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Summary 

Without the protection provided by anti-corrosive paints, vehicles, bridges and 

industrial heritage would not have survived for long.  Where these coatings fail or 

are damaged, ferrous metal requires further protection.  To provide insight into 

coating failure a survey of paint layers and corrosion products found on historic 

wrought iron and mild steel was carried out around Scotland.  Corrosion has also 

been found to be a major contributor to structural damage of historic armoured 

vehicles.   

When choosing coatings within conservation, decisions are based on qualitative 

data and practitioners’ experience rather than evidence based standards for specific 

ferrous alloys in particular environmental conditions.  Limited quantitative data exists 

hence this research seeks to produce quantified data via a standardised approach.  

To provide environmental context for the laboratory based tests, temperature and 

humidity data from the Tank Museum has been considered.  Thus the anti-corrosive 

performances of clear coatings on historic armoured steel have been assessed in 

controlled temperature and relative humidity by using a sensitive corrosion 

monitoring technique.   

For relevance to the conservation sector common materials, methodology and 

environmental conditions were considered and standardised.  Aluminium oxide 

blasting of the steel removed contaminants and provided a keyed surface for 

Paraloid B72 and Cosmoloid H80, popular clear coatings within conservation and 

Siliglide 10, a modern silane based coating.  All three coatings offered protection for 

the steel whether applied to cleaned surfaces or to pre-corroded surfaces.  The best 

treatment method and thus the treatment recommended for protecting areas of 

paint-loss is to clean the surface and apply three layers of Paraloid B72. 

The standardised approach used allows other researchers to contribute comparable 

data to the production of a database and future standards within conservation. 
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1 Introduction 

1.1 The Importance of Conserving Historic Ferrous Metal 

The survival of historic ferrous metal artefacts, machinery and vehicles is important 

for the enjoyment and education of future generations.  To make appropriate 

recommendations about the long term management of ferrous metal objects it is 

crucial to understand what objects are made from and how significant they are 

(Williams, 2009b).  Therefore, both humanities/arts and science influence 

conservation science and in order to produce a holistic programme of research and 

analysis, scientific techniques are only part of a well-executed inquiry.   

 

1.2 Research Context 

Analyses of vehicles at the Tank Museum (TM) revealed that corrosion was a major 

contributor to structural damage together with wear, fatigue/stress corrosion 

cracking (SCC), cracks and failures (Saeed, 2013).  Thus, this collaborative doctoral 

award (CDA) was set up to research corrosion of ferrous metal and selected clear 

coating treatments within conservation.   

Due to a lack of evidence-based heritage standards, choosing a treatment method 

for historic ferrous metal within conservation is difficult as it relies on unscaled 

comparisons and speculation.  It is therefore the responsibility of conservation 

scientists to modify existing industrial standards or develop new ones that address 

heritage contexts.  For this reason, in addition to providing insight into specific 

treatment methodology commonly used within conservation practice, this research 

also provides quantified comparable data for the treatment of historic armoured steel 

by using standardised methodology. 

 

Potential Impact of this Study 

This research benefits not only those responsible for the maintenance of historic 

armoured vehicles (e.g. The Tank Museum, Bovington) and outdoor wrought iron 

(Historic Scotland), but also benefits other museums, independent conservators and 

those with smaller private collections.  The quantified data provided can contribute 

to informed decision-making for the treatment of ferrous metal.  Producing 

achievable and reproducible quantified outcomes benefits the whole Heritage Sector 

as they are provided with supporting data for the creation of a management tool to 
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preserve a variety of ferrous metals.  The quantified outcomes of this research 

provides some underpinning data required for the development of standards.  It is by 

direct quantitative comparison of corrosion rate results that comparisons can be 

made between both uncoated samples and coated samples, in the same 

environment.  This allows guidance to be offered for the best treatment method for 

the specified environmental conditions as the anti-corrosive performance of the 

coatings can be ranked according to quantitative corrosion rate data.   

By providing a reproducible test methodology this project strives to encourage other 

researchers to contribute towards the creation of a database, by testing new 

coatings and different ferrous alloys.  The results of this project can be used to 

support the development of evidence based conservation and management 

strategies. 

 

1.3 Research Aims and Objectives 

This research is designed to provide standardised methodology and quantitative, 

statistically evaluated data.  It aims to determine the effectiveness of selected clear 

coatings for controlling the corrosion of modern historic steel in conservation 

contexts with specific reference to the needs of the TM.  The occurrence of chloride 

contaminated surfaces at heritage sites around Scotland will also be assessed.  

This will be accomplished by: 

 Surveying the occurrence of chloride bearing corrosion products at historic 

sites in Scotland and contextualise this for heritage. 

 Assessing the environmental context for use of coatings within the TM. 

 Preparing samples of historic armoured steel donated by the TM for testing 

the efficacy of three clear coatings: Paraloid B72 (acrylic), Cosmoloid H80 

(micro-crystalline wax) and Siliglide 10 (silane). 

 Assessing the ability of these coatings to prevent corrosion in high relative 

humidity (RH) by monitoring the oxygen consumption of samples at 80% 

relative humidity. 

 Determining if standardised pre-corrosion of samples with de-icing salt 

solution prior to applying coatings impacts on the protective performance of 

the coating. 
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1.4 Advantages of Collaboration 

This thesis resulted from an Arts and Humanities Research Council (AHRC) funded 

CDA with additional support from the TM in Bovington, Dorset and Historic Scotland, 

Edinburgh, now part of the newly formed Historic Environment Scotland.   

For this study, as the author is neither a conservator by training nor had direct 

experience of working in a museum or heritage environment, collaborative working 

was particularly useful.  Within this project the participation of Historic Scotland and 

the TM was important for providing background context and access to historic 

materials.  Time spent at the TM provided insight into the conservation methods 

they use and the placement carried out at Historic Scotland’s Conservation Centre, 

Edinburgh permitted a sampling survey of corrosion products and historic paint 

layers to take place, providing further background context for the project.   

 

1.5 Thesis Structure 

This thesis is structured to address its research objectives and the interdisciplinary 

context.  The corrosion problem is addressed initially, followed by an overview of 

atmospheric corrosion and relevant research within this area (Chapter 2).  An outline 

of coating systems a common method used for preserving ferrous metal, is offered 

in chapter 3 addressing all aspects of the coating, the metal composition and the 

interface between the coating and metal, plus methods used to assess performance.  

Practices and coatings used within the conservation sector are considered in 

Chapter 4.  This is followed by the methodology used for testing and data collection 

(Chapter 5).  The results and analyses of the data are presented in chapter 6, with a 

discussion of the results and their implications presented in chapter 7.  Chapter 8 

summarises the key finding of this research project and includes some 

recommendations for coating methodology and areas for additional research. 
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2 Corrosion 

2.1 The Corrosion Problem 

Safety, economics and conservation are the three primary reasons for concern 

about and study of corrosion (Schweitzer, 2010).  Safety issues resulting from 

corrosion can be extreme if machines and structures are not maintained; discovery 

of cracks on an aircraft, can ground an entire fleet (Evans, 1972). 

Corrosion is an expensive problem and attempts to estimate its cost were made as 

early as 1922 (Bhaskaran et al., 2005).  In 1969, Hoar (1976) was asked to chair a 

committee to investigate and assess the cost per annum in the UK of corrosion and 

what methods were available for reducing it.  The report gave the total cost per 

annum as £1,365 million and the possible savings as £310 million.  While the figures 

were conservative and did not include domestic dwellings or agriculture (Hoar, 

1976), they represented approximately 3.5% of the gross national product (GNP) 

(Koch et al., 2001; Bhaskaran et al., 2005).  Several years ago the National Institute 

of Standards in the United States (formerly the National Bureau of Standards) 

estimated the annual cost of corrosion to be in the range of $9 billion to $90 billion 

(Schweitzer, 2010).   

The UK’s heritage is a big draw for foreign visitors, and is ranked 4th out of 50 

nations for the quality of the heritage by potential visitors (Brightman, 2012).  Many 

of the UK’s heritage sites and objects contain metallic elements, thus the 

conservation of these metallic elements is of great importance, but funding can 

sometimes be an issue.  In the heritage sector the majority of organisations 

responsible for cultural material rely on external funding and since central 

governments often control a large proportion of this funding, it can often be 

restricted or withdrawn for political, economic or philosophical reasons (Ashley-

Smith, 2013).  With restricted funds and corrosion being such a big problem 

questions need to be asked, e.g. ‘how much from the past can be preserved?’.  The 

majority of museums take charge of more and more material, but they must be 

selective.  Preventing damage to and providing access to objects in museums costs 

money, but as long as the objects survive, providing access can generate income 

(Ashley-Smith, 2013).  Decisions always need to be made, balancing expenditure 

between conservation and exploitation due to the need for revenue is a key decision 

that has to be made.  
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To meet their goals, retaining evidence of an object’s cultural context and integrity 

while preserving it, metals conservators need to implement carefully thought out 

plans (Selwyn, 2004; Watkinson, 2010).  Treatment plans are different for all metal 

heritage and the treatment decisions depend on numerous factors.  There are 

differences between the core values of a conservator and corrosion scientist.  For 

the conservator many values, often intangible, are associated with function, whereas 

to the corrosion scientist “function” is purely utilitarian (Cole et al., 2004c).  However, 

a knowledge and understanding of corrosion science is vital for a good conservator.   

 

2.2 Atmospheric Corrosion 

In the presence of moisture and oxygen (O2), iron (Fe) and steel are 

thermodynamically unstable and corrode during burial, immersion in water and 

exposure to moist air (Walker, 1982c).  Atmospheric O2 and moisture can support 

electrochemical corrosion of metals, which involves a number of processes 

occurring on and within the metal: 

1. A metallic circuit – Electrons flowing between the anodic areas and 

cathodic areas in solid phase.   

2. Anodic area – Oxidation of the metal occurs at the anodes.  

 M → Mn+ + ne- [1] 

3. Cathodic area – Where reduction occurs – electrons are consumed.   

In neutral and acidic solutions exposed to ambient air, the reduction of 

dissolved O2 is often observed [2] and [3] (Jones, 2013). 

 O2 + 2H2O + 4e- → 4OH-             (pH  7) [2] 

 O2 + 4H+ + 4e- → 2H2O              (pH < 7) [3] 

The reduction of hydrogen ions (H+) in acid solution does not occur at an 

appreciable rate above pH 4 (Turgoose, 1982) [4], and can occur in the 

absence of O2.  In certain circumstances, water (H2O) can be reduced 

assuming it dissociates to H+ and hydroxide (OH-) ions [5].  With OH- 

subtracted from both sides of the reaction [5] it is considered equivalent to 

[4]. 

 2H+ + 2e- → H2                        (pH < 7) [4] 

 2H2O + 2e- → H2 + 2OH-         (neutral) [5] 
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4. An electrolyte – a thin aqueous layer on the metal surface in contact with 

both the anode and cathode (Walker, 1982c), which conducts electric current 

due to free ions (Groysman, 2010).  It contains various species deposited 

from the atmosphere or originating from the corroding metal (Kucera and 

Mattsson, 1987).  Pure H2O is not an electrolyte owing to poor dissociation of 

H2O molecules.  During the initial stages of corrosion, the charge balance 

during oxidation of the metal is maintained by the reduction of dissolved O2 

or H2O (Graedel and Frankenthal, 1990).   

Since the anodic reaction is rapid in most media, the cathodic reaction controls the 

rate of corrosion as [2] and [3] are contingent upon the amount of dissolved O2 in 

the H2O (Walker, 1982c).  However, where thickness of a liquid film exceeds several 

tenths of a micron (µm) or the corrosion product film develops, hindering electron or 

O2 transport, O2 transport can become rate-limiting (Morcillo et al., 2011).  With this 

research focused on the corrosion of historic ferrous metal predominantly used for 

large historic armoured vehicles and structures, the cathodic processes will begin in 

aerated solutions and the Fe will oxidise to Fe2+ at the anode [6]. 

 Fe(aq) → Fe2+ + 2e- [6] 

Atmospheric corrosion of iron can be split into two distinguishable stages: initiation 

and propagation (Kucera and Mattsson, 1987).  A third stage, cessation, has been 

proposed (Schindelholz and Kelly, 2012).  These three stages are controlled by the 

different wetting and drying phenomena that metal surfaces are exposed to in 

atmospheric environments. 

 

Init iation 

Initiation of corrosion is a slow process if both the atmosphere and metal surface are 

free from contaminants, even in atmospheres saturated with H2O vapour (Kucera 

and Mattsson, 1987).  In water free from contaminants, inclusions e.g. manganese 

sulfide (MnS) dissolve when the surface becomes wet initiating corrosion.  The 

presence of deposited solid particles are more important for the initiation of 

corrosion (Kucera and Mattsson, 1987; Morcillo et al., 2011), as corrosion can be 

affected by absorbent and non-absorbent particles.  Absorbent particles e.g. 

charcoal and soot are essentially inert but they have surfaces that adsorb sulfur 

dioxide (SO2) by either co-adsorption of water vapour or condensation of H2O within 

the structure, catalysing the formation of a corrosive acid electrolyte (Syed, 2006).  
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Non-absorbent particles can facilitate differential aeration processes at the point of 

contact. 

During initiation, anodic spots become surrounded by cathodic areas (Kucera and 

Mattsson, 1987).  In clean dry atmospheres, steel surfaces become covered by a 

thick oxide film (20-50 Å) with an inner layer of magnetite (Fe3O4) and an outer layer 

of polycrystalline ferric oxide, maghemite (Fe2O3), which almost stops further 

oxidation taking place (Kucera and Mattsson, 1987; Morcillo et al., 2011).  

Lepidocrocite (γ-FeOOH) can form in atmospheres containing small amounts of 

water vapour (Kucera and Mattsson, 1987).  During the electrochemical reduction of 

corrosion, Fe2+, an intermediate is initially formed and creates a reduced surface 

layer on top of the FeOOH crystals (Stratmann et al., 1983).  

 

Propagation 

Propagation of the corrosion process requires the presence of an electrolyte film on 

the metal surface (Kucera and Mattsson, 1987; Morcillo et al., 2011).  The 

propagation of corrosion can be stimulated by SO2, adsorbing and oxidising to 

sulfate (SO4
2-) in the rust layers or by chlorides (Cl-) in polluted atmospheres where 

corrosion of carbon steel proceeds in localised cells (Kucera and Mattsson, 1987).   

 

Wetting and Drying Phenomena - Cyclic Corrosion 

Atmospheric corrosion occurs when the temperature at the metal surface is 

sufficiently low for water to condense.  The cycles of wet oxidation are followed by 

dry oxidation (Santarini, 2007).  Atmospheric corrosion of iron or low-alloy steel is 

thus considered a wet-dry cyclic process, involving three stages (figure 1): 

1. Wetting - electrolyte gradually covers the metal surface or corrosion layer 

2. Wet - once wet the electrolyte layer remains constant at the surface 

3. Drying - the electrolyte layer gradually disappears from the surface (Dillmann 

et al., 2004; Morcillo et al., 2011; Monnier et al., 2014)  

Different physio-chemical mechanisms characterise each of these stages (Maréchal 

et al., 2007).  Figure 1 provides a key for understanding the general trends in 

atmospheric corrosion and shows a marked peak in the corrosion rate occurs during 

the drying phase (Santarini, 2007), while the corrosion potential shifts to more 

anodic values (Cole, 2010).  During the drying stage, due to the thinning of the 

electrolyte film on the inner surface of the rust layer the rate of diffusion limited O2 
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reduction reaction is extremely fast (Morcillo et al., 2011), explaining the increased 

corrosion current during this phase (Cole, 2010).  

 

In the cyclic oxidation-reduction process γ-FeOOH acts as an O2 carrier.  Once a 

corrosion layer forms it is responsible for the continued corrosion during the wetting 

stage.  The reduction of γ-FeOOH within the rust layer balances anodic dissolution 

of Fe (Hœrlé et al., 2004).  Throughout the stages of aqueous oxidation, porous 

corrosion layers are wetted by an aqueous electrolyte (Santarini, 2007). 

The reducing and oxidising conditions change within rust layers from one surface to 

the other as one side is in contact with iron and the other side with air.  Evan’s 

model states oxidising conditions prevail in dried-out layers, but if the pores are filled 

with water reducing conditions prevail in most of the layers (Stratmann et al., 1983).  

Whilst drying-out the “neutral level” between both conditions moves toward the iron, 

but during wetting of the sample it moves towards the atmosphere.  The drying time 

of pores is significantly influenced by capillary action within corrosion layers, owing 

to minimisation of the liquid-air interface (Schindelholz and Kelly, 2012).  In strong 

reducing conditions near the iron surface where sections of rust are reduced the 

reactions in [7] and [8] can follow:  

Rust layer 

reduction 

Figure 1 Rusting according to Stratmann, taken from Morcillo et al. (2011).  
Additional information from (Santarini, 2007).  The upper sketch models the iron 
and oxygen consumptions rates at the different stages of wet-dry cycling and the 

lower schematic illustrates the variation of electrolyte thickness. 

O2 reduction 

on the rust 

Precipitation 

and oxidation of 

ferritic species 

Inhibition of the 

electrochemical 

phenomenon 
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 4γ-FeOOH + 2(Fe.OH.OH) → 2Fe3O4 + 4H2O [7] 

 Fe2+
(aq) + 2γ-FeOOH → Fe3O4 + 2H+ [8] 

If the pores in the corrosion layer dry out, access of O2 becomes favoured at the site 

of the reduction of FeOOH, the conditions change to re-oxidation of the Fe2+ 

intermediate and Fe3O4, resulting in [9] and [10]. 

 2(Fe.OH.OH) + ½O2→ 2γ-FeOOH + H2O [9] 

 2Fe3O4 + ½O2 → 3γ-Fe2O3 [10] 

The subsequent cycle of anodic dissolution of iron [6] then produces the electrons 

necessary for γ-Fe2O3 to be reduced to Fe3O4.  The reactions within the corrosion 

layer discussed by Stratmann et al. (1983) are summarised in figure 2.  

 

 

Potential/pH Diagrams 

Corrosion layers form according to prevailing conditions and pollutant gases and 

ions available in the corrosion environment.  Stability fields of corrosion products 

(intermediate) 

Figure 2 Summary of corrosion layer reactions discussed  

Reduction  
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- H2O 
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Reduction  
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thermodynamically found in O2-H2O systems normally represent the most common 

products occurring on Fe corroding in a damp unpolluted atmosphere (figure 3). 

 

2.3 Form of Corrosion  

While there are typical characteristics of corrosion relating to particular 

environments, corrosion attacks in different environments may still have common 

features (Chatterjee et al., 2001).  Irrespective of the environment, some types or 

forms of attack are evident and corrosion is classified on the basis of these forms.  

Corrosion phenomena are of two types: uniform (general) and non-uniform 

(localised). 

2.3.1 Uniform or General Corrosion  

Corrosion attack that is evenly spread over a metal surface is uniform or general 

corrosion (Groysman, 2010), and seldom leads to failure of vehicles or structures.  

Its rate is generally measured in terms of the change of thickness (mm/year), mass 

loss of metal (g cm-2 day-1) or volume of hydrogen (H2) formed, which can be 

converted to mass loss of the metal and used to calculate the corrosion penetration 

(Groysman, 2010).  Atmospheric corrosion is normally uniform and takes place in 

wet and damp conditions (Chatterjee et al., 2001).   

2.3.2 Non-uniform or Localised Corrosion 

Localised corrosion is more prevalent than general corrosion, as it is caused by 

heterogeneities in the metal and local environment and in some instances 

mechanical factors are involved (Chatterjee et al., 2001; Groysman, 2010).  It often 

results in the premature failure of metallic components (Chatterjee et al., 2001).  

Figure 3 Fe-H2O-O2 system potential-pH diagram, [Fe]total = 10-5 mol.L-1 

(Santarini, 2007) 
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There are many forms of localised corrosion (table 1), but they all result in two main 

outcomes as pits and cracks, although blisters can also result inside the metals with 

hydrogen damage (Groysman, 2010).  Some forms of corrosion listed are more 

frequently suffered by large military vehicles, industrial heritage or large metallic 

structures e.g. sculptures or gates and railings, than others and these are looked at 

in more detail below. 

Table 1 Forms of localised corrosion – data largely taken from Groysman (2010), 
additional references included within the text. 

Form of non-
uniform corrosion 

Type of 
deterioration 

Influencing factors/causes and notes 

Pitting Corrosion Pits 

Presence of Cl- anions in the environment and also 
a result of the existence of differential aeration cells, 
galvanic corrosion, microbiologically induced 
corrosion (MIC), erosion and cavitation. 

Crevice Corrosion Pits 

Similar to pitting corrosion, there in an increased 
likelihood with increasing potential or Cl- and there 
is a critical crevice temperature comparable in 
certain respects to the critical pitting temperature1 
(Laycock et al., 1997). 

Galvanic 
Corrosion  
or dissimilar metal 
corrosion  

Pits 

Two different metals, alloys or conductor e.g. 
graphite in contact in general electrolyte, or in the 
atmosphere RH needs to be > 60% and the 
presence of salts in the air is required. 

Microbiologically 
Induced 
Corrosion (MIC) 

Pits 
Only special kinds of bacteria, which are active 
contribute to metallic corrosion.   

Dealloying  
or selective 
leaching 

Pits 

If a metal alloy is immersed in the electrolyte 
environment under specific conditions, e.g. naturally 
in acid or more quickly in an electrochemical 
system, the more reactive element in the metal 
alloy is selectively dissolved (Pickering, 1995; 
Stratmann and Rohwerder, 2001). 

Intergranular 
Corrosion 

Cracks 

The selective dissolution of grain boundaries 
caused by electrochemical heterogeneity between 
precipitates at the grain boundaries and the grains 
themselves (occurs most often with stainless 
steels). 

Exfoliation Cracks 

A specific form of intergranular corrosion – 
frequently seen on the surface of wrought 
aluminium alloys with an elongated grain strain in 
industrial or marine environments (Zhao and 
Frankel, 2007). 

Filiform Corrosion  
or under-film 
corrosion 

Pits  
(Filaments)  
 

A specific type of crevice corrosion (Selwyn, 2004).  
High humidity (65 to 95% RH at room temperature), 
sufficient water permeability of the film, the 
presence of defects in the protective film, salt 
crystals or dirt/dust particles on the metal surface. 
The presence of O2 and an aggressive atmosphere 
are essential (Schweitzer, 2010). 

                                                
1 Critical pitting temperature – the lowest temperature at which stable pitting is possible. 
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Stress Corrosion 
Cracking (SCC)  
or environment 
induced cracking 

Cracks 

Caused by a combination of chemical attack and 
mechanical loading.  Metals/alloys subjected to 
constant (static) tensile stresses and exposed to 
certain environmental conditions (type, temperature 
and concentration of aggressive species) within a 
certain electrode potential range may develop cracks. 

Hydrogen Damage 
Cracks, 
Blisters 

Comparable to SCC but is only caused by hydrogen 
atoms and molecules and tensile stresses.  There 
are four types: hydrogen blistering, hydrogen-
induced cracking (HIC), stress-oriented hydrogen-
induced cracking (SOHIC) and sulfide stress 
cracking (SSC).  

Corrosion Fatigue Cracks  
Similar to SCC but fluctuating stresses exist instead 
of constant.  It varies with mechanical (loading), 
metallurgical and environmental factors. 

Erosion-Corrosion Pits 

The abrasive action of moving fluids and gases, 
accelerated by the presence of solid particles or 
liquid drops in gases.  A conjoint action involving 
erosion (mechanical) and corrosion 
(chemical/electrochemical), due to the presence of 
aggressive species in the moving media (fluid or 
gas).  

Cavitation Pits 
The formation and collapses of gaseous bubbles on 
the metallic surface. 

Impingement 
Attack 

Pits 
Local hits against a metallic surface, of high velocity 
streams of fluids, gases, solid particles or together 
(it is a form of erosion-corrosion). 

Fretting Corrosion Pits 

Between two materials under load, where they are 
in contact and subject to minute relative motion by 
vibration, (fretting where the environment 
participates in the destruction of the metal). 

 

2.3.2.1 Differential Aeration Cells 

Localised attack can be caused by a drop of electrolyte solution on a steel surface 

(figure 4).  Slow diffusion of O2 into the drop produces lower O2 under the centre of 

the drop, producing an anode with the metal surface under the side edge of the drop 

as the cathode (Shreir, 1976).  Anodic Fe2+ ions and cathodic OH- ions form 

Fe(OH)2 that is rapidly oxidised by dissolved O2 to rust, Fe2O3.H2O. 

 

Figure 4 Differential aeration cells formed by the geometry of a drop of 

sodium chloride (NaCl) solution on a steel surface (Shreir, 1976) 

(a) (b) 
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In many corrosion processes where local O2 depletion occurs, differential aeration is 

an important factor e.g. pitting corrosion and crevice corrosion, which are almost 

always affected by a differential aeration mechanism (Cole, 2010).  Differential 

aeration cells can be considered macro-models for the initiation of pitting and 

crevice corrosion (Jones, 2013).   

 

2.3.2.2 Pitting Corrosion  

Pitting corrosion is localised metal loss that can develop as a deep, tiny hole in 

otherwise unaffected surfaces.  Pitting is most likely to occur in the presence of Cl- 

ions, combined with O2 or oxidising salts (Uhlig, 1963).  The driving forces for pitting 

corrosion include: 

1. Surface irregularities in the metal  

2. Chemical composition (including MnS inclusions) 

3. Breaks in the continuity of a protective layer e.g. mill scale, coating or 

deposits  

4. The presence of Cl- or bromide ions (Br-)  

5. Temperature  

6. RH. 

 
Mechanistically it has a range of steps (Punckt et al., 2004; Peguet et al., 2007; 

Tsutsumi et al., 2007; Pardo et al., 2008b; Hastuty et al., 2010).  Pardo et al. 

(2008b) describe the pitting attack of stainless steel (SS) as a three stage process: 

i. Initiation – In both carbon steel and SS pits are initiated at sulfide inclusions 

(Wranglen, 1974), on SS MnS is the most common site for pit nucleation.  

Where there is a passivation oxide layer, the local breakdown of this layer in 

the presence of aggressive anions is predominantly considered the initiation 

step (Pardo et al., 2008b).  Breaks in the layer lead to differences of potential 

resulting in an electric current through the water or across the moist steel 

from the metallic anode to the nearby cathode (e.g. mill scale on steel) 

(figure 5) (Schweitzer, 2010).   
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The corrosion reaction itself increases the corrosion rate (Pardo et al., 

2008b) as differential aeriation cells form (figure 4).  As with differential 

aeration cells de-aeration, acidification and formation of localised anodes are 

caused by corrosion at the centre of a water drop.  Cathodic reduction of the 

dissolved O2 causes the perimeter area to become alkaline as there is 

greater access to the outer surface of the drop (figure 4) (Jones, 2013).  The 

hydrated passive film represented by the FeOOH, dissolves slowly [11]. 

 FeOOH + H2O → Fe3+ + 3OH- [11] 

 
ii. Metastable propagation – When the pits are still very small during the early 

stages of pit propagation they can be repassivated spontaneously.  Until 

spontaneous repassivation is no longer possible pit growth is considered 

metastable (Pardo et al., 2008b) 

iii. Stable propagation – Propagation involves the formation of a concentration 

cell in which the pit solution has a lower O2 content, but a higher salt and 

acid content than the bulk of the surrounding solution (Wranglen, 1974).  Pits 

grow at an ever-increasing rate once initiated, as the conditions within them 

are self-propagating or autocatalytic with no external stimulus (Jones, 2013).  

Cáceres et al. (2009) determined the effect of NaCl concentration on the rate 

of carbon steel corrosion (table 2). 

 

A model of an actively growing pit on SS is shown in figure 6.  Negative anions e.g. 

Cl- are attracted to the initiation site by the positively charged Fe2+ ions produced at 

the anode.  Reduction in the local pH at the initiation site is caused by hydrolysis 

[12].   

Figure 5 Current flow during the formation of pit from 

break in mill scale (Schweitzer, 2003; Schweitzer, 2010) 
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Table 2 Effect of NaCl concentration on pitting corrosion rate summarised from 
Cáceres et al. (2009) 

NaCl 
concentration 

Initial corrosion 
rate behaviour 

Factors influencing the corrosion rate 
behaviour 

High 
(0.5 – 1 M) 

Continuously 
dropped with time 

Continuous surface oxide layer forms - 
inhibitory influence - reduces the limiting 
current density for O2 reduction.  This 
prevails over the increase of iron dissolution 
area linked to the steady increase in the 
number and size of pits.   

Low 
(0.02 – 0.1 M) 

Increased with 
time, peaked at 3 
hours, before 
slowing 

Pits become covered by iron oxide caps 
that inhibit O2 diffusion the corrosion rate 
slows, but the pits continue growing as 
separate entities 

 

 

This acidic solution destroys the local passivity and creates an anode within the pit.  

The Cl- in the pit, with an increasing concentration of Cl- as hydrochloric acid (HCl) 

accelerates anodic dissolution (Jones, 2013). 

Fe2+ diffusing out of the pit is oxidised to Fe3+ and precipitates as the corrosion 

products collect at the pit mouth forming an insoluble cap of Fe(OH)3 (Jones, 2013).  

The pit retains high Cl- concentration by migration of Cl- into the pit but easy escape 

of Fe2+ is impeded.  Without a cathodic reduction reaction to consume the electrons 

liberated by the pit anode reaction, pit growth will cease. 

 

 Fe2+ + 2H2O + Cl- → Fe(OH)2 + 2HCl [12] 

Figure 6 Schematic of processes occurring in an actively 

growing pit in iron (Jones, 2013) 
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Outcomes 

When the anodic area is large in comparison to the cathodic area damage from 

pitting corrosion is spread out and usually negligible (Schweitzer, 2010).  Based on 

results for Type 430 SS pit diameter and the probability of pitting corrosion decrease 

as the thickness and diameter of a droplet decrease as the effective cathode area is 

reduced and under droplets of Cl- solution shallow pits form, indicating a preference 

for horizontal pit propagation (Hastuty et al., 2010).   

When the anodic area is small the metal loss is concentrated and may be serious.  

Pit morphology depends on local chemistry and the metallurgy of the alloy (figure 7) 

(Jones, 2013).  With damaged coating layers on many of the armoured vehicles at 

the Tank Museum, it is probable pitting corrosion will occur but the thickness of the 

steel means damage will be aesthetic rather than catastrophic. 

 

2.3.2.3 Crevice Corrosion 

While outer surfaces in the atmosphere are washed clean and then dry out, 

structural crevices often retain water and other solutions.  Crevice corrosion can 

result from metal-to-metal or metal-to-non-metal contact with narrow gaps or 

openings that are not in excess of 3.18 mm, e.g. under bolts and around rivet heads.  

Here small amounts of liquid collect and become stagnant, creating local differences 

in O2 concentrations (Schweitzer, 2010).  Armoured vehicles and large metallic 

structures are susceptible to crevice corrosion due to the large number of joints and 

Figure 7 Variations in cross sectional shape of pits 
(Originally from Standard Practice G 46-76, Annual 
Book of ASTM Standards, Vol. 3.02, ASTM, 

Philadelphia, p197, 1988) (Jones, 2013). 
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bolts employed.  Structural integrity of equipment can be challenged by crevice 

corrosion as it can be difficult to detect and can cause considerable damage under 

conditions in which high levels of uniform corrosion would not normally be expected 

(Kennell and Evitts, 2009) and can limit the service life of engineered structures 

(Walton et al., 1996). 

Although crevice corrosion can take place in any corrosive environment and on any 

metal, dependence on an oxide film for corrosion resistance makes metals 

particularly prone to crevice corrosion (Schweitzer, 2010).  The driving forces for 

crevice corrosion are: 

1. Small gaps  

2. Retained stagnant fluid 

 
The gap defining a crevice is too small to permit the flow of liquid but large enough 

for the entrapment of a liquid (figure 8) (Schweitzer, 2010; Jones, 2013).  The 

formation of differential aeration and Cl- concentration cells are enhanced as the 

crevice shields part of the surface (Jones, 2013), with rapid progress and greater 

intensity in Cl- environments (Schweitzer, 2010). 

 

 

Rashidi et al. (2007) use the Fontana and Greene (1967) model to describe a 

mechanism for crevice corrosion consisting of four stages: 

1. Corrosion occurs as normal inside and outside the crevice [1] and [2] 

(Schweitzer, 2010) and the OH- ions electrostatically counterbalance the 

Fe2+ ions (Rashidi et al., 2007).   

2. Once most of the O2 dissolved in the small volume of stagnated solution 

inside the crevice is consumed, dissolution continues because the electrons 

Figure 8 Typical schematic morphology with attack greatest at 

the mouth of the crevice (Jones, 2013) 
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travel through the metal to the outside of the crevice mouth where O2 feeds 

the cathode reaction (figure 6). 

3. Metal chloride is formed as Cl- and OH- ions diffuse into the crevice attracted 

by the accumulated Fe2+ and to maintain a minimum potential (Rashidi et al., 

2007).  The pH is lowered when HCl and iron (II) hydroxide are produced 

during the hydrolysis of the iron (II) chloride [13]. 

 

 FeCl2 + 2H2O → Fe(OH)2 + 2HCl [13] 

 

4. The rate of metal dissolution inside the crevice accelerates as HCl destroys 

the passive film and the crevice remains cathodically protected by the 

cathodic reduction outside it (Schweitzer, 2010). 

 

2.3.2.4 Galvanic Corrosion 

A result of two different metals coupled to form a basic wet corrosion cell also known 

as dissimilar metal corrosion and termed bimetallic corrosion or multi-metallic 

corrosion (Trethewey and Chamberlain, 1995).  The potential difference between 

two metals linked in the solid phase and within a common solution creates galvanic 

corrosion (figure 9).  The more energetic metal corrodes while the more noble metal 

acts as the cathode and is protected. 

 

Due to their high corrosion resistance in various environments, galvanised steels are 

used extensively in vehicles and construction (Tada et al., 2004).  When electrolyte 

is in contact with both metals, e.g. within a scratch in the zinc coating, the zinc 

corrodes and the iron becomes the cathode and is protected (table 3) (Tada et al., 

2004). 

Figure 9 Basic wet corrosion cell schematic 

(Tavakkolizadeh and Saadatmanesh, 2001) 
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2.3.2.5 Filiform Corrosion 

Filiform corrosion is a manifestation of differential aeration and crevice corrosion, 

and is sometimes termed under-film corrosion as it has been observed under thin 

organic coatings on steel (Slabaugh and Grotheer, 1954; Jones, 2013).  It is 

characterised by the meandering, threadlike filaments of corrosion usually beneath 

semipermeable coatings or films (Schweitzer, 2010), which initially grow roughly 

perpendicular to the edge of the defects (Delplancke et al., 2001).  Filiform corrosion 

requires humid conditions between 65 and 95% RH at room temperature to occur on 

steel (Delplancke et al., 2001; Schweitzer, 2010), but 80 to 85% RH is accepted as 

optimal for filiform corrosion to develop (Bautista, 1996).  Contaminants such as 

chlorides, sulfates or carbonic acid are also a necessity for filiform to occur 

(Delplancke et al., 2001). 

The mechanism for filiform corrosion involves: 

i. Initiation – Generally assisted by Cl- ions at weak parts of the iron oxide film, a 

scratch or other defect in a coating.  Once the metallic iron is exposed to the 

aqueous solution a differential aeration cell forms below the droplet and 

corrosion attack is initiated (Weissenrieder and Leygraf, 2004).  Composition 

Table 3 Galvanic Series of Metals and Alloys (Schweitzer, 2003) 
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and permeability of coating have little or no effect on initiation and growth 

characteristics of filiform corrosion (Jones, 2013). 

ii. Propagation – The active potential difference for filiform corrosion growth forms 

due to the aeration cell with its separated anodic and cathodic areas (figure 10).  

Hydrolysis and acidification to a pH of 1 - 4 accompanies O2 consumption at the 

head by active corrosion.  When Fe2+ from the head contacts aerated conditions 

in the tail of the filament precipitation of rusty-red iron (II) hydroxide (Fe(OH)3) 

occurs.  Porosity or micro-cracks in the coating over the filament tail allows 

essential H2O and O2 to migrate to the corroding filament head.  As the filament 

advances the Fe(OH)3 decomposes to Fe2O3.3H2O.  Figure 10 show a 

schematic of these processes (Jones, 2013). 

 

 
Until the Cl- ion concentration at the head is too low to rapidly create new anodic 

sites, filaments will continue to grow.  On steel under transparent varnishes the 

active head of a filament usually appears blue, blue-green or grey and the tail is 

usually red-brown, indicating that the head is deaerated and contains Fe2+ ions, 

while the tail is aerated and contains Fe2O3 or Fe2O3.3H2O as corrosion products 

(Schweitzer, 2010; Jones, 2013). 

Penetration into the metal substrate is usually only superficial for filiform corrosion 

(Jones, 2013), typically 5-15 µm, essentially it is a cosmetic problem, but it is highly 

detrimental to the appearance of coated parts as it causes loss of paint adhesion 

(Delplancke et al., 2001; Schweitzer, 2010).  Loss of paint adhesion can leave sites 

open to initiation of pitting or other forms of corrosion.  Although the direct damage 

caused filiform corrosion is superficial, indirectly it could lead to more severe 

damage if pitting occurs.   

Figure 10 Filiform corrosion of steel - chemical processes in a filament cell 

(Jones, 2013) 
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Protection can be provided by films with very low permeability as well as other 

important factors such as preparation of the metal surface for coating, surface 

cleanliness, coating thickness, adherence, flexibility and the absence of voids.  All 

these factors determine whether filiform corrosion will occur (Schweitzer, 2010).   

Filaments can be deactivated by sealing the tail against water and O2 transport, but 

reducing the RH below 60%, thus dehydrating the filament cell, is the only certain 

way to prevent filiform corrosion on steel (Jones, 2013).   

 

2.3.2.6 Stress Corrosion Cracking (SCC) 

SCC is one of the biggest causes of corrosion failure, with cracks frequently 

nucleating from corrosion pits, but depending on the environment and material, the 

cracks can be intergranular or trans-granular in nature (Marrow et al., 2006).  The 

conjoint action of corrosion and stress is required, alternate applications of stress 

and corrosive environment will not produce SCC.  It is at points of static tensile 

stress that SCC occurs, as fine cracks penetrate through the surface at the points of 

stress, the metal or alloy, which is usually free of corrosion over most of its surface.  

For stress corrosion the conditions needed and driving forces for structures such as 

bridges and armoured vehicles are (figure 11): 

1. Tensile stress – due to an applied load 

2. Sensitive metal (microstructure) 

3. Suitable environment 

4. Appropriate temperature and pH 

 
Almost all alloys utilised for engineering purposes are subject to SCC, but the 

environments in which alloys are susceptible to SCC vary.  The sensitivity of SS to 

SCC is determined by the alloy content (Schweitzer, 2010).   

Due to the nature of the cracking unexpected failure can occur.  It is hard to detect 

until extensive corrosion has developed.  This form of corrosion is experienced by 

armoured vehicles at the TM and is of great concern.  

SCC can be caused by specific steel alloy-environment combinations and although 

some vehicles within the TM are experiencing SCC, very few of the alloy-

environment combination options can be applied to the historic vehicles displayed 

within the Museum. 



 22  

 

 

2.4 Atmospheric Corrosion Products  

Rust layer compositions differ in different atmospheric conditions as they depend on 

pH and O2 concentrations in the surface electrolyte (Kucera and Mattsson, 1987).  

Naturally occurring rust layers on iron and steels are complex with about a dozen 

different oxides and hydroxides of iron occurring within them (table 4) (Graedel and 

Frankenthal, 1990).  On mild and low-alloy steels exposed to atmospheric corrosion, 

the main phases constituting the rust layers formed are either amorphous or 

crystallised iron oxyhydroxides (lepidocrocite γ-FeOOH , goethite α-FeOOH, 

akaganéite β-FeOOH and feroxyhyte δ-FeOOH) and iron oxides (magnetite Fe3O4) 

(Dillmann et al., 2004; Hœrlé et al., 2004). 

Corrosion products can reveal whether there is active, aggressive corrosion taking 

place or whether a new equilibrium has been established and it has stabilised.  The 

presence of akaganéite indicates active, aggressive corrosion is taking place, but for 

akaganéite to be formed Santana Rodrı́guez et al. (2002) deduced the chloride 

concentration must remain above 14-16 mg/m2/day.  Rust layers which form due to 

atmospheric corrosion are often voluminous, porous, spalled, cracked and visually 

appear as loose black or orange–brown masses (Cornell and Schwertmann, 2006; 

Morcillo et al., 2011).  This type of cracked rust layer is not protective as it allows 

corrosive species e.g. Cl- ions easy access to the metallic substrate.  Corrosion 

frequently consists of two layers and is always a mixture of phases.  Loose outer 

layers consist of lepidocrocite and/or goethite and due to the reduced O2 supply, 

magnetite is found at the iron/rust interface (Cornell and Schwertmann, 2006).  

Figure 11 Simultaneous conditions required 

for stress corrosion cracking (Jones, 2013) 

SCC 

Susceptible 

material 
Tensile stress 

Corrosive 

environment 
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Ferrous hydroxide, Fe(OH)2 is only formed in neutral-basic solutions, so will not 

precipitate where the surface electrolyte is weakly acidic e.g. in SO2 polluted 

atmospheres (Kucera and Mattsson, 1987).   

Table 4 Chemical compounds found in rust 
layers (Morcillo et al., 2011) 

Name Composition 

Oxides   

Hematite α-Fe2O3 

Maghemite γ-Fe2O3 

Magnetite Fe3O4 

Ferrihydrite Fe5HO8.4H2O 

Hydroxides  

Ferrous hydroxide Fe(OH)2 

Ferric Hydroxide Fe(OH)3 

Goethite α-FeOOH 

Akaganéite β-FeOOH 

Lepidocrocite γ-FeOOH 

Feroxyhite δ-FeOOH 

Others  

Ferrous chloride FeCl2 

Ferric chloride FeCl3 

Ferrous sulfate FeSO4 

Ferric sulfate Fe2(SO4)3 

 

The long term growth of corrosion products is very dependent on the actual 

exposure conditions, influenced by the continuously repeated cycles of dissolution, 

coordination and precipitation; chemical composition, microstructure, crystallinity, 

thickness and other properties are all changed causing the corrosion product layer 

to age (Morcillo et al., 2011).  Exposure time hardly affects the nature of rust 

constituents, as the species detected at a given site are independent of exposure 

and are nearly always the same at a given site due to the prevailing atmospheric 

conditions (de la Fuente et al., 2011; Morcillo et al., 2011).  Thus where there is 

historic ferrous metalwork outdoors e.g. gates and railings etc., the corrosion 

products detected should be the same throughout the site.  However, the proportion 

of the constituents and the appearance or disappearance of minor or intermediate 

compounds may alter with time (de la Fuente et al., 2011; Morcillo et al., 2011).   

An ample supply of Fe2+ is associated with the frequent occurrence of green rusts, 

green-blue iron hydroxide compounds that are intermediate phases in the formation 

of iron oxides (goethite, lepidocrocite and magnetite).  They occur under reducing 
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and weakly acidic to weakly alkaline conditions (Schwertmann and Fechter, 1994; 

Cornell and Schwertmann, 2006). 

During atmospheric corrosion, the rust layer commonly formed on low-alloy steel 

presents a complex morphology, for which figure 12 presents a simplified model.  

Only the main characteristics have been labelled and are as follows:  

 L - the rust layer thickness;  

 d - the electrolyte thickness 

 α/γ - the composition ratio of goethite (α-FeOOH) to lepidocrocite (γ-

FeOOH), when a rust layer is considered to be formed of only these 

compounds;  

 pores; 

 Fe metal (Hœrlé et al., 2004; Maréchal et al., 2007).   

 
The ability of the rust layer to be reduced and similarly its protective ability are 

characterised by the fraction of lepidocrocite in the rust layer and thus the amount of 

γ-FeOOH on the surface in the pores (described by α/γ) (Hœrlé et al., 2004).  

 

An insight into where key corrosion products are found within a rust layer and how 

they were formed, is offered by table 5.  The inner dense region of the rust layers on 

ferrous metal generally includes amorphous FeOOH (Graedel and Frankenthal, 

1990).   

 

 

Figure 12 Rust layer modelling (Maréchal et al., 2007) 
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2.5 Factors Governing Atmospheric Corrosion 

Modelling of scenario has become more common place over recent decades and for 

a corrosion model to be useful in making service life predictions, knowledge of the 

local environment and usage needs to be incorporated (Cole and Corrigan, 2011).  

A holistic multi-scale model for the prediction of service life subject to atmospheric 

corrosion was presented by Cole et al. (2011).  By modelling the salt and water 

deposition, the basic holistic model combines processes that control atmospheric 

corrosion on a range of scales from electrochemical to macro (figure 13) (Cole and 

Corrigan, 2011; Cole et al., 2011).  

 

The model outlined by Cole (Cole et al., 2003a; Cole et al., 2003b; Cole et al., 

2003c; Cole et al., 2004a; Cole et al., 2004b; Cole and Paterson, 2004), is 

summarised in figure 14 (Cole et al., 2013).  This holistic model focuses on 

corrosion by marine aerosols as it has primarily been designed for Australian 

conditions (Cole et al., 2011).  For other locations, alterations must be made to the 

models to accommodate changes in the parameters within it (Ganther et al., 2011). 

The chemical composition of the atmosphere, temperature and time-of-wetness 

(TOW) of the metallic surface are just a few of several factors which govern real-

Figure 13 Multi-scale model of corrosion - schematic 
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time atmospheric corrosion of ferrous metal (Arroyave and Morcillo, 1995).  These 

change significantly from outdoor, sheltered and indoor environments, in which 

historic structures and armoured vehicles are situated. 

 

2.5.1 Meteorological and Air Pollutant Factors 

Atmospheric corrosion is a complex process, which is directly affected by both 

meteorological and pollutant factors.  For corrosion processes the most important 

climatic factors are RH, sunshine hours, temperature of the air and metal surface, 

wind velocity and, duration and frequency of the rain, dew and fog (Mendoza and 

Corvo, 1999).  The TOW hinges mostly on meteorological parameters.  The 

aggressiveness of atmospheric corrosion of metals is enhanced when pollutants are 

present in the water layer. 

2.5.1.1 Solar Radiation and Wind 

In addition to temperature, solar radiation and wind also affect the time that a 

surface remains wet (Brown and Masters, 1982).  Solar radiation can trigger the 

deterioration of protective organic coatings, thus causing exposure of the underlying 

metal to atmospheric corrosion (Brown and Masters, 1982).  

Wind can cause damage to metals directly and indirectly.  In addition to catastrophic 

damage that can be caused by storms, wind can cause vibrations and deformations, 

which ultimately lead to metal fatigue (Godfraind et al., 2012), causing problems for 

some historic ferrous metal structures.  Indirectly, wind contributes to the corrosion 

and the overall deterioration of metal, as the direction and velocity of wind affects 

both the dispersion of air pollutants and accumulation of particulates on metal 

surfaces (Brown and Masters, 1982).  Generally, armoured vehicles at the Tank 

Museum are situated indoors, but a few are still located outdoors and others are 
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surface 
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State 
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Figure 14 Atmospheric corrosion holistic model schematic 
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taken outdoors for use in displays.  For those vehicles situated outdoors, those used 

in action displays and even those located in the vehicles conservation centre that 

has large roller doors on the side for ease of vehicle movement both inside the 

building and out of it, the wind will have an effect on the corrosion.  

Wind convects and, although lifted by diffusion, aerosols may be dragged down by 

gravity (Cole, 2010).  Gustafsson and Franzén (1996) found that sea-salt 

concentrations measured over land can vary due to wind speed and distance from 

the coastline.  A rise in wind speed increases both the sea-salt aerosol generated by 

the surf (figure 15) and the concentration of salt found 1 km inland (figure 16 (a)) 

(Cole et al., 2003b).  .   

 

In the open ocean, salt aerosols can be generated by either the wind tearing spume 

drops from the crests of ocean whitecaps or by bursting bubbles generated by 

ocean whitecaps (Cole et al., 2003b).  Ocean generated salt aerosols can potentially 

travel much further inland than surf generated salt aerosols (figure 16 (a) and (b)).  

Turbulent diffusion lifts the salt up and the small salt aerosols are able to follow 

airstreams around obstacles, although medium to large salt aerosols are deposited 

on trees and man-made structures (Cole et al., 2003b).  Although concentrations of 

ocean generated salt aerosol (figure 16 (b)) are initially much lower than surf 

generated salt aerosol (figure 16 (a)), they travel significantly further inland, up to 50 

km compared to 1 km from the coast.  Thus, wind speed plays an important role in 

both the generation of sea-salt aerosols and the distance it travels inland, since for 

higher wind speeds higher concentrations are detected further inland.  

Figure 15 Effect of local wind speed on surf generated aerosol 

(Cole et al., 2003b) 
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Table 6 Typical ground roughness values (Cole et al., 2003b) 

Roughness, m Terrain 

2 City buildings (10-30 m) 

1 Forests 

0.8 High density metropolitan 

0.4 Centre of small town 

0.2 Level wooded country; suburban buildings 

0.06 Isolated trees, long grass 

0.02 Uncut grass, airfields 

0.008 Cut grass 

 

The Tank Museum is ~ 8 km from the coastline (figure 17), thus, it is unlikely any 

sea-salt generated by the surf (waves breaking) will accumulate on vehicles left 

outside (figure 16 (a)).  For both severe storms that can carry salt spray up to 15 km 

inland (Syed, 2006) and sea-salt generated by the English Channel (figure 16 (b)) at 

higher wind speeds, whether they reach the Tank Museum is dependent on the wind 

direction.  Potentially any vehicle left outdoors could accumulate sea-salt, but due to 

the low concentration level this would take time. 

Wind not only acts to distribute aerosols to the detriment of metals surfaces but, 

depending on the characteristics of both the wind and rain and the state of the 

surface, the surfaces themselves may be cleaned by either the wind or the rain 

(Cole, 2010).  Unfortunately, removal of salts by wind is only significant when the 

(a) 

Figure 16 (a) Effect of distance from the coast of surf-produced aerosols and wind 
speeds on salt concentration (excluding ocean-produced aerosols) – 2 m height, 
0.5 m ground roughness (table 6).  (b) Effect of distance from coast for ocean-
produced salt and wind speed on the salt concentration – 2 m height, 0.5 m 

ground roughness, 70% RH, 1200 mm year-1 rainfall (Cole et al., 2003b; Cole, 2010) 

(b) 
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wind carries abrasive material or in climates where rain is very limited (Cole, 2010), 

which is not the case in the UK.  

 

2.5.1.2 Temperature  

The kinetics of corrosion reactions are directly affected by changes in temperature, 

TOW, RH and dew point however, are affected indirectly (Brown and Masters, 

1982).  Higher temperatures increase the rate of electrochemical reactions and 

diffusion processes, speeding up corrosive attack.  Increasing the temperature 

usually leads to a reduction in RH and more rapid evaporation of surface electrolyte, 

decreasing TOW, thus diminishing the overall corrosion rate (Syed, 2006).  The RH 

close to a surface however, may be different from that of the ambient air if the 

temperature of the surface varies from that of the ambient air (Cole, 2010), as this is 

expected where radiant heating of a metal surface occurs.  Temperature affects not 

only the corrosion reaction but the metals themselves.  As metals have high thermal 

conductivities, and consequently very low thermal inertias, they are predisposed to 

developing films of condensation (Godfraind et al., 2012).  Changes in temperature 

also cause variations in dimensions due to expansion and contraction stressing 

joints and interfaces, potentially leading to deterioration and damage of both the 

metal itself and the protective coating. 

Figure 17 Map highlighting the proximity of Bovington Tank Museum to the coast 
– taken from Google maps July 2016, small scale bar included in the bottom right 
corner 
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The average daily minimum, mean and maximum temperatures experienced in the 

summer within the UK from 1971-2000 are illustrated in figure 18.  Care should be 

taken when comparing the three images as the colours on each image do not 

correspond with the same temperature ranges.  Comparing the average daily 

minimum (figure 18 (a)) and maximum (figure 18 (c)) temperature ranges and 

images highlights the range in temperature that may be experienced within the 

summer period within the UK leading to expansion and contraction of ferrous metal 

and possible deterioration of coatings. 

 

2.5.1.3 Moisture 

Relative humidity (RH) is defined as the amount of water vapour present in the air 

expressed as a percentage of the amount needed for saturation at the same 

temperature and is the method used within this project to quantify the level of 

atmospheric moisture.   

In non-polluted atmospheres saturated with water vapour, initiation of corrosion on a 

clean metal is a slow process (Kucera and Mattsson, 1987; Morcillo et al., 2011).  

Schindelholz and Kelly (2012) confirmed that a metal surface must be made wet by 

a sufficiently conductive liquid for atmospheric corrosion to occur in order to solvate 

the ions produced during the corrosion reactions (Lyon, 2010).  Moisture forms on 

surfaces due to local RH via deposition of rain, fog and wet aerosols or hygroscopic 

salts on the surface (Cole, 2010). 

Figure 18 (a) Average daily minimum temperature (°C) for summer 1971-2000; (b) 
Average daily mean temperature (°C) for summer 1971-2000; (c) Average daily 

maximum temperature (°C) for summer 1971-2000 (Jenkins et al., 2008). 

(a) (b) (c) 
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The amount of water adsorbed is noticeably affected by the composition and 

morphological properties of the surface of ferrous metal (Graedel and Frankenthal, 

1990).  In atmospheric conditions as moisture is adsorbed, monolayers build up and 

a thin film of ‘invisible’ electrolytes is formed on metallic surfaces (Tullmin and 

Roberge, 2000; Cole, 2010).  The number of monolayers are believed to be too few 

to sustain electrochemical corrosion processes below 60% RH, as at 40% RH the 

number of monolayers are estimated to vary from 1 to 2 layers, but increases to 2-5 

monolayers at 60% RH and 6-10 monolayers at 100% RH (Cole, 2010). The 

corrosion processes during the RH cycles (wet-dry cycles) that typically occur during 

atmospheric corrosion are controlled by a layer of water 10–100 nm thick at the 

surface of the metallic substrate (Monnier et al., 2014).  The equivalent of two layers 

of water, covers the surface at room temperature and approximately 60% RH (figure 

19) (McCafferty and Zettlemoyer, 1971; Graedel and Frankenthal, 1990).   

 

Transport of the electrolyte into or through corrosion layers is mostly linked to 

capillary action, the movement of liquid through crevices and pores in an object, 

which is driven by a balance between surface tension forces and gravity 

(Schindelholz and Kelly, 2012). 

Although the first critical RH for iron and steel where corrosion commences at a very 

slow rate is 60%, there is a sharp increase in corrosion rate at 75 to 80% RH (Syed, 

2006).  However, Lyon (2010) reported that at  75% RH corrosion of 

uncontaminated steel was negligible and consistent with a dry oxidation mechanism, 

but consistent with a critical RH of 80% for the onset of aqueous atmospheric 

corrosion, he found at  85% RH the corrosion rate rapidly increased.   

Figure 19 Representation of water adsorption 

on α-Fe2O3 (McCafferty and Zettlemoyer, 1971) 
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Industry standards such as ISO-9223 define the basic TOW as the amount of time 

per year that the material of interest experiences a RH > 80% with the temperature 

> 0 °C (Otaduy and Karagiozis, 2010).  Due to this definition for TOW and the sharp 

increase in corrosion rate at 80% RH,  80% is an ideal RH to employ where static 

RH is being used for corrosion research, allowing comparisons to be made with 

other research.  Wetness is influenced by the degree of coverage against rain, 

pollution in the atmosphere, the type of metal and presence of corrosion products, 

thus the ‘actual’ TOW may not be the same as determined by this definition (Kucera 

and Mattsson, 1987).   

RH levels can have an indirect effect on the corrosion of ferrous metal as well as the 

direct effects discussed above.  Gustafsson and Franzén (2000) report calculations 

by Rossknecht et al. (1973), regarding RH and the amount of airborne sea-salt 

recorded at 50 km from the Newport, Oregon coastline in the US; at < 40% RH the 

sea-salt concentration is 20 times that found at 99% RH (figure 20).  Thus, a 

reduction in RH causes an increase in the dry deposition and concentration of sea-

salt at 50 km from the coastline, increasing the number of contaminants e.g. Cl- ions 

that may be deposited on metal surfaces and accelerate corrosion rates.   

 

This trend is also visible in figure 21, where an RH of 70 or 90% causes a rapid 

decrease in salt concentration, but at 20 and 50% RH the decline is much slower, 

allowing salt concentrations to be noticeably higher inland when RH is low.  

Figure 20 Airborne sea-salt particles class 5 distribution inland (2.01 µm < d < 

2.39 µm) as a function of RH: D = 104 cm2 sec-1, γ = 75.7 (Rossknecht et al., 1973) 
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It is clear from figure 23 (a) and (b) that with the UK experiencing annual averages 

of RH > 70%, the UK will not encounter the same levels of inland salt concentration 

as Australia does.  The high RH also reduces the impact of salt aerosol transport by 

the wind. 

It should be noted that in the UK the annual average RH for the period 1971-2000 

(figure 23 (b)) has decreased slightly from the annual average RH for the period 

1961-1990 (figure 23 (a)) and in some areas has decreased by as much as 1.6% 

RH (Jenkins et al., 2008).  A decreasing trend in RH due to climate change could be 

good news for corrosion reduction in the UK. 

Critical to the understanding of corrosion is a knowledge of the frequency of rain and 

the length of rain events.  Herting et al. (2008) found that for stainless steel a time-

dependent release of small amounts (low release rates) of the main metal alloy 

constituents from the stainless steel grades investigated, resulted from exposure to 

artificial rain.  During the initial rain portion impinging the surface (first flush), higher 

rates were observed for all released metals.  Through subsequent rain volumes 

lower and more constant release rates followed (steady-state) as illustrated in figure 

22 (Herting et al., 2008).  Reduced rainfall can mean a lack of rain-induced surface 

cleaning causing salts to build-up on exposed metal surfaces (Cole et al., 2013).  

Figure 24 (a) and (b) illustrate the average annual days of rain  1 mm in the UK 

and although visually there is not a noticeable difference between the two, figure 25 

highlights the change in annual days of rain between the two time periods.  There is 

a clear East-West divide, however, with the number of days of rain experienced in 

Figure 21 Effects of surface RH on ocean generated aerosol - 7.5 ms-1 
wind speed, 800 mm year-1 rainfall – resulting from a computational fluid 

dynamics (CFD) based model of transport of aerosol (Cole et al., 2003b)  
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the UK, salts are unlikely to  build-up on exposed metal surfaces of outdoor heritage 

structures, sculptures or railings, such as those looked after by Historic Scotland.  

Armoured vehicles and industrial heritage kept in sheds and under shelters will not 

experience rain-induced surface cleaning but they are also unlikely to experience 

the same extent of release of the main metal alloy constituents due to rain events.   

 

 

 

 

 

 

 

 

 

Figure 22 Momentary release rates of chromium (Cr), nickel (Ni), Fe and 
manganese (Mn) from as-received SS  grade 4Ni exposed to two consecutive 8 

hour rain events (pH 4.3, 4 mm h-1) 
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2.5.1.4 Deposition of pollutants: gases, particulates and aerosols 

A variety of natural and anthropogenic pollutant gases, aerosols and particulates are 

constantly entering the atmosphere or being removed by raindrops or impact with 

the ground or ground-based objects (Cole, 2010).  The distance travelled away from 

the source is dependent on the residence time, which is linked to its reactivity.  

Highly reactive species e.g. hydroxide radicals (OH) travel extremely short 

distances, oxidants e.g. nitrogen oxides (NOx) and SO2(g) that oxidise and reduce 

both influence atmospheric pH, but travel limited distances and aerosols travel 

moderate distances from their source (figure 26).  All of these substances have 

significant implications for atmospheric corrosion (Cole, 2010).  As aerosols are 

moderately long lived species, they can travel considerable distances from their 

Figure 25 Change in annual days of rain > 1mm between 

1961-1990 and 1971-2000 (Jenkins et al., 2008) 



   

 40  

source.  Many common aerosol components contain corrosive Cl- and SO4
2- ions 

(table 7).  Aerosols and salt mists formed from road-salt, can develop as tyres of 

moving vehicles spray tiny particles of salt water or dry salt into the air (Houska, 

2009).  Moving vehicles cause turbulence, which creates a vertical column of wet or 

dry salt particles that are transported away from the road by the wind.  

Accumulations usually stop within 1 km (0.6 miles) of a main roads, but they have 

been found 1.9 km (1.2 miles) downwind of a major road.  Smaller wet droplets and 

dry particles travel much further away from roads than large saltwater droplets, 

which generally land within ‘splash zone’, 15 m (49 ft) from the road (Houska, 2009).  

The critical humidity level for corrosion can be lowered to 45% at 0 °C if calcium 

chloride (CaCl2) is included in the de-icing salt.  The transport of de-icing salt 

aerosols, although largely seasonal, may cause bigger issue for the UK in terms of 

corrosion, than sea-salt.  De-icing salt is likely to be used on the roads and in the car 

parks of museum sites e.g. the TM and historic buildings with ornate gates and 

railings.  Thus, de-icing salt could cause significant damage to ferrous metal.  

Fortunately, the TM is remote, away from main roads. 

 

Figure 26 Spatial and temporal scales of variability for atmospheric constituents.  
Taken from (Schweitzer, 2003); Cole (2010); reproduced from Seinfeld, J. and S. 
Pandis 1997 Atmospheric Chemistry and Physics: From Air Pollution to Climate 

Change; Wiley Interscience: New York 
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‘Wet’ and ‘dry’ deposition are two methods for pollutants to combine with surface 

moisture layers (Arroyave and Morcillo, 1995).  Wet deposition involves precipitation 

(rain, snow, fog) (Arroyave and Morcillo, 1995), whereas dry deposition involves 

adsorption of gas onto material surfaces or impaction of particles.  Armoured 

vehicles situated outdoors will experience both wet and dry deposition, as will those 

located within lightweight buildings if condensation occurs, but if condensation does 

not occur those under shelter or indoors will only be subject to dry deposition. 

Aerosols play a significant role in corrosion.  Gradual changes in the composition of 

the rust result from variations in the size and composition of the aerosol (Lau et al., 

2008).  The corrosion resulting from fine aerosol particles has a composition related 

to SO4
2-, but those from coarse particles are mostly linked to Cl-.  Lau et al. (2008) 

reported sea-salt (Na+Cl-) aerosols contributed the most to corrosion of mild steel, 

SO4
2-, ammonium (NH4

+), potassium (K+), magnesium (Mg2+) and nitrate (NO3
-) had 

a much smaller impact, while calcium (Ca2+) significantly inhibited corrosion. 

Corrosion processes at humidity levels below that required for adsorption-induced 

wetting at a clean surface are initiated and sustained by deliquescence of deposited 

hygroscopic species.  Deliquescence RH (DRH) values occur over a wide RH range 

(table 7) (Schindelholz and Kelly, 2012) and for CaCl2 (table 8) they decrease with 

increasing temperature and vice versa. 

* Efflorescence – crystallisation point of a salt during drying cycle. 

N/A denotes behaviour that was not measured or observed in the cited references. 

Table 7 Experimentally determined deliquescence and efflorescence points for 
common aerosol components at or around ground 25 °C (Schindelholz and Kelly, 

2012).  
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Table 8 Temperature and humidity levels at which marine and deicing 
salts begin to absorb water and form a corrosive chloride solution 
(Houska, 2009). 

Temperature Critical Humidity Level (%) 

°F °C NaCl CaCl2 MgCl2* 

77 25 76 30 50 

50 10 76 41 50 

32 0 - 45 50 

*MgCl2 – Magnesium chloride 

 

Surface contaminants are more accurately represented as mixed salts, whose 

mutual deliquescence RH (MDRH), is lower than that of their pure salt components 

(figure 27).  This has implications for corrosion as CaCl2 is used with NaCl in de-

icing salts (Houska, 2009) and although the DRH for NaCl is 75% RH, for CaCl2 it is 

20% RH (table 7).   

Fossil fuels release SO2 into the atmosphere.  SO2, is also a moderately long-lived 

species within the atmosphere (figure 26), with moderately long transport distances.  

In the atmosphere about 30% of the SO2 is converted to the acid sulfate aerosol 

[14], which is removed through wet or dry deposition (The World Bank Group, 1999) 

forming sulfuric acid (H2SO4) (Walker, 1982c; Tullmin and Roberge, 2000; Syed, 

2006). 

 

Figure 27 Deliquescence behaviour of mixed NaCl and 
KCl constructed using Analyzer Studio strong 
electroltye modeling software (OLI Systems) 
(Schindelholz and Kelly, 2012) 
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 SO2 + O2 + 2e- → SO4
2- [14] 

 
Walker (1982c) speculated that the following equations [15] to [17] may occur when 

SO2 gas is dissolved in rain.  The soluble ferrous sulfate (FeSO4) salt is formed 

when the dissolved SO2 reacts with Fe.   

 Fe + SO2 + O2 → FeSO4 [15] 

 4FeSO4 + O2 + 6H2O → 2Fe2O3.H2O + 4H2SO4 [16] 

 4H2SO4 + 4Fe + 2O2 → 4FeSO4 + 4H2O [17] 

Sulfuric acid is regenerated by the hydrolysis of FeSO4 forming oxides [16] (Walker, 

1982c), [18] (Badea et al., 2010), [19] (Syed, 2006)). 

 4FeSO4 + O2 + 6H2O → 4FeOOH + 4H2SO4 [18] 

 4FeSO4 + 2H2O → FeOOH + SO4
2- + 3H+ + e- [19] 

Liberating the corrosion-stimulating SO4
2- ions, leads to an autocatalytic type of 

attack on Fe (Syed, 2006).  A relatively low pH at the anodic site is maintained as a 

result of the pH-regulating effect of FeSO4 and thus iron hydroxides are prevented 

from precipitating directly on the metal surface.  As the sulfate accelerates the 

anodic dissolution of Fe, favourable conditions for corrosion in the active state are 

created.  Crystalline iron (II) sulfate at the steel/rust interface was identified as 

tetrahydrate FeSO4.4H2O (Morcillo et al., 2011).  Within the sulfate nests (figure 28) 

exist a reservoir of soluble ferrous sulfate, which contribute to their high stability.  A 

semi-permeable membrane of hydroxide, formed by oxidative hydrolysis of iron ions, 

develops enclosing the sulfate nest.  

Although the surfaces appear dry, in recesses corrosion can continue under moist 

conditions, as H2SO4 is difficult to remove (Walker, 1982c).  Sulfur (S) has also been 

found to accumulate during winter at the metal-oxide interface, when steel is 

exposed in SO2 polluted atmospheres (Morcillo et al., 2011).  The S then becomes 

concentrated in nests with the arrival of summer, and is diffused throughout the 

thickness of the rust layer. 

Although Cl-  in the atmosphere typically originate from the sea, they can also 

originate from general industrial pollution (Walker, 1982c).  Cl- increases the 

conductivity of solutions and as many Cl- compounds are hygroscopic they 
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encourage electrochemical corrosion (Walker, 1982c).  Where large amounts of Cl- 

ions are deposited (within 100 m from the sea), the presence of Cl- is conducive to 

the formation of β-FeOOH which accelerates the corrosion process as it deteriorates 

the atmospheric resistance of low carbon steel (Ma et al., 2009).  Chloride ions need 

to accumulate and reach a critical concentration level before their effects are seen.  

At 95 m from the coastline where Cl- deposition is high, it was 9 months before β-

FeOOH formed in the inner layer as a result of Cl- ions (Ma et al., 2009).  Where 

small amounts of Cl- ions are deposited and the concentration level is below the 

critical concentration, the Cl- ion facilitates the transformation of γ-FeOOH to α-

FeOOH (Ma et al., 2009).  The overall transformation process is outlined in figure 

29.  Corrosion at lower Cl- concentration levels is still accelerated and the conditions 

for self-propagating pits and crevices still arise, and both of these forms of corrosion 

could cause problems on armoured vehicle and structures. 

 

 

 

Figure 28 Representation of a sulfate nest (Morcillo et al., 2011) 

Solid state 

precipitation 

precipitation 

chlorination 

precipitation 

oxidation & 

hydrolysis 

Fe  →  Fe2+  →  FeOH+  →  γ-FeOOH  →  FeOx(OH)2-2xCl  →  α-FeOOH + HCl↑ 

dissolution 

Figure 29 Outline of overall transformation process 
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The acceleration rate caused by Cl- ions on the atmospheric corrosion of steel 

depends on the rain regime characteristics, i.e. the higher the volume of rain and the 

longer the period of time, the lower acceleration on corrosion rate for a given Cl- 

deposition rate (Corvo et al., 2005).   

Not only do Cl- ions affect the rate of corrosion, but they affect the type of attack and 

products found in the corrosion layers.  Protective and insoluble OH- ions on metal 

surfaces can be replaced by soluble metal products causing local attack such as 

pitting.  The Cl- ion is small and relatively mobile, which allows it to diffuse to the 

metal surface (Walker, 1982c).  The characteristics of rust layers are remarkably 

influenced by the level of Cl- deposition (Ma et al., 2009).  Corrosion of carbon steel 

with Cl- proceeds in local cells which resemble SO4
2- nests (Morcillo et al., 2011).  

The local cells arise around the Cl- particles deposited on the surface, where the 

FeOOH passivating film is destroyed locally by the concentrated Cl- solution.  The 

development of differential aeration cells can lead to pitting.  Unlike with SO2 

polluted atmospheres, nests are not formed as no amorphous oxide/hydroxide 

membrane is formed (figure 30).  The ability of ferrous and ferric chlorides (FeCl2 

and FeCl3) to form complexes is a factor which influences the corrosive activity, with 

oxidant hydrolysis giving rise to the complex nFeOOH.FeCl3, or a solution of FeCl3 

in FeOH in gel form (Morcillo et al., 2011).   

 

Iron chlorides are commonly found amongst the iron corrosion products, they tend to 

migrate to the steel/rust interface and accumulate (Morcillo et al., 2011). 

 

Figure 30 Schematic representation of a chloride agglomerate (Morcillo et al., 2011) 
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2.5.2 Environment Types 

The meteorological and air pollution factors discussed above have varying effects 

on different locations and environments due to terrain, proximity to the coast, 

mountainous regions or anthropogenic pollution sources.  Understanding 

atmospheric corrosivity categories and examples of typical environments can make 

generalised service life predictions of steel possible or predict thickness loss of the 

armoured steel at the TM.  The ‘corrosivity’ and ‘environment categories’ presented 

in table 9 are based upon those given in the Standards BS EN ISO 12944-2 and BS 

EN ISO 9223 (Tata Steel et al., 2015) (Standards are discussed in more detail in the 

next chapters). 

Note: a  The thickness loss values are after the first year of exposure. Losses may 
reduce over subsequent years.  
The loss values used for the corrosivity categories are identical to those given in BS 
EN ISO 9223: 2012, Corrosion of metals and alloys – Corrosivity of atmospheres – 
Classification, BSI 
In coastal areas in hot, humid zones, the mass or thickness losses can exceed the 
limits of category C5-M. Special precautions must therefore be taken when selecting 
materials. 
BS British Standard; EN European Norm; ISO International Standards Organisation. 

 

Table 9 Atmospheric corrosivity categories and examples of typical environments 
(BS EN ISO 12944-2: 1998, Paints and varnishes – Corrosion protection of steel 
structures by protective paint systems – Part 2: Classification of environments, BSI) 

Corrosivity 
category 
and risk  

Low-carbon 
steel 

Thickness 
loss (μm)a  

Examples of typical environments in a temperate 
climate (informative only) 

Exterior  Interior  

C1 
very low 

≤ 1.3 - 
Heated buildings with clean 
atmospheres, e.g. offices, 

shops, schools, hotels  

C2 
low 

> 1.3 to 25 
Atmospheres with low 

level of pollution 
Mostly rural areas 

Unheated buildings where 
condensation may occur, e.g. 

depots, sports halls  

C3 
medium 

> 25 to 50 

Urban and industrial 
atmospheres, 
moderate SO2 

pollution 
Coastal area with low 

salinity 

Production rooms with high 
humidity and some air pollution 

e.g. food-processing plants, 
laundries, breweries, dairies  

C4 
high 

> 50 to 80 
Industrial areas and 
coastal areas with 
moderate salinity 

Chemical plants, swimming 
pools, coastal, ship and 

boatyards  

C5-I 
very high 

(industrial) 
> 80 to 200 

Industrial areas with 
high humidity and 

aggressive 
atmosphere 

Buildings or areas with almost 
permanent condensation and 

high pollution  

C5-M 
very high 
(marine) 

> 80 to 200 
Coastal and offshore 

areas with high salinity 

Buildings or areas with almost 
permanent condensation and 

high pollution  
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Four types of environments are frequently used for corrosion testing – rural, marine, 

industrial and urban.  In generalised terms, rural environments are the least 

corrosive, followed by urban, industrial and then marine environments.  Although, 

Cole (2010) lists data for some key parameters for particular locations (table 10)  

these should only be taken as indicative especially as they are based on data 

collected in Australia, Japan, China, Brazil, Turkey, Mexica and South Africa and not 

the United Kingdom, also explaining the inclusion of remote locations as a fifth type 

of environment. 

 

Table 10 Summary of gaseous concentration, aerosol type and rain water 
composition (µeq l-1) for varying types of location in Australia (Cole, 2010) 

Location 
type 

Marine Industrial Urban Rural Remote 

Gaseous (mixing ratio) 

SO2 (ppt) 260 1500 160-1500 160 20 

H2S (ppt) 65 365 365 35-60 3.6-7.5 

NOx (ppb) 0.2-1000 10-1000 10-1000 0.2-10 0.02-0.08 

O3 (ppb) 20-40 100-400 100-400 20-40 20-40 

      

Aerosols 

pH 0-9.5 -1-2.4 1.9-3   

Major 
species 

NaCl, MgCl 

H2SO4, 
(NH4)2H(SO4)2, 

(NH4)2SO4, 
NH4HSO4 

NH4NO3, 
NH4Cl, 

(NH4)2SO4 

 

Dust, 
pollen, 
plant 
waxes 

Secondary 
species 

Na2SO4, H2SO4, 
NH4HSO4, 

(NH4)2SO4 and 
NH4NO3.NaHSO4 

 NaNO3   

      

Rain water 

pH 4-5.6 4.2-7.3 4.4-6.1 3.6-5.8 5.6-6 

Cl- 100-1300 9-142 10-27 3-25 1-1300 

NO3
- 3-10 40-140 13-140 3-25 3-10 

SO4
2- 3-10 70-240 12-60 4-60 3-10 

Na+ 100-1200 5-60 20-60 3-30 100-1200 

NH4
+ 2-10 30-200 10-30 2-20 2-10 

Ca2+  20-300 2-35 2-20 80 
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2.5.2.1 Rural Environments  

The principal corrosives in rural environments are moisture and relatively small 

amounts of carbon dioxide (CO2) and sulfur oxides (SOx) from various combustion 

products, as rural environments are usually free of aggressive agents, with 

deposition rates of SO2 and NaCl lower than 15 mg m-2 day-1 (Syed, 2006).  The 

decomposition of farm fertilizers may also result in ammonia (NH3) being present. 

2.5.2.2 Urban Environments  

In an urban environment, a highly corrosive wet acid can develop on exposed 

surfaces with the addition of fog or dew as the atmosphere is characterized by 

pollution mainly composed of SOx and NOx from domestic emissions and motor 

vehicles (Syed, 2006).  Although urban pollution is characterized by NOx and SOx 

emissions, there is little industrial activity and the atmosphere is similar to that found 

at rural locations with deposition rates of NaCl lower than 15 mg m-2 day-1, but the 

deposition rate of SO2 is higher than this value (Syed, 2006). 

2.5.2.3 Industrial Environments  

In an industrial atmosphere, the most potent causes of corrosion are SOx and NOx 

formed by combustion reactions of fuel in motor vehicles and fossil fuels in power 

stations.  Concentrations of phosphates, hydrogen sulfate, Cl-, NH3 and its salts are 

also associated with these atmospheres (Syed, 2006).   

2.5.2.4 Marine Environments 

Marine atmospheres are usually highly corrosive, however, this is dependent on the 

RH, prevailing winds, wave action at the surf line and topography of the shore 

(Syed, 2006).  The Cl- ion from NaCl is the main culprit in marine atmospheres and 

due to marine fog and wind-blown spray droplets NaCl is deposited on steel 

surfaces at a rate higher than 15 mg m-2 day-1 (Syed, 2006).  Severe corrosion is 

induced by this contamination at RH > 55%.  The proximity to the ocean and salt 

characterize the marine environment and although the corrosiveness decreases 

rapidly with increasing distance from the ocean (figure 16 (a) and (b)), the salt spray 

can be carried as much as 15 km inland in a severe storm (Syed, 2006). 
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2.5.3 Sheltered and Indoor Corrosion  

Other criteria appear to be valid under sheltered and indoor environments as the 

expression previously used for TOW does not correlate well in these conditions 

(Kucera and Mattsson, 1987) and the standard ISO 9223, does not differentiate 

conditions sufficiently (table 11) (Roberge et al., 2002).  Another system of 

classification has been developed; standards ISO 11844 parts 1, 2 and 3 – 

Corrosion of metals and alloys – Classification of indoor atmospheres (table 12).  

Important pollutants are specified as SO2, NO2, ozone (O3), H2S, chlorine (Cl2), Cl-, 

NH3, organic acids and aldehydes, and particles (dust deposits and soot).  

Compared to the outdoor environment, the effects of corrosion in the indoor 

environment are more complicated and difficult to predict (Tidblad, 2013).  

IC1 to IC3 (table 12) correspond to the more widely known corrosivity category C1 

(table 9), and IC4 to IC5 corresponds to C2.  The new display hall within the Tank 

Museum is likely to fall within the C1 corrosivity category as it was installed with 

radiant heating.  The Vehicle Conservation Centre at the Tank Museum part of 

which is shown in figure 31 also reveals an over-head heating system, thus placing 

it in the C1 category.  However, this building is also fitted with very large shutter for 

moving tanks in and out, which will also allow the movement of atmospheric 

pollutants into the building, potentially altering the corrosivity category it should fall 

within.  There are also buildings, sheds and workshops without heating at the Tank 

Museum and these will fall under C2, which is also equivalent to an outdoor rural 

environment in term of corrosivity. 

 
Table 11 ISO classification of time of wetness (Roberge et al., 2002) 

Wetness 
category 

Time of wetness 

(%) 

Time of wetness 

(hours per year) 
Examples of environments 

T1 <0.1 <10 Indoor with climatic control 

T2 0.1-3 10-250 Indoor without climatic control 

T3 3-30 250-2500 Outdoor in dry, cold climates 

T4 30-60 2500-5500 Outdoor in other climates 

T5 >60 >5500 Damp climates 
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Table 12 Classification of corrosivity of indoor atmospheres 
based on corrosion rate measurements by mass loss 
determination of standard specimens.  The values have 
been calculated from the values in the standard into µm 
year-1 using the density 7.8 for carbon steel (Tidblad, 2013) 

Corrosivity Indoor Category Carbon Steel 

IC1 Very Low 0.01 

IC2 Low 0.01-0.13 

IC3 Medium 0.13-1.3 

IC4 High 1.3-9 

IC5 Very High 9-25 

 

Under ventilated sheds, in both coastal and rural stations the average Cl- deposition 

rate decreases sharply (Mendoza and Corvo, 1999).  However, in sheltered 

conditions the influence of Cl- could be higher than outdoors, as no rain wash occurs 

(Corvo et al., 2008).  This accumulation of Cl- and other pollutants combined with 

high RH may produce a corrosion rate higher than for outdoors , but maximum 

corrosion rates for steel normally occur outdoors, possibly due to the formation of a 

thick and adherent layer of corrosion products (Corvo et al., 2008).  In closed space 

conditions it is practically impossible for the Cl- ions to get into the indoor space of 

the sheds, whereas for gaseous sulfur compounds (SO2, sulfur trioxide (SO3), etc.), 

there is not a marked decrease (Mendoza and Corvo, 1999).  Small metallic boxes 

such as those used in the TROPICORR project can model indoor environments of 

steel fabricated buildings similar to some used at the Tank Museum, particularly 

when considering deposition of possible contaminants.  The Vehicle Conservation 

Centre (VCC) employs over-head heating to avoid condensation forming on the 

surface of the Tanks (figure 31).  The international collaborative project 

TROPICORR, found deposition of contaminants inside metallic boxes and corrosion 

rates reduced considerably in these conditions, but steel had the highest corrosion 

rate (Corvo et al., 2008).  
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Air temperature, RH, concentration of the pollutants SO2, NOx, O3, NH3, HCl, 

sulfates, dispersed chlorides, organic acids, other volatile compounds and dust 

particles all influence corrosion indoors (Prosek et al., 2013); but heritage institutions 

mostly control and monitor, temperature and RH (as is the case for the Tank 

Museum), largely due to the cost and technical challenges of monitoring (Prosek et 

al., 2013).  Indoors, RH plays a significant role in corrosion, with condensation 

forming the aqueous layer that acts as the electrolyte, and at 65% RH or above, this 

layer approaches the behaviour of bulk water (Hœrlé et al., 2004; Selwyn, 2004).  

Indoor dust particles often contain salts and other contaminants and these 

hygroscopic pollutants can cause the local RH to be raised enough to initiate 

corrosion (Selwyn, 2004). 

Figure 31 A small area of the Vehicle Conservation Centre at the Tank 

Museum with over-head heating employed 
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3 Coating Systems: Properties and Performance  

3.1 Introduction  

If ships, vehicles, aeroplanes, bridges and industrial plants were not given the 

protection afforded by anti-corrosive paints they would not function for long (Guy, 

2004).  This chapter discusses coating systems (coating, substrate and interface), 

focusing on ferrous metal, coating choice, coating properties and assessment of 

performance.  The appearance, corrosion resistance, usage, need for coatings, and 

surface preparation for coating of ferrous metals used for large structures, machines 

and vehicles will also be considered.  Finally, industrial coatings, processes and 

standards relative to heritage conservation are addressed. 

 

3.2 Coatings 

3.2.1 The Function of Coatings  

In addition to being in the business of decoration, the coatings industry has always 

been concerned with conservation (Marrion, 2004).  The lifespan, safety, operating 

efficiency, appearance and economy of structures and heritage metal can all be 

influenced by a protective coating (Bortak, 2002).  Coatings purposes include:  

 The prevention of corrosion – either actively or passively. 

o Actively – the inclusion of anticorrosive pigments  

o Passively – providing an adhesive and impermeable barrier 

 Providing slip or slip resistance 

 Abrasion and impact resistance 

 Contamination resistance  

 Providing hygienic properties 

o Bacterial, fungal or antifouling resistance (Marrion, 2004). 

 
Irrespective of the end property, all coatings provide economic benefit by saving 

energy, reducing downtime, increasing lifetime, saving capital and allowing material 

substitution (Marrion, 2004).   

Coatings significantly reduce corrosion rates (table 13) and quantifying the 

performance of coatings in terms of their anti-corrosion performance is central to this 

research.  For anticorrosive coatings there are three basic mechanisms of 
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protection, barrier protection, passivation of the substrate surface (inhibitive effect) 

and sacrificial protection (galvanic effect) (figure 32) (Sorensen et al., 2009). 

Table 13 Mass loss of uncoated and vinyl resin-coated cold-rolled steel 
samples after exposure for 21 days to an atmosphere containing SO2 and NaCl 
(Baumann and Bender, 2008) 

Atmospheric contamination*, (%) Mass loss, (g/m2) of steel, 

SO2 NaCl not coated coated 

0.008  52.0 17.0 

0.016  280.0 41.4 

 0.0017 214.6 0 

 5.0 385.2 0 

0.008 0.0017 160.3 0 

0.008 5.0 183.2 43.5 

0.016 0.0017 791.0 235.2 

0.016 5.0 195.7 80.5 

* The exposure to SO2 or NaCl in the last four experiments was carried out separately in daily 
alternation 

 

 

For organic coatings without active pigments, barrier properties regarding O2 and 

H2O are not the critical aspects describing the corrosion protection properties 

(Deflorian and Fedrizzi, 1999).  Their low ionic conductivity can protect the substrate 

from atmospheric corrosion by isolating the anodic and cathodic areas (Arroyave 

and Morcillo, 1995; Deflorian and Fedrizzi, 1999).   

Coating systems with low permeability for liquids, gases and ions provide barrier 

protection by impeding surface access to aggressive species.  A chemical 

conversion layer or including inhibitive pigments in a coating can provide passivation 

of the substrate surface (an inhibitive effect) and the galvanic effect works by means 

of sacrificial protection provided electrical contact with the substrate is maintained.  

Metallic, organic, and inorganic coatings, have all been used in this way (Sorensen 

et al., 2009). 

Internal and external variables affect performance and durability of a coating 

system, making it very difficult to assess (figure 33) (Sorensen et al., 2009). 

Figure 32 Anticorrosive coating protective mechanisms (Sorensen et al., 2009) 
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3.2.2 Coating properties 

3.2.2.1 The Rheology of Coatings: Flow and Levelling 

Settling of pigment during storage, how much paint is picked up on the brush, film 

thickness applied, levelling of the applied film and control of sagging of the film are 

all governed by the flow properties of a paint (Wicks et al., 2006e).  Coatings needs 

to ‘hold up’, possibly on a vertical surface without dripping or running and ‘flow out’ 

(level) so that there are no visible surface imperfections or undulations, and a 

smooth film of the required thickness is achieved.  Gravity is not a major influence 

as paint applied to a ceiling does not level any less effectively than paint applied to a 

floor (Wicks et al., 2006d).  Rheology is considered during coating formulation 

(Marrion, 2004).   

Achieving the best coating properties often requires compromise.  Over a rough 

substrate, good levelling (figure 34 (a)) may be undesirable as thin areas provide 

limited protection, however, equal film thickness (figure 34 (b)) may also be 

undesirable due to the appearance.  Controlling volatility offers a compromise with 

reasonable film smoothness without places where film thickness is very thin (figure 

34 (c)) (Wicks et al., 2006d).   

Levelling increases with high surface tension, but high surface tension can also lead 

to defects such as crawling, retraction and cratering (section 3.2.2.1.3).  Thicker 

films promote levelling, but increase both the probability of sagging on vertical 

surfaces and cost (Wicks et al., 2006d).  Levelling is fastest when the wavelength ( 

in figure 36, determined by application condition) is small, the surface tension is 

Figure 33 Factors affecting the longevity of an anticorrosive coating system 

(Sorensen et al., 2009) 
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high, the viscosity is low and the film is thick.  The principal means of control left is 

viscosity, which usually changes whilst the coating levels as solvent evaporation 

increases the viscosity (Wicks et al., 2006d) or for reaction systems like epoxy as 

they cross-link.  The viscosity of a coating is its resistance to flow and must be 

adjusted to the method of application to be used (Wicks and Jones, 2013).  

Additionally, appearance is crucial in heritage contexts. 

 

 

3.2.2.1.1 Application Methods 

Coatings may be applied by a variety of methods, brushing, dipping, electro-

deposition, curtain-coating, flow-coating, and spraying (compressed air, airless, 

electrostatic and aerosol spraying) (figure 35) (Turner, 1988) and these have various 

advantages and disadvantages (table 14) (Stoye and Freitag, 2007b).  Coating 

application methods used for the maintenance and restoration of large metal objects 

will be considered in further detail, thus dip coating and flow, flood and curtain 

coating will not discussed.  

Although different consistencies of paint are required by different application 

methods, the application principle remains the same: greater viscosity requires, 

larger quantities of dissolved polymer in the coating.  Irregularities in the wet film 

surface are left by most methods of application such as brush marks, roller stipple 

and spray mottle, which can be lessened or removed by wet film flow, while avoiding 

‘run’ if applied to a vertical surface (Turner, 1988).   

 

Figure 34 Different levelling (a-c) results after applying a coating to a rough 
surface (Finnie, 1995; Wicks et al., 2006d) 



   

 56  

 

Brush and Pad Application 

To avoid time-consuming and labour-intensive brush application industry uses more 

rapid and efficient methods.  For maintenance of small areas, for coating awkward 

or restricted areas where spray application can be difficult or prohibited for health 

and safety, and for stripe coating of sharp edges, brushing remains suitable 

(Whitehouse, 2010).  Hence, brush application is one of the methods used for 

maintenance of vehicles at the Tank Museum.   

The brushes available vary in several ways: width, handle length and bristle type 

(e.g. nylon, polyester, and hog hair) (Wicks et al., 2006b).  The suitability of a paint 

brush for a particular type of coating task is determined by its size, shape and bristle 

type (table 15).  Armoured vehicles have many areas that are relatively inaccessible.  

Thus wetting and good adhesion are promoted by brushing paint into these spaces 

and forcing the coating into contact with the surface (Whitehouse, 2010). 

 

 

Figure 35 Paint application - various approaches (Marrion, 2004) 
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Table 15 Suitability of different bristle types for use with different paints 
(information extracted from (Finnie, 1995; Wicks et al., 2006b)) 

Bristle type 

Suitability/response to paints 

Water-borne Solvent-borne 

Hog bristle   

Nylon bristles  
 

(Swollen by some solvents) 

Polyester bristles   

 

Table 14 Miscellaneous wet coating methods, adapted from Stoye and Freitag (2007b) 
to include only methods suitable for large metal objects. 

Application 
Method 

Advantages Disadvantages Examples of areas of 
use 

Brushing  Simple equipment 

 High paint yield 

 No specially trained 
work-force required 

 Universally 
applicable 

 Good wetting of the 
substrate. 

 Highly labour-
intensive (high 
wage costs) 

 Non-uniform film 
thickness 

 Danger of brush 
marks 

 Steel 
superstructures 

 Lattice 
constructions 

 Handicrafts 

 Do-it-yourself 

Roller 
application 

 Fast and easy to 
master 

 High paint yield 

 Uniform film 
thickness 

 Only suitable for 
smooth surfaces 

 Worse wetting of 
the substrate 

 Labour-intensive 

 Steel 
superstructures 

 Handicrafts 

 Do-it-yourself 

Wiping  Fast application 

 Uniform film 
thickness 

 High paint yield 

 Unsuitable for 
work pieces with 
complex shapes 

 Exterior coating of 
pipes 

 Application of 
bitumen to 
pipelines 

 Wood coating 

Rolling, 
printing, 
strip (coil) 
coating 

 High degree of 
automation 

 High paint yield 

 High economy 

 Very uniform 
coating 

 Only suitable for 
flat surfaces 
(strips) 

 High investment in 
plant and 
equipment 

 Limited potential 
uses 

 Strip and panel 
coating (sheet 
metal, wood, films, 
paper, 
paperboard) 

Flow 
coating 

 Good material yield 

 Easily automated 

 Non-uniform film 
thickness 

 Danger of paint 
slurry formation 

 Large, bulky 
articles (radiators, 
frames for 
commercial 
vehicles, etc.) 
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Brushes hold paint in the spaces between their bristles and the paint is forced out 

from between the bristles due to pressure when it is applied.  The paint layer is split 

via the forward motion of the brush, so part of the paint is applied to the surface and 

part remains on the brush.  When using brushes, paint viscosity characteristics are 

critical, with a low shear rate (~15 to 30 s-1) controlling the pick of paint on the brush 

and a high shear rate (~5000 to 20000 s-1) between the brush and the substrate 

giving a low viscosity for ease of brushing (Wicks et al., 2006b).  Paints aid their own 

application process as they are frequently highly shear thinning or thixotropic with 

their viscosity decreasing when a stress is applied e.g. stirring, but return to a 

semisolid state on standing.  For the duration of the application the structure within 

the paint is destroyed by the high shear rates generated by the application methods, 

increasing the ease with which they flow in such processes (Reynolds, 1994, 2004).  

Since brushing generates a high shear rate (104 - 106 s-1), shear viscosity can be 

used to compare brushing characteristics of a series of paints and relate it to their 

rheology.  

Increasing viscosity leads to increased film thickness and higher “brush drag”, this is 

slowed by using solvents with relatively slow evaporation rates (Wicks et al., 2006b).  

Paint applied by brush results in furrows (brush marks) in the surface of the wet film.  

These do not result from the individual bristles but form as the paint is applied and 

the wet film is split between the brush and the substrate (Wicks et al., 2006b).  

Levelling of brush marks is widely studied.  A sine wave profile is used for the model 

of an idealised cross section of a wet film exhibiting brush strokes (figure 36) (Wicks 

et al., 2006d).  As the thickness of the coating increases and the pressure on the 

brush increases, the wavelength () also increases.  Although levelling of brush 

marks should be promoted, it should only be to the extent where the seriousness of 

the surface irregularities is acceptable (Overdiep, 1986). 

 

Figure 36 Illustration of a cross section of brush marks (Wicks et al., 2006d) 
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Pad applicators are also used in the do-it-yourself market instead of, or in addition 

to, brushes.  Pad application is not used at the TM due to their disadvantages (table 

16). 

Table 16 Advantages and disadvantages of pads compared to brushes 
(information taken from Wicks et al. (2006b)) 

Advantages Disadvantages 

Holds more paint than a brush of similar 
width  

Requires the use of a tray 

Can apply paint twice as fast Use of a tray results in some loss of paint 

Generally leaves a smoother layer than 
brush application 

Use of a tray also results in some solvent 
evaporation 

Extension handles can be used, reducing 
the need for moving ladders 

Cleaning pads is more difficult than paint 
brushes 

Pads and refills are less expensive than 
paint brushes 

 

 

Hand-Roller Application 

Although hand-roller application is used at the Tank Museum, it is not appropriate 

for this research where the focus is on small areas of coating maintenance.  

Hand-roller application is the fastest method of hand application (Wicks et al., 

2006b) being up to four times faster than brushing (Whitehouse, 2010).  Hand-roller 

application is commonly used for applying architectural paint to walls and ceilings 

(Wicks et al., 2006b), but to coat corners and edges satisfactorily brushes may still 

be needed (Whitehouse, 2010).  Hand-roller and brush application have similar 

viscosity requirements and both involve film splitting during application.  However, 

for hand-roller application, the film stretches as the roller moves, leaving a ribbed 

surface as the film breaks at different times due to imbalances of pressures (Wicks 

et al., 2006b).  Appearance wise whether this is acceptable depends on the desired 

surface finish and the levelling properties of the coating once it has been applied.  

An advantage of hand-roller application (table 14) is the resulting uniform coating 

thickness, which allows for more predictive corrosion protection and an even build-

up of coating layers. 
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Spraying (Atomisation)  

Although spraying is unlikely to be a method used in situ for maintenance, due to 

practicalities and health and safety considerations, it can be used in workshops for 

restoration of large vehicles.  It is fast and is particularly useful for coating irregularly 

shaped articles, although it is also used on flat surfaces. 

Spraying equipment works by atomising the liquid coating into droplets (Wicks et al., 

2006b).  Atomisation in conventional spraying is the result of external forces, the 

exchange of momentum between two free jets (air and paint) (Stoye and Freitag, 

2007b).  As the paint reaching the surface does not have the same composition as 

the paint leaving the spray-gun, the formulation of coatings is further complicated.  

Compared with the volume, the surface area of each droplet from which evaporation 

occurs is large (Turner, 1988) and a great deal of liquid can be lost this way, which 

adds to the cost.  Since only a fraction of the spray particles are deposited on the 

object being sprayed, the principal disadvantage is the inefficiency of the application 

(Wicks et al., 2006b). 

 

3.2.2.1.2 Coating thickness 

Coating thickness and uniformity can be affected by application method, coating 

formulation and substrate surface profile.  For the success of any coating system, an 

adequate film thickness is essential.  Premature failure will generally result from 

under-application, solvent entrapment and subsequent loss of adhesion or splitting 

of primer coats can result from gross over-application.  Table 17 shows how coating 

thickness needs to vary for different service life requirements of different binders in a 

coastal environment.   

The substrate shape and surface can also have a significant effect on coating 

thickness.  Pits in the substrate surface and blasting to clean and create an 

adhesive surface both have an impact on the thickness of the coating and uniformity 

(figure 34).  The thickness of coatings at edges and corners can also lead to 

concern about their protection. 
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Edge and Corner Protection 

For ease and uniformity of paint application, structures in critical chemical 

atmospheres often use cylindrical sections.  It is difficult to coat edges and corners 

uniformly (figure 37), and this leaves thinly coated protrusions susceptible to 

corrosion (Jones, 2013).  It is a problem with the many angular aspects of armoured 

vehicles.  

Surface tension minimises the surface area of the film when it is applied around a 

corner, causing a decrease or increase in the film thickness (figure 38 (b) and (d)) 

(Chan and Venkatraman, 2006).  An increase in the thickness of the film at edges, is 

related to variations in the surface tension with the solvent concentration.  A 

decrease in film thickness at the edge for a newly formed film is due to surface 

tension of the film.  As there is a larger surface area per unit volume near the edge, 

the solvent evaporates much faster at the edge of the film creating a higher surface 

tension causing material transport towards the edge from region 2 to 1 (figure 39).  

Due to the exposure of the underlying material in region 2, which has a higher 

solvent concentration, the newly formed surface will have a lower tension.  The 

surface tension gradient across the regions (figure 39 (c)), causes more materials to 

be transported from region 2 to the surrounding areas (regions 1 and 3) (Chan and 

Venkatraman, 2006). 

 

Table 17 Minimum coating thickness of corrosion protection coating systems for 
steel in a coastal atmosphere (Baumann and Bender, 2008) 

Binder 

Service Life, (in years) 

2 to 5 5 to 10 10 to 20 > 20 

Minimum coating thickness, µm 

Oil 75-125 125-200   

Alkyd resin1 75-100 100-125 125-150 >150 

Phenol resin1 75-100 100-175 175-275  

Vinyl resin2  50-75 75-100   

Chlorinated rubber2 50-75 75-100 100-275  

Epoxy resin2 100-125 125-150 125-200  

1 Mean value of six different degrees of cleanliness 
2 Blasted surface  
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Figure 37 Inadequate coating thickness at corners and edges (Jones, 2013) 

Figure 38 (a) Thick film at a corner – newly applied.  (b) Surface 
tension causes a decrease in the film thickness.  (c) Thin film at 
the corner – newly applied.  (d) Surface tension causes an 
increase in film thickness at the corner (Chan and Venkatraman, 
2006). 
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3.2.2.1.3 Wetting 

In the adhesion of a coating to a substrate, wetting is a major and perhaps limiting 

factor (Chan and Venkatraman, 2006; Wicks et al., 2006a) .  There cannot be 

interactions and hence there will be no contribution to adhesion if a coating does not 

spread spontaneously over a substrate surface so that there is intermolecular 

contact between the substrate surface and the coating (Wicks et al., 2006a).  The 

ability of a coating to wet and adhere to a substrate, is determined by its surface 

tension.  Thus, solvents with lower surface tensions can be used to improve the 

ability of paint to wet a substrate (Chan and Venkatraman, 2006) making choice of 

solvent and its quantity of crucial importance (figure 40). 

Figure 39 (a) New film formed near an 
edge.  (b) Flow of material from regions 2 
to 1.  (c) Further flow of materials from 
region 2 to the surrounding areas (Chan 

and Venkatraman, 2006) 
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3.2.2.2 Film formation  

Film formation is a crucial process in coatings technology (Wicks and Jones, 2013) 

and when it occurs by solvent evaporation from a solution two stages are involved: 

1. First stage of solvent evaporation.  Evaporation increases viscosity and 

coatings reach the ‘dry to touch’ stage quickly, but they retain several 

percent of the solvent (Wicks and Jones, 2013).  Evaporation is largely 

dependent on three factors: 

i. The vapour pressure at the temperature encountered during the 

evaporation  

ii. The ratio of surface area to volume of the film  

iii. The rate of air flow over the surface  

2. The diffusion control stage.  Evaporation increases glass transition 

temperature (Tg) and decreases the free volume.  Solvent loss becomes 

dependent on how fast the solvent molecules can diffuse to the surface, 

which depends on the following: 

i. Solvent structure 

ii. Solvent-polymer interactions 

iii. Temperature  

iv. Tg of the film  

v. Film thickness 

Diffusion is faster for smaller, linear solvent molecules than large, branched-

chain ones. 

To formulate coatings from low molecular weight resins containing oligomers and 

monomers considerably less solvent is required as they can polymerise further after 

application and solvent evaporation.  Cross-linking reactions occur, reducing the 

solvent usage and yielding a more solvent resistant insoluble film. 

Figure 40 Schematic illustration of good and poor wetting (Chan and 

Venkatraman, 2006) 



   

 65  

Latex paints undergo film formation by coalescence of polymer particles from a 

dispersion system, via evaporation, deformation and coalescence, which is how 

powder coatings form films.  To reduce the film formation temperature it has been 

common to include a coalescing solvent in the formula (Wicks and Jones, 2013). 

 

3.2.2.2.1 Curing/Drying 

The film-forming element of a coating or adhesive is the binder (or resin) (BASF, 

2011), which for practical coatings must adhere to the substrate and have a 

minimum level of strength, it is not sufficient just to form a film (Wicks and Jones, 

2013).  Binders can be classified as physically or chemically drying.  The transition 

to a solid coating from a liquid can occur in three ways: solvent evaporation, 

chemical reaction or a combination of both.  Basic information about chemically and 

physically drying coatings has been summarised in table 18.  

Table 18 Summary of chemically and physically drying paints.  Information 
extracted from Stoye and Freitag (2007c) 

 Physically drying paints Chemically drying paints 

Polymer type Thermoplastic polymers Thermosetting coatings 

Special 
requirements 

- 

Usually elevated temperatures or 
radiation - causes cross-linking of 

the binder forming a polymer 
network 

Molecular masses > 20,000 ~800 – 10,000 

Solids content Low - due to low solubility High 

Solvent content High (> 60%) Low (30 to 60%) 

 

The type of chemical reaction or agent used to liquefy the coating can be used to 

further divide chemically curing and physically drying coating into subgroups as 

illustrated in figure 41 (Sorensen et al., 2009).  The information provided in figure 41 

is not definitive as for example, moisture cure siloxane binders exist and siloxanes 

can be combined with other binders to improve their performance, e.g. epoxy 

siloxanes and acrylic siloxanes.  
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The curing time and conditions selected affect the performance of a coating.  For 

example, adhesion to a subsequent layer can be adversely affected in an under-

cured paint system and paints layers can become brittle or yellow if the maximum 

curing temperature is exceeded (Stoye and Freitag, 2007b).  In protective coatings, 

the binders or polymers used that dry or cure at ambient temperatures do so by 

either solvent evaporation, air oxidation, or chemical reaction of components mixed 

together before application (Guy, 2004).  Both types of curing methods can proceed 

in parallel or overlap where there is a suitable combination of binder (Stoye and 

Freitag, 2007b). 

Figure 42 illustrates an example of chemical curing, in this case a polysiloxane 

molecule (a polymer molecule with a silicon-oxygen (Si-O) backbone) is attracted 

closer to the surface of the metal substrate and the attached hydroxyl (OH-) groups 

by H-bonding forces of attraction.  The reaction progresses with H2O molecules 

being evolved and Si-O-Metal bonds being formed, but in many cases heat is 

required. 

Figure 41 Classification according to curing mechanism for binders, with suggested 
areas of application from low to heavy impact (C2-C5), and immersion in seawater 

(IM) (Sorensen et al., 2009) 



   

 67  

 

3.2.2.3 Coating Components and Chemical Characteristics  

A liquid corrosion-protective coating is comprised of primary materials from three 

classes: binders, pigments and solvents and additives.  In a general coating, prior to 

application the polymer volume fraction ranges from 20 to 50%, the pigment volume 

concentrations range from 0 to 35%, the solvent composition by volume ranges from 

10 to 50% (0% in powder coatings), and additives are usually 15% or less 

(Bierwagen and Huovinen, 2010).  The polymeric matrices of coatings are the 

binders; pigments assist the coating in supplying colour and other functions 

including protection of the substrate and are solid, insoluble particles.  The use of 

solvents is abandoned when using powder coatings but clear, liquid coatings are the 

focus of this research, and thus solvents are considered in more detail below.   

 

3.2.2.3.1 Binder System  

Binders determine durability, flexibility and gloss, as well as providing adhesion to 

the substrate and binding the pigments and extenders together (BASF, 2011).  The 

binder is normally used for classifying paints e.g. alkyd, acrylic, polyester, 

nitrocellulose, epoxy, and oil-based paints (Stoye and Freitag, 2007c).  Binder type 

Figure 42 Deposition of siloxanes Arkles (1977) 
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also influences the recommendations made for minimum coating thickness and the 

suitability of the coating for particular atmospheric environments (table 19). 

 

To formulate a corrosion-protective coating, the properties of the polymer used 

needs to meet specific requirements: 

1. Wet/dry adhesion – keeping the coating in contact with the substrate. 

2. Low permeability to ions, H2O and O2 – physical barrier effect. 

3. Low conductivity – inhibit flow of current in local corrosion cells and stop 

ion and electron motion in the film – electrical barrier effects. 

4. Stability in its environment, stability to OH-driven basic hydrolysis and 

ultra-violet (UV) radiation, thermal stability, etc. 

5. Strong adsorption of coating polymer to substrate interface – reinforces 

the wet adhesion of the polymer mentioned in property 1 and provides 

good wetting of substrate by coating system (Bierwagen and Huovinen, 

2010). 

Polymer composition and additives can alter all these properties (table 20)  

Table 19 Coating thickness for coating systems depending on the type of 
atmospheric exposure in an external climate (Baumann and Bender, 2008) 

Binder Atmosphere 

Rural Urban Industrial Marine 

Coating thickness, µm 

Alkyd resin 120-160 160-240 240 240* 

Alkyd resin blend 120-160 160-240 240 240* 

Epoxy resin ester 120-160 160-240 240 240* 

Bitumen/oil blends  220 220-250 220-250 

Vinyl chloride copolymers   240 240 240 

Chlorinated rubber   240 240 240 

Vinyl chloride copolymer blends 160 160-240 240 240 

Chlorinated rubber blends 160 160-240 240 240 

Acrylic resin copolymer blends 160 160-240 240 240 

Acrylic resin copolymer 240 240 240 240 

Epoxy resin1, polyurethane  160 240-320 240 

Epoxy resin- or 
polyurethanehydrocarbon resin 
blend 

   360-420 

Ethyl silicate-zinc dust 80-140 80-140  140 

Silicone resin 130 130 130* 130* 

* For a comparatively low exposure 
1 Polyacrylate/polyisocyanate system for the last coat for outdoor exposure 
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Epoxies 

The epoxy class of polymers is possibly the most commonly used in corrosion 

protective organic coatings (Bierwagen and Huovinen, 2010).  For steel, epoxy-

amine coatings are particularly effective as corrosion-protective primers as in the 

presence of H2O, the amine groups resulting from the cross-linking reaction promote 

adhesion and the cross-linked resins are resistant to hydrolysis (Wicks and Jones, 

2013).  In addition to meeting all the specific anticorrosive properties required of 

polymers, the crosslinking can be controlled relatively easily.  Their disadvantages 

include: 

i. A relatively strong tendency to pick up water – they are plasticised by 

water resulting from high humidity effects and immersion. 

ii. Poor UV resistance – as many precursors for epoxies have 

chromophoric phenyl groups in their structure, therefore they are often 

used as primers. 

 

Isocyanate-based polymers: polyurethanes and polyureas 

For corrosion protection isocyanate-based polymers are the second most commonly 

used class of polymer, but are less tolerant compared to epoxy coatings, having less 

wetting and adhesion properties (Bierwagen and Huovinen, 2010).  Their three main 

advantages are: 

1. High mechanical resistance 

2. Outstanding chemical resistance 

3. Excellent lightfastness and weather resistance (in the case of aliphatic 

polyisocyanates) (Stoye and Freitag, 2007d). 

Table 20 Anticorrosive properties required of polymers for specific polymer 
classes (Bierwagen and Huovinen, 2010) 

Polymer Properties 

Wet 
adhesion 

Chemical 
barrier 

Electrical 
resistance 

Exterior 
durability 

Substrate 
wetting 

Relative 
cost 

Epoxies      Medium 

Polyurethanes/ 
polyureas 

     
Medium 
to high 

Acrylics      Medium 

Alkyds      Low 

Silicones  O2/H2O    Medium 

Inorganic/sol-
gels, etc. 

/     
Medium 
to high 

Vinyls      Low 
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Due to their excellent UV resistance and barrier properties, aliphatic polyurethane 

(PUR) coatings are often used as topcoats in corrosion-protective systems. 

 

Acrylics and Alkyds 

UV stability and application range make acrylic resin paints one of the largest 

groups in use (Stoye and Freitag, 2007d).  Thermoplastic acrylics have been applied 

as “flow and reflow” automotive topcoats and are typically mostly poly(methyl 

methacrylate) with a molecular weight in the order of 105 (Marrion, 2004).  

Polyacrylate copolymers are made up of acrylate and methacrylate esters.  

Crosslinking chemistries with many other polymer types are allowed due to the vast 

number of side-groups of acrylic monomers available (Bierwagen and Huovinen, 

2010).  

Low cost and wide application range mean alkyds are amongst the longest 

employed polymer classes but their use in purely corrosion-protective systems is in 

decline, as this class of polymers is sensitive to basic hydrolysis. 

 

Inorganic and hybrid coatings including sil icones  

During the past 50 years or so most polymer materials used in coatings have been 

organic (Cameron, 2004), due to low cost, ease of chemical manipulation and 

resulting properties.  

A mixture of organic groupings and inorganic elements are the basis for most 

corrosion-protective systems, with very few purely inorganic polymers.  Inorganic 

atoms and organic portions provide different properties (table 21).  

Table 21 Properties provided by the inorganic and organic portions 

Inorganic atoms provide Organic portion provides 

Heat resistance Solubility 

Fire resistance Functionality (e.g. for crosslinking) 

Radiation resistance Hydrophobicity and other surface properties 

Biological inertness Many other characteristics 

Electrical conductivity  

 

Vinyl polymers 

The most common polymers with inorganic side chains are probably represented by 

vinyl systems (Cameron, 2004), which are normally physically drying but a few are 

chemically cross-linked with other reactants via incorporated reactive groups (Stoye 
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and Freitag, 2007d).  The ubiquitous use of these systems has been curtailed by the 

need to use large amounts of strong solvent and the volatile organic compound 

(VOC) regulations.  In UV exposure, as a class they have poor outdoor durability but 

they have excellent barrier properties, especially water resistance (Bierwagen and 

Huovinen, 2010).  Often multiple layers are applied to produce thick films which 

contributes to their success. 

 

Poly(organosiloxanes) (or sil icones) and other sil icon based polymers  

Polysiloxanes containing silicon (Si) and oxygen (O) are very well established as 

pigments and fillers in coatings as they are found in glass and other mineral silicates 

(Cameron, 2004).  Polysiloxane chains are very brittle without modification as there 

are very few atoms between the network junction points (figure 43).  This can be 

improved by replacing some of the siloxane groups with organic groups. 

 

The best known example, polydimethylsiloxane (PDMS) (figure 44) is used for car 

polishes and stop-cock grease. 

 

Siloxane systems have many desirable properties and modification can improve 

their properties (table 22).  High crosslink density with as big a difference as 

possible between the solubility parameter of the inorganic polymer and the organic 

or other liquids it may be in contact with produces a very high chemical resistance 

except to alkali, as the Si-O-Si bond is not resistant to hydrolysis (Cameron, 2004).  

Water repellent coatings are almost entirely based on siloxane chemistry presenting 

Figure 43 Highly functional 

polysiloxane (Cameron, 2004) 

Figure 44 Polydimethylsiloxane 

(PDMS) repeat unit (Cameron, 2004) 
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a hydrophobic organic surface to any incoming moisture and binding to the 

substrate. 

Table 22 Range of applications of siloxane materials (Cameron, 
2004) 

Property Possible application 

Low surface energy Easy clean surface 

Thermal stability Heat resistant coatings 

UV stability Durable coatings 

Interfacial activity 
Adhesion promotion 

Corrosion protection 

Low VOC Compliant coatings 

 

Despite their hydrophobicity, eventually moisture reaches the metal-silane interface 

(Ooij et al., 2005).  If the substrate’s metal hydroxide is soluble to some degree, the 

hydrolysis reaction that formed the Si-O-Me bonds is especially reversible.  Walker 

(1982a) found that the initial adhesion of two-pack polyurethane and epoxide paints 

was dramatically increased by pre-treatment with organo-functional silanes on steel 

and aluminium, even after exposure to cyclic humidity under condensation 

conditions and accelerated weathering (Walker, 1982a).  With a backbone 

comprised entirely of Si atoms polysilanes have as yet found little application in 

coatings (Cameron, 2004).   

There is much interest in polysilazanes, which are the nitrogen (N) analogues of 

poly(organosiloxanes) with an Si-N repeat unit (figure 45) as curing reactions or 

organic modification is provided by the reactive secondary amino groups (Cameron, 

2004).  Their potential as heat resistant and corrosion protective coatings has been 

the source of interest over recent years. 

 

 

Figure 45 Polysilazane repeat 
unit (Cameron, 2004) 
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3.2.2.3.2 Pigments 

For ferrous metals pigments can interrupt or slow down aspects of the corrosion 

process and reduce the rate of corrosion by either inhibiting the corrosion reactions 

or being sacrificial anodes (Guy, 2004). 

Anti-corrosive pigments need to be near to the metal surface, so are included in the 

primer (Guy, 2004).  Passivating oxide layers can be extremely effective inhibitors of 

corrosion but the porous loosely adhering oxide layer that forms on iron and steel 

provides very poor protection.  The partially soluble inhibitive pigments work by 

releasing oxidative and other species into the film close to the metal surface and 

react with it to form a tightly adhering impermeable film that prevents dissolution of 

the metal at the anode (Guy, 2004).  For ferrous metals, these inhibitive pigment 

oxides include chromates, phosphates, molybdates, borates and complexes formed 

from these families of compounds (Guy, 2004; Bierwagen and Huovinen, 2010). 

If possible, a primer should also act as a barrier coat (Guy, 2004).  Pigments can 

have considerable influence on moisture transport in paint films as they decrease 

the volume fraction of the binder material, where moisture transport primarily takes 

place (van der Wel and Adan, 1999).  Due to their hydrophobic and lamellar 

properties, extender pigments are often used in the primer, which also acts as a 

barrier coat.  Coatings formulated with lamellar pigments impede the transport of 

aggressive species by providing a tortuous path of diffusion as they often align 

parallel to the substrate surface during film formation (Sorensen et al., 2009; 

Bierwagen and Huovinen, 2010).  Extender pigments or fillers are less costly than 

coloured pigment or other special pigments, but they play a very important role in 

the formulation of paint (Guy, 2004).  In coatings insufficiently pigmented with 

spherical pigments, the aggressive species can migrate almost straight through the 

coating (figure 46) (Sorensen et al., 2009).  Including anti-corrosive pigments in the 

build coats or finishes is pointless and a waste of expensive pigment as it is not next 

to the substrate surface.  In a build coat film extenders are used, the type and 

volume of extender dictating its barrier properties.  The additional barrier properties 

provided by the build coat give maximum impermeability (Guy, 2004).  Micaceous 

iron oxide (MIO), essentially a type of hematite (Fe2O3) is the most widely used 

lamellar pigment for anticorrosive barrier coatings (Sorensen et al., 2009).  
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The formation of a barrier layer over anodic areas, passivating the surface is 

promoted by passivating pigments, which should have minimum solubility to avoid 

leaching out of the coating film (Wicks et al., 2006c).  However, after exposure to 

humid conditions the use of passivating pigments may lead to blistering.  Since the 

mid-nineteenth century red lead (Pb) pigment Pb3O4 (2 to 15% PbO), has been used 

as a passivating pigment in oil primers, and was used on rusty, oily steel for air dry 

application (Wicks et al., 2006c).  Widespread prohibition of its use has resulted 

because of its toxicity.   

As long as highly hydrophilic pigments are avoided, high pigmentation reduces O2 

and H2O permeability of the final combined film (Wicks and Jones, 2013).  Pigments 

are in fact the least expensive component of most primers (Wicks and Jones, 2013).   

Metallic pigments (essentially small particles of zinc or alloys of zinc of 4-7 µm in 

size) are included in primers to prevent electro-chemical dissolution by acting 

sacrificially as the anode in the corrosion mechanism.  Media such as inorganic and 

organic silicates, epoxy, chloro-rubber and other inert polymers are used to 

formulate zinc-rich primers (Guy, 2004).   

 

3.2.2.3.3 Solvents and Additives 

Solvents 

Added to dissolve or disperse other constituents of the formulation, solvents reduce 

the viscosity of liquid coatings and are traditionally a major part of an organic 

coatings (Sorensen et al., 2009).  Anticorrosive coatings can be classified by their 

solvent content (figure 47 and table 23).  Cost, environmental and legal arguments 

place severe restrictions on the type of solvents that can be used and restrict their 

quantities (Bierwagen and Huovinen, 2010).   

Figure 46 Idealised illustration of the effect of barrier pigments. The aggressive 
species can migrate almost straight through the coating, in coatings pigmented 
with spherical pigments.  The aggressive species are provided a tortuous path of 
diffusion, when the coating contains lamellar pigments (Sorensen et al., 2009) 
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Table 23 Most commonly used liquid carriers of pigment and binders used in paints 
extracted from Turner (1988) 

Liquid Comments 

Water  

The main ingredient of the continuous phase of most emulsion 
paints.  Can be used alone or blended with alcohols or ether-
alcohols to dissolve water-soluble resins or dyestuffs.   

Advantages: availability, cheapness, lack of odour, non-toxic and 
non-flammable. 

Disadvantages: limited miscibility with other liquids and the film-
formers designed to be dissolved or dispersed in it usually remain 
permanently sensitive to it. 

Aliphatic 
hydrocardbon 
mixtures: chiefly 
paraffins 

Usually supplied as mixtures due to the difficulty of separating the 
individual compounds.  Many of the mixtures also contain a 
percentage of aromatic hydrocarbons e.g. white spirit (155-195 °C) 
approximately 15% aromatic. 

Terpenes 

Commonly used versions are turpines, dipentene and pine oil. 

 Turpentine varies with grade – principally α-pinene.  
Replaced by white spirit as the main solvent for house 
paints. 

 Dipentene is mainly limonene  

 Pine oils are mixtures mainly of terpene alcohols 
Can be used as anti-skinning agents 

Aromatic 
hydrocarbons  

Alcohols 

Esters 

Ketones  

Supplied to the paint industry as fairly pure named compounds, but 
proprietary names are used for some aromatic mixtures which are 
sold cheaply. 

Ethers and ether-
alcohols 

Ethers are not commonly used. 

Ether-alcohols are very common (contain both the ether (-C-O-C-) 
and alcohol (-C-O-H-) groups. 

Nitroparaffins Uncommon solvent due to cost and evidence of toxicity 

Chloroparafins Uncommon solvent as rather toxic 

 

 

Figure 47 Anticorrosive coating systems classified according to solvent content 

(Sorensen et al., 2009) 

Anticorrosive 
coating system 

Solvent-free Water-borne 
Organic 

Solvent-borne 
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For solvents, the most important properties are: 

1. Solvency  

2. Viscosity or consistency 

3. Boiling point and evaporation rate 

4. Flash point  

5. Chemical nature 

6. Toxicity and smell 

7. Cost 

 
These properties are considered in more detail in table 24 with numerical data for 

properties 1-4 (Turner, 1988) but only solvents linked with this research have been 

presented. 

Table 24 Solvent properties – data extracted from Turner (1988) 

Solvent Formula 

Solvency 

Viscosity at 
20 °C 

(centipoises) 

Boiling 
point 
(°C) 

Flash 
point 

(closed 
cup) (°C) 

H-
bonding 
group 

Solubility 
parameter 

Water H2O III 23.4 1.002 100 None 

Aliphatic Hydrocarbons 

White spirit 
(WS) 

 I 

6.9 

 155-195 33m 

Odourless 
WS 

 I  180-207 55 

Aromatic Hydrocarbons 

Toluene C6H5.CH3 I 8.9 0.55* 111 4 

Xylene C6H4.(CH3)2 I 8.8 0.586 138-144 27 

Alcohols 

Ethanol C2H5OH III 12.7 1.200 78 14 

Esters 

Butyl 
acetate 

CH3.CO.O.C4H9 II 8.5 0.671* 127 23 

Ketones 

Acetone CH3.CO.CH3 II 10.0 0.316* 56 -17 

* at 25 °C; m = minimum 
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The solvent remaining in the coating long enough for the coating to complete film 

formation, and then evaporating without compromising the development of the 

coating properties, is a primary consideration for coatings protecting against 

corrosion (Bierwagen and Huovinen, 2010).  The time required to convert a coating 

to a dry film and the appearance and physical properties of the final film are affected 

by evaporation rate (Wicks et al., 2006f), which changes flow rate, due to increased 

consistency caused by a rise in ‘solids’ (Turner, 1988).  Barrier properties are 

reduced by residual solvent, which acts as a plasticizer lowering the effective Tg.  

Where polymer crosslinking occurs, full development of coating properties will not 

occur if the solvent leaves the film before reactions are complete.  

The evaporation rate of water acting as a solvent is affected by RH, in addition to 

the four variables below which also affect evaporation rates of other solvents (Wicks 

et al., 2006f):  

1. temperature 

2. vapour pressure 

3. surface/volume ratio  

4.  flow rate over the surface.  

 
The temperature at and near the metal surface decreases as solvents evaporate.  

Thermal diffusion from within the sample and its surroundings warms the sample, 

whilst latent heat of evaporation cools the surface.  Rapid thermal diffusion 

maintains the surface temperature so it will not fall much during evaporation, but if it 

is slow a sharp drop in surface temperature results (Wicks et al., 2006f). 

While a combination of several solvents are used in organic solvent-borne coatings 

to balance the evaporation rate and dissolution of the viscous polymeric binder 

(Sorensen et al., 2009), this research utilises a single solvent.   

 

Additives 

Paints typically contain between 0.01 and 1% additives along with resins, solvents 

and pigments.  Some properties required by a paint are difficult to achieve, thus 

paint additives can be used to impart these specific properties to the paint (e.g. 

better slip, flame retardance, UV stability) or they can be used to prevent defects in 

the coating (e.g. foam bubbles, flocculation, sedimentation) (Stoye and Freitag, 

2007a).  Additives can be classified by the following groups:  
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1. Corrosion inhibitors 

2. Defoamers 

3. Driers and catalysts 

4. Light stabilisers 

5. Preservatives 

6. Rheological control agents 

7. Surface additives 

8. Wetting and dispersing additives 

 

 

3.3 Substrate Properties 

The performance and durability of an anti-corrosive coating is affected by a number 

of variables (figure 33) (Sorensen et al., 2009).  A coating system also includes the 

substrate and coating/substrate interface and therefore the substrate type and its 

surface condition that is influenced by cleaning, surface preparation, pre-treatment, 

roughness and recoat interval.   

 

3.3.1 Type of Substrate 

The selection of metals for making building components, large structure, vehicles 

and machinery depends on the properties needed in each case (table 25) 

(Godfraind et al., 2012).  Ferrous alloys where Fe content is higher than any other 

element and the carbon content is < 2% is steel. 

Chemical composition divides steel into unalloyed and alloyed grades in line with EN 

10 020.  To be classed as an alloy steel, the limiting values quoted in table 26 must 

be reached or exceeded by the content of an individual element in at least one case.  

For unalloyed steels, the level of an individual element should not reach or exceed 

the limiting concentrations (Schauwinhold et al., 2003).  The addition of other 

elements can often improve the protective nature of some corrosion layers that form 

on metals and alloys.  The corrosion rate of mild steel can be reduced to roughly the 

same rate as wrought iron if 0.2% copper (Cu) can be added to it (Evans, 1972). 
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Table 26 Concentration limits of elements for classification as 
base or alloy metal (Schauwinhold et al., 2003) 

Element Limiting 
concentration  

% 
Symbol Name 

Al Aluminium 0.10 

B Boron 0.0008 

Bi Bismuth 0.10 

Co Cobalt  0.10 

Cr Chromium* 0.30 

Cu Copper* 0.40 

La Lanthanides (assessed separately) 0.05 

Mn Manganese 1.65*** 

Mo Molybdenum* 0.08 

Nb Niobium** 0.06 

Ni Nickel* 0.30 

Pb Lead 0.40 

Se Selenium 0.10 

Si Silicon 0.50 

Te Tellurium 0.10 

Ti Titanium** 0.05 

V Vanadium** 0.10 

W Tungsten 0.10 

Zr Zirconium** 0.05 

Others (except C, N, O, S), each 0.05 

* If two, three or four of these elements are present in concentrations less 
than the maximum permitted, their total concentration must not exceed 70% 
of the sum of the maxima. 

** The same rules apply to these elements. 

*** If the manganese content is quoted as minimum, this value applies. 

 
Steels are divided further by the standard EN 10 020 into quality groups table 27. 

Carbon steels and low-alloy steels are relatively inexpensive alloys of iron, with 

~0.05 to 1% carbon (Jones, 2013) they are the most widely used construction 

material (Schweitzer, 2010).  Low alloy steels usually contain < 2% other alloying 

elements that are added mainly for improved mechanical properties.  Even in 

relatively non-corrosive conditions, carbon and low-alloy steels often require 

protective coatings as they have relatively low corrosion resistance (Jones, 2013).  

Greater resistance is conferred to them by small amounts of Ni, Cr, Al and 

molybdenum (Mo) often in combination with Cu, than mild steel with the addition of 
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Cu.  Low alloy steel containing 0.5% Cu, 1.0% Cr, 0.16% phosphorus (P) and 0.8% 

Si corrodes at about one-third of the rate of ordinary mild steel in the atmosphere 

and with time the corrosion rate of low-alloy steels tends to fall off.  A class of low-

alloy structural steels that develop an adherent, protective rust layer during 

atmospheric exposure are described by the term ‘weathering steels’ (Townsend, 

2001) and these do not require painting.   

Table 27 Quality groups used to divide steel further in the standard EN 10 020 
(Schauwinhold et al., 2003) 

Quality group Comments 

Base steels 
No special processing required during manufacture.  Generally 

unsuitable for heat treatment. 

High-grade 
unalloyed 
steels 

No consistent response to heat treatment.  No purity requirements 

specified.  Stricter/more numerous requirements in terms of fracture 

toughness, grain size control, and formability, compared to base steels 

due to stresses that arise in use so their manufacture requires special 

care. 

High-grade 
alloy steels 

Generally unsuitable for quenching and tempering or surface hardening.  

Contain levels of alloying elements to give the special properties but are 

used for similar applications as high-grade unalloyed steels. 

Special 
carbon steels 

Contain fewer inclusions and are of a higher purity than high-grade 

steels.  Show a consistent response to treatments such as quenching 

and tempering or surface hardening for which they are mostly intended.  

By precise control of chemical composition and special care in 

manufacture and process control procedures a wide range of working 

and application properties are achieved e.g. high-strength, or hardening 

properties within closely controlled limits, together with high 

specifications for toughness, forming and welding properties. 

Alloy special 
steels 

There is precise control of their chemical composition, special methods 

of manufacture and process control.  They are able to have an extremely 

wide range of working and application properties.  Steel for structural 

engineering, pressure vessels, mechanical engineering steel, stainless 

and heat-resistant, creep-resistant, bearing and machine tools steels, as 

well as steels with physical properties etc. are all included in this group 

of steels. 

 

Townsend (2001) presented previously unpublished test results of research by 

Bethlehem Steel carried out during the initial development of their weathering steel, 

compiled from data and reports in the research files.  This data was used to 

determine values for each elements’ contribution to the development of protective 

rust at 3 sites (figure 48).  P had the largest beneficial effect on corrosion resistance 

and while Si, Cr, Cu, and Ni, are well known for their beneficial effects, the beneficial 

effects shown for tin (Sn) and Mo were not well so known and were not included in 

the ASTM G101 guide.  S promotes corrosion and was another element not 
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included in ASTM G101.  S is kept as low as possible during alloying as it is also 

harmful to the mechanical properties of steel.   

 

Stainless steels are Fe-based alloys containing at least 10.5% Cr.  They are 

classified into groups, each with special characteristics: ferritic, austenitic, duplex, 

martensitic, and precipitation hardening (Jones, 2013).  The formation of a bi-layer 

film consisting of outer iron oxide and inner Cr-rich oxide results from air oxidation of 

stainless steels (Hashimoto et al., 2007).  Consisting of Cr and sometimes Mo 

alloyed with Fe, ferritic stainless steels are immune to Cl- SCC.   

Austenitic stainless steels, developed for use in mild and harsh corrosive conditions, 

are widely used in industry (Pardo et al., 2008a; Jones, 2013).  The addition of Ni to 

Fe-Cr alloys leads to corrosion resistance, which primarily originates from a thin, 

hydrated, oxidised Cr-rich passive surface layer (Pardo et al., 2008a, b; Jones, 

2013).  Resistance to Cl- pitting and SCC is improved by the addition of 3% Mo in 

Type 316 SS.  Higher alloyed stainless steels are more resistant to pitting in Cl- and 

higher acid concentrations.  Austenitic stainless steels are attacked at intermediate 

concentrations of sulfuric acid but are resistant to very dilute and high 

concentrations.  As passive films are attacked by HCl acid, no SS can be used with 

it.  Cl- and dissolved O2 must be controlled to prevent SCC in boilers for the usual 

austenitic stainless steels. 

Duplex stainless steels (DSS) are defined as ‘a family of steels that have a two 

phase ferritic-austenitic micro-structure, where both components are stainless 

containing > 13% Cr (wt%)’.  They are Cr-Mo alloys of Fe with Ni and N austenite 

Figure 48 Effect of elements on corrosion based 
losses based on the value of b averaged over 
the test sites (higher negative values indicate 

less corrosion) (Townsend, 2001) 
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stabilisers in sufficient quantities to achieve a balance of ferrite and austenite 

(Jones, 2013).  The ferrite provides resistance to SCC and the austenite ductility, 

Mo improves pitting resistance and strengthens the passive film, and carbides 

prevent the sensitisation to inter-granular corrosion by grain boundary precipitation 

as they tend to precipitate at the disperse austenite-ferrite interfaces (Jones, 2013).  

The advantages of DSS compared to austenite steels include:  

 Higher mechanical strength,  

 Superior resistance to corrosion,  

 Lower price due to low Ni content.   

 
Chosen primarily for mechanical strength, the martensitic and precipitation 

hardening stainless steels have lower corrosion resistance than other grades of 

stainless steel, thus limiting their applications to mild environments.  They are also 

susceptible to hydrogen induced cracking because of the high-strength levels 

(Jones, 2013).  

A summary of the effects of a wide variety of alloying elements on corrosion 

properties is displayed in table 28 and corrosion rates of different ferrous metals in 

marine, industrial and urban environments is shown in table 29 (Godfraind et al., 

2012).  
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3.3.2 Substrate Preparation 

The service life of a coating is also governed by the level of surface preparation 

achieved (Bortak, 2002).  The surface needs to be cleared of any contaminants 

such as local corrosion, old paint layers, mill-scale, grease and oil, dust and dirt, 

soluble salts and water.  Guidance on surface preparation in the heritage sector is 

limited in scope, although well-intentioned, the methodologies are often difficult to 

translate into a practical context and the evidence is rarely quantified and frequently 

conflicting (Emmerson and Wakinson, 2013).   

 

3.3.2.1 Cleaning Method 

For the cleaning and stabilisation of iron, a considerable number of methods have 

been published in conservation literature but they are mostly based on mechanical 

stripping, chemical stripping, electrochemical stripping and electrolytic reduction 

(Blackshaw, 1982).  Some of the stripping methods also double as stabilisation 

treatments as they are said to aid the removal of soluble chloride from rusted iron 

(table 30).   

Grit blasting is employed at the Tank Museum and for standardisation purposes, 

samples in this project are being cleaned and prepared by air abrasion (air jet 

micromachining - AJMM).  The parameters used for air abrasion must be 

standardised to achieve uniform surfaces on metal samples and include blasting 

pressure, angle, stand-off distance, grit size and type, which determine the 

roughness obtained, economy, efficiency and quality of the whole process (Momber, 

2008; Poorna Chander et al., 2009).  Cleaning process parameters can generally be 

divided as shown in figure 49 and for successful application, optimisation of the 

process is a prerequisite (Momber, 2008).  

Paint layers erode layer by layer exhibiting behaviour consistent with ductile material 

(Parslow et al., 1997).  The classic ductile erosion curve (figure 50) for metal 

surfaces has maximum erosion rate between the blasting angles of 20-30, but the 

maximum erosion rate is shifted for paint layers to a blasting angle of 45-60 

(Parslow et al., 1997).  To achieve the best erosion rate of the remaining paint 

layers and clean the samples back to a fresh clean metal surface removing any 

corrosion products and/or mill scale present, a low blasting angle of 30-45 should 

be used.  
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Table 30 Cleaning Methods for Historic Ferrous Metalwork (Godfraind et al., 2012) 

Cleaning 
Method 

Type of ferrous metal 

Wrought iron Cast iron Mild steel Stainless Steel 

Scapers  
Brushes 

Relatively good 
control and 
visibility, but slow. 
Do NOT use steel 
brushes 

Relatively good 
control and 
visibility, but slow. 
Do NOT use steel 
brushes 

Relatively good 
control and 
visibility, but slow. 
Do NOT use steel 
brushes 

Do NOT use steel 
brushes 

Power 
brushes 

If used with care If used with care If used with care 
Depends on 
bristle material 

Sanding 
Abrasive 
flap-wheels 
Angle 
grinders 

Not 
recommended 

Not 
recommended 

Not 
recommended 

Not 
recommended 

Dry abrasive 
Blast 
cleaning 

Not recommended 

Not 
recommended for 
cast iron with fine 
decorative detail 

 
Fine abrasives 
acceptable if used 
with care 

Wet abrasive 
Blast 
cleaning 

Slow but effective  Slow but effective Slow but effective Slow but effective 

Needleguns 
Descaling 
chisels 

Risk of surface 
damage 

Risk of surface 
damage 

Effective  

Flame 
cleaning 

Considered 
particularly 
suitable, as loose 
mill-scale and rust 
only is removed 

Do NOT use 
Risk of damage 
from thermal 
shock 

Slow but effective  

Cold-water 
Pressure 
washing 

Effective for salt 
removal 

Effective for salt 
removal 

Effective for salt 
removal 

Effective for salt 
removal 

Warm-water 
washing 

Effective for salt 
removal 

Effective for salt 
removal 

Effective for salt 
removal 

Effective for salt 
removal 

High-
pressure 
steam 

Removes 
oil/waxes/grease 

Removes 
oil/waxes/grease 

Removes 
oil/waxes/grease 

Removes 
oil/waxes/grease 

Mild 
detergents 

Removes 
oil/waxes/grease 

Removes 
oil/waxes/grease 

Removes 
oil/waxes/grease 

Method normally 
used to remove 
surface stains 

Releasing oil N/A N/A N/A 
Sometimes used 
on surface stains 
on cladding 

Cream 
Polishes 

Removing rust 
stains 

Removing rust 
stains 

Removing rust 
stains 

Removing rust 
stains 

Acid 
cleaners 

2-5% phosphoric 
acid (pickling 
acid), useful for 
heavy rust-
staining 

2-5% phosphoric 
acid (pickling 
acid), useful for 
heavy rust-
staining 

2-5% phosphoric 
acid (pickling 
acid), useful for 
heavy rust-
staining 

Do NOT use 
materials 
containing 
hydrochloric acid 
or bleaches with 
sodium 
hypochlorite 

Chemical 
dips and gels 

Suitable only for 
dismantled work 

Suitable only for 
dismantled work 

Suitable only for 
dismantled work 

Suitable only for 
dismantled work 
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Figure 49 Parameters involved in the blast cleaning process, 
information taken from (Momber, 2008) 

Blast cleaning process parameters

Pneumatic 
parameters

Air (nozzle) 
pressure, p

Nozzle 
diameter, dN

Process 
parameters

Stand-off 
distance, x

Impact angle, 
ϕ

Exposure time, 
tE

Number of 
passes, ns

Abrasive 
parameters

Abrasive mass flow 
rate, mp

Abrasive particle 
diameter, dp

Abrasive particle size 
distribution, f(dp)

Abrasive particle shape

Abrasive particle 
hardness, Hp

Abrasive recycling 
capacity

Figure 50 Angle dependent erosion rate for typical ductile 

and brittle material (Finnie, 1995; Wensink, 2002). 
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3.3.2.2 Surface Preparation 

To encourage chemical and physical bonding between a coating and substrate, 

preparation of the substrate surface prior to coating is essential (Momber et al., 

2002).  Where physical bonding between coating and substrate is a concern, a 

rough surface finish is normally favoured and this also enhances the strength of 

adhesive joints (Harris and Beevers, 1999).  Strong coating to metal adhesion can 

influence the corrosion process as it can reduce delamination and act to inhibit 

corrosion (Deflorian and Fedrizzi, 1999).  Why adhesion is good or bad, which 

adhesion mechanism is operating and what the composition of the thin coating layer 

next to the substrate is, are rarely known.  The perception is that loose 

contaminated layers are removed by the abrasive process and a degree of 

mechanical interlocking or “keying” with the adhesive is provided by the roughened 

surface (Harris and Beevers, 1999).  Grit blasting is an economical and efficient 

method to provide a suitable surface profile and therefore it is widely used (Momber 

et al., 2002).   

Angled blasting has two main effects: one is digging up or scratching and the other 

is indentation on the surfaces of the substrate (Amada and Hirose, 1998).  

Scratching is dominant at the low blasting angle 45, indentation is shallow, resulting 

in low adhesive strength due to a fairly smooth profile.  High adhesive strength is 

generated using a blasting angle of 75 as the digging up mechanism mostly forms 

the profile, it also includes many hook shapes (Amada and Hirose, 1998).  The 

indentation mechanism is dominant at a blasting angle of 90 and this profile does 

not include as many hook shapes as the profile formed by a blasting angle of 75.  

Poorna Chander et al. (2009) found that with blasting angles up to 80 the 

roughness increased, however a decrease in roughness is caused by further 

increasing the blasting angle to 90.  Therefore, once the paint and corrosion has 

been eroded from samples using a low blasting angle a higher blasting angle of 75-

80 should be employed to achieve the best adhesive surface in preparation for 

coating.  

A side effect of grit blasting is embedded grit in the blasted surfaces (Griffiths et al., 

1996; Amada et al., 1999) that is worst with a 90o blast angle.  With embedded grit 

being worst at 90, this supports the argument for employing a blasting angle of 75-

80, as adhesive strength of coatings decreases with residual grits.  Removal of 

loose grit particles and dust after blasting, is not discussed with the exception of 
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Harris and Beevers (1999) who describe a jet of clean dry air being blown across 

the substrate surface.   

Care has to be taken not to over-blast as craters begin to overlap as the erosion 

process continues.  Adjacent craters form combined lips and create higher peaks, 

whereas strikes by following particles cause ductile tearing and result in some lips 

being detached (Griffiths et al., 1996).  With continued impacts, the topography 

experiences further changes as some peaks become flattened, reducing the peak to 

valley height, which reduces adhesion of coatings to the surface (Griffiths et al., 

1996). This data was used to devise surface preparation methodology for this 

project. 

 

3.3.3 Coating Performance 

The performance of a coating film is affected by its state after film formation, its 

chemistry, as well as its end-use and implies an estimate of the service life (Marrion, 

2004).  Fundamental mechanistic studies, long-term in-service or outdoor exposures 

and short-term, laboratory-based exposures, are three sources of data that can be 

used for generating service life predictions (figure 51), along with experience, 

specialist knowledge and published results (Martin et al., 1996).   

 

By using accelerated aging (short-term, laboratory-based aging) and fundamental 

mechanistic experiments, reproducible experimental results can be generated.  

Fundamental information about failure modes and mechanisms causing coating 

system degradation is derived, as it is possible to control the intensities of individual 

weathering factors (Martin et al., 1996).  How well a coating is carrying out its 

function in service defines its performance (Marrion, 2004). 

Figure 51 Quantitative service life data is available 

from three primary sources (Martin et al., 1996) 
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3.3.3.1 Causes and Nature of Failure 

Failure of a coating can generally be linked to formulation deficiencies, application 

problems, inadequate surface preparation or external factors.  There are many 

contributing factors to consider when evaluating breakdown mechanisms causing 

coating failure (Fitzsimons and Parry, 2010).   

1. Those arising during application e.g. sagging and cissing 

2. Those arising after application, prior to service entry e.g. blushing and 

wrinkling 

3. Those appearing after entry to service e.g. chalking. 

 
Especially in the industrial and marine coatings industry, application-related failures 

are common due to basic application faults e.g. inadequate film thickness, misses, 

lack of stripe coating, incorrect over coating times, and inadequate curing times and 

temperatures prior to entry into service, frequently leading to early coating failure 

(Fitzsimons and Parry, 2010). 

Exposure to a variety of possible stresses produces irreversible changes that cause 

failure (Marrion, 2004).  Tensile stress (effective perpendicularly to the interface) 

and shear stress (along the plane of contact) (figure 52) affect both the bulk material 

and the bond strength at the interface (Zorll, 2006).  Paint becomes detached from 

the substrate by differences in the coefficient of expansion due to temperature 

variations and loss of adhesion can result from chemical absorbtion at the interface 

after penetrating through the coating (Zorll, 2006). 

  

Common failure modes for architectural coatings include chalking, gloss loss, 

fading, dirt retention, blistering, corrosion, cracking and peeling (figure 53) (Martin et 

Figure 52 External factors putting the bond between coating and 
substrate under stress – potentially leading to failure (Zorll, 2006) 
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al., 1996; Marrion, 2004).  Decomposition of the binder by UV radiation causes the 

majority of cosmetic defects (Sorensen et al., 2009).   

 

Reduced adhesion between the organic coating and the substrate is often the first 

sign that an organic coating is degrading, where there are no apparent defects and it 

is exposed to a high RH or constant immersion (Sorensen et al., 2009).  Blistering 

and delamination (figure 54) are severe forms of visible failure. Blisters are generally 

a first sign of deterioration (Zorll, 2006) and result from the high water solubility of 

cathode reaction products producing an osmotic pressure, while the alkalinity of 

these products causes bonds to break at the coating-metal interface resulting in 

delamination (Sorensen et al., 2009).  

 

The five root faults, partitioned into sub-faults in figure 55 are normally credited with 

failure of a coating system (Martin et al., 1996), and many of these basic faults have 

been discussed to some degree early in this chapter.  

Table 31 lists many different types of coating failure or defect and the probable 

causes, but focuses on those more commonly seen on historic ferrous metal used 

for armoured vehicles and gates and railing.  It is seldom that knowledge of 

underlying degradation mechanisms are complete.  In fact, where coating systems 

fail by corrosion the underlying failure mechanism is poorly understood (figure 56) 

(Martin et al., 1996).  The fault tree (figure 56) is a useful method for summarising 

and categorising the variables which could be the cause or a contributing factor for 

corrosion to occur, most of which have been discussed in this chapter or in chapter 

2. 

Figure 53 Architectural coatings common failure modes (Martin et al., 1996)  

Figure 54 Idealised sketch of delamination and blistering (Sorensen et al., 2009) 
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3.3.3.2 Assessment of coating performance 

This relies upon laboratory testing to a large degree and field trials to simulate in-

service conditions (Fitzsimons and Parry, 2010).  Monitoring changes in appearance 

and/or protection performance characteristics is used to evaluate the degradation of 

a coating system over time and its performance (Martin et al., 1996).  Corrosion 

rates are often quantified by calculating the surface area (SA) of the sample that is 

covered with corrosion.  This works well for uniform corrosion but not where 

corrosion is localised, where corrosion rates can be underestimated or filiform 

corrosion where corrosion is superficial but looks aggressive and corrosion rates are 

overestimated.  Furthermore, this method cannot be applied to surfaces which are 

already corroded.   

Figure 55 Common faults - root and basic associated with architectural and non-
architectural coating system failures (Martin et al., 1996) 

Figure 56 Fault tree - Underlying failure mechanisms are poorly understood 

where the loss of protection is due to corrosion (Martin et al., 1996) 
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The traditional way to verify corrosion resistance of new materials and products, 

especially for testing new surface treatment systems or coatings for corrosion 

protection, was and still is field site exposure testing.  Short-term/laboratory testing 

has to be of an accelerated nature and cannot cover all of the in-service variables; 

hence any formulation problems are only likely to come to light from long-term use 

of the product (Fitzsimons and Parry, 2010).   

 

Table 31 Some of the most common types of failure or defect and probable causes, 
(information taken from Fitzsimons and Parry (2010)) 

Type of failure 
or defect 

Description Probable Cause 

A
d

h
e

s
io

n
 f

a
il

u
re

 

Adhesion 
failure 

Where a coating has failed to 
adhere to the substrate or 
underlying paint. 

Can be a result of internal stress or internal 
stress plus the exacerbating effect of one or 
more other factor.  The contributory factor(s) 
could be related to formulation, inadequate 
surface profile, surface contamination, 
exceeding over-coating times, application to 
a glossy paint surface, amine bloom, 
incorrect surface preparation, and differential 
expansion/contraction of the paint coating 
and the substrate. 

Flaking 

Detachment of the paint from 
the substrate.  A form of 
adhesion failure where the paint 
flakes from the substrate and is 
a familiar sight on galvanising. 

Incorrect paint system used.  Either no pre-
treatment or incorrect pre-treatment used for 
certain substrates e.g. non-ferrous or 
galvanised.  Can be attributed to differential 
expansion and contraction of paint and 
substrate. 

De-
lamination 

Usually inter-coat detachment in 
a multi-coat system.  Loss of 
adhesion between coats of 
paint. 

Delamination defects are generally related to 
contamination between layers, including 
amine bloom, exceeding overcoat times, or 
application to a glossy surface, provided 
compatible paint materials have been used. 

Bittiness 

Contamination of the film by bits 
of paint skin, gel, flocculated 
material, or foreign matter, 
which project above the surface 
to give a rough appearance.  
When the particles are small 
and uniformly distributed the 
term peppery is used. 

Paint skin, gelled particles, airborne sand 
and grit, or contamination from brushes or 
rollers causing contamination within or on the 
surface of the paint film is the main cause. 

B
li
s

te
ri

n
g

 

Osmotic 
blistering 

May contain liquid or gas, or 
may be dry.  Local loss of 
adhesion from underlying 
surface, where dome-shaped 
projections form in the dry paint 
film. 

Commonly associated with the presence of 
soluble salts, soluble pigments, retained 
solvents or the absorption and retention of 
low molecular weight water-miscible 
solvents, typically from the carriage of 
chemicals. 

Non-
osmotic 
blistering 

Often described as cathodic blistering and 
found as a circular pattern of blisters around 
a coating defect where the substrate is 
exposed.  It can occur due to cold-wall effect 
producing condensation.  H2 gas is possible 
where coatings are used with cathodic 
protection, and the resultant H2 vapour 
pressure could produce blisters.  
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Bloom (blush) 

Loss of gloss and a dulling of 
the colour results from a hazy 
deposit on the surface of the 
paint film, resembling the bloom 
on grapes. 

Exposure to condensation or moisture during 
curing (common phenomenon with amine-
cured epoxies).  

Bridging 

Covering unfilled gaps e.g. 
cracks or corners, with a film of 
the coating material causes a 
weakness in the paint film, 
which can crack, blister, or flake 
off. 

High-viscosity paint, poor application, or 
failure to brush paint into corners and over 
welds. 

Brushmarks 
(laddering, 
ladders or 
ropiness) 

After brush application where 
the paint film has not flowed out 
undesirable ridges and furrows 
that remain in a dry paint film.  
Where alternate coats have 
been applied in opposite 
directions it can be found as a 
cross-hatch (laddering).  When 
the brush marks are pronounced 
they are known as ropiness. 

For brush application the viscosity of the 
material may be too high, incorrect thinner 
used in the paint, poor application technique 
or inadequate mixing.  The application pot-
life may have exceeded if it is a two-pack 
paint. 

Bubbles or 
bubbling 

Should not be confused with 
blistering.  Bubbles may be 
intact or broken to leave craters 
within a paint film and appear as 
small raised blisters.  Found in 
excessively thick paint films, 
especially spray applied and 
also roller application. 

Solvent/trapped air within the coating, which 
is not released before the surface dries.  
Also associated with factory-applied coating, 
applied by dipping, electrodeposition, or 
roller coating. 

Cracking 
(alligatoring 
and checking) 

Visible cracks in paint coatings, 
which generally penetrate to the 
substrate.  Cracking can range 
from minor to severe cracking 
and comes in several forms. 

Generally related to internal stress within the 
body of the coating.  Formulation, high film 
thickness, thermal cycling, substrate 
geometry, substrate movement, ageing, 
absorption/de-sorption of water or chemicals, 
and inadequate surface profile are factors 
involved in cracking.  The internal stress in 
the coating is exacerbated by one or more 
contributory factor(s). 

Cratering 
Small bowl-shaped depressions 
in the paint film, should not be 
confused with cissing 

Burst trapped air bubbles that leave small 
craters as the coating dries and the coating 
has had insufficient time to flow out as a 
uniform film.  

Erosion  
Selective removal of paint films 
from areas of high spots. 

More prominent on brush applied coatings 
due to uneven finish; it is the wearing away 
of the paint film by various elements e.g. 
rain, snow, wind, sand, etc. 

Filiform 
(corrosion) 

Random threads corrosion that 
develop beneath thin lacquers 
and other coating films from a 
growing head or point.  
Described in previous chapter. 

Damage to the coating or contamination on 
the metallic substrate, allows a corrosion cell 
to develop and advance under the coating 

Grit inclusions 
Dust and grit particles adhering 
to or embedded within the 
coating system. 

Prior to application of the paint – failure to 
remove used blast cleaning abrasive from 
the surface.   

Growth (on the 
surface of paint 
film 

Attachment and growth of 
natural organisms to the surface 
of finished products - vary in 
form, size and lifespan e.g. 
algae, mosses, etc.  

Natural organisms within moist, wet, or 
immersed conditions.  After attachment 
growth may continue. 

Impact damage 
(star cracking)  

Cracks that radiate from a point 
of impact. 

Damage to a relatively brittle coating due to 
impact.  Often seen on glass fibre reinforced 
plastics.  
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Misses/skips/ 
holidays 

Exposed areas of previous coat 
or substrate when the intention 
was to coat the entire area.  
Could be restricted to one coat 
within a multi-coat system. 

Lack of quality control, poor application or 
both. 

Pinholes 

Minute craters or holes, which 
form in wet paint during 
application and drying, due to air 
or gas bubbles that burst, but fail 
to coalesce before the film dries  

A common problem when coating porous 
substrates such as zinc-filled primers, zinc 
silicates and metal-sprayed coatings, solvent 
or air becomes entrapped within the paint 
film. 

Rust spotting 
(rash rusting 

Frequently starts as localised 
spotting but rapidly spreads over 
the surface – fine spots of rust 
that appear on a paint film, 
usually a thin primer. 

Where the rust spotting originates from the 
substrate, probable causes are low film 
thickness, pinholes, and defects in the steel 
e.g. untreated laminations, or too high a 
surface profile causing penetration of peaks 
through the paint film.  Where rust spotting 
does not originate from the substrate, ferrous 
grinding debris can probably be found within 
the coated surface as metallic contamination. 

Solvent lifting 

A weak surface and ultimate 
coating breakdown can be 
caused by eruption of the 
surface of the paint film by 
blistering and wrinkling. 

Over-coating before the previous coat has 
adequately hardened or incompatible paint 
system used, topcoats with a strong solvent 
blend can attack underlying coatings with a 
weaker solvent blend. 

Solvent 
popping 

Soon after application solvent 
bubbles appear on the surface 
of the paint film. 

Porous surfaces, incorrect solvent blends, or 
wrong environmental conditions 

Undercutting  

The paint film is lifted from the 
substrate as corrosion travels 
beneath the paint film and in 
severe cases it appears as 
flaking, cracks and exposed 
rust. 

Rust creep from areas of mechanical 
damage and/or application of paint to a 
corroded substrate and/or missing primer 
coats.  Possibly due to inadequate 
preparation and coating thickness applied or 
lack of maintenance to areas of poor design 
or access. 

 

Industry Testing: Accelerated corrosion  

In industry, testing utilises repeatable procedures and more often than not standards 

are used as guidelines.  To obtain good correlation with service exposure, cyclic 

wetting and drying is believed to be important in providing more realistic simulations 

of the atmospheric corrosion environment with intermittent exposure to salt solution 

often included (Vera Cruz et al., 1996; LeBozec et al., 2008).   

The corrosion rate of samples can be estimated from their O2 consumption, a 

method that was employed by Shashoua and Matthiesen (2010).  This method 

makes it possible to test corrosion rates of already corroded samples but it is not 

possible to incorporate cyclic corrosion testing (CCT) as samples are encapsulated 

in sealed glass jars.  This O2 monitoring system utilises chemical optical O2 sensor 

spots (also called optodes, PSt3 type) from PreSens, which are adhered to the inner 

surface of transparent materials such as glass (figure 57) allow the O2 concentration 

to be measured quantitatively through the glass wall, (Matthiesen, 2007).   
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The fibre optic which is positioned against the outer surface of the transparent 

material, opposite the sensor spot emits light exciting luminescent dye in the sensor 

spot at one wavelength (figure 58).  The sensor spot in response emits light at 

another wavelength.  When O2 is present, instead of emitting light, the energy of the 

excited molecule is transferred by collision with O2.   

 

Figure 57 Oxygen-sensor spot glued inside the 
container, and light is transferred via fibre optic 
and measured through the transparent 

container wall (Matthiesen, 2007). 

Figure 58  Working principle behind optical O2 electrodes 
1. The luminescent dye is excited by light at one wavelength and emits light at 
another wavelength. 
2. When O2 is present, the energy of the excited molecule is transferred by 
collision with O2 instead of emission of light.  Image taken from the appendix of 
the OxyMini Instruction Manual. 
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When testing the degradation of a coating it is often necessary to introduce artificial 

defects, as these initiate degradation of a coating system in a shorter time period.  

Industry commonly introduces a scribe in a coating before exposing it during 

accelerated corrosion tests.  This kind of test is not only easier to set up, but also 

easier to interpret than tests such as electrochemical impedance, due to the 

complexity of the systems under study (Oliveira and Ferreira, 2003).  Undercutting 

only occurs during alternate wetting and drying, not during continuous immersion, 

and is a result of the lifting action of compacted oxides.  Although some 

observations summarised in figure 59 are possible, the mechanism is unclear 

(Jones, 2013)  

 

A variety of compounds of various concentrations have been used for salt spray 

accelerated corrosion testing with varying degrees of comparability to in-service 

results.  Dr J. B. Harrison and T.C. K. Tickle observed as early as 1962, that the 

performance of zinc phosphate primers was poor during accelerated salt spray 

testing, but they generally behaved excellently outdoors in an industrial environment 

(Cremer, 1989).  Inconsistencies between real time and accelerated corrosion rate 

data and rankings have existed and been recorded for a long time.  Harrison 

consequently used a mixture of the commonly occurring atmospheric salts 

ammonium sulfate ((NH4)2SO4) and NaCl as a spray solution (table 32).  The 

addition of sulfate represents to some extent an industrial atmosphere, but while the 

overall electrolyte solution is much more dilute than traditional salt spray (fog) in 

reality samples are cycled through a complete range of solution concentrations as 

Figure 59 Representation of attack mechanisms at scribe in the coating 

(Jones, 2013) 
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concentration increases with drying (Grossman, 1996).  The commonly used test 

standard ISO 9227 (5% wt. NaCl) to calculate the durability of automotive products 

is not advised as it is now well known that it fails in replicating the type of 

degradation and ranking observed on automotive materials at natural weathering 

sites (LeBozec et al., 2008).   

The standard neutral salt spray test e.g. ISO 9227 has been employed for decades 

to evaluate the corrosion performance of automotive materials (LeBozec et al., 

2008).  However, research by the Society of Automotive Engineers (SAE) 

Automotive Corrosion and Protection (ACAP) Committee, revealed the General 

Motors (GM) GM9540P Method B to be one of the preferred CCT methods for 

automotive cosmetic corrosion (painted or pre-coated metals) (Grossman, 1996).  

The salt solution used in this test includes components of typical road salt (table 32) 

(LeBozec et al., 2008) and the cyclic conditions involve short salt mist periods, room 

temperature dry-off, hot humid periods and hot dry-off (Grossman, 1996).   

Table 32 Summary of salt solutions used for accelerated corrosion in the 
automotive industry (LeBozec et al. 2008), Harrison’s salt solution and the 
prohesion test solution (Cremer, 1989; Grossmann, 1996) 

Test Standard 
Salt solution Deposition 

rate in 80 cm2 
mL/h Electrolyte (wt. %) pH 

General 
Motors 

GM9540P 
NaCl - 0.9, CaCl2 - 0.1, 

NaHCO3 - 0.255 
6.0-9.0  

Daimler 
Chrysler 

KWT-DC NaCl - 1 6.5-7.2 2 

Renault  
ECC1 
D172028 

NaCl - 1 4 5 

Volvo VICT  VC 1027,149 NaCl - 1 4 120 

VDA VDA621-415 NaCl - 5 6.5-7.2 1.5 

Volkswagen  PV1210 NaCl - 5 6.5-7.2 1.5 

Neutral Salt 
Spray 

ISO 9227 NaCl - 5 6.5-7.2 15 

Harrison’s salt solution 
NaCl - 0.25, (NH4)2SO4 – 

3.25 
  

Prohesion (Protection is 
Adhesion) 

NaCl - 0.05, (NH4)2SO4 – 
0.35-0.40 

5.0-5.4  

 

Contradictions and misleading results are attached to salt spray testing.  

Accelerated corrosion tests KWT-DC (Daimler Chrysler), GM9540P (GM), Renault 

ECC1 D172028 and Volvo VICT (Volvo indoor corrosion test) VC 1027,149 gave 

consistent life predictions of materials when comparing them to field data (LeBozec 

et al., 2008).  This was not the case, however, for VDA621-415 (German 
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Association of the Automotive Industry -Verband der Automobilindustrie) and 

PV1210 (Volkswagen) tests that give quite similar results and ranking of materials; 

like the continuous neutral salt spray (NSS) test, these tests should not be used for 

the prediction of durability of steel based materials (LeBozec et al., 2008).  However, 

Shashoua and Matthiesen (2010) employed the salt spray test DS/EN (Danish 

Standard/European Standard) ISO 9227 using a 5 % NaCl solution at 35˚C for 504 

hours for their research on heritage coatings.  There is, therefore, a strong 

possibility that their results will not correspond to in-service results.  The 

environment in which the coating is going to be exposed in practice should generally 

be the determining factor when choosing salts for accelerated corrosion testing 

(table 33).   

 
a – ASTM – American Society for Testing and Materials  
b – ISO – International Organisation for Standardisation  
c – DIN – Deutsches Institut für Normung e. V. 
d – JIS – Japanese Standards Association 

Since the TM is not situated in a marine environment and is in a rural location using 

NSS 5% NaCl solution would lead to unreliable results.  The GM salt solution is 

more suited to this research project, since it is based on de-icing salt it is more likely 

to give life predictions consistent with real time atmospheric corrosion.

Table 33 Extract from the summary by Bos (2008) of some standardized 
accelerated tests. 
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4 Conservation Approaches & Experimental Design 

4.1 Guidance and specification in conservation of heritage ferrous 

metal 

Conservation of heritage ironwork is often carried out by contractors and contracts 

are generally awarded to the lowest bidder (Topp, 2009), yet standards for 

delivering work programmes do not exist in heritage, unlike those offered by the 

International Standards Organisation (ISO).  Conservation may employ some of 

these standards but they are often not suited to the heritage contexts.  Reliance on 

qualitative data and the experiences of practitioners promoted by groups such as 

the National Heritage Ironwork Group (NHIG) and the Museums and Galleries 

Commission.  Conservation requires research to generate data for producing 

evidence based standards to provide predictive performance and facilitate cost 

benefit calculations relative to ethical and aesthetic constraints within Heritage 

Conservation.  Challenges exist here as well, as even in metal conservation 

research and testing of heritage materials the standards used to underpin 

methodology and interpret results are almost certainly going to be international 

standards such as ISO, BSI or DIN (Argyropoulos et al., 2013), rather than heritage 

specific standards.   

As a minimum, the heritage sector requires qualitative data on the influence of 

different environments and treatment effectiveness (Williams, 2009a).  The gold 

standard sought is quantitative assessment of treatment success set against 

treatment goals (Watkinson, 2010).  This can be complex as quantitative data needs 

to be contextualised against resources, cost and object context, to assist in defining 

goals that can be used to create standards.  Quantitative data that can be translated 

into hard currencies of object longevity, stability and survival is currently limited 

within metals conservation.  Attainable and reproducible quantified outcomes allow 

the development of standards, thus, standardisation is key.  

The study reported here seeks to standardise approaches to testing coatings by 

using a sensitive corrosion monitoring technique employed at Cardiff University 

(Rimmer et al., 2013; Watkinson and Rimmer, 2013; Emmerson and Watkinson, 

2016) to assess coating performance by measuring corrosion rates in controlled 

conditions of temperature and RH.  It is from such testing that a database for 

developing heritage specific standards can be built. 



   

 104  

4.2 Approaches to Extending the Lifespan of Heritage Ferrous 

Metals  

There are still many different approaches used to preserve ferrous metal and the 

approach chosen is largely dependent on where the object is or will be situated and 

whether it is still functioning.  Thus, preservation approaches are largely influenced 

by the environment whether indoors or outdoors. 

4.2.1 Indoor approaches 

For ferrous metal objects housed inside a museum the two main threats are 

humidity and pollution (Museums Galleries Scotland, 2014).  The approaches to 

indoor preservation include: 

1) Environmental control  

a) Air conditioning - exerts influence over atmospheric pollutants and RH 

(Brimblecombe and Ramer, 1983) 

b) Display cases - create microclimates allowing RH to be controlled 

(Museums Galleries Scotland, 2014).  Removal of air to prevent or stop 

corrosion is impractical as, as little as 3% O2 in the gaseous environment 

can yield corrosion (Walker, 1982b).  Display cases are a feasible option for 

museums unable to install air-conditioning systems for financial or structural 

reasons, especially if the ferrous metal objects are too delicate for open 

display (Brimblecombe and Ramer, 1983).  RH within display cases is often 

controlled by moisture-absorbing desiccants e.g. silica gel, but an alternate 

option is to maintain a uniform temperature to prevent condensation or to 

keep objects warm (Walker, 1982b).   

c) Storage - often involves storing objects on open shelving, using boxes with 

lids, trays and dust covers.  The best approach is the use of inert packing 

materials and storage furniture in well-sealed buildings.  Use of dehumidifiers 

and heating larger spaces and silica gel in air-tight boxes for material such 

as archaeological iron should control RH to within desired levels as with 

display areas (Museums Galleries Scotland, 2014).  However, air pollution is 

less easy to control as it is difficult to monitor. 

2) Protective coatings - to mitigate corrosion of objects on open display (table 

34).   
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2 Renaissance wax is a mixture of 4 parts Cosmoloid H80 and 1 part polyethylene wax in a 
high flash point hydrocarbon solvent. 
3 Hot waxing methods can vary; they involve heating the wax and/or object surface 
depending on whether a solid wax is being used or a wax liquefied by solvents.  
 

Table 34 Coatings used by conservators in indoor environments in the UK 

Coating Comments 
Organisation 

and Reference 

Renaissance wax2 

Hot waxing is preferred as evidence 

suggests that hot waxing3 is more protective 

than cold waxing (figure 60 a – hot waxed 

and figure 60 b – cold waxed) (Arnold, 

2006; Schmuecker et al., 2010; Dalewicz-

Kitto et al., 2013) 

The Science 

Museum (Bird 

and Langfeldt, 

2013) 

Paraloid B72 

5% solution in acetone used for objects 

such as the V2 rocket, classed as being too 

vulnerable to wax 

Paraloid B72 

10-20% (w/v) solution in xylene/Shellsol 

A100 used.   

48 hours is allowed to ensure layers were 

dry before additional layers were applied, 

which were thought to reactivate the layers 

below 

For large flatter surfaces.  

Victoria and 

Albert Museum 

(V&A) (Thackray 

and Stevens, 

2013) 
Traditional Shellac   

TeCero-Wachs 30 201 

microcrystalline wax 

A 50:50 (w/w) mixture in white spirits  

Used in matte chased areas. 

Figure 60 (a) A hot-waxed lock after Hurricane Katrina; (b) A cold-waxed lock after 
Hurricane Katrina (Arnold, 2006) 

(b) (a) 
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4.2.2 Outdoor approaches 

Outdoor historic ferrous metal can be found in many of forms: 

 Monuments and sculptures  

 Architectural ironwork e.g. gates or railings (figure 61), 

 Industrial heritage 

 Historic vehicles 

 

 

Coatings are the main approach used to preserve ferrous metal situated outdoors, 

with wax commonly used by conservation practitioners for monuments and 

sculptures, although other coatings are also used (table 35).  Most historic ferrous 

metal such as gates and railings, historic vehicles and industrial machinery that are 

located outdoors have been protected by a multi-layer paint systems since being 

instated outdoors or since before leaving the manufacturers.  A survey of outdoor 

paint layers detaching from historic ferrous metal around Scotland (table 36) 

emphasised modes of failure and maintenance regimes occurring. 

 

 

 

Figure 61 South Gate of the Palace of Holyroodhouse 
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Table 36 Microscopy images of polished paint layer cross sections of samples 
collected around Scotland from historic ferrous metal at Historic Environment 
Scotland properties and one National Trust Scotland property with modes of failure 
and maintenance discussed 

  

Broughty 

Castle 

Cracking and lifting of paint layers in the 1st image.  Multi-layer 

systems in both images and a visible attempt at maintenance.  

Possible application of primer over topcoat.  Corrosion under 

paint in both images. 

Table 35 Coatings used outdoors by conservation practitioners 

Coating Application method 
Museum/Company 
and reference 

Renaissance wax - clear Hot waxing – using a hot air gun 
to heat the metal surface.  The 
wax is applied cold using a brush 
and again it melts on contact with 
the metal  

The Barbara 
Hepworth Sculpture 
Garden (Lawson et 
al., 2013) 

Renaissance wax – pigment 
used titanium white  

Bison wax 

Hammerite painted on silver steel 

Incralac Used on gold sections 

Carnauba and 
microcrystalline wax 
mixture- pigmented for 
surface patina. 

Hot waxing - propane used for 
heating the metal surface and 
stippling wax on by brush.  The 
wax melts on contact with the 
surface, allowing it to fill pores 
and cracks 

Hall Conservation Ltd 
(Redman and Hall, 
2013) 
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Dumbarton 
Castle 

Under-layer and horizontal pitting corrosion are visible in image 

1 in addition to delaminating paint layers.  Image 2 shows 

cracking and air bubbles in the multi-layer coating system. 

  

Dunstaffnage 

Castle & Chapel 

Corrosion present at the paint-metal interface and within sub-

surface cracks. Primer applied on top of past topcoats 

  

Fyvie Castle 

Delamination caused by corrosion at the paint-metal interface.  

Separating paint layers with cracks and gaps.   

Biological matter on of the paint in the first image. 
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Fort George 

Paint is applied around detaching metal.  Corrosion is visible at 

the paint-metal interface and in cracks within the metal.  Multiple 

layers of uneven thickness.  Alternating between light and dark 

layers reveals missed areas image 2. 

  

Palace of 

Holyrood House  

Multi-layer system, with multiple black layers.  Individual layers 

are more visible by varying the brightness, but this reduces the 

colour in the image.  Delamination between layers.  Corrosion 

under the paint. 

  

St. Andrew’s 

Cathedral  

Corrosion at the paint-metal interface, image 1.  Paint layers 

being used to consolidate detaching broken paint layers - 

evidence of maintenance.  Newer thinner layers in image 2, with 

corrosion in the micro-cracks in the metal. 
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Causes and nature of coating failure was discussed in section 3.3.3.1, but these 

polished cross sections also reveal evidence of a variety of maintenance practices: 

 Application of primer over old topcoat paint layers 

 Multi-layer systems applied on top of multi-layer systems 

 Consolidation of old broken layers with new 

 
They also reinforce the need for standards for maintenance techniques, which 

provide answers to questions, such as: 

 Should corrosion be cleaned off or coated over? 

 Should old paint layers be cleaned off or consolidated and painted over? 

 If coating over existing paint layers is recommended, how should it be done?   

 Should a primer be used?   

 
Primers containing metallic pigments e.g. zinc need to be applied to the ferrous 

metal surface to prevent electrochemical dissolution by acting sacrificially 

(3.2.2.3.2).   

Much historic ferrous metal is at risk of being lost e.g. the ‘Old Town Hall’ in 

Dumfries (figure 62), which was completed in 1707, now referred to as the 

‘Midsteeple’ (figure 63), narrowly avoided demolition in the early 1970s when the 

steeple was found to be leaning (Dumfries and Galloway Council, 2016).  Thus 

regular maintenance is essential to prolong the life-span of outdoor historic ferrous 

metal. 

 

Figure 62 Dumfries Old Town Hall and stairway detail.  Images of collotype 

reproductions of photographs taken from (Murphy, 1904) 
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It is mainly external ironwork that suffers from atmospheric corrosion and is the 

subject of conservation work.  Vehicle impact damage, missing components and the 

attentions of previous unskilled restorers are additional reasons why conservation 

might be required when dealing with architectural ironwork (NHIG, 2012).   

In the absence of standards Historic Scotland created specialist inform guides e.g. 

‘The Maintenance of Iron Gates and Railings’ (Davey, 2007) and the guide 

‘Boundary Ironwork - A guide to re-instatement’ (Historic Scotland, 2005) to provide 

guidance and information for historic building owners.  The message is clear, the 

most effective method of prolonging the life of ironwork is regular maintenance as 

decay and damage can be dealt with promptly if annual inspections are carried out. 

As with other outdoor ferrous metalwork, historic vehicles and industrial machinery 

were originally coated with protective paint systems, which may now have suffered 

loss and require maintenance.  Military and industry museums store large quantities 

of vehicles and equipment, which presents a major problem due to costs, 

maintenance and a lack of evidence based storage methods that would support 

predictive management. 

The preservation processes vehicles and equipment undergo in museums are 

similar to the processes used by industry in “mothballing equipment” and by 

militaries who maintain prepositioned ‘war reserves’.  Mothballing is a relatively 

complete process and for vehicles or machines that are not being used for 

demonstration purposes in museums, a similar process is often carried out.  

Prepositioning entails only a ‘partial preservation’, but to deliver adequate corrosion 

protection, improved operational fluids or lubricating oil products had to be 

reformulated (Le Pera, 2004).  For vehicles and equipment in museums, as with the 

vast majority of prepositioned vehicles and equipment, the RH should be maintained 

Figure 63 Photograph of Dumfries Midsteeple 
ironwork taken March 2014 
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at 40% and must remain within the range of 30 – 50%, with the temperature 

maintained between 15.6 and 26.7 °C (Le Pera, 2004).  Provided the atmosphere is 

free of SO2 and the vehicles and equipment have been cleaned of any salt 

contamination, maintaining the RH below 60%, a critical humidity level, should avoid 

corrosion (Syed, 2006).  Trapped deionising salts may prove a problem in car under-

bodies.  However, for vehicles and equipment on display outdoors the RH cannot be 

controlled, even indoors due to the large spaces required this is also unlikely in 

many museums.  

The majority of vehicles and equipment within museums are stored, not displayed or 

demonstrated and so require a more complete preservation method like mothballing 

rather than the method used for prepositioned military vehicles and equipment.  

Therefore, new methods such those being tested by the Imperial War Museum, 

Duxford, need to be researched and trialled to find the best possible long-term 

storage method. 

The Imperial War Museum (IWM), Duxford – Storage Trials 

Only 5% of the historical military equipment at the IWM, Duxford is on show, the 

remainder of the equipment is either left to corrode outside or is housed in various 

types of hangers.  The IWM and HITEK-nology Solutions Ltd are trialling a new 

storage system using a Matilda MK2 Tank and a Churchill Mk 7 tank (HITEK-nology 

Solutions, 2013).  Inside and outside of the tanks VpCI 132 foam pads4 were 

positioned before they were wrapped in MilCorr and heat shrunk (figure 64).   

To detect corrosion inside the bags low grade carbon steel plates were hung from 

the gun barrel and visually inspected via the MilCorr zip door.  For comparison 

purposes additional plates were fitted in the areas surrounding the tanks (HITEK-

nology Solutions, 2013). This storage solution is believed to protect the tank for a 

period of five years (Arkles, 2006; HITEK-nology Solutions, 2013).   

Approximately seven and half months after positioning the plate within the ‘bag’ they 

showed no corrosion in contrast to the plate outside the bag (figure 65).   

                                                
4 Cortec VpCl – 130 Series Foams are specially designed with vapour corrosion inhibitor 
impregnated throughout the foam’s polymeric matrix.  They provide excellent protection of 
ferrous, non-ferrous metals and alloys.  They do not change critical chemical and/or physical 
properties of electronic components, and are suitable for protection of printed circuit boards.  
Cortec VpCl Foam Series conform to military standards MIL-PRF-81705D and NSN#6850-
01-426-3539.   
Standard size - 10” x 10” x ¼” (25 cm x 25 cm x 0.64 cm).  Protects up to 8 cubic feet (0.23 
m3) per unit.  
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For large objects, this could be a feasible storage option.  The cost for the IWM of 

‘bagging’ a large item is in the range of £1500-£2000, with a significant discount.  

With the economy of ‘bagging up’ several vehicles at a time, prices could be 

reduced.  To ‘bag up’ most of their items stored in 104 where the trial took place 

would cost in the region of £25k-£30k, which over a 20 year period could cost 

~£150k (Delaney, 2015).  Although not a small sum of money, it is considerably less 

than improving the building through major structural repairs or building new stores. 

 

Figure 64 A “bagged up” tank in 
storage at the Imperial War Museum 

(IWM).   

Figure 65 Front and back of two of the plates that were placed in position on the 1st 
October 2013 and were assessed on 19th May 2014.  The plate from inside the bag 
(left-hand side of both images) suffered no corrosion, but the one in the area 
surrounding the tank has significant areas of corrosion (Delaney, 2015). 
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4.3 The Tank Museum, Bovington 

The Tank Museum at Bovington, Dorset, one of the partners within this project, 

requires clarification of coating performance in a given context.  The museum was 

set up in the 1920s but Bovington has been a base of military operations since the 

WW1 (Building Design Online, 2009).  The collection held by the TM is designated 

as being of national importance.  It is the most comprehensive vehicle collection of 

its kind in the world and receives over 1000 visitors per hour at peak times (King, 

2006).  The preservation of their vehicle collection is important and research into the 

best preservation strategies is vital. 

4.3.1 The Environment 

Of the 300 plus vehicles in their collection, approximately 140 were stored either in 

unheated, leaking sheds or outside (King, 2006; The Tank Museum, 2016).  The 

VCC (figure 66) now houses a large proportion of these vehicles, removing the need 

for outside storage.   

 

Buildings at the TM do not have humidity control but their more recently constructed 

display hall employs overhead radiant heating panels to prevent condensation by 

raising the surface temperature of the tank hulls above dew point (Building Design 

Online, 2009).  This provides an energy-efficient heating system.  To carry the 

moisture in the air away quickly displacement ventilation is used, with large 

underground concrete ducts introducing fresh air (Building Design Online, 2009).   

Within many of the vehicles the original leather and canvas fillings in their interior 

have already been removed for conservation and replaced with facsimiles (King, 

2006).  Desiccant gel is reportedly used for dehumidification within the tank’s hull to 

conserve the interior with the electronics and instruments as with the hatches 

closed, this becomes a sealed environment (King, 2006).  The exteriors of the 

Figure 66 Vehicle Conservation Centre (VCC) - View from balcony open to the 

general public 
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vehicles are largely resistant to decay except for corrosion, and it is the corrosion 

problem that is addressed in this study. 

The TM monitors temperature and RH at various locations in the museum (figure 

67).  The map included indicates the locations of the data loggers placed around the 

museum.  This offers insight into the ability of the environments to support corrosion 

but does not offer understanding of how these environments dictate the environment 

inside the vehicles, which may be crucial for preserving their heritage value. 

 

4.3.2 Vehicle Preparation  

The TM does not have a strict maintenance regime to which it adheres when 

preserving their vehicles.  Where the historic paint layers have failed and the metal 

substrate is corroding, ethical implications have to be considered before a treatment 

plan can be decided upon.  Minimal intervention is usually preferred, but questions 

need to be asked, such as: 

 Where will the object be displayed or stored and will this environment 

prevent any further deterioration? 

 Is intervention needed? 

 Should the armoured vehicles be made to look as new or should the years of 

wear and tear be visible? 

 Do the original coating layers have historical significance and need to be 

kept? 

 Can they be removed or be only partially maintained? 

 What type of coating is required? 

 Do historic paints need to be used or are modern coatings more suitable? 

 Are original paint layers safe for the general public? 

 Is there a suitable colour match? 

 Do modern coatings provide better corrosion protection? 

 How many layers are required and how should it be applied? 

 
The general methods used are described below.   
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4.3.2.1 Surface Cleaning and Preparation 

Armoured vehicles are prepared for coating by removing large areas of original paint 

layers and corrosion by grit blasting (figure 68).  Different grades of Guyson blast 

media (Saftigrit - aluminium oxide) are used by the TM for grit blasting.   

4.3.2.2 Coating 

Cromadex is one of many well-known brands in AkzoNobel’s portfolio and their 

paints are used by the TM for coating armoured vehicles (table 37).  When applying 

a new coating to one of their armoured vehicles, one coat of primer is used followed 

by one or two layers of topcoat depending on the final colour desired.  

Paint at the TM is applied by brush, roller or spraying (see 3.2.2.1.1).  The brushes 

and rollers (figure 69) used are disposable, reducing cross-contamination of the 

paints, the time and solvents needed for cleaning, and the cost as they are cheaper 

and possible obtain in bulk.  Some products used at the TM are obtained by 

donations from local businesses. 

Table 37 Cromadex paints used by the Tank Museum, Bovington 

Cromadex 
Product 
Number 

Topcoat 
or 

Primer? 
Summarised Product Description 

Application method and 
frequency of use 

222 Topcoat 

One pack fast air drying alkyd topcoat 
– semi synthetic – available in a range 
of colours and gloss levels including 
BS, RAL, metallic, sparkles and 
special matches – all lead chromate 
free 

Brush application – used 
a lot 

233 Topcoat 

One pack air drying alkyd topcoat –
semi synthetic – available in a range 
of colours and gloss levels including 
BS, RAL, metallic, sparkles and 
special matches – all lead chromate 
free 

Normally sprayed 

800 Topcoat 

Two pack non-isocyanate acrylic 
topcoat  – available in a range of 
colours and gloss levels including BS, 
RAL, metallic, sparkles and special 
matches – all lead chromate free 

Generally not used, but 
when used, used with a 
hardener for use with 
trucks and vans 

903 Primer 

Two pack chromate-free etch primer - 
used to improve adhesion and corrosion 
resistance of all systems used over metal 
substrates - available in buff. 

Generally not used, but 
when used, used with a 
hardener for use with 
trucks and vans 

2100 Primer 

One pack universal primer - available 
in white, grey, red oxide and buff as 
standard, it can also be tinted to 
ensure complete coverage even on 
difficult lead free colours. 

Brush or spray application 
– red oxide version used 
a lot, sometimes toned 
down with matt black to 
imitate wartime primer 
that was much darker 
than modern red 
oxide/primer.  



   

 118  

  

 

Figure 68 Machinery and safety equipment used by the Tank Museum for grit 
blasting armoured vehicles in preparation for painting (displayed by Mike Hayton, 

workshop manager at the TM). 
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Where there is original or later paintwork that offers either a record of the history of 

the object or milestones in its life, conservation ethics dictate that this should 

normally be preserved (Watkinson, 2010).  Provided future interpretation of the 

object is not compromised there are instances where ethical arguments support the 

refinishing of the surfaces of cultural heritage objects (Watkinson, 2010).  To offer 

the best opportunity for longevity, objects may be refinished to an improved 

standard rather their original specification.  In the case of the TM, a combination of 

refinishing and preservation of the original surfaces has been adopted, as can be 

seen in figure 70 with the refinished areas now painted dark grey and the black and 

Figure 69 Paints and painting equipment used at the Tank Museum.  Demonstrated 

by Mike Hayton, workshop manager at the TM. 
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white cross at the centre of the photograph showing historic paint layers that have 

been left untouched.  Areas like this cross left without intervention and only the 

damaged historic paint layers protecting the armoured steel from corrosion may be 

more susceptible to localised corrosion e.g. pitting and crevice corrosion.   

 

Original paint detail (figure 70) needs preserving.  Whether clear coatings are the 

best method will require further research.   

Coating areas of bare metal where original paint layers are detaching and using 

clear coatings as a touch-up coating between maintenance is the focus of this 

research.  Standardised procedures to produce quantitative data to identify the most 

suitable coating for use on areas such as this are therefore required. 

In addition to reducing corrosion any clear coating used should ideally have minimal 

impact on the paints already on the vehicle(s), whether it is the original paint or the 

refinishing paint.  Although the visual impact of the clear coatings on the paints 

could be a concern as clear coatings frequently contain solvents, with the clear 

coatings reaching the edge of the paint residue and minimal overlap this should not 

be an issue.   

 

 

Figure 70 A cleaned and painted armoured vehicle on 
display at the Tank Museum with historic paint detail left 
intact, but requiring additional protection, ideally a clear 
coating. 
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4.4 Clear Coatings 

4.4.1 Requirements 

A recent study identified five properties that are required of coatings used to protect 

ferrous metal industrial objects: 

(1) Last three years or more without requiring further maintenance whether 

outdoors or indoors, without control of RH, temperature or light levels. 

(2) Allow the original appearance, function or cultural significance of objects 

to be retained. 

(3) Allow future retreatments or be removable. 

(4) Be a commercially available product. 

(5) Use of the treatment should not harm either the operator or the 

environment (Shashoua and Matthiesen, 2010).   

Clear matte protective coatings that offer near invisibility for the viewer are an ethical 

goal in conservation.  Many clear coatings are in use but gloss and aging that 

causes yellowing are major problems associated with them.  A clear coating on an 

armoured vehicle may not have to be matte if the existing paint is gloss and 

yellowing may be too minor to concern the viewer.  Thus these ageing changes that 

are normally important may not override the need for good protective properties that 

are long lived. 

 

4.4.2 Coating-Solvent Combinations and Application Techniques  

This project aims to specify coatings for use in real life scenarios, thus the 

application method must be commonly used for in situ coating.  Shashoua and 

Matthiesen (2010) chose brush application for their research, as the thickness of the 

applied film can be readily controlled.  Although brushing is a slow process, 

generally less health protection equipment is required than for spraying.  Mottner et 

al. (2001) also applied transparent coatings to iron and steel outdoor industrial 

monuments by brush.  Brush application is also one of the primary methods used at 

the TM (figure 69) and within conservation.  The concentration (solid to solvent ratio) 

is key to producing a good coating finish.   

When applying transparent coatings to iron and steel outdoor industrial monuments 

various numbers of layers or thicknesses and drying periods have been reported in 

research papers.  Mottner et al. (2001) reported adding 3 to 5 layers with 3 to 4 
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hours drying period for each layer.  Cano et al. (2010) applied 2 layers by brushing 

in criss-cross layers, and allowed 24 hours for drying between layers for a set of 

their samples.  Shashoua and Matthiesen (2010) however, applied surface 

treatments so that they attained a dry film thickness of 20 to 25 µm, after drying 

horizontally for 7 days at 18 to 20 °C and 35 to 40% RH before evaluation.   

Heating the substrate material is a practice used by conservation practitioners 

(4.3.2.1) when using wax to coat outdoor sculptures as the wax melts when in 

contact with the warmed surface, thus allowing it to be brushed on and fill pores and 

cracks.  Coupons used in the PROMET project were also preheated in an oven at 

50 °C for 1 hour as part of the short-term testing prior to immersion in Renaissance 

wax, Polyurethane varnish or Paraloid B72 (Argyropoulos, 2008).  It is good practice 

to warm the samples prior to coating as surface moisture is removed. 

A questionnaire distributed to Mediterranean Basin countries as part of the 

PROMET project received 54 responses, which revealed Paraloid B72 was the most 

popular clear coating for iron, followed by Cosmoloid H80 (Argyropoulos et al., 

2007b). 

 

4.4.2.1 Paraloid B72  

Paraloid B72 is favoured by conservators due to its ability to remain clear, soluble 

and removable over time (Davidson and Brown, 2012).  It is an ethyl methacrylate: 

methyl acrylate P(EMA-MA) copolymer with a molar ratio of 70:30 (Chapman and 

Mason, 2003).  As a pure solid it has a relatively high glass transition temperature 

(Tg) of 40 °C (104 °F) and a refractive index of 1.49, it is versatile, resilient but rigid 

and has intermediate hardness (Chapman and Mason, 2003; Rohm and Haas, 

2007).  Paraloid B72 dries by solvent evaporation and can be re-dissolved 

repeatedly as needed or heat can be used for softening and reworking it (Davidson 

and Brown, 2012). 

Data taken from the Argyropoulos et al. (2007b) paper was used to identify the 

different ways in which Paraloid B72 was mixed and used as a coating (figure 71) 

and which solvent is most associated with its use (figure 72).  Acetone (48%) is the 

solvent most commonly associated with the use of Paraloid B72 as a coating, but 

toluene (28%), xylene (8%) and benzene (2%) are also used for dilutions.  This is 

surprising as acetone is a volatile solvent and does not allow for as much levelling of 

the coating as other less volatile solvents may, but it is far less toxic and so is safer.  

As acetone is more volatile than these other solvents, less is likely to be retained by 
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the Paraloid B72 coating layers, reducing its possible impact on the O2 sensor 

spots.   

 
 
Paraloid B72 is commonly prepared as 10-15% w/v dilutions.  Many studies have 

used 15% w/v in acetone (Argyropoulos et al., 2007a; Cano et al., 2007; Siatou et 

al., 2007; Degrigny, 2010), but Reedy et al. (1999) prepared a 10% w/v solution in 

95% xylene and 5% butyl  cellosolve.  Butyl cellosolve (ethylene glycol 

monoethylene) is used in silver and brass conservation but is also sometimes added 

as a levelling agent to try to reproduce the levelling quality of Agateen5, as Paraloid 

B72 is difficult to apply without bumps appearing on the surface if it is not included in 

the solution (Reedy et al., 1999).  Although optical properties of coatings are 

important , they are not as critical for the application to armoured vehicles.  Xylene 

has a higher viscosity than both toluene and acetone (Horie, 2010), thus a lower 

percentage of Paraloid B72 in xylene is likely to create a surface finish with less 

brush marks.  Although acetone produces a less viscous Paraloid B72 solution than 

xylene, it is more volatile and doesn’t allow for as much levelling whilst the coating is 

drying.  Research has also shown that Paraloid B72 films prepared in acetone and 

                                                
5 Agateen Laquer no. 27 (cellulose nitrate, used with thinner no. 1) – due to levelling 
properties when applied by brush the coating is near invisible on the metal surface.  The 
solvent system used with Agateen Laquer is very toxic.   
Perkins, B. N. 2003. The de-electrification and re-electrification of historic lighting fixtures at 
Winterthur Museum. Journal of the American Institute for Conservation 42 (3), p. 457 to 462.. 

Figure 71 Uses of Paraloid B72 and method preferred (Argyropoulos et al., 2007b) 
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to a lesser extent 1:1 acetone:ethanol are susceptibility to water damage, which is 

apparent as the films become swollen and cloudy (Li, 2006). 

 

4.4.2.2 Cosmoloid H80 

Cosmoloid H80 is also popular with conservators (Argyropoulos et al., 2007b).  It is 

supplied by Kremer Pigmente GmbH & Co. KG for application to ferrous metal, but 

the metal must if possible be paint free and acid-free.  Before application, the metal 

must be degreased and although usage recommendations describe coating by 

immersion, it is possible to apply by brush.  The research reported by Shashoua and 

Matthiesen (2010) using analogue sample material indicates that Cosmoloid H80 

inhibits corrosion.   

White spirit is the preferred solvent for Cosmoloid H80 within conservation practice 

(figures 73 and 74) (Argyropoulos et al., 2007b).  Research by Wolfram et al. (2010) 

used a 10% (w/w) dispersion of Cosmoloid H80 in mineral spirit Shellsol T which, 

although free of aromatic compounds is highly flammable above 60 °C.  The 

PROMET project used Cosmoloid H80 in additional research, but dissolved in 

toluene (13.33 g in 20 ml of toluene, a 66.65% w/v solution) (Argyropoulos, 2008).  

Both toluene and white spirit shall be trialled with Cosmoloid H80, toluene due to the 

solubility of Cosmoloid H80 dissolved in it and its use within the PROMET project 

and white spirit, due to its popularity with conservators generally.  The survey 

Figure 72 Preferred solvents associated with the use of Paraloid B72 calculated 

from the research done by Argyropoulos et al. (2007b) 
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carried out by Argyropoulos et al. (2007b) showed the preferences of conservators, 

with 35% preferring to use white spirit with Cosmoloid H80 and 22% preferring to 

use toluene (figure 74).   

 

 

Figure 73 Uses of CH80 and preferred method (Argyropoulos et al., 2007b) 

Figure 74 Preferred solvents associated with the use of CH80 calculated from 

Argyropoulos et al. (2007b) 
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4.4.2.3 Silanes, Polysiloxanes, Polysilazanes and Siliglide 10  

To assist in conservation and supplement existing techniques, emerging technology, 

often from other subject areas, needs to be exploited (Williams, 2009a).  One area 

for further development listed in the report on the ‘Role of science in the 

management of UK’s heritage’ is research into new coatings particularly for outdoor 

metals e.g. super-hydrophobic materials (Williams, 2009a) and from time to time 

new materials do emerge. 

In the early 90s, as an alternative to the carcinogenic chromium VI containing 

conversion treatments, silanes were introduced for adhesion promotion and 

corrosion protection of metals.  Organic functional groups, e.g. methoxy (CH3O-) or 

ethoxy (CH3CH2O-) groups, bonded to silicon atoms are the foundation of hybrid 

silane molecules, although some contain other functional groups, e.g. Cl, amine 

(NH2), S or epoxy (De Graeve et al., 2007).  Curing of the siloxane layer is deemed 

essential for corrosion protection purposes and is touched upon in 3.2.2.2.1.  

Effective barriers against corrosive attacks are formed due to the crosslinking and 

branching that produces a dense network, limiting electrolyte access to the 

underlying metal.  Crosslinking between silane molecules in deposited films usually 

results from heating the coated substrates with -Si-O-Si- (poly)siloxane chains being 

produced by silanol groups (figure 75) that have not reacted with the metal surface 

(section 3.2.2.3.1, figures 43, 44 and 45). 

 

The excellent bonding of silane/siloxane films to metal substrates is assumed to be 

a results of the Metal-O-Si and Si-O-Si covalent bonds that are formed (figure 76) 

(Palanivel et al., 2003). 

Figure 75 Condensation of silanol groups to form a siloxane 

chain taken from Arkles (1977) 
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A high degree of permeability to water vapour is maintained by silane- and silicone-

derived coatings although they are mostly hydrophobic.  Reduced deterioration at 

the coating interface is linked to entrapped water and also allows the coatings to 

breathe.  Protection is offered to composite structures ranging from pigmented 

coatings to rebar-reinforced concrete, as ions are not transported through non-polar 

silane and silicone coatings (Arkles, 2006). 

Polydimethylsiloxane (PDMS) (figure 77), offers an example of a polysiloxane, many 

of which have excellent chemical, physical and electrical properties (Abe and Gunji, 

2004).  It is also the most common silicone material.  Polysiloxanes have weak 

interactions between molecules affording them excellent physical properties, e.g. a 

low viscosity coefficient and a small contact angle.  Modification or improvement of 

the polysiloxane structure could overcome its potential limitation for their use as 

coating films or fibers (Abe and Gunji, 2004).   

Figure 76  Simplified schematic of bonding mechanism between silane molecules 
and metal surface OH- layer: (a) before condensation: H-bonded interface; (b) after 

condensation: covalent-bonded interface (Palanivel et al., 2003). 
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Within the conservation sector, silanes have already begun to be considered for 

surfaces such as bronze (Pilz and Römich, 1997; Mottner et al., 2001; Argyropoulos, 

2008).  A PROMET partner found that the combination they called silane A, which 

formed a copolymer at room temperature gave the best result, providing better 

protection with two layers and was reversible in 5M NaOH (Argyropoulos, 2008).  

Although polysiloxanes can have very high chemical resistance, alkalis are the 

exception as the Si-O-Si bond is not resistant to hydrolysis.  Thus, silane based 

coatings could be potential coatings for the future for conservation of heritage 

ferrous metal and so are being considered within this project. 

Discussions with coatings companies in the UK provided only one suggestion, 

Siliglide 10.  Siliglide 10 is a product which is commercially available (from 

Fluorochem in the UK, a distributor for US based Gelest. Inc.).  Although it is 

described as a release and slip coating for glass, ceramics and non-ferrous metals, 

it is being trialled with ferrous metal. 

The chemical name for Siliglide 10 is polydimethylsilazane-polydimethylsiloxanes 

and silicones mixture in isoamyl acetate.  Like Paraloid B72 and Cosomoloid H80, 

Siliglide 10 is a solvent-borne coating, with the flammable solvent isoamyl acetate 

(figure 78) making up > 85% of the ingredients (table 38).  The dispersed polymer 

components make up roughly 15%, unlike Paraloid B72 and Cosmoloid H80 where 

they make up 10% w/v.  Siliglide 10 has a very low viscosity of 1-2 cSt (centistokes) 

(Gelest Inc., 2007), similar to water with a kinematic viscosity of 1.01 cSt at 20 °C, 

and so can be used without further dilution. 

 

 

Figure 77 Silanol terminated polydimethylsiloxane 

Figure 78 Chemical structure of isoamyl acetate 
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Table 38 Ingredients proportions in Siliglide 10 as stated on the MSDS 

Identity Percentage (%) 

Poly(1,1-dimethylsilazane), telomer* > 10 

Poly(dimethylsiloxane) silanol terminated  5 

Isoamyl acetate  > 85 

*Telomer = an extremely short polymer with generally between 2 to 5 degrees of polymerisation 

 
Siliglide 10 cures in 25 to 30 minutes at room temperature, where the RH is < 75%, 

as it is chemically similar to amine cure silicone RTV (room temperature 

vulcanizing).  Small quantities of water normally found on the surfaces of substrates 

activate the curing process.  During curing, the surface should be buffed or wiped 

with a soft rag to optimize release by ensuring a thin film covers surface 

imperfections.   

Polyorganosilazanes, polymers with –Si-N- bonds in the main chain, have received 

little attention in comparison to polyorgano-siloxanes, mainly due to the shortage of 

suitable preparative methods for producing linear chains of high molar mass.  But 

also partly due to the high chemical reactivity of poly(1,1-dimethylsilazane) (figure 

79) with H2O etc. (Soum, 2001).  When in contact with water or moisture, the Si–N 

bond is cleaved by water molecules attacking the Si atom.  Thus polysilazanes 

decompose more or less quickly depending on the rate of the reaction with water (or 

other OH containing materials like alcohols), which varies with the molecular 

structure of the polysilazanes and the substituents.  

 

Metals with –OH groups on the surface are often easily wetted by polysilazanes and 

good adhesion is promoted by the reaction in [20].  PDMS is rendered susceptible to 

condensation under mild acid and base conditions by the terminal silanol groups 

(Gelest Inc., 2013).  Thus, the terminal silanol groups of PDMS in Siliglide 10, allow 

PDMS to react with silazane resulting in siloxane bond linkages and the liberation of 

either NH3, an NH2 or a Si-based radical comprising a terminal Si-NH2 group [21] 

Figure 79 Poly(1,1-dimethylsilazane) 

telomer repeat unit 
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(Knasiak et al., 2003; Lukacs and Knasiak, 2003).  They also allow it to bond to 

substrate surfaces by reacting with –OH groups that will be present on ferrous metal 

surfaces (figure 80 also see 3.2.2.2.1).  The Si-NRH formed by the reaction of the 

silanol group with polysilazane [22] can react further with additional –OH groups 

either by [20] or [21].  Thus, metal oxide surfaces reacts with Siliglide 10, a siloxane 

modified polysilazane and form a chemically bound polymethylsiloxane resin 

“siliconized” surface (Gelest Inc., 2007). 

 

 
Hydrophilicity and hydrophobicity are comparative terms frequently used when 

discussing silicone based polymers.  The contact angle of a liquid droplet on a solid 

surface (figure 81, also see figure 40) however, is a simple, quantitative method 

 Si-NHR + Metal-OH → Si-O-Metal + NH3 or NH2R [20] 

 Si-OH + Si-NRH → Si-O-Si + NH3 (NR3 or Si-NH2) [21] 

 Si-OH + Si-NR-Si → Si-O-Si + Si-NRH [22] 

Where R = H, alkyl, substituted alkyl, cycloalkyl etc. 

Figure 80 Silane hydolytic deposition (Arkles, 1977) 
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frequently used for defining the relative degree of interaction of a liquid with a solid 

surface.  Young’s equation provides the value for the contact angle (θ): 

γsv – γsl = γlv • cosθe 

where γsl = interfacial surface tension and γlv = surface tension of liquid. 

 

The contact angle of H2O on a substrate is not a good indicator of wettability of a 

substrate by liquids other than H2O, but it is a good indicator of the relative 

hydrophobicity or hydrophilicity of a substrate (table 39) (Arkles, 2006).   

Table 39 Designation according to contact angle, information from Arkles (2006) 

Angle (°) of 
the water, θ  

Designation Comments 

< 10 
Super-

hydrophilic 

Provided the H2O is spreading over the surface and the 
surface is not absorbing, dissolving in or reacting with the 
H2O. 

< 30 Hydrophilic 
Forces of interaction between the H2O and the surface 
compared to the cohesive forces of the bulk H2O are nearly 
equal – H2O does not drain cleanly from the surface 

> 90  Hydrophobic 
H2O forms distinct droplets – as the hydrophobicity increases, 
the contact angle also increases.  On a smooth surface the 
theoretical maximum is 120°. 

> 150 
Super-

hydrophobic  
On micro-textured or micro-patterned surfaces which are 
severely hydrophobic  

 

Within 3.2.2.1.2 surface tension of films was used to discuss edge and corner 

protection, and in 3.2.2.1.3 wetting was used to explain the adhesion of a coating to 

the substrate, but these terms were not used to discuss the impact of the coating on 

the surface properties of the coated substrate.  Critical surface tension serves as a 

better predictor of behaviour of a solid with a range of liquids, and is therefore 

related to the wettability or release properties of a solid.  The values stated for the 

properties of surfaces treated with Siliglide 10 are for glass slides dipped in 5% 

Figure 81 Wettability and contact angle (Arkles, 2006) 
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solutions and cured for 30 minutes at room temperature.  Untreated glass slides had 

a reported critical surface tension of 78 dynes/cm (Gelest Inc., 2007).  Surfaces with 

critical surface tension > 45 dynes/cm are generally observed as having hydrophilic 

behaviour (Arkles, 2006).  Usually surfaces with critical surface tensions < 35 

dynes/cm display hydrophobic behaviour.  Once treated with Siliglide 10, the glass 

slides exhibited hydrophobic behaviour and a critical surface tension of 25 dynes/cm 

(Gelest Inc., 2007).  Surfaces are not considered oleophobic6 until the critical 

surface tensions decrease below 20 dynes/cm and the surfaces resist wetting by 

hydrocarbon oils (Arkles, 2006).  Siliglide 10 can be applied to non-ferrous metals to 

provide a clear high water contact angle with excellent release properties and it is 

hoped that similar properties might be exhibited on ferrous metals. 

The effectiveness of silanes on inorganic substrates varies (figure 82), and the 

hydroxyl (–OH) groups play a part in this.  On substrates containing –OH groups 

both the type and concentration of –OH group present varies widely.  Few –OHs are 

found on freshly made substrates stored under neutral conditions and considerable 

amounts of physically adsorbed H2O can interfere with coupling where hydrolytically 

derived oxides have aged in moist air.  Isolated or free –OHs react reluctantly, while 

H-bonded adjacent silanols react more readily with silane coupling agents.  

 

 

                                                
6 Oleophobic – Resistant to oil.  Lacking an affinity for oil.  Tending to repel oil.  An 
oleophobic coating helps repel much of the natural oil from the fingers. 

Figure 82 Effectiveness of silanes on inorganics 
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Siliglide 10 is frequently applied by dipping or wiping either in the solution as 

supplied or as a 1-2% solution in dry solvents such as white spirits or esters such as 

isobutyl acetate (Gelest Inc., 2007).  As the dispersed polymer concentration is 

~15% it will not be diluted to such an extent as Paraloid B72 and Cosmoloid H80 are 

being prepared as 10% w/v coatings.   
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5 Methodology  

5.1 Aims and Objectives  

5.1.1 Aims 

 Determine the effectiveness of selected clear coatings for controlling the 

corrosion of modern historic steel in conservation contexts with specific 

reference to the needs of the TM and the occurrence of Cl- contaminated 

surfaces. 

 

5.1.2 Objectives 

 Assess the environmental context for use of coatings within the Tank 

Museum. 

 Survey the occurrence of Cl- bearing corrosion products at historic sites in 

Scotland and contextualise this for heritage. 

 Prepare samples of historic steel for testing the efficacy of three clear 

coatings: Paraloid B72, Cosmoloid H80 and Siliglide 10. 

 Assess the ability of these coatings to prevent corrosion in high RH by 

monitoring the O2 consumption of samples at 80% RH. 

 Determine if standardised pre-corrosion of samples with de-icing salt solution 

prior to applying coatings impacts on the protective performance of the 

coating. 

 

5.2 Field Testing and Data Collection 

5.2.1 Sample Collection  

Samples were collected from a variety of heritage site spread throughout main land 

Scotland and Orkney.  The sampling sites were identified by research and staff 

working for heritage bodies and their locations are shown in figure 83.  The site 

names and total number of samples collected at each site are listed in table 40. 

Where possible 10 corrosion samples and 2 detaching paint layer samples were 

collected throughout each site.  Intact paint layers were not damaged.  Corrosion 

layers were detached using a scalpel (figure 84), although a large proportion were 

already detaching from the metal.  Samples were collected in dry, sterile sample 

bags.  The size of sample collected was dependent on the amount of corrosion 

present, consequently it varied greatly.  Cross sections of the corrosion layers down 
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to the metal surface were collected where possible, but the proximity of the 

corrosion products collected to the metal surface was dependent on how corroded 

the metal was and how easy they were to remove.   

Table 40 Sites and numbers of samples collected 

Site code Site Total no. of samples 

AA Arbroath Abbey 12 

BC Broughty Castle, Dundee 12 

BG Biggar Gasworks 1 

CP Claypotts Castle, Dundee 12 

DB Dunbar Castle 6 

DBT Dumbarton Castle 12 

DC Dunkeld Cathedral 12 

DF Dumfries, Midsteeple 8 

DG Dunglass Collegiate Church  12 

DS Dunstaffnage Castle & Chapel 12 

FC Fyvie Castle 12 

FG Fort George 12 

GC Glasgow Cathedral 8 

KH Kinnaird Head, Fraserburgh 12 

LBEd Lindsay Burial Aisle, Edzell  5 

NH Newhailes House 12 

PHR Palace of Holyrood House 13 

PW Priorwood Garden, Melrose 12 

SA St. Andrew's Cathedral 12 

SK Skelmorlie Aisle, Larg 12 

SL 
Summerlee Museum, 
Coatbridge 

12 

SM Stanley Mills 5 

TQ Traquair House 10 

Total number of samples collected 236 
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5.2.2 Sample Analysis  

5.2.2.1 Powder X-ray Diffraction (XRD)  

XRD was used for analysing the corrosion products semi-quantitatively.  Three 

corrosion product samples per site were chosen for XRD analysis.  Small amounts 

(0.012 - 0.500 g) of these samples were ground into a powder using a small pestle 

and mortar.  Acetone was added to the powder to assist with further grinding.  

Additional acetone was added to transfer the powder to a glass disc by pipette.  The 

acetone was allowed to evaporate leaving a thin layer of corrosion products on the 

glass disc.  Cross contamination between corrosion samples ground in the pestle 

and mortar was avoided by grinding sandstone grit and detergent in the pestle and 

mortar before rinsing it with distilled water. 

All samples were applied to glass discs, which were placed in labelled sample 

holders before positioning them in the sample changer in the ARL X’TRA XRD 

(Thermo Scientific).  XRD analysis was carried out using Cu-Kα radiation, scanning 

the 2θ range 5-80°, using 0.02° steps and 1 second/step counting time and these 

parameters are within the range used by other researchers investigating corrosion 

products (Balasubramaniam and Ramesh Kumar, 2000; Santana Rodrı́guez et al., 

2002; Ståhl et al., 2003; Castaño et al., 2010; Antunes et al., 2014).  Scanning 

between the 2θ range 5-80° allows for the major peaks of akaganéite and 

Lepidocrocite to be detected just past 10°, if present and not hidden in the initial 

short downward slope.  By continuing up to 80° all the major corrosion product 

peaks are covered.  Scanning with 0.02° steps and 1 second/step counting time will 

balance the need for a quality scan and the need to scan a large number of 

samples. 

Figure 84 Collection of corrosion 
products 
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5.2.3 The Tank Museum – Environment data 

5.2.3.1 Environmental Data Collection 

Four data loggers were placed inside two tanks situated in different locations within 

the museum.  The calibration of the loggers was checked within the environment 

chamber 5 days prior to their use within the the two tanks.  The four MadgeTech 

RHTemp101A, humidity and temperature data-loggers (specifications table 41) were 

set to record the temperature and RH every 10 minutes (table 42, figure 85 and 

figure 86).  To support this, environmental data collected by TM staff from different 

locations around the museum was obtained (figure 67). 

Table 41 MadgeTech RHTemp101A data-logger sensor, range, resolution and 
accuracy specifications as set out by the manufacturer 

Specifications Temperature Humidity 

Sensor Precision RTD Element Internal Semiconductor 

Range 
-40 °C to 80 °C 

(-40 °F to 176 °F) 
0 to 95% RH 

Resolution 
0.01 °C 

(0.018 °F) 
0.1% RH 

Calibrated Accuracy 
±0.5 °C 
(±0.9 °F) 

±3.0% RH 
(±2% RH typical at 25 °C/77 °F) 

Specified Accuracy Range 
+10 °C to +40 °C (50 °F to 104 °F); 

10% RH to 80% RH 

 

Table 42 Location and environment of vehicles and location of the data loggers 
within the vehicle, which they were placed inside for approximately 27 months 

Room Environment Vehicle Logger Location within vehicle 

The Tank 
Story, new 
display hall  

Radiant 
heated room 

Inside the 
Sherman Firefly 

(figure 85) 

N77402 
Inside close to the turret 
roof 

N77403 
Inside on the driver’s 
seat 

The 
Discovery 
Centre 

Unheated, 
insulated 
room 

Inside the 
Sherman V 
Crab - flail 
attached (figure 
86) 

N77404 
Inside close to the turret 
roof 

N77409 
Inside on the driver’s 
seat 
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Figure 85 The Sherman Firefly inside the New Display Hall – Image on the left 
taken prior to monitoring internal temperature and RH conditions; image on the 

right at collection of data-loggers.   

Figure 86 Sherman V Crab in the 
Discovery Centre - top left image was 
taken before monitoring internal 
temperature and RH conditions and 
the other two images were taken on 

collection of the data-loggers. 
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5.3 Laboratory testing  

5.3.1 Standardisation – Reliability and Validity of Research 

5.3.1.1 Sample Preparation 

5.3.1.1.1 Material selection and sampling cutting 

The sample material for this research was determined by the TM, who donated a 

‘Saracen APV door’ (armoured personnel vehicle door).  Their decision was largely 

based on what was considered acceptable to be cut up for sample material and 

availability.  The sample material (the armoured steel and the paint on the door) is 

not representative of the whole collection held at the Tank Museum and is only 

representative of the armoured steel used for armoured vehicles in the Saracen 

series constructed during the same time period (1950’s to early 1960’s). 

Samples 38 mm in diameter x 12 mm in depth were stamped out of a Saracen APV 

door (figure 87).  Sample size was determined by the thickness of the door and the 

diameter of the reaction jar mouth, used for O2 monitoring (figure 91).  Other 

methods for cutting samples out of the armoured steel door were discarded due 

either to cost or the heat production likely during cutting. 

 Figure 87 Both sides of the Saracen APV door – laid flat and photographed from above 
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5.3.1.1.2 Metallography 

A corner section was cut off the Saracen 

APV door (figure 88) using a hack saw 

prior to samples being stamped out.  A 

small piece with welds was cut from the 

edge section of this corner piece using 

the Struers minitom diamond wheel saw.  

Tap water (235 ml) with ‘Corrozip’ (15 ml) 

added was used for lubricating the blade.  

The metal was held using an adapted 

clamp and due to its size, mass and 

thickness the saw was set running at ≈ 

100 rpm, slowly increased initially up to 

200 rpm and then further to 400 rpm.   

The cross-section piece with welds was polished using the Struers LaboPol - 5 at 

100 rpm.  The grades of silicon carbide (SiC) grit papers used are listed in table 43 

with the liquid used.  

Table 43 Summary of the grades of abrasive and liquid used for grinding and 
polishing 

Grades of SiC grit paper Liquid used with the abrasive 

180, 360, 600, 1200, 2500 and 4000 Water 

6 μm, 3 μm and 1 μm Oil based diamond suspensions 

 

A 2% v/v solution of nital, nitric acid (2 ml) in ethanol (98 ml) was mixed up for 

etching.  Nital (≈ 3 ml) was added via pipette to a 10 ml beaker.  The cross-section 

sample was added to the solution for 30 seconds to etch and was then immediately 

washed in deionised water and dried to prevent further etching. 

The etched cross-section was examined microscopically using the Nikon Eclipse ME 

600 microscope with a Spot 25.4 digital camera and software attached.  For each 

area examined several images with varying focal points were taken and then using 

Struers’ Scentis imaging software the images were aligned, sharpened and layered 

to produce images with the best focus throughout the whole image. 

 

Figure 88 Corner section cut off the 

Saracen APV door using a hack saw. 
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5.3.1.1.3 Surface preparation 

Air abrasion with aluminium oxide is used for surface preparation of the samples to 

create a similar surface finish to that of the armoured vehicles prior to coating, as 

they are grit blasted with Guyson blast media (Saftigrit).  Sample surfaces were 

prepared using a two-step air abrasion process.  A Texas Airsonics Model AJ-1 

abrasive unit was used for removing all the paint and corrosion from all the samples, 

except those which were left untreated to provide baseline data.  To achieve the 

best results, different blasting angles are required (section 3.3.2.2): 

 Step 1 - 30-40˚ blasting angle for surface cleaning - removal of paint and 

oxide layers to near white metal (Sa 2.5). 

 Step 2 - 75-85˚ blasting angle to create an adhesive surface.   

The stand-off distance used for step 1 (approx. 5 mm) was less than for step 2, due 

to the sample size and low angle blasting angle.  Step 2 used a stand-off distance of 

approximately 10 mm.  The blasting angle and stand-off distance were controlled by 

visual observation.  Other standardised parameters employed were:  

 Blasting pressure, 80 psi; 

 Powder flow intensity, 6;  

 Nozzle size, 1.0 mm (0.040”) (this will be affected by the abrasive 

media); 

 Aluminium oxide (Al2O3), grade 3 (53 microns, hardness 8-9 Mohs)  

 

5.3.1.1.4 Examination of Surfaces  

The surfaces of a selection of samples were compared before and after air abrasion.  

Macroscopic comparisons were recorded photographically.  Microscopic 

comparisons were recorded by SEM (a CamScan Maxim 2040 variable pressure 

scanning electron microscope equipped with Oxford Instruments energy and 

wavelength dispersive X-ray spectrometers for chemical analysis).  Microscopic 

surface profiles were imaged using secondary electron imaging (SEI). Electron 

backscattered diffraction (EBSD) images were used for further analysis of the 

substrate material by point and area analysis.   

 

5.3.1.2 Coatings: Concentrations, Solvents, Application and Oxygen Impact  

5.3.1.2.1 Coating Application, Concentrations and Solvent Tests 

Paraloid B72 and Cosmoloid H80 coatings were prepared in the fume cupboard.  

The solid granules were placed in a Netlon bag and hung from supporting bars over 
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the beakers into the solvents.  The solvent levels were marked and the beakers 

were covered with foil.  The solvents were stirred continuously while the granules 

dissolved.  Paraloid B72 required stirring overnight.  Cosmoloid H80 with white spirit 

dissolved after a few hours, but the solvent was heated on a low setting whilst 

stirring.  Solvent loss from the beakers by evaporation was made good and the 

resulting solutions were stored in sealed bottles.  The coatings were all prepared as 

100 ml solution: 

 10% w/v Paraloid B72 granules (10 g) dissolved in xylene (100 ml); 

 15% w/v solution Paraloid B72 (15 g) in xylene (100 ml); 

 10% w/v Paraloid B72 granules (10 g) dissolved in acetone (100 ml); 

 15% w/v solution Paraloid B72 (15 g) in acetone (100 ml); 

 10% w/v Cosmoloid H80 (10g) dissolved in white spirit (100 ml); 

 
The 15% w/v Paraloid B72 solutions were made for comparisons to the 10% 

solutions, so the brush marks and film finish on glass slides could be compared.  

Xylene, which has a low volatility and thus good levelling of the coating, was later 

rejected as it interfered with the O2 measurements.  

 

5.3.1.2.2 Number of Coating Layers and Mass Applied 

Prior to coating glass microscope slides, they were degreased by immersing them in 

industrial methylated spirit (IMS) for 20 minutes and brushed both sides and all 

edges, top to bottom 10 times.  IMS was used as research by Lee (2010) showed 

IMS to be more effective at removing grease than white spirit and acetone.  Once 

degreased the slides were air dried on cocktail sticks to allow air circulation 

underneath them.  Their masses were measured using a Mettler Toledo AX504 

balance (reads to 0.1 mg, has a maximum load of 510 g, repeatability is 0.1 mg).   

Prior to application small amounts of the coatings were decanted into beakers.  A 

soft bristled ½” brush was used for applying the coatings, dipping it into the coating 

mixture once, wiping the excess off on the edge of the beaker once and applying 

two strokes over the surface of the glass slides.  The mass of the slides and coating 

were measured shortly after the coating was applied and at intervals over a 48 hour 

period before applying a second coating layer.  The mass of the slide and coating 

was used as a guide for the drying time and extra time was allowed.  Lee (2010) 

previously found that when Paraloid B72 in xylene was sprayed onto glass slides 

there was either no change or 0.0001 g change in mass between 120 minutes and 
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100 hours.  The mass of the slides with two coating layers were measured shortly 

after the second layer had been applied and at intervals over a 48 hour period 

before applying the final layer.  The procedure of measuring the mass of the slide 

and coating was repeated for the third layer, until approximately 48 hours after it 

was applied.  The mass of each layer applied was considered separately to see if 

their addition added extra mass or dissolved and reapplied the existing coating.  The 

mass increased with each of the 3 layers, thus 3 layers of the clear coating are used 

throughout this research.  Applying 3 layers ensures defects in the initial layers are 

covered, it is also consistent with conservation practise described in section 4.4.2. 

The mass of coating applied to the samples was recorded in a similar manner for 15 

samples for each coating type.  The thicknesses of the coatings were not measured 

in part due to the thinness of the Siliglide 10 coating layers making it impossible to 

measure with the equipment available and also owing to the uneven nature of the 

Paraloid B72 coating due to the brushmarks left behind.  

 

5.3.1.2.3 Solvent Choice and Impact on the Oxygen Measurements 

As O2 consumption measurements are used to quantify the corrosion rate of ferrous 

metal, any impact of the coatings and/or solvent choice needs to be quantified or 

eliminated prior to testing them on the steel samples.  The coated glass slides were 

placed in the reaction jars once dried.  The reaction jars (250 ml Ball Mason jars) 

have PSt3 O2 sensor spots (detection limit 0.03% O2, 0-100% O2) adhered to the 

interior walls using silicon adhesive (Radio Spares RTV silicone rubber compound) 

(figure 57, section 3.3.3.2).  Xylene and water, which were tested separately were 

added directly to the reaction jars or to cotton wool which was then placed in the 

reaction jar.  Two piece metal coated lids were used with the Ball Mason jars as the 

metal coated discs with an integral rubber ring on the underside form a hermetic 

seal when screwed down with a separate screw thread metal ring.  Leakage of 

these jars was tested by Watkinson and Rimmer (2013) by filling a control reaction 

jar with nitrogen that showed negligible ingress of O2 over a two year period. 

The reaction jars containing coated glass slides or solvents were loosely sealed and 

stored in the Binder KBF240 climate chamber (0 °C to 70 °C, 10% to 80% RH).  All 

the jars were left to equilibrate with the atmospheric conditions inside the climate 

chamber for an hour (temperature and RH within the laboratory are different to those 

within the climate chamber and may vary from day to day).  The jars were opened 

and resealed tightly before the initial O2 levels were measured using the Fibox4 fibre 
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optic O2 transmitter (using a LED peak wavelength of 505 nm, and has an error < 

3%, rel. between 4 to 50% O2) connected to a polymer optical fiber (POF).  The fibre 

optic which is positioned against the outer surface of the jar, opposite the sensor 

spot emits light exciting the luminescent dye in the sensor spot at one wavelength 

(figure 58, section 3.3.3.2).  The sensor spot in response emits light at another 

wavelength.  When O2 is present, instead of emitting light, the energy of the excited 

molecule is transferred by collision with O2.  The Fibox4 works up to 80% RH and 

has an accuracy of 1% air saturation (±2.07 hPa).  Measurements were recorded 

every 10 seconds for 5 minutes for each jar.  Following the initial measurements all 

jars were then assessed once approximately 24 hours later and again another 24-48 

hours later, after which more time was left between measurements.  The coating 

and solvent tests run are listed in table 44 along with the number of slides/jars 

tested, the number of days they were monitored and additional information e.g. 

number of days the coating were de-gassed prior to O2 monitoring. 

 

Paraloid B72 

Xylene and acetone were both trialled with Paraloid B72.  Xylene was trialled largely 

due to being less volatile than acetone, allowing the coating more time to level.  

Acetone was trialled due to its popularity with practicing conservators.  The 10% w/v 

Paraloid B72 solution in xylene was compared to the 15% w/v solution in xylene by 

observing their appearances on glass slides.  A Schott KL1500LED cold fibre optic 

light source with a 2-branch goose-neck light-guide (4.5 mm dia/600 mm long), was 

used to provide the lighting to photograph and enhance the visibility of the brush 

marks of these clear coatings on the glass slides. 

Fresh slides were coated with the Paraloid B72 and stored at 20 °C, 40% RH on a 

tray in the climate chamber after drying (table 44), as both the 10% w/v Paraloid B72 

coatings (one in xylene and one in acetone) affected the O2 sensor spots.  This 

should allow the coatings more time to de-gas as Paraloid B72 is known for its 

solvent retention properties (Podany et al., 2001; Horie, 2010; Davidson and Brown, 

2012).  These conditions will not promote corrosion of stored clean ferrous metal 

samples.  The additional slides tested with Paraloid B72 in xylene were found to still 

affect the O2 levels, but less significantly.  Using acetone as the solvent in the 

coating had less of an effect on the O2 sensor spot than xylene in the coating 

originally.  Therefore storing slides coated 10% w/v Paraloid B72 solution in acetone 

for 21 days at 20 °C 40% RH after drying should allow for solvent evaporation, and 

eliminate the impact on the O2 sensor spot.  This was tested and these slides were 
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assessed for 84 days to confirm fluctuations were within the error of the O2 meter 

(±2 hPa).  

 

Cosmoloid H80 

Cosmoloid H80 was also prepared as a 10% w/v concentration solution.  Cosmoloid 

H80 was initially trialled with toluene due to its solubility in toluene and the slower 

evaporation of toluene than many other solvents, but Cosmoloid H80 in toluene did 

not produce an evenly distributed coating on glass slides.  Despite the uneven 

coverage of the coating on glass slides not being visually suitable, the effect of the 

coating on the O2 concentration was still tested, and resulted in no impact on the O2 

partial pressure measurements.  An uneven coating is only likely to affect the O2 

partial pressure measurements if solvent is being retained within the coating. 

Table 44 Coating and solvent tests run to test the impact on the O2 sensor spot 

Solvent Coating 
No. of 

jars/slides 
monitored 

No. of 
days of 

monitored 
Comments 

Acetone PB72 5 39  

Acetone PB72 5 84 
21 days de-gassing at 20°C, 

40% RH prior to O2 monitoring 

White Spirits CH80 3 14  

Isoamyl 
Acetate 

S10 5 30  

 

White spirit a popular solvent for use with Cosmoloid H80 (4.5.2.2) was trialled, 

applying the wax coating to air abraded, warmed glass slides (4.3.2.1).  Air abrasion 

was used to key the surface making it more adhesive for the coating, promoting 

good surface coverage on the slides.  Only the slides were warmed, similar to 

conservation practise where wax is applied to warmed sculptures.  Three 10% w/v 

Cosmoloid H80 in white spirit slides were tested to confirm there was no effect on 

the O2 sensor spots and fluctuations are within the error margins.   

 

Siliglide 10 

Five Siliglide 10 coated slides were set up and tested for their impact on the O2 

sensor spots as was done with the other coatings.  Although guidance for 

application is to dip or wipe articles, for continued standardisation of the coatings it 

was applied by brush undiluted.  Prior to coating the slides were not air abraded or 
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warmed, but the coating was buffed approximately 10 minutes after application, 

before it was completely cured.   

The concentrations and solvent/coating combinations for use with the ferrous metal 

samples are as summarised in table 45. 

 
Table 45 Coating concentrations and solvents used 

Coating Concentration Solvent 

Paraloid B72 10% w/v Acetone 

Cosmoloid H80 10% w/v White spirit 

Siliglide 10 
As sold > 10% poly(1,1-dimethylsilazane), 

5% poly(dimethylsiloxane), silanol 
terminated 

Isoamyl acetate 
(isopentyl acetate) 

 

5.3.1.3 Accelerated Corrosion: Chloride Deposition and Testing 

A 100 ml of the GM9540P 1.25% salt solution was prepared using 0.9% w/v NaCl 

(0.9 g), 0.1% w/v CaCl2 (0.1 g) and 0.25% w/v sodium hydrogen carbonate 

(NaHCO3) (0.25 g).  The NaHCO3 was dissolved separately in 25 ml of the distilled 

water before combining it with the other two dissolved components to avoid 

precipitation. 

Application of the salt solution was trialled by pipette and spray.  Both application 

methods were tested for the chloride deposition and uniformity of corrosion 

formation.   

The chloride (Cl-) meter, a Radiometer Analytical PHM250 specific ion meter with 

a mercury/mercury sulfate reference electrode (REF621) and a chloride-specific 

electrode (ISE25Cl) (detection limit approximately 0.5 ppm, error c. 10%), was 

calibrated prior to treating the samples.  Five dilutions were made from the 

calibration standard 0.1M NaCl aliquot (3544 ppm Cl-) for the preliminary tests 

354.40, 177.20, 70.88, 35.44 and 7.09 ppm Cl-.  Of the four lower concentrations 10 

ml were added to separate small plastic beakers along with magnetic stirrer bars 

and 1 ml buffer (0.5M acetic acid/0.5M ammonium acetate in deionised water). 

Adding the ionic adjustment buffer adjusts the sample and standard solutions to 

the same ionic strength and pH, allowing the concentration rather than the 

activity to be measured and read directly off the meter.  Addition of the buffer 

diluted the solutions further, thus Cl- concentrations for calibrating the specific ion 

analyser were: 161.10, 64.44, 32.22 and 6.44 ppm.  
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The amount of Cl- deposited by 10 drops of the salt water was tested using five 

samples.  Samples were placed corrosion side down in separate beakers containing 

15 ml de-ionised water and agitated gently for 30 seconds, before removing and 

drying the samples.  As with the calibration tests 10 ml of the solution was placed 

into a small plastic beaker with a small magnetic stirrer and 1 ml buffer, diluting the 

solution and creating a total volume of 11 ml.  These solutions were then tested for 

Cl- concentrations.   

The five samples used for drop application were re-used to determine the 

reproducibility and uniformity of Cl- applied by spray application, after rinsing with 

de-ionised water, and cleaning by air abrasion.  The samples were prepared one at 

a time, with the sides of the samples blanked off using masking tape (figure 89) and 

1-2 mm of the masking tape overlapping the edge of smoother of the two surfaces.  

The spray bottle containing the salt solution was held in a stand and clamp (figure 

90) with the nozzle 20 cm above the sample surface.  The sample placement was 

determined by the distribution of salt solution after an initial spray with no sample 

present.  Fresh dry paper was placed under each sample before application of the 

salt solution by one press of the spray bottle (figure 90).  

 

Once sprayed with salt solution the masking tape was removed from the sample 

immediately and the sample was placed, sprayed side down in 15 ml de-ionised 

water.  The water was agitated gently for 30 seconds, immediately after which the 

sample was removed and dried.  As with the tests above 10 ml of the solution was 

placed into a small plastic beaker with a small magnetic stirrer and 1 ml buffer, 

before testing the Cl- concentrations by direct measurement, which gives accurate 

and repeatable readings (±10%) with only one calibration.   

 
Figure 89 Sample with sides blanked-off 

 
Figure 90 Spray bottle/sample set up. 
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The five samples were rinsed off by applying excess de-ionised water to both sides 

of the samples, dried with tissue-paper, cleaned by air abrasion, blanked with 

masking tape, and re-sprayed twice more.  The first time the samples were again 

tested for Cl- ions.  The second time the samples were left to corrode at c. 19 C, 

50% RH without testing for Cl- to observe the dried surface and the uniformity of the 

corrosion formation.   

 

5.3.2 Preparation and Testing of Coating Performance 

This section focuses on testing the sample material prepared in a variety of ways.  

The sample names, numbers, surface condition and coatings that were used for O2 

consumption testing are listed in table 46. 

 

5.3.2.1 Sample Material Corrosion Rates Uncoated 

To collect baseline data of the steel corroding without protection provided by fresh 

coatings the armoured steel was treated in the following 3 ways before testing: 

1. Untreated – old damaged paint layers, corrosion and mill scale still present 

2. Surfaces cleaned – samples air abraded to grade Sa2.5 finish (very thorough 

blast cleaning to achieve near white metal) 

3. Partially corroded – samples cleaned as described above and corroded on 

one side using the standardised spray accelerated corrosion method above.  

 

To test each of these treatments, 15 samples, 5 for each treatment method were 

tested for their influence on the O2 partial pressure.  The jars were set up as shown 

in figure 91 and figure 92 containing the items listed in table 47 for each jar.  One jar 

was also set up as a control with no sample to reveal any fluctuations experienced 

that are not caused by the ferrous metal samples.  Internal jar temperature was 

allowed to equilibrate with the temperature within the climatic chamber before the 

jars were sealed tightly.  The O2 partial pressure measurements were recorded as 

described above for the coated glass slides, with measurements made every 10 

seconds for 5 minutes for each jar after it was tightly sealed. The jars were then 

assessed again 24 hours later recording data for 5 minutes for each jar and again 

24 to 48 hours later, after which measurements were gradually spaced further apart, 

but each time recording measurements every 10 seconds for 5 minutes.  The 

number of days the O2 partial pressure in the jars was assessed (table 46), was 

influenced by rate of reduction in the O2 partial pressure. 
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Figure 91 Jar setup - pink O2 sensor spot 

adhered inside the jar, conditioned silica gel, 
data logger and sample. 

 
Figure 92 Sealed jar containing 

content listed in table 47 and table 48. 
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Table 46 Sample names, numbers, surface condition, coating and no. of days of O2 
monitoring 

Sample 
group 
names  

No. of 
samples 
tested 

Surface condition 
Coating used 
(% as weight per 
volume) 

No. of days O2 
consumption 

was monitored 

NS* 

Control 
0 N/A None 

Run alongside 
different testing 

groups  

163/65/341/218 

UT*   

5 Old paint and 
corrosion layers 
present 

No additional 
coating added 

163 

1 342 

CS*   

5 
Cleaned by air 
abrasion 

None 

65 

1 341 

PC* 5 
Cleaned and partially 
corroded  (corroded 
on one side only) 

None 48  

PB72CS  5 

Cleaned surface and 
coated 

10% Paraloid B72 in 
acetone 

341  
CH80CS 5 

10% Cosmoloid H80 
in WS 

S10CS 5 Siliglide 10 as sold 

PB72PC 10 

Cleaned, partially 
corroded (de-icing 
salt corroded) and 
coated 

10% Paraloid B72 in 
acetone 

342 
CH80PC 10 

10% Cosmoloid H80 
in WS 

S10PC 10 Siliglide 10 as sold  

PB72SC 10 

Cleaned, coated, 
coating scribed and 
scribed area painted 
with salt solution 

10% Paraloid B72 in 
acetone 

70 + 148 = 218 
CH80SC 10 

10% Cosmoloid H80 
in WS 

S10SC 10 Siliglide 10 as sold 

*NS = No sample; UT = Untreated; CS = Cleaned sample; PC = Partially pre-corroded;     

SC = Scribe creep test 

PB72 = Paraloid B72; CH80 = Cosmoloid H80; S10 = Siliglide 10; WS = White spirit  
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5.3.2.2 Coating Application Methodology 

Paraloid B72 and Cosmoloid H80 coatings were prepared within the fume cupboard 

as described above, but Siliglide 10 was used as supplied.   

With the exception of the untreated control group, all the armoured steel samples 

were air abraded with aluminium oxide (section 5.3.1.1.3).  All the samples were 

photographed before treatment and after each stage of preparation.   

Thirty samples were left to partially corrode for 8 days before coating, after using the 

spray accelerated method described above.  Prior to coating the samples they were 

photographed and their masses were recorded using the Mettler Toledo AX504 

balance.  The samples were heated at 50 C (in a SNOL 60/300 LFN laboratory 

oven) for a minimum of 1 hour before coating to ensure they were warmed through 

and eliminate any surface moisture.  Samples were also heated at 50 °C prior to the 

application of the second and third layers. 

As with the application of the coatings to the glass slides a small amount of the 

coating being applied was decanted into a beaker.  The number of samples, surface 

condition and coating used are listed in table 46.  Clean samples were coated first 

followed by the corroded samples to prevent contamination of the clean samples.  A 

soft bristled ½” brush was used dipping it into the coating mixture once and wiping 

the excess on the edge of the beaker once.  Three strokes were used to apply the 

coatings across the surface of the sample.  The edges of the samples were coated 

by brushing in an upward direction, dipping the brush into the coating mixture twice 

to coat the full 360.   

The samples coated with Siliglide 10 were buffed using Kimberly-Clark® 

Professional KIMCARE® medical wipes 10 minutes into the curing time.  All samples 

Table 47 Content of different sample jars 

Content of jars 

NS 
(no 

sample) 

UT 
(untreated 
samples) 

CS 
(cleaned 
samples) 

PC 
(partially pre-

corroded 
samples) 

Conditioned silica gel 159 g 
~80% RH 

    

SEM tripod clip stand     

Data-logger 
(in 1 jar of each sample group) 

    

Sample     
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were allowed to dry for a minimum of 1 hour to allow for the majority of the solvent to 

evaporate at a speed, similar to in situ application before being re-heated at 50 C 

for a further hour.  Samples were then turned over and the uncoated surface was 

coated with three strokes of fresh coating.  

Once touch-dry the samples and coating masses were recorded.  The masses were 

monitored over 48 hours, after which the second coating was applied.  The drying 

time was largely based on the tests carried out on glass slides.  The masses were 

monitored and the third coating layer was applied after a further 48 hours.  Following 

the application of the 3rd coating layer the mass was monitored and the samples 

were left to dry for a further 48 hours.  Samples were stored in the climatic chamber 

at 20 C, between 30 to 40% RH for 3 weeks to allow them to de-gas (due to the 

solvent retention of Paraloid B72).   

Scribe creep testing discussed in chapter 3 as a method industry uses to test 

adhesion of coatings to the substrate surface was also trialled with 30 samples, 10 

for each clear coating.  Samples were coated and stored as described above for the 

clean coated samples but after the 3 weeks the samples were then scribed using a 

scalpel to cut a 2 cm line through the coating into the steel underneath.  The 

samples were held still using adhesive putty and a metal ruler was used to guide the 

scalpel cut through the coating.  To accelerate any corrosion that may occur at 

these cuts, the previously prepared de-icing salt solution was painted down the cut 

in the coating using a very thin soft bristled brush.  The samples were then allowed 

to begin corroding within the laboratory (18 to 20 °C, 40 to 50% RH).  All samples 

were photographed prior to assessing the reduction in O2 partial pressure and at all 

stages throughout this research.   

 

5.3.2.3 Oxygen Partial Pressure Measurements of Coated Steel Samples  

Frequently within conservation and industry corrosion rates are quantified by 

calculating the surface area of the sample that is covered with corrosion.  This works 

well for uniform corrosion but not where corrosion is localised, for example for pitting 

corrosion, corrosion rates can be underestimated or for filiform corrosion where 

corrosion is superficial but looks aggressive, corrosion rates are overestimated.  

This method cannot be applied to surfaces which are already corroded and as 

coatings within conservation are often used on surfaces which are already corroded 

pre-corroded surfaces will also be utilised in testing the coatings.  Therefore, the 

reduction in the O2 partial pressure within the jars caused by the samples has been 
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used to compare the corrosion rate of the samples.  This method was also 

employed by Shashoua and Matthiesen (2010), however, in this project small 

samples are used and the temperature and RH are controlled.  Historic steel 

samples are used within this project rather than Q panels (analogues).  

The sample group names, number of samples and treatment of samples being 

tested are listed in table 46.  Larger sample numbers provide more reliable results 

with greater precision and power, reducing uncertainty, but sample numbers and 

time limits restricted numbers.  Five samples were therefore used for each coating 

type used on the cleaned surface coated sample.  Ten samples were used for each 

coating type used on the partially pre-corroded samples and for each coating type 

used on the scribed coated samples.  

After photographing the surfaces of the samples, they were placed in jars containing 

O2 sensor spots and the content as listed in table 48 before being sealed and placed 

in the climate chamber as described for the uncoated samples.   

 

The jars remain sealed and O2 levels in the jar were measured on a regular basis for 

the number of days listed in table 46.  Although, the scribed samples were removed 

after 70 days of O2 monitoring, photographed and returned to the chamber for a 

further 148 days, making a total 218 days of assessing the change in O2 partial 

pressure.  

All of the coated samples were returned to their jars, after being taken out to 

photograph at the end of the measurements made for this thesis and an initial 

measurement was made on them being returned to the chamber.  All of the coated 

Table 48 Content of jars containing samples 

Content of 
jars 

PB72 
CS 

CH80 
CS 

S10 
CS 

PB72 
PC 

CH80 
PC 

S10 
PC 

PB72 
SC 

CH80 
SC 

S10 
SC 

Conditioned 
silica gel 159 

g 80% RH 

         

SEM tripod 
clip stand 

         

Datalogger 
(in 1 jar of each 
sample group) 

         

Sample          
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samples are still running within the chamber, with the O2 consumption being 

monitored so that long term degradation of the coating can be considered.   

5.3.3 Compatability of the Clear Coatings with Cromadex Paint 

5.3.3.1 Effect of Cromadex Paint on the Oxygen Sensor Spots 

As with the clear coatings, the Cromadex paints used by the TM were also tested for 

their effect on the O2 sensor spots.  Degreased glass slides were coated and then 

placed into the climate chamber in Ball Mason jars.  The number of layers added to 

the glass slides, finish and layer within a paint system, colour, and the number of 

slides coated/number of jars monitored for the effect on the O2 sensor spots are 

listed in table 49.  

Table 49 Cromadex paint colour, finish and numbers involved in monitoring 

Finish and 
layer within 
paint 
system 

Cromadex 
Code for 

tested 
paints 

Colour 

No. of 
coating 

layers added 
to glass 
slides 

No. of slides 
coated/ No. of 

jars for O2 
monitoring 

No. of jars 
with data 
loggers 
included 

No glass 
slide - 
control 

N/A N/A N/A 1 1 

Cleaned 
glass slide - 
control 

N/A N/A N/A 1 1 

Primer – 
Red Oxide – 
base layer 

2100 Red 1 3 1 

Matt – top 
coat 

222 

Green 2 3 1 

Panzer 
grey 

2 1 1 

Gloss – top 
coat 

222 Green 2 1 1 

Semi-gloss 
– top coat 

222 

Black 2 1 1 

Olive 
green 

2 3 1 

 

5.3.3.2 Compatibility of Cromadex Paint and the Clear Coatings 

Cromadex paint on glass slides affected the O2 sensor spots and so the 

compatibility was only tested visually on glass slides.  Future work may establish the 

length of time these paint need for solvent evaporation or paint controls will need to 

be run alongside sample tests. 
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Glass slides were degreased and air dried, before Kimberly-Clark® Professional 

KIMCARE® medical wipes were used to remove drying marks.  These glass slides 

were then all half coated with Cromadex paint, 3 slides for each of the Cromadex 

paint variations (colour and finish) and left for a minimum of 24 hours to dry.  The 

drying and over-coating times specified on the datasheets for the coatings are listed 

below in table 50.  

Table 50 Drying and over-coating times for Cromadex 2100 Primer and Cromadex 222 
Topcoat as specified by manufacturer’s datasheets 

 Drying times Over-coating times 

Touch dry 
(minutes) 

Through dry 
(hours) 

Minimum 
(minutes) 

maximum 

20 °C 35 °C 20 °C 35 °C 20 °C 35 °C 20 °C 35 °C 

Cromadex 
2100 red 
oxide primer 

25 15 6 5 25 15 Unlimited Unlimited 

Cromadex 
222 top coat 
paint 

25 15 16 12 60 40 Indefinite Indefinite 

 

The clear coatings (PB72, CH80 and S10) were added to the slides half coated in 

each of the different paints, overlapping approximately half of the paint already on 

the slide.  This made it possible to see if the solvent used in the clear coatings 

affected the paint, possibly dissolving some of it and dragging it over the rest of the 

glass slide.  Three layers of the clear coatings were added as with all the other 

stages within this research.  Each layer was given at least 24 hours to dry. The 

glass slides were photographed using the LED lighting system and the fibre optic 

lights normally used with the microscopes, to enhance the visibility of the brush 

strokes of clear coatings on the glass slides. 

At all stages of this methodology every effort was made to control variables and 

create a reproducible method.   
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6 Results and Analysis 

6.1 Field Test Results 

6.1.1 Corrosion Products From Around Scotland - X-Ray Diffraction 

From the samples collected from the 22 different sites around Scotland, 72 samples 

were analysed by XRD and table 51 summarises the frequency with which different 

corrosion products were detected.  The summary has been produced from the data 

in table 52, which summarises the corrosion products detected in the spectra and 

other components when they were detected, in addition to the atmospheric 

environment from which they were collected.   

The short summary in table 51 shows that magnetite/maghemite, which cannot be 

distinguished between by XRD are the most frequent major component of the 

samples tested.  Goethite and lepidocrocite have very similar occurrence 

frequencies. 

Table 51 Summary of the corrosion products detected around Scotland.  (Major 

components  75%, 50 ≤ moderate < 75%, 10% ≤ minor < 50%, trace < 10% of the 
major peak intensity) 

Corrosion products 
detected 

Number of times detected in corrosion samples 

Major Moderate Minor Trace Total 

Magnetite/Maghemite 47 10 10 1 68 

Goethite  36 20 10 2 68 

Lepidocrocite 35 24 8 2 69 

Akaganéite 6 13 27 16? 62? 

NB. The ‘?’ used in the table above indicates a level of uncertainty with the number of times 
trace amounts of akaganéite was detected – 6 samples included trace amounts of 
akaganéite, on a further 10 samples a trace may have been present but the XRD spectra 
was not sufficiently clear to be certain.  

 

Analyses of the spectra also detected some paint and stone components in several 

of the corrosion product samples: 

 Barium sulfate (BaSO4) was detected in samples from Arbroath Abbey (3), 

Dunkeld Cathedral (8), Edzell (1), Newhailes House (2) and Priorwood 

Gardens (5).  It is used as a component of white pigment in paint or in oil 

paint it is used as a filler or to modify consistency. 
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 Hydrocerussite (Pb3(CO3)2(OH)2) was detected at Arbroath Abbey (3), 

Newhailes House (2) and Priorwood Gardens (5).  Hydrocerussite is the 

name of naturally occurring white lead (2PbCO3.Pb(OH)2), but what is 

detected here is most likely white lead which used to be used in paint, but is 

now banned in most countries as it tends to cause lead poisoning. 

 Quartz was detected at Dumfries Midsteeple, and in this case it is likely to 

be a component from the sandstone of the building rather than the paint, 

quartz is also a very common dust component. 

The spectra produced from the powder XRD of the corrosion samples were 

analysed and a summary of the location information and data obtained from the 

XRD spectra is shown in table 52.   

The data collected from the XRD spectra is only semi-quantitative.  Many of the 

spectra have low count rates as shown by the counts per second (CPS) values in 

table 52, and this increases the difficulty of identifying the corrosion products from 

the back ground noise.  Thus trace components are ignored in further analyses.  

Attempts to plot the occurrence of akaganéite against the distance from the 

coastline failed to highlight a clear trend (figure 93) and further highlights the 

complexity of the corrosion mechanisms and the interaction with the environment. 

 

 

 

Figure 93 Distance vs occurrence of akaganéite (minor = 1; moderate = 2; 
major = 3) – higher intensity shadows imply multiple points plotted at the 
same location. 
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6.1.2 Internal Environment Data - The Tank Museum 

The large volume of data received from and collected at the Tank Museum has been 

reduced considerably, to help draw out any patterns.  Without summarising the large 

volume of data key pieces of information would be lost within the mass of data 

points on a graph.  By considering the range in the environmental data it reveals the 

potential for wetting and drying to occur on metal surfaces and initiate corrosion. 

6.1.2.1 Data collected by the Tank Museum (TM) 

Summary tables of data collected and supplied by the TM from Oct 2011 to Aug 

2012 are included in the appendix 10.1.  The maximum, average and minimum 

temperatures (figure 94) and RHs (figure 95) experienced in the visitor areas of the 

museum during this time period are shown below in the bar charts.   

 

The temperature and RH in the Discovery Centre (DC) logged from Oct 2011 to Aug 

2012 with the logger located on the Mark 10 tank had a range of 12.9 °C from 12.9 

to 25.8 °C and 63% from 19 to 82% (table 53).  Table 53 has been included for 

comparison as data was also collected from within the Sherman V Crab also within 

the DC.  Although the average RH over this monitoring period is approximately 53% 

RH, table 53 clearly shows there are periods of time where the RH is above 60% a 

critical humidity level.   

Figure 94 Range in temperature experienced around the Tank Museum between 
Oct 2011 and Aug 2012.  The data logging locations are shown in figure 67 - TH = 
Tamiya Hall; NDH = New Display Hall; DC = Discovery Centre; BSH = British Steel 
Hall.   
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On top of the Firefly in the NDH the temperature range 13.3 °C fell between 15.8 

and 29.1 °C and the RH range 76% fell between 19 and 95%, (table 54).   

Table 54 Summarised data collected in the New Display Hall on the Firefly 

Monitoring 
period 

Start date End Date 
Temperature (°C) Relative Humidity (%) 

Min Ave Max Min Ave Max 

Oct - Nov '11 24/10/2011 16/11/2011 18.0 19.5 22.9 46 60 72 

Nov ’11 – Jan '12 16/11/2011 19/01/2012 15.8 18.8 22.9 26 46 64 

Jan – Mar '12 19/01/2012 05/03/2012 17.3 18.8 23.5 19 38 73 

Mar – May '12 05/03/2012 02/05/2012 16.0 18.6 29.1 25 42 95 

May – Jun '12 02/05/2012 22/06/2012 16.2 20.0 24.3 34 54 93 

Jun – Aug '12 22/06/2012 29/08/2012 19.3 21.8 25.4 41 62 77 

Table 53 Data summary collected in the Discovery Centre on the Mark 10 

Monitoring 
period 

Start date End Date 
Temperature (°C) Relative Humidity (%) 

Min Ave Max Min Ave Max 

Oct - Nov '11 24/10/2011 16/11/2011 16.8 17.8 25.7 47 67 80 

Nov ’11 – Jan '12 16/11/2011 19/01/2012 14.2 17.4 22.8 29 51 70 

Jan – Mar '12 19/01/2012 05/03/2012 12.9 17.4 23.0 19 41 62 

Mar – May '12 05/03/2012 01/05/2012 17.1 18.1 23.0 26 43 60 

May – Jun '12 01/05/2012 22/06/2012 17.1 19.7 25.0 33 54 79 

Jun – Aug '12 22/06/2012 29/08/2012 18.0 20.8 25.8 41 65 82 

Figure 95 Range in RH experienced around the Tank Museum between Oct 2011 
and Aug 2012 
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Between 17th November 2011 and 22nd June 2012 a logger that was placed inside 

the Firefly in the New Display Hall recorded temperatures ranging from 16.4 to 25.4 

°C (9.0 °C) and relative humidities between 17 and 87% (70%) (table 55).  Tables 

54 and 55 have been included as data was also collected inside the Sherman Firefly 

in the NDH over approximately 27 months during this project. 

Table 55 Summary of data by the TM in the New Display Hall inside the Firefly 

Monitoring 
period 

Start date End Date 
Temperature (°C) Relative Humidity (%) 

Min Ave Max Min Ave Max 

Nov ’11 – Jan '12 17/11/2011 19/01/2012 16.9 18.8 23.1 28 46 62 

Jan – Mar '12 19/01/2012 05/03/2012 16.4 18.9 23.0 17 37 57 

Mar – May '12 05/03/2012 01/05/2012 16.6 18.7 25.4 28 42 87 

May – Jun '12 01/05/2012 22/06/2012 16.9 20.0 23.5 40 53 68 

 

The data collected in the various sheds at the TM have been considered separately 

from the data collected in the visitor areas as the data collected covers a more 

extreme range.  The minimum temperatures measured in the sheds all fell below 

zero except the new shed (indicated by the yellow lines).  The maximum value for 

shed 1 extension reached above 40 C (figure 96). 

 

Figure 96 Temperature ranges for the sheds at the TM between Nov 2011 and 
Aug 2012 
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The maximum RH measurements for all of the sheds reached 100% and the 

average values were all above 70% between Nov 2011 and Aug 2012 (figure 97).  

The minimum values all fall below 50% RH.   

 

6.1.2.2 Data collect inside tanks 

The interiors of the Sherman Firefly in the NDH with radiant heating and the 

Sherman V Crab in the unheated DC were monitored for ~27 months.  Figures 98 

and 101 presents the average daily temperatures and RHs of the two data loggers 

in each vehicle combined.  Figures 99 and 102 shows the temperature cycles in the 

two vehicles over the 27 month period and include the maximum and minimum 

values along with the average.  The RH cycle in the two vehicles are shown in 

figures 100 and 103, again the daily maximum and minimum values are included 

with the average.  Horizontal lines are included on the RH graphs to highlight 60, 75 

and 80% RH, important RH values when considering corrosion. 

The average daily data from within the two vehicles differ according to the building 

the vehicles were located in.  The temperature data is compared in figure 104 and 

the RH data is compared in figure 105. 

Figure 97 Range of RH measured within the sheds at the Tank Museum between 

Nov 2011 and Aug 2012 
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Figure 98 Average daily temperature and RH data from the two data loggers 
stored inside the Sherman Firefly in the NDH  

Figure 99 Summary of the temperature data collected by two data loggers stored 

inside the Sherman Firefly in the NDH 
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Figure 100 Summary of the RH data collected by two data loggers stored inside the 

Sherman Firefly in the NDH 

Figure 101 Average daily temperature and RH data from the two data loggers stored 
inside the Sherman V Crab in the DC 



   

 169  

 

 

 

Figure 102 Summary of the temperature data collected by data loggers stored 
inside the Sherman V Crab in the DC 

Figure 103 Summary of the RH data collected by data loggers stored inside the 

Sherman V Crab in the DC 
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Figure 104 Comparison of the average temperature data collected within the two 
different vehicles in different rooms. 

Figure 105 Comparison of the average RH data collected within the two different 
vehicles in different rooms. 
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6.2 Laboratory Results 

6.2.1 Samples Material and Preparation 

6.2.1.1 Metallography 

Microscope images of a small sample cut from the corner of Saracen Armoured 

Personnel Vehicle (APV), which was polished and etched are included in table 56.  

At x50 magnification several images were taken of each area examined, varying the 

focal point for each one, then using Struers’ Scentis imaging software the images 

were aligned, sharpened and layered to produce images with the best focus 

throughout the whole image. 

Table 56 Images of etched steel sample from a Saracen APV – at x5 and x50 
magnification (layered images have been used and where necessary they have been 
aligned, focused and sharpened) 

X5 Magnification - Cross-section near weld X50 Magnification - Etched edge metal 

  

X50 Magnification - Etched metal X50 Magnification - Etched weld area 

  

 

A summary of the data collected of a sample analysed using SEM elemental 

analysis is presented in table 57. 

 

 



   

 172  

Table 57 SEM analysis of Saracen APV Steel (x500) – 3 sites included, results 
are normalised and reported as weight % 

Spectrum No. C Si Cr Mn Fe Ni 

1 2.97 0.43 1.83 0.8 93.13 0.85 

2 2.48 0.39 1.93 0.64 93.67 0.89 

3 2.36 0.39 1.9 0.66 93.84 0.86 

4 2.11 0.4 1.89 0.74 93.93 0.94 

5 1.94 0.4 1.87 0.58 94.15 1.06 

6 1.84 0.45 1.89 0.71 94.07 1.05 

7 2.3 0.41 1.83 0.65 93.86 0.95 

8 2.31 0.39 1.94 0.79 93.61 0.96 

9 2.37 0.42 1.96 0.62 93.63 1 

Mean 2.3 0.41 1.89 0.69 93.77 0.95 

Std. deviation 0.33 0.02 0.05 0.08 0.3 0.08 

Max. 2.97 0.45 1.96 0.8 94.15 1.06 

Min. 1.84 0.39 1.83 0.58 93.13 0.85 

 

6.2.1.2 Prepared Samples 

Substrate Sample Mass  

The cut metal samples were not exact replicas of each other.  A survey of 15 

samples showed each one had a different mass (table 58).  From the average value 

of 107.19 g all of the other masses were within ± 0.94%.  Eight of the masses 

measured fell between 106.5 g and 107.5 g, four were > 107.5 g and three were < 

106.5 g. 

Table 58 Masses and sample labels of 15 samples before treatment 

Sample Mass (g) Sample Mass (g) Sample Mass (g) For all 15 samples 
measured 

NT 1 107.31 SC 1 107.55 CAS 1 106.32 

NT 2 108.20 SC 2 106.70 CAS 2 107.39 

NT 3 106.81 SC 3 107.04 CAS 3 108.03 

NT 4 107.95 SC 4 107.04 CAS 4 107.45 

NT 5 107.01 SC 5 106.98 CAS 5 106.16 

Average 107.46 Average 107.06 Average 107.07 Average 107.19 

Std. Dev 0.60 Std. Dev 0.31 Std. Dev 0.80 Std. Dev 0.59 

Max 108.20 Max 107.55 Max 108.03 Max 108.20 

Min 106.81 Min 106.70 Min 106.16 Min 106.16 

Range 1.39 Range 0.85 Range 1.87 Range 2.04 
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Surface area 

For the purpose of analysing corrosion rates surface area (SA) is a more important 

measurement to consider.  As each sample should have a diameter of 38 mm, 

(radius of 19 mm) and a thickness of 12 mm (figure 106), the SA of both sides can 

be calculated using the equation for the SA of a circle and the overall SA area of a 

sample can be calculated using the equation for the SA of a cylinder.  However, due 

to the variations in the surface profile and indentations at the edges it was not 

possible to measure the SA of the sides or the overall cylinder accurately for each 

sample or work out the error range.  

Therefore, each side of the sample has the following SA: 

SA = r2 = 1134.11 mm2 = 11.34 cm2 

The overall SA of the cylinder samples are: 

SA = 2rh + 2r2 = 3700.8 mm2 = 37.01 cm2 

   

Figure 106 Sample dimensions 

 

Surface Profile 

Imaging using the scanning electron microscope (SEM) reveals the impact of 

surface cleaning and preparation by air abrasion, including the impact on SA (figure 

107). 

38 mm 

12 mm 
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6.2.1.3 Accelerated Corrosion and Chloride Deposition 

Accelerated corrosion was trialled as a method of accelerated aging and producing 

a corrosion layer similar to one which may be produced in situ and in some 

circumstances coated over.  

 

Appearance 

Drop application of Cl- solution did not produce a 

uniform corrosion layer, as the droplets did not 

spread/flow out over the prepared metal surface.  

Post-evaporation rust patches surrounded by a 

ring of salt crystals remained (figure 108).   

Spray application produced a more uniform 

corrosion (figures 109 and 110).  The sides and 

bottoms of the samples were blanked-off with 

masking tape and remained corrosion free 11 days 

after the spray application (table 59). 

Figure 107 SEM SEI images summarising the changes to the surface profile 
during preparation 

Before cleaning After cleaning 

1 mm 

1 mm 1 mm 

500 μm 50 μm 

100 μm 

Figure 108 Sample corroded 
by salt solution applied by 

pipette 
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Post-corrosion the limit of the masking tape around the edge of each sample is 

evident from the appearance of an uncorroded edge. 

 

Table 59 Samples PC1-5 after being sprayed with salt solution and allowed to 
corrode. 

  

Sprayed side of sample PC1 Blanked off side of sample PC1 

  

Sprayed side of sample PC2 Blanked off side of sample PC2 

Figure 109 Trial 1-5 11 days after being 

sprayed with salt solution. 

Figure 110 Trial 1-5 after being allowed 
to corrode for 11 days in the 
laboratory. 
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Sprayed side of sample PC3 Blanked off side of sample PC3 

  

Sprayed side of sample PC4 Blanked off side of sample PC4 

  

Sprayed side of sample PC5 Blanked off side of sample PC5 
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6.2.1.3.1 Chloride Deposited 

Drop application 

The Cl- deposited by 10 drops of deicing salt solution were measured and recorded.  

This method showed some consistency across the samples (figure 111 and table 

60). 

Table 60 Chloride deposited by pipette drop application 

Sample 
Chloride added 
by 10 drops (μg) 

Average chloride 
deposited for 1 drop (μg) 

1 1483 148 

2 2506 251 

3 2300 230 

4 2521 252 

5 2140 214 

Average 2190 2194 

 

  

Spray application results 

Spray application resulted in overall average of 145 g of Cl- deposited for the 10 

repetitions and a standard deviation of 46.4 g.  The range in the mass of chloride 

deposited per spray is visible in figure 112 and table 61. 

 

Figure 111 Chloride deposited by 10 drops of de-icing salt solution 
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Table 61 Chloride deposition by spray application converted to g 

Sample 

Chloride (ppm) in 
11 ml (10 ml of 

wash solution and 
1 ml of buffer) 

Total mass of 
chloride in 

test solution 
(μg) 

Total mass of 
chloride in 15 

ml wash 
solution (μg) 

1 12 129 193 

2 6 70 105 

3 14 157 236 

4 9 100 150 

5 11 121 182 

6 9 97 146 

7 7 75 114 

8 5 59 88 

9 7 73 110 

10 8 84 126 

Average 8.8 96.5 145 

Standard deviation 2.8 31 46.4 

Maximum 14 157 236 

Minimum 5 59 88 

Range 9 98 148 

 

 

Figure 112 Mass of chloride per spray of de-icing salt solution on a sample 
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6.2.2 Oxygen Consumption of Armoured Steel Samples 

The results for O2 consumption of armoured steel samples prior to using the clear 

coatings are presented in figures 113-119.   

 

6.2.2.1 Untreated Samples  

Untreated samples produced a baseline for the corrosion rate of the samples 

without intervention.  These showed a slow rate of corrosion after 163 days (figure 

113).   

Fluctuations in O2 partial pressure in the control jar containing no sample were 

subtracted from samples data points recorded on the same day.  The initial trial of 

the untreated samples included 5 samples, but another untreated sample (UT6) was 

monitored alongside the coated samples in tests and has been included in figure 

114.  UT6 had other control fluctuations subtracted from its data set than UT1-5.   

 

Analysis of figure 114 was carried out using linear trendlines (table 62) to produce 

rate values for the reduction in O2 partial pressure per day. 

Figure 113 Reduction in O2 partial pressure over 163 days caused by 

untreated samples with damaged paint layers etc left on at ≈20 °C, 80% RH.   
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Table 62 Linear trendline analysis of figure 114 - approximation of O2 
consumption rate 

UT Samples Linear Trend-Line Equation 
Rate of reduction in O2 partial 

pressure per day (hPa/day) 

1 y = 0.0382x + 0.9747 0.0382 

2 y = 0.0275x + 0.7675 0.0275 

3 y = 0.0458x + 0.3729 0.0458 

4 y = 0.028x + 0.4096 0.028 

5 y = 0.0329x + 0.7662 0.0329 

6 y = 0.0209x - 0.7669 0.0209 

Average  0.03222 

Maximum 0.0458 

Minimum 0.0209 

 

6.2.2.2 Cleaned and uncoated samples  

The five samples that were cleaned by air abrasion and left uncoated, produced a 

baseline for the corrosion rate of the cleaned but unprotected samples (figure 115).  

The initial trial of the cleaned samples included CS1-5, CS6 was monitored 

Figure 114 Reduction in O2 partial pressure caused by untreated samples cut 
from the Saracen APV door with damaged paint layers left on at 20 °C, 80% RH 
with the fluctuations experienced by the control jar subtracted from each of the 
sample jars.  Samples UT1 to 5 were part of the original trial, but sample 6 was 

tested later and run along side some of the coatings test. 
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alongside the coated samples in tests and therefore, CS6 had different control 

fluctuations subtracted from its data set than CS1-5 (figure 116).  

 

 

Figure 115 Reduction in O2 partial pressure at 20 °C, 80% RH, caused by samples 
air abraded clean.  Fluctuations experienced by the control jar have been 

subtracted from the data for each sample. 

Figure 116 Reduction in O2 partial pressure at 20 °C, 80% RH, caused by samples 
air abraded clean.  The fluctuations experienced by the control jar have been 
subtracted from the results for each of the jars.  Samples CS1 to 5 were part of the 
original trial, but sample 6 was tested later and run along side some of the 
coatings test. 
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Analysis of figure 116 was carried out using linear trend-lines (table 63), but 

quadratic polynomial trend-lines may be more suitable, as a few of the CS samples 

are slightly curved especially sample CS6.  Thus using linear trendline analysis is 

slightly problematic for the CS samples.  For most of the CS samples the majority of 

the data will fit a linear trendline, but the initial 10 days show a faster rate than the 

next 50 days as can be seen in figure 116, this leads to the lines intercepting the y 

axis higher than zero.  Therefore, if CS6 and the other CS samples’ trendlines are 

considered in two parts you can see there is a short-term fast rate of corrosion at the 

start and then a long-term slightly slower rate of corrosion.  As corrosion rates over 

longer time periods are being considered linear trendlines are still useful.  Slowing of 

reaction rates is typical for corrosion as after an initial oxide layer is formed it 

restricts the access to the metal substrate slowing the reduction in O2 concentration. 

Table 63 Linear trendline analyses of figure 116 - approximation of O2 
consumption rate 

CS Samples Linear Trend-Line Equation 
Rate of reduction in O2 partial 

pressure per day (hPa/day) 

1 y = 0.2026x + 1.8381 0.2026 

2 y = 0.4193x + 0.6788 0.4193 

3 y = 0.3173x + 0.6327 0.3173 

4 y = 0.3549x + 1.6894 0.3549 

5 y = 0.3169x + 2.2937 0.3169 

6 y = 0.1866x + 1.5008 0.1866 

Average 0.2996 

Maximum 0.4193 

Minimum 0.1866 

 

6.2.2.3 Partially pre-corroded uncoated samples  

The pre-corroded samples that were cleaned and subjected to accelerated corrosion 

using a de-icing salt solution, were monitored for 48 days (figure 117).  Linear trend-

lines were used to analyse figure 117 (table 64).   

 

6.2.2.4 Comparison of uncoated samples 

Figure 118 compares the results of the three treatment groups presented up to this 

point.  The partially pre-corroded samples (red) corroded the fastest and have the 

largest range, air abraded cleaned samples are green and the untreated samples 
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(navy) corroded the slowest with the smallest range.  Figure 119 compares the 

average O2 partial pressure reduction per day over approximately two months.  

There are no overlaps between the treatment groups.   

Table 64 Linear trendline analyses of figure 117 - approximation of O2 
consumption rate 

PC Samples Linear Trend-Line Equation 
Rate of reduction in O2 partial 

pressure per day (hPa/day) 

1 y = 1.38x + 6.3371 1.38 

2 y = 1.3661x + 5.6845 1.3661 

3 y = 1.0589x + 3.1956 1.0589 

4 y = 1.0189x + 2.7821 1.0189 

5 y = 1.6599x + 5.9292 1.6599 

Average 1.29676 

Maximum  1.6599 

Minimum  1.0189 

 

 

Figure 117 Reduction in O2 partial pressure at 20 °C, 80% RH.  Samples were air 
abraded clean and sprayed on one side with salt solution prior to measuring the 
O2 levels.  The control fluctuations have been subtracted from the results for 

each of the jars. 
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Figure 118 Comparison of the reduction in O2 partial pressure caused by armoured 
steel samples over approximately the first 50 days of monitoring of the uncoated 

samples  

Figure 119 Boxplot comparison of the uncoated samples, comparing the O2 
consumed per day for each sample over the first 50-60 days of measuring.  The 
median values are indicated by the dark line in the middle of the boxes.  The 
top of the boxes indicates the third quartile (75th percentile) and the bottom of 
the boxes represent the first quartile (25th percentile).  The T-bars extend from 
the boxes to 1.5 times the height of the box or if no case falls in that range they 
extend to the minimum or maximum value.  Values which do not fall within the 
range indicated by the T-bars are indicated by circular points or in the case of 

extreme outliers (> 3 times the height of the box) by an asterisk or star. 
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6.2.3 Clear Coatings: Application and Effect on Oxygen Concentration 

Measurements  

6.2.3.1 Physical Appearance of Coatings Applied to Glass Slides 

All the photographs of Paraloid B72 on glass slides show clear brush marks (figures 

120 - 127), although different solvents and concentrations of the coating were used.  

For the majority of the slides the more pronounced area of visible brush strokes is 

down the centre of the slides where there is a slight overlap of the brush strokes 

from the same coating layer.  Highly visible brush strokes are apparent in figures 

125 and 126 after being coated with 10% w/v Paraloid B72 in acetone.  

Cleaned but otherwise untreated glass slides were used for most of the slides 

coated with Paraloid B72.  Air abraded slides were trialled with Paraloid B72 in 

xylene and this reduced the visibility of the marks (figure 127).  

Whether 10 or 15% w/v Paraloid B72 coatings in xylene or acetone they produce a 

gloss finish.  Cosmoloid H80 however, produces a matt finish and in some areas 

small but visible crystals can be seen, creating opaque areas within the coating 

(figure 128).  Brush marks are hardly visible within the coating layer when using 

Cosmoloid H80.  

Images of Siliglide 10 applied to glass slides have not been included in this section 

because once the coating has been buffed during curing, it is invisible to the naked 

eye on a glass slide.  Without buffing little circular droplet marks were formed on the 

glass slides. 
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Figure 120 10% w/v Paraloid B72 in xylene on a glass slide 
using fibre optic lighting.  All glass slides are 2.6 x 7.6 cm 

 
Figure 121 Zoomed area of  
figure 120 

 

 
Figure 122 15% w/v Paraloid B72 in xylene 

 

 
Figure 123 10% w/v Paraloid in acetone 

 
Figure 124 Zoomed areas of  
figure 123 

 

 

Figure 125 Coated with 10% w/v Paraloid in acetone 

 

 

 

 

7.6 cm 

2.6 cm 
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(a) 

 

(b) 

 

Figure 126 Zoomed areas of 10% w/v Paraloid B72 in acetone 

 

 
Figure 127 10% Paraloid B72 in xylene applied to an air abraded slide 

 

 
Figure 128 10% w/v Cosmoloid H80 in white spirit applied to an air abraded slide. 

Opaque area 
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6.2.3.2 Mass of Coating Applied 

6.2.3.2.1 Mass Applied on Glass Slides 

10% w/v PB72 coating mass 

After drying for 48 hours there were slight fluctuations in mass, less than ±0.0002 g, 

this could be considered a significant error (> 5%) due to the low mass of the 

individual coatings (tables 65 and 66).   

 

 

Examining the percentage of the total coating applied in each layer shows there is a 

fairly even increases in the mass of the coating, indicating adding three layers rather 

than one or two of this coating is worthwhile (table 67).   

 

 

Table 65 Mass of each layer of 10% Paraloid B72 in xylene coated on a glass slide 

Paraloid in 
xylene coated 
slides 

Mass of one 
coat  

(g) 

Mass of 
second coats  

(g) 

Mass of third 
coats  

(g) 

Total mass of 
three coats (g) 

1 0.0053 0.0039 0.0089 0.0181 

2 0.0065 0.0052 0.0071 0.0188 

3 0.0065 0.0058 0.0072 0.0195 

4 0.0071 0.0064 0.0091 0.0226 

5 0.0078 0.0096 0.0086 0.0260 

Average 0.0066 0.0062 0.0082 0.0210 

Table 66 Percentage difference of each layer of 10% w/v Paraloid B72 in xylene 
and the total mass in comparison to the highest mass. 

Paraloid in 
xylene 
coated 
slides 

Difference from 
coating layer 
with highest 

mass (%) 

Difference from 
coating layer 
with highest 

mass (%) 

Difference from 
coating layer 
with highest 

mass (%) 

Difference in 
comparison to the 
highest total mass 
with 3 layers (%) 

1 32.05 59.38 2.20 30.38 

2 16.67 45.83 21.98 27.69 

3 16.67 39.58 20.88 25.00 

4 8.97 33.33 0.00 13.08 

5 0.00 0.00 5.49 0.00 

Average 15.4 35.4 9.9 19.2 
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Table 67 Percentage of the total coating mass contained in each layer of 
10% w/v Paraloid B72 in xylene. 

Paraloid in 
xylene coated 

slides 

Percentage 
mass in 1st 

coat (%) 

Percentage 
mass in 2nd 

coat (%) 

Percentage 
mass in 3rd 

coat (%) 

Total 
percentage 

(%) 

1 29.28 21.55 49.17 100.00 

2 34.57 27.66 37.77 100.00 

3 33.33 29.74 36.92 100.00 

4 31.42 28.32 40.27 100.00 

5 30.00 36.92 33.08 100.00 

Average 31.43 29.52 39.05 100.00 

 

The patterns of mass increase for three coats of 10% Paraloid B72 in acetone are 

shown in tables 68 and 69.  

Table 68 Mass of each layer of 10% Paraloid B72 in acetone coated onto slides 

Paraloid in acetone 
coated slides 

Mass of 1st 
coat (g) 

Mass of 2nd 
coat (g) 

Mass of 3rd 
coat (g) 

Total mass of 3 
coats (g) 

1 0.0118 0.006 0.0144 0.0322 

2 0.0097 0.0087 0.0153 0.0337 

3 0.0108 0.008 0.0108 0.0296 

4 0.0124 0.0099 0.0189 0.0412 

5 0.012 0.008 0.0109 0.0309 

Average 0.0113 0.0081 0.0141 0.0335 

 

Table 69 Percentage difference of each layer of 10% w/v Paraloid B72 in acetone 
and the total mass in comparison to the highest mass. 

Paraloid 
in acetone 

coated 
slides 

Difference from 
coating layer with 
highest mass (%) 
for the 1st layer 

Difference from 
coating layer with 
highest mass (%) 
for the 2nd layer 

Difference from 
coating layer with 
highest mass (%) 
for the 3rd layer 

Difference in 
comparison to 

the highest 
total mass with 

3 layers (%) 

1 4.84 39.39 23.81 21.84 

2 21.77 12.12 19.05 18.20 

3 12.90 19.19 42.86 28.16 

4 0.00 0.00 0.00 0.00 

5 3.23 19.19 42.33 25.00 

Average 8.87 18.18 25.40 18.69 
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Examining the percentage of the total coating applied in each layer shows 

approximately a third of the coating is deposited in the first layer, but there is a 

notable drop for the second layer (table 70).  If the first layer was not thoroughly 

dried and the solvent in the second layer may redissolve part of the first layer, whilst 

also reducing how much is deposited.  More is deposited in the third layer than the 

first or second layer, thus adding three layers rather than one or two layers of this 

coating is worthwhile.  Provided the coating layers are thoroughly dried he 

unevenness of the surface after two layers may cause more of the coating to be 

pulled off the brush for the third layer than the first or second layers. 

To compare the mass distribution of Paraloid B72 in the three layers when using the 

different solvents acetone and xylene a boxplot was produced (figure 129). 

Table 70 Percentage of the total coating mass contained in each layer of 10% w/v 
Paraloid B72 in acetone. 

Paraloid in 
acetone coated 

slides 

Percentage 
mass in 1st 

coat (%) 

Percentage 
mass in 2nd 

coat (%) 

Percentage 
mass in 3rd 

coat (%) 

Total 
percentage (%) 

1 36.65 18.63 44.72 100 

2 28.78 25.82 45.40 100 

3 36.49 27.03 36.49 100 

4 30.10 24.03 45.87 100 

5 38.83 25.89 35.28 100 

Average 33.73 24.18 42.09 100 

 

For each of the layers the average mass when acetone is used is higher than when 

xylene was used (table 71).  Thus, the accumulated mass for all three layers is 

higher when acetone is used compared to when xylene is used (figure 129).  The 

average total coating mass when acetone is used is 0.0125 g higher than the 

average total coating mass when xylene is used (table 71). 

Table 71 Difference between using acetone and xylene as the solvent for 
the coating Paraloid B72: comparison of the average mass for each layer  

 Acetone average mass (g) minus xylene average 
mass (g) 

1st layer 0.0047 

2nd layer 0.0019 

3rd layer 0.0059 

Total coating 0.0125 
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10% w/v Cosmoloid H80 coating mass 

The mass and average of 3 coats of Cosmoloid H80 applied to 3 slides is recorded 

in tables 72 and 73.  Without the anomalous value for the first layer for the first slide 

the range for the average total mass would be reduced showing the application 

method is fairly consistent in the mass of coating applied per layer. 

 

Table 72 Mass of each layer of 10% Cosmoloid H80 in white spirit and slide used for 
coatings 

Cosmoloid H80 in white 
spirit coated slides 

Mass of 1st 
coat (g) 

Mass of 2nd 
coat (g) 

Mass of 3rd 
coat (g) 

Total mass of 
3 coats (g) 

1 0.0129 0.0053 0.0064 0.0246 

2 0.0062 0.0086 0.0059 0.0207 

3 0.0047 0.0056 0.0095 0.0198 

Average 0.0079 0.0065 0.0073 0.0217 

Range 0.0082 0.0033 0.0036 0.0048 

Figure 129 Boxplot to compare how the use of acetone and xylene 
solvents affect the average mass distribution of the 10% w/v Paraloid 

B72 coating over three layers and the overall totals of the three layers. 
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Table 73 Percentage difference of each layer of 10% w/v Cosmoloid H80 in white 
spirit and the total mass in comparison to the highest mass. 

Cosmoloid 
H80 in white 
spirit coated 

slides  

Difference from 
coating layer 
with highest 

mass (%) for 1st 
layer 

Difference from 
coating layer 
with highest 

mass (%) for 2nd 
layer 

Difference from 
coating layer 
with highest 

mass (%) for 3rd 
layer 

Difference in 
comparison to 

the highest 
total mass with 

3 layers (%) 

1 0.00 38.37 32.63 0.00 

2 51.94 0.00 37.89 15.85 

3 63.57 34.88 0.00 19.51 

Average 38.76 24.42 23.16 11.79 

 

Table 74 shows each of the 3 slides has a significant jump in % mass increase at 

one of their application stages.   

Table 74 Percentage of the total coating mass contained in each layer of 10% w/v 
Cosmoloid H80 in white spirit. 

Cosmoloid H80 in white 
spirit coated slides 

Percentage 
mass in 1st 

coat (%) 

Percentage 
mass in 2nd 

coat (%) 

Percentage 
mass in 3rd 

coat (%) 

Total 
percentage (%) 

1 52.44 21.54 26.02 100 

2 29.95 41.55 28.50 100 

3 23.74 28.28 47.98 100 

Average 36.41 29.95 33.64 100 

 

The distribution of the mass of the coating, the range and median values are clearly 

illustrated in the boxplot in figure 130.  The median mass for the three layers applied 

to the three slide are all fairly similar and shown by the thick black line within each of 

the boxes on the boxplot, the difference in the range of values for the first layer is 

also clearly visible. 
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6.2.3.2.2 Mass Applied on Ferrous Metal Samples 

Paraloid B72  

The analysis of fifteen samples coated with Paraloid B72 revealed an increase in the 

mean mass of coating with each layer applied and in the standard deviation (table 

75).  

Table 75 Summarised distribution of Paraloid B72 over 3 layers on metal samples 

 Layer 1 Layer 2 Layer 3 Total Coating 

Mean mass (g) 0.0299 0.0314 0.0389 0.1002 

Standard deviation 0.0033 0.0039 0.0104 0.0123 

Percentage of total 
coating layer (%) 

29.84 31.34 38.82 100 

Range (g) 0.0125 0.0200 0.0500 0.0600 

 

The results for the percentage of the total coating applied in each layer on the 

samples are in agreement with the results from the coatings applied to the glass 

slides, with the highest average percentage being applied in the third layer.   

 

Figure 130 Boxplot to compare the average mass distribution of 10 % 
w/v Cosmoloid H80 in white spirit coating over the three layers applied 
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Cosmoloid H80 

Analysis of fifteen samples coated with Cosmoloid H80 showed a fluctuating mean 

mass of coating with each layer applied (table 76). 

Table 76 Summarised distribution of Cosmoloid H80 over 3 layers on metal samples 

 Layer 1 Layer 2 Layer 3 Total Coating 

Mean mass (g) 0.0140 0.0150 0.0128 0.0418 

Standard Deviation 0.0016 0.0032 0.038 0.0050 

Percentage of total 
coating layer (%) 

33.49 35.89 30.62 100 

Range (g) 0.0070 0.0125 0.0150 0.0300 

 

The total masses of the coatings were distributed evenly around the mode with four 

above and four below.  

 

Siliglide 10 

Analysis of fifteen samples coated with Siliglide 10 showed the mean mass of 

coating layers 1 and 3 were close, but the mean mass for layer 2 was significantly 

lower (table 77). 

The range for the masses of Siliglide 10 decreased for each layer, but the total 

coating masses have a bigger range than the first layer, the layer with the largest 

range.  The total coating masses are distributed between 0.0060 and 0.0085 g.  Six 

of the fifteen masses fell between 0.0070 and 0.0075 g, with 0.0072 g being the 

mean value for the total coating masses.  The total masses of the coatings were not 

normally distributed as six lie above and four below the mode.  

Table 77 Summarised distribution of Siliglide 10 over 3 layers on metal samples 

 Layer 1 Layer 2 Layer 3 Total Coating 

Mean mass (g) 0.0030 0.0013 0.0026 0.0072 

Standard Deviation 0.00045 0.00037 0.00029 0.00057 

Percentage of total 
coating mass* (%) 

43.48 18.84 37.68 100 

Range (g) 0.0020 0.0018 0.0014 0.0025 

* Total coating mass used for percentage calculations was 0.0069 g. 
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Comparison of the layers and total masses of the three coatings  

Boxplots have been used to compare the individual layers of the different coatings 

(figures 131-133) and the total coating masses of the different coatings (figure 134).  

There were no overlaps between the masses of the different clear coatings for the 

first and second layers (figures 131 and 132).  However, figure 133 of the third 

layers shows an overlap in the masses of the Paraloid B72 and Cosmoloid H80 

coatings.  An overlaplap of the error bars or outliers indicates that there is not a 

statistically significant difference between the masses of the two types of coatings 

for the layer that overlaps. 

When the total masses of the coatings are considered (figure 134) it is clear that a 

lot less mass is being applied for Siliglide 10 and therefore is likely to be a much 

thinner coating.  Although the mass of Cosmoloid H80 applied is larger than that for 

Siliglide 10, it is notably smaller than that for Paraloid B72.  It also has a slightly 

smaller range than Paraloid B72. 

To confirm that the samples surfaces did not influence the coating mass a boxplot of 

the forty five coated samples discussed above is included where the samples are 

split according to surface preparation, cleaned or partially corroded, as well as the 

coating types (figure 135).  For each coating type five samples had clean surfaces 

prior to coating and ten were partially corroded prior to coating.  A difference that 

can be seen from this boxplot plot is that for the partially corroded samples coated 

with Paraloid B72, there is a much larger range in the coating mass applied to the 

samples.   

 

Figure 131 
Comparison of 
the masses of 
the first layer 
of coatings 
Paraloid B72, 
Cosmoloid H80 
and Siliglide 
10. 
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Figure 132 
Comparison of 
the masses of 
the second 
layers of the 
clear coatings. 

 

Figure 133 
Comparison of 
the masses of 
the third layers 
of the clear 
coatings. 

 

Figure 134 
Comparison of 
the total 
masses of the 
Paraloid B72, 
Cosmoloid H80 
and Siliglide 10 
coatings. 
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6.2.3.3 Impact of Coatings and Solvent Choice on Oxygen Sensors 

The impact of the coating on the O2 measurement system was evaluated by coating 

inert controls (glass slides) and measuring their effect on the O2 partial pressure.  

Paraloid B72 

Xylene used with Paraloid B72 was found to affect the sensor spots performance. 

Five glass slides coated with 10% w/v Paraloid B72 in acetone were tested to see 

the impact of acetone of the O2 sensor spots performance (figure 136).  The effect 

of acetone on the O2 levels is significantly less than the effect xylene had as the 

solvent.  The accuracy of the O2 meter is 2 hPa, a systematic error of 1%, which 

leads to a 2 hPa level of uncertainty in the measurements made.  The data points 

dipping below -2 hPa on figure 136 therefore indicates that more O2 is getting into 

the jars and this may result from the solvent degassing and damaging the rubber 

seal on the lid of the jar.   

 

Figure 135 Comparison of the total masses of the Paraloid B72, 
Cosmoloid H80 and Siliglide 10 coatings separated into coatings that 
were applied to cleaned surfaces and those that were applied to 
partially corroded samples.   
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Fresh de-greased glass slides were coated with Paraloid B72 in acetone, de-gassed 

for 21 days before their influence on the O2 levels was monitored and control 

fluctuations were removed from the coating data, which fluctuated within the ±2 hPa 

error margins for the O2 meter (figure 137).  Therefore, after being allowed to de-gas 

this coating no longer influences the measurements of the O2 concentration. 

 

Figure 136 Reduction in PO2 for 10% w/v Paraloid B72 in acetone not degassed – 3 

layers of coating on glass slides at 20 C, 50% RH – monitored for more than 1 month 

Figure 137 Reduction in PO2 for 10% w/v Paraloid B72 in acetone – 3 layers on glass 

slides after de-gassing for 21 days monitored at 20 C, 50% RH over roughly 3 months  
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Cosmoloid H80 and Siliglide 10 

Cosmoloid H80 in white spirit (figure 138) and Siliglide 10 (figure 139) coatings on 

degreased glass slides caused little change in the O2 partial pressure with control 

fluctuations removed from the data.  The data for Cosmoloid H80 (figure 138) clearly 

fluctuated within 2 hPa as the y-axis only extends from -2 hPa to +2 hPa.  For 

Siliglide 10 (figure 139) although the data points all fall within 2 hPa of each other 

they do fluctuate below -2 hPa.  This may not imply anything or it could suggest that 

the coating has affected the seal on the jar and may get worse with more time. 

 

 

Figure 138 Reduction in PO2 for 10% w/v Cosmoloid H80 in white spirit not degassed 

– 3 layers of coating on 3 glass slides monitored at 20 C, 50% RH for over 2 weeks 

Figure 139 Reduction in PO2 for Siliglide 10 not degassed – 3 layers of coating on 

glass slides at 20 C, 50% RH for approximately 1 month 
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6.2.4 Oxygen Consumption of Cleaned Coated Samples 

Paraloid B72 

The sample data for the cleaned Paraloid B72 coated samples with control 

fluctuations removed is shown in figure 140.  The data can be compared to visual 

results later in the chapter as photographs of an example from this treatment group 

is shown.  

 

 

Cosmoloid H80 

Figure 141 displays the reduction in O2 partial pressure of the jars containing the 

Cosmoloid H80 coated clean samples over the 341 days of exposure at 80% RH 

with the control fluctuations removed. 

 

Siliglide 10 

The reduction of O2 partial pressure in the jars containing clean Siliglide 10 coated 

samples with control fluctuations subtracted are shown in figure 142 for the 341 

days of exposure at 80% RH. 

Figure 140 Reduction in O2 partial pressure over 341 days at 20 °C, 80% RH for 
Paraloid B72 coated clean samples.  Control jar fluctuations have been subtracted 
from the sample data. 
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Figure 141 Reduction in O2 partial pressure over 341 days at 20 °C, 80% RH for 
Cosmoloid H80 coated cleaned samples.  Control jar fluctuations have been 

removed from sample data. 

Figure 142 Reduction in O2 partial pressure over 341 days at 20 °C, 80% RH for 
Siliglide 10 coated cleaned samples.  Control jar data fluctuations have been 
subtracted from the sample data. 
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Comparison of the Coatings on Cleaned Sample  

Figure 143 displays the data collected for all three coatings on cleaned samples as 

well as the data for samples UT6 and CS6; all the data points have the control 

fluctuations subtracted.   

Faint dotted lines are included on figure 143 for samples CS6 (cleaned uncoated) 

and UT6 (untreated), as the data points for UT6 are largely hidden under the coated 

sample data points.  Again it is clear that the trend for sample CS6 is not linear, but 

in the case of figure 143 the lines have only been added to highlight the data for the 

untreated and cleaned uncoated samples compared to the samples that have been 

cleaned and coated.  

 

The boxplot in figure 144 summarises the statistical data the O2 partial pressure 

reduction - the range, maximum, minimum and median values and these values are 

presented in table 78.  The boxplot in figure 145 compares the data for the cleaned 

coated samples to the cleaned uncoated samples to show the impact of coatings on 

reduction in O2 partial pressure. 

 

Figure 143 Comparison of the reduction in O2 partial pressure over 341 days at 20 °C, 
80% RH of 15 cleaned and coated samples – 5 coated with each of the 3 different 
coatings – Paraloid B72 (red), Cosmoloid H80 (yellow) and Siliglide 10 (blue).  Untreated 
sample (UT6 – black) and cleaned uncoated sample (CS6 – purple) are included for 
comparison.  Control jar fluctuations are subtracted from all the data points 
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Table 78 Comparison of the clean coated samples with control data substracted 

 PB72CS CH80CS S10CS 

Maximum 1.43 10.53 11.44 

Minimum -2.30 5.73 6.52 

Range value 3.73 4.80 4.92 

Median -0.91 9.71 8.74 

 

 

Figure 144 Boxplot summarising statistical data for the reduction in O2 

partial pressure for each coating type on cleaned samples after 341 days.  

Figure 145 Boxplot comparing the reduction in O2 partial pressure per 
day for all of the cleaned samples including those not coated 
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6.2.5 Oxygen Consumption of Partially Pre-Corroded Coated Samples  

The cleaned partially corroded samples coated with the clear coating used a larger 

number of samples (10 rather than 5) with each coating as increased variability is 

introduced by spray application of the salt solution.  The control data for these 

samples has not been subtracted from the data points as it was not measured on 

exactly the same day, but it has been included on the graphs.  The data displayed 

for the different coatings can be compared to visual changes later in the chapter as 

photographs of examples of the different treatment groups are shown. 

 

Paraloid B72  

Figure 146 displays the reduction in O2 partial pressure for the cleaned partially pre-

corroded Paraloid B72 coated samples exposed to 80% RH for 342 days.   

 

 

Cosmoloid H80 

The data for the reduction in O2 partial pressure for the Cosmoloid H80 coated 

partially pre-corroded samples exposed to 80% RH 342 days is displayed in figure 

147 along with the control data, measured during the same period but not on the 

same days.  

Figure 146 Reduction in O2 partial pressure over 342 days at 20 °C, 80% RH for 
Paraloid B72 coated partially pre-corroded samples.  The control jar (NS) has 
also been included in this graph to compare the background fluctuations to 

those of jars with samples included. 
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Siliglide 10  

Figure 148 displays the reduction in O2 partial pressure for the jars containing 

Siliglide 10 coated partially pre-corroded samples exposed to 80% RH for 342 day 

and the control fluctuations 

 

Comparison of the Coatings on Partially Corroded Samples  

The statistical data for the final data points collected for the 30 partially pre-corroded 

coated samples (10 of each coating) is summarised in the boxplots displayed in 

figure 149.  Table 79 summarises much of the statistical data shown in figure 149 

providing quick access to the numerical values.   

A graph containing the data collected for all 30 samples over the 342 days has not 

been included.  Graphs comparing the average data for each coating, the data for 

samples CS6, UT6 and control fluctuations have all been included (figures 150 and 

151).  The average data for the partially corroded uncoated samples has also been 

included for comparison.   

 

Figure 147 Reduction in O2 partial pressure over 342 days at 20 °C, 80% RH for 
Cosmoloid H80 coated partially pre-corroded samples.  The control jar (NS) has 
been included in this graph to compare the fluctuations to those of jars with 
samples included. 
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Figure 148 Reduction in O2 partial pressure over 342 days at 20 °C, 80% RH for Siliglide 
10 coated partially pre-corroded samples.  The control jar (NS) has also been included 

in this graph to compare the fluctuations to those of jars with samples included. 

Figure 149 Boxplot summarising statistical data of the reduction in 
O2 partial pressure by partially pre-corroded samples after 342 days, 

divided up into the types of coatings used. 
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Of the two graphs comparing the average trends one focuses on the first 50 days 

(figure 150) due to the speed of the reduction in O2 partial pressure by the partially 

pre-corroded uncoated samples and the other displays the whole 342 days that they 

were exposed to 80% RH (figure 151). 

A further boxplot has been included (figures 152) comparing the reduction in oxygen 

partial pressure per day, the effect of the coating used (or not used), and split 

according to the surface treatment.  

 

Table 79 Comparison of partially pre-corroded coated samples – control data not 
subtracted from data 

 PB72PC CH80PC S10PC 

Maximum 23.61 51.73 23.84 

Minimum 13.05 20.64 7.97 

Range value 10.55 31.09 15.87 

Median 20.60 33.45 12.18 

Figure 150 Comparison of the average reduction in O2 partial pressure of the 
partially corroded samples coated and uncoated over approximately 50 days.  The 
control jar fluctuations, the untreated sample (UT6), and the cleaned uncoated 

sample (CS6) have been included on this graph for comparison. 
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Figure 151 Comparison of the average reduction in O2 partial pressure of the 
partially corroded samples coated and uncoated over approximately 340 days.  
Measuring for the partially corroded uncoated samples was stopped after 48 days.  
The control jar fluctuations, the untreated sample (UT6), and the cleaned uncoated 
sample (CS6) have been included on this graph for comparison. 

Figure 152 Comparison of the reduction in O2 partial pressure 
per day for the different types of coating on different surfaces, 
the control data, and samples UT6 and CS6 have also been 
included. 

Cleaned no 
coating CS6 

Control no 
sample Untreated 

UT6 
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6.2.6 Accelerated Corrosion at a Scribe through the Coatings 

Due to the low rate of reduction in O2 partial pressure all of these samples were 

removed from the chamber after 70 days, photographed and returned to the 

chamber for further monitoring.  Control data has been subtracted from all the 

sample data in this section. 

 

Paraloid B72 

The first 70 days of monitoring the reduction O2 partial pressure are shown in figure 

153 for the scribed Paraloid B72 coated samples.  The additional 148 days are 

shown separately in figure 154 and combined with the initial 70 days in figure 155.   

 

Figure 153 Reduction in O2 partial pressure for clean coated samples with salt 
solution applied to a scribe in the Paraloid B72 coating initially monitored for 

70 days at 20 C, 80% RH.   
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Figure 154 Reduction in O2 partial pressure for clean coated samples with salt 
solution applied to a scribe in the Paraloid B72 coating after returning to the 

chamber for a further 148 days at 20 C, 80% RH. 

Figure 155 Combined data for the reduction in O2 partial pressure for clean 
coated samples with salt solution applied to a scribe in the Paraloid B72 

coating monitored for a total of 218 days at 20 C, 80% RH. 
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Cosmoloid H80 

The first 70 days of monitoring the reduction in partial pressure O2 of the scribed 

Cosmoloid H80 coated samples is shown in figure 156.  Figure 157 shows the data 

collected on returning the samples to the chamber and for figure 158 the data has 

been combined.   

 

 

Figure 156 Reduction in O2 partial pressure for clean coated samples with 
salt solution applied to a scribe in the Cosmoloid H80 coating initially 

monitored for 70 days at 20 C, 80% RH.   

Figure 157 Reduction in O2 partial pressure for clean coated samples with 
salt solution applied to a scribe in the Cosmoloid H80 coating after returning 

to the chamber for a further 148 days at 20 C, 80% RH. 
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Siliglide 10 

The first 70 days of exposure to 80% RH for the scribed Siliglide 10 coated samples 

are displayed in figure 159, followed by another 148 days (figure 160) after 

photographing the samples and returning them to the same exposure conditions.  

The combined data for the 218 days of exposure is displayed in figure 161. 

 

Figure 158 Combined data for the reduction in O2 partial pressure for clean 
coated samples with salt solution applied to a scribe in the Cosmoloid H80 

coating monitored for a total of 218 days at 20 C, 80% RH.   

Figure 159 Reduction in O2 partial pressure for clean coated samples with 
salt solution applied to a scribe in the Siliglide 10 coating initially monitored 

for 70 days at 20 C, 80% RH.   
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Figure 160 Reduction in O2 partial pressure for clean coated samples with 
salt solution applied to a scribe in the Siliglide 10 coating after returning to 

the chamber for a further 148 days at 20 C, 80% RH. 

Figure 161 Combined data for the reduction in O2 partial pressure for clean 
coated samples with salt solution applied to a scribe in the Siliglide 10 coating 

monitored for a total of 218 days at 20 C, 80% RH.   
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6.2.7 Images of samples  

Untreated samples  

Prior to the experiment the two sides of the untreated sample UT1 (figures 162 and 

163) have a different appearance as a small area of green paint is left on side B 

(figure 163).  Figures 164 and 165 show there are no major visual differences to the 

sample after monitoring O2 consumption for 163 days.  Corrosion is light (figures 

166 and 167). 

 

Cleaned samples  

Prior to cleaning the two sides of the untreated sample CS3 (figures 168 and 169) 

have a different appearance, side A (figure 168) has more of the old paint layers 

present than side B (figure 169) that appears to have a surface cover of primer and 

mill scale.  Samples cleaned to bare white-silver metal were left with a few darker 

areas (figures 170 and 171).  Figures 172 and 173 show the differences in the 

corrosion coverage after 65 days exposure at 80% RH.  Higher magnification 

images reveal filiform corrosion is present (figures 174 and 175). 

 

Partially accelerated corroded samples  

The two sides of sample PC1 prior to cleaning (figures 176 and 177) looked much 

the same as those discussed above ahead of cleaning.  Samples were cleaned to 

silver white metal, revealing pits and grooves in the surface (figures 178 and 179).  

Figures 180 and 181 show the sample one week after the application de-icing salt 

solution pre-corroding one side (figure 181).   

After monitoring the O2 consumption of these samples for 48 days both sides of the 

samples had visibly changed (figures 182 and 183).  The corrosion appears 

widespread but more localised than in figure 181.  Higher magnification images of 

both sides of sample PC1 (figures 184 and 185) show the presence of corrosion 

filaments. 
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Figure 162 Untreated (UT) sample 1 side 

A prior to exposure at 80% RH 

 
Figure 163 UT1B prior exposure at 80% 

RH 

 
Figure 164 UT1A after 163 days exposed 

to 80% RH 

 
Figure 165 UT1B after 163 days 

exposed to 80% RH 

 
Figure 166 Zoomed area of UT1A after 

163 days exposed to 80% RH 

 
Figure 167 Zoomed area of UT1B after 

163 days exposed to 80% RH 
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Figure 168 Sample CS3A prior to air 

abrading clean 

 
Figure 169 Sample CS3B prior to air 

abrading clean 

 
Figure 170 CS3A after air abrading before 

exposure at 80% RH 

 
Figure 171 CS3B after air abrading before 

exposure at 80% RH 

 
Figure 172 CS3A after exposure at 80% 

RH for 65 days 

 
Figure 173 CS3B after exposure at 80% 

RH for 65 days 
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Figure 174 Zoomed area of CS3B 

showing the effect of surface profile on 
the corrosion pattern 

 
Figure 175 Zoomed areas of CS3B 

showing a mix of filiform and general 
corrosion 

 

 
Figure 176 Sample PC1A before air 

abrading clean 

 
Figure 177 PC1B prior to air abrading 

clean 

 
Figure 178 PC1A after cleaning by air 

abrasion 

 
Figure 179 PC1B after cleaning by air 

abrasion 
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Figure 180 PC1A prior to exposure at 

80% RH 

 
Figure 181 PC1B after partially corroding 
with salt spray prior to exposure at 80% 

RH 

 
Figure 182 PC1A after exposure at 80% 

RH for 48 days 

 
Figure 183 PC1B change in corrosion 
after exposure at 80% RH for 48 days 

 
Figure 184 Zoomed area of corrosion on 
PC1A showing filiform corrosion and a 

small area of light coloured general 
corrosion 

 
Figure 185 Zoomed area of PC1B salt-

spray corroded side – clear variations in 
the colour of the corrosion products 

formed 
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6.2.8 Images of cleaned, coated samples  

Coated with Paraloid B72 

Prior to treatment all samples including sample PB72CS5 looked similar to the 

samples above, thus photographs prior to cleaning are no longer included.  After 

cleaning to the bare metal pits and grooves were visible in the smooth surfaces 

(figures 186 and 187).   

After application of Paraloid B72 there is a darkening in the colour of the sample and 

a gloss finish results with bubble formation (figures 188 and 189).  After 341 days at 

80% RH the sample appears unchanged (figures 190 and 191).  Higher 

magnification images (figures 192 and 193) reveal very limited corrosion located at 

the edges.   

 

Coated with Cosmoloid H80 

After cleaning by air abrasion samples including sample CH80CS5 looked similar to 

those previously cleaned by air abrasion (figures 194 and 195).  Cosmoloid H80 

darkened the surface (figures 196 and 197) and the collection of wax in pits or next 

to ridges produces opaqueness (white and waxy).  Exposure at 80% RH for 341 

days caused large areas of orange-brown corrosion (figures 198 and 199).  Higher 

magnification images of the corrosion are shown in figures 200 and 201.   

 

Coated with Siliglide 10 

After air abrading the samples (figures 202 and 203) bare white-silver metal was 

revealed.  Siliglide 10 darkened the surfaces fractionally (figures 204 and 205), 

producing a sheen and slight rubbery feel.  Exposure to 80% RH for 341 days 

produced yellow/orange-brown corrosion focused on one-side (figures 206 and 

207).  Higher magnification images (figures 208 and 209) revealed darker powdery 

areas of corrosion protruding through the coating.   
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Figure 186 PB72CS5A cleaned by air 

abrasion 

 
Figure 187 PB72CS5B cleaned by air 

abrasion 

 
Figure 188 PB72CS5A after coating with 3 
layers of 10% w/v Paraloid B72 in acetone 

before O2 monitoring 

 
Figure 189 PB72CS5B after coating with 3 
layers of 10% w/v Paraloid B72 in acetone 

before O2 monitoring 

 
Figure 190 PB72CS5A after O2 monitoring 
for 341 days – minimal corrosion visible 

 
Figure 191 PB72CS5B after O2 monitoring 
for 341 days – minimal corrosion visible 
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Figure 192 Zoomed area of PB72CS5A 
showing the corrosion formed and the 
gloss of the coating 

 
Figure 193 Zoomed area of PB72CS5B 
highlighting corrosion patches and 
bubbles within the coating. 

 

 
Figure 194 CH80CS5A cleaned by air 

abrasion 

 
Figure 195 CH80CS5B cleaned by air 

abrasion 

 
Figure 196 CH80CS5A after coating with 3 
layers of 10% w/v Cosmoloid H80 in white 

spirit before O2 monitoring 

 
Figure 197 CH80CS5B after coating with 3 
layers of 10% w/v Cosmoloid H80 in white 

spirit before O2 monitoring 
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Figure 198 CH80CS5A after monitoring O2 

levels for 341 days 

 
Figure 199 CH80CS5A after monitoring O2 

levels for 341 days 

 
Figure 200 Zoomed area of general 

corrosion on sample CH80CS5A 

 
Figure 201 Zoomed area of general 

corrosion yellow-brown in colour on 
sample CH80CS5B 

 

 
Figure 202 S10CS5A cleaned by air 

abrasion 

 
Figure 203 S10CS5B cleaned by air 

abrasion 
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Figure 204 S10CS5A after being coated 
with Siliglide 10 prior to monitoring O2 

consumption 

 
Figure 205 S10CS5B after being coated 
with Siliglide 10 prior to monitoring O2 

consumption 

 
Figure 206 S10CS5A after monitoring O2 

levels for 341 days 

 
Figure 207 S10CS5B after monitoring O2 

levels for 341 days 

 
Figure 208 Zoomed area of S10CS5A 

displaying mainly yellow-brown 
corrosion 

 
Figure 209 Zoomed area of corrosion on 

sample S10CS5B 
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6.2.9 Images of partially pre-corroded coated samples 

For all further analysis of visual changes of the samples only the surface which is 

subject to additional treatments shall be focused on below, starting with the image of 

the sample post air abrasion preparation. 

 

Coated with Paraloid B72 

Cleaning by air abrasion to the silver metal reveals small pits in sample PB72PC1B 

(figure 210).  Uniform orange-brown corrosion developed over the pre-corroded 

surface after exposure at 50% RH for 8 days (figure 211).  Application of Paraloid 

B72 darkened the colour of the sample and the corrosion on the surface and a gloss 

finish resulted.  The coating was de-gassed (figure 212) prior to exposure at 80% 

RH for 342 days.  After the exposure at high RH the corrosion had spread (figure 

213).  A higher magnification image (figure 214) revealed filiform corrosion at the 

edge of the metal sample, uneven corrosion and bubbles in the coating.  

 

Coated with Cosmoloid H80 

Only a few small pits were visible in the surface of the bare silver metal after 

cleaning sample CH80PC2B by air abrasion (figure 215).  Uniform brown corrosion 

developed over the sprayed surface after the sample had been exposed to 50% RH 

for 8 days (figure 216).  Application of Cosmoloid H80 and allowing it to de-gas 

resulted in a matt-greyed surface finish (figure 217).  After 342 days exposure at 

80% RH the corrosion had spread (figure 218).  The higher magnification image 

(figure 219) revealed the powdery corrosion and a few small flakes of loose wax 

coating.  

 

Coated with Siliglide 10 

Once air abraded small pits were visible in the surface sample S10PC6 side B 

(figure 220). Uniform brown corrosion developed on the sprayed surface over 8 days 

(figure 221).  After Siliglide 10 was applied the corrosion colour was less intense 

(figure 222).  The corrosion whilst exposed to 80% RH for 342 days (figure 223).  A 

higher magnification image (figure 224) revealed powdery corrosion on the surface. 
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Figure 210 PB72PC1B – top side after 

cleaning by air abrasion 

 
Figure 211 PB72PC1B – top side sprayed 

with salt solution, after corroding for 8 
days 

 
Figure 212 PB72PC1B – top side cleaned, 

corroded and coated 

 
Figure 213 PB72PC1B after exposure at 

80% RH for 342 days 

 
Figure 214 Zoomed area of PB72PC1B - 

filiform corrosion at the edge and 
bubbles in the coating. 
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Figure 215  CH80PC sample 2 side B – 
top side after cleaning by air abrasion 

 
Figure 216 CH80PC2B – top side sprayed 
with salt solution and allowed to corrode 

for 8 days 

 
Figure 217 CH80PC2B – top side cleaned, 

accelerated corroded and then coated 

 
Figure 218 CH80PC2B after monitoring O2 

levels for 342 days 

 
Figure 219 Zoomed area of CH80PC2B 

with loose corrosion and small fragments 
of detaching coating 
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Figure 220 S10PC6B – top side after 

cleaning by air abrasion 

 
Figure 221 S10PC6B – top side sprayed 
with salt solution, after corroding for 8 

days 

 
Figure 222 S10PC6B – coating applied 
over the corrosion caused by sprayed 

salt solution 

 
Figure 223 S10PC6B after exposure at 

80% RH for 342 days 

 
Figure 224 Zoomed area of S10PC6B 

revealing powdery corrosion 
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6.2.10 Images of accelerated corroded scribed coated samples 

The images in this section start with the clean coated samples once they have had a 

2 cm scribe and salt water solution applied, and the scribe has been allow to begin 

corroding.  

 

Coated with Paraloid B72 

In addition to the sample appearing darker with the clear gloss coating applied, 

bubbles were also trapped in the coating layers on sample PB72SC1B (figure 225).  

Prior to exposing the the sample to 80% RH only a faint hint of yellow/orange-brown 

corrosion was visible at one end of the scribe.  After exposure at 80% RH for 70 

days, filaments of corrosion largely originating from the scribe were visible (figure 

226).  Following a further 148 days exposure at 80% RH (figure 227), small changes 

between figure 226 and figure 227 are visible.  A higher magnification image of the 

scribed area (figure 228), shows aggressive filiform corrosion, with filaments which 

appear to collide and pass over other filaments in some areas. 

 

Coated with Cosmoloid H80 

Sample CH80SC5A with the coating applied has a clear matt finish with small 

opaque areas (figure 229).  Prior to exposure at 80% RH there was only a hint of 

yellow-brown corrosion in the scribe.  After exposure at 80% RH for 70 days, 

orange-brown corrosion was focused but not limited to the area around the scribe 

(figure 230).  Exposure at 80% RH for a further 148 days (figure 231) resulted in 

minimal change.  A higher magnification image (figure 232) of the scribed area 

reveals uniform corrosion with friable corrosion products forming at one end. 

 

Coated with Siliglide 10 

The coating on sample S10SC4B (figure 233) with the exception of the slight sheen 

it provides, is hard to detect.  Prior to exposing the sample to 80% RH the corrosion 

in the scribe is hardly detectable.  After 70 days of exposure to 80% RH corrosion 

can clearly be seen in the scribe but not in other areas of the sample (figure 234).  

Following a further 148 days of exposure to 80% RH (figure 235), the amount of 

powdery corrosion product at one end of the scribe had increased.  The higher 

magnification image of the scribed area (figure 236) focuses on this powdery 

corrosion product formed at one end of the scribe.  
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Figure 225 PB72 coated, scribed sample 
1 side B with salt solution painted down 

the scribe in the coating to accelerate 
corrosion 

 
Figure 226 PB72SC1B after monitoring O2 

levels for 70 days, clearly showing 
filiform corrosion 

 
Figure 227 PB72SC1B after monitoring O2 
levels for a further 148 days – 218 days in 

total 

 
Figure 228 Zoomed area around the 

scribe on PB72SC1B 

 



   

 230  

 
Figure 229 CH80 coated, scribed sample 
5 side A with salt solution painted down 

the scribe in the coating to accelerate 
corrosion 

 
Figure 230 CH80SC5A after monitoring O2 
levels for 70 days, showing yellow-brown 

general corrosion 

 
Figure 231 CH80SC5A after monitoring O2 
levels for a further 148 days – 218 days in 

total 

 
Figure 232 Zoomed area around the 

scribe on CH80SC5A 
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Figure 233 S10 coated, scribed sample 4 
side A with salt solution painted down 
the scribe in the coating to accelerate 

corrosion 

 
Figure 234 S10SC4A after monitoring O2 
levels for 70 days, with corrosion mainly 

focused in the scribe area. 

 
Figure 235 S10SC4A after monitoring O2 

levels for a further 148 days – 218 days in 
total 

 
Figure 236 Zoomed area around the 

scribe on S10SC4A 
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6.2.11 Compatability of Coatings with Cromadex Paints 

The crude initial compatibility tests carried out on glass slides are included below 

(figures 237 to 242).  The clear coatings do not all behave in exactly the same with 

each of the paints.  For the different Cromadex paint samples tested Paraloid B72 

caused the most change to the dried paint layers.  Siliglide 10 also causes some 

change to the different paints, but Cosmoloid H80 did not appear to change the 

paint itself.   

Paraloid B72 causes lifting of the Cromadex paints in figures 237, 238 and 242 due 

to solvent attack.  Cosmoloid H80 leaves behind a wax layer, with visible 

microcrystalline particles in most cases where it has been used.  These 

microcrystalline particles cause a greying effect where they overlap the paint layers 

which is visible in figure 237b.  Siliglide 10 causes some lifting of the paint layers in 

figures 238c and 239c.   

Siligide 10 damaged a little more of the red oxide primer coating than Paraloid B72 

when the coatings were applied.  Cosmoloid H80’s only impact appears to be the 

slightly visible thin wax layer (figure 238).  The most severe attack by one of the 

clear coatings is seen in figure 239a.   

Of the three slides painted with matt green paint (figure 240), Siliglide 10 has the 

neatest appearance but a small amount of paint was removed.  Paraloid B72 in 

acetone caused lifting of the paint and left visible brush marks.  Cosmoloid H80 left 

a hazy wax film over both the paint it overlaps and on the glass slide in this case. 

The semi-gloss green paint received very little damage from any of the clear 

coatings (figure 241).  However, brush marks are visible under fibre optic lighting for 

Paraloid B72 (figure 241 aii), pale wax layers were visible with Cosmoloid H80 

(figure 241b) and faint markings where the brush strokes were started when 

applying Siliglide 10 are also visible (figure 241c). 

Dust particles adhered to the paint layers for all three slides coated with green gloss 

paint (figure 242).  Although dust particles trapped in the other paint samples used 

the most noticeable, other than the green gloss is the semi-gloss green paint slides 

(figure 241). 



   

 233  

i) Main LED lights ii) Fibre optic lights 

a) Overlapped with 10% w/v Paraloid B72 in acetone 

i) Main LED lights ii) Fibre optic lights 

b) Overlapped with 10% w/v Cosmoloid H80 in white spirit 

i) Main LED lights ii) Fibre optic lights 

c) Overlapped with Siliglide 10 

Figure 237 Panzer grey - Cromadex paint 
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i) Main LED lights ii) Fibre optic lights 

a) Overlapped with 10% w/v Paraloid B72 in acetone 

i) Main LED lights ii) Fibre optic lights 

b) Overlapped with 10% w/v Cosmoloid H80 in white spirit 

i) Main LED lights ii) Fibre optic lights 

c) Overlapped with Siliglide 10 

Figure 238 Red oxide - Cromadex paint 
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i) Main LED lights ii) Fibre optic lights 

a) Overlapped with 10% w/v Paraloid B72 in acetone 

i) Main LED lights ii) Fibre optic lights 

b) Overlapped with 10% w/v Cosmoloid H80 in white spirit 

i) Main LED lights ii) Fibre optic lights 

c) Overlapped with Siliglide 10 

Figure 239 Semi-gloss black - Cromadex paint 
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i) Main LED lights ii) Fibre optic lights 

a) Overlapped with 10% w/v Paraloid B72 in acetone 

i) Main LED lights ii) Fibre optic lights 

b) Overlapped with 10% w/v Cosmoloid H80 in white spirit 

i) Main LED lights ii) Fibre optic lights 

c) Overlapped with Siliglide 10 

Figure 240 Matt green - Cromadex paint 
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i) Main LED lights ii) Fibre optic lights 

a) Overlapped with 10% w/v Paraloid B72 in acetone 

i) Main LED lights ii) Fibre optic lights 

b) Overlapped with 10% w/v Cosmoloid H80 in white spirit 

i) Main LED lights ii) Fibre optic lights 

c) Overlapped with Siliglide 10 

Figure 241 Semi-gloss green - Cromadex paint 
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i) Main LED lights ii) Fibre optic lights 

a) Overlapped with 10% w/v Paraloid B72 in acetone 

i) Main LED lights ii) Fibre optic lights 

b) Overlapped with 10% w/v Cosmoloid H80 in white spirit 

i) Main LED lights ii) Fibre optic lights 

c) Overlapped with Siliglide 10 

Figure 242 Green gloss - Cromadex paint 
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7 Discussion 

7.1 Background field testing  

7.1.1 Corrosion products 

Analyses of the corrosion samples collected from historic sites around Scotland 

show agreement with data from Nasu et al. (2002), Dillmann et al. (2004) and Hœrlé 

et al. (2004).  The main phases constituting the corrosion layers formed on the 

wrought iron or mild steel exposed to atmospheric corrosion are either amorphous 

or crystallised iron oxyhydroxides (-FeOOH, -FeOOH, -FeOOH (linked to Cl- in 

the environment)) and iron oxides (Fe3O4).  

As the samples of corrosion were collected from historic sites the high percentage of 

magnetite detected is unsurprising.  The older the rust the more magnetite and/or 

goethite are expected to be formed to the detriment of lepidocrocite.  This is in 

agreement with the electrochemical processes connected to the wet-dry cycles as 

lepidocrocite is an electrochemically active phase in the atmospheric corrosion 

process and semi-conducting (Dillmann et al., 2004).  Magnetite is mainly 

characterised by its high density and thermodynamic stability and is considered 

protective despite being a good conductor (Dillmann et al., 2004; Hœrlé et al., 

2004).   

The layers within the corrosion samples have not been examined as cross-sections, 

but assumptions and observations can be made about the locations of the corrosion 

products within the corrosion layers.  As discussed in 2.4 table 5 magnetite is 

usually detected in the inner dense part of the corrosion adhering to steel surfaces; 

lepidocrocite is found in the outer loose crystalline mass; goethite has been reported 

in both the inner and outer layers; and akaganéite although generally distributed in 

the surface region of the rust also appears in the inner layers where water deposits 

containing Cl- ions penetrate through cracks (Dillmann et al., 2004; Ma et al., 2009; 

de la Fuente et al., 2011; Morcillo et al., 2011).  

Asami and Kikuchi (2003) found that the formation of magnetite (or Fe3-xO4) and 

akaganéite are in competition with each other, with akaganéite preferentially formed 

where Cl- ions are present.  They found akaganéite to be scarce at thin parts of rust 

layers, usually existing in the thick parts of rust layers.  In support of this model, 

where akaganéite was a major component in the samples tested magnetite dropped 

to either a moderate or smaller component of the sample, with the exception of a 
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sample collected and donated by the Scapa Flow Visitor Centre and Museum 

(SFVCM).  Where akaganéite was a moderate component, magnetite frequently 

remained a major component or was found as a moderate component, with the 

exception of Dunbar castle where it was a minor component in sample 2. 

Akaganéite was not a common major component of the samples tested, as it was a 

major component in only 6 out of the 72 samples tested (tables 51 and 52).  Four of 

these samples with akaganéite as the major component are located ≤ 200 m from 

the coastline, but two of the samples are located in a pedestrian area in a town 

centre (figure 93).  Although the samples collected from the town centre are close to 

a river (< 300 m) they are over 20 km from the coast.  A more likely cause for the Cl- 

ions promoting the formation of akaganéite is de-icing salt, most likely used for 

health and safety reasons on the pedestrian area of the town centre.  This fits with 

Cook (2005) in the US, who confirmed that NaCl is more prevalent in the 

environment from the use of road de-icing salt, even though it is usually associated 

with marine environments. At the coastal site of Broughty Castle there was a 

surprising lack of akaganéite, appearing only as a possible trace component.  This 

may be due to the sheltered position of the ferrous metal, with the majority of the Cl- 

ions getting blown into the walls of the castle and the smaller particles getting lifted 

up by the wind and being carried further inland.  Similar reasons can be used to 

account for akaganéite only being a minor component at Dunstaffnage castle and 

chapel.  The metal work at the castle was inside the outer walls and the chapel is 

hidden within woodland and medium to large salt aerosols are known to get 

deposited on trees and man-made structures (Cole et al., 2003b), sheltering the 

metal work from the most of the Cl- ions. 

These results indicate that with the large variation in terrain (shelter) and the use of 

de-icing salt, predicting the range of corrosion products and mechanisms is difficult.  

Within the UK this is an area which may require further work, perhaps similar to the 

model outlined by Cole and summarised in 2.5 figure 14 but this is used for 

quantitative corrosion rates prediction and not complex corrosion mechanisms and 

predicting which corrosion products may be formed.  However, with more 

consideration it may be possible in the future to quantify the influences environment 

factors deliver and predict which corrosion products might be present.  In the data 

here where Cl- was expected to occur due to maritime contexts, it was often absent. 
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7.1.2 Environments at the Tank Museum 

The data supplied by the TM and summarised in the results section highlights the 

vast range in the temperature and RH experienced in different areas of the site. 

 

Internal and sheltered environments  

The data in the results section has been considered in terms of areas accessed by 

the general public and shed/workshop areas.   

In the public areas the temperature averaged between 17.5 and 20 C, but the 

Tamiya Hall experienced the largest temperature range, ≥ 18 C (12 to > 30 C).  

The RH average was roughly 49 – 54%, below the first critical humidity level for 

ferrous metal corrosion.  The maximum RH values experienced were all > 75-80%, 

the second critical humidity level for ferrous metal corrosion that leads to a rapid 

increase in the corrosion rates.  The maximum RH in the NDH was the highest 

experienced at > 90%.  The radiant heating employed in this hall prevents metal 

corrosion by keeping the metal temperature above its dew point, stopping 

condensation forming on its surface.  However, other materials within the vehicles 

are not safe at this RH, even with the radiant heating, thus additional methods of 

reducing the RH should be employed. 

The sheds experienced a wider range of conditions over the year, and except for the 

new shed, minimum temperatures dropped below -5 C during the winter.  The 

maximum (> 40 C) and minimum temperatures were recorded in the shed 

extension.  The minimum RHs were sufficiently low that they would not likely initiate 

corrosion.  The average RHs were > 70% throughout out the year (mostly > 75%) so 

corrosion was likely to be fast as the RHs are around the second critical humidity 

level.  The maximum RHs for the sheds are maintained at 100% RH or close.  

Although vehicles are not likely to be stored in the sheds for long periods, being 

moved into the sheds only for maintenance and repair, these conditions are still not 

ideal for ferrous metal.  Any metal that has the paint layers removed, should be 

coated soon after.  They should not be left uncoated in these conditions for a long 

period of time. 

The highest and lowest temperatures over the period of the data supplied by the TM 

were recorded in Shed 1 extension.  The lowest RH was recorded in the Tamiya 

Hall at the Sentry Post, but the highest RH 100% was experienced in all the sheds 

over the year analysed.  With the large range of temperature and RH conditions 

experienced throughout the TM it is highly likely that atmospheric wet-dry cyclic 
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corrosion takes place and so it is essential that the vehicles are coated for 

protection.  No data has been analysed for the VCC (Vehicle Conservation Centre) 

at the TM, so it has not been discussed, but a large number of the TM’s vehicles are 

now stored in here and the conditions should be evaluated.  

Both the NDH and VCC are beneficial additions to the Tank Museum in terms of 

protection against corrosion.  The NDH employs radiant heating stopping 

condensation forming on the metal surfaces and the VCC houses a lot of vehicles 

which were previously outdoors significantly reducing the TOW the vehicles 

experience.  In both of these cases the initiation of corrosion on vehicles will have 

been reduced.  Housing the vehicles indoors in the VCC also makes it almost 

impossible for Cl- ions to induce corrosion. 

 

Environments within armoured vehicles  

The temperature and RH data logged for the internal environments of the two 

armoured vehicles show annual cycles.  The cycles of the temperature and humidity 

did not directly coincide with each other.  The temperature peaked at the end of 

July, but RH peaked at the start of October.  RH is known to change when the 

temperature changes as warm air can hold more water vapour than cool air, thus 

RH decreases when temperature rises.  This relationship was not reflected in the 

graphs illustrating the data collected (figures 98 and 101).  The fluctuations in RH 

were much larger than those apparent in the temperature data, thus the two trends 

are not easily compared.   

A rise in temperature would normally reduce the RH unless more moisture was 

added to the atmosphere.  As the rise in temperature begins in June and peaks at 

the end of July when schools often put on trips and the school holidays begin, the 

number of visitors to the museum is also likely to increase.  With each visitor 

exhaling moisture into the atmosphere the RH does not drop but instead as the 

temperature begins to fall the RH increases as the air is now holding more moisture 

than before the temperature rise.  This may explain the temperature and RH 

relationship experienced within the armoured vehicles at the museum.  Also the 

external climate was not recorded and may have been unduly wet.  Summer RH can 

be very high. 

The annual cycles in temperature are very clear, but the daily maximum and 

minimum values may result from daily fluctuations due to the number of staff and 



   

 243  

tourists present or the diurnal cycle.  The same might be said for the RH annual and 

diurnal cycles, although they are less defined than for the temperature. 

The baseline temperature inside the Firefly in the NDH appears to be approximately 

17 °C, which rises to approximately 26 C once a year.  The RH however shows a 

lot more fluctuation, with the lowest RH falling between 20 and 30% and the highest 

reaching between 75 to 80%.  Using a dew point calculator (www.dpcalc.org) it is 

clear that these temperature and RH ranges would normally lead to corrosion of 

steel.  With radiant heating however, the metal should be kept at a temperature 

higher than the dew point temperature, preventing moisture from forming on the 

surface and initiating corrosion of the metal.  The radiant heating does not prevent 

the other materials inside the hull from corroding. 

The data loggers inside the Sherman V Crab in the DC showed larger variations in 

both the temperature and RH data collected compared to loggers in the Firefly in the 

NDH.  In this case the baseline temperature is not so defined but roughly ranges 

between 17 and 20 C, but drops as low as 12 C at points and has yearly 

maximums of 26 to 27 C.  The RH in the Sherman V Crab fluctuates even more 

than in the Firefly, with the lowest almost reaching 20% and the highest almost 

reaching 90%.  Without the radiant heating that is employed in the NDH it is clear 

from this data that the vehicles in the DC are likely to experience aggressive 

atmospheric corrosion at times.  Condensation will form on the metal surfaces and 

wet-dry cyclic corrosion will take place.  At several point during the 27 month period 

the corrosion rate will have increased as the RH reached well over the 75 to 80% 

critical humidity level (Syed, 2006). 

The environmental data clearly shows the challenges faced by the TM in preventing 

or reducing corrosion taking place whilst displaying, storing or maintaining the 

vehicles for future generations. 

http://www.dpcalc.org/
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7.2 Laboratory Data 

7.2.1 Sample Material 

Little is known about the sample material aside from the fact it was supplied by the 

TM and was once a back door of a Saracen APV.  Frequently within the heritage 

sector there is limited information about the material being worked with.  In this case 

it was possible to cut samples and analyse it further. 

 

Metallography 

Images of the metal etched particularly those in of the main body metal show that 

the microstructure can be described as martensitic.  Martensite transformation is 

associated with high strains and so within austenite grains martensite forms in small 

plates or laths to provide an acicular structure (ASTM, 2009).  There is a clear 

difference in the crystal structure of the metal in areas where the metal was welded.  

This is shown both in the first image at x5 magnification (table 56) and the last 

image shown for x50 magnification.  The heat applied to many areas of the metal 

door to weld clearly affects the metallic structure. 

Elemental analysis of a metal sample using the SEM revealed spectrum no. 7 listed 

in table 57 as close to the values for the mean weight percentage (%).  The values 

for carbon and silicon are probably influenced by the use of silicon carbide paper for 

polishing, but this had a smaller impact than using Al2O3 for air abrasion, therefore 

the weight % for carbon is likely to be below 2%.  The steel used for the Saracen 

APV is most likely a low-alloy steel as it contain < 2% alloying elements, which are 

often Cu, Cr, Al, Mo and Ni.  In the case of this steel small amounts of Cr and Ni 

may have been used to improve mechanical properties and corrosion resistance. 

Research into the steel used for the Saracen APV has had limited success, however 

the FV603 Saracen hull is described as being made of all-welded steel (Royal 

Airforce Museum, 2013) and fully-armoured, with Rolled Homogeneous Armour 

(RHA) (Military Factory, 2015).   

 

7.2.2 Sample size and surface preparation 

The samples stamped out of the Saracen APV door are clearly not uniform with 

slight variances ± 0.94% in the mass of the individual samples from the mean value 

of 106.94 g.  The mass of each sample is an easy method of testing how 
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comparable the samples are size wise.  It does not provide much valuable 

information when considering the corrosion rates of the samples, but can be used to 

calculate the density of the steel combined with the size measurements.  The 

density using the average mass and specified sample dimensions can be calculated 

as 7.8576 g/cm3.  Although the density may not reveal the exact identity of the steel 

it can rule out other ferrous metals e.g. pure iron (7.87 g/cm3) (ASTM, 2009), 

wrought iron (7.7 g/cm3), grey cast iron (6.9 to 7.35 g/cm3), SS type 304 (7.9 g/cm3) 

and type 316 (8.0 g/cm3), but 1.25Cr-0.5Mo steel (7.86 g/cm3) (Bauccio and 

American Society for Metals, 1993) for example has a similar density. 

The sample size measurements provide an easy method of calculating the surface 

areas of the samples, which is more relevant when considering corrosion rates of 

the samples per surface area (SA).  The general SA however, does not take into 

account variations in the SA caused by pits and grooves in the surface of the metal 

or edges which were not cut cleanly by the stamping method or the peaks and 

troughs formed in the surface by air abrasion.  Preparation of the surface by air 

abrasion ready for coating, providing a keyed surface (figure 107) clearly increases 

the SA of the samples but this is not easily calculated. 

 

Accelerated corroded samples 

Of the two methods trialled as accelerated corrosion methods, the spray application 

method produced a more evenly distributed corrosion layer.  Excess salt was visible 

after the drop application method as a ring of salt crystals was left after the 

individual drops were applied and left to dry (figure 108). 

Although blanking off the side and reverse of the samples kept the majority of the 

samples contamination free on the sides and the reverse surface this was not the 

case for all samples.  The reverse side of sample PC5 (table 59) indicated that 

contamination with the salt solution was likely, thus accelerating the corrosion on the 

surface in selected areas.   

Images of the reverse side of sample PC5 (figures 243 and 244) following exposure 

to 80% RH, do show darker more aggressive corrosion in the areas which appeared 

to have been contaminated, although corrosion was not limited to these areas. 

The area of corrosion on the surfaces sprayed with salt solution was not identical for 

all samples.  This is visible when comparing samples PC1 and PC4 (table 59).  Both 

the variation in area of corrosion on the sprayed side and on the non-sprayed side 

due to contamination will have affected the O2 consumed whilst corroding, leading to 
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larger variations and a bigger range in the data collected for the partially pre-

corroded samples.  Work in the future may seek to measure the area of accelerated 

corrosion prior to assessing the O2 impact, and this can be compared to the 

resulting data to establish if there is a clear trend. 

  

The average mass of Cl- calculated as deposited by one drop of salt solution 

(219.01 g) is approximately 1.5 times larger than the average mass of Cl- one 

spray deposits on the surface of the sample (144.83 g).  Drop application also 

leaves the Cl- focused in a small area of the sample.  However, as 10 drops were 

applied the average amount applied was 15 times that applied by one spray 

application.  Atmospheric corrosion accelerated by Cl- deposition is generally more 

evenly distributed and involves a slow build-up of Cl-, thus spray application is much 

more suited for accelerated aging.   

More testing of the spray application method does need to be carried out.  The 

spray was not always consistent, especially as the spray bottle was held horizontally 

to spray down onto the samples.  For the 10 sprayed samples tested the average 

mass of Cl- deposited was 144.8 g (standard deviation = 46.5), the range was 

147.8 g, distributed between 88.1 and 236.0 g.  Removing the anomalous result 

from the data reduces the values for the average, standard deviation, range and 

maximum in this case, but with the inconsistency of the spray, anomalous results 

which do not fit with the majority of other results may occur.  If further testing was to 

be carried out using different spray bottles for spray application even larger 

variations of Cl- deposited may result.  This being said the spray application 

generally provided a fairly even coating of corrosion without salt crystals forming on 

Figure 243 Reverse side of sample 

PC5 following exposure at 80% RH 

Figure 244 Zoomed central area of 

sample PC5 after exposure at 80% RH 
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the surface and could easily be employed by others for conservation science 

research.  Variations in the Cl- deposited result in larger variations in the amount of 

corrosion forming and the amount of O2 consumed.  Thus it is important to 

standardise the Cl- application technique so that differences in O2 consumption are 

due to the performance of the coatings and not the quantity of Cl- applied.  This 

method offered a reasonable level of reproducibility for the coatings test in this 

study, as evidenced by the quality of the data produced. 

 

7.2.3 Comparing the Oxygen Consumption of the Steel Samples 

Untreated samples 

A variety of factors may have influenced the reduction in O2 partial pressure caused 

by the untreated samples, such as: 

 Quantity of original paint layers left 

 Presence of corrosion or mill scale 

 SA of bare steel available for corrosion as well as the metallic structure 

 Distribution of the alloying elements 

One or more of these factors may have led to the variation in the data collected for 

these samples.   

Over the 163 days of exposure to 80% RH, there was a slow but steady rate of 

corrosion taking place.  The range between the samples for the reduction in the O2 

partial pressure gradually increases over the 163 days of measurements.  After 163 

days all the data falls between 5 and 9 hPa for the 5 samples within the error range 

of 2 hPa from each other (figure 113).   

The untreated sample (UT6) run alongside the coated samples is included in figure 

114.  Due to different control data being subtracted from sample UT6 than UT1-5, 

the reduction in O2 partial pressure drops below zero UT6.  An increase in O2 partial 

pressure for these samples is unlikely, thus indicating the fluctuations for this 

sample jar were mostly likely not in-line with those of the control jar.  Apart for the 

first few data points the trend for UT6 matches that of samples UT1-5 until 

approximately 120 days after which the reduction in O2 partial pressure for UT6 

appears to level off.  

Linear trend-line analysis has been used on figure 114 for all six untreated samples 

to produce approximate rates of change data (table 62).  Sample UT6 had the 
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lowest rate of change (0.021 hPa/day) and sample UT3 had the highest rate of 

change (0.046 hPa/day), more than double that of UT6.  The average rate of change 

for these samples was 0.032 hPa/day.  These values can be compared to values 

achieved for the other uncoated metal samples. 

 

Cleaned steel  

The data collected for the cleaned steel samples CS1-5 (figure 115) ranged 

between approximately 14 – 28 hPa after 65 days of exposure at 80% RH.  The 

range in data could result from the following variations between samples: 

 SA due to air abrasion and stamping the samples out of the steel door  

 Metallic crystal structure 

 Distribution of the alloying elements 

On figure 116 data for sample CS6 was also included and for the first 25 days it 

reduced the O2 partial pressure at a similar rate to samples CS1-5.  After the first 25 

days the rate of reduction in O2 partial pressure for both CS3 and CS6 slowed, 

indicated by slight curves in the data and resulting in the large range in the data 

points.  Linear trend-lines on figure 116 provide approximate data for the rate of 

reduction in O2 partial pressure (table 63).  Sample CS6 had the lowest rate of 

change (0.1866 hPa/day) and CS2 had the fastest rate of change (0.4193 hPa/day), 

which is more than twice as fast.  The average rate of change for the cleaned steel 

samples was 0.2996 hPa/day.   

It is clear from figures 168 - 175 that these samples corrode producing a mixture of 

uniform and filiform corrosion whilst the data shows O2 is being consumed.  

Although filiform corrosion is usually discussed when considering corrosion under a 

coating, it clearly also occurs on the surfaces of these cleaned, prepared steel 

samples.  The surface preparation method produces a keyed surface and filiform 

corrosion is reported to be favoured by a highly rough surface (Bautista, 1996).  

Some embedded Al2O3 is to be expected in the surface of the steel after air abrasion 

and like sandblasted surfaces, air abrading surfaces prior to coating favours filiform 

corrosion.  Both the images and O2 data confirm that when exposed to 80% RH this 

steel corrodes, consuming O2 at a steady rate, but with variances in the rates 

between samples treated in the same manor possibly due to the reasons mentioned 

above.  For filiform corrosion to develop it is also widely accepted that the optimal 

RH range is 80-85% (Almeida et al., 1999). 
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Although the data for four of the six samples shown, show a positive straight line 

trend, two show a slowing trend with one appearing to flatten.  This slowing with 

time is possibly due to a normal corrosion pattern where a protective layer begins to 

form over the surface.  Normally porous rust, which has poor protective properties is 

formed in the during an initial period when corrosion rates are high (Kucera and 

Mattsson, 1987).  To determine if the corrosion rate of all cleaned samples would 

slow given a longer measurement period further research is needed.  In future 

research cleaned samples like these should be monitored for a longer time period to 

provide information on how long it takes for cleaned samples in high RH to become 

stable once corrosion has initiated. 

 

Partially corroded steel  

The partially pre-corroded samples reduced the O2 partial pressure quickly while 

they were exposed to 80% RH for 48 days (figure 117).  The range in the data (48 – 

82 hPa) is high, mostly likely due to the variances in the quantity of Cl- applied by 

the spray application of the salt solution, but a small amount is likely attributable to 

the variables mentioned for the cleaned samples.  

Again linear trend-lines were used to analyse the graph (figure 117) and provide 

approximate data for the rate of reduction in O2 partial pressure.  Sample PC4 

produced the slowest rate (1.02 hPa/day) and PC5 produced the highest rate (1.66 

hPa/day).  The average rate of reduction for the partially pre-corroded samples was 

1.298 hPa/day. 

The standardisation of the application procedure for accelerating the corrosion 

aimed to deliver a reproducible corrosion standard, which would consume the same 

volume of O2 and develop similar corrosion coverage, profile and composition on the 

samples surfaces.  These would then act as a platform for applying the three 

coatings to be tested in this study.  Any corrosion detected when the coated 

samples are placed in 80% RH could then be attributed to differences in coating 

failure, rather than intrinsic differences in the corrosion rate of the samples. 

Data for the 5 partially pre-corroded samples (figure 117) shows a wide range for O2 

consumption, with the maximum value (80 hPa) after 48 days 63% greater than the 

minimum (49 hPa).  The standard produced is not reproducible and this should be 

considered when examining coating performance.  A lack of reproducibility could 

relate to numerous variables.  While sample composition is the same and surface 

preparation standardised there will still be some intrinsic differences in surface area.  
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Salt application was standardised but the quantity delivered to the sample varied for 

the 10 samples tested from 88 g to 236 g with an average of 145 g (standard 

deviation = 46.4) (table 61, figure 112).  For the 10 samples tested for Cl- deposition 

the range of Cl- delivered was almost 3 times (168%) greater on the maximum 

delivery compared to the minimum.  However, the O2 consumption data for the 5 

samples sprayed but not tested for Cl- deposition, showed significantly less variation 

with the maximum only 63% greater.  While reproducibility was not possible, this 

method was used to pre-corrode samples and offered a much more reactive 

platform than the air abraded samples (figure 118). 

 

Comparison  

There was a much larger range in the data collected for the cleaned steel (CS) 

samples after 65 days than there was for the untreated (UT) samples after 163 days 

(table 80).  The range in the data for the partially pre-corroded samples (PC) after 

49 days was very high in comparison to both the CS and UT samples even though 

they were assessed for longer periods of time. 

Table 80 Comparison of data ranges and rate of reduction values 

Sample 
group 

No. of days 
exposed 80% 

RH 

Range 
(hPa) 

Slowest rate 
(hPa/day) 

Average 
rate 

(hPa/day) 

Fastest 
rate 

(hPa/day) 

Untreated  163 5 – 9 0.021 0.032 0.046 

Cleaned 
steel 

65 14 – 28 0.1866 0.2996 0.4193 

Partially pre-
corroded 

48 48 – 82 1.019 1.298 1.66 

 

The cleaned samples were consuming O2 between 4 to 20 times faster than the 

untreated samples.  The partially pre-corroded samples were consuming O2 

between 22 to 79 times faster than the untreated samples and between 2 to 9 times 

faster than the cleaned samples.  Linear trend-lines oversimplify the trends which 

are slightly curved as the speed of O2 consumption slows with time and does not 

continue at a steady rate.   

Figure 118 compares the data visually for the first 50 days of exposure to 80% RH 

for these uncoated and untreated samples.  The comparative rates of O2 

consumption are visible in both figures 118 and 119.  For these samples treatment 
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increased the variation within the data in addition to increasing the size of reduction 

of O2 partial pressure. 

Including both the results for the uncleaned and the cleaned samples highlights the 

impact of cleaning materials and leaving them uncoated, open to the atmosphere.  

The cleaned steel consumed O2 faster than the untreated steel with old coating 

layers and corrosion left intact, suggesting that it is better to leave damaged paint 

layers and stable corrosion layers intact and only remove them when the new 

coating is ready to be applied.  If the material is located in a marine environment or 

in an area which requires application of de-icing salt, corrosion is likely to occur 

much faster.  Coatings are clearly essential on cleaned steel surfaces where 

abrasion offers a large surface area for reaction. 

 

7.2.4 Clear Coatings 

7.2.4.1 Availability and cost 

Paraloid B72 and Cosmoloid H80 are already widely used by conservators, 

indicating they are easily available and feasible cost wise.   

Siliglide 10 has not been used for conservation before, but it is commercially 

available and in the UK it can be obtained from Fluorochem for £26.00 for 100 g or 

£196.00 for 1 kg.  Gelest the parent company is an international company with 

distribution partners around the world, so availability is not be a problem.  Siliglide 

10 is a very thin coating, therefore 100 g will offer good coverage.  This cost should 

be feasible even within the poorly funded conservation sector. 

 

7.2.4.2 Concentration, solvents, aesthetics and practicalities 

Three layers of Paraloid B72 in xylene applied to glass slides provided a fairly good 

clear coating whether it was the 10% and 15% w/v concentration.  Although, brush 

marks were visible on the coated slides, they are had begun to flow and smooth out 

before drying.  The brush marks are more noticeable down the centre of the slides 

where the two strokes down the slide overlapped and at the ends where the brush is 

first applied to the slide or removed from the slide.  The brush marks for the 10 and 

15% coatings were comparable, but the 15% coating contained many more trapped 

tiny bubbles.  They were due to either solvent evaporation or trapped air and 

reduced the transparency of the 15% coating compared to the 10% coating.  Thus, 

while using xylene as the solvent the 10% concentration was found to be more 
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suitable.  When air abraded glass slides were used with the 10% w/v Paraloid B72 

in xylene coating there was a reduction in the visible brush marks, which should also 

happen with air abraded samples. 

The three layers of 10% w/v Paraloid B72 in acetone on glass slides produced clear 

coatings with more prominent brush strokes than when xylene was used as the 

solvent.  With acetone being more volatile than xylene the coating has less time to 

flow out when it is used.  When used on air abraded samples there should be a 

reduction in visible brush marks as there was for the 10% w/v Paraloid B72 in xylene 

on the air abraded glass slides.   

Although xylene used as the solvent produces better visual coatings on glass slides, 

a survey carried out by Argyropoulos et al. (2007b) revealed that acetone was the 

most common choice for use with Paraloid B72.  From a health and safety 

perspective acetone is also the preferred choice.  

Once heat and air abraded slides were used with the 10% w/v Cosmoloid H80 in 

white spirit coating, it produced a good 3 layered coating.  Cosmoloid H80 produced 

a matt coating unlike Paraloid B72 which produced a high gloss coating.  Brush 

marks are not very visible in the Cosmoloid H80 microcrystalline wax coating, but 

where the crystals are visible or the coating collects the coating becomes opaque 

and almost white.  From a conservation viewpoint, as treatments should allow the 

retention of the original appearance, the preferred appearance of a coating is clear, 

transparent and where possible invisible to the naked eye. 

Photographs of Siliglide 10 coated slides have not been included as on glass slides 

the coating is invisible to the naked eye, if buffed whilst curing. 

 

7.2.5 Mass of coating, number of layers and distribution between layers 

On glass slides 

The application of the coatings to glass slides recorded the build up of coatings. 

When Paraloid B72 in xylene was applied to glass slides the mass of coating 

applied for the first two coating layers increased from slide 1 to slide 5, possibly due 

to loading within the brush, but this was not the case for the third layer.  There was a 

fairly even distribution of the coating between the first (31%), second (30%) and 

third (39%) layers.  If this build-up in mass of coating equates to a build-up in 

thickness, three layers should provide a thicker barrier layer between the substrate 
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surface and the atmosphere.  Therefore, three layers should be beneficial in terms 

of the protection provided.  

For Paraloid B72 in acetone like with xylene there was a build-up of the mass with 

each layer applied.  However, when using acetone as the solvent the layers were 

not quite so evenly distributed with 34% applied in the first layer, 24% in the second 

and 42% in the third.  The pattern does however, match that of the coating with 

xylene as the solvent.  For both acetone and xylene Paraloid B72 coating there is a 

drop in the mass for the second layer compared to the first and an increase in mass 

applied for the third layer compared to the first and second layers.  More coating 

may be dragged off the brush for the third layer as the surface it is being applied to 

is not as smooth as the glass slides surface or the glass slide with one layer of 

coating.  The build-up of the coating over the three layers while using acetone as the 

solvent showed that it was worthwhile using three layers rather than two as 

explained above for Paraloid B72 with xylene as the solvent. 

As well as being slightly more evenly distributed when xylene is used as the solvent 

each layer applied also has a slightly smaller mass, resulting in a smaller mass of 

the overall coating.  If a thinner more discrete coating is what is required xylene 

would be the better solvent to use.  If a higher mass coating equates to a thicker 

coating which equates to a thicker barrier layer providing better protection and better 

protection is the aim then acetone may be the better solvent to use. 

Cosmoloid H80 in white spirit when applied to heated air abraded surfaces provides 

a fairly even build-up of the wax coating with 36% applied in the first layer, 30% in 

the second and 34% in the third.  The average total masses of the coatings on glass 

slides were comparable for Cosmoloid H80 in white spirit (0.0217 g) and Paraloid 

B72 in xylene (0.0210 g), but Paraloid B72 in acetone (0.0335 g) was significantly 

larger.  

This led to a decision to use Paraloid B72 in acetone as the standard application as 

well as its non-interference with the sensor spots for O2 consumption. 

The masses of Siliglide 10 layers on glass slides has not been analysed, but they 

have been analysed on the sample material and so will be discussed in the next 

section. 
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On the samples 

Paraloid in xylene was not tested on the steel samples, but Paraloid B72 in acetone 

was, and was found to have more evenly distributed layers on the air abraded 

samples (1st layer = 30%, 2nd layer = 31% and 3rd layer = 39%) than on the glass 

slides.  The percentage distribution was very similar to that of Paraloid B72 in xylene 

on glass slides, but is an improvement compared to Paraloid B72 in acetone on the 

slides.  As the whole surface of the samples were coated (SA  37.01 cm2), a larger 

area was coated than one surface of a microscope slide (SA  19.76 cm2) and so a 

larger total coating mass was expected.  The average total mass applied on the 

slides was 0.0335 g, but the average total mass applied to the samples was 0.1002 

g, thus there was either overlapping of the coating on the sample when both sides 

were coated or the side of the glass slides coated were not fully covered.  Warming 

the samples may also have played a role in the larger masses applied on the 

samples than on the slides compared to what might be expected in relation to SA. 

The average total coating mass for Cosmoloid H80 on the samples was 0.0418 g, 

less than half the Paraloid B72 coating mass, but approximately double its average 

total coating mass applied on the glass slides (0.0217 g).  The difference between 

the mass of coating on slides and samples is roughly what would be expected for 

the SA of each coated.  The distribution of mass between the layers for the coating 

on the sample is fairly even, more so than the Paraloid B72 coating, as there is 

approximately a third applied in each layer (33% 3). 

The average total coating mass for Siliglide 10 was 0.0069 g much less than for 

either Paraloid B72 (0.1002 g) that is roughly 14.5 times its mass or Cosmoloid H80 

(0.0418 g), which is six times its mass.  Of the Siliglide 10 layers the second layer 

(19%) of the coating had a much smaller mass than the first (43%) or third (38%) 

layers. 

Whether the coating was applied to cleaned samples or to partially pre-corroded 

samples the Paraloid B72 coatings had the largest masses, Cosmoloid H80 had the 

second largest coating masses and Siliglide 10 had the smallest masses.  The 

partially pre-corroded samples had larger ranges in the masses collected but there 

were also 10 samples with partially pre-corroded surfaces for each coating 

compared to 5 samples with just cleaned surfaces.  Thus the surface treatment did 

not have much of an influence on the mass of coating applied.  

Brush application was a suitable application method for all of the coatings, but for 

samples coated with Paraloid B72 warming the samples prior to coating application 
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may not have been suitable.  Applying Paraloid B72 to cold samples may reduce the 

number of bubbles due solvent evaporation as more solvent may be able to escape 

before the coating dries.  Both Paraloid B72 and Cosmoloid H80 are considered 

suitable for conservation, but Siliglide 10 is a new coating and has not been trialled 

in conservation before.  The biggest concern about Siliglide 10 is its reversibility and 

this is an area which requires further work.  The PROMET project found the 

combination of silanes they called silane A was reversible in 5M NaOH 

(Argyropoulos, 2008) and this is a treatment that could be tested on Siliglide 10. 

 

7.2.6 Effects on oxygen measurements 

7.2.6.1 Solvent choice 

Prior to testing the coatings on samples they were tested on glass slides.  In 

addition to their appearances and masses being analysed the effect of the coatings 

and carrier solvents on the O2 sensor spots were also tested.  Xylene had a larger 

impact on the sensor spots than acetone and so the use of xylene with Paraloid B72 

was ruled out of the testing on sample material.  

Paraloid B72 is known for retaining solvents for prolonged periods, so acetone 

which also influenced the sensor spots, but not as significantly was retested.  Fresh 

slides coated with Paraloid B72 in acetone were de-gassed for 3 weeks before 

retesting their influence on the O2 sensor spot.  After 3 weeks de-gassing the data 

for these slides with the fluctuations of an empty jar removed from them only 

fluctuated within the error margins of the machine (2 hPa).  Thus as long as the 

Paraloid B72 coating is allowed time to de-gas prior to measuring the O2 levels, any 

future impact on the O2 levels when used on samples should be as a result of O2 

being used up in the corrosion reaction. 

Neither Cosmoloid H80 in white spirits or Siliglide 10 had a significant influence on 

the O2 sensor spot.  However, to keep the procedures standardised, all the coated 

samples were allowed 3 weeks for the coatings to de-gas in the climate chamber. 

 

7.2.6.2 Oxygen consumption of coated cleaned steel 

Paraloid B72 

There is an increasing range in the data for the reduction in O2 partial pressure for 

the cleaned Paraloid B72 coated samples over the 341 days of exposure at 80% 

RH, which with the control data subtracted fluctuate around 0 hPa (figure 140).  
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After 341 days the data is always within 3 hPa of 0 hPa.  The final data points for 

these samples fell between -2.5 and 1.5 hPa giving a range of 2 hPa of the central 

point.  From this data it is not possible to conclude that the samples are corroding 

and after almost a year of exposure to 80% RH may be corrosion free. 

 

Cosmoloid H80 

The data collected for the cleaned Cosmoloid H80 coated samples with the control 

data subtracted show a steady rate of O2 consumption.  Over the 341 days of 

exposure to 80% RH, the range in the data collected for the five samples increased, 

with the final values on figure 141 falling within 2.5 hPa of the midpoint.  There is a 

slight curve to the trend in the data points on figure 141, indicating the rate of O2 

consumption and possibly the rate of corrosion are slowing a little.  For these 

samples there is however, an increasing reduction over the 341 days, indicating that 

O2 is being consumed and the samples are corroding.  Corrosion is expected to 

slow as corrosion layers build up at failure points in the coating. 

 

Siliglide 10 

The clean Siliglide 10 coated samples were also found to consume O2.  After 341 

days of exposure the samples had consumed between 6 to 12 hPa (figure 142), 

thus all the values were within 3 hPa of the midpoint.  The trend for these data 

points also shows a slight curve, but the curve for these data points indicate 

increasing trend rather than a slowing trend.  This may indicate that the coating-

metal chemical bonds are being broken, freeing up the metal surface for corrosion.  

Hydrolysis at high RH may be the cause of this coupled with potential lowering of pH 

from Fe2+ hydrolysis at anodes. 

 

Comparison 

Figure 143 shows the data collected for the fifteen clean and coated samples as well 

as a cleaned uncoated sample (CS = CS6) and an untreated sample (UT = UT6).  It 

is clear from this graph that coating samples which are cleaned is beneficial.  Even 

the highest reduction in O2 partial pressure for a coated sample is less than a third 

of that for the cleaned uncoated samples.  The untreated sample is consuming O2 at 

a rate which is similar to the slowest consuming Cosmoloid H80 and Siliglide 10 

clean coated samples.   
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After 200 days of exposure at 80% RH Paraloid B72 data does not overlap with any 

of the data shown for other samples on figure 143.  However, all through the 

exposure period there are overlaps in the data collected for the Cosmoloid H80 and 

Siliglide 10 coated samples.  Initially, Cosmoloid H80 coated samples consumed 

noticeably more O2 than the Siliglide 10 coated samples, but after 300 days of 

exposure a Siliglide 10 coated sample became the fastest O2 consuming coated 

sample.  These two different coatings caused opposite behaviour of the samples as 

the O2 consumption rate slowed for Cosmoloid H80 coated samples but for Siliglide 

10 coated samples the O2 consumption rate increased.  This could be due to stable 

oxide and corrosion products forming on the Cosmoloid H80 coated samples and 

also due to coating-metal chemical bonds potentially being broken and allowing the 

surface to react with O2 passing through the Siliglide 10 coating layers. 

The boxplot in figure 144 shows the statistical summary of the final data points after 

341 days of exposure to 80% RH analysed in terms of the reduction in O2 partial 

pressure per day.  Paraloid B72 clearly has the lowest median value, the lowest 

reduction in O2 partial pressure and the smallest range (table 78).  Although Siliglide 

10 has a slightly higher range in the data on the last day of exposure than 

Cosmoloid H80, Siliglide 10 has a lower median value than Cosmoloid H80. 

Figure 145 compares the data from figure 144 for the cleaned coated samples to the 

data for the cleaned uncoated sample data on figure 119.  Again this highlights the 

need for a coating to be used and ferrous metal not to be left exposed to the impact 

of the environment.  

 

7.2.6.3 Oxygen consumption of coated partially pre-corroded steel 

Control data was not subtracted from the graphs in this section but instead was 

plotted alongside on the graphs, as the measurements were usually made 24 hours 

before or after. 

 

Paraloid B72  

There is a clear difference in the reduction of O2 partial pressure for the partially pre-

corroded Paraloid B72 coated samples and the control data (figure 146), indicating 

that O2 was consumed by these samples and additional corrosion was likely to have 

taken place.  The reduction in O2 partial pressure was initially fairly steady, but after 

approximately 120 days the data for the samples levelled off and fluctuations were 

within the error margins of the meter (±2.0 hPa).  The implication here is that after 
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corroding for 120 days the samples stop corroding and are stable.  Likely due to a 

build up of corrosion products at ingress points in the coating. 

 

Cosmoloid H80 

The initial reduction in O2 partial pressure for the partially pre-corroded samples was 

quick (figure 147) but the rate gradually slowed, faster for some than for others 

indicating the unpredictability of the performance of Cosmoloid H80.  Throughout the 

342 days of exposure to 80% RH the range between the data points increased. The 

range within data after the final data points were collected (34.22 hPa) was fairly 

high.   

 

Siliglide 10 

The partially pre-corroded Siliglide 10 coated samples did not initially appear to 

reduce the O2 partial pressure within the jars, as the data points were very close to 

the data for the jar with no sample (figure 148).  Separation between the control data 

and the sample data began to show after roughly 120 days, but even for the final 

data points there was minimal difference between the control data and the Siliglide 

10 coated sample reducing the O2 partial pressure the least.  The range between 

the samples data points was low up until roughly 180 days of exposure to 80% RH, 

when the range between the data points began to increase much more noticeably.  

Siloxane groups (Si-O-Si) can slowly hydrolyse to silanol groups that are much more 

hydrophilic, and so are not indefinitely stable (Ooij et al., 2005).  Thus metals cannot 

be indefinitely protected by silane films as with continuous exposure even the most 

hydrophobic films hydrolyse allowing water to reach the interface.  However, if partly 

hydrolysed films can dry out the siloxane groups can reform since siloxane 

hydrolysis is a reversible process.  Further work in this area may reveal whether 

under cyclic conditions Siligide 10 has better protective properties.   

 

Comparison 

When the final data points collected are compared in the boxplot (figure 149) and 

table 79 it is clear that Siliglide 10 coated samples have the smallest median value 

for the reduction in O2 partial pressure, and Cosmoloid H80 has the largest median 

value.  Cosmoloid H80 has the largest range in value and Paraloid B72 has the 

smallest range.  For the final data points the range in the data shows overlaps 

between all of the coatings assessed.    
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Figures 150 and 151 show average data comparisons for the average partially pre-

corroded coated and uncoated samples, as well as the untreated sample (UT6) and 

the cleaned uncoated sample (CS6).  Figure 150 just shows the first 50 days and 

figure 151 shows the full 342 days for all the averaged and individual data points.  

Again it is clear that applying a coating is beneficial, as the average reduction of O2 

partial pressure for uncoated, partially pre-corroded samples was more than three 

times that of any of the coated, partially pre-corroded samples over the first 50 days 

of exposure to 80% RH (figure 150).  Although it is clear the consumption of O2 

slows over the exposure period for the Cosmoloid H80 and Paraloid B72 coated 

samples, for Siliglide 10 coated samples which initially shows minimal O2 

consumption, there is an increase in O2 consumption over the exposure period 

instead.  Applying Siliglide 10 on partially pre-corroded samples slows O2 

consumption to below that of clean uncoated samples straight away.  Likely due to 

its ability to bond with the oxides in the thin corrosion layer.  With Paraloid B72 

applied, after roughly 100 to 125 days the samples are consuming O2 slower than 

the cleaned uncoated sample and before the end of the exposure period the 

samples coated with Cosmoloid H80 are also consuming O2 slower than the 

cleaned uncoated samples.  Thus towards the end of the exposure period (figure 

151) the cleaned uncoated sample is consuming O2 faster than all of the partially 

pre-corroded coated samples, again reinforcing the benefit of using a coating 

whether the samples are clean or partially corroded.  Applying any of the three 

coatings used within this research slows the rate of O2 consumption compared to no 

coating on a partially pre-corroded samples or clean uncoated sample after more 

than 300 days of exposure at 80% RH.   

Graphs showing the average trends do not show the variation between samples 

treated in the same manner, thus in addition to figure 149, a further boxplot has 

been included (figures 152).  Figure 152 compares the control data, the untreated 

sample, the clean uncoated sample, the clean coated samples and the partially pre-

corroded coated samples interpreting their final data points as reduction in O2 partial 

pressure per day.  It compares all of the samples split into coating types and also 

into different treatments.  This boxplots reveals the median value for the clean 

Siliglide 10 coated samples is higher than that of the partially pre-corroded Siliglide 

10 coated samples.  For both Paraloid B72 and Cosmoloid H80 the median values 

are significantly higher for the partially pre-corroded than the clean coated samples.  

Silanes are known to be more effective on inorganic oxides e.g. Fe2O3, than iron or 

steel (figure 82).   
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Thus figure 152 indicates that where possible ferrous metal should be cleaned if 

Paraloid B72 or Cosmoloid H80 are being used.  Where there is corrosion that 

cannot be removed, the indication from these results is that Siliglide 10 is most likely 

the best option, but before a year is up further maintenance may be required.  Thus, 

Siliglide 10 is the best choice for corroded surfaces over a short time period, as it 

initially stopped corrosion occurring.  

 

7.2.6.4 Oxygen consumption of scribe coated cleaned steel 

Although a scribe was introduced to each of the samples to potentially imitate 

damage to a coating by a scratch the results for this section are not as one might 

expect. 

 

Paraloid B72  

For the first 70 days of exposure at 80% RH, the O2 consumption for the scribed 

Paraloid B72 coated samples displayed no visible trend (figure 153).  There was an 

increase in O2 in some of the jars, an explanation for this might be acetone still 

retained within the Paraloid B72 coating.  The acetone as it was released from the 

coating may have affected the rubber seal of the lids used on the jars, allowing O2 

into the jars.   

For the 148 days of exposure at 80% RH (figure 154), after photographing the 

samples and returning them to their jars and the chamber, the data showed only 

fluctuation around 0 hPa within 2 hPa reduction in O2 partial pressure for all but 

one data point.  Thus if corrosion is taking place, it is minimal as such low quantities 

of O2 are being consumed.  

When looking at the combined data in figure 155, after the first 50 days the changes 

in the O2 partial pressure measurements are minimal.  Scribed sample P1 appears 

to be reducing the O2 partial pressure more than the other samples for both graphs, 

but overall for these 10 samples there is no clear trend for the time that they were 

monitored. 

 

Cosmoloid H80 and Siliglide 10  

The results achieved for the Cosmoloid H80 coated and Siliglide 10 coated samples 

scribed using a scalpel are not that dissimilar to those achieved for the Paraloid B72 

coated scribed samples.  Both fail to show a clear trend in the first 70 days and 
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when exposed for a further 148 days their data fluctuates within 2 hPa of 0 hPa.  

Thus, when combined for the total 218 days of exposure neither coating data shows 

a clear trend, but the ranges in the data are more than 2 hPa around the median 

values. 

For these samples their appearances may provide more information than the 

reduction in O2 partial pressure data. 

 

7.2.7 Aesthetics of coatings on samples 

Untreated samples 

Prior to any treatment the samples are very dark in colour (figures 162 and 163) – 

dark red-brown with dark grey regions throughout and some have areas of historic 

dark green paint still attached.  After exposure to 80% RH for 163 days there was 

minimal change in the appearance (figures 164 and 165).  On closer inspection 

(figures 166 and 167) small areas of uniform corrosion were visible, yellow-orange 

brown in colour.  These small areas of corrosion confirm the reduction in O2 partial 

pressure data for the untreated samples, which indicated corrosion was taking 

place.  If more corrosion is taking place under paint layers there are no obvious 

signs. 

 

Cleaned samples 

Prior to cleaning the samples they looked much like the untreated samples prior to 

exposure at 80% RH, although the amount of historic green paint varied depending 

on the sample (figures 168  and 169).  On some samples there was more than one 

layer of green paint, which was visible due to the top layer being a lighter green than 

the dark green layer underneath.  The cleaned samples surfaces (figures 170 and 

171) showed varying numbers of pits and troughs in the white-silver surface.  There 

were also some small darker grey areas.  

The corrosion on these samples was darker in colour than the corrosion on the 

untreated sample as it was red-brown in colour.  The corrosion pattern appears to 

be linked in part to the peaks and trough in the sample’s air abraded surface (figures 

172 and 173).  Figure 172 shows the surface of the sample which faced away from 

the conditioned silica gel, whereas figure 173 shows the surface of the sample that 

faced down towards the silica gel.  Leidheiser Jr. (1987) stated that filiform corrosion 

can in some cases develop on uncoated steel but connected this to small quantities 
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of salt contaminants being present on the surface.  Although neither salt solution nor 

coatings were applied to these samples a large amount of filiform corrosion was 

visible (figure 174 and 175). 

 

Partially Pre-Corroded samples 

The first two stages for these samples (figures 176 – 179) are much the same as 

those described above for the untreated and the cleaned samples.  After cleaning 

these samples were partially pre-corroded using salt-spray of a similar formulation to 

de-icing salt.  Figure 180 was blanked off and was free from salt-solution and thus 

did not corrode prior to exposure at 80% RH, but slight darkening in a small area of 

the surface indicated it had oxidised slightly.  Figure 181 was the side sprayed with 

salt-solution, which corroded quickly and in a fairly uniform manner, producing 

yellow-orange brown corrosion that was slightly darker at the edges.  The corroded 

surface was placed face-up, away from the silica gel during the exposure to 80% 

RH.   

After exposure at 80% RH both sides of the sample (figures 182 and 183) had dark 

red-brown corrosion present that was not present before.  This darker corrosion did 

not appear uniform in nature and filaments were clear on the previously clean side 

(figure 184).  The darker corrosion over the pre-corroded area (figure 185) also 

looked localised compared to the initial corrosion resulting from the salt spray, and 

may also be filiform corrosion. 

Further research is needed into the accelerated corrosion method used, including 

identifying the corrosion products initially formed (figure 181) and what corrosion 

products were present after exposure to 80% RH (figure 183).  Both the colour and 

nature of the corrosion products indicate they are likely to be different. 

 

7.2.7.1 Cleaned and Coated Samples  

These samples are also much the same as those described above for the untreated, 

the cleaned samples and the partially pre-corroded samples before and after 

cleaning.  Thus the images start after the samples have been cleaned so the 

cleaned surfaces can be compared to the coated surfaces. 

 

Cleaned and Coated with Paraloid B72 

There were noticeable differences between the samples before and after coating 

with Paraloid B72 (figures 186 - 189).  With coating applied the surface is darker and 
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glossy.  Brush marks are not noticeable in the images but bubbles developed in 

some areas on the surface and around the edges.  These areas with bubbles 

present were expected to be weak areas of the coating, and possible areas where 

corrosion would develop.  After exposure at 80% RH for 341 days hardly any 

corrosion is visible (figures 190 and 191).  A closer look (figures 192 and 193) 

reveals very small areas of filiform corrosion mostly located at the edges, but the 

amount of corrosion present is minimal considering the exposure time and this was 

evidenced by the reduction in O2 partial pressure fluctuating around 0 hPa. 

 

Cleaned and Coated with Cosmoloid  H80  

Again there were clear differences between the appearance of the samples before 

and after coating (figure 194 -197).  With the coating applied the surface is a darker 

shade of grey, but matt.  Where there were pits and grooves in the surface the 

coating collected and became white and opaque, however, these areas were very 

small.  

The corrosion for these samples appeared more uniform (figures 198 and 199), 

although the peaks and trough in the surfaces appeared to have some influence, 

which side was facing down in the jar (figure 198) was also influential.  Closer 

examination (figures 200 and 201) also showed a couple of small cracks had formed 

in the coating at the edge of the sample.  The orange-brown corrosion that formed 

did so without any visible damage to the coating with the exception of these cracks 

at the edges.  

 

Coated with Siliglide 10 

As with Paraloid B72 and Cosmoloid H80 there were differences in the appearance 

of the samples before and after coating (figures 202 – 205).  In the case of Siliglide 

10 the differences were not quite as significant, with only a slight darkening of the 

surfaces and between a satin and a semi-gloss finish (figures 204 and 205). 

After exposure to 80% RH for 341 days corrosion was present on both sides of the 

sample (figures 206 and 207), but it was more significant on the side facing down 

(figure 206) towards the silica gel.  The yellow/orange-brown corrosion appeared 

more uniform than localised in nature, it also appeared influenced by the surface 

profile of the sample (figures 208 and 209).  The sample shown is one which had 

slid off the SEM tripod clips used to raise the sample above the silica gel and allow 

circulation around the sample inside the jar.  The corrosion which formed on this 
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sample was focused on the side and edge which was dislodged and lent into the 

silica gel.  However, there were no visible signs of damage to the coating and 

corrosion was occurring quite freely.  

 

7.2.7.2 Partially Pre-corroded and Coated Samples  

For each of the samples shown in this section only one side of the samples are 

shown, the surface which was pre-corroded, as the clean sides will appear similar to 

the images above.  Again for comparison purposes the cleaned surface images are 

also included. 

 

Partially Pre-corroded Paraloid B72 Coated  

The cleaned surface (figure 210) with white-silver metal and pre-corroded suface 

(figure 211) with scattered areas of yellow-brown corrosion within the darker brown 

corrosion were very different.  With Paraloid B72 applied (figure 212) the corrosion 

appeared darker brown and a few bubbles were trapped within the gloss coating.  

After exposure at 80% RH for 342 days (figure 213), the corrosion had spread over 

the surface covering the edges, there was a slight change in colour and the surface 

profile no longer appeared as smooth.  The colour of the corrosion had a slightly 

pinkish tinge and a close up (figure 214) revealed filaments of corrosion at the edge 

of the sample. 

Further corrosion in addition to the pre-corroded area had clearly taken place on 

these samples and this was also evident from the reduction in O2 partial pressure 

compared to the clean coated samples. 

 

Partially Pre-corroded Cosmoloid H80 Coated 

As with the Paraloid B72 coated sample above there was a clear difference between 

the clean (figure 215) and pre-corroded (figure 216) stages, with scattered areas of 

yellow/orange-brown corrosion within the darker brown corrosion covering the bulk 

of the surface.  The darker brown corrosion dominated around the outer edge of the 

corroded area.   

With the Cosmoloid H80 coating applied (figure 217) the colour of the corrosion was 

muted/greyed appearing a much lighter shade.  However, after exposure at 80% RH 

for 342 days the corrosion had spread to the edges of the sample (figure 218) and 

changed to an orange-brown corrosion.  Additionally, the corrosion over much of the 
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surface was powdery, which is visible in the higher magnification image (figure 219).  

Areas of coating may have detached as the volume of corrosion increased.  

Partially Pre-corroded Siliglide 10 Coated 

As with the samples above they were white-silver once cleaned (figure 220).  After 

the samples were pre-corroded dark brown corrosion dominated around the outer 

edge of the corrosion and scattered areas of yellow-brown corrosion were present 

on the surface (figure 221).  When the Siliglide 10 coating was applied (figure 222) it 

was barely visible to the naked eye and the corrosion layer looked thinner as if some 

had been wiped away while applying the coating.  Around the edge of the samples 

bare metal was still clearly visible before exposure at 80% RH for 342 days.  After 

the prolonged exposure to high RH (figure 223) new areas of corrosion had 

developed, which the higher magnification image (figure 224) revealed to be 

powdery in appearance and orange-brown in colour.  There was minimal change in 

the appearance of this sample which is in agreement with the data as there was also 

only a small reduction in O2 partial pressure.  

 

Comparison 

The additional corrosion which formed under the Paraloid B72 coating looked 

aggressive, probably due to the dark glossy colouring, however after the high 

corrosion rate during the initial period, the corrosion rate slowed significantly.  This 

may be due to the corrosion reaching the edge of the surface where filaments can 

be seen progressing away from the bulk corrosion.  The damage caused by filiform 

corrosion increases with higher environmental salinity, but as a rule only visual 

damage is caused by filiform corrosion (Bautista, 1996).   

Both the Cosmoloid H80 and Siliglide 10 coatings allowed friable general corrosion 

to form highlighting that in these cases the corrosion formed is likely to be porous 

and have poor protective properties.  Loss of historic material by the formation of 

friable corrosion products whilst coated is a cause for concern within the 

conservation sector.  For Cosmoloid H80 coated samples in particular, with the O2 

consumption also in mind, the friable corrosion products indicate that Cosmoloid 

H80 is especially unsuitable for these conditions.  Siliglide 10 had very good O2 

consumption results until the latter part of the year.  It is therefore highly likely that if 

the samples had an additional coating layer applied in the latter part of the year it 

may have prevented the production of the friable corrosion.  Siliglide 10 can be 
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applied by immersion and although this method has not been tested in this research, 

immersion may reduce the time required for application of an additional layer. 

Both the visual and O2 consumption results for these samples are in agreement with 

the electrochemical impedance spectroscopy (EIS) results of Cano et al. (2010), 

revealing that Paraloid B72 provided better protection than microcrystalline wax 

(Renaissance wax was used within their tests). 

 

7.2.7.3 Scribed coated samples 

The images for this section start after the clean coated samples have had a 2 cm 

scribe cut through the coating with a scalpel and salt solution had been brushed 

down the scribe.  The scribes on the samples were allowed to begin corroding prior 

to exposure at 80% RH. 

 

Scribed Paraloid B72 Coated Samples  

In figure 225 prior to exposure at 80% RH, corrosion was hardly visible down the 

scribe, but as seen previously clusters of bubbles are visible in the Paraloid B72 

coating.  The data for the reduction in O2 partial pressure indicated that corrosion 

may not have been taking place, so after 70 days the samples were removed and 

photographed (figure 226).  As filiform corrosion was clearly taking place the 

samples were returned to their jars and assessed for a further 148 days (figure 227).  

Research discussed in section 2.3.2.5 described the conditions used for these 

samples as optimal conditions for filiform corrosion to develop.  Thus on their 

continued exposure to 80% RH filiform corrosion continued and spread further but 

the data still did not provide a clear trend.  The filaments were focused but not 

limited to the area around the scribe.  The higher magnification image of the scribe 

(figure 228) reveals how aggressive the filiform corrosion appeared but the data 

collected for the reduction in O2 partial pressure was not in agreement with the 

visual results.  This highlights the superficial nature of filiform corrosion, thus what 

appeared aggressive is likely to be minimal and hardly affected the reduction in O2 

partial pressure measurements.  

Further work on filiform corrosion and O2 consumption is needed as it could provide 

more interesting information about its superficial nature.  Questions regarding the 

best method for treating filiform once it is discovered are also raised.  Is the best 

option to deactivate the filament by sealing the tail, dehydrate the filament by 
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reducing the RH to below 60% or should samples be cleaned and recoated as 

filiform corrosion causes loss of adhesion of the coating. 

 

Scribed Cosmoloid H80 Coated Samples  

The Cosmoloid H80 coating looked much the same as it did on the clean coated 

samples, but in this case included a scribe through the coating on the samples 

(figure 229).  After exposure to 80% RH for 70 days (figure 230) yellow/orange 

brown corrosion was visible in the scribe and small amounts were visible over the 

surface and on the edges but not as filiform corrosion.  A further 148 days exposure 

(figure 231) led to an increased amount of corrosion present.  The top end of the 

scribe in the higher magnification image (figure 232) was the area experiencing the 

most aggressive corrosion, with the friable corrosion visible.  Again the corrosion 

was not limited to the scribe location and the reduction in O2 partial pressure data 

was inconclusive.  The nature of the Cosmoloid H80 coating means it does not 

support filiform corrosion, in contrast to Paraloid B72. 

 

Scribed Siliglide 10 Coated Samples 

The Siliglide 10 coating looked much the same as it did on the clean coated 

samples, as the scribe through the coating was barely visible (figure 233).  After 

exposure to 80% RH for 70 days (figure 234) orange brown corrosion was visible in 

the scribe.  A further 148 days exposure (figure 235) led to an increased amount of 

corrosion present, but only in the scribe.  Removing the Siliglide 10 coated samples 

from exposure to 80% RH temporarily, may have been beneficial for the coating 

allowing siloxane groups to reform if they had begun to partially hydrolyse.  The top 

end of the scribe in the higher magnification image (figure 236) was the area 

experiencing the most aggressive corrosion, with friable corrosion visible.  As the 

corrosion was focused at the top end of the scribe, more questions are raised such 

as, was the sample damaged when the coating was scribed?  Did some of the de-

icing salt solution collect in a pit?  Is it localised pitting corrosion taking place?  

These questions and more which have not been asked reveal the need for further 

work in this area. 

 

Comparison 

There were obvious visual differences in the corrosion which formed in these tests 

with filiform corrosion occurring when Paraloid B72 was used but not when 
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Cosmoloid H80 or Siliglide 10 were used.  As all the samples were treated in the 

same manner apart from the coating used, the type of corrosion which forms must 

be due to the nature of the coating adherence to the substrate and the barrier 

properties of the coatings.  Failure of these coatings create different outcomes, but 

which outcome is worst?  As discussed above filiform corrosion is usually only 

visually damaging compared to the general corrosion Cosmoloid H80 coated 

samples experienced. 

Paraloid B72 can be used as an adhesive so should create a strong physical bond 

with the steel surface.  Cosmoloid H80 relies on keyed surfaces and the warmth of 

the metal when it was applied to create a protective layer over the surface, but as it 

is not an adhesive there is not a strong physical bond and the wax lays over the 

steel.  Siliglide 10 on the other hand forms chemical bonds with the steel surface, 

predominantly inhibiting corrosion by acting as a hydrophobic barrier coating 

preventing the transport of water/ions to the metal-coating interface unless the 

siloxane bonds begin to hydrolyse (Ooij et al., 2005).  As mentioned above removing 

the samples temporarily from the chamber may have been beneficial for the Siliglide 

10 coating, although it probably had no real impact on the Paraloid B72 or 

Cosmoloid H80 coatings. 

Due to the filiform corrosion which formed with the use of Paraloid B72 in the 

PROMET research they recommended that Paraloid B72 should not considered as 

a possible protection system on its own in Mediterranean countries (Argyropoulos, 

2008).  With its performance in these tests it has been shown to be a feasible 

option, but in future work it may be worth considering Paraloid B72 in combination 

with the Siliglide 10. 

 

7.2.8 Compatibility of clear coatings with paints 

Preliminary compatibility tests were carried out with paints used by the TM and the 

clear coatings.  Using glass slides in these tests made some of the compatibility 

issues more visible.  It is clear from the photographs that compatibility is an issue, 

although this could be due to the paint layers being recently coated.  Sensitivity to 

solvents is reduced by aging of films and stoving produces a similar effect (Hess et 

al., 1979). 

The formation of the wrinkled films in figures 237a and 240a is due to the action of 

acetone in the Paraloid B72 coating attacking the paint film.  Acetone, is a strong 
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solvent, so attacks the paint film rapidly. The semi-gloss black paint in figure 239a 

was partially dissolved by the acetone in the Paraloid B72 coating and spread by the 

brush. 

Cosmoloid H80 does not cause the same damage to the paint layers as Paraloid 

B72 perhaps partly due to using the weaker solvent white spirit, which is one of the 

least harmful solvents.  Cosmoloid H80 does however leave a wax layer behind, 

with visible microcrystalline particles in most cases where it has been used.  These 

microcrystalline particles cause a greying effect where they overlap the paint layers 

which is visible in figures 237b and 240b and less significantly in some of the others. 

Although the Siliglide 10 coating itself is not visible to the naked eye once it has 

cured, it is still carried in the solvent isoamyl acetate, a strong solvent like acetone.  

Siliglide 10 has caused a little damage in figures 238c, 239c, 240c and 242c lifting a 

small amount of the paints in each case.   

To have a better idea of the compatibility of these coatings with the paints, ideally 

the paints should aged for a longer time period before overlapping them with the 

clear coatings.  This may reduce the impact of the strong solvents used with 

Paraloid B72 and Siliglide 10.  If this is the case it would then also impact the visual 

appearance.  An initial recommendation if these coatings are used with the paints, is 

to have minimal overlap so there is less area for these defects to occur. 

Further tests may also be worth carrying out to test the compatibility of these paints 

with different solvents that can be used with these clear coatings.  However, this is 

not possible for Siliglide 10 as it was used as sold. 
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8 Conclusion  

This study assessed the occurrence of chloride induced corrosion by collecting 

corrosion product samples from historic sites in Scotland.  At present atmospheric 

corrosion products cannot be predicted due to the complex nature of the terrain and 

atmosphere.  The occurrence of akaganéite is not limited to marine atmospheres as 

de-icing salt is in common use and this aligns with data from the snow-belt in the 

northern states of the US.  Using de-icing salts increases the risk of aggressive 

corrosion forming locally in Scotland and throughout the UK. 

The core of this study however focuses on the anti-corrosive performance of clear 

coatings on historic armoured steel donated by the Tank Museum, which is based 

close to the South coast of England.  Thus the museum environment has been 

assessed.  Although the Tank Museum is continually working to improve the display 

and storage environments in which it houses its vehicles, it still face many 

challenges.  The new Vehicle Conservation Centre (VCC) is beneficial as housing 

vehicles indoors dramatically reduces the time of wetness (TOW) they experience 

and makes it practically impossible for chloride ions from the external atmosphere to 

induce corrosion.  However, the range in RH data both inside and outside of the 

vehicles shows wetting and drying induced corrosion will be occurring on the 

surfaces of the vehicles, with the exception of those subject to radiant heating.  The 

workshop/shed environments pose the highest risk to their vehicles due to high RH, 

but RH data collected from the micro-environments inside the vehicles also indicate 

that these hidden environments are highly corrosive.  These micro-environments 

within the vehicles would benefit from further research, testing the impact of silica 

gel. 

All the coatings used within this research offer protection (at least twice as much O2 

is consumed per day when no coating is applied to a clean surface compared to 

when a coating is applied), but good surface preparation is needed.  Corroded 

surfaces retaining some paint with continuous oxide layer and no pitting, offer 

protection and are more protective than stripping and not applying a coating, which 

is a high risk strategy. 

The coatings offered protection irrespective of their relative barrier properties.  In 

continuous high RH in the dark they provide good protection (reducing the O2 

consumption) on cleaned surfaces and significantly reduced corrosion even on 

surfaces with large amounts of accelerated corrosion on them.  In the light the 
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coatings may suffer deterioration especially when exposed to ultra-violet (UV) light 

which disrupts and breaks covalent bonds of organic molecules.  A bad scenario 

would be to strip the metal and not coat it when it is situated in a marine context or 

near a road regularly treated with de-icing salt.   

Where coatings are damaged the corrosion type is influenced by the nature of the 

coating with filiform corrosion forming with acrylic but general corrosion forming with 

micro-crystalline wax and the silane. 

Of the 3 coatings tested Siliglide 10 performed best with chloride in a high RH 

climate but may begin to fail towards the end of a year.  It is therefore probably 

better suited for use indoors.  Cosmoloid H80 performed worst overall in these tests 

and so cannot be recommended.  Paraloid B72 can be recommended as it 

performed consistently well.  It reduced corrosion on cleaned surfaces, with only 

superficial minimal filiform corrosion forming.  It also performed reasonably well on 

contaminated surfaces.  However, when using Paraloid B72 care needs to be taken 

with existing paint layers as acetone can cause solvent lifting, a possible solution 

could be to substitute acetone for xylene, but xylene is more toxic than acetone so 

there are additional health and safety implications.  For the samples with salt 

solution applied to the scribed damage in the coatings there was not a great deal of 

difference between anti-corrosion performances of the coatings.  Thus, the 

recommendation for protecting an area of local paint loss is to clean the surface and 

coat using 3 layers of Paraloid B72.   

This research project has introduced Siliglide 10, a clear silane coating, as a 

potential coating of the future for conservation, although more research is needed.  

It has also provided both a methodology and a small amount of the research and 

data that is needed for creating a standard.  There is a need for standards within the 

‘Heritage’ conservation sector to provide quantified evidence based guidelines and 

advice for preserving specific materials in different states of repair to be stored in 

specific environmental conditions.  Although it is only a small contribution, it is a 

significant contribution and by using this methodology, changing one variable at a 

time e.g. RH % or the metal substrate used, more and more data can be collated 

within a database and progress will be made towards creating standards for 

conservation practise, for the use of conservation practitioners 

Another important area where further research is required included the solvent 

retention of Paraloid B72 with different solvents.  Following this, comparison of O2 

consumption data using the coating Paraloid B72 with different solvents would 
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confirm whether using xylene instead of acetone is a feasible option for corrosion 

reduction.  Potentially it may be that a Siliglide 10 and Paraloid B72 coating 

combination offers the best protection.  However, as the performance of these 

coatings has not been tested in fluctuating RH, light and temperature conditions this 

is another area which requires further investigation in order to predict how they 

would perform in field-tests. 
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10 Appendix 

10.1 Summarised TM environment data  

The individual tables provide summarised data for different areas of the museum.   

Table 81 Summary of environment in the British Steel Hall on the Tortoise Tank. 

Monitoring 
period 

Start date End Date 

Temperature (°C) Relative Humidity (%) 

Min  Ave  Max  Min Ave Max 

Oct - Nov '11 24/10/2011 16/11/2011 18.8 19.1 23.0 47.4 61.6 72.7 

Nov ’11 – Jan '12 16/11/2011 19/01/2012 15.9 18.8 22.9 25.0 46.7 65.5 

Jan – Mar '12  19/01/2012 05/03/2012 14.8 18.5 23.2 17.4 39.1 62.1 

Mar – May '12 05/03/2012  01/05/2012 17.7 18.7 24.6 25.3 41.8 58.7 

May – Jun '12 01/05/2012 22/06/2012 18.0 20.3 24.8 32.4 51.8 73.8 

Jun – Aug '12 22/06/2012 29/08/2012 18.9 21.3 25.2 39.2 62.5 80.9 

 

Table 82 Data summary collected in the Discovery Centre on the Mark 10 

Monitoring 
period 

Start date End Date 

Temperature (°C) Relative Humidity (%) 

Min Ave Max Min Ave Max 

Oct - Nov '11 24/10/2011 16/11/2011 16.79 17.81 25.71 47.16 66.57 79.91 

Nov ’11 – Jan '12 16/11/2011 19/01/2012 14.19 17.44 22.79 28.52 50.63 69.77 

Jan – Mar '12 19/01/2012 05/03/2012 12.86 17.42 22.93 18.63 41.37 61.81 

Mar – May '12 05/03/2012 01/05/2012 17.06 18.11 22.95 25.73 43.19 60.21 

May – Jun '12 01/05/2012 22/06/2012 17.10 19.66 25.03 32.95 53.91 78.81 

Jun – Aug '12 22/06/2012 29/08/2012 17.98 20.81 25.81 41.23 65.03 82.40 

 

Table 83 Summarised data collected in the New Display Hall on the Firefly 

Monitoring 
period 

Start date End Date 
Temperature (°C) Relative Humidity (%) 

Min Ave Max Min Ave Max 

Oct - Nov '11 24/10/2011 16/11/2011 17.96 19.49 22.94 45.54 59.98 71.54 

Nov ’11 – Jan '12 16/11/2011 19/01/2012 15.81 18.75 22.94 26.21 46.13 64.45 

Jan – Mar '12 19/01/2012 05/03/2012 17.27 18.77 23.50 19.11 38.05 73.16 

Mar – May '12 05/03/2012 02/05/2012 15.99 18.60 29.09 24.58 42.48 95.05 

May – Jun '12 02/05/2012 22/06/2012 16.16 20.00 24.34 34.14 54.01 92.50 

Jun – Aug '12 22/06/2012 29/08/2012 19.32 21.75 25.44 41.17 61.91 77.25 
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Table 84 Summary of data by the TM in the New Display Hall inside the Firefly 

Monitoring 
period 

Start date End Date 
Temperature (°C) Relative Humidity (%) 

Min Ave Max Min Ave Max 

Nov ’11 – Jan '12 17/11/2011 19/01/2012 16.87 18.78 23.14 28.46 45.66 61.50 

Jan – Mar '12 19/01/2012 05/03/2012 16.36 18.91 23.04 17.38 37.34 57.11 

Mar – May '12 05/03/2012 01/05/2012 16.55 18.67 25.38 28.00 41.53 86.65 

May – Jun '12 01/05/2012 22/06/2012 16.94 19.98 23.48 39.55 53.41 68.29 

 

Table 85 Summary of data collected by the TM in Nev's Shed 

Monitoring 
period 

Start date End Date 
Temperature (°C) Relative Humidity (%) 

Min Ave Max Min Ave Max 

Nov ’11 – Jan '12 17/11/2011 19/01/2012 -0.82 8.14 24.55 47.90 91.77 100.00 

Jan – Mar '12 19/01/2012 05/03/2012 -6.12 5.54 22.76 41.65 91.19 100.00 

Mar – May '12 05/03/2012 01/05/2012 1.47 9.32 22.88 30.86 81.21 100.00 

May – Jun '12 01/05/2012 22/06/2012 4.42 14.28 27.76 30.41 80.79 100.00 

Jun – Aug '12 22/06/2012 29/08/2012 10.86 17.45 29.33 38.57 83.72 100.00 

 

Table 86 Summary of the data collected by the TM in the New Shed 

Monitoring 
period 

Start date End Date 
Temperature (°C) Relative Humidity (%) 

Min Ave Max Min Ave Max 

Nov ’11 – Jan '12 17/11/2011 19/01/2012 5.28 10.05 23.52 47.94 82.86 100.00 

Jan – Mar '12 19/01/2012 05/03/2012 1.82 7.65 22.91 40.65 80.23 100.00 

Mar – May '12 05/03/2012 01/05/2012 7.12 11.69 23.30 31.13 69.98 96.63 

May – Jun '12 01/05/2012 22/06/2012  10.32 16.27 32.35 29.52 71.29 100.00 

Jun – Aug '12 22/06/2012 29/08/2012 15.03 19.39 29.55 40.17 74.84 97.47 

 

Table 87 Summary of data collected by the TM in Shed 1 

Monitoring 
period 

Start date End Date 
Temperature (°C) Relative Humidity (%) 

Min Ave Max Min Ave Max 

Nov ’11 – Jan '12 17/11/2011 19/01/2012 -1.74 7.65 23.11 48.43 96.86 100.00 

Jan – Mar '12 19/01/2012 05/03/2012 -6.94 5.39 22.83 40.67 93.74 100.00 

Mar – May '12 05/03/2012 01/05/2012 0.64 9.78 23.70 28.58 80.76 100.00 

May – Jun '12 01/05/2012 22/06/2012 3.54 15.28 32.01 29.05 78.83 100.00 

Jun – Aug '12 22/06/2012 29/08/2012 10.03 18.55 32.53 36.09 81.82 100.00 

 

Table 88 Summary of data collected by the TM in the Shed 1 Extension 

Monitoring 
period 

Start date End Date 
Temperature (°C) Relative Humidity (%) 

Min Ave Max Min Ave Max 

Nov ’11 – Jan '12 17/11/2011 19/01/2012 -2.61 7.83 23.47 37.79 93.90 100.00 

Jan – Mar '12 19/01/2012 05/03/2012 -7.37 5.64 23.24 41.42 90.95 100.00 

Mar – May '12 05/03/2012 01/05/2012 0.19 10.09 28.83 22.50 79.31 100.00 

May – Jun '12 01/05/2012 22/06/2012 2.75 15.80 37.35 19.56 75.65 100.00 

Jun – Aug '12 22/06/2012 29/08/2012 9.39 19.04 41.85 21.80 78.52 100.00 
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Table 89 Summarised data collected in the Tamiya Hall, at the Sentry Post 

Monitoring 
period 

Start date End Date 
Temperature (°C) Relative Humidity (%) 

Min Ave Max Min Ave Max 

Oct - Nov '11 24/10/2011 16/11/2011 15.28 16.63 22.60 50.53 72.45 80.81 

Nov ’11 – Jan '12 16/11/2011 19/01/2012 15.62 21.05 30.80 20.55 44.31 78.11 

Jan – Mar '12 19/01/2012 05/03/2012 12.32 20.53 23.78 15.38 33.62 55.07 

Mar – May '12 05/03/2012 01/05/2012 17.98 20.79 25.16 22.84 36.95 57.09 

May – Jun '12 01/05/2012 22/06/2012 17.89 20.62 27.04 30.10 51.95 74.32 

Jun – Aug '12 22/06/2012 29/08/2012 17.77 20.92 28.28 45.51 65.96 79.19 

 

Table 90 Summary of data collected by the TM in the WW1 Hall, display case 

Monitoring 
period 

Start date End Date 
Temperature (°C) Relative Humidity (%) 

Min Ave Max Min Ave Max 

Apr '12 19/04/2012 25/04/2012 15.66 16.75 23.13 32.75 42.03 71.44 

Apr – May '12 25/04/2012 01/05/2012 14.89 16.50 21.56 40.64 47.63 60.51 

Jun – Aug '12 22/06/2012 29/08/2012 18.02 21.40 27.84 39.95 63.03 79.74 

 

Table 91 Summary of data collected by the TM in the WW1 Hall, CW 

Monitoring 
period 

Start date End Date 
Temperature (°C) Relative Humidity (%) 

Min Ave Max Min Ave Max 

Oct - Nov '11 24/10/2011 16/11/2011 17.61 19.15 26.73 37.29 59.63 77.33 

Nov ’11 – Jan '12 16/11/2011 19/01/2012 16.50 18.81 22.68 23.40 45.91 68.35 

Jan – Mar '12 19/01/2012 05/03/2012 13.14 18.73 23.27 15.48 37.26 57.01 

Mar – May '12 05/03/2012 01/05/2012 14.14 18.08 23.06 24.80 67.57 42.72 

May – Jun '12 01/05/2012 22/06/2012 14.78 19.11 26.06 32.03 55.53 76.52 

Jun – Aug '12 22/06/2012 29/08/2012 18.02 21.40 27.84 39.95 63.03 79.74 

 


