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a b s t r a c t 

A balanced-force control volume finite element method is presented for three-dimensional interfacial 

flows with surface tension on adaptive anisotropic unstructured meshes. A new balanced-force algorithm 

for the continuum surface tension model on unstructured meshes is proposed within an interface cap- 

turing framework based on the volume of fluid method, which ensures that the surface tension force and 

the resulting pressure gradient are exactly balanced. Two approaches are developed for accurate curva- 

ture approximation based on the volume fraction on unstructured meshes. The numerical framework also 

features an anisotropic adaptive mesh algorithm, which can modify unstructured meshes to better rep- 

resent the underlying physics of interfacial problems and reduce computational effort without sacrificing 

accuracy. The numerical framework is validated with several benchmark problems for interface advec- 

tion, surface tension test for equilibrium droplet, and dynamic fluid flow problems (fluid films, bubbles 

and droplets) in two and three dimensions. 
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1. Introduction 

Interfacial flows with surface tension appear in many engineer-

ing applications, e.g. micro-fluidics, oil-and-gas transportation sys-

tems, geophysical flows and nuclear reactors. These applications

typically involve the motion of bubbles, droplets, fluid films and

jets, featuring tremendous complexity in interfacial topology and a

large range of spatial scales. 

A key requirement for modelling interfacial flows is a method

for tracking or capturing the interface [1] . Numerous methods

have been proposed and used to simulate interfacial flows on

a fixed mesh, such as marker-and-cell [2] , volume-of-fluid (VOF)

[1,3,4] , front-tracking [5] , level set [6,7] , phase field [8] and par-

ticle [9] methods. In particular, VOF methods are widely used due

to the inherent properties of: mass conservation, computational ef-

ficiency and easy implementation. From a general point of view,

there are two classes of algorithms to solve the transport equa-

tion of volume fraction: geometric and algebraic computation [4] .
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n the geometric VOF methods [1] , interfaces are first reconstructed

rom the volume fraction data so that a geometric profile is found

hich approximates the actual interface location. Then changes in

olume fraction are calculated by integrating volume fluxes across

ell boundaries, using flux splitting or unsplitting schemes. In the

lgebraic computation [10,11] , the interface is captured by solv-

ng the transport equation of volume fraction with a differenc-

ng scheme without reconstructing the interface, such as the flux-

orrected transport scheme [10] and using the normalised variable

iagram (NVD) [12] concept to switch between different differenc-

ng schemes [11] . 

As the dynamics of interfacial flows are highly unsteady and

he shape and location of the interface are changing during the

imulation, interface calculation methods based on a fixed mesh

eed finer mesh resolution in order to capture the details, which

ill significantly increase computational efforts. The alternative is

o consider the use of dynamically adaptive mesh methods, where

he mesh resolution can vary in time in response to the evolv-

ng solution fields. For example, a finer mesh could be placed

round the interface during its development while a coarser mesh

ould be used away from the interface while the flow is less dy-

amic. There are some examples of the use of adaptive mesh re-

nement for structured meshes with volume of fluid [13] and
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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ybrid level set/front tracking [14] methods. Unstructured meshes

re very attractive to deal with complex geometries in engineer-

ng applications and there is an example of adaptive unstructured

eshes with the level set method [15] . Recently, a novel algebraic

OF interface capturing method based on a compressive advection

ethod on adaptive unstructured meshes has been developed by

16] and some examples of its application for multiphase flows in 

wo dimensions can be found in [17,18] . It is also worth mention-

ng that many computational domains have a high aspect ratio and

ost interfacial flow phenomena can possess strong anisotropies,

herefore anisotropic mesh resolution may be required to optimally

epresent the dynamics of the flow. Some examples of anisotropic

nstructured mesh adaptivity can be found in [19] . 

In this paper, we focus on the surface tension force model in

hree dimensions. Many different types of surface tension force

odel have been proposed in the past, where the continuum sur-

ace force (CSF) method [20] has been widely used in the level set

nd volume of fluid methods. The level set function is a smooth

ontinuous function, which can estimate accurately the curvature

or the surface tension, however the standard level set method

ight suffer from the mass conservation. The volume of fluid

ethod is mass conservative, however it is difficult to calculate the

urface tension force accurately due to the step function of the vol-

me fraction. This leads to the development of coupled level set

nd volume of fluid (CLSVOF) method [21] , which takes advantage

f both methodologies. Recently the balanced-force algorithm for

urface tension model has become popular in structured Cartesian

rids due to the use of a height function for curvature calculation

n the volume of fluid method [22] and the level set function in

he CLSVOF method [23] . It has also been extended for adaptive

esh refinement for structured Cartesian grids [13] . However, less

ttention has been paid to the balanced-force algorithm for fully

nstructured meshes, even without mesh adaptivity. 

The motivation for this work is to develop a balanced-force

ontrol volume finite element method for three-dimensional in-

erfacial flows with surface tension on adaptive anisotropic un-

tructured meshes, which can modify unstructured meshes to bet-

er represent the underlying physics of interfacial problems and

educe computational efforts without sacrificing accuracy. A new

alanced-force algorithm for the CSF model is proposed within

he interface capturing framework based on the volume of fluid

ethod. 

The remainder of this paper is organised as follows. Descrip-

ion of the model and numerical methods is given in Section 2 .

umerical examples of pure advection, static drop in equilibrium,

uid films, bubbles and droplets are presented in Section 3 . Finally,

ome concluding remarks and future work are given in Section 4 . 

. Mathematical model and numerical methods 

In this section, we first describe the mathematical model and

hen we present our numerical framework based on the control

olume and finite element method. The new balanced-force algo-

ithm for the CSF model is proposed within the interface capturing

ramework and discussed in detail. 

.1. Governing equations 

In multi-component flows, a number of components exist in

ne or more phases (one phase is assumed here but is easily gen-

ralised to an arbitrary number of phases or fluids). Let αi be the

ass fraction of component i , where i = 1 , 2 , .., N c and N c denotes

he number of components. The density and dynamic viscosity of

omponent i are ρ i and μi , respectively. A constraint on the system

s: 
N c 

 

i =1 

αi = 1 . (1) 
or each fluid component i , the conservation of mass may be de-

ned as, 

∂ 

∂t 
(αi ) + ∇ · (αi u ) = 0 , i = 1 , 2 , . . . , N c , (2)

nd the equations of motion of an incompressible fluid may be

ritten as: 

∂ (ρu ) 

∂t 
+ ∇ · ( ρu � u ) = −∇p + ∇ · [ μ(∇u + ∇ 

T u )] + ρg + F σ , 

(3) 

here t is the time, u is velocity vector, p is the pressure, the

ulk density is ρ = 

∑ N c 
i =1 

αi ρi , the bulk dynamic viscosity is μ =
 N c 
i =1 

αi μi , g is the gravitational acceleration vector, and F σ is the

urface tension force. In the present study, we focus on the sur-

ace tension model for interfacial flows with two components, i.e.

 c = 2 . 

.2. Numerical methods 

There are several numerical discretisation methods that solve

he governing equations, such as the finite difference method, fi-

ite volume method and finite element method [24] . The finite el-

ment method with unstructured meshes is very attractive, as it

rovides accuracy and great flexibility in dealing with complex ge-

metries and moving interfaces. In addition, with the finite ele-

ent method it is possible to develop a compact high-order dis-

retisation by applying higher-order polynomial expansions within

very element. 

.2.1. Computational grid 

The numerical framework consists of control volume and fi-

ite element formulation and also a discontinuous/continuous fi-

ite element pair. In the formulation, the domain is discretised

nto triangular or tetrahedral elements and in this work, they are

ither P 1 DG-P 1 elements (linear discontinuous velocity between

lements and linear continuous pressure between elements) or

 1 DG-P 2 elements (linear discontinuous velocity between elements

nd quadratic continuous pressure between elements) [16] . Fig. 1

hows the locations of the degrees of freedom for the P 1 DG-P 1 and

 1 DG-P 2 elements and the boundaries of the control volumes in

wo dimension (2D). 

.2.2. Temporal discretisation 

Time stepping schemes include first-order schemes, such as the

xplicit forward Euler and implicit backward Euler schemes. The

xplicit scheme is more easy and straightforward to implement

ut imposes restriction on the time step size due to the Courant–

riedrichs–Lewy (CFL) condition, whereas the implicit scheme is

table for large Courant numbers but is more dissipative. A new

ime discretisation scheme is employed here. When high-order dis-

retisation is sought, the method is based on traditional Crank–

icolson time stepping. The Crank–Nicolson method is often used

ecause it has the simplicity of a two-level time stepping method,

s unconditionally stable and second-order accurate. However, for

nterface-capturing applications, the time discretisation scheme is

ased on the explicit forward Euler time stepping method. This in-

roduces negative dissipation and is thus a compressive scheme

hich helps maintain sharp interfaces. The use of time steps of

he order of the grid Courant number and above can result in nu-

erical oscillations and unphysical solutions. For this reason an

daptive θ parameter is introduced [16] and shown explicity in

ection 2.2.3 , in which the forward Euler time stepping method

s obtained for θ = 0 , the Crank–Nicolson method is obtained for

= 0 . 5 and the backward Euler method is obtained for θ = 1 . 
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Fig. 1. (a) Finite element used to discretise the governing equations. The central position of key solution variables (velocity and pressure) are indicated here for the P 1 DG-P 1 
(a) and P 1 DG-P 2 (b) element pairs in 2D. Diagram also shows the relationship between intersecting control volumes (shaded area with dotted line boundary) and elements 

(solid line boundary) for the P 1 and P 2 elements. 
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2.2.3. Spatial discretisation for the global continuity and momentum 

equations 

In order to discretise the above governing equations, a finite el-

ement representation for u and p is assumed, expressed in terms

of their finite element basis functions Q j and P j , respectively, as: 

u = 

N u ∑ 

j=1 

Q j u j and p = 

N p ∑ 

j=1 

P j p j . (4)

Here N u and N p are the total number of degrees of freedom for

the velocity and pressure representations. Q j = Q j I , where I is the

identical matrix. 

When multiplying the global continuity equation with a

quadratic continuous Galerkin (CG) basis function P i and applying

integration by parts once, the discrete form of the global continuity

equation can be obtained as: 

∫ 
V 

P i 
(∇ · u 

n +1 
)
dV ≈ −

∫ 
V 

(∇P i ) · u 

n +1 dV + 

∫ 
�−�bc 

P i n · u 

n +1 d�

+ 

∫ 
�bc 

P i n · u 

n +1 
bc 

d� = 0 , (5)

where n is the current time level, n is the outward-pointing unit

normal vector to the surface � of the domain V , and subscript bc

means the value on the boundary. 

When multiplying Eq. (3) with a linear discontinuous Galerkin

(DG) basis function Q i and applying integration by parts twice over

each element e with the θ time stepping method, the discrete form

of the momentum equation can be obtained as: 

∫ 
V E 

Q i 

(
∂ (ρu ) 

∂t 
+ ∇ · ( ρu � u ) + ∇ p −∇ · [ μ(∇ u + ∇ 

T u )] −ρg −F σ

)
dV 

≈
∫ 

V E 

Q i 

(
ρ(u 

n +1 − u 

n ) 

�t 
+ ∇p n +1 − ρg − F σ

)
dV 

+ θ ( S i 
n +1 
ADV + S i 

n +1 
VIS ) + (1 − θ )( S i 

n 
ADV + S i 

n 
VIS ) 

+ 

∫ 
�bc 

Q i n (p n +1 
bc 

− p n +1 ) d� = 0 , (6)

where n is the outward-pointing unit normal vector to the surface

�E of the element V E , �bc is a boundary with prescribed pressure,

θ ∈ {0, 1} is the implicitness parameter, �t is the time step size,

S i ADV and S i VIS represent the discrete from for the advection and

viscous terms, respectively. 
The upwind discontinuous Galerkin method is used for the ad-

ection terms and the value for time level n + 1 is: 

 i 
n +1 
ADV = 

∫ 
V E 

Q i ρu 

n +1 
∗ ∇ · u 

n +1 dV −
∫ 
�E 

Q i ρu 

n +1 
∗ n · (u 

n +1 − u 

n +1 
in 

) d�,

(7)

here u in is the upwind velocity calculated from the neighbour-

ng element or boundary and the subscript ( ∗) represents the latest

alue during the iteration in one time step. The advection term for

he time level n can be obtained in a similar way. 

For the viscous terms τ = μ(∇u + ∇ 

T u ) , we use a high order

inear scheme which results in a compact stencil with an element

oupling only to its surrounding elements. For example, 

 i 
n +1 
VIS = 

∫ 
V E 

∇Q i · τ n +1 dV − 1 

2 

∫ 
�E 

Q i n · (τ n +1 + τ n +1 
nb 

) d�, (8)

here τnb is the value of τ in the neighbouring element along the

ace and the viscous term for the time level n can be obtained in

 similar way. 

In order to evaluate the viscous stress tensor τ on the bound-

ry of element �E in Eq. (8) , we integrate over the volume of two

eighbouring elements in order to calculate the derivatives on the

lement face between the two elements. For example, the deriva-

ive in x for the x component of u is obtained as: 
 

V E1 

Q i u x dV = 

∫ 
V E1 

Q i 

∂u 

∂x 
dV −

∫ 
�E 1 ∩ E 2 

Q i n x (u − u nb ) d�, (9)

 

V E2 

Q i u x dV = 

∫ 
V E2 

Q i 

∂u 

∂x 
dV −

∫ 
�E 1 ∩ E 2 

Q i n x (u − u nb ) d�, (10)

n which �E 1 ∩ E 2 is the shared face between element 1 ( E 1) and

lement 2 ( E 2), u is the x component of velocity u and u nb is the

alue of u in the neighbouring element along the face �E 1 ∩ E 2 . It

s worth noting that this is not only validated for discontinuous

lements but also can be applied for continuous elements. 

.2.4. Projection method 

The discretised form of the momentum ( Eq. (6) ) and global

ass balance ( Eq. (5) ) equations are solved using a pressure pro-

ection method. This effectively eliminates the unknown velocity

nd solves a system of equations for pressure or pressure correc-

ion. The discretised momentum and continuity equations, at time

evel n + 1 , can be written in matrix form respectively, as: 

(M u + A ) u 

n +1 = C p 

n +1 + s n +1 
u , (11)
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T u 

n +1 = s n +1 
p , (12) 

here u 

n +1 and p 

n +1 are the FEM solution fields for velocity and

ressure, respectively, and s n +1 
u and s n +1 

p are discretised sources. 

For generality, we have introduced a matrix A , containing ad-

ection and diffusion contributions, which may be distributed and

hus cannot be easily inverted. This allows the method to be

pplied to inertia-dominated or viscous-dominated flows with-

ut modification. Since the velocity is discontinuous between ele-

ents, the mass matrix M u = 

∫ 
V E 

Q i Q j dV is block-diagonal and thus

an be easily inverted, each block being local to an element. 

The solution method proceeds by first solving for an intermedi-

te velocity u 

n +1 ∗ using a guessed pressure p 

n +1 
∗ . On the first itera-

ion within a time step one may use p 

n +1 
∗ = p 

n . Eq. (11) becomes:

(M u + A ) u 

n +1 
∗ = C p 

n +1 

∗ + s n +1 
u . (13)

he matrix equation for velocity to be satisfied is: 

 u u 

n +1 + A u 

n +1 
∗ = C p 

n +1 + s n +1 
u . (14)

ubtracting these two equations the velocity correction equation is

btained: 

 u ( u 

n +1 − u 

n +1 
∗ ) = C ( p 

n +1 − p 

n +1 

∗ ) . (15)

ultiplying this equation by B 

T M 

−1 
u (see Eq. (12) ) and using the

lobal continuity equation to eliminate out u 

n +1 one obtains the

ressure correction equation: 

 

T M 

−1 
u C ( p 

n +1 − p 

n +1 

∗ ) = −B 

T u 

n +1 
∗ + s n +1 

p . (16)

his equation is solved for p 

n +1 and the velocity is corrected using

q. (15) . 

This pressure equation is typically solved using the implemen-

ation of the GMRES Krylov subspace solver [25] in the PETSc

ramework [26] . The Boomer algebraic multi-grid preconditioner

rom the HYPRE library [27] is used to accelerate the process. The

elocity solutions are calculated using GMRES [25] with SOR pre-

onditioning. 

It is worth mentioning that in the first time step after the mesh

daption, the interpolated velocity field on the new mesh is pro-

ected to a continuity-satisfied space, otherwise it will not satisfy

he divergence free condition. Thus, the following calculation steps

re performed: the interpolated velocity after a mesh adaptation

s placed into the right hand side (rhs) of the pressure equation

 Eq. (16) ); this is then used to produce a pressure correction that

s placed in the rhs of the velocity correction equation ( Eq. (15) );

hese velocity and pressure corrections are then added to the in-

erpolated velocity and pressures and we commence time stepping

rom these values. If this modification is not made, then after a

esh adaption, there is typically a spike in pressure and velocity

agnitude in isolated regions. This can result in poor accuracy in

hese regions and this typically leads to the simulations becoming

nstable. 

.2.5. Interface capturing method 

The algebraic VOF method is employed here for the inter-

ace capturing. It is based on a compressive advection method,

hich uses a novel and mathematically rigorous non-linear Petrov–

alerkin method that attempts to keep interfaces between com-

onents sharp. The mass conservation for each components

q. (2) is solved using a control volume and finite element for-

ulation, involving a high-order accurate finite element method to

btain fluxes on the control volume boundaries, where these fluxes

re subject to flux-limiting using a NVD approach [12] to obtain

ounded and compressive solutions for the interface. More details

an be found in [16] . 
.2.6. Surface tension model 

The surface tension force F σ in Eq. (3) is obtained via the con-

inuum surface force (CSF) method [20] as: 

 σ = σκ ˜ n δ, (17) 

here σ is the surface tension coefficient, κ is the interfacial cur-

ature, ˜ n is the interface unit normal, δ is the Dirac delta function.

ere, we use δ = | ∇α| and 

˜ n = 

∇α
| ∇α| to reformulate the CSF based

n the component volume fraction as: 

 σ = σκ∇α. (18) 

In order to evaluate the curvature κ , it is normally estimated

s κ = ∇ · ˜ n based on the volume fraction or height function tech-

ique [22] in conventional volume of fluid type approaches. How-

ver, as the volume fraction is a step function between zero and

ne and it is not easy to calculate a normal, sometimes it will

roduce spurious velocities even when using a smoothed volume

raction to calculate the curvature. The height function technique

s a good alternative and higher order accurate for Cartesian struc-

ured grids, however it is difficult to reconstruct the height func-

ion for a fully unstructured mesh. Recently, a number of mesh-

ecouple height function methods have been developed. Owkes

t al. [28] used interface normal aligned columns to get a better

stimate of curvature for under-resolved interfaces and Ivey et al.

29] constructed height function structured stencils from an un-

tructured grid based on interpolation. Both methods use the ge-

metric VOF schemes on a fixed mesh. In order to deal with al-

ebraic VOF method on an adaptive mesh, two different curvature

pproximations are proposed here: distance function approach and

iffused interface approach. 

. Distance function approach 

In this approach, the curvature is estimated as: 

= ∇ · ˜ n df , (19) 

here ˜ n df = 

∇ϕ 
| ∇ϕ | is the interface unit normal calculated from the

igned distance function ϕ from the interface (similar to the level

et function). Contrary to the standard CLSVOF method, only one

unction (volume fraction α) is advected to capture the interface

ere, and then a distance function ϕ is calculated based on the

olume fraction α by the following three steps. 

In the first step, the distance function is initialised as: 

 0 = (2 α − 1) h min , (20)

here h min is the minimum mesh size around the interface. As we

ssume the contour of α = 0 . 5 is the interface, it can be seen that

q. (20) provides a good estimate for the initial distance function,

here it is zero at the interface (required by the definition) and

as a different sign on either side of the interface with a good

uess for the distance in the vicinity of the interface. 

In the second step, we follow the re-initialisation process in the

evel set method to obtain the actual sign distance function ϕ by

olving the following equation with the initial value ϕ 0 : 

∂ϕ 

∂τ
= S(ϕ 0 )(1 − | ϕ | ) , (21)

here S(ϕ 0 ) = ϕ 0 / 
√ 

ϕ 

2 
0 

+ ε is the sign function and ε = h min is

sed here and τ is an artificial time. We iterate on Eq. (21) no

ore than h s / �τ times in order to get the converged distance

unction solution for | ∇ϕ | = 1 , where 2 h s represent the transition

egion around the interface and h s = 1 . 5 h min and �τ = 0 . 1 h min are

sed here. It is worth noting that a discontinuous Galerkin method

or ϕ is used here during iteration in order to make it very accu-

ate. In addition, we use the pressure basis functions as it is high

rder. 
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Fig. 2. Interface and mesh under the single-vortex shearing flow for T = 4 and h min = 1 / 512 . The adaptive mesh provides a fine resolution equivalent to that of a 512 × 512 

uniform mesh. 

 

 

 

w  

t  

(  

t  

u

In the last step, the calculated discontinuous distance func-

tion ( ϕ 

DG ) is projected to a continuous space ( ϕ 

CG ) by a volume-

weighted interpolation as: 

ϕ 

CG = 

∑ N cv 
i =1 

ϕ 

DG 
i 

V i ∑ N cv V i 

, (22)
i =1 
here N cv is the number of control volumes connected to the con-

inuous function ϕ 

CG and V i is the volume of the control volume

see Fig. 1 for example). Then the continuous function ϕ 

CG is used

o calculate the gradient, which helps to accurately estimate the

nit normal ˜ n df and the curvature κ . 
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Fig. 3. Average error of the interfacial location as function of the number of ele- 

ments. The order of convergence is about 2 and the first-order slope is shown as 

dash-dotted line and the second-order slope is shown as dashed line. 
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. Diffused interface approach 

In this approach, we use a diffused interface based on the orig-

nal volume fraction α to estimate the curvature as: 

= ∇ · ˜ n di , (23) 

here ˜ n di = 

∇ψ 

| ∇ψ | is the interface unit normal calculated from the

iffused volume fraction ψ from the interface. In contrast to some

moothing techniques for the volume fraction to calculate the cur-

ature, we obtain the diffused volume fraction by solving a diffu-

ion equation as: 

∂ψ 

∂τ
= D �ψ, (24) 

here τ is also an artificial time and D is an artificial diffusion co-

fficient. Here, we initialise the diffusion value based on the origi-

al volume fraction α as: 

 0 = αh min , (25) 

hich is relevant to the dimension of the computational domain

r size of the mesh. After that, we solve the Eq. (24) with a
ig. 4. Numerical results for the velocity field with different curvature calculations after o

atio ρ1 /ρ2 = 10 3 for the structured mesh. Both have the same scale and the solid line re
iscontinuous Galerkin finite element method with �τ = 1 and

 = h min for a few iteration (normally less than 5 times as we

nly need the diffused value around the interface), in order to

et a high-order accurate result. A diffused interface can be ob-

ained with a smooth variation for the diffused volume frac-

ion ψ , which provides an easy way to calculate the gradient of

ts value. 

Finally, similar to the distance function approach, the calculated

iscontinuous diffused volume fraction is projected to a continuous

pace, which is used to approximate the unit normal ˜ n di and the

urvature κ . 
ne time step with �t = 10 −6 for the inviscid static drop in equilibrium for density 

presents the interface. 
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Fig. 6. Snapshots of three-dimensional numerical simulation of a single rising bubble. Top panel shows the zoom in interface from t = 0 s to t = 0 . 25 s with 0.05 s interval. 

Bottom panel shows the profile alongside with the unstructured mesh at the bottom and central slices for t = 0 s and t = 0 . 25 s. 
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2.2.7. Mesh adaptivity algorithm 

A common problem encountered by model users is that the

computational mesh used in a numerical simulation has to be gen-

erated a priori to the solution procedure. It is therefore difficult

to resolve adequately the local physical features at a first attempt,

and the mesh often needs to be adapted to enable the solution

procedure to satisfy resolution requirements. Importantly, this also

allows for a reduction in computational effort which is crucial for

complex applications. 

The present model adapts the mesh to the solution with-

out sacrificing the integrity of the boundary (geometry), or in-

ternal boundaries (regions) of the domain. It circumvents the

complexities of boundary-conforming Delaunay methods by op-

erating on the existing mesh. The error measure employed is
ased on the curvature of the solution and provides a direc-

ional measure. The objective is to obtain a mesh which has

 uniform interpolation error in any direction. This is accom-

lished with use of a metric which is related to the Hessian

f the solution field. Appropriate scaling of the metric enables

he resolution of multi-scale phenomena as encountered in mul-

iphase flows. The resulting metric is used to calculate element

ize and shape. The mesh optimisation method is based on a se-

ies of mesh connectivity and node position searches of the land-

cape, defining mesh quality which is gauged by a functional.

he mesh modification thus fits the solution field(s) in an op-

imal manner. The anisotropic mesh adaption technique devel-

ped by [30] is used here. In this paper, the pressure and vol-

me fraction projection use the consistent interpolation, while the
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Fig. 7. Comparison of the bubble shape between experimental measurement 

[34] (left) and numerical simulations (right) together with the velocity field and 

mesh on the central plane. 
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Fig. 8. Number of total elements for the three-dimensional numerical simulation of 

a single rising bubble with an adaptive unstructured mesh. 

Table 1 

Error in velocity and pressure drop after one time step with �t = 10 −6 

for the inviscid static drop in equilibrium with three different density 

ratios when the exact curvature is specified for the structured mesh. 

Method ρ1 / ρ2 | u | max E(�P) total E(�P) partial 

Present 1 7 . 77 × 10 −19 6 . 58 × 10 −2 3 . 35 × 10 −17 

10 3 9 . 09 × 10 −19 6 . 58 × 10 −2 3 . 40 × 10 −20 

10 5 9 . 11 × 10 −19 6 . 58 × 10 −2 6 . 78 × 10 −21 

CSF model 1 1 . 25 × 10 −18 2 . 89 × 10 −2 2 . 73 × 10 −15 

[22] 10 3 4 . 97 × 10 −18 2 . 89 × 10 −2 3 . 89 × 10 −16 

10 5 5 . 70 × 10 −18 2 . 89 × 10 −2 1 . 95 × 10 −16 
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elocity projection uses a conservative Galerkin interpolation tech-

ique [31] . 

. Numerical examples 

.1. Single vortex 

Before we apply our method to coupled fluid flow problems, we

rst test our control volume-based interface-capturing method for

 pure advection problem where the fluid interface moves under

 prescribed velocity field. The single vortex problem [4] , which is

idely used as a benchmark test, is considered here using P 2 el-

ments. The forward Euler time-stepping scheme is used here for

he advection case, whereas the Crank–Nicolson and backward Eu-

er schemes are employed for the volume fraction and momentum

quations in the rest of the paper. A circle (radius 0.15) is initially

entered at (0.50, 0.75) in a unit square computational domain. The

elocity field is defined by the stream function � as: 

= 

1 

π
sin 

2 (πx ) cos 2 (πy ) cos 

(
πt 

T 

)
, u = −∂�

∂y 
, v = 

∂�

∂x 
, 

(26) 

here u and v are the horizontal and vertical components of the

elocity field, respectively. 

The initial interface shape is deformed by the velocity field and

eturn to its initial state at t = T , where T = 4 is used in the sim-

lation. In order to avoid the influence of time step on the results,

t = 2 . 5 × 10 −4 is used for three different computations with min-

mum mesh size h min as 1/128, 1/256 and 1/512. Fig. 2 shows the

nterface shape alongside the mesh during the simulation for the

omputation with h min = 1 / 512 . It can be seen that the circle is

tretched from t = 0 under the specified velocity field until t = 2

eaching its maximum deformation. At this stage, it is a spiral

hape with very elongated filament which is very thin at the tail.

he interface has been efficiently captured in the computation by

sing the adaptive unstructured mesh, which provides fine resolu-

ion equivalent to that of a 512 × 512 uniform mesh. After t = 2 ,

he velocity field is reversed and the interface shape is returned

o its initial shape which is well captured during the computation.

his test demonstrates the power of the adaptive mesh approach,

hich can refine the mesh in the vicinity of the interface or an
rea of interest, and reduce computational effort without sacrific-

ng accuracy. 

As the location of the interface is known (which is represented

s the contour of the volume fraction at α = 0 . 5 ), the deviation of

he interface position after one rotation can be calculated as: 

rror = 

1 

N 

N ∑ 

1 

| 
√ 

(x − 0 . 5) 2 + (y − 0 . 75) 2 − 0 . 15 | , (27) 

here N is the number of points along the interface. Fig. 3 shows

he convergence for the computations with three different simu-

ations. It can be seen that the present method is close to second

rder accurate, which is consistent with the quadratic polynomial

unction used for the P 2 finite element type. 

.2. Static drop in equilibrium 

In order to validate the proposed framework for surface tension,

e consider the inviscid static drop in equilibrium problem [22] ,

hich is a benchmark case for testing the surface tension method

ithout viscosity and gravity. We follow the same computational

etup as in [22] . A drop (radius R = 2 ) is positioned at the centre

f the computational domain [0, 8] × [0, 8], the surface tension co-

fficient σ = 73 , the density inside the drop is ρ1 = 1 and outside

ensity ρ2 is varied from 0 to 1. A uniform computational mesh

ith 40 layers in each direction is used for the computations with

he P 1 DG-P 2 element pair. 

In the first set of calculations, we test the coupling of surface

ension force with the pressure gradient by specifying the exact

urvature κexact = 1 /R = 0 . 5 . Table 1 shows the comparison for the

aximum velocity and pressure jump errors after one time step
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Fig. 9. Comparison of the evolution of the bubble shape between the numerical simulations (top and middle) and experimental measurement [37] (bottom) for the co-axial 

coalescence of two bubbles initially at [0, 2.5 D , 0] and [0, D , 0] in a quiescent liquid. The numerical simulation shows the interface shape alongside with the unstructured 

mesh at the bottom and central slices from t = 0 s to t = 0 . 15 s with 0.03 s interval and the time difference between subsequent photographs is 0.03 s in the experiments. 
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for three different density ratios, and also with the results obtained

for the structured Cartesian mesh in [22] . These errors are defined

as: 

| u | max = max ( | u | ) , (28)

E(�P ) w 

= 

| �P w 

− �P exact | 
�P exact 

, (29)
here �P exact = σκ = 36 . 5 , and w denotes different evaluation

ays by using pressure points in the areas of r < R and r > R

total) and the areas of r < R /2 and r > 3 R /2 (partial), where ‘to-

al’ considers the whole region inside and outside the drop and

partial’ considers some parts of the region by avoiding the transi-

ion zone. It can be seen from Table 1 that the spurious currents

re very small, related to the machine accuracy. For the pressure

rop, the total error E(�P ) is of the order of 10 −2 , and is inde-
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Fig. 10. Comparison of the evolution of the bubble shape between the numerical simulations (top and middle) and experimental measurement [37] (bottom) for the oblique 

coalescence of two bubbles initially at [0, 2.5 D , 0] and [0.8 D, D , 0] in a quiescent liquid. The numerical simulation shows the interface shape alongside with the unstructured 

mesh at the bottom and central slices from t = 0 . 03 s to t = 0 . 18 s with 0.03 s interval and the time difference between subsequent photographs is 0.03 s in the experiments. 
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Table 2 

Error in velocity and pressure drop after one time step with �t = 10 −6 for the in- 

viscid static drop in equilibrium for density ratio ρ1 /ρ2 = 10 3 with different cur- 

vature calculation techniques for the structured mesh. 

Method | u | max E(�P) total E(�P) partial 

Exact κ 9 . 09 × 10 −19 6 . 58 × 10 −2 3 . 40 × 10 −20 

Exact distance function for κ 2 . 39 × 10 −5 6 . 70 × 10 −2 3 . 62 × 10 −3 

Calculated distance function for κ 6 . 22 × 10 −5 7 . 02 × 10 −2 3 . 80 × 10 −3 

Diffused interface for κ 2 . 31 × 10 −5 6 . 61 × 10 −2 4 . 60 × 10 −3 
endent of the density ratio. The partial error E(�P ) partial is much

maller because the error measurement does not include the tran-

ition region. Table 1 also shows that the present surface tension

odel, which can be extended for the fully unstructured mesh,

s comparable to the balanced-force surface tension model for the

tructured Cartesian mesh. 

In the second set of calculations, we test the effects of differ-

nt techniques for curvature calculations for the spurious veloc-

ty and pressure drop for the same setup above for density ra-

io ρ1 /ρ2 = 10 3 . Table 2 shows the results for four different tech-
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Table 3 

Error in velocity and pressure drop after one time step with �t = 10 −6 for the 

inviscid static drop in equilibrium for density ratio ρ1 /ρ2 = 10 3 with the distance 

function approach and diffused interface approach for the curvature calculation for 

the fully unstructured mesh. 

Method | u | max E(�P) total E(�P) partial 

Calculated distance function for κ 1 . 6 × 10 −4 6 . 52 × 10 −2 7 . 46 × 10 −4 

Diffused interface for κ 1 . 5 × 10 −4 6 . 37 × 10 −2 2 . 5 × 10 −3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Computational parameters used for the falling liquid 

film simulation. 

variables value units 

Film thickness h N 1 . 83 × 10 −4 m 

Mean velocity u N 0 .10865 m/s 

Forcing frequency F 27 Hz 

Liquid density 10 0 0 kg/m 

3 

Liquid viscosity 9 . 892 × 10 −4 kg/(m 

∗s) 

Air density 1 .125 kg/m 

3 

Air viscosity 1 . 81 × 10 −5 kg/(m 

∗s) 

Surface tension 0 .072 N/m 
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niques: the first is for the given exact curvature; the second is

for the curvature calculated from the analytically given distance

function (the distance function is given rather than solving from

Eq. (21) ; the third and fourth are for the distance function ap-

proach and diffused interface approach for the curvature calcu-

lation proposed in this study, respectively. It can be seen from

Table 2 that the two approaches for the curvature calculation are

in the same order of accuracy, whereas the diffused interface ap-

proach performs slightly better than the distance function ap-

proach, and even better or close to the case when the distance

function is specified. The velocity fields obtained from the two ap-

proaches for the curvature calculation are shown in Fig. 4 . 

In the third set of calculations, we test the distance function

approach and diffused interface approach for the curvature calcu-

lation proposed in this study for the same setup above for density

ratio ρ1 /ρ2 = 10 3 , but with a fully unstructured mesh with similar

resolution compared to the structured mesh. Table 3 shows the re-

sults for the two approaches and it can be seen that similar results

are obtained for the unstructured mesh. Compared to the results

for the structured mesh, the pressure drop is in the same order

whereas the spurious currents are larger due to the curvature ap-

proximation for the unstructured mesh. 

As shown in Fig. 4 and Table 3 , slightly smaller spurious veloc-

ities are observed when using the diffused interface approach to

calculate κ , thus we used the diffused interface approach for the

curvature calculation in the rest of the paper. 

3.3. Falling liquid film 

A 2D falling liquid film in contact with air is considered here

to test the surface tension treatment in a fluid flow problem. We

follow the same computational setup as in [32] . The computa-

tional domain dimensions are [0 , 600 h N ] × [ −h N , 3 h N ] , where h N
is the undisturbed film thickness (Nusselt height). The computa-

tional domain is discretised by 1500 × 25 layers, whereas the

mesh is uniform in the x direction and mesh size is �y = 0 . 1 h N 
from [ −h N , 0 . 5 h N ] and gradually increases to the end in the y di-

rection. A no-slip boundary condition is applied at both walls in

the water and air side, and a zero-gradient boundary condition is

applied at the outlet. At the inlet x = 0 , a parabolic velocity profile

is imposed for the liquid phase as: 

u in (y � 0) = 

3 

2 

(
1 + 

y 

h N 

)(
1 − y 

h N 

)
u av , (30)

where u av is the average velocity containing the forcing perturba-

tion: 

u av = u N (1 + ξ sin (2 πF t))) , (31)

in which u N is the Nusselt velocity, ξ is the disturbance magnitude

and F is the forcing frequency. The velocity for the air phase at the

inlet is set as: 

u in (y > 0) = 

3 

2 

(
1 + 

y 

3 h N 

)(
1 − y 

3 h N 

)
u av . (32)

The simulation is initialised with a flat film with a fully developed

velocity field as prescribed at the inlet. The computation is carried

out using the P 1 DG-P 2 element pair. The liquid film flow is simu-

lated for Re = 

ρu N h N 
μ = 20 . 1 and W e = 

ρu 2 
N 

h N 
σ = 33 . 5 with the com-
utational parameters shown in Table 4 , which corresponds to the

xperimental case reported in [33] . 

Fig. 5 (a) shows numerical results for the evolution of the falling

iquid film under the inlet forcing perturbation. It can be seen that

mall waves grow in time and become largest in the development

egion. The waves are transported downstream from the inlet to

he outlet. During the evolution, large waves travel faster to catch

p with smaller waves due to gravity acceleration, forming even

arger waves. The biggest wave merges with the front wave until

t leaves the outlet. After that, nearly steady-state finite-amplitude

ravelling-waves are observed behind, which have nearly the same

hape and amplitude, travelling with the same speed. The calcu-

ated steady-state wave shape is compared with the experimen-

al measurement in Fig. 5 (b), which shows they are very similar.

he computed wave speed in the simulation is 0.213 m/s, which

lso agrees well with the measured wave speed 0.217 m/s in the

xperiment [33] . 

.4. Single rising bubble 

To validate the numerical framework for surface tension model

ith mesh adaptivity, we conduct three-dimensional (3D) numeri-

al simulations of a single rising bubble and compare results with

he experiments of [34] (case A in Table 1 in [34] ), which have

een used to validate two-phase flow codes [21,23,35,36] . In the

imulation for the bubble with diameter D , we used a relative

arge computational domain 6 D × 12 D × 6 D to avoid boundary ef-

ects whereas the centre of bubble is initialised at y = 2 . 5 D . The

omputational parameters have been shown in [34] and in this

ase, the Reynolds number ( Re = 

ρV R 
μ ) based on the liquid den-

ity, rising velocity V and effective radius R is 9.7, the Eotvos num-

er ( Eo = 

g�ρD 2 

σ ) is 38.9 and the Morton number ( M = 

gμ4 �ρ
ρ2 σ 3 ) is

 . 4 × 10 −2 . The calculation is carried out with the P 1 DG-P 1 ele-

ent pair with the minimum length h min = 0 . 01 D being used in

he test, which provides a fine resolution equivalent to that of a

00 × 1200 × 600 uniform mesh. 

Fig. 6 shows a number of snapshots for the numerical results

f the 3D rising bubble. It can be seen that the initially spherical

ubble rises under the action of buoyancy, and undergoes defor-

ation, resulting in the formation of the well-known cap-shaped

ubbles. Fig. 6 also shows that the bubble shape has been well

aptured by refining the unstructured mesh in the vicinity of the

eforming bubble preferentially. In contrast, the regions upstream

nd downstream of the bubble, which require a lower degree of

esolution, have coarser elements, in order to maximise computa-

ional efficiency. At later stage, the bubble reaches a stable shape

ith a constant rising speed under the balance of surface tension,

nertial force and the viscous force. Fig. 7 shows the comparison of

he steady bubble shape between the experimental measurement

nd numerical simulations, which is in a good agreement. In addi-

ion, the predicted velocity field and the unstructured mesh along

he central plane are also shown in Fig. 7 . 

In order to demonstrate the efficiency of the adaptive unstruc-

ured mesh simulation, Fig. 8 shows the time history of the total
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Fig. 11. Snapshots of numerical simulation of a droplet impact on a thin liq- 

uid layer. The droplet diameter is 0.0053 m and depth of the thin film is 0.001 

m. The droplet initial velocity is 2 m/s which corresponds to a Weber num- 

ber of 426. The predicted interface along with the adaptive unstructured mesh 

at three slices are shown at different times from the top left to bottom right at 

t = 0 . 0 , 0 . 001 , 0 . 0025 , 0 . 005 , 0 . 0075 , 0 . 01 , 0 . 0125 , 0 . 015 s. 
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umber of elements during the simulations. Initially, only a few el-

ments are used to resolve the bubble shape. The total number of

lements gradually increases as finer meshes are placed to resolve

he bubble deformation, and reaches a certain level when the bub-

le becomes a stable shape. Compared to the effective mesh size

n a uniform Cartesian grid (a 600 × 1200 × 600 uniform mesh),

he maximum total number of elements is only about 0.05% of the

xed mesh case, which can reduce the computational efforts with-

ut sacrificing accuracy. 

.5. Coalescence of two bubbles 

Here we consider merging of two bubbles with co-axial and

blique coalescence. Two spherical gas bubbles with diameter D =
 . 01 m are initially in a quiescent liquid in a computational domain

 −2 D, 2 D ] × [0 , 8 D ] × [ −2 D, 2 D ] . For the co-axial case, the centre of

he upper bubble is at [0, 2.5 D , 0] and the centre of the lower bub-

le is at [0, D , 0]; whereas for the oblique case, the centre of the

ower bubble is shifted to [0.8 D, D , 0]. The density and viscosity

atio (gas to liquid) is 0.001 and 0.01, respectively. For this prob-

em, the Eotvos number ( Eo = 

g�ρD 2 

σ ) is 16 and the Morton num-

er ( M = 

gμ4 �ρ
ρ2 σ 3 ) is 2 × 10 −4 based on the liquid. In the simula-

ions, an adaptive unstructured mesh with a minimum edge length

 min = 0 . 01 D is used here with the P 1 DG-P 1 element pair. 

Fig. 9 shows the computed evolution of the bubble shape along

ith the adapted mesh and corresponding experimental pho-

ographs [37] for the co-axial coalescence case. It can be seen that

ompared to the leading bubble, the evolution of the tailing bubble

s totally different, which is in the wake region of the leading bub-

le. The tailing bubble catches the leading bubble later on to form

ne single bubble. The computed evolution of the bubble shape is

ell captured by the adaptive unstructured mesh, which is in a

ood agreement with the experimental observations of [37] . 

For the oblique coalescence case, Fig. 10 shows the computed

volution of the bubble shape along with the adapted mesh and

orresponding experimental photographs [37] . It can be seen that

he dynamics are similar to the previous case and again good

greement between the computed and measured results is ob-

ained here. It is worth noting that the flow field is clearly asym-

etrical and three-dimensional, which cannot be captured in an

xisymmetrical calculation. 

.6. Milkcrown problem 

Finally, we consider the so-called ‘milkcrown’ problem which

nvolves complex interface topology change including coalescence

nd breakup. Some researchers have studied the milkcrown prob-

em [38,39] in 3D on a fixed mesh, here we simulate this problem

ith an adaptive mesh using the P 1 DG-P 2 element pair in order

o demonstrate the capability of the present framework. We follow

he same setup as in [38] and [39] , where a droplet (with diame-

er D = 0 . 0053 m) falls down with a speed of 2 m/s into thin film

f the same liquid with 0.001 m depth. The density of the liquid

nd air is 10 0 0 kg/m 

3 and 1.25 kg/m 

3 , respectively. The viscosity

f the liquid and air is 1 . 7 × 10 −3 Pa s and 1 . 0 × 10 −6 Pa s, respec-

ively. The surface tension coefficient is 0.05 N/m and the acceler-

tion due to gravity is 9.8 m/s 2 . For this case, the Weber number

or the liquid is W e = 426 . We used an adaptive unstructured mesh

ith the minimum length h min ≈ D/ 33 , which has the same reso-

ution as mentioned in [38] and [39] , but with much less number

f degree of freedoms due to the adaptive mesh. 

Fig. 11 shows snapshots of the interface shape along with the

daptive mesh used in the simulation. Similar results have been

btained in the present study compared to other results on a fixed

esh [38,39] . It can be seen that a liquid rim is generated af-

er the droplet impact, which consequently breaks into smaller
roplets. Fine mesh resolution is placed in the vicinity of the in-

erface whereas the mesh coarsens away from the interface. Fig. 12

hows the time history of the total number of elements during the

imulations and compared with the number for a fixed Cartesian

rid with the equivalent resolution. It can be seen that the total

umber of elements gradually increases in order to capture some

maller structures in the flow and the maximum number is only

bout 13% of the fixed mesh case, showing the efficiency of the

resent method. 
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Fig. 12. Numbers of total elements for the numerical simulation of a droplet impact 

on a thin liquid layer with a fixed and adaptive, unstructured mesh. 
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4. Conclusions 

In this paper a new balanced-force control volume finite ele-

ment method with adaptive anisotropic unstructured meshes has

been presented for interfacial flows with surface tension. A force-

balanced algorithm for the surface tension implementation has

been presented, with two different approaches to accurately es-

timate the curvature for a fully unstructured mesh, minimising

the spurious velocities often found in such flow simulations. The

numerical framework consists of a control volume and finite el-

ement formulation, a volume of fluid type method for the inter-

face capturing based on a compressive advection method and an

anisotropic adaptive mesh algorithm, which can modify and adapt

unstructured meshes to better represent the underlying physics

of interfacial problems and reduce computational effort without

sacrificing accuracy. The numerical framework has been validated

with several benchmark problems for interface advection, surface

tension for equilibrium droplet, and dynamic fluid flow problems

(fluid films, bubbles and droplets) in 2D and 3D. 

The results presented here established with sufficient confi-

dence that this method can be used to successfully model mul-

tiphase flows in a wide range of applications. This approach has

the potential to be used for an arbitrary number of components

although that has not been demonstrated here. Future work will

include parallel computing and surfactant modelling. 
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