Robogymnast system (Eldukhri

and Pham 2010)

48

Figure 3.4: Block diagram representation of the experimental apparatus

(Kamil 2015)

Overall System

Clock

ControllerA-D D-A

Amplifiers

Anti-aliasing

Filters

Filters

Amplifiers

Power

Amplifiers

Robogymnast

Computer

yf yk(k) u(k)

u

uf

uf

y

49

The Robogymnast’s sensors (potentiometers) send analogue signals to the anti-

aliasing filters. The analogue signals consist of two types of information. The

first is the sensor readings, which are considered as controllable disturbance,

and the second type are the uncontrollable disturbances. The uncontrollable

disturbances are high frequency signals, while the sensor readings are low

frequency signals (Kamil 2015). The anti-aliasing filter is tasked with reducing

the effects of the disturbances. The filtered signals are then sent to a signal

amplifier to be amplified. The amplified analogue signals are then sent to an

ADLINK DAQ-2501 AD/DA convertor to be converted to digital signals. The

ADLINK AD/DA convertor has a resolution of 12 bits for analogue input and

14 bits for analogue output. It has a conversion time of 1 microsecond and a

settling time of less than 3 microseconds. From the AD/DA convertor, the

signals are then sent to the controller. The controller is a computer (PC) that

contains a C++ program. The controller program contains (Kamil 2015):

 A state feedback controller

 A discrete integrator

 A reduced order observer

 Offset adjustments in the control outputs.

50

 Scaling factors and sensor gains for the conversion of input signals from

volts to radians.

The controller uses the data obtained from the input channels for control action

calculations. It then sends the control action signals to an AD/DA to be

converted to analogue signals. The control action signals go through filters and

amplifiers before being sent to a power amplifier. The power amplifier

amplifies the control action signals and sends them to the actuators (motor 1

and motor 2).

Figure 3. 5: Circuit diagram of 1st order filter in series with operational amplifier

(Kamil 2015)

R

Ri

C

Rf

+

-

+V

-V

741

Output
3

2 4

7

6

Input

1st order filter

Gain= Rf+Ri

Ri

51

Figure 3.6: Circuit diagram of the power amplifier (Kamil 2015)

3.3 Mathematical Model

For modelling purposes, the Robogymnast is regarded as a triple link pendulum

in a stable equilibrium configuration (Eldukhri and Pham 2010), as seen in

Figure 3.7. The standard method for deriving dynamical equations of multi-

rigid systems uses the Euler-Lagrange formula. This method involves only the

derivatives of time, speed and position. The most important part of the

Lagrangian equation is obtaining the kinetic and potential energy of the entire

system (Gmiterko and Grossman 2009). In this section, the Robogymnast is

-

+ LM12

1k

220nF

47k

220pF

Input

+13.8V

-13.8V

Out

Input Compensation

Clamp Diodes

Output

52

regarded as being in the downward (stable) position. The model of the

Robogymnast in an inverted (unstable) position is discussed in Chapter 6.

Figure 3.7: Schematic representation of Robogymnast

The mathematical model is derived using the Lagrange equation provide as

equation (3.1)

𝑑

𝑑𝑡
(

𝜕𝐾

𝜕�̇�𝑖
) −

𝜕𝐾

𝜕𝜃𝑖
+

𝜕𝐷

𝜕�̇�𝑖
+

𝜕𝑃

𝜕𝜃𝑖
= 𝑇𝑖 𝑖 = 1,2,3 (3.1)

l1

l2

l3

a1

a2

a3

θ1

θ2

θ3

T1

T2

T3

m1, I1

m2,I2

m3,I3

53

where K is the kinetic energy, P is the potential energy and D is the dissipation

energy. The angle of the ith link, measured with reference to the vertical line,

is represented by θi , while Ti is the torque associated with it. The variables of

the equation can be broken down to the form of equations (3.2) to (3.4):

𝐾 =
1

2
∑{𝐼𝑖𝜃𝑖 + 𝑚𝑖 [

𝑑

𝑑𝑡
(∑ 𝑙𝑘 𝑠𝑖𝑛 𝜃𝑘 + 𝑎𝑖 𝑠𝑖𝑛 𝜃𝑖

𝑖−1

𝑘=𝑖−3

)]

2
3

𝑖=1

+ [
𝑑

𝑑𝑡
 (∑ 𝑙𝑘 𝑐𝑜𝑠 𝜃𝑘 + 𝑎𝑖 𝑐𝑜𝑠 𝜃𝑖

𝑖−1

𝑘=𝑖−3

)]

2

}

 (3.2)

𝑃 = ∑ 𝑚𝑖𝑔(𝑎𝑖 cos 𝜃𝑖 + ∑ 𝑙𝑘 cos 𝜃𝑘
𝑖−1
𝑘=𝑖−3)3

𝑖=1 (3.3)

𝐷 =
1

2
∑ (𝐶𝑖(�̇�𝑖 − 𝜃0)

2
)3

𝑖=1 (3.4)

Since joint 1 has no actuator, the torque applied to it is effected by motors on

joint 2 (Tm1) and joint 3 (Tm2), where 𝑇1 = −𝑇𝑚1, 𝑇2 = 𝑇𝑚1 − 𝑇𝑚2, 𝑇3 =

𝑇𝑚2

The torque given by the motor is represented by

𝑇𝑚1 = 𝐺1𝑢1 − 𝐼𝑝1(�̈�2 − �̈�1) − 𝐶𝑝1(�̇�2 − �̇�1) (3.5)

𝑇𝑚2 = 𝐺2𝑢2 − 𝐼𝑝2(�̈�2 − �̈�1) − 𝐶𝑝2(�̇�2 − �̇�1) (3.6)

54

Solving equation (3.1) for 𝜃1 and linearizing around the point 𝜃1 = 𝜃2 = 𝜃3 ≈

0.

𝐿1 =
𝑑

𝑑𝑡
(
𝜕𝐾

𝜕�̇�1

) −
𝜕𝐾

𝜕𝜃1
+

𝜕𝐷

𝜕�̇�1

+
𝜕𝑃

𝜕𝜃1
− 𝑇1

= [𝐼1 + 𝑚1𝑎1
2 + 2𝑚2𝑙1

2 + 2𝑚3𝑙1
2 + 𝐼𝑝1]�̈�1 + [−𝐶2 − 𝐶𝑝1]�̇�2 + [−𝑚1𝑎1𝑔 −

𝑚2𝑙1𝑔 − 𝑚3𝑙1𝑔]𝜃1 + 𝐺1𝑢1 (3.7)

Solving equation (3.1) for 𝜃2

𝐿2 = [𝑚2𝑙1𝑎2 + 𝑚3𝑙1𝑙2 − 𝐼𝑝1]�̈�1 + [𝐼2 + 𝑚2𝑎2
2 + 𝑚3𝑙2

2 + 𝐼𝑝1 + 𝐼𝑝2]�̈�2 +

[−𝐼𝑝2 + 𝑚3𝑙2𝑎3]�̈�3 + [−𝐶2 − 𝐶𝑝1]�̇�1 + [𝐶2 + 𝐶3 + 𝐶𝑝1 + 𝐶𝑝2]�̇�2 +

[−𝐶3 − 𝐶𝑝2]�̇�3 + [−𝑚2𝑎2 − 𝑚3𝑙2]𝑔𝜃2 − 𝐺1𝑢1 + 𝐺2𝑢2 (3.8)

Solving equation (3.1) for 𝜃3

𝐿3 = [𝑚3𝑙1𝑎3 − 𝐼𝑝2]�̈�1 + [𝑚3𝑙2𝑎3 + 𝐼𝑝2]�̈�2 + [𝐼3𝑚3𝑎3
2]�̈�3 + [𝐶𝑝2]�̇�1 +

[−𝐶𝑝2 − 𝐶3]�̇�2 + [𝐶3 + 𝐶𝑝2]�̇�3 + [−𝑚3𝑎3𝑔]𝜃3 − 𝐺2𝑢2 (3.9)

After rearranging the equations (3.7), (3.8) and (3.9), equation (3.10) is

obtained.

�̃� [

�̈�1

�̈�2

�̈�3

] + �̃� [

�̇�1

�̇�2

�̇�3

] + �̃� [

𝜃1

𝜃2

𝜃3

] + �̃� [
𝑢1

𝑢2

] = 0

 (3.10)

55

Where

�̃� = [

𝐽1 + 𝐼𝑝1 𝑙1𝑀2 − 𝐼𝑝1 𝑙1𝑀3

𝑙1𝑀2 − 𝐼𝑝1 𝐽2 + 𝐼𝑝1 + 𝐼𝑝2 𝑙2𝑀3 − 𝐼𝑝2

𝑙1𝑀3 𝑙2𝑀3 − 𝐼𝑝2 𝐽3 + 𝐼𝑝2

]

�̃� = [

𝐶1 + 𝐶2 + 𝐶𝑝1 −𝐶2 − 𝐶𝑝1 0

−𝐶2 − 𝐶𝑝1 𝐶2 + 𝐶3 + 𝐶𝑝1 + 𝐶𝑝2 −𝐶3 − 𝐶𝑝2

0 −𝐶𝑝2 − 𝐶3 𝐶3 + 𝐶𝑝2

]

�̃� = [

−𝑀1𝑔 0 0

0 −𝑀2𝑔 0

0 0 −𝑀3𝑔

] , �̃� = [

𝐺1 0

−𝐺1 𝐺2

0 −𝐺2

]

and

𝑀1 = 𝑚1𝑎1 + (𝑚2 + 𝑚3)𝑙1, 𝑀2 = 𝑚2𝑎2 + 𝑚3𝑙2,

𝑀3 = 𝑚3𝑎3, 𝐽1 = 𝐼1 + 𝑚1𝑎1
2 + (𝑚2 + 𝑚3)𝑙1

2

𝐽2 = 𝐼2 + 𝑚2𝑎2
2 + 𝑚3𝑙2

2
, 𝐽3 = 𝐼3 + 𝑚3𝑎3

2

Parameter values given in Table 3.1 and Table 3.2 are then accordingly inserted

into the equations.

56

Table 3.1: Parameters of the Robogymnast (Eldukhri and Pham 2010)

Link 1 Link 2 Link 3

l1(m) = 0.155 l2(m) = 0.180 l3(m) = 0.242

a1(m) = 0.0426 a2(m) = 0.138 a3(m) = 0.065

m1(kg) = 2.625 m2(kg) = 0.933 m3(kg) = 0.375

I1(kgm2) = 0.014 I2(kgm2) = 0.018 I3(kgm2) = 0.002

C1(Nms) = 0.0172 C2(Nms) = 0.0272 C3(Nms) = 0.035

Table 3.2: Motor parameters (Eldukhri and Pham 2010)

Motor 1 Motor 2

Ip1(kgm2) = 0.0358 Ip2(kgm2) = 0.0358

Cp1(Nms) = 7.73 Cp2(Nms) = 7.73

G1(Nm/V) = 1.333 G2(Nm/V) = 0.625

k1 = 246:1 k2 = 110.6:1

57

In order to arrange the equation in terms of relative angles (q) matrix W is

introduced, where

𝑊 = [

1 0 0

−1 1 0

0 −1 1

] and 𝜃 = [

𝜃1

𝜃2

𝜃3

]

thus

𝑞 = [

𝑞1

𝑞2

𝑞3

] = [

𝜃1

𝜃2 − 𝜃1

𝜃3 − 𝜃2

] = 𝑊𝜃

Equation (3.10) is then written as

�̃�𝑊−1 [

�̈�1

�̈�2

�̈�3

] + �̃�𝑊−1 [

�̇�1

�̇�2

�̇�3

] + �̃�𝑊−1 [

𝑞1

𝑞2

𝑞3

] + �̃� [
𝑢1

𝑢2

] = [

0

0

0

] (3.11)

Solving equation (3.11) for [�̈�1 �̈�2 �̈�3]
𝑇 gives:

[

�̈�1

�̈�2

�̈�3

] = −𝑊�̃�−1�̃�𝑊−1 [

�̇�1

�̇�2

�̇�3

] − 𝑊�̃�−1�̃�𝑊−1 [

𝑞1

𝑞2

𝑞3

] − 𝑊�̃�−1�̃� [
𝑢1

𝑢2

] (3.12)

58

Assuming that 𝑥 = [𝑞 �̇�]𝑇 , the state-space modelling is then obtained from

equation (3.12) as

�̇� = [
03 𝐼3

−𝑊�̃�−1�̃�𝑊−1 −𝑊�̃�−1𝑁𝑊−1
] 𝑥 + [

03𝑥2

−𝑊�̃�−1𝐻
] [

𝑢1

𝑢2

] = 𝐴𝑥 + 𝐵𝑢 (3.13)

𝑦 = [𝐼3 03]𝑥 = 𝐶𝑥

 (3.14)

where

03 = [

0 0 0

0 0 0

0 0 0

], 𝐼3 = [

1 0 0

0 1 0

0 0 1

] , 03𝑥2 = [

0 0

0 0

0 0

]

and qy is the output vector.

After substituting the parameters with the values given in Tables 3.1 and 3.2, a

numerical model of the Robogymnast is obtained using Matlab® M-files where

𝐴 = [
03 𝐼3

𝐴21 𝐴22

], 𝐴21 = [

−36.42 −0.35 0.21

13.10 −22.06 −223

2.14 −1.50 −5.68

]

59

𝐴22 = [

−0.20 88.38 9.17

0.20 −168.29 7.70

0.02 7.69 −201.45

], 𝐵 =

[

03𝑥2

−15.19 −0.74

28.92 −0.62

−1.32 16.21]

The A, B and C matrices are then converted to discrete time using Matlab®

with a sampling time of t=2.45ms and the matrix 𝐴𝑑 is obtained.

𝐴𝑑 =

[

0.99 −2.43𝑒−3 −2.35𝑒−4 2.49𝑒−2 1.01𝑒−2 1.19𝑒−3

1.49𝑒−3 0.99 −2.72𝑒−4 3.78𝑒−5 5.87𝑒−3 2.15𝑒−4

2.55𝑒−4 −2.22𝑒−4 0.99 5.29𝑒−6 2.15𝑒−4 4.94𝑒−3

−0.77 −0.23 −2.39𝑒−2 0.99 0.52 6.36𝑒−2

7.59𝑒−2 −0.13 −1.43𝑒−2 2.63𝑒−3 1.55𝑒−2 2.00𝑒−3

1.32𝑒−2 −1.21𝑒−2 −2.85𝑒−2 3.96𝑒−4 2.05𝑒−3 6.54𝑒−3]

𝐵𝑑 =

[

−1.73𝑒−3 −9.66𝑒−5

−3.28𝑒−3 −1.75𝑒−5

−3.73𝑒−5 1.61𝑒−3

−8.88𝑒−2 −5.14𝑒−3

0.17 −1.83𝑒−4

3.91𝑒−4 7.99𝑒−2]

, 𝐶𝑑 = [

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

]

The matrices A, B and C in equations (3.13) and (3.14) are then replaced with

matrices Ad, Bd and Cd respectively to obtain discrete time equations (3.15)

and (3.16):

60

𝑥(𝑘+1) = 𝐴𝑑𝑥𝑘 + 𝐵𝑑𝑢𝑘 (3.15)

𝑦(𝑘+1) = 𝐶𝑑𝑥(𝑘+1) (3.16)

3.4 Summary

This chapter has provided a description of the Robogymnast’s system and its

mathematical modelling. A detail description of the entire Robogymnast system

and its components was given. The system’s process flow was described and

illustrated. The derivation of the mathematical equation based on the Euler-

Lagrange approach was also demonstrated. A linearized equation of motion and

a state-space equation of the Robogymnast in a downward position were

produced from the derivation. The mathematical equation and the state-space

equation are needed in order to observe and study the system’s behaviour with

different types of controllers before implementing the controllers on the actual

system. It will be utilised in Chapter 4, in which the swing-up control of the

Robogymnast will be discussed.

61

CHAPTER 4

Swing-Up Control of the Triple Link Pendulum

4.1 Introduction

Various motion controls have been implemented on inverted pendulums, such

as swinging, swing-up and inverted balancing (Åström and Furuta 2000; Xin

and Kaneda 2007a; Park et al. 2011; Yoshida 1999; Lee et al. 2015; Kharola

et al. 2016; Xin and Yamasaki 2012; Eom and Chwa 2015; Xin and Kaneda

2001; Rubi et al. 2002; Cheng et al. 2013; Kamil et al. 2012; Eldukhri and

Pham 2010). In this chapter, Invasive Weed Optimization (IWO) is used to

tune the parameters of the swing-up controller developed by Eldukhri and

Pham (2010). The main goal of this chapter is to select the optimal control

parameters to achieve the fastest swing-up motion for the Robogymnast.

The remainder of the chapter is organized as follows. Section 4.2 introduces

the swing-up control of the triple link pendulum and the equations related to

its control signals. Section 4.3 discusses Invasive Weed Optimization (IWO),

explaining its process. Section 4.4 describes the implementation of the IWO

in tuning the control signal parameters of the swing-up control. Section 4.5

62

presents the IWO results. The control parameters are then implemented on the

system and the simulation and experiment results are also presented in this

section. Section 4.6 provides the discussion and conclusion of the results. A

summary of the chapter is given in section 4.7.

4.2 Swing-up control

The swing-up motion of the Robogymnast (as seen in Figure 4.1) is a sequence

of motions in which the Robogymnast swings from a stable pendant

configuration to an inverted unstable configuration.

Figure 4.1 Robogymnast in mid-swing

63

This is achieved by controlling the parameters of the input voltages to the two

motors (Eldukhri and Pham 2010). The equations that govern the input

voltages are

𝑢1 = 𝐴1𝛼1 sin𝜙1 (4.1)

𝑢2 = 𝐴2𝛼2 sin𝜙2 (4.2)

Where 𝑢1 and 𝑢2 are the input voltages for motor 1 and motor 2. The voltages

are controlled by adjusting the following parameters

𝛼1(𝑛 + 1) = 𝛼1(𝑛) + ∆𝛼1 (4.3)

 𝛼2(𝑛 + 1) = 𝛼2(𝑛) + ∆𝛼2 (4.4)

𝜙1(𝑛 + 1) = 𝜙1(𝑛) + (
𝜂

𝛿1
⁄) (4.5)

𝜙2(𝑛 + 1) = 𝜙2(𝑛) + (
𝜂

𝛿2
⁄) (4.6)

𝛿1(𝑛 + 1) = 𝛿1(𝑛) + ∆𝛿1 (4.7)

𝛿2(𝑛 + 1) = 𝛿2(𝑛) + ∆𝛿2 (4.8)

 ∆𝛼1 and ∆𝛼2 are the increments of amplitudes. ∆𝛿1 and ∆𝛿2 are the

increments/decrements of the frequencies. Because 𝑢1 and 𝑢2 are sinusoidal

cycle inputs (multiple of sampling intervals 𝑇𝑠 depending on the value of 𝛿1

and 𝛿2), 𝜙1 and 𝜙2 vary between 0 and 2π with a step increment of 𝜂/𝛿1 and

𝜂/𝛿2 respectively. At the end of each duty cycle, 𝛼1, 𝛼2, 𝛿1 and 𝛿2 are

64

increased by∆𝛼1, ∆𝛼2, ∆𝛿1 and ∆𝛿2 respectively. Voltages 𝑢1 and 𝑢2 have

been limited to be between -10V and 10V in order to avoid damaging the

motors. The value of constant A1 is fixed at 3.4 and A2 is fixed at 2.5. The

values of 𝛼1, 𝛼2, 𝛿1 and 𝛿2 are initially set at 1, while the value of constant η

is set at 0.3142 (Eldukhri and Pham 2010). The dynamic behaviour of the

Robogymnast during the swing-up motion was simulated using a MATLAB®

program developed by the author using the discrete state space equations

(equations (3.15) and (3.16)).

 In previous work, Eldukhri and Pham (2010) achieved swing-up motion of

the Robogymnast by varying the amplitudes and frequencies of 𝑢1 and 𝑢2

using a single parameter δ whose periodic increment ∆𝛿 was obtained through

trial and error. Kamil et al. (2012) separated the increments of 𝛼 and δ into

Δα and Δδ respectively. The Bees Algorithm was then employed to find the

optimum values of Δα and Δδ.

In this chapter, input signals 𝑢1 and 𝑢2 are each assigned their own α and δ

parameters. The IWO is then used to select the optimum values of ∆𝛼1 ,∆𝛼2,

∆𝛿1 and ∆𝛿2.

65

4.3 Invasive Weed Optimization Algorithm

Invasive Weed Optimization (lWO), first designed and developed by

Mehrabian and Lucas, is a novel numerical stochastic optimization algorithm

inspired by the colonization of invasive weeds (Madivada Hymavathi and Rao

2012). The robustness and seeding characteristics of weeds has been

incorporated to form a swarming optimization method that is simple, flexible

and effective. IWO has some distinctive properties in comparison with

traditional numerical search algorithms like reproduction, spatial dispersal

and competitive exclusion (Mehrabian and Lucas 2006). The procedures

required in order to implement IWO in an optimization algorithm are as

follows:

1- Randomly generate a finite population of seeds from the set of feasible

solutions (initializing population).

2- Calculate the fitness of the population. Every seed will then reproduce

based on its fitness (reproduction). In this case, the number of seeds

produced is directly proportional to its fitness level.

3- The new seeds are then randomly distributed over the search area and

grow into new plants (spatial dispersal) The mean of distribution is equal

to the location of the parent plant, but the standard deviation (SD), σiter,

66

will be reduced from a specified initial value, σinitial, to the final value,

σfinal, according to equation 4.7 (Ghalenoei et al. 2009).

 𝜎𝑖𝑡𝑒𝑟 =
(𝑖𝑡𝑒𝑟𝑚𝑎𝑥−𝑖𝑡𝑒𝑟)𝑛

(𝑖𝑡𝑒𝑟𝑚𝑎𝑥)𝑛
 (𝜎𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝜎𝑓𝑖𝑛𝑎𝑙) + 𝜎𝑓𝑖𝑛𝑎𝑙 (4.7)

 4- The process is continued until the maximum population is reached, where

the lower fitness seeds are truncated (competitive exclusion). The process

is continued until maximum iteration is reached.

The flowchart of the IWO process is shown in Figure 4.2.

67

YES

Start

INITIALIZATION:

Generate parent plants for each variable

REPRODUCTION INCLUDING SPATIAL DISTRIBUTION

(Seeds+weeds)>PopMax

Competitive Exclusion:

Include only the fittest ‘PopMax’ of

weeds and seeds in colony.

(Seeds+weeds)=Colony

Iter max?

End

NO

YES

NO

Include all the seeds and

weeds in the colony

Figure 4.2: IWO Flow Chart (Madivada Hymavathi and Rao 2012)

68

4.4 Tuning the swing–up control parameters using IWO

IWO was used to investigate the optimum values of the variables for the swing-up

of the Robogymnast due to its simplicity and flexibility. The parameters of the IWO

were set as in Table 4.1. The variables investigated are 𝛥𝛼1 and 𝛥𝛼2, which are the

increments of amplitudes, while 𝛥𝛿1 and 𝛥𝛿2 are the increments/decrements of

frequency. The search range was obtained through trial and error by starting the

search with the widest possible range and determining through observation where

the optimum value for each variable is most likely to be found. The procedure is

repeated until an acceptable range is obtained. This is done to speed up the search

process of the IWO and to ensure that the optimum values are obtained.

69

Variable Value Description

Number of initial

plants (pinit)
10

Number of randomly

chosen values from the

solution space.

Minimum number of

seeds (SMin)
0

Minimum population

of solutions

Maximum number of

seeds (SMax)
500

Maximum population

of solutions

Initial value of

standard deviation

(σinitial)

0.04

Standard deviation

used for spatial

distribution of plants.

Final value of

standard deviation

(σfinal)

0.01

Final standard

deviation used for

spatial distribution of

plants.

Maximum number of

iteration (Itermax)
5 Number of iterations

Nonlinear

Modulation Index (n)
0.001 -

Search range

0<Δα1<0.7

0<Δα2<0.2

5.0<Δδ1<6.0

5.0<Δδ2<6.0

Search range used based

on trial and error.

Table 4.1: IWO Parameters

70

i. Compute fitness of each plant by determining the time taken

for the Robogymnast to swing 180° using the discrete state

space Equations 3.15 and 3.16.

ii. Compute maximum and minimum fitness of colony.

iii. For each individual plant in colony (p ϵ W)

iv. Compute the number of seeds for p, corresponding to its

fitness.

v. Randomly select the seeds from the feasible solutions

around the parent plant (p) in a neighbourhood with spatial

distribution based on standard deviation obtained from

equation 4.7 and mean (μ) equal to zero.

vi. Add the generated seeds to the solution set, W

vii. Sort the population p in descending order of their fitness.

viii. If population>PopulationMax, truncate weeds with smaller

fitness until: Population = PopulationMax.

ix. Continue with next iteration.

x. Repeat step ii until the maximum number of iterations.

Optimum value variables are selected from fittest weeds

Figure 4.3: Pseudo-code for IWO

71

Figure 4.4: Flowchart for Invasive Weed Optimization Algorithm

No

Start

Set the parameters of the IWO pinit =10, SMin=0, SMax= 500, σinitial
=0.004, σfinal = 0.01, IterMax = 5, n=0.001, Δα1(min)=0,

Δα1(max)=0.7, Δα2(min)=0, Δα2(max)=0.2, Δδ1 (min) = 5.0, Δδ1 (max)
= 6.0 , Δδ2 (min) = 5.0, Δδ2 (max) = 6.0

Randomly generate 10 sets of 4 values (seeds)for each parameter (Δα1, Δα2,Δδ1,Δδ2)
using the spatial distribution formula (equation 4.7) and assign them as Initial plants

(pinit)

Evaluate the fitness of each set of plants by determining the length of time it takes for the ϴ1
to reach ≈180°

Sort the set of plants in a descending order of fitness

Produce next generation of plants from the remaining set
seeds where the each set plant in the 1st fittest group

producing 5 sets each, 2nd fittest group producing 4 sets each,
3rd fittest group producing 2 sets each and the 4th group

producing 1 set each.

Number of set seeds <Smax

Only keep the 500 fittest set seeds and
eliminate the rest

The set plants are grouped into 4 groups base on their
fitness.

IterMax>5

End

Yes

No

Yes

72

4.5 Results

This section gives a review of the results obtained from the IWO search. The values

are then applied to simulations and experiments and their results studied.

4.5.1 IWO Results

The parameters in Table 4.1 were applied to the IWO algorithm and used to search

for the optimum values of ∆𝛼1, ∆𝛼2, ∆𝛿1 and ∆𝛿2. The results of the IWO algorithm

shown in Table 4.2 were obtained by using an error of 0.55%. The values obtained

were then applied to the MATLAB® program to simulate the dynamic behaviour

of the Robogymnast in order to verify the IWO result. The system was simulated

using the top four results 1:

Set 1: Δα1=0.6924V, Δα2= 0.1966V, Δδ1=5.1984 rad-1, Δδ2= 5.1129 rad-1

Set 2: Δα1=0.6872V, Δα2= 0.1726V, Δδ1=5.4428 rad-1, Δδ2= 5.9191 rad-1

Set 3: Δα1=0.6616V, Δα2= 0.1699V, Δδ1=5.5194 rad-1, Δδ2= 5.9701 rad-1

Set 4: Δα1=0.6635V, Δα2= 0.1827V, Δδ1=5.5506 rad-1, Δδ2= 5.9349 rad-1

Simulation results in Figure 4.5 to 4.8 shows successful swing-up of the

Robogymnast to an inverted configuration using the values obtained from the IWO,

and these simulation results conform to IWO results.

1 The top four results are selected based on success in the experiment.

73

Table 4.2: IWO Results

Δα1

(V)

Δα2

(V)

Δδ1

(rad-1)

Δδ2

(rad-1)

Angular Position of

Robogymnast (ϴ1 Deg)

Duration to reach the upright

position(s)

0.6924 0.1966 5.1984 5.1129 -179.003

128.500

 0.6833 0.1919 5.2013 5.1705 -179.018

128.525

 0.6872 0.1726 5.4428 5.9191 -179.032

134.375

 0.6627 0.1707 5.5217 5.9179 -179.192

135.975

 0.6615 0.1646 5.5168 5.9925 -179.059

135.975

 0.6593 0.1644 5.5170 5.9872 -179.084

135.975

 0.6524 0.1808 5.5171 5.9668 -179.078

135.975

 0.6616 0.1699 5.5194 5.9701 -179.063

136.00

 0.6662 0.1548 5.5470 5.9579 -179.125 136.525

0.6596 0.1492 5.5463 5.9585 -179.098 136.525

0.6648 0.1663 5.5501 5.9432 -179.217 136.525

0.6635 0.1827 5.5506 5.9349 -179.244

136.525

 0.5468 0.0157 5.1284 5.1673 -179.2190 158.050

0.5780 0.0011 5.1276 5.1721 -179.1363 158.050

74

4.5.2 Simulation Results

Figure 4.5: Simulated angular position ϴ1 for Set 1

Figure 4.6: Simulated angular position ϴ1 for Set 2

75

Figure 4.7: Simulated angular position ϴ1 for Set 3

Figure 4.8: Simulated angular position ϴ1 for Set 4

76

The fastest swing-up motion was achieved at using Set 1 parameters. The

Robogymnast reached an angle of -179° in 128.5 seconds. All the swing-up motions

displays similar pattern, where the swinging starts with high frequencies and ends

with smaller frequencies but larger amplitudes.

4.5.3 Experiment Results

Values of the parameters obtained using IWO were applied to the actual system.

The experiments conducted show that the Robogymnast will only be able to obtain

a smooth swing-up motion if the motor voltages u1 and u2 have the same frequency,

contrary to the simulation results. If the voltages are not in phase, the Robogymnast

will not be able to achieve the natural frequency required for smooth swing-up

motion. Thus, in order to obtain a satisfactory result, the assumption that Δδ2= Δδ1

had to be made. The larger Δδ, the slower the frequency of the sinusoidal function

applied for the two motors. In the real system, it has been observed that the system

will perform better if the sinusoidal signals applied to the motors start at a relatively

fast frequency. The value of Δδ obtained from the simulation results was divided by

100 in order to achieve smooth motion and to avoid damaging the robot’s

motor/gearbox structures caused by the inherent backlash in the gearboxes. Figures

4.9 to 4.12 illustrates the performance the Robogymnast during experiments.

77

Figure 4.9: Measured angular position ϴ1 for Set 1.

Figure 4.10: Measured angular position ϴ1 for Set 2

78

Figure 4.11: Measured angular position ϴ1 for Set 3

Figure 4.12: Measured angular position ϴ1 for Set 4

79

4.6 Discussion and Conclusion

The simulation results obtained show that IWO could be used to find the optimal

variables required to swing the Robogymnast more efficiently. The results show

that the amplitude of u1 must be higher than u2, while the difference between Δδ1

and Δδ2 ranges from 0.6% to 8.05% of each other. In all the results, u2 does not

exceed the value of 6V, while u1 will reach the maximum value of 10V in about

20 seconds. This shows that the value of u2 does not affect the swing of the

Robogymnast as much as u1. The results also show that the higher the value of Δδ1

and Δδ2, the faster the frequency of the swing decreases and the faster the

Robogymnast will swing up to 180°. However, if the time taken to reach the

upright position is relatively short, it may cause damage to the motor/gearbox

structures (Kamil et al. 2012). Thus, a compromise must be made in order to obtain

an optimized swing-up movement without damaging the Robogymnast. From

observation, it would appear that Δα1, Δα2 and Δδ of 0.6872V, 0.1726V and

0.05543 rad-1 respectively will give the smoothest swing-up motion. The

experimental results vary when compared to the simulation result, as shown in

Table 4.3. This may be caused by external factors such as friction, inertia and

backlash.

80

*Value of Δδ is divided by 100 when applied in the experiment

Table 4.3: Simulation Results vs. Experimental Results

Δα1

(V)

Δα2

(V)

Δδ1
*

(rad-1)

Δδ2
*

(rad-1)

Duration to reach the upright

position

(seconds)

Simulation Experiment

0.6924 0.1966 5.1984 5.1129 128.5 107.6

0.6872 0.1726 5.4428 5.9191 134.4 112.0

0.6616 0.1699 5.5194 5.9701 136.0 113.3

0.6635 0.1827 5.5506 5.9349 136.5 114.7

81

Figure 4.13: Flowchart of Robogymnast swing-up sequence

Start

Set values of A1, A2, η, α1, α2, δ1, δ2, Δα1,
Δα2, Δδ1, Δδ2

Sensors send data on link locations through the A-D
converter

Ø1 and Ø2>2π

u1 = A1α1sin(Ø1), u2 = A2α2sin(Ø2)

Set maximum level for u1 and u2

Send u1 and u2 to D-A convertor

Delay

Sensors send data on link locations
through the A-D convertor.

Stop command given or relative
angle exceeds limit

Store data

End

Ø1=Ø2=0;
α1 = α1 + Δα1

α2 = α2 + Δα2

δ1= δ1 + Δδ1

δ2= δ2 + Δδ2

Ø1= η/δ1

Ø2= η/δ2

NO

Yes

No

Yes

82

4.7 Summary

In this chapter, Invasive Weed Optimization (IWO) was used to investigate the

optimum values of the control parameters for the swing-up of the Robogymnast

developed by Eldukhri and Pham (2010). Kamil et al. (2012) independently

manipulated the amplitudes and the frequencies of the control signal. They also

optimized the parameters (𝛥𝛼 and Δδ) of the two motor control signals (𝑢1 and

𝑢2) using the swarm-based Bees Algorithm (BA). In this chapter, two parameters

(∆𝛼1 and ∆𝛿1) were assigned to the control signal 𝑢1 and another two parameters

(∆𝛼2 and ∆𝛿2) were assigned to the control signal 𝑢2. IWO was used to optimize

the swing-up motion of the robot by determining the optimum values of

parameters that control the input sinusoidal voltage of the two motors. The values

obtained from IWO were then applied to both simulation and experiment. Results

showed that the swing-up of the Robogymnast from the stable downwards position

to the inverted configuration was successfully accomplished. In the following

chapter, the Artificial Neural Network Model of the Robogymnast will be

discussed.

83

CHAPTER 5

Artificial Neural Network Modelling of the Robogymnast

5.1 Introduction

A model is a precise representation of a system’s dynamics used to answer

questions via analysis and simulation (Aström and Murray 2010). A mathematical

model is a mathematical representation of a system (Spong et al. 2006).

Mathematical modelling has long been essential in the study and design of

dynamical systems. It provides an approximation of real-world conditions. It is also

economical, as it provides the means of optimizing a design before actually building

it. However, a mathematical model becomes less accurate as its complexity

increases. This is because modelling is a process of simplification and deduction.

Simplification involves loss of information about a situation (Schrodt and Johnson

2004). The system being studied here is a complex multi-link under-actuated

mechanism which requires a complex mathematical model that takes into

consideration a great deal of information. Under-actuated mechanisms provide a

84

useful test bed for the evaluation and comparison of different control techniques

(Eldukhri and Pham 2010). Eldhukri and Pham succeeded in swinging the

Robogymnast from a stable pendant position to an inverted unstable configuration

(Eldukhri and Pham 2010). This was further improved through the optimization of

the control parameters by implementing the Bees Algorithm (BA: Kamil et al.

2012) and Invasive Weed Optimization (IWO) in Chapter 4. However, all the

previous studies require tuning of the parameters in order to apply them to the real

system. This shows that the mathematical model, though useful, is not sufficient

when it comes to modelling the system. Proponents of neural networks claim that

their versatility and robustness makes them suitable for various applications, such

as modelling and control. The neural network is commonly employed for nonlinear

modelling of a system. Neural networks possess various attractive features such as

massive parallelism, distributed representation and computation, generalization

ability, adaptability and inherent contextual information processing (Jain et al.

1996). Toha and Tokhi (2008) designed a Multi-Layer Perceptron neural network

(MLP) model and an Elman recurrent Neural Network (ENN) model of a Twin

Rotor Multi-input multi-output System (TRMS). The models were trained with the

Levenberg-Marquardt (LM) method using experimental data to characterize the

dynamic behaviour of the system. Both models yield very similar accurate results

with the ENN model, providing slightly better prediction of the system’s behaviour.

Gao et al. (1996) designed a modified ENN model of a dynamic system with

random outputs and compared it with the conventional ENN. The modified ENN

85

consists of extra adjustable weights between the neurons of the context layer and

the output layer, similar to that of a Jordan recurrent network (Pham and Karaboga

1999). The modified ENN performed comparably to the conventional ENN but

required only 121 iterations to converge compared to 603 iterations for the

conventional model, thus making the training process faster. Zhang (2003)

proposed a time series forecasting mechanism using a hybrid autoregressive

integrated moving average (ARIMA) and ANN model. The model uses ARIMA to

handle the linear parts of the time series and ANN to handle the nonlinear parts of

the time series. Results prove that ANNs are flexible computing frameworks for

modelling a broad range of nonlinear problems and can approximate a large class

of functions with a high degree of accuracy. This chapter proposes an Elman neural

network model of the Robogymnast and compares it with the mathematical model.

The Elman neural network is a recurrent neural network model created by Jeffrey

L. Elman (Elman 1990). It can be trained using various methods such as the

standard back-propagation learning algorithm (Pham and Liu 1996; Pham and

Karaboga 1999).

This chapter proceeds as follows. Section 5.2 introduces the Elman Neural Network

and its application in modelling the Robogymnast. Section 5.3 discusses the

activation function and the justification for its selection. Section 5.4 then briefly

explains the back-propagation algorithm. The training of the ENN model is

explained in section 5.5 with section 5.6 providing the results. In section 5.7, the

86

results are further discussed and conclusions are drawn. The final section provides

a summary of the chapter.

5.2 Elman Neural Networks

The Elman Neural Network (ENN) model shown in Figure 5.1 is similar to the feed-

forward network in Figure 2.2, but has an extra layer called the context layer. The

neurons in the context layer are used only to memorize the previous activations of

the hidden units and can be considered to function as a one-step delay. The input

layer consists of two neurons, which will receive the input voltages to the two

motors of the robot gymnast, where u1 is the input voltage for motor 1 and u2 is the

input voltage for motor 2. The hidden layer consists of six neurons which will

produce six outputs that will represent the state vector of the robot gymnast. The

six states are the relative angles 𝜃1, 𝜃2, 𝜃3, and their respective velocities �̇�1, �̇�2 and

�̇�3. The output layer consists of three neurons representing the three output angles

of the system.

The ENN model can be represented using equations (5.1) and (5.2).

𝑋(𝑘) = 𝑊𝑐𝑥𝑋(𝑘 − 1) + 𝑊𝑖ℎ𝑈(𝑘 − 1) (5.1)

𝑌(𝑘) = 𝑊ℎ𝑜𝑋(𝑘) (5.2)

Where X is the output of the neurons in the hidden layer, Y is the output of the

neurons in the output layer and U is the input for the model. Wcx , Wih , Who are the

87

weight matrices for the context layer, the input layer and the output layer

respectively. It is important to highlight that the matrix Wcx refers to the weights

from the context layer to the hidden layer. The outputs from the hidden layer to the

context layer are unweighted. The ENN model was selected as the model for the

Robogymnast because the position of its context layer allows the previous values

of the state vector to be stored and reused as inputs for the next state vectors. This

factor makes the behaviour of the ENN similar to that of the state space equation.

It can be observed that Equation 5.1 and Equation 5.2 are similar to the discrete

time equations (Equation 3.15 and Equation 3.16) where the Ad, Bd and Cd matrices

are replaced by Wcx, Wih and Who respectively. This makes it much easier to transfer

the mathematical model to the ENN model without requiring any changes to the

states.

88

Hidden Layer

u1u1

u2u2

y1y1

y2y2

y3y3

Input Layer Output Layer

Context Layer

Figure 5.1: Elman Neural Network Diagram of Robogymnast

89

5.3 Activation Function

An activation function is responsible for activating the neuron’s output. Many

activation functions used in ANNs produce a continuous value rather than a discrete

value (Youssef and Aly 2013). Two of the most popular activation functions used

are the logistic activation function, more popularly referred to as the sigmoid

function, and the identity activation function (linear activation function) (Jones

2004).

 The Logistic Activation (Sigmoid) Function

𝑓(𝑛𝑒𝑡𝑗) =
1

1 + 𝑒−𝑧

 The Identity Activation (linear) Function

f(z) = z

Where z is the value of the input to the neurons.

Both types of activation function were implemented on the ENN model. However,

the identity activation function appears to produce better results, while the logistic

activation function experiences premature saturation as the input of the ENN model

becomes non-linear. Due to its linearity, the identity activation function also

requires less computation compared to the logistic activation function. This is a

huge advantage when it comes to training large amounts of data. These two factors

90

are deemed to make it the best candidate for the activation function of the ENN

model.

5.4 Back-Propagation Algorithm

The ENN modelling was trained using the Back-Propagation (BP) algorithm. The

BP algorithm is based on the generalized delta rule proposed in 1985 by the PDP

research group headed by Dave Rumelhart, based at Stanford University,

California, U.S.A (Sharma et al. 2012). Before the BP can be used, it requires target

patterns or signals, as it is a supervised learning algorithm. Training patterns are

obtained from the samples of the types of inputs to be given to the multilayer neural

network and their answers are identified by the user. The configuration for training

a neural network using the BP algorithm is shown in Figure 5.2, in which the

training is done offline.

91

ENN Model
Input

Patterns
Target

- +
Output

Error is back-

propagated through

the layers of the NN
e

Weights are adapted

iteratively

Figure 5.2: Back-propagation Configuration

92

The objective is to minimize the error between the target and actual output and to find

ΔW (increment of weights). The error is calculated for every iteration and is back-

propagated through the layers of the ENN to adapt the weights. Equations (5.3) and

(5.4) are used for the back-propagation of weight adjustment of the ENN model (Pham

and Liu 1995).

∆𝑊𝑖ℎ = 𝜂(𝑦𝑟(𝑘) − 𝑦𝐸𝑁𝑁(𝑘))𝑊ℎ𝑜
𝑇𝑈(𝑘) (5.3)

∆𝑊𝑐𝑥 = 𝜂(𝑦𝑟(𝑘) − 𝑦𝐸𝑁𝑁(𝑘))𝑊ℎ𝑜
𝑇𝑋𝑇(𝑘 − 1) (5.4)

Where ∆𝑊𝑖ℎ , ∆𝑊𝑐𝑥 are the weight increments for 𝑊𝑖ℎ, 𝑊𝑐𝑥 and η is the learning rate

of the learning process. 𝑦𝑟 and 𝑦𝐸𝑁𝑁 are the training data output and ENN output.

Once the maximum number of iterations has been reached, the training is stopped, and

the neural network is reconfigured in the recall mode to solve the task. 𝑊ℎ𝑜 is not

adjusted and remains as the following to maintain the homogeneity of the output:

𝑊ℎ𝑜 = [

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

]

93

5.5 Training the ENN Model

The ENN model was trained using data from the swing-up control of the Robogymnast

obtained from the experiments conducted in Chapter 4 and inputs generated by the

simulation program. The back-propagation training of the model was done using a

Matlab® program created by the author using the parameters in Table 5.1. To make

the learning process faster, the values of Ad and Bd are taken as initial values of Wcx

and Wih respectively.

Back-propagation learning of ENN model algorithm:

1. Read the ENN parameters (u1, u2, y1, y2, y3), plant parameters (number of inputs,

number of layers, number of neurons, number of outputs), and change in load

value.

2. Initialize the ENN weight matrices with initial values.

3. Set the initial state vector of the plant and the desired target vector.

4. Set the number of iterations.

5. Execute the feed-forward propagation for the neural network.

6. Find the error of the plant output.

7. Execute the back-propagation for the neural network.

8. Apply new weight increments to the currents weights.

9. Check whether the maximum number of iterations has been reached.

10. If the maximum number of iterations has not been reached, repeat step 5 to step

9; else end program.

94

Table 5. 1: Parameters of Back-Propagation Training of ENN Model

Parameters of

Neural Network

Modelling

Values Description

Number of inputs 2 Input voltages 𝑢1 and 𝑢1

Number of outputs 3 Output angle 𝑦1.𝑦2, 𝑦3

Number of layers 4
1 input layer, 1 hidden layer, 1context layer,

1 output layer

Number of neurons

in hidden layer
6

6 neurons representing the 6 variables in the

state vector.

Number of neurons

in context layer
6

The context layer acts as a step delay for the

state vector.

Number of

samples
20000

All data is taken from a range of 0-20000

data sets.

Learning rate η 0.01
Training parameter that controls the size of

weight and bias changes during learning.

Number of

Iterations
100

The training is repeated perform until the

maximum number of iterations is achieved.

95

Start

Read input and output data

Set number of sample data

Set number of neurons in hidden layer

Initialize random weights

Set number of iterations

Perform forward propagation

Calculate error

Perform back propagation

Apply new weight increments

Max num of iter?

End

YES

NO

Figure 5.3: Flow Chart of Back-Propagation Training for Robogymnast

96

5.6 Results

The training process yields the following weights:

𝑊𝑐𝑥 =

[

0.99 −2.43𝑒−3 −2.34𝑒−4 2.49𝑒−2 1.01𝑒−2 1.20𝑒−3

1.49𝑒−3 0.99 −2.72𝑒−4 3.78𝑒−5 5.88𝑒−3 2.15𝑒−4

2.55𝑒−4 −2.22𝑒−4 1.00 5.30𝑒−6 2.15𝑒−4 4.95𝑒−3

−0.77 −0.23 −2.39𝑒−2 0.99 0.52 6.37𝑒−2

7.59𝑒−2 −0.13 −1.43𝑒−2 2.64𝑒−3 1.55𝑒−2 2.01𝑒−3

1.32𝑒−2 −1.21𝑒−2 −2.85𝑒−2 3.97𝑒−4 2.05𝑒−3 6.55𝑒−3]

𝑊𝑖ℎ =

[

−2.91𝑒−3 −1.62𝑒−4

−5.51𝑒−3 −2.94𝑒−5

−6.26𝑒−5 2.71𝑒−3

−0.15 −8.61𝑒−3

0.283 −3.08𝑒−4

−6.55𝑒−4 0.13]

The weights were then applied in Equations 5.1 and 5.2 with various inputs and their

outputs analysed and compared with the experimental and the mathematical model

outputs.

97

Figure 5.4: Measured angular position ϴ1 at Δα1=0.6924, Δα2= 0.1966, Δδ=0.051129 for (a)

Experimental; (b) Mathematical Model; (c) ENN Model

(a)

(b)

(c)

98

Figure 5.5: Measured angular position ϴ1 at Δα1=0.6616, Δα2= 0.1699, Δδ=0.05512 for

(a) Experimental; (b) Mathematical Model; (c) ENN Model

(a)

(b)

(c)

99

Figure 5.6: Measured angular position ϴ1 at Δα1=0.6635, Δα2= 0.1827, Δδ=0.05935 for (a)

Experimental; (b) Mathematical Model; (c) ENN Model

(a)

(b)

(c)

100

The figures show that the ENN model displays swing-up characteristics that are

comparable to the swing-up characteristics obtained from experimenting with the real

system. For example, Figure 5.4 shows that the time taken for the ENN model to swing

up to approximately 180° is 118.7 seconds, which is closer to the time taken by the

experiment to achieve the same task, at 107.6 seconds, compared to 8499 seconds for

the mathematical model. This comparison can be seen throughout Figure 5.5 and

Figure 5.6.

Table 5.2 presents the Root Mean Square (RMS) error and the Mean Absolute (MA)

error of both models compared with the actual experimental data. The ENN model

(ENNM) obtains smaller values for both errors when compared to the Mathematical

model (MM).

101

Table 5.2: Error Comparison

Control Signals Root Mean Square Error (%) Mean Absolute Error (%)

Δα1 (V) Δα2 (V) Δδ (rad-1) MM ENNM MM ENNM

0.6924 0.1966 0.051129 57.4418 35.5183 41.3808 23.5414

0.6872 0.1726 0.054430 64.4605 42.4171 48.024 28.7436

0.6616 0.1699 0.05512 60.6531 40.6222 44.436 27.6083

0.6635 0.1827 0.05935 65.3856 32.3343 48.1372 21.9021

102

5.7 Discussion and Conclusion

The results show that the Robogymnast Elman neural network model provides a better

representation of the actual system compared to the mathematical model. The ENN

model is tested by comparing the system response output of the swing-up control

motion of the Robot gymnast. The same input control parameters (∆𝛼1,∆𝛼2 ,∆𝛿) are

applied to the input voltages of both the mathematical model and the ENN model. The

output angle of the first link θ1 is then compared with that of the actual experimental

output. The output of the ENN closely resembles the experimental output in terms of

shape and amplitude. The difficulty of training the modelling is caused by the non-

linearity of the system. The non-linearity of the system is caused by the input voltage

being limited at ±10V, as shown in Figure 5.7. As the input voltages become limited

at 10V, the swing angle ϴ1 still needs to increase to 180°. This makes the system non-

linear, as the increment of ϴ1 is no longer proportional to the amplitude of the input

voltages. The system’s response is now more dependent on the change in the input

signal frequency and the natural inertia of the system.

103

Figure 5.7: Output of ϴ1 with its input voltages u1 and u2

104

While the mathematical model is useful for studying the behaviour of the system,

it does not provide an accurate representation of the actual behaviour of the system

in its environment. The mathematical model does not take into consideration

external factors such as air resistance and friction caused by wear. In order to

successfully achieve the swing-up, the system needs to operate at its natural

frequency. To do so requires the motors to begin rotating back and forth at high

frequencies. At high frequencies, it becomes more difficult to calculate the system's

response, as any slight disturbance will cause the system to behave differently. The

ENN model was trained using data from the actual experiment, thus taking into

consideration the effects that external factors might have on the system’s behaviour.

The ENN model provides a simple but useful alternative to the mathematical model

and in this case improves on it.

5.8 Summary

A mathematical model is a representation of a system using mathematical equations

and symbols. It is often used to describe a system and to study its behaviour.

However, most mathematical models provide a useful but inaccurate representation

of the actual system’s response. A neural network model would provide a more

accurate representation of the actual system’s response because training is done

using actual experimental data. This study focuses on modelling the response of the

105

Robogymnast. Due to the restrictions encountered by the mathematical model

caused by the complex nature and nonlinearity of the Robogymnast, a novel

approach of modelling the Robogymnast using neural networks was proposed in

this chapter. A multi-layered Elman neural network model was used to represent

the system. Inputs were applied to both the mathematical model and the neural

network model and their outputs were compared and analyzed. In the following

chapter, the controller design for inverted balancing of the Robogymnast will be

discussed.

106

CHAPTER 6

Upright Balancing of the Robogymnast

6.1 Introduction

A number of researchers have studied the problem of stabilising inverted

underactuated pendulums (Spong and Block 1995; Gawthrop and Wang 2006;

Grossimon et al. 1996; Awtar et al. 2002). The balancing of a triple inverted

pendulum is an important problem in robotics because it mimics the human body

and its balancing mechanisms (Kamil et al. 2012). Brown and Passino (1997)

developed intelligent controllers for balancing the acrobot by combining classical

control, fuzzy and adaptive fuzzy controllers which swing, catch and balance the

acrobot in an inverted position. A successful direct fuzzy balancing controller was

then designed by emulating the action of the LQR. Wang et al. (2014) employed

an improved Artificial Bee Colony (ABC) algorithm to optimize the performance

of the LQR. The optimized LQR was then used to balance a circular-rail double

inverted pendulum. Simulation results proved that the improved ABC has

outperformed the original ABC, as the LQR controller with improved ABC

achieved a much shorter settling time. Kamil et al. (2014) designed a Discrete-time

Linear Quadratic Regulator (DLQR) to balance the Robogymnast. The DLQR

107

controller used is similar to the conventional LQR but with an 8-by-8 Q matrix

instead of the usual 6-by-6 Q matrix typical of a triple link pendulum controller.

The extra dimensions allow the DLQR to incorporate the angular accelerations of

the first two links in determining the gain of the controller. This chapter presents

two applications of IWO used to optimize the 6-by-6 Q-matrix of the LQR

controller. The output of the optimization process is then tested and its performance

analysed.

Section 6.2 explains the modifications that have to be made to the ENN model

discussed in Chapter 5 in order to represent the Robogymnast in the upright

position. Section 6.3 discusses the Linear Quadratic Regulator and its equations.

Section 6.4 demonstrates the application of the IWO in LQR controller design.

Section 6.5 presents the application of the cost function (J) as the fitness criterion.

In Section 6.6, the application of settling time (Tst) as the fitness criterion is

discussed. The discussion and conclusion are given in Section 6.7 and Section 6.8

provides a summary of the chapter.

108

6.2 Model of the Robogymnast in the upright position

In this chapter, the Robogymnast is regarded as a triple link pendulum in an unstable

upright configuration, as shown in Figure 6.1. In order to represent the system in

this configuration, the matrix Wcx in Equation 5.1 is expressed as follows:

𝑊𝑐𝑥 =

[

0.99 −2.43𝑒−3 −2.34𝑒−4 2.49𝑒−2 1.01𝑒−2 1.20𝑒−3

1.49𝑒−3 0.99 −2.72𝑒−4 3.78𝑒−5 5.88𝑒−3 2.15𝑒−4

2.55𝑒−4 −2.22𝑒−4 1.00 5.30𝑒−6 2.15𝑒−4 4.95𝑒−3

𝟎. 𝟕𝟕 𝟎. 𝟐𝟑 𝟐. 𝟑𝟗𝒆−𝟐 0.99 0.52 6.37𝑒−2

−𝟕. 𝟓𝟗𝒆−𝟐 𝟎. 𝟏𝟑 𝟏. 𝟒𝟑𝒆−𝟐 2.64𝑒−3 1.55𝑒−2 2.01𝑒−3

−𝟏. 𝟑𝟐𝒆−𝟐 𝟏. 𝟐𝟏𝒆−𝟐 𝟐. 𝟖𝟓𝒆−𝟐 3.97𝑒−4 2.05𝑒−3 6.55𝑒−3]

Where the elements highlighted in the box have their polarities reversed compared

to Equation 5.1.

Matrices Who and Wih remained unchanged as in Chapter 5.

6.3 Linear Quadratic Regulator

The linear quadratic regulator (LQR) is a well-known design technique that

provides practical feedback gains. It is a multivariable controller, as it can control

displacement of the angles of the triple inverted pendulum at the same time (Sehgal

and Tiwari 2012). Extensive research in the control field has shown on multiple

occasions that LQR is well suited for inverted pendulum stabilization (Lee and

109

Perkins 2008). The objective of LQR is to find the minimum value of the following

cost function:

𝐽 = ∫ [𝑥𝑇(𝑡)𝑄𝑥(𝑡) + 𝑢𝑇(𝑡)𝑅𝑢(𝑡)]𝑑𝑡
∞

0
 (6.1)

Where u(t) is unconstrained, Q is required to be a symmetric, positive semi-definite

matrix and R is required to be a symmetric positive definite matrix. 𝑥 represents the

states of the system and 𝑢 represents the control signals.

For LQR, the input will be as follows:

𝑢(𝑡) = −𝐹𝑥(𝑡) (6.2)

where F is the gain matrix required by the LQR. By applying Equation 6.2 into the

state space equation, the following equation will emerge:

�̇� = (𝐴 − 𝐵𝐹)𝑥 (6.3)

To obtain the value of F, the following equation is then applied:

𝐹 = 𝑅−1𝐵𝑇𝑃 (6.4)

Using the Algebraic Riccati Equation below, the value of P can be obtained:

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0 (6.5)

The value of F can then be obtained from Equation 6.4.

110

In order to implement an LQR controller, one must select suitable weighing

matrices. For the Robogymnast, the value of Q will penalize the states, while the

value of R will penalize the inputs. For this reason, the elements of the Q matrix

were selected to be much larger than the elements of the R matrix.

6.4 Application of IWO in LQR controller design

The IWO is applied to find the global optimal solution for the LQR controller in

order to minimize the settling time and voltage required for the Robogymnast to go

from an unbalanced inverted configuration to a balanced upright configuration. Q

and R are set as diagonal matrices:

𝑄 =

[

𝑄1 0 0 0 0 0
0 𝑄2 0 0 0 0
0 0 𝑄3 0 0 0
0 0 0 𝑄4 0 0
0 0 0 0 𝑄5 0
0 0 0 0 0 𝑄6]

; 𝑅 = [
𝑅1 0
0 𝑅2

]

For the optimization process, the parameters R1 and R2 of the LQR controller are

set at 1 and the values of Q are to be optimized. This is because, for this application,

more weight is put on the control of the states than the inputs. In order to ensure

that the Q matrix is a symmetric, positive semi-definite matrix, Q is set as:

𝑄 = 𝑄𝑠𝑒𝑒𝑑𝑠𝑥 𝑄𝑠𝑒𝑒𝑑𝑠
𝑇 (6.6)

111

Where Qseeds is a diagonal matrix consisting of IWO seeds (S1, S2, S3, S4, S5, S6)

and 𝑄𝑠𝑒𝑒𝑑𝑠
𝑇 is its transposed matrix:

𝑄𝑠𝑒𝑒𝑑𝑠 =

[

𝑆1 0 0 0 0 0
0 𝑆2 0 0 0 0
0 0 𝑆3 0 0 0
0 0 0 𝑆4 0 0
0 0 0 0 𝑆5 0
0 0 0 0 0 𝑆6]

The optimization is applied for an initial deflection of absolute angles θ1=3°, θ2=3°,

θ3=3°. This is the estimated maximum deflection angle that the Robogymnast can

make before the system becomes incapable of bringing it back to a balanced upright

configuration. The objective of the controller is to obtain a relative angle of

q1≤0.001 rad, q2≤0.001 rad and q3≤0.001 rad. Where:

[

𝑞1

𝑞2

𝑞3

] = [

𝜃1

𝜃2 − 𝜃1

𝜃3 − 𝜃2

] (6.7)

112

6.5 LQR controller designed using cost function (J) as the fitness

criterion

This section presents descriptions and analysis of the proposed optimized LQR

controller using the IWO and cost function J as the fitness criterion. Optimization

is achieved by finding the minimum value of J. This is the fitness criterion used by

most previous researchers (Asadi et al. 2016; Souza and Bigot 2016.). As seen in

Equation 6.1, J is dependent on the sum of the states and control signal multiplied

by their respective weights. This shows that the smaller the value of J, the more

efficient the LQR controller will be. The parameters of the IWO procedure are as

shown in Table 6.1.

113

Table 6. 1: IWO parameters with J as the fitness criterion

Variable Value Description

Number of initial plants

(pinit)
5

Number of randomly chosen

values from the solution space.

Minimum number of

seed sets (Smin)
1

Minimum population of

solutions

Maximum number of

seed sets (Smax)
500

Maximum population of

solutions

Initial value of standard

deviation (σinitial)
0.1

Standard deviation used for

spatial distribution of plants.

Final value of standard

deviation (σfinal)
0.01

Final standard deviation used

for spatial distribution of

plants.

Maximum number of

iterations (Itermax)
10 Number of iterations

Nonlinear Modulation

Index
0.01 -

Target angle

q1<0.001 rad

q2<0.001 rad

q3<0.001 rad

The angle where time is

recorded and used as the fitness

criterion

Search range

0-3000

Search range used based on trial

and error.

114

A seed set is a combination of six seeds that make up S1, S2, S3, S4, S5 and S6.

The number of maximum seed sets is 500. This is to ensure that the number of seeds

is not so large as to slow the search time. The maximum number of iterations is set

as 10. After a number of trials, it is found that a larger number of iterations would

not contribute any improvement to the search process. The target angle is set at

0.001 rad, which is close enough to be considered stable and inverted. The search

range is set at 0-3000 based on trial and error. It is found that the output of the LQR

is more dependent on the ratio of the diagonal values of the Q matrix with respect

to each other rather than the magnitude of each individual Q value.

115

Table 6.2: IWO Results using the cost function J as the fitness criterion

* Fitness Criterion

Fitness

Rank
S1 S2 S3 S4 S5 S6

Settling time,

Tst (s)
J*

1 500.677 150.253 500.310 250.035 50.040 0.000 8.88 1008.639

2 150.307 100.439 250.916 300.783 150.435 200.882 26.35 1760.094

3 50.061 500.107 400.436 250.645 150.673 100.191 6.38 2242.47

4 500.348 150.587 300.658 500.002 100.174 150.002 16.80 3157.548

5 200.348 400.587 350.658 300.002 150.174 450.002 11.75 3302.033

6 250.348 300.587 150.658 450.002 100.174 450.002 25.38 3793.35

7 50.061 200.107 200.436 250.645 400.673 100.191 27.38 4612.892

8 150.061 350.107 250.436 100.645 400.673 350.191 15.68 5455.54

9 500.307 150.439 200.916 300.783 400.435 300.882 22.58 5495.975

10 990.407 297.172 990.041 494.901 99.013 391.785 9.300 5501.419

116

Table 6.2 shows the top ten best seed sets obtained from a population of 500. The

minimum J obtained is 1008.639. All values obtained are well within the search range

previously set during the optimization process. It can be seen that the time for the

Robogymnast to achieve a stable inverted configuration is not proportional to the

values of J. The next subsection will present the simulation results when the values

obtained from IWO results were applied to the LQR controller of the Robogymnast.

6.5.1 Simulation results of LQR designed using IWO with cost function J as the

fitness criterion

The fittest seeds, which are S1=500.677, S2=150.253, S3=500.310, S4=250.035,

S5=50.040 and S6=0.000, are selected for analysis. Using Equation 6.6, the Q matrix

obtained from the seeds is:

𝑄 =

[

2.5068𝑒5 0 0 0 0 0

0 0.2258𝑒5 0 0 0 0
0 0 2.5031𝑒5 0 0 0
0 0 0 0.6252𝑒5 0 0
0 0 0 0 0.0250𝑒5 0
0 0 0 0 0 0]

and the corresponding gain matrix is:

𝐹 = −0.4430𝑒3 −0.1873𝑒3 −0.0358𝑒3 0.0803𝑒3 0.0423𝑒3 0.0053𝑒3

−1.3437𝑒3 −0.5900𝑒3 0.1729𝑒3 0.2528𝑒3 0.1330𝑒3 0.0153𝑒3

In order to verify the effectiveness of the IWO algorithm, the parameters obtained are

applied to a Matlab® program created by the author. The results are then compared

117

for three different configurations (Figure 6.1) in order to ensure that the optimization

can be implemented in various configurations.

118

(a)

(b)

(b)

(c)

Figure 6.1: Configurations of Robogymnast (a) θ1=-3°; θ2=-3°; θ3=-3°, (b) θ1=-3°; θ2=3°; θ3=-3°,

(c) θ1=3°; θ2=3°; θ3=3°

119

Figure 6.2: Simulation of LQR with initial deflection of θ1=-3°; θ2=-3°; θ2=-3°

Figure 6.2 illustrates the controlled system response and the voltages when the

Robogymnast is in the upright position with the initial absolute angular position equal

to [-3°, -3°, -3°] (Figure 6.1(a)). It is clear that the designed controller was able to

stabilise the system and converge to the set values. The maximum voltage for motor 1

(u1) and motor 2 (u2) are both shown as -12V. It can be seen that the time taken to

reach a stable upright position is 8.875 seconds.

120

Figure 6.3: Simulation of LQR with initial deflection of θ1=-3°; θ2=3°; θ2=-3°

The system response when the Robogymnast is in the upright position equal to [-3°,

3°, -3°] (Figure 6.1(b)) is displayed in Figure 6.3. The time taken for the system to

stabilise is 5.7 seconds, while the maximum control actions of motor 1(u1) and motor

2 (u2) are 7.32V and -9.54V respectively.

121

Figure 6.4: Simulation of LQR with initial deflection of θ1=3°; θ2=3°; θ2=3°

Figure 6.4 shows the reaction time and control effort when the initial absolute angular

position of the Robogymnast is equal to [3°, 3°, 3°] (Figure 6.1(c)). It can be seen that

the response is similar to Figure 6.2 but in the opposite direction.

To further verify the effectiveness of the designed LQR controller, an external

disturbance of 0.05 rad was applied to each of the Robogymnast links one at a time

and its reaction was observed. The disturbance was applied about two seconds after

the controller attempted to stabilize the system from an initial absolute angular position

equal to [1.5°, 1.5°, 1.5°]. The objective of this test was to determine the robustness of

the LQR controller using the parameters obtained using IWO.

122

Figure 6.5: Disturbance to Link 1

From Figure 6.5, it can be seen that the system experiences a large displacement when

a disturbance is applied to the first link. However, despite this, the controller is still

able to balance the Robogymnast successfully.

123

Figure 6.6: Disturbance to Link 2

Figure 6.6 illustrates the reaction of the system when a disturbance is applied to the

second link. The displacement caused by the disturbance is smaller compared to Figure

6.5. The voltage requirements for both motors are also visibly smaller.

124

Figure 6.7: Disturbance to Link 3

Figure 6.7 represents the reaction of the system when a disturbance is applied to the

third link. The displacement in this figure is far less severe when compared to Figure

6.5 and Figure 6.6. It can also be seen that when the disturbance is applied, u2 is

significantly larger than u1. This indicates that most of the work is done by motor 2.

125

6.6 LQR controller designed using time (Tst) as the fitness criterion

The result in Table 6.2 shows that the value of the cost function J is not proportional

to the settling time (Tst) of the Robogymnast. This section proposes an LQR controller

where the diagonal values of the Q matrix are selected using IWO with T as the fitness

criterion. The optimized parameters of the LQR controller are selected based on the

minimum Tst value. The IWO parameters used in this procedure are as in Table 6.1.

Table 6.3 shows the top ten best seed sets obtained from a population of 500. The

fastest settling time obtained was 5.10 seconds, while the slowest was 5.83 seconds,

within a population of 500 seeds. All values obtained are within the search range

previously set during the optimization process. Similar to the results shown in Table

6.2, the time for the Robogymnast to achieve a stable inverted configuration is not

proportional to the values of J. The next subsection will present the simulation results

when the values obtained from the IWO results were applied to the LQR controller of

the Robogymnast.

126

‡ Fitness Criterion

Fitness

Rank
S1 S2 S3 S4 S5 S6

Settling time,

Tst (s)‡
J

1 1292.593 745.061 995.334 399.673 149.737 247.772 5.10 672.493

2 1786.046 1090.479 1191.917 548.108 298.172 495.097 5.50 1557.780

3 899.211 649.188 849.557 300.782 200.146 99.645 5.55 423.515

4 1937.840 1537.127 1341.448 598.776 496.416 594.183 5.60 2546.645

5 1387.852 1088.966 1045.013 496.238 346.738 148.509 5.68 1149.552

6 1243.427 1493.460 1642.765 648.759 399.046 647.979 5.70 2367.704

7 1927.856 2327.026 1336.946 894.068 743.335 346.987 5.71 4463.318

8 1735.460 1936.290 1839.579 845.573 546.656 697.183 5.73 3759.826

9 1941.855 1839.636 1642.401 847.866 547.446 496.372 5.75 3197.372

10 1991.059 2134.856 2036.027 995.476 596.649 791.592 5.83 4771.564

Table 6.3: IWO Results using Time (Tst) as the fitness criterion

127

6.6.1 Simulation results of LQR designed using IWO with Tst as the fitness

criterion

The fittest seeds, which are S1 = 1292.593, S2 = 745.061, S3 = 399.673, S4 =

149.737, S5 = 149.737 and S6 = 247.772, are selected for analysis. Using Equation

6.6, the Q matrix obtained from the seeds is:

𝑄 =

[

16.708𝑒5 0 0 0 0 0

0 5.551𝑒5 0 0 0 0
0 0 9.907𝑒5 0 0 0
0 0 0 1.597𝑒5 0 0
0 0 0 0 0.224𝑒5 0
0 0 0 0 0 0.614𝑒5]

and the corresponding gain matrix is:

𝐹 = −0.5790𝑒3 −0.2504𝑒3 −0.0306𝑒3 0.1057𝑒3 0.0556𝑒3 0.0070𝑒3

−0.1201𝑒3 −0.055𝑒3 0.0234𝑒3 0.0222𝑒3 0.0117𝑒3 0.0014𝑒3

128

Figure 6.8: Simulation of LQR with initial deflection of θ1=-3°; θ2=-3°; θ2=-3°

Figure 6.8 clearly illustrates the controller’s ability to stabilise the Robogymnast

when it is in the upright position with the initial absolute angular position equal to

[-3°, -3°, -3°] (Figure 6.1 (a)). The maximum voltage for motor 1 (u1) is 12 volts,

and for motor 2 (u2) is 6.290 volts. It can be seen that the time taken to reach a

stable upright position is 5.1 seconds.

129

Figure 6.9: Simulation of LQR with initial deflection of θ1=-3°; θ2=3°; θ2=-3°

Figure 6.9 shows the response of the system when the initial absolute angular

position is equal to [-3°, 3°, -3°] (Figure 6.1(b)). The time taken for the system to

stabilize is 3.10 seconds. The maximum voltage is -7.296 volts for motor 1 (u1) and

1.927 volts for motor 2 (u2).

130

Figure 6.10: Simulation of LQR with initial deflection of θ1=3°; θ2=3°; θ2=3°

Finally, Figure 6.10 displays the reaction of the system when the initial absolute

angular position is equal to [3°, 3°, 3°] (Figure 6.1(c)). The reaction is similar to

Figure 6.8 but in the opposite direction.

As in section 6.5, an external disturbance was applied to each of the Robogymnast

links one at a time and its reaction observed. The disturbance is applied about two

seconds after the controller attempts to stabilize the system from an initial absolute

angular position equal to [1.5°, 1.5°,1.5°].

131

Figure 6.11: Disturbance to Link 1

Figure 6.11 illustrates that when a disturbance is applied to the first link, the

controller quickly reacts to counter the displacement. The figure also reveals that

u1 is larger than u2, indicating that most of the work is done by motor 1.

132

Figure 6.12: Disturbance to Link 2

Figure 6.12 shows the reaction of the system when a disturbance is applied to the

second link. The displacement is not as severe as in Figure 6.11. The maximum

voltage applied to motor 1 is still 12 volts, but its peak duration is about 0.4 seconds

shorter than in Figure 6.11.

133

Figure 6.13: Disturbance to Link 3

Figure 6.13 shows the effect that a disturbance on the third link has on the entire

system. The displacement is small and the voltage requirements are minimal.

6.7 Discussion and conclusion

In the case of inverted balancing of the Robogymnast, it would appear that the LQR

controller designed using parameters obtained by both methods can successfully

bring the Robogymnast to an inverted and stable configuration. Using IWO with

time (Tst) as the fitness criterion yields parameters that lead to a controller (LQRT)

with a faster reaction time compared to the controller with parameters obtained

134

using IWO with J as the fitness criterion (LQRJ). Another distinguishable

difference is that the required voltage for motor 2 (u2) is lower for LQRT. This

condition is consistent throughout all of the three configurations used in the

simulation. The results also reveal that most of the work is done by motor 1, thus

resulting in a higher voltage u1. In order to further analyse the performance of both

controllers, more tests had to be done. Table 6.4 compares the performance of the

two controllers in different initial angular configurations.

135

Table 6. 4: Comparison of the performance of the LQRJ and LQRT in different initial angular configurations.

Deflection Angle Controller Jsum Tmax(s) u1max(V) u2max(V) Description/Purpose

θ1=1°; θ2=1°; θ3=1
LQRJ 605640 6.700 7.732 12.000

To examine controller’s reaction at low deflection angles.
LQRT 2725800 3.625 10.105 2.097

θ1=1°; θ2=-1°; θ3=1°
LQRJ 36148 4.425 2.441 3.180

To examine controller’s reaction at low deflection angles.
LQRT 144650 2.500 2.432 0.642

θ1=3°; θ2=3°; θ3=3°
LQRJ 9997600 8.875 12.000 12.000

Figure 6.4 and 6.10
LQRT 67249000 5.100 12.000 6.290

θ1=3°; θ2=-3°; θ3=3°
LQRJ 325330 5.700 7.322 9.541

Opposite of Figure 6.3 and 6.9
LQRT 1301800 3.100 7.296 1.927

θ1=3.1°; θ2=3.1°;

θ3=3.1°

LQRJ 12677000 9.125 12.000 12.000 To examine the controller’s reaction when slightly higher deflection

angle is applied. LQRT 98407000 5.350 12.000 6.499

θ1=0°; θ2=4°; θ3=5°
LQRJ 2020200 7.550 12.000 12.000 To examine the controller’s reaction when higher deflection angles are

applied to link 2 and link 3. LQRT 10114000 4.100 12.000 3.432

θ1=4°; θ2=0°; θ3=0°
LQRJ 3482200 7.800 12.000 12.000 To examine the controller’s reaction when higher deflection angles are

applied to link 1. LQRT 16846000 4.325 12.000 4.5471

θ1=5.45°; θ2=0°; θ3=0°
LQRJ 15839000 9.375 12.000 12.000

To test maximum deflection angle the controller can recover from.
LQRT 201070000 5.600 12.000 6.195

θ1=5.65°; θ2=0°; θ3=0
LQRJ 46030000 10.700 12.000 12.000

To test maximum deflection angle the controller can recover from
LQRT Inf Inf 12.000 12.000

θ1=5.7°; θ2=0°; θ3=0°
LQRJ Inf Inf 12.000 12.000

To test maximum deflection angle the controller can recover from.
LQRT Inf Inf 12.000 12.000

136

Table 6.4 reveals that controller LQRT performs consistently faster (43%-46%

faster). However, controller LQRJ is capable of stabilizing the Robogymnast with

a larger initial absolute angular position, as seen in Table 6.4. Voltage u1 for LQRJ

is lower when all three initial absolute angular positions have the same polarity and

LQRT requires significantly less voltage for motor 2. J is smaller due to the smaller

state space values, while Tst has large state values, but these values settle in a shorter

amount of time. Finally, both controllers show that J and Tst are not always

proportional to each other.

6.8 Summary

The purpose of this chapter was to determine the best fitness criterion to be used

when designing the LQR controller for the Robogymnast. The first fitness criterion

is the J cost function. The second fitness criterion is the settling time (Tst) required

to stabilize the Robogymnast. The fitness criteria were employed on the IWO and

used to obtain optimum diagonal values of the Q matrix. Using the Q parameters

obtained, two LQR controllers were designed and tested using simulation.

According to the simulations, the Robogymnast is able to recover its balance from

an initial unbalanced configuration. The controllers also prove to be robust enough

to perform even when a slight disturbance is applied. The LQRT controllers has a

faster reaction time, but LQRJ is capable of recovering from a larger angular

position. LQRT also provides better efficiency in motor 2, thus reducing the

137

required voltage when balancing the Robogymnast. In the next chapter, a hybrid J

and Tst fitness criterion is proposed to get the best of both controllers.

138

CHAPTER 7

Multi-Objective Invasive Weed Optimization of the LQR

Controller

7.1 Introduction

Multi-objective optimization has become an important part of optimization

activities. Many real-world optimization problems are naturally posed as nonlinear

programming problems having multiple conflicting objectives. A multi-objective

optimization problem deals with more than one objective function (Deb 2014). Liu

et al. (2008) designed an approach for weighting matrices for LQR based on a multi-

objective evolution algorithm. The algorithm uses the J function and pole placement

as the objective function. Simulation results show that a shorter adjustment time

and smaller amplitude value deviating from the steady state are achieved using the

proposed approach. An optimal design of LQR weighting matrices based on

139

intelligent optimization methods such as Genetic Algorithms (GA), PSO,

Differential Evolution (DE) and the Imperialist Competitive Algorithm (ICA) to

solve the optimization problem of LQR for a robot manipulator was proposed by

Ghoreishi et al. (2011). All results were compared by combining criteria like speed

of response, the closed-loop pole locations and maximum level of control effort into

an objective function to find the best weighting matrices in the LQR controller. An

optimal trade-off design for a fractional order (FO)-PID controller is proposed with

a Linear Quadratic Regulator (LQR)-based technique using two conflicting time

domain objectives (Das et al. 2015). The research deals with problems such as

choosing optimal weights and time delays in the LQR formulation. Khalaf et al.

(2015) utilized Multi-Objective Invasive Weed Optimization (MOIWO) to design

an impedance controller for a prosthesis test robot. The criteria for this optimization

problem are the required amount of force and motion tracking. Simulation results

showed that the solutions that were designed for motion tracking performed this

task perfectly but failed to reproduce the desired forces, while the solution that was

designed for force tracking deviated from the desired motion in order to produce

the desired force.

In this chapter, the diagonal values of the LQR Q matrix are selected using modified

IWO algorithms. The first technique is the Weighted Criteria Method IWO

(WCMIWO), which combines the values of the cost function (J) and settling time

(Tst) into a single fitness criterion with the help of weights. The second technique

140

is the Fuzzy Logic IWO Hybrid (FLIWOH), which analyses the values of J and Tst.

These two values are then evaluated and assigned a membership value, which will

subsequently be used as the fitness criterion. The performance of the two techniques

are then compared and analysed. The performance of the resulting controllers will

also be analysed with and without disturbance applied to the system. The criteria

that will be used to evaluate the controllers are the settling time, input voltages, the

maximum angular deflection from which they can recover and ability to maintain

an upright position with disturbance applied to the system. The chapter is organized

as follows. In Section 7.2, Multi-Objective Optimization (MOO) and the various

types of MOO methods are briefly discussed. The following section describes the

WCMIWO and its results. This is followed by the description of the FLIWOH and

its results. In Section 7.5, the previous methods are repeated with disturbance

applied to the system. The findings and results are discussed in section 7.6. Finally,

a summary of the chapter is provided in Section 7.7.

7.2 Weighted Criteria Method Invasive Weed Optimization

The WCMIWO technique uses both J and Tst in determining the fitness of each set

of seeds. The fitness criterion JT is calculated using equation (7.3):

𝐽𝑇 = (𝑊𝐽 𝑥 𝐽) + (𝑊𝑇 𝑥 𝑇𝑠𝑡) (7.3)

141

where 𝑊𝐽 and 𝑊𝑇 are the multiplied weights of J and Tst respectively, whose values

are selected through trial and error. The weights are necessary due to J being

significantly larger than Tst, to ensure that J does not dominate the resulting fitness

criterion JT. The set seeds are arranged in ascending order with the smallest value

of JT as the fittest set seeds. Table 7.1 shows the parameters of the WCMIWO

process. The number of maximum seed sets is again selected to be 500. The

maximum number of iterations is set at 10. The target angle is again set at 0.001

rad, which is close enough to be considered stable and inverted. Table 7.2 shows

the top ten best seed sets obtained from a population of 500. The minimum J value

obtained is 100.183𝑒5 and the fastest time is 6.35 seconds.

142

Table 7.1: WCMIWO parameters

Variable Value Description

Number of initial plants

(pinit)
5

Number of randomly chosen

values from the solution

space.

Minimum number of seed

sets (Smin)
1

Minimum population of

solutions

Maximum number of seed

sets (Smax)
500

Maximum population of

solutions

Initial value of standard

deviation (σinitial) 50
Standard deviation used for

spatial distribution of plants.

Final value of standard

deviation (σfinal)
0.5

Final standard deviation used

for spatial distribution of

plants.

Maximum number of

iterations (Itermax)
10 Number of iterations

Nonlinear Modulation Index 0.01 -

Weight of J (WJ) 1e-6 Weightage of J

Weight of T (WT) 10 Weightage of Tst

Target angle

q1<0.001 rad

q2<0.001 rad

q3<0.001 rad

The angle where time is

recorded and used as the

fitness criteria

Search range

0-1000

Search range used based on

trial and error.

143

Table 7.2: WCMIWO Results

Fitness

Rank
S1 S2 S3 S4 S5 S6

Duration to reach

the upright position,

Tst (s)
J x 𝟏𝟎𝟓 JT*

1 50.348 500.587 400.658 250.002 150.174 100.002 6.35 222.964 85.80

2 500.682 150.726 500.307 250.176 50.385 0.000 8.88 100.183 98.77

3 200.307 400.439 350.916 300.782 150.435 450.882 11.78 329.936 150.74

4 899.160 649.006 649.913 550.639 250.005 250.596 8.06 747.046 155.45

5 540.079 647.506 890.389 494.867 199.148 491.786 8.00 777.002 157.70

6 543.478 648.526 893.789 496.567 199.487 494.506 8.00 781.639 158.16

7 545.477 649.126 895.788 497.567 199.687 496.106 8.03 784.371 158.69

8 546.901 649.553 897.212 498.278 199.830 497.244 8.03 786.319 158.88

9 548.008 649.885 898.319 498.832 199.940 498.130 8.03 787.835 159.03

10 548.914 650.157 899.225 499.285 200.031 498.855 8.03 789.077 159.16

* Fitness Criterion

144

7.2.1 Simulation results of LQR designed using WCMIWO

The fittest seeds, which are S1=50.348, S2=500.587, S3=400.658, S4=250.002,

S5=150.174 and S6=100.002, are selected for analysis. Using Equation 6.6, the Q

matrix obtained from the seeds is:

𝑄 =

[

2.5068𝑒5 0 0 0 0 0

0 2.5059𝑒5 0 0 0 0
0 0 1.6053𝑒5 0 0 0
0 0 0 0.6250𝑒5 0 0
0 0 0 0 0.2255𝑒5 0
0 0 0 0 0 0.1000𝑒5]

and the corresponding gain matrix is:

𝐹 = −0.5080𝑒3 −0.2172𝑒3 −0.0268𝑒3 0.0928𝑒3 0.0489𝑒3 0.0061𝑒3

−0.4273𝑒3 −0.1918𝑒3 0.0071𝑒3 0.0786𝑒3 0.0414𝑒3 0.0050𝑒3

In order to verify the effectiveness of the WCMIWO algorithm, the parameters

obtained are applied to a Matlab® program created by the author. The results are then

compared for three different configurations, as shown in Figure 6.1, to ensure that the

optimization can be implemented in various configurations.

145

Figure 7.1: Simulation of LQR with initial deflection of θ1=-3°; θ2=-3°; θ2=-3°

Figure 7.2: Simulation of LQR with initial deflection of θ1=-3°; θ2= 3°; θ2 = -3°

146

Figure 7.3: Simulation of LQR with initial deflection of θ1=3°; θ2=3°; θ2=3°

Figure 7.1 shows the system’s response and reveals that the voltages required to bring

the Robogymnast to a stable upright position with the initial absolute angular position

equal to [-3°, -3°, -3°] are 12 volts for both motor 1 and motor 2. It can be seen that

the time (T) taken to reach a stable upright position is 6.35 seconds. Figure 7.2 depicts

the reaction of the Robogymnast as it attempts to stabilize itself from an initial

absolute angular configuration equal to [-3°, 3°, -3°]. The maximum voltage required

is 6.62 volts for motor 1 (u1) and 1.55 volts for motor 2 (u2). Figure 7.3 shows the

response of the system when the initial absolute angular position is equal to [3°, 3°,

3°]. The time (T) taken for the system to stabilize is 6.35 seconds. The maximum

voltage for motor 1 (u1) and motor 2 (u2) is 12 volts. An external disturbance of 0.05

147

rad was applied to each of the Robogymnast links one at a time and its reaction

observed. The disturbance was applied about two seconds after the controller attempts

to stabilize the system from an initial absolute angular position equal to [1.5°, 1.5°,

1.5°]. The objective of this test was to determine the robustness of the LQR controller

using the parameters obtained using IWO.

Figure 7.4: Disturbance to Link 1

148

Figure 7.5: Disturbance to Link 2

Figure 7.6: Disturbance to Link 3

149

Figure 7.4 illustrates that when a disturbance is applied to the first link, the controller

quickly reacts to counter the displacement. The figure reveals that the amount of work

done by both motors is more or less the same. From Figure 7.5, it can be seen that the

system experiences significant displacement when a disturbance is applied to the

second link. However, despite this, the controller was still able to balance the

Robogymnast successfully. Figure 7.6 represents the reaction of the system when a

disturbance is applied to the third link. The displacement in this figure is far less

severe when compared to Figure 7.4 and Figure 7.5. It can also be seen that when the

disturbance is applied, u1 is larger than u2. This indicates that most of the work is done

by motor 1.

7.3 Fuzzy Logic Invasive Weed Optimization Hybrid

In this section, a multi-objective Fuzzy Logic Invasive Weed Optimization Hybrid

(FLIWOH) technique is proposed. This technique uses a combination of the IWO and

fuzzy logic. IWO is used for searching and for the generation of new seeds. Fuzzy

logic is used to determine the fitness of the seeds by evaluating the fitness

memberships of the J and Tst criteria. Figures 7.7 and 7.8 show the flowchart of the

FLIWOH algorithm.

150

Figure 7.7: The main flowchart of the FLIWOH Algorithm

INITIALIZATION:
Generate Parent

plants

Start

Pop<PopMax?

Fitness Test using
Fuzzy Logic

Competitive Exclusion

Pop=Colony

IterMax?

YES

End

YES

NO

NO

FL

MVal

REPRODUCTION
USING SPATIAL
DISTRIBUTION

151

Figure 7.8: The flowchart of the Fuzzy Logic Algorithm

FL

Fuzzification

Fuzzy Inference
Engine (Mamdani

Method)

Defuzzification
(Center of Gravity)

Fuzzy Rules

Output
Membership

Function

Input Membership
Functions

J Tst

MVal

Generation of
Fuzzy Input
Variables

152

The fuzzy logic processor consists of two input variables and one output variable.

Each of the input variables has three membership functions defined in the range of [0,

1] (Figure. 7.9). The output variable consists of three membership functions within

the range of [0, 5]. Two well-known Fuzzy rule-based Inference Systems are the

Mamdani fuzzy method and the Takagi-Sugeno (T-S) fuzzy method (Chai et al. 2009).

The Mamdani method is selected as the fuzzy inference engine due to its expressive

power, making it easy to formalize and interpret. Another advantage is that it can be

used for both Multiple Input Single Output (MISO) and Multiple Input Multiple

Output (MIMO) systems, whereas the T-S method can only be used in MISO systems

(Hamam and Georganas 2008). This allows the Mamdani method to be used in future

works when MIMO systems are required. The fuzzy logic rules in Table 7.4 are then

applied and the output membership function generates the output membership value

(MVal). The set seeds are then arranged in ascending order based on their MVal

values, where the smaller the value of MVal, the fitter the set of seeds. The set seeds

then go through the rest of the conventional IWO process.

153

 Table 7.3: FLIWOH parameters

Variable Value Description

Number of initial

plants (pinit)
5

Number of randomly
chosen values from the

solution space.

Minimum number of

seed sets (Smin)
1

Minimum population of
solutions

Maximum number of

seed sets (Smax)
500

Maximum population of
solutions

Initial value of

standard deviation

(σinitial)

50
Standard deviation used
for spatial distribution

of plants.

Final value of standard

deviation (σfinal)
0.5

Final standard deviation
used for spatial

distribution of plants.

Maximum number of

iterations (Itermax)
10 Number of iterations

Nonlinear Modulation

Index
0.01 -

Target angle

q1<0.001 rad

q2<0.001 rad

q3<0.001 rad

The angle where time is
recorded and used as the

fitness criterion

Search range
0-1000

Search range used based
on trial and error.

154

Table 7.4: Fuzzy Logic Rule

 Tst

 LOW AVG HIGH

J

L
O

W

G AVG NG

Q
u

a
lity

A
V

G

AVG AVG NG

H
IG

H

AVG NG NG

155

Figure 7.9: Fuzzy Logic Membership Functions

D
eg

re
e

o
f

M
em

b
er

sh
ip

J

1

0
PCJ1 MedJ PCJ2

LOW AVG HIGH

LAvgJ UAvgJ 1

MedT

D
eg

re
e

o
f

M
em

b
er

sh
ip

Tst

1

0
PCT1 PCT2

LOW AVG HIGH

LAvgT UAvgT 1

D
eg

re
e

o
f

M
em

b
er

sh
ip

Quality

1

0
1 2.5 4

G AVG NG

2 3 5

156

The parameters of the fuzzy logic membership functions are calculated as follows:

𝑀𝑒𝑑𝐽 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐽𝑛𝑜𝑟𝑚) (7.4)

𝑈𝐴𝑣𝑔𝐽 = 𝑀𝑒𝑑𝐽 + (0.25)(𝑀𝑒𝑑𝐽) (7.5)

 𝐿𝐴𝑣𝑔𝐽 = 𝑀𝑒𝑑𝐽 − (0.25)(𝑀𝑒𝑑𝐽) (7.6)

 𝑃𝐶𝐽1 = (0.25)(𝑀𝑒𝑑𝐽) (7.7)

𝑃𝐶𝐽2 = 1 − 𝑃𝐶𝐽1 (7.8)

𝑀𝑒𝑑𝑇 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑇𝑛𝑜𝑟𝑚) (7.9)

𝑈𝐴𝑣𝑔𝑇 = 𝑀𝑒𝑑𝑇 + (0.25)(𝑀𝑒𝑑𝑇) (7.10)

 𝐿𝐴𝑣𝑔𝑇 = 𝑀𝑒𝑑𝑇 − (0.25)(𝑀𝑒𝑑𝑇) (7.11)

 𝑃𝐶𝑇1 = 0.25(𝑀𝑒𝑑𝑇) (7.12)

𝑃𝐶𝑇2 = 1 − 𝑃𝐶𝑇1 (7.13)

The range of each membership function had to be re-calculated for each iteration due

to the changing range of the seeds’ values. 𝐽𝑛𝑜𝑟𝑚 and 𝑇𝑛𝑜𝑟𝑚 are the normalized values

of J and Tst. The values of J and Tst are normalized to ensure that their ranges fall

between [0, 1]. Table 7.5 shows the top ten best seeds set obtained from a population

of 500.

157

Table 7.5: FLIWOH Results

** Fitness Criterion

Fitness

Rank
S1 S2 S3 S4 S5 S6

Duration to

reach the

upright position,

Tst (s)

J x 105 MVal**

1 10.913 100.958 80.485 50.792 30.934 20.655 6.45 9.303 0.9152

2 199.492 179.689 200.470 100.651 70.476 89.536 7.15 48.715 0.9153

3 209.155 179.445 220.230 120.411 50.526 69.640 6.78 45.249 0.9153

4 198.819 119.370 130.565 60.785 50.326 29.608 6.43 19.457 0.9155

5 168.432 199.197 228.200 109.943 60.412 138.827 6.75 57.387 0.9157

6 208.685 199.507 258.648 110.460 50.711 120.046 6.20 54.100 0.9159

7 120.759 190.756 260.140 130.647 50.894 160.390 7.45 59.624 0.9230

8 120.402 190.430 259.515 130.373 50.824 159.905 7.45 59.389 0.9232

9 120.694 190.363 259.617 130.451 50.829 159.998 7.45 59.418 0.9232

10 169.558 199.771 260.114 150.629 40.731 150.223 7.35 66.869 0.9263

158

7.3.1 Simulation results of LQR designed using FLIWOH

The fittest seeds, which are S1=50.348, S2=500.587, S3=400.658, S4=250.002,

S5=150.174 and S6=100.002, are selected for analysis. Using Equation 6.6, the

Q matrix obtained from the seeds is:

𝑄 =

[

0.1191𝑒3 0 0 0 0 0

0 10.1924𝑒3 0 0 0 0
0 0 6.4779𝑒3 0 0 0
0 0 0 2.5798𝑒3 0 0
0 0 0 0 0.9569𝑒3 0
0 0 0 0 0 0.4266𝑒3]

and the corresponding gain matrix is:

𝐹 =
−508.2175 −217.2200 −26.5988 92.8740 48.8864 6.0772
−390.6186 −175.1066 6.8220 71.8430 37.8372 4.6029

The parameters obtained are subjected to the same tests as the WCMIWO

parameters.

159

Figure 7.10: Simulation of LQR with initial deflection of θ1=-3°; θ2=-3°; θ2=-3°

Figure 7.11: Simulation of LQR with initial deflection of θ1=-3°; θ2=3°; θ2=-3°

160

Figure 7.12: Simulation of LQR with initial deflection of θ1=3°; θ2=3°; θ2=3°

Figure 7.10 illustrates the controlled system response and the voltages when the

Robogymnast is in the upright position with the initial absolute angular position

equal to [-3°, -3°, -3°]. The maximum voltage u1 is 12V, while u2 is significantly

lower at 5.8159V. It can be seen that the time taken to reach a stable upright position

is 6.375 seconds. Figure 7.11 shows the response of the system when the initial

absolute angular position is equal to [-3°, 3°, -3°]. The time taken for the system to

stabilize is 4.05 seconds. The maximum voltage is 6.7462 volts for u1 and 0.9909

volts for u2. Figure 7.12 illustrates the controller’s ability to stabilise the

Robogymnast when it is in the upright position with the initial absolute angular

position equal to [3°, 3°, 3°]. The maximum voltage for motor 1 (u1) is 12 volts,

161

and for motor 2 (u2) is 5.8159 volts. It can be seen that the time taken to reach a

stable upright position is 6.375 seconds.

An external disturbance of 0.05 rad or 2.87° was applied to each of the

Robogymnast links one at a time and its reaction was observed. The disturbance

was applied about two seconds after the controller attempted to stabilize the system

from an initial absolute angular position equal to [1.5°, 1.5°, 1.5°]. Figure 7.13

shows the effect a disturbance has on the system when applied to the first link. The

system was able to counter the disturbance and stabilize the system successfully.

Maximum voltage of u1 is more than double of voltage u2, thus showing that most

of the work is done by motor 1.

Figure 7.13: Disturbance to Link 1

162

Figure 7.14: Disturbance to Link 2

Figure 7.15: Disturbance to Link 3

163

Figure 7.14 depicts the controller’s successful attempt to balance the Robogymnast

when a disturbance is applied to the second link. It can be seen that motor 1 requires

significantly larger voltage compared to motor 2. The controller is able to stabilize

the robot in 7.375 seconds. Figure 7.15 displays the reaction of the system when a

disturbance is applied to the third link. The displacement caused by the system is

minor, thus requiring very small voltages for both motors.

7.4 Training with disturbance

In this section, the optimization procedures in sections 7.4 and 7.5 were repeated

with minor disturbance applied to the system model. The disturbance consists of

random values between the range [0.01 rad, 0.05 rad], which were multiplied with

previous states and added to the present states. This is to simulate the application

of external disturbance to the system. It is expected that the increased difficulty in

the optimization process would generate seeds that would perform much better

when applied to the system without disturbance.

164

7.4.1 WCMIWO training with disturbance results

The fittest seeds, which are S1=28.398, S2=26.475, S3=29.353, S4=11.210,

S5=6.811 and S6=10.833, are selected for analysis. Using Equation 6.6, the Q

matrix obtained from the seeds is:

𝑄 =

[

806.4354 0 0 0 0 0

0 700.9120 0 0 0 0
0 0 861.5681 0 0 0
0 0 0 125.6577 0 0
0 0 0 0 46.3923 0
0 0 0 0 0 117.3512]

and the corresponding gain matrix is:

𝐹 =
−551.7618 −237.6276 −27.8633 100.8604 53.0928 6.5943
−88.0097 −39.6871 12.5886 16.1881 8.5312 1.0046

Figures 7.16 to 7.18 shows the controller’s reaction when attempting to balance the

Robogymnast in an inverted position from three different configurations as in

Figure 6.1.

165

Figure 7.16: Simulation of LQR with initial deflection of θ1=-3°; θ2=-3°; θ2=-3°

Figure 7.17: Simulation of LQR with initial deflection of θ1=-3°; θ2=3°; θ2=-3°

166

Figure 7.18: Simulation of LQR with initial deflection of θ1=-3°; θ2=-3°; θ2=-3°

7.4.2 FLIWOH training with disturbance results

The fittest seeds, which are S1=25.0659, S2=16.9821, S3=24.7988, S4=8.7119,

S5=3.8212 and S6=9.9280, are selected for analysis. Using equation (6.6), the Q

matrix obtained from the seeds is:

𝑄 =

[

628.2976 0 0 0 0 0

0 288.3915 0 0 0 0
0 0 614.9822 0 0 0
0 0 0 75.8976 0 0
0 0 0 0 14.6019 0
0 0 0 0 0 98.5659]

and the corresponding gain matrix is:

167

𝐹 =
−550.7529 −236.9672 −27.5668 100.8604 52.9685 6.5779
−49.5513 −22.2015 12.8659 9.1323 4.8142 0.5500

The controller is tested in three different configurations as in Section 7.4.1 and the

results are shown in Figures 7.19 to 7.21.

Figure 7.19: Simulation of LQR with initial deflection of θ1=-3°; θ2=-3°; θ2=-3

168

Figure 7.20: Simulation of LQR with initial deflection of θ1=-3°; θ2=3°; θ2=-3°

Figure 7.21: Simulation of LQR with initial deflection of θ1=-3°; θ2=-3°; θ2=-3°

169

7.5 Discussion and conclusion

The simulation results proved that the LQR controller designed using parameters

obtained by both methods can successfully bring the Robogymnast to an inverted

and stable configuration. WCMIWO and FLIWOH produced LQR controllers that

have similar reaction times (within the range of less than 4%) to each other but are

slower compared to the LQR controllers trained with disturbance. The WCMIWO

LQR controller uses between 1.26% to 8.62% less voltage for motor 1 (u1)

compared to the other methods. However, it requires between 27.66% to 88.9%

higher voltage for motor 2 (u2) when compared to the other methods, with FLIWOH

with disturbance requiring the lowest voltage (u2) for motor 2 in almost all

configurations. This result is consistent throughout the three configurations. In

order to further analyse the performance of the controllers, more tests had to be

done. Tables 7.6 and 7.7 compare the performance of the two controllers in different

initial angular configurations

170

Table 7. 6: Comparison of the performance of controllers in different initial angular (small angles) configurations.

Deflection Angle Method Jsum Tmax(s) u1max(V) u2max(V) Description/Purpose

θ1=1°; θ2=1°; θ3=1

WCMIWO 1313100 4.775 8.866 7.457

To examine controller’s reaction at low

deflection angles.

FLIWOH 1649 4.600 9.272 1.939

WCMIWO with Disturbance 3449 4.075 9.630 1.536

FLIWOH with Disturbance 1745 4.250 9.613 0.865

θ1=1°; θ2=-1°; θ3=1°

WCMIWO 72391 3.175 2.221 0.517

To examine controller’s reaction at low

deflection angles.

FLIWOH 94 3.125 2.249 0.330

WCMIWO with Disturbance 196 2.850 2.308 0.366

FLIWOH with Disturbance 109 3.050 2.303 0.374

θ1=3°; θ2=3°; θ3=3°

WCMIWO 22296000 6.35 12.000 12.000

Figure 7.3 and 7.12
FLIWOH 34779 6.375 12.000 5.816

WCMIWO with Disturbance 81669 5.700 12.000 4.608

FLIWOH with Disturbance 44946 6.025 12.000 2.595

 WCMIWO 651520 4.075 6.662 1.550

Opposite of Figure 7.2 and 7.11
θ1=3°; θ2=-3°; θ3=3°

FLIWOH 843 4.050 6.746 0.991

WCMIWO with Disturbance 1766 3.675 6.924 1.097

FLIWOH with Disturbance 979 4.000 6.909 1.121

 WCMIWO 28180000 6.525 12.000 12.000

To examine the controller’s reaction

 θ1=3.1°; θ2=3.1°; θ3=3.1°

FLIWOH 49311 6.650 12.000 6.010

WCMIWO with Disturbance 123270 6.025 12.000 4.762

FLIWOH with Disturbance 77390 6.475 12.000 2.700

171

Table 7. 7: Comparison of the performance of controllers in different initial angular (large angles) configurations.

Deflection Angle Method Jsum Tmax(s) u1max(V) u2max(V) Description/Purpose

θ1=0°; θ2=4°; θ3=5°

WCMIWO 4526100 5.375 12.000 12.000
To examine the controller’s reaction

when higher deflection angles are

applied to link 2 and link 3.

FLIWOH 5751 5.200 12.000 3.298

WCMIWO with Disturbance 12349 4.600 12.000 2.551

FLIWOH with Disturbance 6220 4.800 12.000 1.325

θ1=4°; θ2=0°; θ3=0°

WCMIWO 7485100 5.575 12.000 12.000
To examine the controller’s reaction

when higher deflection angles are

applied to link 1.

FLIWOH 9819 5.450 12.000 4.277

WCMIWO with Disturbance 20920 4.825 12.000 3.374

FLIWOH with Disturbance 10680 5.050 12.000 1.909

θ1=5.45°; θ2=0°; θ3=0°

WCMIWO 33873000 6.700 12.000 12.000

To test maximum deflection angle the

controller can recover from.

FLIWOH 1411751 6.800 12.000 12.000

WCMIWO with Disturbance Inf Inf 12.000 12.000

FLIWOH with Disturbance Inf Inf 12.000 12.000

θ1=5.65°; θ2=0°; θ3=0°

WCMIWO 71745000 7.375 12.000 12.000

To test maximum deflection angle the

controller can recover from.

FLIWOH 2978200 7.500 12.000 12.000

WCMIWO with Disturbance Inf Inf 12.000 12.000

FLIWOH with Disturbance Inf Inf 12.000 12.000

θ1=5.7°; θ2=0°; θ3=0°

WCMIWO Inf Inf 12.000 12.000

To test maximum deflection angle the

controller can recover from.

FLIWOH Inf Inf 12.000 12.000

WCMIWO with Disturbance Inf Inf 12.000 12.000

FLIWOH with Disturbance Inf Inf 12.000 12.000

172

Tables 7.6 and 7.7 show that all the controllers trained with disturbance achieved

faster settling times compared to their counterparts that were not trained with

disturbance. At small angles, voltage u1 is lower for WCMIWO, but at large angles

this difference ceases to exist. Voltage u2 is lower for FLIWOH trained with

disturbance at almost all configurations. Both controllers that were trained with

disturbance were unable to recover the Robogymnast when the initial absolute

angular position was equal to [5.45°, 0°, 0°]. Further tests showed that WCMIWO

trained with disturbance can recover from a maximum initial angular position of

[5.432°, 0°, 0°], while FLIWOH trained with disturbance can only recover from the

initial angular position of [5.369°, 0°, 0°]. WCMIWO and FLIWOH can recover

from a maximum initial angular position of [5.692°, 0°, 0°]. Table 7.8 shows the

ranking of performance of the four controllers, where 1 is the best and 4 is the worst.

Table 7.8: Ranking of Performance

Method Settling
Time

Efficiency of
motor 1 (u1)

Efficiency of
motor 2 (u2)

Ability to upright
from larger

initial angles of
deflection

WCMIWO 4 1 4 1

FLIWOH 3 2 3 1

WCMIWO with
Disturbance 1 3 2 2

FLIWOH with
Disturbance 2 3 1 3

173

Based on Table 7.8 the WCMIWO LQR controller has the highest ranking for the

efficiency of motor 1 and the ability to achieve an upright position from larger initial

angles. This makes it the most suitable controller for this application, largely

because of the system’s dependency on u1 to maintain the Robogymnast in an

upright position is larger than its dependency on u2. This can be seen from the

results, as u1 is usually larger than u2. Since both u1 and u2 have a maximum limit

of 12V, it is in its best interest that the required value of u1 be as small as possible.

Table 7.9 shows the performance of the four controllers compared to the controllers

LQRJ and LQRT in chapter 6. As expected LQRT performs faster compared to the

other techniques, while LQRJ performs the slowest. The results also show that

LQRJ uses the least amount of voltage for u1 at small angles but uses the most

amount of voltage at medium angles.

174

Table 7.9: Comparison with LQRJ and LQRT

Deflection Angle Method Jsum Tmax(s) u1max(V) u2max(V) Remarks

θ1=1°; θ2=1°; θ3=1

LQRJ 605640 6.700 7.732 12.000

Small angles

LQRT 2725800 3.625 10.105 2.097

WCMIWO 1313100 4.775 8.866 7.457

FLIWOH 1649 4.600 9.272 1.939

WCMIWO with Disturbance 3449 4.075 9.630 1.536

FLIWOH with Disturbance 1745 4.250 9.613 0.865

θ1=3°; θ2=-3°; θ3=3°

LQRJ 325330 5.700 7.322 9.541

Medium

angles

LQRT 1301800 3.100 7.296 1.927

WCMIWO 651520 4.075 6.662 1.550

FLIWOH 843 4.050 6.746 0.991

WCMIWO with Disturbance 1766 3.675 6.924 1.097

FLIWOH with Disturbance 979 4.000 6.909 1.121

θ1=5.45°; θ2=0°; θ3=0°

LQRJ 15839000 9.375 12.000 12.000

Large angles

LQRT 201070000 5.600 12.000 6.195

WCMIWO 33873000 6.700 12.000 12.000

FLIWOH 1411751 6.800 12.000 12.000

WCMIWO with Disturbance Inf Inf 12.000 12.000

FLIWOH with Disturbance Inf Inf 12.000 12.000

175

7.6 Summary

The purpose of this chapter was to determine whether the multi-objective IWO

could produce an LQR controller that takes into consideration the values of the J

cost function and settling time (Tst). The first optimization method (WCMIWO)

applies IWO for WCM optimization of the J and Tst values. Weight values were

assigned to each variable and the resulting values were multiplied by each other to

produce a single value which is used as the fitness criterion. The second

optimization method (FLIWOH) is a hybrid IWO that employs fuzzy logic to attain

a membership value which is used as the fitness criterion. Using the Q values

obtained, two LQR controllers were designed and tested using simulation. Two

other controllers were designed using the previous two methods but trained with

minor disturbances. All four controllers successfully balanced the Robogymnast in

an inverted configuration even when external disturbance was applied to it. The

four controllers were examined and their performance evaluated.

176

CHAPTER 8

Conclusions, Contributions and Future Work

This chapter summarises the conclusions and contributions of this research. It also

provides suggestions for future work.

8.1 Conclusions

In conclusion, all the objectives in Chapter 1 have been met.

 A swing-up method for the Robogymnast through the manipulation of its motor

control signals was successfully designed. This was achieved by selecting the

values of control parameters ∆𝛼1, ∆𝛼2, ∆𝛿1 and ∆𝛿2. Two parameters (∆𝛼1 and

∆𝛿1) were assigned to control signal 𝑢1 and another two parameters (∆𝛼2 and

∆𝛿2) were assigned to control signal 𝑢2.

 A swarm-based optimisation technique was applied to optimise the parameters

of the control signals. The IWO was used to optimize the swing-up motion of

177

the robot by determining the optimum values of parameters that control the

input sinusoidal voltage of the two motors.

 The optimised parameters were applied to the swing-up motion of the

Robogymnast. The values obtained from IWO were then applied to both

simulation and experiment. Results showed that the swing-up motion of the

Robogymnast from the stable downward position to the inverted configuration

was successfully accomplished.

 A neural network model of the system was developed and applied. A multi-

layered ENN model was used to represent the system. The ENN was selected

because its behaviour is similar to that of a state space equation.

 The ENN model of the Robogymnast was analysed and validated. Inputs were

applied to both the mathematical model and the neural network model and their

outputs were analyzed and compared with the actual system’s behaviour.

 Controllers to balance the Robogymnast in an inverted configuration were

developed. Two LQR controllers were designed and their behaviour examined.

 The optimised parameters of the controllers were selected using swarm-based

optimization techniques. The fitness criteria chosen were the cost function J

and settling time Tst. The fitness criteria were employed on the IWO and used

to obtain optimum diagonal values of the Q matrix.

 Modified swarm-based multi-objective optimisation techniques were

developed to optimise the selection of the controller parameters. Two multi-

objective optimization methods based on IWO were proposed. The WCMIWO

178

is a weight criteria method, while the FLIWOH uses fuzzy logic to determine

the fitness of the set seeds.

 Four controllers were proposed using the MOO. The proposed controllers were

validated through simulation.

8.2 Contributions

The novel contributions made in this study are as follows:

1. Introduced a new method to manipulate the amplitudes and frequencies of

the sinusoidal control signals of the motors by assigning four parameters

(∆𝛼1, ∆𝛼2, ∆𝛿1 and ∆𝛿2) to control the amplitudes and frequencies of the

control signals (Chapter 4).

2. Employed a novel optimisation method (Invasive Weed Optimization) to

find the optimal values of the control signals’ parameters to achieve smooth

swing-up motion of the Robogymnast (Chapter 4).

3. Applied the optimised parameters of the swing-control on the real system

(Chapter 4).

4. Created a neural network model of the Robogymnast as an alternative to the

mathematical model (Chapter 5).

5. Applied the neural network model of the Robogymnast to the upright

balancing control (Chapter 6 and Chapter 7).

179

6. Developed an LQR controller by using IWO and incorporating the cost

function (J) and settling time (Tst) as fitness criteria in its design (Chapter

6).

7. Designed two multi-objective optimisation techniques to optimize the LQR

controller parameters (Chapter 7).

8. Applied disturbance to the system during the optimisation procedure to

create a more robust controller (Chapter 7).

9. Analyzed the ability of the designed controllers to overcome external

disturbance to the system (Chapter 7).

10. Compared the performance of the controllers in different configurations of

the Robogymnast (Chapter 6 and Chapter 7).

8.3 Future work

This section discusses some of the future works that can be implemented:

1. Design a catching controller to ‘catch’ or hold the system as it swings close

to the inverted position to assist in the transition from swing-up control to

balancing control.

2. Implement different control methods such as Q-learning in the design of a

balancing controller for the Robogymnast.

180

3. Develop learning algorithms for the WCMIWO to make the weights

adaptable based on the application.

4. Analyze the Robogymnast system to determine any improvements that can

be made.

5. Perform a study on the dimensions of the Robogymnast in order to find a

more optimal design of the mechanism. The length and weight of the links

have to be re-evaluated. The material used (aluminium) should be replaced

with stronger but lighter material.

6. Analyze selection of actuators that would improve the motion of the

Robogymnast. This might include replacing the actuator on joint 2 (shoulder

joint) with more powerful ones. This is because based on the findings in the

research, the power requirement for the actuator on joint 2 is greater than

the actuator on joint 3 (hip joint).

7. Apply the proposed controllers on the Robogymnast system after

implementation of points 4, 5 and 6.

181

APPENDIX

Appendix A

A.1. LM12CL 80W Operational Amplifier

The LM12 is a power op amp capable of driving ±25V at ±10A while operating

from ±30V supplies. The monolithic IC can deliver 80W of sine wave power into a

4Ω load with 0.01% distortion. Power bandwidth is 60 kHz. Further, a peak

dissipation capability of 800W allows it to handle reactive loads such as

transducers, actuators or small motors without derating. Important features include

the following:

The IC delivers ±10A output current at any output voltage yet is completely

protected against overloads, including shorts to the supplies. The dynamic safe area

protection is provided by instantaneous peak temperature limiting within the power

transistor array. The turn-on characteristics are controlled by keeping the output

open-circuited until the total supply voltage reaches 14V. The output is also opened

as the case temperature exceeds 150°C or as the supply voltage approaches the BV

of the output transistors. The IC withstands over-voltages to 80V. This monolithic

op amp is compensated for unity-gain feedback, with a small-signal bandwidth of

700 kHz. Slew rate is 9V/μseconds, even as a follower. Distortion and capacitive-

182

load stability rival that of the best designs using complementary output 186

transistors. Further, the IC withstands large differential input voltages and is well

behaved should the common-mode range be exceeded. The LM12 establishes that

monolithic ICs can deliver considerable output power without resorting to complex

switching schemes. Devices can be paralleled or bridged for even greater output

capability. Applications include operational power supplies, high-voltage

regulators, high-quality audio amplifiers, tape-head petitioners, x-y plotters or other

servo-control systems.

The LM12 is supplied in a four-lead, TO-220 package with V− on the case. A gold-

eutectic die-attach to a molybdenum interface is used to avoid thermal fatigue

problems. The LM12 is specified for either military or commercial temperature

range. The LM12 is prone to low-amplitude oscillation bursts coming out of

saturation if the high-frequency loop gain is near unity. The voltage follower

connection is most susceptible. This glitching can be eliminated at the expense of

small-signal bandwidth using input compensation. When a push-pull amplifier goes

into power limit while driving an inductive load, the stored energy in the load

inductance can drive the output outside the supplies. Although the LM12 has

internal clamp diodes that can handle several amperes for a few milliseconds,

extreme conditions can cause destruction of the IC. The internal clamp diodes are

imperfect in that about half the clamp current flows into the supply to which 187

the output is clamped, while the other half flows across the supplies. Therefore, the

183

use of external diodes to clamp the output to the power supplies is strongly

recommended.

A.2. E-Series Tachometer Generators

The E-Series (Subminiature) 3 volts/1000 RPM DC tachometer generator is the

smallest tach generator among those offering similar technical characteristics.

Many outstanding features make it particularly suitable for use in all types of servo

systems. Although its diameter is only 0.760‖, the E-Series provides up to 3 V/1000

RPM output. Almost any Servo-Tek DC tachometer generator can be manufactured

with special configurations, various electrical specifications and shaft

modifications such as flats, pinions, holes, etc.

184

Appendix B

B.1. Robogymnast Controller Program

/**

****/

/*

*/

/* Custom load subroutine for DAQ-2501 Card

*/

/* Robotic Gymnast Controller

*/

/*

*/

/* Manufacturing Engineering Centre, Cardiff School of Engineering

*/

/* - Copyright 2003 Cardiff University

*/

/*

*/

/**

****/

#include<iostream.h>

#include<stdio.h>

#include<float.h>

#include<math.h>

#include<conio.h>

#include<iomanip.h>

#include<fstream.h>

#include<stdlib.h>

#include <windows.h>

#include <string.h>

#include <time.h>

#include "d2kdask.h"

//#include "resource.h"

#define DA_REF_VOL 10.0

#define CHAN_NUM All_Channels

#define DA_POLAR DAQ2K_DA_BiPolar

#define DA_REFER DAQ2K_DA_Int_REF

#define AI_RANGE AD_B_10_V

#define PI 3.14159

#define max_data 10000

FILE *infile1;

FILE *infile2;

FILE *infile3;

FILE *infile4;

FILE *infile5;

void main(void)

{

 I16 AIchcnt = 8, AOchcnt = 4, card_num=0, card_type, card, err, i=0;

 I16 out_data[4], ch_num[4];

 U16 chan_data[8];

 int j;

 long delay,delay2,JJ;

 float temp[6][8],temp1[3],EE[3];

185

 double Ref1, Ref2, F[2][8], vv[3],T1[2][6], L1[6][6], K1[2][4];

 double v[3],vvv[6], w[2], xx[6],U1_2[2], Uw[2], Ux[2], E1_2[2];

 double u1=0.0,u2=0.0,u3=0.0,Ref1n, Ref2n,Refn1_2[2],pot_gain, test;

 F64 chan_voltage[8], chan_voltage_error0=0.0,

chan_voltage_error1=0.0,

chan_voltage_error2=0.0,chan_voltage_error3=0.0,chan_voltage_initial=0.0;

 F64 theta0;

 F32 out_voltage[4];

 FILE *fp, *fopen();

 float U[max_data][2], X[max_data][6], I[max_data][2], V[max_data][3];

 int count=0;

system("cls"); // Clear Screen

//printf("\n\n\n\n");

printf(" ********************&&&&&&***************************\n");

printf(" * *\n");

printf(" * ROBOTIC GYMNAST CONTROL SYSTEM *\n");

printf(" * *\n");

printf(" * *\n");

printf(" * *\n");

printf(" * CARDIFF SCHOOL OF ENGINEERING *\n");

printf(" * *\n");

printf(" * CARDIFF UNIVERSITY *\n");

printf(" * *\n");

printf(" * *\n");

printf(" * HAFIZUL A. ISMAIL *\n");

printf(" * *\n");

printf(" * &&&&&&&&&&&&&&&&&&&&&&&&&& *\n");

printf(" * *\n");

printf(" * *\n");

printf(" * PRESS ANY KEY TO STOP THE PROGRAMME *\n");

printf(" * *\n");

printf(" * *\n");

printf(" ********************&&&&&&***************************\n");

/**

****/

/* This part registers card and performs AD and DA auto-calibration

*/

/**

****/

 card_type = DAQ_2501;

 if ((card=D2K_Register_Card(card_type,card_num))<0)

 {

 printf("Register_Card error=%d\n", card);

 exit(1);

 }

/**

********/

/* This part reads inputs from all channels

*/

/**

********/

 err = D2K_AI_CH_Config (card, CHAN_NUM, AI_RANGE);

186

 if (err!=NoError)

 {

 printf("D2K_AI_CH_Config error=%d", err);

 exit(1);

 }

 err = D2K_AO_CH_Config (card, CHAN_NUM, DA_POLAR, DA_REFER,

(F64)DA_REF_VOL);

 if (err!=NoError)

 {

 printf("D2K_AO_CH_Config error=%d", err);

 exit(1);

 }

 for(i=0; i<AOchcnt; i++)

 {

 ch_num[i] = i;

 }

 err = D2K_AO_Group_Setup (card, DA_Group_A, AOchcnt, &ch_num);

 if (err!=NoError)

 {

 printf("D2K_AO_Group_Setup error=%d", err);

 exit(1);

 }

 for(i=0; i<AIchcnt; i++)

 {

// Get AI Hexadecimal value and transform it to voltage //

 err = D2K_AI_ReadChannel (card, i, &chan_data[i]);

 if (err!=NoError)

 {

 printf("D2K_AI_ReadChannel No.%d", i, "error=%d", err);

 exit(1);

 }

 //transform AI value to voltage

 err = D2K_AI_VoltScale (card, AI_RANGE, chan_data[i],

&chan_voltage[i]);

 if (err!=NoError)

 {

 printf("D2K_AI_VoltScale error No.%d", i, "error=%d", err);

 exit(1);

 }

 }

 //theta0=-chan_voltage[0];

 //for(i=1;i<2;i++){chan_voltage[i]=-chan_voltage[i];};

// Potentiometer gain = 10x(2xpi)/30 = 2x3.142/3 (10 turns with +15 V, -

15 V supply).

// Amplifiers gain = 3.7

// Overall gain = 2x3.142/(3x3.7) = 0.566 rad/V

// All chan_voltage values should be multiplied by this gain to convert

the angles from volts to radians.

187

// This section reads the Controller and the Observer Parameters from

their files //

infile1=fopen("F.txt","r"); // Controller F for u=-Fx

for (i=0;i<2;i++)

{

fscanf(infile1,"%f %f %f %f %f %f %f %f

\n",&temp[i][0],&temp[i][1],&temp[i][2],&temp[i][3],

 &temp[i][4],&temp[i][5],&temp[i][6],&temp[i][7]);

};

for (i=0;i<2;i++)

{

 for (j=0;j<8;j++)

 {

F[i][j]= (double) temp[i][j];

 }

}

fclose(infile1);

/*for (i=0;i<2;i++)

{

printf("%f %f %f %f %f %f %f %f

\n",F[i][0],F[i][1],F[i][2],F[i][3],F[i][4],F[i][5],

 F[i][6],F[i][7]);

};*/

// This section reads the first choice of Observer parameters from their

files

infile2=fopen("K1.txt","r"); // Observer k1 for v(k+1)=Ev(k)+Hu(k)+KKy(k)

for (i=0;i<2;i++)

{

 fscanf(infile2,"%f %f %f

%f\n",&temp[i][0],&temp[i][1],&temp[i][2],&temp[i][3]);

};

for (i=0;i<2;i++)

{

 for (j=0;j<4;j++)

 {

K1[i][j]= (double) temp[i][j];

 }

}

fclose(infile2);

/*for (i=0;i<2;i++)

{

 printf("%f %f %f %f\n",K1[i][0],K1[i][1],K1[i][2],K1[i][3]);

};*/

188

infile3=fopen("L1.txt","r"); // State Estimate xx=L*[y;v]=L1*y+L2*v

for (i=0;i<6;i++)

{

 fscanf(infile3,"%f %f %f %f %f %f

\n",&temp[i][0],&temp[i][1],&temp[i][2],&temp[i][3],

 &temp[i][4],&temp[i][5]);

};

for (i=0;i<6;i++)

{

 for (j=0;j<6;j++)

 {

L1[i][j]= (double) temp[i][j];

 }

}

fclose(infile3);

/*for (i=0;i<6;i++)

{

 printf("%f %f %f %f %f %f

\n",L1[i][0],L1[i][1],L1[i][2],L1[i][3],L1[i][4],L1[i][5]);

};*/

infile4=fopen("T1.txt","r"); // Observer Transform v=T1x

for (i=0;i<2;i++)

{

 fscanf(infile4,"%f %f %f %f %f %f

\n",&temp[i][0],&temp[i][1],&temp[i][2],&temp[i][3],

 &temp[i][4],&temp[i][5]);

};

for (i=0;i<2;i++)

{

 for (j=0;j<6;j++)

 {

T1[i][j]= (double) temp[i][j];

 }

}

fclose(infile4);

/*for (i=0;i<2;i++)

{

printf("%f %f %f %f %f %f

\n",T1[i][0],T1[i][1],T1[i][2],T1[i][3],T1[i][4],T1[i][5]);

};*/

infile5=fopen("EE.txt","r"); // Observer Eigenvalues

189

 fscanf(infile5,"%f %f \n",&temp1[0],&temp1[1]);

for (i=0;i<2;i++)

{

EE[i]=temp1[i];

//printf("%f\n",EE[i]);

}

fclose(infile5);

test=4.0; // For adjusting the sampling time

 count=0;

 JJ=0;

 delay2=5.80*1330000*0.7;

 //initialization of the integral

 for (i=0;i<2;i++)

 {

 {w[i]=0.0;};

 };

for (i=0;i<3;i++)

 {

 v[i]=0.0;

 };

 //chan_voltage_error0=chan_voltage[0];

 //chan_voltage_error1=chan_voltage[1];

 //chan_voltage_error2=chan_voltage[2];

 //chan_voltage_error3=chan_voltage[3];

 //printf("%f %f

%f\n",chan_voltage[0],chan_voltage[1],chan_voltage[2]);

 //(double)(chan_voltage[0])=((double)(chan_voltage[0])-

(double)(chan_voltage_error0));

 //(double)(chan_voltage[1])=((double)(chan_voltage[1])-

(double)(chan_voltage_error1));

 //(double)(chan_voltage[2])=((double)(chan_voltage[2])-

(double)(chan_voltage_error2));

 //(double)(chan_voltage[3])=((double)(chan_voltage[3])-

(double)(chan_voltage_error3));

 /*if(fabs((double)(chan_voltage[0]))*0.566 <= 0.01)

 {(double)(chan_voltage[0])=0.0;}

 if(fabs((double)(chan_voltage[1]))*0.105 <= 0.0215)

 {(double)(chan_voltage[1])=0.0;}

 if(fabs((double)(chan_voltage[2]))*0.105 <= 0.0215)

 {(double)(chan_voltage[2])=0.0;}

190

 if(fabs((double)(chan_voltage[3]))*4.475 <= 0.08)

 {(double)(chan_voltage[3])=0.0;}*/

 //printf("%f %f

%f\n",chan_voltage[0],chan_voltage[1],chan_voltage[2]);

 Ref1n=(double)(chan_voltage[1]);

 Ref2n=(double)(chan_voltage[2]);

 Ref1=(double)(chan_voltage[1]);

 Ref2=(double)(chan_voltage[2]);

 Ref1=0.0;

 Ref2=0.0;

//(double)(chan_voltage_initial)=((double)(chan_voltage[0]));

 // Observer State Initialisation //

for(j=0;j<2;j++)

{

 for (i=0;i<4;i++)

 {

 if (i==0)

 {(pot_gain=0.566);}

 if (i==3)

 {(pot_gain=4.475);}

 else

 {(pot_gain=0.105);}

 v[j]+=1.0*T1[j][i]*(double)(chan_voltage[i])*(pot_gain); // v=Tx

 }

};

//Refn1_2[1]=0.0;

//E1_2[1]=(Refn1_2[1]-(double)(chan_voltage[2]))*0.105;

for (i=0;i<2;i++)

 {

 E1_2[i]=0.0;

 };

//printf("%f\n",(double)(chan_voltage_initial));

// This is where the do loop starts

191

if ((fabs((double)(chan_voltage[0]))<3.0)&&

 (fabs((double)(chan_voltage[1]))<9.5)&&

 (fabs((double)(chan_voltage[2]))<9.5))

{

do{

//printf("%f %f %f\n",chan_voltage[0],chan_voltage[1],chan_voltage[2]);

// States Resetting //

 for (i=0;i<6;i++)

 {

 xx[i]=0.0;

 vvv[i]=0.0;

 };

 for (i=0;i<2;i++)

 {

 Ux[i]=0.0;

 Uw[i]=0.0;

 vv[i]=0.0;

 };

//printf("%f %f\n",v[0],v[1]);

 // Reference Smoothing //

 Ref1n=0.85*Ref1n+0.15*Ref1;

 Ref2n=0.85*Ref2n+0.15*Ref2;

 Refn1_2[0]=Ref1n;

 Refn1_2[1]=Ref2n;

 for (j=0;j<6;j++)

 {

 for (i=0;i<2;i++)

 {

 vvv[j]+=L1[j][i+4]*v[i]; // vvv(k)=L2*vn(k)

 }

 // printf("%f\n",vvv[j]);

 };

for (j=0;j<6;j++)

{

 for (i=0;i<4;i++)

 {

192

 if (i==0)

 {(pot_gain=0.566);}

 else

 if (i==3)

 {(pot_gain=4.475);} // this value if it is checking the

velocity of first pendulum

 else

 {(pot_gain=0.105);}

 xx[j]+=L1[j][i]*((double)(chan_voltage[i])*(pot_gain));

// xe(k)=L1*y(k)

 }

 xx[j]=xx[j]+vvv[j];

// printf("%f\n",xx[j]);

 X[count][j]=(float)xx[j];

 };

//@@@

@//

 // Motor Control Equations (u=-F*xx) //

 for (i=0;i<2;i++)

 {

 for (j=0;j<6;j++)

 {

 Ux[i]+=F[i][j]*xx[j];

 }

 for (j=0;j<2;j++)

 {

 Uw[i]+=F[i][j+6]*w[j];

 }

 };

for(i=0;i<2;i++)

{

 U1_2[i]=-Ux[i]-Uw[i];

};

// printf("%f %f\n",u1,u2);

 u1=1.0*(U1_2[0]);

 //u1=test;

 u2=1.0*(U1_2[1]);

 //u2=test;

 // Preparation of Motor Controls (adjusting the Op Amp offsets) //

193

 /* if (u1<0.0)

 {u1=u1+0.15;}

 if (u2<0.0)

 {u2=u2+0.15;}

 if (u2>0.0)

 {u2=u2+0.035;}*/

 out_voltage[0]= (F32)(u1);

 out_voltage[1]= (F32)(u2);

 out_voltage[2]= (F32)(u3);

// Sending Motor Controls //

 U[count][0]=(float)out_voltage[0];

 for (i=0;i<AOchcnt;i++)

 {

 if (out_voltage[i]>10) out_voltage[i]=10;

 if (out_voltage[i]<(-10)) {out_voltage[i]=-10;}

 }

 for(i=0; i<AOchcnt;i++)

 {

 out_data[i]= (U16)(((out_voltage[i]*0.5) +10) / 20 * 4095);

 }

 err = D2K_AO_Group_Update (card, DA_Group_A, out_data);

 if (err!=NoError)

 {

 printf("D2K_AO_Group_Update error=%d", err);

 exit(1);

 }

 U[count][1]=(float)out_voltage[1];

 // Delay to adjust the sampling time to 25 mse

 for (delay=0;delay<delay2;delay++)

 {

 };

//@@@

@//

 // Observer Equation //

 for (j=0;j<2;j++)

 {

 for (i=0;i<4;i++)

 {

 if (i==0)

 {(pot_gain=0.566);}

 else

 {(pot_gain=0.105);}

 if (i==3)

 {(pot_gain=4.475);}

194

 vv[j]+=1.0*K1[j][i]*((double)(chan_voltage[i])*(pot_gain));

 //printf("%f\n",pot_gain);

 }

 v[j]=EE[j]*v[j]+vv[j]; // v(k+1)=Ev(k)+K1y(k), H=0

 V[count][j]=(float)v[j];

 };

//@@//

 // Integrator Equation //

 for(i=0;i<2;i++)

 {

 E1_2[i]=(Refn1_2[i]-(double)(chan_voltage[i+1]))*0.105;

 //if(fabs(E1_2[i]) <= 0.005)

 //{E1_2[i]=0.0;}

 };

 //E1_2[1]=E1_2[1]/13;

 for (i=0;i<2;i++)

 {

 w[i]=w[i]+10.0*0.01*E1_2[i]; // w(k+1)=w(k)+0.025*(yr-y)

 //w[1]=w[1]+0.01*E1_2[1];

 I[count][0]=(float)w[i];

 };

//@@@

@//

// Analogue Inputs Reading (Joint Angles) //

 for(i=0; i<AIchcnt; i++)

 {

 err = D2K_AI_ReadChannel (card, i, &chan_data[i]);

 if (err!=NoError)

 {

 printf("D2K_AI_ReadChannel No.%d", i, "error=%d", err);

 exit(1);

 }

 //transform AI value to voltage //

 err = D2K_AI_VoltScale (card, AI_RANGE, chan_data[i],

&chan_voltage[i]);

 if (err!=NoError)

 {

 printf("D2K_AI_VoltScale error No.%d", i, "error=%d", err);

 exit(1);

 }

195

 };

 //for(i=1;i<2;i++){chan_voltage[i]=-chan_voltage[i];};

 //(double)(chan_voltage[0])=((double)(chan_voltage[0])-

(double)(chan_voltage_error0));

 //(double)(chan_voltage[1])=((double)(chan_voltage[1])-

(double)(chan_voltage_error1));

 //(double)(chan_voltage[2])=((double)(chan_voltage[2])-

(double)(chan_voltage_error2));

 //(double)(chan_voltage[3])=((double)(chan_voltage[3])-

(double)(chan_voltage_error3));

 /*if(fabs((double)(chan_voltage[0]))*0.566 <= 0.01)

 {(double)(chan_voltage[0])=0.0;}

 if(fabs((double)(chan_voltage[1]))*0.105 <= 0.0215)

 {(double)(chan_voltage[1])=0.0;}

 if(fabs((double)(chan_voltage[2]))*0.105 <= 0.0215)

 {(double)(chan_voltage[2])=0.0;}

 //if(fabs((double)(chan_voltage[3]))*4.475 <= 0.08)

 //{(double)(chan_voltage[3])=0.0;}*/

 count=count+1;

 //test=-test;

 // printf("%f %f\n",v[0],v[1]);

}while((kbhit()==0)&&((fabs((double)(chan_voltage[0])))<3.0)&&

 ((fabs((double)(chan_voltage[1])))<9.5)&&

 ((fabs((double)(chan_voltage[2])))<9.5)&&(count<max_data));

 } // End of IF Condition

printf(" Analogue Inputs: Ch1 Ch2 Ch3 Ch4 Ch5\n\n");

 // Release the I/O Card //

 D2K_Release_Card(card);

 if ((fp=fopen("motor_voltages.mat","w"))==0){printf("can't open a

file\n");exit(1);}

 for (i=0;i<max_data;i++)

 {

 fprintf(fp,"%.4f %.4f\n",U[i][0],U[i][1]);

 };

 fclose(fp);

 if ((fp=fopen("states.mat","w"))==0){printf("can't open a

file\n");exit(1);}

 for (i=0;i<max_data;i++)

 {

 fprintf(fp,"%.4f %.4f %.4f %.4f %.4f

%.4f\n",X[i][0],X[i][1],X[i][2],X[i][3],X[i][4],X[i][5]);

 };

196

 fclose(fp);

 if

((fp=fopen("observer_states_Tacho1_Est23.mat","w"))==0){printf("can't

open a file\n");exit(1);}

 for (i=0;i<max_data;i++)

 {

 fprintf(fp,"%.4f %.4f %.4f\n",V[i][0],V[i][1], V[i][2]);

 };

 fclose(fp);

if

((fp=fopen("integrator_states_Tacho1_Est23.mat","w"))==0){printf("can't

open a file\n");exit(1);}

 for (i=0;i<max_data;i++)

 {

 fprintf(fp,"%.4f %.4f\n",I[i][0],I[i][1]);

 };

 fclose(fp);

printf("%d this count after inc\n",count);

} ; // End of the main Loop

B.2. Robogymnast swing-up program

%%Robogymnast Swinging%%

%%Lagrange Eqn Matrix%%

M1= (m1*a1) + (m2+m3)*l1;
M2 = (m2*a2)+(m3*l2);
M3= m3*a3;
J1 = I1+(m1*a1*a1)+(m2+m3)*(l1*l1);
J2= I2+(m2*a2*a2)+(m3*l2*l2);
J3=I3+(m3*a3*a3);

%%Lagrange%%

M=[J1+Ip1 (l1*M2)-Ip1 l1*M3; (l1*M2)-Ip1 J2+Ip1+Ip2 (l2*M3)-Ip2; l1*M3

(l2*M3)-Ip2 J3+Ip2];
N=[C1+C2+Cp1 -C2-Cp1 0; -C2-Cp1 C2+C3+Cp1+Cp2 -C3-Cp2; 0 -C3-Cp2 C3+Cp2];
P=-[M1*g 0 0; 0 M2*g 0; 0 0 M3*g];
H=[G1 0; -G1 G2; 0 -G2];

W= [1 0 0;-1 1 0;0 -1 1];
O3= [0 0 0; 0 0 0;0 0 0];
O3x2= [0 0; 0 0; 0 0];
A21= W*inv(M)*P*inv(W);

A22= -W*inv(M)*N*inv(W);
B21= -W*inv(M)*H;
II3=[1 0 0; 0 1 0; 0 0 1];

197

C =[II3 O3];
A=[O3 II3;A21 A22];
B=[O32;B21];
[Ad Bd Cd Dd]=robogymnastc2d(A,B,C,D,Ts);
[yn xn un T]=motorvoltage_ori(Ad,Bd,Cd);
ydeg=yn*(180/pi);
xdeg=xn*(180/pi);
subplot(3,1,1), plot(T,un(1,:))
 ylabel('u1(V)')
subplot(3,1,2), plot(T,un(2,:))
 ylabel('u2(V)')
subplot(3,1,3), plot(T,ydeg(1,:))
 ylabel('Theta1(Deg)')
 xlabel('T(s)')

 B.3. Motor controller subroutine program

function [yn xn un Tt] = motorvoltage_ori(Ad,Bd,Cd)

%motor input voltage generation

angle1=1;

angle2=1;

alpha1=1;

alpha2=1;

delta1=0;

delta2=0;

inc_alpha1= 0.6616;

inc_alpha2= 0.1699;

inc_delta1= 5.512/100;

inc_delta2= 5.512/100;

target=(179/180)*pi;

%delta=0;

n=3.142*0.1;

T=0;

x=[0;0;0;0;0;0];

y=[0; 0; 0];

v=10;

for i= 1:1000000;

 if y(1,:)<target;

 if y(1,:)>-target;

 if angle1>2*pi;

 angle1=0;

 alpha1=alpha1+inc_alpha1;

 delta1=delta1+inc_delta1;

 end

 if angle2>2*pi;

 angle2=0;

 alpha2=alpha2+inc_alpha2;

 delta2=delta2+inc_delta2;

 end

 if angle1<=2*pi;

198

 T=T+0.025;

 Tt(i)=T;

 u1(i)=3*(alpha1)*sin(angle1);

 u2(i)=2.5*(alpha2)*sin(angle2);

 if u1(i)>=v;

 u1(i)=v;

 end

 if u1(i)<=-v;

 u1(i)=-v;

 end

 if u2(i)>v;

 u2(i)=v;

 end

 if u2(i)<-v;

 u2(i)=-v;

 end

 x=(Ad*x+Bd*[u1(i);u2(i)]);

 y=Cd*x;

 xt=[x];

 yt=[y];

 xn(:,i)=xt;

 yn(:,i)=yt;

 angle1=angle1+(n/delta1);

 angle2=angle2+(n/delta2);

 un=[u1;u2];

 end

 end

 end

B.3. Invasive Weed Optimization of swing-up parameters

%IWO Program for Robogymnast

%This program is used to calculate optimized values of 4 variables

%(alpha1,alpha2,delta1,delta2)based on Invasive Weed Optimization.

%Original Author: H.A Ismail (GERMAN MALAYSIAN INSTITUTE,CARDIFF

UNIVERSITY)

%02/06/2014

function [yIwo xn un T Tf TfxF SGF]=IWO3(Ad,Bd,Cd)

itermax=5;

iterz=(1:itermax);

iter= iterz-1;

sdAInit= 0.04; %Stand Dev for alpha1

sdAFinal=0.01;

sdA2Init= 0.04; %Stand Dev for alpha2

sdA2Final=0.01;

sdBInit= 0.04; %Stand Dev for deltas

199

sdBFinal=0.01;

NMI=0.001;

MaxPop=500;

Seeds=zeros;

PP1= zeros;

PP2= zeros;

PP3 = zeros;

PP4 = zeros;

rng default;

rand; % returns the same value as at startup

%Generating Parent Plants

PP1 = 0+(0.7-0).*rand(10,1); %Setting search range for alpha1

PP2 = 0+(0.2-0).*rand(10,1); %Setting search range for alpha2

PP3 = 5+(6-5).*rand(10,1); %Setting search range for delta1

PP4 = 5+(6-5).*rand(10,1); %%Setting search range for delta2

PP=[PP1 PP2 PP4 PP4]; %Initial Population

Seeds=PP;

[sr sc]=size(Seeds);

%Fitness test for parent plants

for k=1:sr;

[yt xn un T Tiwo]=motorvoltage_IWO3(Ad,Bd,Cd,Seeds,k);

yIwo(:,k)=yt.*(180/pi);

Tf(k)=[Tiwo;];

%Tf(: ,k)=Tiwo;

end

%Tfx=[PP1 PP2 PP3 PP4 Tf' yIwo'];

Tfx=[PP1 PP2 PP3 PP3 Tf' yIwo'];

SGF =sortrows(Tfx,5); %Arrange based on fastest time

%This part is to divide the population into 4 groups based on fitness

 [sr sc]=size(SGF);

 z2=sr/4;

 z2=round(z2);

 z1=1;

%Beginning generation of Weeds

for i=1:itermax;

%Generating Standard Deviatons

%rng default;

%randn; % returns the same value as at startup

%Spatial Distribution Formula for IWO

 sdA(i)=(((itermax-iter(i))^NMI)/(itermax^NMI))*(sdAInit-

sdAFinal)+sdAFinal;

 sdA2(i)=(((itermax-iter(i))^NMI)/(itermax^NMI))*(sdAInit-

sdAFinal)+sdAFinal;

 sdB(i)=(((itermax-iter(i))^NMI)/(itermax^NMI))*(sdBInit-

sdBFinal)+sdBFinal;

 PP(1,4)=zeros;

200

 % Generating next seeds

 for n=1:5 %Number of seeds generated (decreasing with fitness

level)

 if z2<sr

 for m=z1:z2

 PA1= SGF(m,1) + sdA(i).*randn(6-n,1); %alpha1

 PA2= SGF(m,2) + sdA2(i).*randn(6-n,1); %alpha2

 PD1= SGF(m,3) + sdB(i).*randn(6-n,1); %delta1

 PD2= SGF(m,4) + sdB(i).*randn(6-n,1); %delta2

 PP=[PP; PA1 PA2 PD1 PD1]; %NewPopulation

 end

 z1=z2+1; %Next Group

 z2=z2+z2;

 end

 end

 if i==1;

 PP(1,:)=[];

 end

 Seeds=PP;

 [sr sc]=size(Seeds);

 %Fitness test

 for k=1:sr;

 [yt xn un T Tiwo]=motorvoltage_IWO3(Ad,Bd,Cd,Seeds,k);

 yIwo(:,k)=yt.*(180/pi);

 Tf(k)=[Tiwo;];

 end

 %Rearranging based on fitness

 TfxF=[PP Tf' yIwo'];

 SGF =sortrows(TfxF,5);

 [sr sc]=size(SGF);

 %Competive Exclusion

 if sr>MaxPop

 SGF((MaxPop+1):end,:)=[];

 [sr sc]=size(SGF);

 end

 z2=sr/4;

 z2=round(z2);

 z1=1;

end

 Alpha1= SGF(1,1)

 Alpha2= SGF(1,2)

 Delta1= SGF(1,3)

 Delta2= SGF(1,4)

 Time = SGF(1,5)

end

201

B.4. Fuzzy Logic program for FLIWOH

function [u]=Standard_IWOFLC(Jfl,Tfl,JW,TW)

%Part_I :Member-ship Functions

%Creates a new Mamdani-style FIS structure

a=newfis('FL_LQR');

MedJ=median(JW);

 UAvgJ=MedJ+0.25*MedJ;

 LAvgJ=MedJ-0.25*MedJ;

 PCJ1=0.25*MedJ;

 PCJ2=1-PCJ1;

MedT=median(TW);

 UAvgT=MedT+0.25*MedT;

 LAvgT=MedT-0.25*MedT;

 PCT1=0.25*MedT;

 PCT2=1-PCT1;

a=addvar(a,'input','J',[0 1]);

a=addmf(a,'input',1,'Low','trapmf',[0 0 PCJ1 MedJ]);

a=addmf(a,'input',1,'Avg','trimf',[LAvgJ MedJ UAvgJ]);

a=addmf(a,'input',1,'High','trapmf',[MedJ PCJ2 1 1]);

a=addvar(a,'input','T',[0 1]);

a=addmf(a,'input',2,'Low','trapmf',[0 0 PCT1 MedT]);

a=addmf(a,'input',2,'Avg','trimf',[LAvgT MedT UAvgT]);

a=addmf(a,'input',2,'High','trapmf',[MedT PCT2 1 1]);

a=addvar(a,'output','Quality',[0 5]);

a=addmf(a,'output',1,'G','trapmf', [0 0 1 2.5]);

a=addmf(a,'output',1,'Av','trimf', [2 2.5 3]);

a=addmf(a,'output',1,'NG','trapmf', [2.5 3 5 5]);

ruleList=[

1 1 1 1 1

1 2 2 1 1

1 3 3 1 1

2 1 2 1 1

2 2 2 1 1

2 3 3 1 1

3 1 2 1 1

3 2 3 1 1

3 3 3 1 1

];

a = addrule(a,ruleList);

FLin=[Jfl,Tfl];%defining inputs to fuzzy

u=evalfis(FLin,a);%evaluating output a.fis

fuzzy(a)%--- displays the FIS Editor.%

202

note it will display FIS editor for %every time step so for 10 sec it

will produce 1001 FIS editors.

mfedit(a)%---- displays the Membership Function Editor.

ruleedit(a)%--- displays the Rule Editor.

ruleview(a)%--- displays the Rule Viewer.

surfview(a)%---- displays the Surface View

203

REFERENCES

Ahmad, S. 2012. A study of search neighbourhood in the bees algorithm. Cardiff

University.

Akbari, R. et al. 2012. A multi-objective artificial bee colony algorithm. Swarm

and Evolutionary Computation 2, pp. 39–52.

Anderson, C.W. 1989. Learning to control an inverted pendulum using neural

networks. Control Systems Magazine, IEEE 9(3), pp. 31–37.

Anon 2000. Miriam Webster’s Collegiate Encyclopedia. Miriam Webster.

Asadi, H. et al. 2016. Robust Optimal Motion Cueing Algorithm Based on the

Linear Quadratic Regulator Method and a Genetic Algorithm. IEEE Transactions

on Systems, Man, and Cybernetics: Systems PP(99), pp. 1–17.

Åström, K.J. and Furuta, K. 2000. Swinging up a pendulum by energy control.

Automatica 36(2), pp. 287–295.

Aström, K.J. and Murray, R.M. 2010. Feedback systems: an introduction for

scientists and engineers. Princeton university press.

Awrejcewicz, J. et al. 2012. An experiment with swinging up a double pendulum

using feedback control. Journal of Computer and Systems Sciences International

51(2), pp. 176–182.

Awtar, S. et al. 2002. Inverted pendulum systems: rotary and arm-driven-a

mechatronic system design case study. Mechatronics 12(2), pp. 357–370.

Bharti, S. and Singh, S.N. 2015. Analytical study of heart disease prediction

comparing with different algorithms. Computing, Communication & Automation

(ICCCA), 2015 International Conference on, pp. 78–82.

Boubaker, O. 2013. The inverted pendulum benchmark in nonlinear control

theory: a survey. International Journal of Advanced Robotic Systems 10.

Brown, S.C. and Passino, K.M. 1997. Intelligent Control for an Acrobot. Journal

of Intelligent and Robotic Systems: Theory and Applications 18(3), pp. 209–248.

Cavazzuti, M. 2013. Deterministic Optimization. In: Optimization Methods SE -

4. Springer Berlin Heidelberg, pp. 77–102.

Chai, Y. et al. 2009. Mamdani model based adaptive neural fuzzy inference

204

system and its application. International Journal of Computational Intelligence

5(1), pp. 22–29.

Cheng, H. et al. 2013. General swing-up methodology for the vertical three-link

underactuated manipulator. Cyber Technology in Automation, Control and

Intelligent Systems (CYBER), 2013 IEEE 3rd Annual International Conference

on, pp. 379–384.

Chiu, C.-H. 2010. The Design and Implementation of a Wheeled Inverted

Pendulum Using an Adaptive Output Recurrent Cerebellar Model Articulation

Controller. Industrial Electronics, IEEE Transactions on 57(5), pp. 1814–1822.

Chua, L.O. and Yang, L. 1988a. Cellular neural networks: applications. Circuits

and Systems, IEEE Transactions on 35(10), pp. 1273–1290.

Chua, L.O. and Yang, L. 1988b. Cellular neural networks: theory. Circuits and

Systems, IEEE Transactions on 35(10), pp. 1257–1272.

Darwish, A.H. 2009. Enhanced Bees Algorithm with fuzzy logic and Kalman

filtering. Cardiff University.

Das, S. et al. 2015. Multi-objective LQR with optimum weight selection to design

FOPID controllers for delayed fractional order processes. ISA transactions 58, pp.

35–49.

Deb, K. 2014. Multi-objective optimization. In: Search methodologies. Springer,

pp. 403–449.

DeJong, G. and Spong, M.W. 1994. Swinging up the acrobot: an example of

intelligent control. In: Proceedings of the American Control Conference. Univ of

Illinois, United States, pp. 2158–2162.

Dorigo, M. and Birattari, M. 2010. Ant Colony Optimization. In: Sammut, C. and

Webb, G. eds. Encyclopedia of Machine Learning SE - 22. Springer US, pp. 36–

39.

Dracopoulos, D.C. and Nichols, B.D. 2012. Swing up and balance control of the

acrobot solved by genetic programming. In: Res. and Dev. in Intelligent Syst.

XXIX: Incorporating Applications and Innovations in Intel. Sys. XX - AI 2012,

32nd SGAI Int. Conf. on Innovative Techniques and Applications of Artificial

Intel. 32nd SGAI International Conference on Innovative Techniques and

Applications of Artificial Intelligence, AI 2012. School of Electronics and

Computer Science, University of Westminster, 115 New Cavendish Street,

London W1W 6UW, United Kingdom, pp. 229–242.

Dracopoulos, D.C. and Nichols, B.D. 2015. Genetic programming for the

205

minimum time swing up and balance control acrobot problem. Expert Systems, p.

n/a-n/a.

Duan, H. et al. 2008. Air robot path planning based on Intelligent Water Drops

optimization. Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on

Computational Intelligence). IEEE International Joint Conference on, pp. 1397–

1401.

Eberhart, R.C. and Kennedy, J. 1995. A new optimizer using particle swarm

theory. In: Proceedings of the sixth international symposium on micro machine

and human science. New York, NY, pp. 39–43.

Eldukhri, E.E. and Pham, D.T. 2010. Autonomous swing-up control of a three-

link robot gymnast. Pro Institution of Mechanical Engineers. Part I: Journal of

Systems and Control Engineeringceedings of the 224(7), pp. 825–833.

Elman, J. 1990. Finding structure in time. Cognitive Science 14(2), pp. 179–211.

Engelbrecht, A.P. 2005. Fundamentals of Computational Swarm Intelligence.

Wiley.

Eom, M. and Chwa, D. 2015. Robust Swing-Up and Balancing Control Using a

Nonlinear Disturbance Observer for the Pendubot System With Dynamic Friction.

IEEE Transactions on Robotics 31(2), pp. 331–343.

Furuta, K. et al. 1984. ATTITUDE CONTROL OF A TRIPLE INVERTED

PENDULUM. International Journal of Control 39(6), pp. 1351–1365.

Gao, X.Z. et al. 1996. A modified Elman neural network model with application

to dynamical systems identification. Systems, Man, and Cybernetics, 1996., IEEE

International Conference on 2, pp. 1376–1381 vol.2.

Gawthrop, P.J. and Wang, L. 2006. Intermittent predictive control of an inverted

pendulum. Control Engineering Practice 14(11), pp. 1347–1356.

Ghalenoei, M.R. et al. 2009. Discrete invasive weed optimization algorithm:

Application to cooperative multiple task assignment of UAVs. In: Shanghai, pp.

1665–1670.

Ghoreishi, S.A. et al. 2011. Optimal design of LQR weighting matrices based on

intelligent optimization methods. International journal of intellgent Information

Processing 2(1.7).

Gmiterko, A. and Grossman, M. 2009. An n-Link Inverted Pendulum Modeling.

Acta Mechanica Slovaca 13(3), pp. 22–29.

Godfrey, C.O. and Babu, B.. 2013. New Optimization Techniques in Engineering.

206

Vol. 141. New York: Springer.

Grossimon, P.G. et al. 1996. Sliding mode control of an inverted pendulum. In:

System Theory, 1996., Proceedings of the Twenty-Eighth Southeastern Symposium

on. IEEE, pp. 248–252.

Günther, M. and Wagner, H. 2015. Dynamics of quiet human stance: computer

simulations of a triple inverted pendulum model. Computer methods in

biomechanics and biomedical engineering, pp. 1–16.

Habtie, A.B. et al. 2015. Cellular Network Based Real-Time Urban Road Traffic

State Estimation Framework Using Neural Network Model Estimation.

Computational Intelligence, 2015 IEEE Symposium Series on, pp. 38–44.

Hamam, A. and Georganas, N.D. 2008. A comparison of Mamdani and Sugeno

fuzzy inference systems for evaluating the quality of experience of Hapto-Audio-

Visual applications. In: Haptic Audio visual Environments and Games, 2008.

HAVE 2008. IEEE International Workshop on. IEEE, pp. 87–92.

Heyman, D.P. and Sobel, M.J. 2003. Stochastic models in operations research:

stochastic optimization. Courier Corporation.

Huang, S.-J. and Huang, C.-L. 2000. Control of an inverted pendulum using grey

prediction model. IEEE Transactions on Industry Applications 36(2), pp. 452–

458.

Jain, A.K. et al. 1996. Artificial neural networks: A tutorial. Computer 29(3), pp.

31–44.

Jaiwat, P. and Ohtsuka, T. 2014. Real-Time Swing-up of Double Inverted

Pendulum by Nonlinear Model Predictive Control. In: 5th International

Symposium on Advanced Control of Industrial Processes.

Jang, J.S.R. 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE

Transactions on Systems, Man, and Cybernetics 23(3), pp. 665–685.

Jones, E.R. (Visual N.I. 2004. An Introduction to Neural Networks. Visual

Numerics, Inc.

Jose, A. et al. 2015. Performance Study of PID Controller and LQR Technique for

Inverted Pendulum. World Journal of Engineering and Technology 3(2), p. 76.

Kamil, H. 2015. Intelligent model-based control of complex three-link

mechanisms. Cardiff University.

Kamil, H.G. et al. 2012. Optimisation of swing-up control parameters for a robot

gymnast using the Bees Algorithm. In: 8th International Symposium on Intelligent

207

and Manufacturing Systems. pp. 456–466.

Kamil, H.G. et al. 2014. Balancing control of Robogymnast Based on Discrete-

time Linear Quadratic Regulator Technique. In: 2014 Second International

Conference on Artificial Intelligence, Modelling and Simulation. IEEE, pp. 137–

142.

Kaur, A. and Kaur, A. 2012. Comparison of mamdani-type and sugeno-type fuzzy

inference systems for air conditioning system. International journal of soft

computing and engineering 2(2), pp. 2231–2307.

Kawada, K. et al. 2004. A design of evolutionary recurrent neural-net based

controllers for an inverted pendulum. Control Conference, 2004. 5th Asian 3, p.

1419–1422 Vol.3.

Khalaf, P. et al. 2015. MULTI-OBJECTIVE OPTIMIZATION OF IMPEDANCE

PARAMETERS IN A PROSTHESIS TEST ROBOT. In: ASME Dynamic Systems

and Control Conference.

Kharola, A. et al. 2016. A Comparison Study for Control And Stabilisation of

Inverted Pendulum on Inclined Surface (IPIS) Using PID And Fuzzy Controllers.

Perspectives in Science.

Klir, G. and Yuan, B. 1995. Fuzzy sets and fuzzy logic. Prentice hall New Jersey.

Kolovsky, M.Z. et al. 2012. Advanced_Theory_of_Mechanisms_and_Machin.

Springer Science & Business Media.

Kuo, A.D. 2007. The six determinants of gait and the inverted pendulum analogy:

A dynamic walking perspective. Human Movement Science 26(4), pp. 617–656.

Lai, X. et al. 2011. Motion control of underactuated three-link gymnast robot

based on combination of energy and posture. Control Theory & Applications, IET

5(13), pp. 1484–1493.

Lee, E. and Perkins, J. 2008. Comparison of Techniques for Stabilization of a

Triple Inverted Pendulum.

Lee, S. et al. 2015. Robust swing up and balancing control of the acrobot based on

a disturbance observer. Control, Automation and Systems (ICCAS), 2015 15th

International Conference on, pp. 48–53.

Li, H. and Yen, V.C. 1995. Fuzzy sets and fuzzy decision-making. CRC press.

LIU, D. and YAMAURA, H. 2011. Giant Swing Motion Control of 3-link

Gymnastic Robot with Friction around an Underactuated Joint. Journal of System

Design and Dynamics 5(5), pp. 925–936.

208

Liu, J. et al. 2008. Design approach of weighting matrices for LQR based on

multi-objective evolution algorithm. Information and Automation, 2008. ICIA

2008. International Conference on, pp. 1188–1192.

Lozano, R. et al. 2000. Stabilization of the inverted pendulum around its

homoclinic orbit. Systems & Control Letters 40(3), pp. 197–204.

Luma, N.M.T. and Yaseen, A.O. 2013. Fast Training Algorithms for Feed

Forward Neural Network. Ibn Al-Haitham Journal for Pure & Applied Science

26, pp. 275–280.

Madivada Hymavathi and Rao, C.S.P. 2012. AN INVASIVE WEED

OPTIMIZATION (IWO) APPROACH FOR MULTI-OBJECTIVE JOB SHOP

SCHEDULING PROBLEMS (JSSPs). INTERNATIONAL JOURNAL OF

MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) 3(3), p. 10.

Manickavelan, K. et al. 2014. Design, Fabrication and Analysis of Four Bar

Walking Machine Based on Chebyshev’s Parallel Motion Mechanism. European

International Journal of Science and Technology 3, pp. 65–73.

Marler, R.T. and Arora, J.S. 2004. Survey of multi-objective optimization

methods for engineering. Structural and multidisciplinary optimization 26(6), pp.

369–395.

McGrath, M. et al. 2015. The strengths and weaknesses of inverted pendulum

models of human walking. Gait & Posture 41(2), pp. 389–394.

Medrano-Cerda, G.A. et al. 1995. Balancing and Attitude Control of Double and

Triple Inverted Pendulums. Transactions of the Institute of Measurement and

Control 17(3), pp. 143–154.

Medsker, L.R. and Jain, L.C. 2001. Recurrent neural networks. Design and

Applications.

Mehrabian, A.R. and Lucas, C. 2006. A novel numerical optimization algorithm

inspired from weed colonization. Ecological Informatics 1(4), pp. 355–366.

Mohamed, H. et al. 2009. COMBINATION OF OPTIMISATION

ALGORITHMS FOR A MULTI-OBJECTIVE BUILDING DESIGN PROBLEM.

In: Eleventh International IBPSA Conference. Glasgow, pp. 173–179.

Mohan, C. and Deep, K. 2009. Optimization Techniques.

Namba, M. and Zhang, Z. 2006. Cellular Neural Network for Associative

Memory and Its Application to Braille Image Recognition. Neural Networks,

2006. IJCNN ’06. International Joint Conference on, pp. 2409–2414.

209

Negnevitsky, M. 2005. Artificial intelligence: a guide to intelligent systems.

Pearson Education.

De Oca, M.A.M. et al. 2006. A comparison of particle swarm optimization

algorithms based on run-length distributions. In: Ant Colony Optimization and

Swarm Intelligence. Springer, pp. 1–12.

Özbakir, L. et al. 2010. Bees algorithm for generalized assignment problem.

Applied Mathematics and Computation 215(11), pp. 3782–3795.

Park, K.-H. et al. 2004. Stabilization of a biped robot based on two mode Q-

learning. In: 2nd International Conference on Autonomous Robots and Agents,

Palmerston North, New Zealand.

Park, M. et al. 2011. Swing-up and LQR stabilization of a rotary inverted

pendulum. Artificial Life and Robotics 16(1), pp. 94–97.

Parpinelli, R.S. et al. 2002. Data mining with an ant colony optimization

algorithm. Evolutionary Computation, IEEE Transactions on 6(4), pp. 321–332.

Parsopoulos, K.E. and Vrahatis, M.N. 2002. Particle Swarm Optimization Method

in Multiobjective Problems. In: Proceedings of the 2002 ACM Symposium on

Applied Computing. SAC ’02. New York, NY, USA: ACM, pp. 603–607.

Pham, D. and Liu, X. 1995. Neural Networks for Identification, Prediction and

Control. Springer.

Pham, D.T. et al. 2006. The Bees Algorithm, A Novel Tool for Complex

Optimisation Problems. In: Proceedings of the 2nd International Virtual

Conference on Intelligent Production Machines and Systems (IPROMS 2006).

Oxford: Elsevier, pp. 454–459.

Pham, D.T. and Ghanbarzadeh, A. 2007. Multi-objective optimisation using the

bees algorithm. In: Proceedings of IPROMS 2007 Conference.

Pham, D.T. and Karaboga, D. 1999. Training Elman and Jordan networks for

system identification using genetic algorithms. Artificial Intelligence in

Engineering 13(2), pp. 107–117.

Pham, D.T. and Liu, X. 1996. Training of Elman networks and dynamic system

modelling. International Journal of Systems Science 27(2), pp. 221–226.

Poli, R. et al. 2007. Particle swarm optimization. Swarm intelligence 1(1), pp. 33–

57.

Rahimi, A. et al. 2013. Controller design for rotary inverted pendulum system

using particle swarm optimization algorithm. Electrical and Computer

210

Engineering (CCECE), 2013 26th Annual IEEE Canadian Conference on, pp. 1–

5.

Raj, S. and Kumar, C.S. Q Learning based Reinforcement Learning Approach to

Bipedal Walking Control.

Rangaiah, G.P. and Bonilla-Petriciolet, A. 2013. Multi-Objective Optimization in

Chemical Engineering: Developments and Applications. John Wiley & Sons.

Rubi, J. et al. 2002. Swing-up control problem for a self-erecting double inverted

pendulum. IEE Proceedings - Control Theory and Applications 149(2), pp. 169–

175.

Schrodt, P.A. and Johnson, P.E. 2004. Mathematical Models of Political

Behavior. Cambridge University Press.

Sehgal, S. and Tiwari, S. 2012. LQR control for stabilizing triple link inverted

pendulum system. Power, Control and Embedded Systems (ICPCES), 2012 2nd

International Conference on, pp. 1–5.

Shah-Hosseini, H. 2009a. Optimization with the nature-inspired intelligent water

drops algorithm. Evolutionary computation, pp. 297–320.

Shah-Hosseini, H. 2009b. The intelligent water drops algorithm: a nature-inspired

swarm-based optimization algorithm. International Journal of Bio-Inspired

Computation 1(1), pp. 71–79.

Sharma, A. et al. 2012. Automatic Generation Control of Multi Area Power

System using ANN Controller. International Journal of Computer Science and

Telecommunications 3(3), pp. 55–59.

Smith, S.W. 1999. The Scientist and Engineer’s Guide to Digital Signal

Processing.

Souza, L.C.G. and Bigot, P. 2016. An adaptive method with weight matrix as a

function of the state to design the rotatory flexible system control law.

Mechanical Systems and Signal Processing.

Spong, M.W. 1994. Swing up control of the Acrobot. Robotics and Automation,

1994. Proceedings., 1994 IEEE International Conference on, pp. 2356–2361

vol.3.

Spong, M.W. et al. 2006. Robot modeling and control. Wiley New York.

Spong, M.W. and Block, D.J. 1995. The pendubot: A mechatronic system for

control research and education. In: Decision and Control, 1995., Proceedings of

the 34th IEEE Conference on. IEEE, pp. 555–556.

211

Taherkhorsandi, M. et al. 2015. Optimal Sliding and Decoupled Sliding Mode

Tracking Control by Multi-objective Particle Swarm Optimization and Genetic

Algorithms. In: Advances and Applications in Sliding Mode Control systems.

Springer, pp. 43–78.

Takashiro, S. and Yoshihiko, N. 1997. Analysis and Control of Underactuated

Mechanisms via the Averaging Method. Proc. of 2nd Asian Control Conference 1,

pp. 273–276.

Tedrake, R. 2009. Underactuated Robotics: Learning, Planning, and Control for

Efficient and Agile Machines. Course Notes for MIT 6.832.

Toha, S.F. and Tokhi, M.O. 2008. MLP and Elman recurrent neural network

modelling for the TRMS. Cybernetic Intelligent Systems, 2008. CIS 2008. 7th

IEEE International Conference on, pp. 1–6.

Uicker, J.J. et al. 2003. Theory of Machines and Mechanisms. Oxford University

Press.

Wang, H. et al. 2014. Improved Artificial Bee Colony Algorithm and Its

Application in LQR Controller Optimization. Mathematical Problems in

Engineering 2014.

Wang, Y.Z. 2016. Optimal Swing-Up control of an Inverted Pendulum.

Wysocki, A. and Ławryńczuk, M. 2015. Jordan neural network

for modelling and predictive control of dynamic systems. Methods and Models in

Automation and Robotics (MMAR), 2015 20th International Conference on, pp.

145–150.

Xin, X. and Kaneda, M. 2001. A robust control approach to the swing up control

problem for the Acrobot. Intelligent Robots and Systems, 2001. Proceedings. 2001

IEEE/RSJ International Conference on 3, pp. 1650–1655 vol.3.

Xin, X. and Kaneda, M. 2007a. Analysis of the energy-based swing-up control of

the Acrobot. International Journal of Robust and Nonlinear Control 17(16), pp.

1503–1524.

Xin, X. and Kaneda, M. 2007b. Swing-Up Control for a 3-DOF Gymnastic Robot

With Passive First Joint: Design and Analysis. IEEE Transactions on Robotics

23(6), pp. 1277–1285.

Xin, X. and Yamasaki, T. 2012. Energy-Based Swing-Up Control for a Remotely

Driven Acrobot: Theoretical and Experimental Results. IEEE Transactions on

Control Systems Technology 20(4), pp. 1048–1056.

212

Xiong, X. and Wan, Z. 2010. The simulation of double inverted pendulum control

based on particle swarm optimization LQR algorithm. Software Engineering and

Service Sciences (ICSESS), 2010 IEEE International Conference on, pp. 253–256.

Yamamoto, A. et al. 2015. Behavioral effect of knee joint motion on body’s

center of mass during human quiet standing. Gait & Posture 41(1), pp. 291–294.

Yoshida, K. 1999. Swing-up control of an inverted pendulum by energy-based

methods. In: Proceedings of the American control conference. pp. 4045–4047.

Youssef, M.S. and Aly, A.A. 2013. Artificial Neural Network Turbulent

Modeling for Predicting the Pressure Drop of Nanofluid. International Journal of

Information Technology and Computer Science (IJITCS) 5(11), p. 13.

Zadeh, L.A. 1965. Fuzzy sets. Information and Control 8(3), pp. 338–353.

Zhang, G.P. 2003. Time series forecasting using a hybrid ARIMA and neural

network model. Neurocomputing 50(0), pp. 159–175.

