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ABSTRACT

A balanced-force control volume finite element method is presented for three-dimensional interfacial
flows with surface tension on adaptive anisotropic unstructured meshes. A new balanced-force algorithm
for the continuum surface tension model on unstructured meshes is proposed within an interface cap-
turing framework based on the volume of fluid method, which ensures that the surface tension force and
the resulting pressure gradient are exactly balanced. Two approaches are developed for accurate curva-
ture approximation based on the volume fraction on unstructured meshes. The numerical framework also
features an anisotropic adaptive mesh algorithm, which can modify unstructured meshes to better rep-
resent the underlying physics of interfacial problems and reduce computational effort without sacrificing
accuracy. The numerical framework is validated with several benchmark problems for interface advec-
tion, surface tension test for equilibrium droplet, and dynamic fluid flow problems (fluid films, bubbles
and droplets) in two and three dimensions.

© 2016 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Interfacial flows with surface tension appear in many engineer-
ing applications, e.g. micro-fluidics, oil-and-gas transportation sys-
tems, geophysical flows and nuclear reactors. These applications
typically involve the motion of bubbles, droplets, fluid films and
jets, featuring tremendous complexity in interfacial topology and a
large range of spatial scales.

A key requirement for modelling interfacial flows is a method
for tracking or capturing the interface [1]. Numerous methods
have been proposed and used to simulate interfacial flows on
a fixed mesh, such as marker-and-cell [2], volume-of-fluid (VOF)
[1,3,4], front-tracking [5], level set [6,7], phase field [8] and par-
ticle [9] methods. In particular, VOF methods are widely used due
to the inherent properties of: mass conservation, computational ef-
ficiency and easy implementation. From a general point of view,
there are two classes of algorithms to solve the transport equa-
tion of volume fraction: geometric and algebraic computation [4].
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In the geometric VOF methods [1], interfaces are first reconstructed
from the volume fraction data so that a geometric profile is found
which approximates the actual interface location. Then changes in
volume fraction are calculated by integrating volume fluxes across
cell boundaries, using flux splitting or unsplitting schemes. In the
algebraic computation [10,11], the interface is captured by solv-
ing the transport equation of volume fraction with a differenc-
ing scheme without reconstructing the interface, such as the flux-
corrected transport scheme [10] and using the normalised variable
diagram (NVD) [12] concept to switch between different differenc-
ing schemes [11].

As the dynamics of interfacial flows are highly unsteady and
the shape and location of the interface are changing during the
simulation, interface calculation methods based on a fixed mesh
need finer mesh resolution in order to capture the details, which
will significantly increase computational efforts. The alternative is
to consider the use of dynamically adaptive mesh methods, where
the mesh resolution can vary in time in response to the evolv-
ing solution fields. For example, a finer mesh could be placed
around the interface during its development while a coarser mesh
could be used away from the interface while the flow is less dy-
namic. There are some examples of the use of adaptive mesh re-
finement for structured meshes with volume of fluid [13] and
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hybrid level set/front tracking [14] methods. Unstructured meshes
are very attractive to deal with complex geometries in engineer-
ing applications and there is an example of adaptive unstructured
meshes with the level set method [15]. Recently, a novel algebraic
VOF interface capturing method based on a compressive advection
method on adaptive unstructured meshes has been developed by
[16] and some examples of its application for multiphase flows in
two dimensions can be found in [17,18]. It is also worth mention-
ing that many computational domains have a high aspect ratio and
most interfacial flow phenomena can possess strong anisotropies,
therefore anisotropic mesh resolution may be required to optimally
represent the dynamics of the flow. Some examples of anisotropic
unstructured mesh adaptivity can be found in [19].

In this paper, we focus on the surface tension force model in
three dimensions. Many different types of surface tension force
model have been proposed in the past, where the continuum sur-
face force (CSF) method [20] has been widely used in the level set
and volume of fluid methods. The level set function is a smooth
continuous function, which can estimate accurately the curvature
for the surface tension, however the standard level set method
might suffer from the mass conservation. The volume of fluid
method is mass conservative, however it is difficult to calculate the
surface tension force accurately due to the step function of the vol-
ume fraction. This leads to the development of coupled level set
and volume of fluid (CLSVOF) method [21], which takes advantage
of both methodologies. Recently the balanced-force algorithm for
surface tension model has become popular in structured Cartesian
grids due to the use of a height function for curvature calculation
in the volume of fluid method [22] and the level set function in
the CLSVOF method [23]. It has also been extended for adaptive
mesh refinement for structured Cartesian grids [13]. However, less
attention has been paid to the balanced-force algorithm for fully
unstructured meshes, even without mesh adaptivity.

The motivation for this work is to develop a balanced-force
control volume finite element method for three-dimensional in-
terfacial flows with surface tension on adaptive anisotropic un-
structured meshes, which can modify unstructured meshes to bet-
ter represent the underlying physics of interfacial problems and
reduce computational efforts without sacrificing accuracy. A new
balanced-force algorithm for the CSF model is proposed within
the interface capturing framework based on the volume of fluid
method.

The remainder of this paper is organised as follows. Descrip-
tion of the model and numerical methods is given in Section 2.
Numerical examples of pure advection, static drop in equilibrium,
fluid films, bubbles and droplets are presented in Section 3. Finally,
some concluding remarks and future work are given in Section 4.

2. Mathematical model and numerical methods

In this section, we first describe the mathematical model and
then we present our numerical framework based on the control
volume and finite element method. The new balanced-force algo-
rithm for the CSF model is proposed within the interface capturing
framework and discussed in detail.

2.1. Governing equations

In multi-component flows, a number of components exist in
one or more phases (one phase is assumed here but is easily gen-
eralised to an arbitrary number of phases or fluids). Let «; be the
mass fraction of component i, where i =1, 2, .., Nc and N denotes
the number of components. The density and dynamic viscosity of
component i are p; and w;, respectively. A constraint on the system
is:

N(
ZO{,‘:l. (1)
i=1

For each fluid component i, the conservation of mass may be de-
fined as,

%(O{,’)-FV-(O{,'U):O, i=1,2,...,Ng, (2)

and the equations of motion of an incompressible fluid may be
written as:

d(pu)
at

+V.(pugu)=-Vp+ V. [n(Vu+VTu)]+ pg+F,,
(3)

where t is the time, u is velocity vector, p is the pressure, the
bulk density is p = Z?’;l o;p;, the bulk dynamic viscosity is p =
Zf’:fl o, g is the gravitational acceleration vector, and F, is the
surface tension force. In the present study, we focus on the sur-
face tension model for interfacial flows with two components, i.e.
N: =2.

2.2. Numerical methods

There are several numerical discretisation methods that solve
the governing equations, such as the finite difference method, fi-
nite volume method and finite element method [24]. The finite el-
ement method with unstructured meshes is very attractive, as it
provides accuracy and great flexibility in dealing with complex ge-
ometries and moving interfaces. In addition, with the finite ele-
ment method it is possible to develop a compact high-order dis-
cretisation by applying higher-order polynomial expansions within
every element.

2.2.1. Computational grid

The numerical framework consists of control volume and fi-
nite element formulation and also a discontinuous/continuous fi-
nite element pair. In the formulation, the domain is discretised
into triangular or tetrahedral elements and in this work, they are
either P{DG-P; elements (linear discontinuous velocity between
elements and linear continuous pressure between elements) or
P;DG-P, elements (linear discontinuous velocity between elements
and quadratic continuous pressure between elements) [16]. Fig. 1
shows the locations of the degrees of freedom for the P;DG-P; and
P;DG-P, elements and the boundaries of the control volumes in
two dimension (2D).

2.2.2. Temporal discretisation

Time stepping schemes include first-order schemes, such as the
explicit forward Euler and implicit backward Euler schemes. The
explicit scheme is more easy and straightforward to implement
but imposes restriction on the time step size due to the Courant-
Friedrichs-Lewy (CFL) condition, whereas the implicit scheme is
stable for large Courant numbers but is more dissipative. A new
time discretisation scheme is employed here. When high-order dis-
cretisation is sought, the method is based on traditional Crank-
Nicolson time stepping. The Crank-Nicolson method is often used
because it has the simplicity of a two-level time stepping method,
is unconditionally stable and second-order accurate. However, for
interface-capturing applications, the time discretisation scheme is
based on the explicit forward Euler time stepping method. This in-
troduces negative dissipation and is thus a compressive scheme
which helps maintain sharp interfaces. The use of time steps of
the order of the grid Courant number and above can result in nu-
merical oscillations and unphysical solutions. For this reason an
adaptive 0 parameter is introduced [16] and shown explicity in
Section 2.2.3, in which the forward Euler time stepping method
is obtained for & = 0, the Crank-Nicolson method is obtained for
6 = 0.5 and the backward Euler method is obtained for 6 = 1.
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Fig. 1. (a) Finite element used to discretise the governing equations. The central position of key solution variables (velocity and pressure) are indicated here for the P;DG-P;
(a) and P;DG-P; (b) element pairs in 2D. Diagram also shows the relationship between intersecting control volumes (shaded area with dotted line boundary) and elements

(solid line boundary) for the P; and P, elements.

2.2.3. Spatial discretisation for the global continuity and momentum
equations

In order to discretise the above governing equations, a finite el-
ement representation for u and p is assumed, expressed in terms
of their finite element basis functions Q; and P;, respectively, as:

Nu NP
u=)"Qu; and p=) Pp; (4)
j=1 j=1

Here Ny and W) are the total number of degrees of freedom for
the velocity and pressure representations. Q; = Q;I, where I is the
identical matrix.

When multiplying the global continuity equation with a
quadratic continuous Galerkin (CG) basis function P; and applying
integration by parts once, the discrete form of the global continuity
equation can be obtained as:

/H(Vu”“)dv ~ —/(VP,-)~u"“dV+/
14 14

=TIy

Pn-u™ldl’

+ g Pn.ult'dl' =0, (5)
be

where n is the current time level, n is the outward-pointing unit
normal vector to the surface I' of the domain V, and subscript bc
means the value on the boundary.

When multiplying Eq. (3) with a linear discontinuous Galerkin
(DG) basis function Q; and applying integration by parts twice over
each element e with the 0 time stepping method, the discrete form
of the momentum equation can be obtained as:

/V Q (a (g’t“) +V. (pue u)+Vp-V.| M(Vu—i—VTu)]—pg—Fo)dV

n+1 _ gqn
~ / QJ<’0(uu) + n+1 pg Fg)dv
Ve At
+0 (Sixpy + Sivis ) + (1= 0) (SiRpy + Sivis)

/ Qn(pn+1 n+l)dr — 0’ (6)
where n is the outward-pointing unit normal vector to the surface
Ik of the element Vg, I'y,. is a boundary with prescribed pressure,
6 < {0, 1} is the implicitness parameter, At is the time step size,

Siapv and S;y;s represent the discrete from for the advection and
viscous terms, respectively.

The upwind discontinuous Galerkin method is used for the ad-
vection terms and the value for time level n + 1 is:

ljz\g\]/—/ leum—lv u™ldv — / Q,,Oll"'”n (u™1 = n+1)d1—-
(7)

where u;, is the upwind velocity calculated from the neighbour-
ing element or boundary and the subscript (,) represents the latest
value during the iteration in one time step. The advection term for
the time level n can be obtained in a similar way.

For the viscous terms 7 = (Vu+ VTu), we use a high order
linear scheme which results in a compact stencil with an element
coupling only to its surrounding elements. For example,

S = / Vo Ty — / Qn. (@™ 47 hdr, (8)

where 7, is the value of 7 in the neighbouring element along the
face and the viscous term for the time level n can be obtained in
a similar way.

In order to evaluate the viscous stress tensor T on the bound-
ary of element ' in Eq. (8), we integrate over the volume of two
neighbouring elements in order to calculate the derivatives on the
element face between the two elements. For example, the deriva-
tive in x for the x component of u is obtained as:

QiuydV = Q, dV

Vi1 Vi1 Le1ne2

Qiny (U — upy)dT, (9)

Quuadv = | 0 Wy

Ve2 Vea ox Te1nE2

Qinx (1 — py)dT, (10)

in which I'g; g is the shared face between element 1 (E1) and
element 2 (E2), u is the x component of velocity u and u,, is the
value of u in the neighbouring element along the face I'gjnpgp. It
is worth noting that this is not only validated for discontinuous
elements but also can be applied for continuous elements.

2.2.4. Projection method

The discretised form of the momentum (Eq. (6)) and global
mass balance (Eq. (5)) equations are solved using a pressure pro-
jection method. This effectively eliminates the unknown velocity
and solves a system of equations for pressure or pressure correc-
tion. The discretised momentum and continuity equations, at time
level n + 1, can be written in matrix form respectively, as:

(Mu + A)En+1 — cBnJrl + §Z+1’ (11)
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BTEH-H — §Z+l’ (]2)

where u*! and B”“ are the FEM solution fields for velocity and

pressure, respectively, and s*! and §g+1 are discretised sources.

For generality, we have introduced a matrix A, containing ad-
vection and diffusion contributions, which may be distributed and
thus cannot be easily inverted. This allows the method to be
applied to inertia-dominated or viscous-dominated flows with-
out modification. Since the velocity is discontinuous between ele-
ments, the mass matrix My = '[VE Q;Q;dV is block-diagonal and thus
can be easily inverted, each block being local to an element.

The solution method proceeds by first solving for an intermedi-
ate velocity u™! using a guessed pressure pf“. On the first itera-

tion within a time step one may use E:H = p". Eq. (11) becomes:

(M, + A)ul! = Cp™ +sit. (13)
The matrix equation for velocity to be satisfied is:
Mugn-H +AEQ+] — CBn+1 +§z+1. (14)

Subtracting these two equations the velocity correction equation is
obtained:

Mu (gnJrl _ EQ+1) — C(En+1 _ Bz+1 ) (15)

Multiplying this equation by B'Mj! (see Eq. (12)) and using the
global continuity equation to eliminate out u™*! one obtains the
pressure correction equation:

BTML_zlc(BnH _B:-H) — _BTEZ-H +§g+ll (16)

This equation is solved for p**! and the velocity is corrected using
Eq. (15). B

This pressure equation is typically solved using the implemen-
tation of the GMRES Krylov subspace solver [25] in the PETSc
framework [26]. The Boomer algebraic multi-grid preconditioner
from the HYPRE library [27] is used to accelerate the process. The
velocity solutions are calculated using GMRES [25] with SOR pre-
conditioning.

It is worth mentioning that in the first time step after the mesh
adaption, the interpolated velocity field on the new mesh is pro-
jected to a continuity-satisfied space, otherwise it will not satisfy
the divergence free condition. Thus, the following calculation steps
are performed: the interpolated velocity after a mesh adaptation
is placed into the right hand side (rhs) of the pressure equation
(Eqg. (16)); this is then used to produce a pressure correction that
is placed in the rhs of the velocity correction equation (Eq. (15));
these velocity and pressure corrections are then added to the in-
terpolated velocity and pressures and we commence time stepping
from these values. If this modification is not made, then after a
mesh adaption, there is typically a spike in pressure and velocity
magnitude in isolated regions. This can result in poor accuracy in
these regions and this typically leads to the simulations becoming
unstable.

2.2.5. Interface capturing method

The algebraic VOF method is employed here for the inter-
face capturing. It is based on a compressive advection method,
which uses a novel and mathematically rigorous non-linear Petrov-
Galerkin method that attempts to keep interfaces between com-
ponents sharp. The mass conservation for each components
Eq. (2) is solved using a control volume and finite element for-
mulation, involving a high-order accurate finite element method to
obtain fluxes on the control volume boundaries, where these fluxes
are subject to flux-limiting using a NVD approach [12] to obtain
bounded and compressive solutions for the interface. More details
can be found in [16].

2.2.6. Surface tension model
The surface tension force F, in Eq. (3) is obtained via the con-
tinuum surface force (CSF) method [20] as:

F, = okiif, (17)

where o is the surface tension coefficient, « is the interfacial cur-
vature, ii is the interface unit normal, § is the Dirac delta function.
Here, we use § = |Va| and fi = ‘g—g‘ to reformulate the CSF based
on the component volume fraction as:

F, = o0k Va. (18)

In order to evaluate the curvature «, it is normally estimated
as k = V - i based on the volume fraction or height function tech-
nique [22] in conventional volume of fluid type approaches. How-
ever, as the volume fraction is a step function between zero and
one and it is not easy to calculate a normal, sometimes it will
produce spurious velocities even when using a smoothed volume
fraction to calculate the curvature. The height function technique
is a good alternative and higher order accurate for Cartesian struc-
tured grids, however it is difficult to reconstruct the height func-
tion for a fully unstructured mesh. Recently, a number of mesh-
decouple height function methods have been developed. Owkes
et al. [28] used interface normal aligned columns to get a better
estimate of curvature for under-resolved interfaces and Ivey et al.
[29] constructed height function structured stencils from an un-
structured grid based on interpolation. Both methods use the ge-
ometric VOF schemes on a fixed mesh. In order to deal with al-
gebraic VOF method on an adaptive mesh, two different curvature
approximations are proposed here: distance function approach and
diffused interface approach.

a. Distance function approach
In this approach, the curvature is estimated as:

K = V-ﬁdf, (19)

where fig = % is the interface unit normal calculated from the
signed distance function ¢ from the interface (similar to the level
set function). Contrary to the standard CLSVOF method, only one
function (volume fraction «) is advected to capture the interface
here, and then a distance function ¢ is calculated based on the
volume fraction o by the following three steps.

In the first step, the distance function is initialised as:

$o = (20[ - 1)hmin? (20)

where h,;, is the minimum mesh size around the interface. As we
assume the contour of o = 0.5 is the interface, it can be seen that
Eq. (20) provides a good estimate for the initial distance function,
where it is zero at the interface (required by the definition) and
has a different sign on either side of the interface with a good
guess for the distance in the vicinity of the interface.

In the second step, we follow the re-initialisation process in the
level set method to obtain the actual sign distance function ¢ by
solving the following equation with the initial value ¢g:

%9 _ S0 - loD. 1)

where S(¢g) =<p0/,/<p§ + ¢ is the sign function and ¢ = h, is
used here and 7 is an artificial time. We iterate on Eq. (21) no

more than hg/At times in order to get the converged distance
function solution for |Vg| =1, where 2hs represent the transition
region around the interface and hs = 1.5h,;; and At = 0.1h;, are
used here. It is worth noting that a discontinuous Galerkin method
for ¢ is used here during iteration in order to make it very accu-
rate. In addition, we use the pressure basis functions as it is high
order.
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Fig. 2. Interface and mesh under the single-vortex shearing flow for T = 4 and hy,;, = 1/512. The adaptive mesh provides a fine resolution equivalent to that of a 512 x 512
uniform mesh.

In the last step, the calculated discontinuous distance func- where N, is the number of control volumes connected to the con-
tion (¢P%) is projected to a continuous space (¢¢) by a volume-  tinuous function ¢ and V; is the volume of the control volume
weighted interpolation as: (see Fig. 1 for example). Then the continuous function ¢ is used

Ney . DC to calculate the gradient, which helps to accurately estimate the
@ — i Vi (22) unit normal fiy and the curvature k.

Ney
2 Vi
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b. Diffused interface approach
In this approach, we use a diffused interface based on the orig-
inal volume fraction « to estimate the curvature as:

K = V . ﬁdi’ (23)

where fiy; = % is the interface unit normal calculated from the
diffused volume fraction i/ from the interface. In contrast to some
smoothing techniques for the volume fraction to calculate the cur-
vature, we obtain the diffused volume fraction by solving a diffu-
sion equation as:

Y
5. =DAY, (24)

where 7 is also an artificial time and D is an artificial diffusion co-
efficient. Here, we initialise the diffusion value based on the origi-
nal volume fraction « as:

% = ahminv (25)

which is relevant to the dimension of the computational domain
or size of the mesh. After that, we solve the Eq. (24) with a

.0 T T T T T T T
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
X

(a) calculated distance function for x

\
\
. \ second order
. N
. \
B \
N
3
10 10 ,
number of elements
Fig. 3. Average error of the interfacial location as function of the number of ele-
ments. The order of convergence is about 2 and the first-order slope is shown as
dash-dotted line and the second-order slope is shown as dashed line.

(a) computed temporal evolution (b) comparison

Fig. 5. Falling liquid film for Re=20.1 and We =33.5 with forcing frequency
27 Hz: (a) numerical results for the evolution of the falling liquid film flow with
0.05 s interval (the film has been scaled 10 times in the x direction in order the
see the wave) and (b) comparison of wave shape between experiment (left) and
simulation (right).

discontinuous Galerkin finite element method with A7 =1 and
D = hp, for a few iteration (normally less than 5 times as we
only need the diffused value around the interface), in order to
get a high-order accurate result. A diffused interface can be ob-
tained with a smooth variation for the diffused volume frac-
tion v, which provides an easy way to calculate the gradient of
its value.

Finally, similar to the distance function approach, the calculated
discontinuous diffused volume fraction is projected to a continuous
space, which is used to approximate the unit normal fi; and the
curvature k.

.0 T T T T T T T
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
X

(b) diffused interface for

Fig. 4. Numerical results for the velocity field with different curvature calculations after one time step with At = 10-% for the inviscid static drop in equilibrium for density
ratio p;/p; = 10° for the structured mesh. Both have the same scale and the solid line represents the interface.
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Fig. 6. Snapshots of three-dimensional numerical simulation of a single rising bubble. Top panel shows the zoom in interface from t =0 s to t = 0.25 s with 0.05 s interval.
Bottom panel shows the profile alongside with the unstructured mesh at the bottom and central slices for t =0 s and t = 0.25 s.

2.2.7. Mesh adaptivity algorithm

A common problem encountered by model users is that the
computational mesh used in a numerical simulation has to be gen-
erated a priori to the solution procedure. It is therefore difficult
to resolve adequately the local physical features at a first attempt,
and the mesh often needs to be adapted to enable the solution
procedure to satisfy resolution requirements. Importantly, this also
allows for a reduction in computational effort which is crucial for
complex applications.

The present model adapts the mesh to the solution with-
out sacrificing the integrity of the boundary (geometry), or in-
ternal boundaries (regions) of the domain. It circumvents the
complexities of boundary-conforming Delaunay methods by op-
erating on the existing mesh. The error measure employed is

based on the curvature of the solution and provides a direc-
tional measure. The objective is to obtain a mesh which has
a uniform interpolation error in any direction. This is accom-
plished with use of a metric which is related to the Hessian
of the solution field. Appropriate scaling of the metric enables
the resolution of multi-scale phenomena as encountered in mul-
tiphase flows. The resulting metric is used to calculate element
size and shape. The mesh optimisation method is based on a se-
ries of mesh connectivity and node position searches of the land-
scape, defining mesh quality which is gauged by a functional.
The mesh modification thus fits the solution field(s) in an op-
timal manner. The anisotropic mesh adaption technique devel-
oped by [30] is used here. In this paper, the pressure and vol-
ume fraction projection use the consistent interpolation, while the
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Fig. 7. Comparison of the bubble shape between experimental measurement
[34] (left) and numerical simulations (right) together with the velocity field and
mesh on the central plane.

velocity projection uses a conservative Galerkin interpolation tech-
nique [31].

3. Numerical examples

3.1. Single vortex

Before we apply our method to coupled fluid flow problems, we
first test our control volume-based interface-capturing method for
a pure advection problem where the fluid interface moves under
a prescribed velocity field. The single vortex problem [4], which is
widely used as a benchmark test, is considered here using P, el-
ements. The forward Euler time-stepping scheme is used here for
the advection case, whereas the Crank-Nicolson and backward Eu-
ler schemes are employed for the volume fraction and momentum
equations in the rest of the paper. A circle (radius 0.15) is initially
centered at (0.50, 0.75) in a unit square computational domain. The
velocity field is defined by the stream function W as:

_ 1 . 2 2 wt _ ov _ ow
\IJ_;sm (7rx) cos (ny)cos(7>, u_—W, U—W,
(26)

where u and v are the horizontal and vertical components of the
velocity field, respectively.

The initial interface shape is deformed by the velocity field and
return to its initial state at t =T, where T =4 is used in the sim-
ulation. In order to avoid the influence of time step on the results,
At =2.5 x 10~% is used for three different computations with min-
imum mesh size hy;, as 1/128, 1/256 and 1/512. Fig. 2 shows the
interface shape alongside the mesh during the simulation for the
computation with hy;, = 1/512. It can be seen that the circle is
stretched from t = 0 under the specified velocity field until t =2
reaching its maximum deformation. At this stage, it is a spiral
shape with very elongated filament which is very thin at the tail.
The interface has been efficiently captured in the computation by
using the adaptive unstructured mesh, which provides fine resolu-
tion equivalent to that of a 512 x 512 uniform mesh. After t =2,
the velocity field is reversed and the interface shape is returned
to its initial shape which is well captured during the computation.
This test demonstrates the power of the adaptive mesh approach,
which can refine the mesh in the vicinity of the interface or an
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Fig. 8. Number of total elements for the three-dimensional numerical simulation of
a single rising bubble with an adaptive unstructured mesh.

Table 1

Error in velocity and pressure drop after one time step with At =106
for the inviscid static drop in equilibrium with three different density
ratios when the exact curvature is specified for the structured mesh.

Method pilp2 |U|pa E(AP)oral E(AP)partial
Present 1 7.77 x 107 658 x 102 3.35x 107"
10° 9.09 x 107  6.58 x 1072 3.40 x 10-20
10° 9.11x107  658x102 6.78 x 10721
CSF model 1 125x10"®  289x102 273 x10°1°
[22] 10° 497 x1078  289x102 3.89 x 10-16
10° 570 x 10-®  2.89x 102 1.95x 10716

area of interest, and reduce computational effort without sacrific-
ing accuracy.

As the location of the interface is known (which is represented
as the contour of the volume fraction at o = 0.5), the deviation of
the interface position after one rotation can be calculated as:

1N
2 2
error = 21 |\/(x 0.5)2+ (y —0.75)2 — 0.15], (27)

where N is the number of points along the interface. Fig. 3 shows
the convergence for the computations with three different simu-
lations. It can be seen that the present method is close to second
order accurate, which is consistent with the quadratic polynomial
function used for the P, finite element type.

3.2. Static drop in equilibrium

In order to validate the proposed framework for surface tension,
we consider the inviscid static drop in equilibrium problem [22],
which is a benchmark case for testing the surface tension method
without viscosity and gravity. We follow the same computational
setup as in [22]. A drop (radius R = 2) is positioned at the centre
of the computational domain [0, 8] x [0, 8], the surface tension co-
efficient o = 73, the density inside the drop is p; = 1 and outside
density p, is varied from O to 1. A uniform computational mesh
with 40 layers in each direction is used for the computations with
the P;DG-P, element pair.

In the first set of calculations, we test the coupling of surface
tension force with the pressure gradient by specifying the exact
curvature Kexact = 1/R = 0.5. Table 1 shows the comparison for the
maximum velocity and pressure jump errors after one time step
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Fig. 9. Comparison of the evolution of the bubble shape between the numerical simulations (top and middle) and experimental measurement [37] (bottom) for the co-axial
coalescence of two bubbles initially at [0, 2.5D, 0] and [0, D, 0] in a quiescent liquid. The numerical simulation shows the interface shape alongside with the unstructured
mesh at the bottom and central slices from t =0 s to t = 0.15 s with 0.03 s interval and the time difference between subsequent photographs is 0.03 s in the experiments.

for three different density ratios, and also with the results obtained
for the structured Cartesian mesh in [22]. These errors are defined
as:

|u|max = max(|u|), (28)

APy — APeac
E(AP)y, = T APoe (29)

where APexact = 0k =36.5, and w denotes different evaluation
ways by using pressure points in the areas of r < R and r > R
(total) and the areas of r < R/2 and r > 3R/2 (partial), where ‘to-
tal’ considers the whole region inside and outside the drop and
‘partial’ considers some parts of the region by avoiding the transi-
tion zone. It can be seen from Table 1 that the spurious currents
are very small, related to the machine accuracy. For the pressure
drop, the total error E(AP) is of the order of 1072, and is inde-
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Fig. 10. Comparison of the evolution of the bubble shape between the numerical simulations (top and middle) and experimental measurement [37] (bottom) for the oblique
coalescence of two bubbles initially at [0, 2.5D, 0] and [0.8D, D, 0] in a quiescent liquid. The numerical simulation shows the interface shape alongside with the unstructured
mesh at the bottom and central slices from t = 0.03 s to t = 0.18 s with 0.03 s interval and the time difference between subsequent photographs is 0.03 s in the experiments.

pendent of the density ratio. The partial error E(AP) ;5 is much
smaller because the error measurement does not include the tran-
sition region. Table 1 also shows that the present surface tension
model, which can be extended for the fully unstructured mesh,
is comparable to the balanced-force surface tension model for the
structured Cartesian mesh.

In the second set of calculations, we test the effects of differ-
ent techniques for curvature calculations for the spurious veloc-
ity and pressure drop for the same setup above for density ra-
tio p1/py = 103. Table 2 shows the results for four different tech-

Table 2

Error in velocity and pressure drop after one time step with At = 106 for the in-
viscid static drop in equilibrium for density ratio p;/p, = 10> with different cur-
vature calculation techniques for the structured mesh.

Method U] ax E(AP)otal E(Ap)partial

Exact k 9.09 x 10719 658 x 1072 3.40 x 1020
Exact distance function for « 239%x10° 6.70x 1072 3.62 x 103
Calculated distance function for k622 x 107> 7.02x10"2 3.80 x 1073
Diffused interface for « 231x10° 6.61x1072 4.60x 103
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Table 3

Error in velocity and pressure drop after one time step with At =105 for the
inviscid static drop in equilibrium for density ratio /0, = 10° with the distance
function approach and diffused interface approach for the curvature calculation for
the fully unstructured mesh.

Method Iulmax E(AP)tota] E(Ap)partial
Calculated distance function for k1.6 x 1074 652 x 102 7.46 x 104
Diffused interface for « 15x10% 637x102 25x10°3

niques: the first is for the given exact curvature; the second is
for the curvature calculated from the analytically given distance
function (the distance function is given rather than solving from
Eq. (21); the third and fourth are for the distance function ap-
proach and diffused interface approach for the curvature calcu-
lation proposed in this study, respectively. It can be seen from
Table 2 that the two approaches for the curvature calculation are
in the same order of accuracy, whereas the diffused interface ap-
proach performs slightly better than the distance function ap-
proach, and even better or close to the case when the distance
function is specified. The velocity fields obtained from the two ap-
proaches for the curvature calculation are shown in Fig. 4.

In the third set of calculations, we test the distance function
approach and diffused interface approach for the curvature calcu-
lation proposed in this study for the same setup above for density
ratio p;/p, = 103, but with a fully unstructured mesh with similar
resolution compared to the structured mesh. Table 3 shows the re-
sults for the two approaches and it can be seen that similar results
are obtained for the unstructured mesh. Compared to the results
for the structured mesh, the pressure drop is in the same order
whereas the spurious currents are larger due to the curvature ap-
proximation for the unstructured mesh.

As shown in Fig. 4 and Table 3, slightly smaller spurious veloc-
ities are observed when using the diffused interface approach to
calculate k, thus we used the diffused interface approach for the
curvature calculation in the rest of the paper.

3.3. Falling liquid film

A 2D falling liquid film in contact with air is considered here
to test the surface tension treatment in a fluid flow problem. We
follow the same computational setup as in [32]. The computa-
tional domain dimensions are [0, 600hy] x [—hy, 3hy], where hy
is the undisturbed film thickness (Nusselt height). The computa-
tional domain is discretised by 1500 x 25 layers, whereas the
mesh is uniform in the x direction and mesh size is Ay =0.1hy
from [—hy, 0.5hy] and gradually increases to the end in the y di-
rection. A no-slip boundary condition is applied at both walls in
the water and air side, and a zero-gradient boundary condition is
applied at the outlet. At the inlet x = 0, a parabolic velocity profile
is imposed for the liquid phase as:

where u,y is the average velocity containing the forcing perturba-
tion:

Uy = un(1 + & sin(2Ft))), (31)

in which uy is the Nusselt velocity, £ is the disturbance magnitude
and F is the forcing frequency. The velocity for the air phase at the
inlet is set as:

3 y y
i 0)=>(14+5—)(1- 55— |ua. 32
uip(y > 0) 2( +3hN>< 3hN)uav (32)
The simulation is initialised with a flat film with a fully developed
velocity field as prescribed at the inlet. The computation is carried
out using the P;DG-P, element pair. The liquid film flow is simu-

2
lated for Re = "“%h” =20.1 and We = pugﬂ = 33.5 with the com-

Table 4
Computational parameters used for the falling liquid
film simulation.

variables value units

Film thickness hy 1.83x 104 m

Mean velocity uy 0.10865 m/s
Forcing frequency F 27 Hz
Liquid density 1000 kg/m?
Liquid viscosity 9.892 x 1074 kg/(m*s)
Air density 1.125 kg/m?
Air viscosity 1.81 x 10> kg/(m*s)
Surface tension 0.072 N/m

putational parameters shown in Table 4, which corresponds to the
experimental case reported in [33].

Fig. 5(a) shows numerical results for the evolution of the falling
liquid film under the inlet forcing perturbation. It can be seen that
small waves grow in time and become largest in the development
region. The waves are transported downstream from the inlet to
the outlet. During the evolution, large waves travel faster to catch
up with smaller waves due to gravity acceleration, forming even
larger waves. The biggest wave merges with the front wave until
it leaves the outlet. After that, nearly steady-state finite-amplitude
travelling-waves are observed behind, which have nearly the same
shape and amplitude, travelling with the same speed. The calcu-
lated steady-state wave shape is compared with the experimen-
tal measurement in Fig. 5(b), which shows they are very similar.
The computed wave speed in the simulation is 0.213 m/s, which
also agrees well with the measured wave speed 0.217 m/s in the
experiment [33].

3.4. Single rising bubble

To validate the numerical framework for surface tension model
with mesh adaptivity, we conduct three-dimensional (3D) numeri-
cal simulations of a single rising bubble and compare results with
the experiments of [34] (case A in Table 1 in [34]), which have
been used to validate two-phase flow codes [21,23,35,36]. In the
simulation for the bubble with diameter D, we used a relative
large computational domain 6D x 12D x 6D to avoid boundary ef-
fects whereas the centre of bubble is initialised at y = 2.5D. The
computational parameters have been shown in [34] and in this
case, the Reynolds number (Re = AYRY hased on the liquid den-

I
sity, rising velocity V and effective radius R is 9.7, the Eotvos num-

ber (Eo = gAULDZ) is 38.9 and the Morton number (M = g‘;;ﬁf) is
6.4 x 1072, The calculation is carried out with the P;DG-P; ele-
ment pair with the minimum length h,;, = 0.01D being used in
the test, which provides a fine resolution equivalent to that of a
600 x 1200 x 600 uniform mesh.

Fig. 6 shows a number of snapshots for the numerical results
of the 3D rising bubble. It can be seen that the initially spherical
bubble rises under the action of buoyancy, and undergoes defor-
mation, resulting in the formation of the well-known cap-shaped
bubbles. Fig. 6 also shows that the bubble shape has been well
captured by refining the unstructured mesh in the vicinity of the
deforming bubble preferentially. In contrast, the regions upstream
and downstream of the bubble, which require a lower degree of
resolution, have coarser elements, in order to maximise computa-
tional efficiency. At later stage, the bubble reaches a stable shape
with a constant rising speed under the balance of surface tension,
inertial force and the viscous force. Fig. 7 shows the comparison of
the steady bubble shape between the experimental measurement
and numerical simulations, which is in a good agreement. In addi-
tion, the predicted velocity field and the unstructured mesh along
the central plane are also shown in Fig. 7.

In order to demonstrate the efficiency of the adaptive unstruc-
tured mesh simulation, Fig. 8 shows the time history of the total
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number of elements during the simulations. Initially, only a few el-
ements are used to resolve the bubble shape. The total number of
elements gradually increases as finer meshes are placed to resolve
the bubble deformation, and reaches a certain level when the bub-
ble becomes a stable shape. Compared to the effective mesh size
in a uniform Cartesian grid (a 600 x 1200 x 600 uniform mesh),
the maximum total number of elements is only about 0.05% of the
fixed mesh case, which can reduce the computational efforts with-
out sacrificing accuracy.

3.5. Coalescence of two bubbles

Here we consider merging of two bubbles with co-axial and
oblique coalescence. Two spherical gas bubbles with diameter D =
0.01 m are initially in a quiescent liquid in a computational domain
[-2D, 2D] x [0, 8D] x [—2D, 2D]. For the co-axial case, the centre of
the upper bubble is at [0, 2.5D, 0] and the centre of the lower bub-
ble is at [0, D, 0]; whereas for the oblique case, the centre of the
lower bubble is shifted to [0.8D, D, 0]. The density and viscosity
ratio (gas to liquid) is 0.001 and 0.01, respectively. For this prob-
lem, the Eotvos number (Eo = gAgﬂ) is 16 and the Morton num-
ber (M = ggj{f{’) is 2 x 10~* based on the liquid. In the simula-

tions, an adaptive unstructured mesh with a minimum edge length
Rmin = 0.01D is used here with the P;DG-P; element pair.

Fig. 9 shows the computed evolution of the bubble shape along
with the adapted mesh and corresponding experimental pho-
tographs [37] for the co-axial coalescence case. It can be seen that
compared to the leading bubble, the evolution of the tailing bubble
is totally different, which is in the wake region of the leading bub-
ble. The tailing bubble catches the leading bubble later on to form
one single bubble. The computed evolution of the bubble shape is
well captured by the adaptive unstructured mesh, which is in a
good agreement with the experimental observations of [37].

For the oblique coalescence case, Fig. 10 shows the computed
evolution of the bubble shape along with the adapted mesh and
corresponding experimental photographs [37]. It can be seen that
the dynamics are similar to the previous case and again good
agreement between the computed and measured results is ob-
tained here. It is worth noting that the flow field is clearly asym-
metrical and three-dimensional, which cannot be captured in an
axisymmetrical calculation.

3.6. Milkcrown problem

Finally, we consider the so-called ‘milkcrown’ problem which
involves complex interface topology change including coalescence
and breakup. Some researchers have studied the milkcrown prob-
lem [38,39] in 3D on a fixed mesh, here we simulate this problem
with an adaptive mesh using the P;DG-P, element pair in order
to demonstrate the capability of the present framework. We follow
the same setup as in [38] and [39], where a droplet (with diame-
ter D = 0.0053 m) falls down with a speed of 2 m/s into thin film
of the same liquid with 0.001 m depth. The density of the liquid
and air is 1000 kg/m3 and 1.25 kg/m?3, respectively. The viscosity
of the liquid and air is 1.7 x 10~3 Pa s and 1.0 x 10-6 Pa s, respec-
tively. The surface tension coefficient is 0.05 N/m and the acceler-
ation due to gravity is 9.8 m/s%. For this case, the Weber number
for the liquid is We = 426. We used an adaptive unstructured mesh
with the minimum length h,;, ~ D/33, which has the same reso-
lution as mentioned in [38] and [39], but with much less number
of degree of freedoms due to the adaptive mesh.

Fig. 11 shows snapshots of the interface shape along with the
adaptive mesh used in the simulation. Similar results have been
obtained in the present study compared to other results on a fixed
mesh [38,39]. It can be seen that a liquid rim is generated af-
ter the droplet impact, which consequently breaks into smaller

Fig. 11. Snapshots of numerical simulation of a droplet impact on a thin lig-
uid layer. The droplet diameter is 0.0053 m and depth of the thin film is 0.001
m. The droplet initial velocity is 2 m/s which corresponds to a Weber num-
ber of 426. The predicted interface along with the adaptive unstructured mesh
at three slices are shown at different times from the top left to bottom right at
t =0.0,0.001,0.0025, 0.005, 0.0075, 0.01, 0.0125, 0.015 s.

droplets. Fine mesh resolution is placed in the vicinity of the in-
terface whereas the mesh coarsens away from the interface. Fig. 12
shows the time history of the total number of elements during the
simulations and compared with the number for a fixed Cartesian
grid with the equivalent resolution. It can be seen that the total
number of elements gradually increases in order to capture some
smaller structures in the flow and the maximum number is only
about 13% of the fixed mesh case, showing the efficiency of the
present method.
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Fig. 12. Numbers of total elements for the numerical simulation of a droplet impact
on a thin liquid layer with a fixed and adaptive, unstructured mesh.

4. Conclusions

In this paper a new balanced-force control volume finite ele-
ment method with adaptive anisotropic unstructured meshes has
been presented for interfacial flows with surface tension. A force-
balanced algorithm for the surface tension implementation has
been presented, with two different approaches to accurately es-
timate the curvature for a fully unstructured mesh, minimising
the spurious velocities often found in such flow simulations. The
numerical framework consists of a control volume and finite el-
ement formulation, a volume of fluid type method for the inter-
face capturing based on a compressive advection method and an
anisotropic adaptive mesh algorithm, which can modify and adapt
unstructured meshes to better represent the underlying physics
of interfacial problems and reduce computational effort without
sacrificing accuracy. The numerical framework has been validated
with several benchmark problems for interface advection, surface
tension for equilibrium droplet, and dynamic fluid flow problems
(fluid films, bubbles and droplets) in 2D and 3D.

The results presented here established with sufficient confi-
dence that this method can be used to successfully model mul-
tiphase flows in a wide range of applications. This approach has
the potential to be used for an arbitrary number of components
although that has not been demonstrated here. Future work will
include parallel computing and surfactant modelling.
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