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Abstract—The second order sequential best rotation (SBR2)
algorithm was originally developed for achieving the strong
decorrelation of convolutively mixed sensor array signals. It was
observed that the algorithm always seems to produce spectrally
majorized output signals, but this property has not previously
been proven. In this work, we have taken a fresh look at the SBR2
algorithm in terms of its potential for optimizing the subband
coding gain. It is demonstrated how every iteration of the SBR2
algorithm must lead to an increase in the subband coding gain
until it comes arbitrarily close to its maximum possible value.
Since the algorithm achieves both strong decorrelation and opti-
mal subband coding, it follows that it must also produce spectral
majorisation. A new quantity γ associated with the coding gain
optimization is introduced, and its monotonic behaviour brings
a new insight to the convergence of the SBR2 algorithm.

Index Terms—SBR2, spectral majorization, subband coding,
coding gain optimization.

I. INTRODUCTION

In broadband multiple-input multiple-output (MIMO) sys-

tems or sensor array processing, given a zero mean data

vector x[t] ∈ Cp×1 measured from p sensors, the space-time

covariance matrix

R[τ ] = E
{
x[t]xH[t− τ ]

}
, t, τ ∈ Z (1)

represents the correlation between pairs of signals sampled

over a time delay τ , where E {·} denotes the expectation oper-

ator, and the superscript {·}H represents Hermitian transpose.

The corresponding cross spectral density (CSD) matrix R(z)
is a polynomial matrix [1] and can be obtained by taking the

z-transform of (1), i.e.

R(z) =

∞∑

τ=−∞

R[τ ]z−τ . (2)

R(z) is para-Hermitian, satisfying R(z) = R̃(z), where the

paraconjugate operator {̃·} denotes Hermitian transpose and

time-reversal of the polynomials, i.e. R̃(z) = RH(z−1). To

strongly decorrelate the convolutively mixed signals, in other

words, to eliminate the cross-correlation terms between the

different entries of x[t] over all time delays, the polynomial

eigenvalue decomposition (PEVD) has been proposed [2]. This

takes the form

H(z)R(z)H̃(z) ≈ D(z) (3)

where D(z) is (ideally) a diagonal matrix obtained by diag-

onalizing R(z) using the similarity transformation H(z) for

which H(z) is a paraunitary matrix, i.e. H(z)H̃(z) = I. The

approximation sign in (3) indicates that it is not possible in

general to compute the PEVD exactly since the paraunitary

matrix H(z) is restricted to polynomial (as opposed to ra-

tional) form. However it has been shown that a very close

approximation can be achieved by letting the polynomial order

of H(z) grow arbitrarily large [3]. The PEVD can be seen

as an extension of the conventional eigenvalue decomposition

(EVD) for para-Hermitian matrices, and several algorithms

have been developed for computing it. These include the

original SBR2 algorithm [2], its improved version multiple

shift version (MS-SBR2) [4] and the familly of sequential

matrix diagonalization (SMD) algorithms [5], [6].

Most of the work reported since then has focused on

improving the performance or reducing the computational cost

of the PEVD algorithms. In this paper, we take a fresh look

at the SBR2 algorithm in terms of its effect on the subband

coding gain. This leads to the much desired proof that the

SBR2 algorithm does indeed converge towards a spectrally

majorised solution. It also suggests a modified form of SBR2

algorithm, explicitly designed to maximize the coding gain,

and gives a new perspective on its convergence.

This paper is organised as follows. A brief review of the

SBR2 algorithm is given in Sec. II. In Sec. III, the principle of

coding gain optimization is discussed in the context of SBR2,

followed by the spectral majorization proof and an alternative

test for convergence of the SBR2 algorithm which arises from

the proof. Finally, simulation results are presented in Sec. IV

and conclusions are drawn in Sec. V.

II. REVIEW OF THE SBR2 ALGORITHM

The SBR2 algorithm [2] was designed to eliminate the

cross-correlation elements for the space-time covariance ma-

trix R[τ ] over a suitable range of delay τ . It comprises

a number of iterative stages which aim to transfer all the

off-diagonal elements in R(z) onto the diagonal. For each

iteration, the algorithm starts by finding the dominant off-

diagonal coefficient rjk[τ ] of R(z). Note that the search is

restricted to the upper triangular region due to the para-

Hermitian property. Thus the location of rjk[τ ], (k > j)
satisfies

{j, k, τ} = arg max
j,k,τ
‖R[τ ]‖∞, (4)



where j, k and τ are the corresponding row, column and time

indices. An elementary delay matrix B(k,τ)(z) is applied first

to shift the entry rjk[τ ] and its conjugate rkj [−τ ] onto the

zero-lag (τ = 0) coefficient matrix R[0] by means of the

transformation

R′(z) = B(k,τ)(z)R(z)B̃
(k,τ)

(z), (5)

where B(k,τ)(z) take the form of

B(k,τ)(z) = diag {1, · · · , 1
︸ ︷︷ ︸

k−1

, z−τ , 1, · · · , 1
︸ ︷︷ ︸

p−k

}. (6)

An elementary rotation matrix Q(j,k)(θ, φ) is then used to

transfer the energy of these off-diagonal elements onto the

diagonal by means of the update formula

R′′(z) = Q(j,k)(θ, φ)R′(z)Q(j,k)H(θ, φ). (7)

Q(j,k)(θ, φ) represents a complex Jacobi rotation which takes

the form of a p × p identity matrix except for the 2 × 2
submatrix Q̂(θ, φ) defined by the intersection of rows j and

k with columns j and k. This is given by

Q̂(θ, φ) =

[
cos θ sin θ eiφ

− sin θ e−iφ cos θ

]

. (8)

Here the parameters θ and φ are chosen to drive the dominant

coefficient to zero. It follows from equations (6)and (7) that

R′′(z) = G(z)R(z)G̃(z) (9)

where the matrix

G(z) = Q(j,k)(θ, φ)B(k,τ)(z). (10)

is termed an elementary paraunitary matrix and equation (9)

constitutes an elementary similarity transformation. The algo-

rithm continues by making the substitution R(z) ← R′′(z)
and repeating the process mentioned above until all the off-

diagonal elements are smaller than a given threshold ǫ which

can be set to a very small value to achieve sufficient accuracy.

Assuming that the algorithm has converged by the N th iter-

ation, the diagonalized para-Hermitian matrix in equation (3)

takes the form

D(z) = diag {d11(z), d22(z), · · · , dpp(z)}, (11)

and the paraunitary matrix generated in the process is given

by

H(z) = GN (z) · · ·G2(z)G1(z). (12)

For further details of the SBR2 algorithm, see [2].

III. FILTER BANK BASED SUBBAND CODING

A. Optimal Coding Gain

The subband coder is a generalization of the transform

coder and has been used for several applications including

data compression [7]. A subband coder aims to maximize the

coding gain, i.e. to minimize the mean square reconstruction

error due to subband quantization. Kirac and Vaidyanathan

[7], [8] derived the necessary and sufficient conditions for

maximizing the coding gain:

(1) strong (or total) decorrelation – this means that the

CSD matrix has been diagonalized as in (11), or equivalently

the subband signals v[t] =
∑T

τ=0 H[τ ]x[t − τ ] are totally

uncorrelated, i.e. E{vk[t]v
∗

l [t − τ ]} = 0, k 6= l, ∀ t, τ , Here

{·}∗ denotes the complex conjugate operator;

(2) spectral majorization – the power spectral densities

(PSDs) dll(e
jΩ) = dll(z)|z=ejΩ , l = 1, 2, · · · , p satisfy

d11(e
jΩ) ≥ d22(e

jΩ) ≥ · · · ≥ dpp(e
jΩ), ∀Ω. In other words,

the PSD matrix Rxx(e
jΩ) of x[t] is diagonalized at every

angular frequency Ω such that the eigenvalues of Rxx(e
jΩ)

are arranged in descending order.

Denoting the CSD matrix of x[t] by Rxx(z), the coding

gain, whose maximization requires diagonalization and spec-

tral majorization, is measured as the ratio of the arithmetic and

geometric means of the channel variances. For the ith iteration

and the lth channel, this variance is given by r
(i)
ll [0], so the

coding gain is defined as [5]

G(i) =

1
p

∑p

l=1 r
(i)
ll [0]

(
∏p

l=1 r
(i)
ll [0]

) 1

p

. (13)

Note that the trace

tr
{

R(i)[0]
}

=

p
∑

l=1

r
(i)
ll [0] = tr{R[0]} = tr{D[0]} (14)

is invariant under paraunitary transformations and so maximiz-

ing the coding gain is equivalent to minimizing the product of

variances in the denominator of equation (13).

B. Spectral Majorization

The SBR2 algorithm has been adopted successfully in

the design of the paraunitary (orthonormal) filter banks for

subband coding [9], [10]. In effect it has demonstrated the

capability of a principle component filter bank (PCFB) by

achieving the optimal coding gain. However, there is no proof

in the existing literature that the SBR2 algorithm will always

produce the necessary spectral majorization. In the rest of this

section a proof of this important property will be derived.

Theorem (Spectral Majorization of the SBR2 Algorithm): If

strong decorrelation is achieved using the SBR2 algorithm, the

resulting PSDs must also be spectrally majorised.

Proof: As expressed in (9), the polynomial matrices R(z)
and R′′(z) are related by a generalized similarity transforma-

tion. Let us now introduce the parameter

γ ,

p
∏

l=1

rll[0] (15)

where rll[0], l = 1, 2, · · · , p represent the diagonal element

of R[0]. Following the elementary delay step, the SBR2

algorithm employs a Jacobi rotation as shown in (8) to transfer

the energy of the off-diagonal element r′jk[0] = rjk[τ ] and

its conjugate r′kj [0] = rkj [−τ ] onto the diagonal of R[0] by

choosing the rotation parameters such that
[

c seiφ

−se−iφ c

] [
r′jj [0] r′jk[0]

r′kj [0] r′kk[0]

] [
c −seiφ

se−iφ c

]



=

[
r′′jj [0] 0
0 r′′kk[0]

]

, (16)

where c and s denote cos θ and sin θ respectively. Since the

transformations are unitary it follows that

det

{[
r′jj [0] r′jk[0]

r′kj [0] r′kk[0]

]}

= det

{[
r′′jj [0] 0
0 r′′kk[0]

]}

, (17)

i.e. r′′jj [0]r
′′

kk[0] = r′jj [0]r
′

kk[0]− |r
′

jk[0]|
2

= rjj [0]rkk[0]− |rjk[τ ]|
2 (18)

where we have taken account of the fact that r′jj [0] = rjj [0],
r′kk[0] = rkk[0] and r′jk[0] = rjk[τ ]. Since rjk[τ ] 6= 0, it

follows that

r′′jj [0]r
′′

kk[0] < rjj [0]rkk[0]. (19)

and, since only the j th and kth diagonal elements are altered

during the iteration, we have

γ′′ ,

p
∏

l=1

r′′ll[0] < γ . (20)

Clearly the denominator in (13) which is directly related to

γ(i), is monotonically reduced at each iteration in SBR2, i.e.

γ(i) < γ(i−1), until no further reduction is possible (|rjk[τ ]| <
ǫ). It follows that the coding gain G(i) increases monotonically

to attain its maximum value G(N).

It was clearly demonstrated by Vaidyanathan [7] that the

optimum coding gain (which requires a PCFB) can be achieved

if and only if strong decorrelation and spectral majorization

have been obtained. Thus it follows that the SBR2 algorithm,

which was explicitly designed to achieve strong decorrelation,

must not only achieve that objective, but also produce spectral

majorization. �

C. Modified SBR2 Algorithm

Instead of looking for the dominant off-diagonal element

|rjk [τ ]|, it is now possible to consider the coding gain G(i) as a

convergence indicator for the SBR2 algorithm. This gives us a

useful new insight whereby the SBR2 algorithm converges uni-

formly due to the monotonic behaviour of γ(i) by contrast with

the original convergence factor |rjk[τ ]| whose value does not

reduced monotonically. An alternative approach therefore, is to

monitor the gradient of the coding gain ρ(i) = G(i) −G(i−1).

As the value of ρ(i) is not guaranteed to reduce monotonically,

the average value ρ̂ of the gradients over a suitable range

W ∈ Z is calculated, i.e. ρ̂ = 1
W

∑i

k=i−W+1 ρ
(k). Then the

iterative process stops when the value of ρ̂ is sufficiently small.

The modified SBR2 algorithm is summarized in Tab. I.

IV. SIMULATIONS AND RESULTS

In order to investigate the SBR2 algorithm in terms of the

coding gain optimization, we have chosen one of the examples

which was used to test the algorithm in the original SBR2

paper [2] , i.e. a convolutively mixed signal x[t] was generated

from a 2 × 3 MIMO channel model with the mixing process

represented by a 3× 2 polynomial matrix A(z) whose entries

TABLE I
THE MODIFIED SBR2 ALGORITHM

1. Input p× p para-Hermitian matrix R(z).
2. Specify maximum number of iterations, maxiter,

convergence parameter, ǫ and trim factor µ.
3. Initialization: iter ← 0, ρ̂← 1 + ǫ and H(z)← Ip.
4. while iter < maxiter && ρ̂ > ǫ
5. locate the dominant off-diagonal element rjk[τ ].
6. set g = |rjk[τ ]|.
7. if iter = 0 && g = 0
8. break;
9. else

10. set R′(z) = B(k,τ)(z)R(z)B̃
(k,τ)

(z);

11. set H′(z) = B(k,τ)(z)H(z);
12. compute rotation parameters (θ, φ);

13. update R(z) = Q(j,k)(θ, φ)R′(z)Q(j,k)H(θ, φ);

14. update H(z) = Q(j,k)(θ, φ)H′(z);
15. iter ← iter + 1;
16. trim R(z) and H(z) based on trim factor µ;

17. compute G(iter) and ρ(iter) according to (13);
18. assign value to W ;
19. if iter ≥W

20. set ρ̂ = 1
W

∑iter

k=iter−W+1 ρ
(k);

21. end
22. end
23. end

comprised order-5 FIR filters, and Gaussian random noise was

added to each sensor output with a signal-to-noise ratio (SNR)

of 5.3 dB.

The CSD matrix R(z) of the received signals x[t] is

plotted in Fig. 1. After applying the modified SBR2 algorithm

to diagonalize this matrix with ǫ = 10−5 representing the

threshold of the average gradient ρ̂, W = 10, and the trim

factor µ = 10−4, the algorithm converged in 110 iterations

to a point where the average gradient ρ̂ = 0.96 × 10−5.

Fig. 2 shows that the product of the subband variances γ(i) is

monotonically reduced as the iteration goes. On the contrary,

the coding gain G(i) is monotonically increasing as shown in

Fig. 3. As opposed to the original SBR2 algorithm, Fig. 4

shows the behaviour of the convergence factor g = |rjk[τ ]|
for which it converged at g = 0.0224. Finally the diagonalized

CSD matrix is plotted in Fig. 5.

V. CONCLUSION

In this paper, we have investigated the SBR2 algorithm

in terms of optimizing the subband coding gain, leading to

a first proof that it must also achieve spectral majorization.

In addition, the monotonically increasing behaviour of the

coding gain has been exploited to obtain a more reliable test

of convergence for the algorithm.
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