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A SHARP UPPER BOUND FOR THE LATTICE PROGRAMMING
GAP

ISKANDER ALIEV

Abstract. Given a full-dimensional lattice Λ ⊂ Zd and a vector l ∈ Qd
>0, we con-

sider the family of the lattice problems

Minimize {l · x : x ≡ r( mod Λ),x ∈ Zd
≥0} , r ∈ Zd.(0.1)

The lattice programming gap gap(Λ, l) is the largest value of the minima in (0.1) as
r varies over Zd. We obtain a sharp upper bound for gap(Λ, l).

1. Introduction and statement of results

For linearly independent b1, . . . , bk in Rd, the set Λ = {
∑k

i=1 xibi, xi ∈ Z} is a k-
dimensional lattice with basis b1, . . . , bk and determinant det(Λ) = (det[bi·bj]1≤i,j≤k)1/2,
where bi · bj is the standard inner product of the basis vectors bi and bj. The points
x,y ∈ Rd are equivalent modulo Λ, denoted as x ≡ y( mod Λ), if the difference x− y
is a point of Λ.

For a positive rational vector l ∈ Qd
>0, a d-dimensional integer lattice Λ ⊂ Zd and

an integer vector r ∈ Zd we consider the lattice problem

Minimize {l · x : x ≡ r( mod Λ),x ∈ Zd≥0} .(1.1)

Let m(Λ, l, r) denote the value of the minimum in (1.1). We are interested in the lattice
programming gap gap(Λ, l) of (1.1) defined as

gap(Λ, l) = max
r∈Zd

m(Λ, l, r) .(1.2)

The lattice programming gaps were introduced and studied for sublattices of all
dimensions in Zd by Hoşten and Sturmfels [14]. Computing gap(Λ, l) is known to be
NP-hard when d is a part of input (see [1]). For fixed d the value of gap(Λ, l) can be
computed in polynomial time (see Section 3 in [14], [10] and [9]).

The lower and upper bounds for gap(Λ, l) in terms of the parameters Λ, l were given
in [1]. The lower bound is known to be sharp. In this paper we improve on the upper
bound and show that the obtained bound is attained for parameters Λ, l that satisfy
certain arithmetic properties.

Date: January 21, 2017.
1



2 ISKANDER ALIEV

Let | · | denote the Euclidean norm and let γd be the d-dimensional Hermite constant
(see e.g. Section IX.7 in [7]). In [1] it was shown that for any l ∈ Qd

>0, d ≥ 2, and any
d-dimensional lattice Λ ⊂ Zd

gap(Λ, l) ≤ dγ
d/2
d det(Λ)(

∑d
i=1 li + |l|)

2
−

d∑
i=1

li .(1.3)

The bound (1.3) was obtained using a geometric argument based on estimating the
covering radius of a simplex, associated with the vector l, via the covering radius of
the unit d-dimensional ball. Note that by a result of Blichfeldt (see e.g. §38 in Chapter

6 of [13]) γd ≤ 2
(
d+2
σd

)2/d
, where σd is the volume of the unit d-ball; thus γd = O(d).

It follows from results in [2, Section 6] that the order gap(Λ, l) = Od,l(det(Λ)), where
the constant depends on d and l, cannot be improved.

Let ‖ · ‖∞ denote the maximum norm. In this paper we use coverings that are based
on the arithmetic properties of the integer lattices and improve the bound (1.3) as
follows.

Theorem 1.1. For any l ∈ Qd
>0, d ≥ 2, and any d-dimensional lattice Λ ⊂ Zd

gap(Λ, l) ≤ (det(Λ)− 1)‖l‖∞.(1.4)

Using a link between the lattice programming gaps and the Frobenius numbers we
also show that the bound (1.4) is sharp.

Theorem 1.2. For d ≥ 2 and any positive integer D there exist l ∈ Zd>0 and a lattice
Λ ⊂ Zd of determinant det(Λ) = D such that

gap(Λ, l) = (D − 1)‖l‖∞.(1.5)

2. Coverings of Rd and lattice programming gaps

Recall that the Minkowski sum X + Y of the sets X, Y ⊂ Rd consists of all points
x + y with x ∈ X and y ∈ Y . For a set K ⊂ Rd and a lattice Λ ⊂ Rd, the Minkowski
sum K + Λ is a packing if the translates of K are mutually disjoint, a covering if
Rd = K + Λ and a tiling if it is both packing and covering, simultaneously.

Let Λ be a lattice in Rd with basis b1, . . . , bd. Let Λi denote the lattice generated
by the first i basis vectors b1, . . . , bi and let πi : Rd → spanR(Λi−1)

⊥ be the orthogonal
projection onto the subspace spanR(Λi−1)

⊥ orthogonal to b1, . . . , bi−1.

The vectors b̂i = πi(bi) can be obtained using the Gram-Schmidt orthogonalisation
of b1, . . . , bd:

b̂1 = b1 ,

b̂i = bi −
∑i−1

j=1 µi,j b̂j , j = 2, . . . , d ,
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where µi,j = (bi · b̂j)/|b̂j|2.
Define the box B = B(b1, . . . , bd) as

B = [0, b̂1)× · · · × [0, b̂d) .

We will need the following well-known and useful observation.

Lemma 2.1. B + Λ is a tiling of Rd.

Tilings of Rd with lattice translates of B were implicitly used already in the classical
Babai’s nearest lattice point algorithm (see [3] and Theorem 5.3.26 in [11]) and in
the work of Lagarias, Lenstra and Schorr on Korkin-Zolotarev bases (see the proof of
Theorem 2.6 in [16]). Lemma 2.1 was also explicitly stated (with translated B) by Cai
and Nerurkar (see [6], Lemma 2). A proof of this result can be obtained by modifying
the proof of Theorem 5.3.26 in [11]. We also remark that for the purposes of this paper
we only need the coverings of Rd by the lattice translates of the closure of B.

In what follows, Kd will denote the space of all d-dimensional convex bodies, i.e.,
closed bounded convex sets with non-empty interior in the d-dimensional Euclidean
space Rd. Let also Ld denote the set of all d-dimensional lattices in Rd. For K ∈ Kd
and Λ ∈ Ld the covering radius of K with respect to Λ is the smallest positive number
ρ such that any point x ∈ Rd is covered by ρK + Λ, that is

ρ(K,Λ) = min{ρ > 0 : Rd = ρK + Λ} .

For further information on covering radii in the context of the geometry of numbers
see e.g. Gruber [12] and Gruber and Lekkerkerker [13].

Given l ∈ Qd
>0, consider the simplex ∆l =

{
x ∈ Rd

≥0 : l · x ≤ 1
}

. As it was shown
in [1], the lattice programming gap can be expressed via the covering radius of ∆l with
respect to Λ:

gap(Λ, l) = ρ(∆l,Λ)−
d∑
i=1

li .(2.1)

3. Proof of Theorem 1.1

We will obtain an upper bound for gap(Λ, l) in terms of l and certain parameters of
the lattice Λ that will imply (1.4).

By Theorem I (A) and Corollary 1 in Chapter I of Cassels [7], there exists a basis
b1, . . . , bd of the lattice Λ of the form

b1 = v11e1 ,
b2 = v21e1 + v22e2 ,
...
bd = vd1e1 + · · ·+ vdded ,

(3.1)
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where ei are the standard basis vectors of Zd, the coefficients vij are integers, vii > 0
and 0 ≤ vij < vjj.

Lemma 3.1. We have

gap(Λ, l) ≤ l1v11 + · · ·+ ldvdd −
d∑
i=1

li .(3.2)

Proof. Note that the Gram-Schmidt orthogonalisation of b1, . . . , bd has the form

b̂1 = v11e1, b̂2 = v22e2, . . . , b̂d = vdded .(3.3)

Hence, the box B = B(b1, . . . , bd) can be written as

B = [0, v11)× · · · × [0, vdd) .

By Lemma 2.1, B + Λ is a tiling of Rd. In particular, B + Λ covers Rd.

Since B ⊂ (l1v11 + · · ·+ ldvdd)∆l, we have

ρ(∆l,Λ) ≤ l1v11 + · · ·+ ldvdd .

By (2.1), the bound (3.2) holds.

�

Consider the simplex ∆ = conv {1,p1, . . . ,pd}, where conv {·} denotes the convex
hull, 1 is the all-one vector and

p1 = (det(Λ), 1, . . . , 1)t ,
p2 = (1, det(Λ), . . . , 1)t ,
...
pd = (1, 1, . . . , det(Λ))t .

It is easy to see that

{x ∈ Rd
≥1 : x1 · · ·xd = det(Λ)} ⊂ ∆ .(3.4)

Since ∆ is a convex bounded polyhedron, the maximum of the linear function l ·x over
∆ is attained at one of its vertices 1,p1, . . . ,pd. Therefore

max{l · x : x ∈ ∆} = (det(Λ)− 1)‖l‖∞ +
d∑
i=1

li .(3.5)

Since v11 · · · vdd = det(Λ), we obtain by (3.4) and (3.5)

l1v11 + · · ·+ ldvdd ≤ (det(Λ)− 1)‖l‖∞ +
d∑
i=1

li .(3.6)

By (3.2) and (3.6) we obtain (1.4).
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4. Proof of Theorem 1.2

In this section we will use classical results of Brauer [4] and Brauer and Seelbinder
[5] to prove Theorem 1.2. In the course of the proof we also show that the bound (3.2)
in Lemma 3.1 is sharp.

Let a = (a1, . . . , ad+1)
t ∈ Zd+1

>0 be a positive integer vector with coprime entries, that
is gcd(a1, . . . , ad+1) = 1. Consider the lattice Λ = Λ(a) defined as

Λ = {x ∈ Zd : a2x1 + · · ·+ ad+1xd ≡ 0 ( mod a1)} .
Note that det(Λ) = a1 (see e.g. Corollary 3.2.20 in [8]).

Let

f1 = a1, f2 = gcd(a1, a2), . . . , fd+1 = gcd(a1, a2, . . . , ad+1) = 1 .

Consider the basis b1, . . . , bd of the lattice Λ given by (3.1). The next lemma shows
that the Gram-Schmidt box B(b1, . . . , bd) is entirely determined by the parameters fi.

Lemma 4.1. The box B = B(b1, . . . , bd) has the form

B =

[
0,
f1
f2

)
×
[
0,
f2
f3

)
× · · · ×

[
0,

fd
fd+1

)
.

Proof. By the definition of the box B and (3.3), it is enough to show that

v11 =
f1
f2
, v22 =

f2
f3
, . . . , vdd =

fd
fd+1

.(4.1)

Recall that Λi denotes the sublattice of Λ generated by the first i basis vectors
b1, . . . , bi. We can write Λi in the form

Λi =

{
(x1, . . . , xi, 0, . . . , 0) ∈ Zd :

a2
fi+1

x1 + · · ·+ ai+1

fi+1

xi ≡ 0

(
mod

a1
fi+1

)}
.

Hence, det(Λi) = a1/fi+1. On the other hand, (3.1) implies that det(Λi) = v11v22 · · · vii.
Since det(Λ) = v11v22 · · · vdd = a1, we have fi+1 = vi+1 i+1 · · · vdd for i ≤ d − 1, which
immediately implies (4.1).

�

The Frobenius number F(a) associated with the integer vector a is the largest integer
number which cannot be represented as a nonnegative integer combination of the ai’s.
The problem of finding F(a) has a long history and is traditionally referred to as the
Frobenius problem, see e. g. [18].

Set l(a) = (a2, . . . , ad+1)
t. It is known (see e.g. proof of Theorem 1.1 in [1] and

Section 5.1 in [17]) that

gap(Λ(a), l(a)) = F(a) + a1 .(4.2)

Note also that, in this special case, (2.1) follows from Theorem 2.5 of Kannan [15].
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By Lemma 4.1, the bound (3.2) for gap(Λ(a), l(a)) given by Lemma 3.1 can be
obtained by replacing F(a) on the right hand side of (4.2) by the estimate

F(a) ≤ C(a) := a2
f1
f2

+ · · ·+ ad+1
fd
fd+1

−
d+1∑
i=1

ai(4.3)

given in Brauer [4]. It should be remarked here that Brauer [4] rather worked with the

quantity F+(a) = F(a) +
∑d+1

i=1 ai, the largest number which cannot be represented
as a positive integer combination of the ai’s. Brauer [4] and, subsequently, Brauer
and Seelbinder [5] proved that the bound (4.3) is sharp and obtained the following
necessary and sufficient condition for the equality F(a) = C(a).

Lemma 4.2 (see Theorem 5 in [4] and Theorem 1 in [5]). Let a = (a1, . . . , ad+1)
t ∈

Zd+1
>0 , d ≥ 2, with gcd(a1, . . . , ad+1) = 1. Then F(a) = C(a) if and only if for m =

3, 4, . . . , d+ 1 the integer am/fm is representable in the form

am
fm

=
m−1∑
i=1

ai
fm−1

ymi(4.4)

with integers ymi ≥ 0.

For s = 2, 3, . . . , d+ 1, let

a(s) =

(
a1
fs
, . . . ,

as
fs

)t
.

The condition (4.4) is satisfied, in particular, if

am
fm

> F(a(m−1)) .

Hence the bound (3.2) in Lemma 3.1 is sharp and the vectors a satisfying (4.4) can be
easily constructed. To show that (1.4) is sharp, we will use a special case of Lemma
4.2, that regards the optimality of the Schur’s upper bound for the Frobenius number
(see [4]). Suppose that a vector a ∈ Zd+1

>0 with coprime entries satisfies the following
conditions:

(i) D = a1 ≤ a2 ≤ · · · ≤ ad+1 ,
(ii) a2 ≡ a3 ≡ · · · ≡ ar( mod a1) for some index r ≥ 3 ,
(iii) ar+1 = ar+2 = · · · = ad+1 .

(4.5)

By Theorem 3 in [4] (cf. Theorem 4 ibid.) conditions (4.5) imply that F(a) =
a1ad+1−a1−ad+1. Hence gap(Λ(a), l(a)) = (a1−1)ad+1 = (D−1)‖l‖∞. The theorem
is proved.
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