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ARTICLE

Severe neurodegenerative disease in brothers with
homozygous mutation in POLR1A
Bülent Kara1,11, Çiğdem Köroğlu2,11, Karita Peltonen3, Ruchama C Steinberg4, Hülya Maraş Genç1,
Maarit Hölttä-Vuori5,6, Ayşe Güven2, Kristiina Kanerva5,6, Tuğba Kotil7, Seyhun Solakoğlu7, You Zhou6,8,
Vesa M Olkkonen5,6, Elina Ikonen5,6, Marikki Laiho3,9,10 and Aslıhan Tolun*,2

In two brothers born to consanguineous parents, we identified an unusual neurological disease that manifested with ataxia,

psychomotor retardation, cerebellar and cerebral atrophy, and leukodystrophy. Via linkage analysis and exome sequencing, we

identified homozygous c.2801C4T (p.(Ser934Leu)) in POLR1A (encoding RPA194, largest subunit of RNA polymerase I) and

c.511C4T (p.(Arg171Trp)) in OSBPL11 (encoding oxysterol-binding protein-like protein 11). Although in silico analysis,

histopathologic evidence and functional verification indicated that both variants were deleterious, segregation with the patient

phenotype established that the POLR1A defect underlies the disease, as a clinically unaffected sister also was homozygous for

the OSBPL11 variant. Decreased nucleolar RPA194 was observed in the skin fibroblasts of only the affected brothers, whereas

intracellular cholesterol accumulation was observed in the skin biopsies of the patients and the sister homozygous for the

OSBPL11 variant. Our findings provide the first report showing a complex leukodystrophy associated with POLR1A. Variants in

three other RNA polymerase subunits, POLR1C, POLR3A and POLR3B, are known to cause recessive leukodystrophy similar to

the disease afflicting the present family but with a later onset. Of those, POLR1C is also implicated in a mandibulofacial

dysostosis syndrome without leukodystrophy as POLR1A is. This syndrome is absent in the family we present.

European Journal of Human Genetics advance online publication, 4 January 2017; doi:10.1038/ejhg.2016.183

INTRODUCTION

Three mammalian polymerases, RNA polymerases (Pol) I, II and III,
transcribe the major classes of RNAs: the ribosomal, messenger and
transfer RNAs. Of these, Pol I transcribes the 47S precursor rRNA that
is processed to the mature 28S, 18S and 5.8S rRNAs. Pol I
transcription is the critical rate-limiting step in ribosome biogenesis.
The transcription is compartmentalized to the nucleolus and attunes
to the critical needs of protein synthesis during cell growth, division
and differentiation.1–3 Defects in three subunits of Pol III, namely,
POLR1C (shared by Pol I), POLR3A and POLR3B, have been
associated with recessive hypomyelinating leukodystrophy.4–6 Defects
in Pol I complex subunits POLR1A, POLR1C and POLR1D cause
craniofacial anomalies consistent with perturbed ribosome
biogenesis.7,8

Leukodystrophies are heterogeneous disorders that primarily affect
the white matter and are associated with anomalies of glial cells and
myelin sheath.9 They are classified as hypomyelinating and demyeli-
nating according to MRI results. The two brothers born to con-
sanguineous Turkish parents we present here have cerebellar ataxia
associated with spasticity, intellectual disability, cerebellar and cerebral
atrophy, and demyelinating leukodystrophy. Candidate loci were
found by linkage analysis, and homozygous variants in POLR1A and
OSBPL11 were identified by exome sequencing. An unaffected sister

was homozygous for the OSBPL11 variant but did not carry the
POLR1A variant. The POLR1A defect was verified to be pathogenic by
molecular modelling studies and functional assays. These findings
constitute the first report showing a leukodystrophy syndrome
associated with POLR1A, encoding RPA194, catalytic subunit of
RNA polymerase I.

SUBJECTS AND METHODS

Family
The parents were half-first cousins once removed, with two affected sons and
two healthy daughters (Figure 1). The study was conducted in accordance with
the Declaration of Helsinki and national guidelines. Informed consent was
obtained from/for participants in accordance with the regulations of the
Boğaziçi University Institutional Review Board for Research with Human
Participants that approved the study protocol.

Genetic analyses
Single-nucleotide polymorphism (SNP) genome scan was performed for the
siblings, and multipoint LOD scores were calculated assuming autosomal
recessive inheritance, initially with full penetrance and later with 70%
penetrance. All loci 4200 kb and yielding LOD scores of 42 were investigated
for homozygosity possibly identical by descent. In addition, regions of
homozygosity shared by the brothers only were searched using Homozygosity
Mapper. Exome of brother 1 was sequenced and data were evaluated as
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described in Supplementary Methods. Hg19 map was used throughout

the study.

RPA194 homologue structure, domains, and tertiary structure
prediction
The full-length human RPA194 (O95602) and S. cerevisiae A190 (P10964)

sequences were identified and divided into three sections, based on their

predicted domain architecture, for submission to tertiary structure predictions.

Yeast A190 was used as a control for the accuracy of the tertiary structure

prediction programs as compared with the solved structure.10,11 Domain

architecture predictions were made via Pfam, PROSITE, SMART and the

CDD. The residue of interest, Ser934, locates to the middle section of RPA194

that we will refer to as RPA194_Segment2. The sequences of RPA194_Seg-

ment2 and A190_Segment2 were submitted for tertiary structure prediction via

Phyre2.12 All tertiary structure predictions were subjected to evaluation using

ProSAweb and Verify3D.13,14 Models were then ranked by these results, and the

best model for RPA194_Segment2 was selected for further analysis. Solved

structures of yeast A190 were submitted for model evaluation as control.

PyMOL was used to visualize the best model and the solved structure 4c2m.

Using PyMOL, the human RPA194_Segment2 was superimposed with the

solved structures of yeast A190. Ser934 was then mutated to Leu using the

PyMOL mutagenesis tool. PyMOL distance measurement tool was used to

assess possible interactions between RPA194 and RPA135 (A127 in yeast) based
on the prediction of interactions described in 4c2m.

Cell culture
Fibroblast cultures were established from skin biopsies of the father and sons.
Control fibroblast cell lines AG08498 and GM0323 were obtained from Coriell
Institute for Medical Research (Camden, NJ, USA), and F92-99 has been
described previously.15 Fibroblast cell cultures were maintained in Eagle’s
minimum essential medium supplemented with 15% FBS, 2 mM L-glutamine,
100 IU/ml penicillin and 100 μg/ml streptomycin.

Immunofluorescence microscopy and image analysis
Fibroblasts grown on coverslips were fixed in 3.5% PFA, permeabilized with
0.5% NP-40 and blocked in 3% BSA. The primary antibodies used were
RPA194 (C-1, Santa Cruz Biotechnology, Santa Cruz, CA, USA) and FBL
(ab582, Abcam, Cambridge, MA, USA). Secondary Alexa488 and Alexa594-
conjugated anti-mouse and anti-rabbit antibodies were from Invitrogen
(Carlsbad, CA, USA). DNA was stained using DAPI. Images were captured
using Leica DM6000B fluorescence wide-field microscope equipped with
Hamamatsu Orca-Flash sCMOS camera, 20× objective (20× /0.7 HC PL
APO CS, Leica, Wetzlar, Germany) and LasX software (Leica). Image analysis
was conducted using FrIDA software as described previously.16 An average of
100 cells were quantified from two fields for each sample.

Figure 1 The pedigree and cranial MR images. DNA samples subjected to SNP genotyping are indicated by * on the pedigree, and those for variant testing
are indicated by +. POLR1A and OSBPL11 variant genotypes are given. MR images of the brothers revealed enlarged ventricles, cortical sulci and
subarachnoid spaces indicative of cerebral atrophy, diffuse hyperintense involvement of periventricular white matter extending to subcortical white matter,
atrophy of the cerebellar hemispheres and the vermis, and thin corpus callosum. Brother 2 has additionally a subarachnoid cyst in the left posterior fossa.
The sisters have normal MRI findings. Parents have normal white matter and very mild cerebral atrophy. (a) Axial T2 weighted. (b) Coronal T2 weighted.
(c) Sagittal T1 weighted.
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Filipin staining of skin biopsy samples
Skin samples were obtained from the two patients, sister 2 (202 in Figure 1)
and the parents via punch biopsy, and 5-μm thick cryosections were fixed in
2.5% glutaraldehyde and 2% paraformaldehyde (PFA) in phosphate-buffered
saline (PBS) solution. Skin cryosections provided by the Medical Faculty of
Istanbul Pathology Department were used as controls. Sections were stained for
2 h at room temperature in a mixture that contained 1 ml of fetal bovine serum
(FBS), 9 ml of PBS and 20 μl of filipin (Sigma, St Louis, MO, USA F9765)
solution (5 mg/ml in DMSO). Slides washed in PBS were viewed under a
fluorescent microscope (Leitz Wetzlar) using ultraviolet light with excitation of
340–380 nm and emission of 385–470 nm to observe free (unesterified)
cholesterol. Photographs were obtained using 4 s exposures at a magnification
of × 320.

RESULTS

Clinical findings
According to their parents, the affected brothers had uneventful
prenatal and natal histories and were born at term. They were
small for gestational age and with relative macrocephaly. They had
psychomotor retardation. For brother 1 (203 in Figure 1) ataxic
gait was evident at age 5 years, and he became non-ambulatory at
age 9.5 years. Brother 2 (204) never achieved head control, sat
unsupported, walked or spoke. He began having seizures at the age
of 6 years.
The brothers were referred together to the medical school with

complaints of abnormal gait/inability to walk and intellectual
disability. At presentation, they had relative macrocephaly and
normal weight, but younger brother 2 was short (o3rd p). The
clinical findings were similar in both and are compiled in Table 1.
The brothers had intellectual disability but no autistic features.
Physical examination showed truncal ataxia, head titubation and
spasticity. Muscle tonus was increased, especially in the lower
extremities. Deep tendon reflexes were hyperactive. Achilles clonus
and Babinski sign were positive. Achilles tendons were tight, and
bilateral equine deformity was evident. Horizontal and vertical eye
movements were normal at the initial visit but became limited in
the 5-year follow-up, more prominent for brother 2. The meta-
carpophalangeal joints, elbows and distal phalanges of the fingers
were hyperextensible. In addition, brother 1 had developed thenar
atrophy of the hands, flexion deformity of the left hand and
bilateral pes cavus deformity. Brother 2 could not control his head,
walk or speak but could sit with support. Whole blood and urine
analyses were normal in both brothers. Both had bilateral optic
atrophy, but hearing was normal. Motor nerve conduction studies
were normal for brother 2, but in brother 1 distal latencies were
prolonged in the peroneal and tibial nerves, with normal com-
pound muscle action potential amplitudes. In both brothers,
sensory nerve conduction studies were normal. Cranial MRI
indicated cerebral atrophy, diffuse white matter hypointensity at
T1-weighted images and hyperintensity at T2-weighted images
compatible with demyelinating leukodystrophy, severe atrophy of
the inferior cerebellar vermis and moderate atrophy of both the
superior cerebellar vermis and cerebellar hemispheres, mega
cisterna magna and a thin corpus callosum (Figure 1). Brother 2
had in addition a posterior fossa arachnoid cyst on the left side,
without any signs of pressure; thus, the cyst was considered an
incidental finding. 3D cranial CT scans performed recently did not
show any sign of mandibulofacial dysostosis (Supplementary
Figure 1). The clinical findings in full are in Supplementary
Information. Neurologic examination was normal in the sisters
and parents, but cranial MRI results showed very mild cerebral
atrophy in the parents (Figure 1).

Genetic findings
In linkage analysis assuming either full or 70% penetrance not to miss
any possible candidate variant with reduced penetrance, the maximal
LOD scores were 2.65 and 2.05, respectively, both lower than the
critical value 3, because of small family size (Supplementary Figure 2).
No additional candidate locus was found by homozygosity mapping.
At each locus haplotype segregation analysis was applied to investigate
whether the homozygosity that the patients shared was possibly due to
identity by descent. A maximal LOD score of 0.3 excluded X-linked
inheritance.
As no clinical phenotype similar to that in our patients was reported

on the OMIM Phenotype Map (NCBI Map Viewer) at the candidate
loci (Supplementary Table 1), we proceeded with exome sequencing
(Supplementary Methods). Those loci together harboured two novel
or rare variants that were predicted to affect protein structure
(Supplementary Table 1; see Supplementary Figure 3 for Sanger
validation). POLR1A NM_015425.3 c.2801C4T (p.(Ser934Leu)) was
novel, whereas dbSNP138 listed OSBPL11 NM_022776.4 c.511C4T
(p.(Arg171Trp)) as rs370760880. The variants were not found in the
tested 398 or 278 Turkish control samples, respectively. OSBPL11
variant was recently found in a new individual in the Turkish Exome
Database (Bayram Yüksel, personal communication), raising the
population frequency to ∼ 0.0005, and is reported in ExAC database
in only Europeans and South Asians, with a frequency of 0.00004.
Three prediction algorithms were utilized to investigate the effects

of the variants on protein function. Mutation Taster predicted both
variants as damaging.17 PolyPhen-2 predicted OSBPL11 c.511C4T
(p.(Arg171Trp)) as damaging and POLR1A c.2801C4T (p.(Ser934-
Leu)) as benign; in contrast, SIFT predicted the former variant as
tolerated and the latter as damaging.18,19 In both variants the altered
residues were conserved across species (Supplementary Figure 4).
POLR1A c.2801C4T (p.(Ser934Leu)) results in the substitution of
polar serine by nonpolar leucine at position 934 in RPA194. The
residue is within a region of 104 amino acids that are conserved in full
among all mammals. In addition, the region adjacent to the residue
is highly conserved even in lower eukaryotes. OSBPL11 c.511C4T
(p.(Arg171Trp)) leads to the substitution of positively charged,
hydrophilic arginine with nonpolar, hydrophobic tryptophan at
position 171 in the 747 amino-acid protein. Arg171 is located in a
stretch of 116 amino acids that are fully conserved in mammals
and highly conserved among vertebrates. The substitution could
limit the protein’s function because of a change in the three-
dimensional structure, the loss of a hydrophilic functional residue
and/or the lack of phosphorylation at the adjacent serine residue.20

Together, these findings suggest that both variants are potentially
deleterious. Of note, the affected brothers were homozygous for
both variants, whereas sister 2 (202) was homozygous for the
OSBPL11 variant but did not carry the POLR1A variant (Figure 1).
Thus, POLR1A c.2801C4T (p.(Ser934Leu)) is identified as the
cause of the severe neurologic phenotype in the two brothers.
Whether the deleterious OSBPL11 variant contributes to the
complex clinical manifestations in the family can be discerned
when new families with OSBPL11 mutations are detected.

Dissection of the role of POLR1A p.Ser934Leu
Predicted effects on protein structure. POLR1A encodes RPA194, the
largest, catalytic subunit of the Pol I core complex. Two high-
resolution crystal structures have provided detailed information
on the interactions and functional roles of the subunits.10,11

RPA194 interfaces with RPA135 (encoded by POLR1B), forming
the composite active site of the enzyme. These subunits also form
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the horseshoe-shaped framework conserved among Pols I, II and
III. Based on the Pol I crystal structure in yeast, the region around
the variant forms the enzyme funnel and one of the interaction
faces with RPA135.10,11

To assess the potential impact of the variant on the protein–
protein (RPA194-RPA135) interaction, we first superpositioned
human RPA194 on the yeast A190 crystal structure11 and used
several molecular modelling tools for the prediction of the folding
of the human RPA194, and conducted several tertiary structure
predictions. We modelled RPA194_Segment2 containing residues
616–1287 that consists of the pore domain, the funnel domain in

which the residue of interest lies, the cleft domains containing both
the trigger loop and the bridge helix and the foot domain.
Superimposition of RPA194_Segment2 with 4c2m solved structure
of yeast A190 produced a RMSD score of 0.744, indicating that
there is a high degree of similarity in the folding and secondary
structure of both the structured and unstructured regions in the
RPA194 interaction domain with RPA135 (Figure 2a). Based on
the sequence alignment of yeast A190 to human RPA194, amino
acids Ser931, Lys933 and Pro936 in the vicinity of the altered
residue Ser934Leu are predicted to interact with A127 (the yeast
RPA135 subunit; Figure 2b). In this model, Ser934 is located in the

Table 1 Characteristics of the family members

Features Brother 1 (203) Brother 2 (204) Sister 1 (201) Sister 2 (202) Father (101) Mother (102)

Age (years) 11 6.5 24 19 45 45

Postnatal history
Low birth weight + + − − − −

Hypoglycaemia in newborn − + − − − −

Relative macrocephaly + + − − − −

Neurologic development
Head control + − + + + +

Sitting + − + + + +

Walking − − + + + +

Speech Single word − + + + +

Mental retardation Severe Severe − − − −

Normal development − − + + + +

Developmental regression + − − − − −

Seizures − + − − − −

Physical examination
Truncal ataxia + + − − − −

Head titubation + + − − − −

Pyramidal signs + + − − − −

Joint hyperextensibility + + − − − −

Pes cavus + − − − − −

Equinism + − − − − −

Skin findings − − − − − −

Short stature − + − − − −

Eye examination
Bilateral optic atrophy + + NA NA NA NA

Gaze palsy + + − − − −

Nerve conduction studies
Motor nerves Prolonged distal latencies; normal CMAP N NA NA NA NA

Sensory nerves N N NA NA NA NA

Cranial MRI findings
Cerebral atrophy + + − − + −

White matter involvement + + − − − −

Cerebellar atrophy + + − − + +

Posterior fossa arachnoid cyst − + − − − −

Thin corpus callosum + + − − − −

Thick corpus callosum − − + + + +

3D cranial CT N N NA NA NA NA

Skin biopsy
Cholesterol storage + + + + NA + + + +

Abbreviations: N, normal; NA, not analysed.
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intramolecular side of RPA194. Two residues were identified to be
within range to interact with the residue at 934. Pro522 in A127
forms a nonbonding contact with Ser934, and this interaction does
not change upon substitution with a leucine (Figure 2c). The
Ser934Leu substitution brings the leucine methyl groups in close
vicinity (1.6 Å) of RPA194 Ala947, raising the potential for its
intramolecular interaction (Figure 2d).

Decreased amount of nucleolar RPA194 in patient cells. We used
fibroblasts isolated from the two affected brothers, the father and
unrelated controls to assess the subcellular distribution of RPA194.
The cells were stained for RPA194 and fibrillarin (FBL), a nucleolar
protein that modifies the newly synthesized rRNA, and conducted
quantitative image analysis for the staining intensities of the proteins.
Nucleolar RPA194 was found to be markedly reduced in both patients
compared with the controls and the father. Nucleolar FBL was also
decreased in brother 2 (Figure 3). These results suggested that the
substitution compromises the ability of RPA194 to engage in its
nucleolar activities.

Putative role of OSBPL11 c.511C4T (p.(Arg171Trp)) in increased
cholesterol deposition
OSBPL11 was suggested to have a role an intracellular lipid
transport,21 and OSBPL proteins may be cooperating with the
NPC1 protein.22 We therefore hypothesized that an amino acid-
altering variant in OSBPL11 might result in a cellular pathology
similar to that in Niemann–Pick disease type C (NPC) disease and

could increase the severity of the disease in the family under study.
We stained dermal tissue specimens with the fluorescent dye filipin
that binds free cholesterol. This histopathologic analysis revealed
bright fluorescent droplets in the cytoplasm of the cells, predomi-
nantly in dermal fibroblasts, indicative of free cholesterol accu-
mulation in affected brothers and sister 2 homozygous for
OSBPL11 c.511C4T (p.(Arg171Trp)), and mildly in heterozygous
parents (Figure 4). Such fluorescently stained inclusions were
absent in the control preparations. However, no filipin-stainable
cholesterol deposition was observed in fibroblasts cultured
from dermal biopsies of the brothers (Supplementary Figure 5).
This suggests that the cholesterol accumulation phenotype is
distinct from the cholesterol accumulation caused by loss of
NPC1 function. A putative functional impact of the OSBPL11
c.511C4T variant was further pursued in RNA interference/
phenotypic rescue experiments (Supplementary Figure 6,
Supplementary Methods and Supplementary Data). The results
demonstrated that a cholesterol deposition resulted specifically
from OSBPL11 silencing and transfection of OSBPL11-silenced
cells with the c.511C4T mutant 'but not with the wildtype' failed
to rescue the cholesterol deposition, suggesting that the variant
protein is functionally defective and unable to facilitate normal
cholesterol trafficking.

DISCUSSION

We showed by functional studies that the homozygous POLR1A
variant we identified in the two brothers underlies the new

Figure 2 Molecular modelling of human RPA194 and its Ser934Leu variant. (a) Modelling of RPA194 based on yeast A190. The ribbon structures of
RPA194 (light blue) and A190 (dark blue) and the conserved Ser934 and Thr965 residues (both green) are shown. (b) The interface between RPA194 (light
blue) and A127 (grey) is shown and residues with predicted intermolecular interactions based on the crystal structure are shown in green and yellow.
(c, d) RPA194 (light blue) interface with A127 (grey) is shown alternatively with wild-type Ser934 (green, c) and mutant Leu934 (red, d). RPA194 Ala947
(orange) and A127 Pro522 (purple) predicted to interact with residue at 934 are shown. Note the shortened distance (1.6 Å) between the mutant Leu934
and RPA194 Ala947.
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demyelinating leukodystrophy associated with atrophy of the
cerebellum, cerebrum and corpus callosum. We thus define a
novel complex leukodystrophy and a new phenotype for POLR1A
defect. Recently, heterozygous variants in the gene were shown to
cause dominant acrofacial dysostosis type Cincinnati;7 however, we
found that the zygomatic, maxillary and mandibular bones of the
boys were normal. Neither the two sisters nor the parents have any
neurological signs, but the parents display very mild cerebral
atrophy.
With the recent advances in genotyping arrays and exome sequen-

cing, identification of novel monogenic disease genes in small families
has become feasible. Although the currently most commonly applied
strategy for this task is exome sequencing of all siblings, we did not use
this approach, because we wanted to detect all loci possibly harbouring
fully penetrant candidate variants as well as those with low penetrance,
via linkage analysis. By evaluating exome data of one affected sib at
candidate disease loci followed by Sanger sequencing validation of
candidate variants, we found two missense homozygous candidate
variants, namely, POLR1A c.2801C4T and OSBPL11 c.511C4T, in
the two affected siblings of the study family. In functional analysis we
focussed on both variants and showed that both are possibly
deleterious. However, only the former segregated with the severe
phenotype. Neither of these genes has previously been associated with
a neurological disease.

Our data, molecular modelling and prediction models suggested
that the POLR1A Ser934Leu change leads to an alteration in
the conformation of the encoded RPA194 protein. The modelling
showed that Ser934 was located in an unstructured flexible
domain that interacts with A127. This interaction is mediated by
amino acids in the immediate vicinity of Ser934, namely,
Ser931, Lys933 and Pro936, that protrude into the RPA135
domain. However, the modelling suggested that the Leu934
substitution may lead to a change in the intramolecular association
of RPA194, raising the potential that this would decrease
the flexibility of the linker domain interacting with RPA135.
Subsequently, this could pose a challenge in the stability of the
RPA194–RPA135 interaction and localization, compromising the
Pol I transcription activity.
We further observed that the amount of RPA194 in the

nucleolus was decreased in skin fibroblasts derived from the
patients. This is consistent with the modelling studies predicting
that the protein–protein interactions of mutant RPA194 may be
compromised. We speculate that this defect becomes a vulnerability
during times of development and growth when highly active Pol I
transcription is critically needed. POLR1C and POLR1D have been
implicated in recessive and dominant Treacher Collins syndrome,
respectively.8 This rare disease manifests at birth with mandibulofacial
dysostosis but normal intelligence. Recently, three heterozygous variants

Figure 3 Expression of RPA194 in patient and control fibroblasts. (a) Immunostaining of RPA194 and fibrillarin (FBL) in the patients, father and control
(AG for AG08498 and F9 for F92-99) fibroblasts. Cells were fixed and stained for RPA194 (green) and FBL (red), and counterstained for DNA (DAPI).
Merged images are shown to the right. Scale bar, 20 μm. (b) Image quantification. Image analysis was conducted using FrIDA image analysis software for the
expression of RPA194 and FBL and normalized to DNA. The specimens were then compared with the average of the control fibroblasts.
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in POLR1A, namely, c.1777G4C (p.(Glu593Gln)), c.3649delC
(p.(Gln1217Argfs*)) and c.3895G4T (p.(Val1299Phe)), were found
associated with acrofacial dysostosis type Cincinnati.7 The deduced
changes in the protein would locate to the RPA194 activation domain,
trigger loop and the jaw and cause severe, moderate and mild
dysostosis, respectively. Hypomorphic polr1a mutations introduced
to zebrafish caused developmental defects including small, misshapen
heads, microphthalmia, cerebral hypoplasia, jaw agenesis and changes
in pigmentation and morphology of the heart. These findings and our
results here are suggestive that specific POLR1A variants potentially

cause broad multiorgan developmental defects, including the brain
and cerebellum. Importantly, the clinical phenotypes of our patients
show striking resemblance, except for the earlier onset, to Pol III-
related leukodystrophies resulting from variants in POLR1C, POLR3A
or POLR3B.4–6 Given that Pol III transcribes several noncoding RNAs,
most notably tRNAs but also ribosomal 5S RNAs and other small
nuclear, cytoplasmic and mitochondrial RNAs, the present findings
suggest that defects in noncoding RNA synthesis have the potential to
compromise development and cause complex cognitive and motor
disease syndromes. Considering also our findings, variants in only

Figure 4 Filipin staining of dermal tissue from the brothers, the sister homozygous for the OSBPL11 c.511C4T (p.(Arg171Trp)) variant (202), the parents
and a control sample. The samples of the sibs have free cholesterol-related fluorescent staining in granular pattern (arrows) in dermal fibroblasts interspersed
among collagen bundles and ground substance, whereas staining in parents’ tissues was less prominent. Granular staining of cholesterol was not observed in
the control dermal tissue.
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POLR1A and POLR1C are so far known to cause either leukodystro-
phy or mandibulofacial dysostosis. As the presented family is the first
one with POLR1A-associated leukodystrophy, detection of new
families with POLR1A mutations will clarify the severity of the
phenotype.
Genetic defects of lipid metabolism often associate with neurode-

generative diseases. For an example, NPC is a rare, autosomal recessive
lysosomal cholesterol storage disease that causes progressive
neurodegeneration and visceral involvement with variable clinical
manifestations. The NPC1 and NCP2 proteins mutated in this
disease mediate the egress of cholesterol from endo-lysosomal
compartments.23 It has been proposed that NPC1 links to cytoplasmic
sterol transport by members of the oxysterol-binding protein (OSBP)
and its homologues (OSBP-like proteins (OSBPL))22 that constitute a
large family of cytoplasmic lipid binding/transport proteins.24,25

OSBPL11 was found to localize at the Golgi–late endosome interface,
and the OSBPL11–OSBPL9 dimer was suggested to act as an
intracellular lipid sensor or transporter.21,26 Moreover, OSBPL11 was
reported to function in adipogenesis,21,27 and the gene has been
associated with cardiovascular risk factors in obesity.28 NPC1 deficit
causes intracellular lipid accumulation and leukodystrophy,29,30 and
we propose that the moderate accumulation of free cholesterol in the
dermal biopsies of the patients and of sister 2, all homozygous for the
OSBPL11 variant, and the mild accumulation in heterozygous parents
could be because of OSBPL11 deficit. Moreover, knockdown of
OSBPL11 in A431 cells resulted in an increase of filipin-stainable free
cholesterol, an effect reversed by overexpression of wild-type OSBPL11
but not the c.511C4T variant. In some other diseases that develop as
a result of intracellular lipid deposition, such as certain variants of
neuronal ceroid lipofuscinoses (NCLs), similar cerebellar ataxia and
diffuse demyelinating leukodystrophy as in the present patients are
observed. Thus, in the light of all the available evidence, we find it
possible that OSBPL11 c.511C4T may act as a modifier of the patient
phenotype.
In conclusion, the present findings expand the spectrum of

inherited human leukodystrophies by reporting association of
a homozygous POLR1A variant with such a disease phenotype.
Our genetic, histopathologic, in silico and experimental cell
biological analyses together suggest POLR1A as the gene respon-
sible for the novel disease in the two, severely affected male
patients. We expect that our findings will facilitate the detection of
new patients with POLR1A mutations. In particular, families
afflicted with initial symptoms of ataxia, spasticity, psychomotor
retardation and leukodystrophy could benefit from testing for
mutations in this gene. Our findings also demonstrate the
challenge in gene identification in a novel disease when variants
damaging to protein function in different genes could be exerting
their effects additively or epistatic.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

We thank the family members for their cooperation and TÜBITAK
Advanced Genomics and Bioinformatics Group (IGBAM) for sharing
with us the Turkish Exome Database. This work was supported by the
Boğaziçi University Research Fund (Grant 7695 to AT), Academy of
Finland (Grants 263841 and 272130 to EI; 285223 to VMO; and 288364
to ML), the Sigrid Juselius Foundation (to VMO and EI., the Magnus
Ehrnrooth Foundation (to VMO) and the National Institutes of Health
(R01 CA172069 to ML).

AUTHOR CONTRIBUTIONS
Bülent Kara contributed to patient acquisition, analysis and interpretation

of clinical data, study supervision and drafting/revising the manuscript.

Çiğdem Köroğlu analysed the genetic data and drafted/revised the

manuscript. Karita Peltonen carried out the RPA194 stainings and their

quantification. Ruchama C Steinberg performed the molecular modelling,

variant analysis and revising the manuscript. Maarit Hölttä-Vuori, Kristiina

Kanerva and You Zhou carried out the filipin staining/quantification

experiments in cultured cells, analysis of the imaging data and drafting/

revising the manuscript. Hülya Maraş Genç participated in acquisition,

analysis and interpretation of clinical data and drafting/revising the

manuscript. Ayşe Güven generated and analysed the genetic data and

drafted the manuscript. Tuğba Kotil contributed to acquisition, analysis

and interpretation of histologic data and drafting/revising the manuscript.

Seyhun Solakoglu contributed to acquisition, analysis and interpretation of

histologic data, study supervision and drafting/revising the manuscript.

Vesa M Olkkonen designed cultured cell experiments and drafted/revised

the manuscript. Elina Ikonen and Marikki Laiho contributed to the design

of the cell experiments, interpretation of their results and drafting/revising

the manuscript. Aslıhan Tolun created study concept and design,

interpreted the data, supervised the study and drafted/revised the

manuscript.

1 Russell J, Zomerdijk JC: The RNA polymerase I transcription machinery. Biochem Soc
Symp 2006; 73: 203–216.

2 Grummt I: Wisely chosen paths–regulation of rRNA synthesis. FEBS J 2010; 277:
4626–4639.

3 Pederson T: The nucleolus. Cold Spring Harb Perspect Biol 2011; 3: a000638.
4 Bernard G, Chouery E, Putorti ML et al: Mutations of POLR3A encoding a catalytic

subunit of RNA polymerase pol III cause a recessive hypomyelinating leukodystrophy.
Am J Hum Genet 2011; 89: 415–423.

5 Saitsu H, Osaka H, Sasaki M et al: Mutations in POLR3A and POLR3B encoding RNA
polymerase III subunits cause an autosomal-recessive hypomyelinating leukoencepha-
lopathy. Am J Hum Genet 2011; 89: 644–651.

6 Thiffault I, Wolf NI, Forget D et al: Recessive mutations in POLR1C cause a
leukodystrophy by impairing biogenesis of RNA polymerase III. Nat Commun 2015; 6:
7623.

7 Weaver KN, Watt KE, Hufnagel RB et al: Acrofacial dysostosis, Cincinnati type, a
mandibulofacial dysostosis syndrome with limb anomalies, is caused by POLR1A
dysfunction. Am J Hum Genet 2015; 96: 765–774.

8 Dauwerse JG, Dixon J, Seland J et al: Mutations in genes encoding subunits of
RNA polymerases I and III cause Treacher Collins syndrome. Nat Genet 2011; 43:
20–22.

9 Vanderver A, Prust M, Tonduti D et al: Cas definition and classification of leukodystro-
phies and leukoencephalopathies. Mol Genet Metab 2015; 114: 494–500.

10 Engel C, Sainsbury S, Cheung AC, Kostrewa D, Cramer P: RNA polymerase I structure
and transcription regulation. Nature 2013; 502: 650–655.

11 Fernández-Tornero C, Moreno-Morcillo M, Rashid UJ et al: Crystal structure of the
14-subunit RNA polymerase I. Nature 2013; 502: 644–649.

12 Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ: The Phyre2 web portal for
protein modeling, prediction and analysis. Nat Protoc 2015; 10: 845–858.

13 Wiederstein M, Sippl MJ: ProSA-web: interactive web service for the recognition of
errors in three-dimensional structures of proteins. Nucleic Acids Res 2007; 35:
W407–W410.

14 Eisenberg D, Lüthy R, Bowie JU: VERIFY3D: assessment of protein models with three-
dimensional profiles. Methods Enzymol 1997; 277: 396–404.

15 Hölttä-Vuori M, Määttä J, Ullrich O, Kuismanen E, Ikonen E: Mobilization of late-
endosomal cholesterol is inhibited by Rab guanine nucleotide dissociation inhibitor.
Curr Biol 2000; 10: 95–98.

16 Peltonen K, Colis L, Liu H et al: A targeting modality for destruction of RNA polymerase
I that possesses anticancer activity. Cancer Cell 2014; 25: 77–90.

17 Schwarz JM, Cooper DN, Schuelke M, Seelow D: MutationTaster2: mutation prediction
for the deep-sequencing age. Nat Methods 2014; 11: 361–362.

18 Adzhubei IA, Schmidt S, Peshkin L et al: A method and server for predicting damaging
missense mutations. Nat Methods 2010; 7: 248–249.

19 Kumar P, Henikoff S, Ng PC: Predicting the effects of coding non-synonymous variants
on protein function using the SIFT algorithm. Nat Protoc 2009; 4: 1073–1081.

20 Cantin GT, Yi W, Lu B et al: Combining protein-based IMAC, peptide-based IMAC, and
MudPIT for efficient phosphoproteomic analysis. J Proteome Res 2008; 7:
1346–1351.

21 Zhou Y, Li S, Mäyränpää MI et al: OSBP-related protein 11 (ORP11) dimerizes with
ORP9 and localizes at the golgi-late endosome interface. Exp Cell Res 2010; 316:
3304–3316.

POLR1A mutation in neurodegeneration
B Kara et al

8

European Journal of Human Genetics



22 Yang H: Nonvesicular sterol transport: two protein families and a sterol sensor? Trends
Cell Biol 2006; 16: 427–432.

23 Vanier MT: Niemann-Pick disease type C. Orphanet J Rare Dis 2010; 5: 16.
24 Lehto M, Laitinen S, Chinetti G et al: The OSBP-related protein family in humans.

J Lipid Res 2001; 42: 1203–1213.
25 Jaworski CJ, Moreira E, Li A, Lee R, Rodriguez IR: A family of 12 human genes

containing oxysterol-binding domains. Genomics 2001; 78: 185–196.
26 Vihervaara T, Jansen M, Uronen RL, Ohsaki Y, Ikonen E, Olkkonen VM: Cytoplasmic

oxysterol-binding proteins: sterol sensors or transporters? Chem Phys Lipids 2011; 164:
443–450.

27 Zhou Y, Robciuc MR, Wabitsch M et al: OSBP related proteins (ORPs) in human
adipose depots and cultured adipocytes: evidence for impacts on the adipocyte
phenotype. PLoS One 2012; 7: e45352.

28 Bouchard L, Faucher G, Tchernof A et al: Association of OSBPL11 gene polymorphisms
with cardiovascular disease risk factors in obesity. Obesity (Silver Spring) 2009; 17:
1466–1472.

29 Soccio RE, Breslow JL: Intracellular cholesterol transport. Arterioscler Thromb Vasc
Biol 2004; 24: 1150–1160.

30 Ikonen E, Hölttä-Vuori M: Cellular pathology of Niemann–Pick type C disease. Semin
Cell Dev Biol 2004; 15: 445–454.

Supplementary Information accompanies this paper on European Journal of Human Genetics website (http://www.nature.com/ejhg)

POLR1A mutation in neurodegeneration
B Kara et al

9

European Journal of Human Genetics


	Severe neurodegenerative disease in brothers with homozygous mutation in POLR1A
	Introduction
	Subjects and methods
	Family
	Genetic analyses
	RPA194 homologue structure, domains, and tertiary structure prediction
	Cell culture
	Immunofluorescence microscopy and image analysis

	Figure 1 The pedigree and cranial MR images.
	Filipin staining of skin biopsy samples

	Results
	Clinical findings
	Genetic findings
	Dissection of the role of POLR1A p.Ser934Leu
	Predicted effects on protein structure


	Table 1 Characteristics of the family members
	Outline placeholder
	Decreased amount of nucleolar RPA194 in patient cells

	Putative role of OSBPL11 c.511CgtT (p.(Arg171Trp)) in increased cholesterol deposition

	Discussion
	Figure 2 Molecular modelling of human RPA194 and its Ser934Leu variant.
	Figure 3 Expression of RPA194 in patient and control fibroblasts.
	Figure 4 Filipin staining of dermal tissue from the brothers, the sister homozygous for the OSBPL11 c.511CgtT (p.(Arg171Trp)) variant (202), the parents and a control sample.
	We thank the family members for their cooperation and T&#x000DC;BITAK Advanced Genomics and Bioinformatics Group (IGBAM) for sharing with us the Turkish Exome Database. This work was supported by the Bo&#x0011F;azi&#x000E7;i University Research Fund (Gran
	ACKNOWLEDGEMENTS
	Russell J, Zomerdijk JC: The RNA polymerase I transcription machinery. Biochem Soc Symp 2006; 73: 203&#x02013;216.Grummt I: Wisely chosen paths--regulation of rRNA synthesis. FEBS J 2010; 277: 4626&#x02013;4639.Pederson T: The nucleolus. Cold Spring Harb 




