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Summary

We construct examples of non-semisimple tensor categories using planar algebras, with
our main focus being on a construction from the restricted quantum group Uy(sly). We
describe the generators and prove a number of relations for the Uq(ﬁb) planar algebra,
as well as describing diagrammatically various homomorphisms between modules, and

conjecture a formula for projections onto indecomposable modules.
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Chapter 1

Introduction

Planar algebras are a type of graded diagrammatic algebra introduced in relation to sub-
factors, and which have close relations to rigid tensor categories. However the majority
of current examples of planar algebras, such as the constructions in [2, 48], are subfactor
planar algebras, which are positive-definite, unitary and semisimple. The aim of this thesis
is to construct examples of non-semisimple and non-unitary tensor categories using planar
algebras, with our main focus being on a construction coming from the representation
theory of the restricted quantum group Uy (sly) [18].

We start by reviewing subfactors and how they lead to planar algebras, then briefly dis-
cuss tensor and fusion categories, and quantum groups, and how they lead to examples of
planar algebras.

In chapter 3 we give a general definition of planar algebras, and introduce two standard
examples, the Temperley-Lieb algebra, and the bipartite graph planar algebra. We then
discuss a categorical variation of the Temperley-Lieb algebra, and use it to construct
some basic examples of fusion categories, with our focus being on the Semion, Ising, and

Fibonacci/Yang-Lee fusion rules.

Chapters 4, 5, and 6, are dedicated to the construction of a planar algebra from the
restricted quantum group U, (slz2). It was conjectured in [22] that the representation cat-
egory of Uy(slz) is equivalent to the representation category of the W(p) logarithmic
conformal field theory for ¢ = ¢™/P, and proven for the case p = 2. An equivalence as
abelian categories was confirmed in [52], however [42] showed that for p > 2, there is a

U, (sl2) module whose tensor product doesn’t commute, and hence can’t be braided, and

so the categories aren’t equivalent as tensor categories. However our construction only



considers a subcategory of U,(sl2) modules where this module doesn’t appear. In chapter
4 we introduce Uy (sl) and its representation theory, as well as discussing the dimensions
of our planar algebra.

Chapter 5 is focused on our Uq(ﬁ[g) planar algebra construction. The planar algebra
construction is a diagrammatic description of Endg, (a1, ((2(2+ )®”), where X" is the two-
dimensional irreducible Uy (sly) module. This forms an algebra for each n. For n < 2p—1,
this algebra is the Temperley-Lieb algebra, T L, (§), with § = ¢ +¢~!, and for n > 2p — 1,
is the algebra generated by T'L,(d) and two extra generators, o and 5. These generators
were first introduced in [25], however we give our own definition for them, and prove a

number of relations on them.

Chapter 6 is focused on the indecomposable modules that appear in the decomposition of
(X;r )®n and consists of diagrammatic descriptions of various maps between these mod-
ules, including the second (non-identity) endomorphism on indecomposable projective
modules. We conclude with a conjectured formula for the projection onto these inde-
composable modules, as a generalization of the Jones-Wenzl projections. An alternative

formula for these projections was given independently in [28].
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Chapter 2

Background

2.1 Basics of Von Neumann Algebras

Let B(#H) be the set of bounded operators on a Hilbert space . There is a norm on the

operators given by the Hilbert space inner product;

| Al := sup{/(Azx, Az),z € H : ||z| < 1}

and an involution map, *, such that (Ax,y) := (x, A*y). An operator is called self-adjoint
if A = A* and positive if (Az,x) > 0 for all z € H. A positive operator is necessarily
self-adjoint. If AA* = A*A, the operator is said to be normal. If A*A = 1, the operator
is called an isometry, and is unitary if AA* = 1 also holds. An operator is called a pro-
jection if A = A* = A2, If A*A is a projection, then A is called a partial isometry. A set
S C B(H) is said to be self-adjoint if for all A € S, A* € S.

A C*-algebra A is an involutive normed Banach algebra such that ||z*z| = ||x||? for
all x € A. Every C*-algebra is isomorphic to a norm-closed subalgebra of B(H), for some
Hilbert space H. The commutant of a set S is the set S’ := {z € B(H) : sz = xs for
all s € S}. There are various topologies possible on B(H). Firstly there is the norm
topology, with open balls given by the norm. Hence for a sequence of operators A,
A, — Aif ||A, — Al| — 0. The strong operator topology is defined such that A, — A if
|Apn — An|| — 0 for all n € H. Similarly the weak operator topology is defined such that
A, — Aif (An,v) — 0 for all n,v € H. In order of strength, we have; weak < strong <

norm [55].

A von Neumann Algebra is a self-adjoint subalgebra of B(#), containing 1 € B(H),
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that is closed in the weak operator topology [19]. The fundamental result of von Neumann
Algebras is von Neumann’s bicommutant theorem [4]: For a unital self-adjoint subalgebra

A of B(H), the following are equivalent:
1. A is closed in the weak operator topology
2. A is closed in the strong operator topology
3. A=A"

From this we see that we can easily form many examples of von Neumann algebras from
a set S of operators by taking (S U S*)”. Note that (S U S*) = (S US*)"” is also a von
Neumann algebra. Indeed von Neumann algebras naturally come in pairs, A and A’. A
von Neumann algebra A with trivial centre, i.e. AN A" = C1, is called a factor. Every
von Neumann algebra can be viewed as either a direct sum or direct integral of factors
[4]. This leads to the obvious question ”Is there a classification of factors?”. This was
answered by Murray and von Neumann who classified factors in terms of their projections
[50]. For two projections p, ¢ in a von Neumann algebra A, we say p < ¢ if ¢ —p is positive.
This provides a partial order on the projections in A. Another partial order is given if
there is a partial isometry u € A such that uu* = p and u*u < g which we denote as p = q.
There is an equivalence, p ~ ¢ if there is a partial isometry u € A such that uu* = p and
u*u = q. A projection p is called infinite if ¢ ~ p for some g < p, p # ¢, otherwise p is
called finite. A von Neumann algebra is called finite if its identity is finite, and is called
purely infinite if it has no finite projections other than 0. A factor is called infinite if its
identity is infinite. A non-zero projection p is called minimal if ¢ < p = ¢ =0 or ¢ = p.

We have the following results on projections [36]:

e If dimH = oo then B(H) is infinite

A factor with a unique trace is finite

e Every projection in a finite von Neumann algebra is finite. This comes from the

stronger result that if p < g and ¢ is finite then p is finite

If A is any von Neumann algebra then 1 is an infinite projection in A ® B(H) if
dimH = oo

If A is a factor and p, ¢ are projections in A then either p S qgor ¢ X p
e p is minimal in A if and only if pAp = Cp

12



A trace on a von Neumann algebra A is a linear function tr : A — C satisfying:
o tr(ab) = tr(ba)

e tr(a*a) >0

tr is ultraweakly continuous

The trace is called faithful if tr(z*z) =0= 2 =0

The trace is said to be normalized if tr(1) = 1.

The ultraweak topology on B(H) is given by the basic neighbourhoods about a;

{b: Y [{(a — b)n;,v;)| < €} for any € > 0 and sequences (1;), (v;) € [*(H) with
i=1

oo
S Imill? + ||lvil|? < oo. Similarly the ultrastrong topology is given by basic neighbourhoods

=1

o0
{b: Y |l(a—b)n;|*> < €}. These coincide with the weak and strong topologies respectively
i=1
on norm bounded subsets of B(#H). The ultraweak and ultrastrong topologies on B(H)
can be viewed as the restriction of the weak and strong topologies on B (’H ® l2(N)) to

B(H) ® 1. We can now give a classification of factors: A factor is said to be:
e Type 1 if it has a minimal non-zero projection
e Type II if it has non-zero finite projections, but no minimal non-zero projection
e Type III if it contains no non-zero finite projection

Every type I factor is isomorphic to B(#H). It is said to be type I, when dim(H) = n
where n is allowed to be infinite. Type II factors can be either II; or Il factors. Type II;
factors have a unique faithful trace. Type Il factors are of the form A® B(H) where A is
a Il factor and H is infinite dimensional. If A is a II; factor on H, and p € A is a non-zero
projection, then pAp is a Il factor on pH. If A is an infinite factor with projection p
such that pAp is a II; factor, then A is a Il factor. There are non-zero projections in
a II; factor of arbitrarily small trace. Further, the trace gives an isomorphism from the
equivalence classes of projections on a II; factor to the interval [0, 1]. For a 11, factor the
decomposition as I} ® B(H) gives a trace defining an isomorphism from the projection
equivalence classes to the interval [0, oc]. We shall avoid further classifications of type III
factors. Finite dimensional factors are type I factors, and are simply the matrix algebras
M, (C) acting on C". A general finite dimensional von Neumann algebra is then just a

direct sum of matrix algebras [38, 61].
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The simplest and most important example of a IIy factor is the hyperfinite factor. A
von Neumann algebra A is called hyperfinite if there is an increasing sequence of finite
dimensional #-subalgebras A, C A such that their weak closure is A. Up to isomor-
phism, there is a unique hyperfinite II; factor [51]. Another example is given by group
von Neumann algebras. Let G be a group, and form the Hilbert space [2(G). This is
just the set of sequences (ayeq), ay € C, of length |G|, with the inner product given by
(o, B) == " a,By. We can define unitary operators on this by u, such that u,(@,) := a.,.
The grougexf)n Neumann algebra vN(G) is then just the von Neumann algebra generated
by all such unitary operators. If the conjugacy classes of G are all infinite except for the

identity (known as an I.C.C. group), then vN(G) is a II; factor. Note that vN(G) is only

isomorphic to the group algebra CG when G is a finite group.

If we were to find an algebra that behaves as a von Neumann algebra, we might
wish to find a Hilbert space on which the algebra acts. This can be achieved by the
GNS construction. Using the trace on a II factor A, we can define an inner product by
(x,y) := tr(y*x). Taking the quotient of this by the ideal N := {x € A : tr(z*z) = 0} we
then get a positive definite inner product and so a pre-Hilbert space. The completion of
this is referred to as L?(A,tr), often written as just L?(A). As the trace on a II; factor
is faithful, L?(A, tr) is just the closure of A in the norm ||z := \/tr(z*z). Elements of
A can be viewed as both operators or elements of the Hilbert space, with the operators
acting by the algebra multiplication. In this way, L?(A) can be considered an .4-module.

Given another Hilbert space K, then L?(A)®K is also an A-module. Larger A-modules
can be constructed as direct sums. The following theorem in turn gives details on how a

Hilbert space breaks down into A-modules:

Let A be a II; factor and H be a separable A-module. Then there is an isometry
u:H — L?(A) ® I2(N) such that ur = (r ® 1)u. Further, uu* € A’ on L?(A) ® I?(N) and
tr(uu*) is independent of w. The number tr(uu*) is called the coupling constant, denoted
dim 4 H. Note that if A were replaced with C in the above, then the coupling constant

would be the dimension of H.

Some elementary properties of the coupling constant:

1. dimy L*(A) =1

14



2. dimy(L?(A) ® ?(N) = oo

3. dimyq H < oo iff A" is a I factor

4. dim g H = dim 4 I iff there is a unitary u such that H = uu*
5. For countably many A-modules H;, dima(®;H;) = >_ dimaH;
6. dimy(L%(A)q) = tr(q) for any projection q € A

7. For a projection p € A, dimy4,(pH) = tr(p) L dima H

From the fifth and sixth points, we see that we can construct a H such that dimyqH =r

for any value of r € [0, oo].

2.2 Basics of Subfactors

An interesting example for the coupling constant comes from the group and subgroup
Go < G when they are both ICC groups. In this case, I2(G) is a vN(Gp)-module, and
dim, N () (1*(G)) = [G : Go]. Since they are both ICC groups, vN(G) and vN(Gp) are
both II; factors, and because of the subgroup inclusion, we must have vN(Gp) C vN(G).
Hence we have a factor sitting inside another factor. This inclusion of factors is called a
subfactor.

Let A be a IlI; factor and G a finite group with an action on A. Then the algebra
of fixed points under the action of G, denoted A% is a II; factor, and A9 C A with
dim 4¢ A = |G|. Further, if H is another group and A = AH then G = H. If H is a
subgroup of G, then A% C A is an inclusion of factors, with dim 4¢ L?(A") = [G : H].
Similar results are achieved for a cross product action of groups [32].

These results led to the introduction by Jones of the notion of index for subfactors
[33]. If A C B is an inclusion of II; factors, the index of A in B is [B : A] = dim 4 L?(B).
The index is an invariant of subfactors, and forms the basis for their classification. Some

properties of the index include:

1. [ B:Al=1=A=8

2. If B acts on a Hilbert space H with dim4 H < oo then [B: A] = dim4 H/dimpH =
[A": B

3. If AC B CC are Il factors then [C: A] = [C : B][B: A

15



4. f A/ NB #Cl1 then [B: A] >4

For point four, a subfactor is called irreducible if A’ N B = C1. So every subfactor
of index less than 4 is irreducible. As a different example of a subfactor, let A be a II;
factor. Then A ® M} (C) is also a II; factor, and contains A. But L?(A® My (C)) is just
the direct sum of k? copies of L?(A), so [A® M(C) : Al = k?. This allows for a large

choice of index values, which can be increased even more by the following construction:

Let R be the hyperfinite II; factor, and p a projection in R. By hyperfiniteness, there
is an isomorphism 6 : pRp — (1 — p)R(1 — p). Let N := {x + 0(x) : = € pRp}. Then
N C R is a subfactor, with index [R: N] = (tr(p))~* + (1 —tr(p)) L. As we can choose p

so that tr(p) takes any value in [0, 1], we have [R : N] > 4 for this construction.

From now on, we will use M, N to denote II; factors.

For any subfactor N C M, there is a map Fy : M — N called the conditional

expectation, with the following properties:
1. B3 =Ey
2. En(z*) = En(2)*, EN(1) =1, En(z*z) =0iff x =0
3. Ex(2*z) > Ex(a")En (@), | En(@)] < |l2]
4. En(axb) = aE,(x)b for a,b € N
5. Ey is ultraweakly continuous
6. tryEn = try; (En preserves the trace)

Ex extends to a projection ey : L2(M) — L?(N). A fundamental result of subfactors,
is that given this projection, (M, ey) := {M,en}" is a II; factor with M C (M, e,) such
that [(M,en) : M] = [M : N]. This led Jones [33] to introduce his basic construction

on subfactors:
Given a subfactor N C M, then setting N := My, M := M, we can form the

tower of algebras; MO - M1 - M2 c ... C Mn where el',le(Mi) = LQ(Mz;l),
M1 = <M,',ei_1>, and each M; is a II; factor with [Mz : Mz’—l] = [Ml : Mo].

16



The projections e; satisfy the following properties:

2. €;e;,+1€e;, = Te€;
3. €;e; = €;€; if |Z*]‘ 22
4. tr(we;t1) = Ttr(w) where w is a word on {e, ..., e;}

where 77! := [M : N]. The first three properties are also known as the Temperley-Lieb

relations [62], and elements satisfying them generate an algebra (along with 1) of dimen-
o, [ 2i+2 _ _
sion 715 . Using these relations, Jones and Wenzl [33, 64] were able to put
141
restrictions on the possible values of the index of a subfactor. They found that for any II;
subfactor N C M, [M : N| € {4cos*(Z) : n > 3} U [4,00]. We have seen a construction
that gives the values [4,00], but the smaller values are a very interesting result. They
show that the index is quantized, which motivated attempts to classify these small index
subfactors, and to see if apart from the given construction, if there is any restrictions on
the possible larger index values. The first step in achieving this was to introduce further

invariants of subfactors, that would allow further categorization, as well as the ability to

recover the subfactor from the invariants.

Given the basic construction of a subfactor, we can form another tower:
C=NNNCNNMCNNM,..N'NM,.... Let P, := N'N M. Then this tower consists
of a sequence of inclusions of finite dimensional C*-algebras. Each Py is then isomorphic
to a direct sum of matrix algebras. Let Py = @©;Mp,(C) and Py11 = ®;M,,(C). Since
Py, C Py, then there are inclusion maps ®,M;, (C) — M; (C), > i, < j,. Forming
a matrix with rows indexed by the i, and columns indexed by the j'y whose entries are
non-zero if there is an inclusion map M; (C) < M; (C), and the entry is the multiplicity

of the inclusion. For example, the inclusion My(C) & M3(C) @ C — M5(C) @ My(C) is

described by the matrix:

10
11
01

These inclusion matrices take the form of the adjacency matrix of a bipartite graph, which

consists of two rows of vertices, the upper row indexed by the rows of the matrix, the lower
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row indexed by the columns of the matrix, and the number of edges between the ith vertex
on the upper row and the jth vertex on the lower row is simply the value of the i, jth
matrix entry.

To our tower of Py algebras, we can associate a bipartite graph to each inclusion, and
as the lower row of the kth graph will have the same vertices of the upper row of the
k 4 1th graph, we can adjoin the graphs to on-another to build a Bratelli diagram, whose
kth row has vertices indexed by the dimensions of the matrices in P. Note now, that each
Py, is generated from the previous algebra, and this enforces a symmetry on the bratelli
diagram, such that the edges between the kth and K + 1th rows are just the reflection
of the edges between the K — 1th and kth rows, plus some new parts. Hence, by this
reflection symmetry, and given Py = C, we can generate the entire bratelli diagram just
by knowing the new parts added at each row. If we delete the non-new stuff from the
bratelli diagram, the new stuff left forms a bipartite graph. From its construction, this
graph contains the inclusion information of our tower of Py’s and hence forms an invariant
of the subfactor. It is referred to as the principal graph. There is also a dual principal

graph, formed from the tower M'NM C M'N M, C ...

The principal (and dual principal) graph I' of a subfactor N C M has the property
IT||? = [M : N], and together they describe how the tower of subfactors are contained in
one-another. They allowed for a classification of small index subfactors, as the possible bi-
partite graphs with norm less than 2 was already a well known result. The possible graphs
are known as ADE graphs, and consist of Ay, Dy, Eg, E7, Es, with || A, = 2cos(;77),
1Dall = 2c08(525), 1| Boll = 2c0s(5), 1Bl = 2cos(Z5), | Exll = 2cos(5).

Izumi [29] showed that of these graphs, the D,, with n odd, and E; aren’t allowed.
He then went on to give an example of the construction of Eg [30]. Similarly, Eg was
constructed in [3], and Dy, in [41]. The A, are generated from the Temperley-Lieb
relations, quotiented by the nth Jones-Wenzl projection, detailed in [64]. In each case,
the bipartite graph is finite, and their corresponding subfactors are known as finite depth
subfactors.

The bipartite graphs of norm 2, corresponding to subfactors of index 4, also consist of
ADE graphs, but now include some infinite depth graphs. The subfactors of index 4 were
classified by Popa [57], and can all be considered to come from subgroups of SU(2). Of

special interest is Do, which can be considered to be the composition of two subfactors

of index 2, which is an example of a Fuss-Catalan subfactor [5].
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2.3 The Standard Invariant

Two constructions introduced to help understand subfactors are the paragroup, introduced
by Ocneanu [53], and the A-lattice, introduced by Popa [56]. Both of these constructions
turned out to rely on a subfactor invariant known as the standard invariant, which contains
a more detailed version of the information in the principal graph. It also allows the recovery
of the original subfactor, up to isomorphism, for inclusions of the hyperfinite II; factor
with finite principal graph [56].

For a subfactor N C M, its standard invariant is the tower of commuting squares:

C= NNN <c NnNM c NnNnNM, C NnNnM; C
U U U

C= M'nM Cc MnM, ¢ MnNM; C

These commuting squares consist of the inclusions of two towers of finite dimensional

C*-algebras;

C= P+ C Py C Py C
U U

C= FP_. Cc P_ C

Taking the limit we get: klggo P, CPy14+ =P CPur =ENCM.

Popa went on to prove classification results for when the principal graph is infinite,
that hold for all subfactors with index < 4.

Several different methods have been introduced to study the standard invariant, in-
cluding paragroups, A-lattices and a categorical approach, but the method favoured in

current research is planar algebras, introduced by Jones [35, 37].

2.4 Planar Algebras

To discuss planar algebras, we first need to introduce the notion of a planar tangle. A

planar tangle consists of an outer box, and a number (possibly zero) of inner boxes. There
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is a marked point (*) associated to each box, although it is often taken as the top left
corner, when all boxes are kept oriented with the page. Each box has a number of boundary
points along the top and bottom, the number of which is often called the colour of the
box. These boundary points form the start and end points for a set of non-overlapping
strings, which can also form closed loops. Each tangle is considered to be unique up to
diffeomorphism. Multiple parallel strings are sometimes depicted by a single thick string.

Extra structure can be added to a tangle, for example by orientating strings, or by
introducing a chequerboard shading. In the case of a chequerboard shading, it depends
only on the shading given to a single section, so is often defined based on the shading given
the the section containing the marked point of the outer box, and sometimes labelled +
for unshaded, and — for shaded.

There is a natural form of composition of compatible tangles. Given two tangles S and
T, if the outer box of S has colour k£, and an inner box ¢ of T also has colour k, then we
can insert S into ¢t with marked points aligned, then join and smooth strings, and delete
the outer box of S. This composition is denoted S o; T'.

Each tangle T' can be considered as a multilinear map on vector spaces Py, where k;

are the colours of the inner boxes of T', and kg is the colour of the outer box of T'. The
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map then has a presentation Zr : Py, ® ... ® Py, — Pj,. There is a set of multiplication
maps that turn each Py into an algebra, as well as inclusion maps that allow smaller Py
to be viewed as subalgebras of Pyy,. A Planar Algebra is then defined to be a set of
vector spaces that form a series of algebras under the action of tangles. There is a natural
involution on the tangles by taking the reflection, which turns each Py into a x-algebra.
An inner product can also be defined using the trace tangle by setting (z,y) := tr(zy*)
where we define the trace of the empty tangle as ¢tr([J) := 1. Note that this inner product
isn’t necessarily positive definite. For this inner product to work, we also need the notion
of the modulus, which is a scalar § such that removing a closed string loop from a tangle

is equivalent to multiplying the resulting tangle by 4.

The simplest example of a planar algebra is the pictorial representation of the Temperley-
Lieb algebra introduced by Kauffman [40]. In this case, a basis for the nth algebra, T'L,,
is given by a box with no internal boxes and 2n boundary points, and the basis taken over

each possible way of joining n non-intersecting strings to those points. A more compli-
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cated example is the graph planar algebra, which associates a planar algebra G(I") to a
bipartite graph.

A subfactor planar algebra is defined to be a positive definite planar algebra with
shading, such that each P,+ has finite dimension, dim Po+ = 1, and it is spherical. The
spherical requirement can be thought of as requiring that the involution and shading don’t
affect the trace. Under these requirements, each P, of a subfactor planar algebra forms
a finite dimensional C*-algebra, and so form the towers of a standard invariant.

A fundamental result on planar algebras is the combined work of Jones and Popa
[35, 58], which can be taken as saying there is a bijection between subfactors and sub-
factor planar algebras. Further the index of the subfactor is equal to the square of the

modulus 4, and the principal graph is the same for both subfactor and planar algebra.

This then gives a way for discovering new subfactors, but there is no guarantee that
planar algebras simplify the process in any way. There are some tools available through
planar algebras that may help however. The first is that as the planar tangles with no
internal boxes are just elements of the Temperley-Lieb algebra, then there is a mapping
from T'L(0) to any planar algebra with the same value of §. Secondly, there is a natural
decomposition over modules for any planar algebra. An annular-(n, k) tangle is a tangle
with one internal box, whose internal colour is n, and external colour is k. It is clear that
inserting any tangle into an annular tangle will result in an action on the inserted tangle,
and so any planar algebra must consist of modules over the annular tangles. Thirdly, given
the principal graph of a subfactor, there is an embedding of its subfactor planar algebra
into the graph planar algebra of its principal graph [31].

Using these tools has allowed the construction of subfactor planar algebras for all ADE

subfactors [2, 48], as well as putting some constraints on possible principal graphs.

Although as stated earlier the index can take any possible value greater than 4, it
turns out that if you ignore subfactors with A, as their principal graph, then the possible
index values become quantised. The combined work of many people has allowed for the
classification of these values up to index 5 [37].

The first step in the classification was to find possible principal graphs with norm in
the correct range, which was done by several people, with the full range being covered
through the use of computers. The set of possible graphs is then narrowed down using

various constraints until only a small number are left for which the construction of a
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Figure 2.4: The map of low index subfactors. The shaded regions indicate complete
classification and filled dots indicate known subfactors. Open dots indicate some possible

candidate principal graphs. Taken from [37].

subfactor can be attempted. The first and most general constraint on the graphs is an
associativity test, which enforces conditions on the possible paths on a principal graph and
its dual. Combined with a theorem by Ocneanu on triple point constructions [27], it allows
for large numbers of graphs to be eliminated. Other constraints come from a combination
of combinatorics and linear algebra, but the most surprising result is the appearance of a

number of constraints arising from number theory [54].

Using these results has allowed for the restriction of the possible principal graphs for
subfactors in the range 4 < [M : N] < 5 to just 5 principal-dual graph pairs. Each of
these graph pairs gives rise to two subfactors, giving 10 unique subfactors in the range.
At index equal to 5 there are a further 7 subfactors, all coming from finite group con-
structions. Several subfactors of larger index have also been found, and there are ongoing
attempts to increase the range of known classification. It isn’t yet known how far the
index quantization extends, but is believed to stop at 6, although the reasoning for this

could allow it to stop at as low as 3 + v/5.
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2.5 Tensor Categories

For more detailed introductions to fusion and tensor categories, as well as further back-
ground such as the definition of an abelian category, see [9, 15, 16, 46, 49]. Throughout
this section we denote by C a K-linear abelian category. By a simple object we mean one
such that Hom (X, X) ~ K. An abelian category is semisimple if every object is isomor-
phic to a direct sum of a finite number of simple objects.

A tensor category is a K-linear abelian category along with the following;:
e A bifunctor ® : C xC — C,
e A natural isomorphism axyz: (X QY)®Z - X ((Y®Z),X,Y,ZcC,

e A simple object 1 € C and natural isomorphisms ¢; : 1 ® X — X, 1, : X ®1 = X,
X e,

that satisfy the pentagon and triangle axioms.

The pentagon axiom:

&A B,C

(A®B)@C)® D ——= (A® (BRC))® D

®4,(B®0),D
B

A® ((B®C)® D)

Q(A2B),C,D N lapep

(A® B) ® (C ® D) ~222D, 4 o (B® (C® D))
The triangle axiom:

X))y X Xg(1eY)
L @ idy N\ lidx ® y

X®Y

We refer to ®, «, and 1 as the tensor product, associativity map, and unit, respectively.
An object X* € C is called a left dual of X, if there are maps evy : X* ® X — 1 and

cvx 1 1 — X*® X such that:
(CUX & Z'dx)a)gx*,X(idXe’Ux) :idX
(idx* &® ch)a)_(l*’Xx* (6?))( &® idx*) =idx+

evx and cvyx are referred to as the evaluation and coevaluation maps respectively. The
right dual of X is defined similarly.

A tensor category is called rigid if every object has left and right duals. It is pivotal if
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there is a natural isomorphism X — X**. A fusion category is a rigid semisimple tensor
category with a finite number of simple objects. In a fusion category, right and left duals
are isomorphic.

Given an tensor category C, and direct sums of objects, A1 & ... ® A,, B1 ® ... ® By,

morphisms between them can be considered as matrices as follows:

Hom(A1,B1) --- Hom(A,, B)

Hom(A1,B2) --- Hom(A,,Bs)
Homg (A & ...® Ay, B1 & ... ® By := " ,

Hom(A1,By,) -+ Hom(Ay, Bn)

Ai,Bj eC

The tensor product is distributive in the obvious way with the direct sum:
(A1 @A) ® (B1® B2) = (A1 ®B1) @ (A1 ® By) & (A2 ® B1) @ (A2 ® Ba).
Given a fusion category C with isomorphism classes of simple objects { X;}, where X := 1,
the fusion coefficients Nikj are defined as the multiplicity of X}, in the tensor decomposition

of X; ® Xj.

A braiding on a tensor category is a set of isomorphisms cxy : X ® Y — Y ® X for
each pair of objects X,Y € C that satisfies the hexagon identities:

QA,B,C

(A® B)® C A (BeC) 229 BeO)®A
lean lapca
BoA)eC 22% BgAeC) 2% B ((C®A)

1
(AeB)oC “22% AgBec) 229 (BgO)® A
bedls lagca
071
BoAd)oC 2% BrArC) 4% Be(C®A)

A braiding is called symmetric if cy xcxy = idxgy for all X,Y € C.

A twist is an automorphism fx : X — X, for all X € C such that

Oxey =(0x @ Oy)ey xexy

(0x)" =0x~

for all X,Y € C. A tensor category is called ribbon if it has a braiding and twist. A

modular tensor category is a ribbon fusion category. The Categorical Dimension of a

25



tensor category is defined as Dim(C) = Y. d(X)?, d(X) := tr(lx), where Ir7(C)
Xelrr(C)

is the set of simple objects in C. Given a modular tensor category, we can derive two

matrices S, T, known as modular invariants, which give a representation of the modular

group SL(2,Z). These are defined as:

S:= ms S:= (Sxv)x,yerr () Sxy : = tr(Rx,yRyx)
(2.1)
1
T — _diag(0x) £(C): = Oxd(X)2  £(C) #0 (2.2)
€eni Dim(C Xg;@ 3

These matrices provide a way of checking that the solutions for the category are correct

[6, 17]. Notably, we can recover the fusion rules using the Verlinde formula:
k _ Siyp g
Nj = < SioSkp (2.3)
0 SO,p

Where 5 = s if K has no complex elements. Given hj € K, such that 0x, = e e

have:

Si,j = S(]’o Z exp(?z'ﬂ(hi + hj - hp))N[:]d(Xp) (2.4)
p
Finally we have that for some permutation matrix P:
(ST)> =P (2.5)

There is a close relationship between fusion categories and planar algebras that comes
from the following construction. Given a fusion category C, and a chosen object X € C,

consider the following:

K Cc End(X) C End(X®X*) C EndX®X*®X) C..
U U U

K C End(X™*) C End(X* ® X) C ..

This can be described as a (shaded) planar algebra, with the Temperley-Lieb generators

given by compositions of the evaluation and co-evaluation maps:
e =evxevy XX 212 X X"

If the chosen object is self-dual, then the planar algebra is a diagrammatic description of

End(X®").
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2.6 Quantum Groups

For general references to Hopf algebras and quantum groups, see [12, 39, 44].
Let K be a field, and A a vector space over K with tensor product ®. A is called an algebra
if there are maps p: A® A — A and n: K — A, called the multiplication and unit maps

respectively, such that the following diagrams commute:

p®id

A9AA 2% 494 KoAd 2% Aga {2 49K
id®@p Lu N\ Ay Ve
A A L A A

Similarly A is called a coalgebra if there are maps A : A -+ AR Aand e : A — K, called the

comultiplication and counit maps respectively, such that the following diagrams commute:

A A, A® A KoAd <2 4 2L 4gK
Al lA®id £ ®id N Mid® e
Ao A M98 A9 A A Ao A

The comultiplication is often written using Sweedler notation: A(h) =3 hy ® hy and
(A®id)A(h) = > ha) ® hg) ® k). The summation symbol is often omitted.
Let 7: A® B — B ® A for K-vector spaces A, B. A is called a bialgebra if the following

diagrams commute:

ARARA®A Lerel, AQAQAR®A
A®AT lpep
A®A N KR A® A

AgA 25 KoK ApA & KeK

i I At e

£, K A & K

A map S : A — Ais called an antipode if the following diagram commutes:

ApA 594 4g4
A N\
A 5 K 1, A
AN Yt

Ao A M95 494

27



A Dbialgebra with an antipode is called a Hopf Algebra. A Hopf algebra is called
semisimple if it is semisimple as an algebra. The simplest example of a Hopf algebra is
the group algebra KG, with A(g) :=g® g, e(g) := 1, S(g) := g1, for all g € G. In finite
dimensions with K of characteristic zero, the only Hopf algebras of order p for p prime,
are the group algebras K[Z,]. For p?, the only semisimple Hopf algebras are K[Z,2] and

K[Z,, x Zp]. However there is also a non-semisimple Hopf algebra of dimension 2.

A left module M over a K-Hopf algebra H is a K-vector space with a K-linear map

A: H® M — M such that the following diagrams commute:

HoHoM 5 oM KoM 9% meoMm
u®id | 1A N 1A
HoM LN M M

Given two modules M7, M> over a Hopf algebra H, the action on their tensor product is

defined using the coproduct:
h(m1 & mQ) :A(h)ml R Mmo = h(l)ml ® h(g)mg

for h € H, my € My, mo € Ms. It follows from this that the category of representations
of a Hopf algebra naturally form a tensor category.

Define the flip map 7 as 7(a ® b) := b ® a. Given a Hopf algebra H, we say it is cocom-
mutative if TA(h) = A(h) for all h € H.

A quantum group is a noncommutative and non-cocommutative Hopf algebra.

A large number of examples of quantum groups come from deformations of the universal
enveloping algebra of a Lie algebra, denoted U,(g), where ¢ € K. When ¢ is not a root
of unity, then the representation category of U,(g) can be considered equivalent to the
representation category of g. When ¢ is a root of unity the case is more complicated, as
there is the appearance of negligible modules, and there are several approaches to dealing
with this. The usual approach is only consider non-negligible modules, i.e. modules with

EVX

id iy *
LRSI SN E=D Gl

non-zero trace, where the trace is defined by 1 —% X @ X*
Doing this, we find that there is a finite number of irreducible modules, and they form a

fusion category.

The simplest example of a quantum group is U,(slz). It turns out that its representation
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theory is closely related to the Temperley-Lieb algebra, by what is known as (quantum)
Schur-Weyl Duality [26, 45].
Let X denote the two dimensional representation of Ugy(slz). Then for ¢ not a root of

unity, Enqu(ﬁ,Q)(X@m) ~ TL,(q+ q~'). Further, let f; denote the kth Jones-Wenzl pro-

jection, and Endy, (s1,)(X®") denote Endy, (s1,)(X®™) quotiented by negligible modules,

which include all highest weight modules of dimension greater than k£ — 1. Then for ¢ an

-1
2kth root of unity, Enqu(slg)(X@)n) ~ TLn(q+q )/fk—l'
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Chapter 3

K-Planar Algebras

The aim of this chapter is to introduce a generalised definition of planar algebras, and
introduce two fundamental planar algebras, the Temperley-Lieb algebra and the bipartite
graph planar algebra. These will then be used as a starting point for constructing new al-
gebras. We then discuss the Temperley-Lieb category, and how it can be used to construct
examples of fusion categories. As a demonstration, we construct examples of the semion,
Ising, and Fibonacci/Yang-Lee fusion categories, giving isomorphism maps for their fusion
rules, finding their associativity, braiding, and twist constraints, and using these to give

their S and T matrices.

3.1 A Generalised Definition of Planar Algebras

A planar tangle consists of an outer box an some (possibly zero) number of internal boxes.
Each box has a marked point () on its boundary, which if not shown, is assumed to be
the top left corner. Each box has a number of points along its top and bottom, which can
be numbered clockwise starting at the first point after the marked point. The number of
points along the top and bottom is usually required to be equal, although this is often
relaxed for practical purposes. Each point is the start/end point for a string, i.e. an
embedding of R, and each string must begin and end on the boundaries of boxes, or form
closed loops. The strings are generally not allowed to cross, and their positions are unique
up to diffeomorphism. A box with 2k boundary points is said to be of colour k, and a
tangle is said to be a k-tangle if its outer box has colour k. We can give an orientation
to the string joining to the first point on the outer box, pointing towards this point being
considered positive, and alternate the orientation for strings joining the succeeding points.

This allows us to give the tangle a shading, by defining that travelling along a string in
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the direction of the orientation, the region to the right is shaded.

There is a natural composition on tangles, where given a k-tangle, and another tangle
with an internal k-box, the composition is given by inserting the k-tangle into the k-box
with their marked points aligned, then joining the corresponding strings, and removing
the boundary of the k-box. Given a set of k-tangles, this can be taken as a basis and
extended to form a vector space, denoted P,. We will assume for now that all vector
spaces are over a field K. Take the k-tangle with two internal k-boxes aligned vertically, and
connected by vertical strings, (denoted My,), then insertion of Py elements into this forms
a multiplication on Py, and so turns P into and algebra. The unit for this multiplication
is the k-tangle with no internal boxes, (1) and all strings vertical. The k + 1-tangle with
a single k-box, connected vertically, with another string to the right, (I,f“), forms an
inclusion map from P to Pyy1. Similarly, the k-tangle with a single k£ 4 1-box, connected
vertically apart from the kth and (k + 1)th points, which are joined together, (SR],zH),
forms a map from Py to Py. These maps then turn |J Py into the graded algebra
P. If we consider removing a closed loop to be equivalelft: (’;o multiplying the tangle by

6, for some choice of §, then we can identify 0-tangles with no internal boxes, with the

underlying field. If Py is 1-dimensional, then maps to it are linear functionals.

Given a k-tangle T' with n internal boxes of colours k1, ..., k, and a graded algebra P,
a presentation of 71" is a multilinear map Zr : Py, ® Py, ® ... ® Py, — P, which is given
by inserting elements of Py, into the k;th box, and identifying the result as an element of
Pr. A planar algebra is a graded algebra that is well-defined over the presentation of any

tangle. It is called connected if dim Py = 1 and irreducible if dim P, = 1. We can define an
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Figure 3.1: Cyclic property of the trace tangle.

Ell=]=

Figure 3.2: Ms, IR§, 55%.

alternative map 5££ 41 ° Pry1 — Py by closing a string on the left instead of the right. A
planar algebra is then called spherical if £:9(p) = Er(p) for all p € P;. The parameter §
is often referred to as the modulus. An annular —(n, k) tangle is a tangle with one internal
box of colour n, and whose external box is colour k. Given an annular-(n,0) tangle, its
composition with the multiplication tangle defines a bilinear form on Pi. If we take the
annular-(n, 0) tangle defined by connecting the ith and (n — i+ 1)th points together, with
all strings to the right of the inner box, then this is known as the trace tangle, and its
bilinear form satisfies tr(AB) = tr(BA). This follows immediately from the diagram, by
simply dragging the second inner box around and above the first inner box. When K = R
or C, the planar algebra P is said to be positive-(semi)definite/(non)degenerate over a

given (bi/conjugate)-linear form if they hold for each P.
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3.2 Bipartite Graph Planar Algebras

We introduce now the bipartite graph planar algebra (BGPA) [8, 14, 34], and use it to
construct algebras isomorphic to sets of upper triangular matrices, then show that they

fail to be planar algebras.

Let I" be a finite bipartite graph, with set of vertices V™ LUV ™, and edges E. Let u be
an arbitrary, non-vanishing function from the vertices to K, called a spin function. Define
K, + to be the vector space with basis of loops of length 2n on I starting at v € V', and
similarly for K,, _. By the standard form of a tangle, we mean a form of the tangle such
that there are a minimal number of turning points in the strings, and every turning point
and box lie in a separate horizontal region. By turning point, we mean a region of the
string that is parallel to the top and bottom of the box containing the string. Given a
shaded tangle, a state, o, is an assignment of v™ € V' to unshaded regions, v~ € V™~ to
shaded regions and e € F to strings, such that if a string separates the two regions, then e
joins v and v~. Given a state on a tangle, this then defines a loop of length 2k on a box
of colour k, with the region with the marked point as the starting point. Alternatively,
given a tangle with some number of interior boxes, then choosing some vector paths to
insert into the boxes will give a restriction on the possible states. The outcome read from
the exterior box is > o [ [ tta, Where « is a turning point on a string and o = p(v1)/p(v2)
where v; is the Verth as?signed to the interior region of o and ws is assigned to the exterior
region. If K = C, and A(T) is the adjacency matrix, then u? is often taken to be the
eigenvector of the maximal eigenvalue of A(T"), so that the modulus will be equal to the
maximal eigenvalue.

An element A of K, + can be considered to consist of two paths p,q of length n, one
from v; to v2 and one from v to vy, denoted A, ,. Multiplication of elements is then given
as ApgArs = 047 A\ps, where 7 is  in the opposite direction. Defining \,, := A\s 5, then
up to a constant, these elements form a system of matrix units, and hence each K, + is
isomorphic to some multi-matrix algebra. This isomorphism is dependant on I'. If we
consider two loops on I' with different starting points, then it is clear that their product
must be zero, hence if K, + ~ M, & My, ® ... ® M,,, then different starting points for
loops correspond to different matrices in this direct sum decomposition. From this we see
that Ko+ ~ @ K.

[VE|

k+1
k

Considering now the embedding tangle Zr,; ", inserting a loop A, , with p,G : v1 — v2

we see that all but one region of the tangle already has assigned vertices. Hence we
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Figure 3.3: Input loop; abede fa, output loop; Z Eg));j ((jg fabcede f

have A\p, — Z/\p+i,€+q’ where the sum is over all paths ¢ of length one starting at wvs,
7
and p + ¢ is just concatenation of paths, so Ipﬁ“ : K+ — Kp41,+. Similarly we have

umming over all paths j of length

1 ) .
Iry" @ Kg+ — Kpy15 given by Ay 4 — Z>‘j+p7q+j’ S
J

one that end at v;.

Let T' be the bipartite graph with [V 1| = 1, [V~| = n, then considering just K, ,
we see that dim Ko = 1. For K 4, each loop is uniquely defined by a choice of vertex
in V', and longer loops are just concatenations of these. Hence we can write a loop in
K, + as a sequence of m vertices in V7 Ay 4y..0,,- From the action of the embedding
tangles, we see that K,, ; embeds into K,, 1 4+ n ways, hence dim K,  =n"™. Let V7~ =
{v1,...vp}, then we can consider Koy as the algebra of n x n matrices with basis entries

27+ .

€. = Ay, Where Ay, is the loop of length four given by v* — v; — v* = v; — 0™,

Under this consideration, K3 1 consists of n copies of K5 4 along the diagonal, each copy

labelled by v; for Avivjv, € K345 Ay, € Ko 4. For Ky 4, we have A\yvv Avavpvery =

_ - 4+
Supin iy Avivivery = O e Miviverg (as Uy = v,), therefore €k = Avjvivgy, Where

ij, kl € {11,12,...,1n,21, ..., nn}.

34— Av;vju,, and the general form is

Similarly, we have e ik

2m,+ =\

[im7im—17-~'»i1}7[im+17i'm+27~-~77;2m] : Vil"'yimuim+l"'l/i2m
2m+1,+ e >\
lim+1:0motm—1,---01],llm+1,0m+42-t2m—+1] VigVigmy1

[a, b, ¢, ..,x] can be considered a number with digits abc...x in base n.
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As an example, take n = 3 and let V'~ = {a, b, c}, then;

A 0 0
Kit~| 0 XN 0 |, Koy

0 0 M\
Aaaa  Aaab  Aaac 0 0 0
Abaa Abab  Abac 0 0 0
Acaa Acab Acac 0 0 0
0 0 0 Aaba  Aabb  Aabe
K34 =~ 0 0 0 Aoba  Awbb Abbe
0 0 0 Acba Acbb  Acke
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
Adaaa  Aaaab Aaaac  Aaaba  Aaabb  Aaabe
Abaaa  Abaab  Abaac  Ababa  Ababb  Ababe
Acaaa  Acaab  Acaac  Acaba  Acabb  Acabe
Aabaa  Aabab  Aabac  Aabba  Aabbb  Aabbe
Kat = | Nobaa  Avbab  Mobac  Aobba bbb Abbbe
Acbaa  Acbab  Acbac  Acbba  Acbbb  Acbbe
Aacaa  Aacab  Aacac  Aacba  Aachh  Aache
Abcaa  Abcab  Abcac  Abeba  Abebb  Abebe
Accaa  Accab  Accac  Accba  Aecbb  Acche

~

)\(ZCL

)\ca

0
0
0
0
0
0

)\(lC(l

)\bca

)\CC(J,

Aaaca
)\baca
Acaca
)\abca
)\bbca
)\cbca
Aacea
/\bcca

>\ccca

)\ba

)\ab
Abb
>\cb

o o o o o o

)\acb
Abeb

)‘ccb

>\aacb
Abacb
Acacb
)\abcb
Abbeb
Acbcb
)\accb
)\bccb

)\cccb

Aac
Abc
)\cc

o o o o o o

)\acc
)\bcc
)\ccc

Aaace
Abacc
Acace
)\abcc
Abbcc
/\cbcc
Aacee
)\bccc

)\CCCC

It follows from this that Kopy1+ ~ K1 4 @ Kom ., Komgo >~ Ko 4 @ Koy, 4.

D Kom+ C Komti,+4, Komy1,+ C Komyo 4.
n

Continuing on in the general case for I' with |V =1, [V7| =n, VT = {11, ..., }, we
have dim Ko — = dim Ky _ = n. In K, _, loops take the form v; — vt = v vt =,
so we can label them as before in terms of v; € V75 A, (1;) € K2, where the first and
last vertices must equal to give a loop, so we can omit the last vertex. From this we can see
that dim Ky~ = n?, and dim K3 _ = n3, Avivji, € K3 . The (right) embedding maps give

Aviv; = Avivivis Mg 7 D Avivjiq,- For general Ky, —, m > 2 we find dim K, — = n™,
l

€ Ky

Viy Vig -+-Vign Viq
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Considering as matrix units, we have:

)\l/iVj AVklll :)‘yiu+yjy+yi )‘ykzﬂfullﬂruk = )‘yiu+ujy+uk = 5ij+vi,ylu+z/k )‘Viu+yju+yk

vivtu, vty

:5111' Vi 6l/j 1% )\l/i Z/j

277 o
Hence €ij = )\ViVj'

— . — YT e
Avivivp Avarpve = Ougus o Avivive = Ovgviwyva Aviviv.- L herefore €tk = Aviv;vg -
)\Vil’jl/kl’l)\l’al’bl/cljd = 5ukului,u;;7;$c)‘wv]-l/cvd = 5VleVial’chVa)\ViVchVd' Therefore

47_ — A
eikj,ikl T VvV

In general we get:

e[QiT%;H,-~~7i2]:[i1:im+1’~~-ni2m] T iy ig,
[21?;:;...,1‘2],[1'1,im+2,...,i2m+1] 1= Ay g
Take n =3, V~ = {a,b,c} again as an example, then:
A 0 0
Ko~ K| =~ 0 X 0 |,
0 0 X
Aaa O 0 0 0 0 0 0 0
0 Ay O 0 0 0 0 0
0 0 Xee O 0 0 0 0 0
0 0 0 Mg O 0 0 0 0
Ky ~ 0 0 0 0 A O 0 0 0 )
0 0 0 0 0 Xe O 0 0
0 0 0 0 0 0 Xo O 0
0 0 0 0 0 0 0 Ao O
0 0 0 0 0 0 0 0 A



Figure 3.4: For the loop abcdefa to be compatible with the trace tangle, we must have

b= f and ¢ = e. The output is Zzgzga.

Aaaa  Aaab  Aaae 0 0 0 0 0 0
Aaba  Aabb  Aabe 0 0 0 0 0 0
Aaca  Aach Aace 0O 0 0 0 0 0
0 0 0 Maa Abab Apac O 0 0
K3~ 0 0 0 Mo Aebb e O 0O 0
0 0 0 Aeca Abeb Apee O 0 0
0 0 0 0 0 0 Acaa Acab  Acac
0 0 0 0 0 0 Aba Ackb  Ache
0 0 0 0 0 0 Acca Aceb Acce

We can see from the examples that the starting and middle vertices label the algebras
in terms of smaller subalgebras, and all other vertices label different elements of these

subalgebras. From this, we see that for a general graph, we have:

2m, & =X+ F o+ o+ +

+  + F + +  F +  + F + ¥ T s y:_Fy. ..U T N

[Vi1’Vim+1’V.im’Vim"”’yiz’yjl]’[yh’Vim+1’ij+1""’yi2m’V72m} f1J1t2 0 2m J2m i
2m—+1,+ =\

+  F + ¥ + F + F + ¥ AR T E T T +

v

. v; v V]
Im+1"" tm41" Im’

N v, U v; eV
Tig? J1]’[ 117 Im41" tm2777 J2m+1}

i1 i i1Y51Yig  Viama1 Yizm1 Vi1
Note that each pair of vertices (labelling \) is required to be joined by an edge on the
graph. The labelling can easily be extended if a pair of vertices is joined by more than

one edge.
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There is a natural K-bilinear form defined on BGPAs from the trace given by (A, B) :=
tr(AB) where ;\;:1 = A\gp. However, tr()\p4) = 0p.4, S0 we have;

(Ap.gs Ars) = tr()\nqx;;) = tr(Ap,gAs7) = Og,str(Api) = Og,50pr = Ox, 4 \ns» 50 the loops
form an orthogonal basis with this inner product, and hence the inner product is positive

definite (for suitable K).

Let I" be a graph such that V' and V~ are well-ordered. Then define the set of loops on
I of length 2m, Uy, + = {A\pq : P > ¢}, with the ordering on paths defined as follows.
If = [Wiys o, Vig)s Y = [Vj1s -e» Vi, then @ = y if they are equal as paths, and z > y
if for some k, we have v;, = v;,...,v5, , = Vj,_,, Vi, > Vj,. Then U, + is isomorphic
to a subalgebra of the upper triangular matrices. If [Vt| = 1, [V7| = n, then Uy, 4+ is
isomorphic to the n™ x n™ upper triangular matrices. The loops of the form A, 5 corre-
spond to diagonal entries. Note that ~ is not defined on U,,, as if A, , € Uy, p # q, then
(/)\;’q/) ¢ Up,. Further, any bilinear form on U,,, such as the trace, that satisfies the cyclic

property f(AB) = f(BA), is necessarily degenerate, as on non-diagonal elements, as we

have:

f()‘pﬁq) = f()\p,q)‘q,q) = f(/\qﬁq)‘pﬁq) = 5q,ﬁf()‘q7q) = 0.

Let \ps € Uny D = [Vigs s Vipuyy)s With v, > 15, |, then applying the rota-
tion tangle to A, 5, we get the following map in terms of vertices: A[

VigsosVign g1 eeViq]

[Viz""’l/im+1""7yi17l/i2] = )‘T‘,S) r = [Vi27"‘7yim+177/im]) s = [Vim)yim_p"wyiuyiz]‘ Then we

have that 7 > s, so A, s ¢ Up,. Hence U, isn’t closed under planar maps.

3.3 Temperley-Lieb Algebras

We introduce now the Temperley-Lieb algebra and its properties, then use the BGPA from

the previous section to construct representations of the Temperley-Lieb algebra.

The Temperley-Lieb algebra, T'L, is the algebra generated by elements {1,e; : i € N}

satisfying, for ¢ € K;

o2 = de; (3.1)
€i€;+1€; = €; (3.2)
€;e; = €;€;, |l — j| > 2 (33)
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This algebra has an alternative pictorial version, where looking at the subalgebra generated
by the first n—1 elements, we have the identity given by a box with 2n points along the top
and bottom, with points ¢ and 2n — ¢+ 1 joined by vertical strings. e; is then the diagram
with points ¢ and ¢+1 joined together, and 2n—i+1 and 2n—i joined together, with all other
points connected vertically. Multiplication of elements is given by vertical concatenation
of boxes, extended linearly. Removal of a closed loop from a diagram is equivalent to
multiplying the diagram by §. The dimension of the subalgebra generated by the first

1 2n

n elements, denoted T'L,, is given by the nth Catalan number; dimTL,, = P

n
The Temperley-Lieb algebra is the simplest example of a planar algebra, and when K = C,

is positive-definite for § > 4, with conjugate linear-form given by the trace tangle. For the
values of § € {2cos(}) : 3 < k € N}, T'L is positive-semidefinite, and becomes positive-
definite when quotiented by the ideal generated by the k — 1th Jones- Wenzl projection.

The Jones-Wenzl projections, denoted f,,, are defined inductively over K by:

fo=0,f1 =1, (3.4)
]
n =TIn|— n€nln 3.5
Here, [n] denotes the nth quantum number, with [2] = 0. See appendix A for further

details. [0 denotes the empty diagram and | a single vertical string. When K = C, the
quotient T'L,, /(fr) has simple projections fg...fx—1, which is often encoded as the bipartite
graph Ay, which consists of even vertices {0,2,...,k — 1}, odd vertices {1,3,...,k}, and

edges joining 7 to ¢ + 1.

Consider now the subalgebra of the BPGA of A3 consisting of loops starting at vg. We

have:

Ao = (Ao) ~ A1 = (Aowo)

01010 0 A0101010  A0101210
Ay = Az =
0 A01210 A0121010  A0121210
A010101010  A010101210 0 0
A012101010  A012101210 0 0
Ay =
0 0 A010121010  A010121210
0 0 A012121010  A012121210

Now consider the tangle with no internal discs and two vertical strings, i.e. the TL

identity 1s. Any state on it must assign the vertex 0 to the first region and 1 to the
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second region, leaving a choice of the third region. The outcome is then Ag1g10 + Ag1210-
2
Similarly for the diagram e; we get %)\01010 for some spin function u. Repeating this

2
for 3-tangles, we find the output of 13 is Ag101010 + Ao121210, for ey is %)\0101010, and for

. 2 2 .
ey is %)\0101010 + ”S)()ﬁ(zz) (Mo101210 + Ao121010) + %)\0121210- Denoting these outputs

. R o 12~ A A N A A A R
respectively as é;, we find that: e% = ﬁgogg €1, €169€1 = €1, 96169 = é9,

3 = %ég. Hence these form a representation of the Temperley-Lieb algebra

. 1)2 0)2+u(2)?

Repeating this construction for 4-boxes gives:

2

. . 1)2

1= Z A01i151i10 e = a )2()\010101010 + A010121010)
52 1(0)

ey = i MAOM 1k10 €3 = MA010101010 + L1)2/\012121210
2 uny o (0 n2)p

These again satisfy the TL conditions, apart from é3 = dé3, which is true when p2(0) =
©2(2), which then gives 62 = 2. Extending this construction to the JW projections, we
find: fg = g, fl = Ap10, fg = Ap1210, fg = 0. Hence this BG-subalgebra is a representation
of the T L-algebra at §% = 2.

Repeating this construction using instead A4, we get:

Ao = (M) A1 = (A1)
\ . 0101010 A0101210 0
Az = Pt As = Xo121i010 Ao121210 0
0 01210
0 0 0123210
010101010 A010101210 0 0 0
A012101010  A012101210 0 0 0
Ay = 0 0 A010121010  A010121210 010123210
0 0 A012121010  A012121210 012123210
0 0 A012321010 012321210 012323210

The 3-box T'L relations for these are as previous apart from 13 = Ao1o1010 + Mo121210 +

Ao123210, however for the 4-box elements we now get:

2
1, = E Ao1i151i10 + Ao12323210

$,j=0

. p(1)? p()p(s)

€3 =——5A010101010 + —— =" MX012i25210
1(0)? 2 (2)? !

i,j€{1,3}
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(1(1)*+1(3)%)

Instead of the relation for p given before, this now satisfies é3 = dés if § = 2)?

Considering the 5-box elements, we find;

2 .

. u(2)? 1(5) (k)

€4 = —=5A01232323210 + — " 01i151k1i10
e 2o T o

(2)?

Li(3)2> Which gives 62 =1+ 6. Looking at JW projections,

which satisfies é421 =0éq if 6 =

fo, f1, fo are the same as previously, however now we have f3 = Ag123210 and fy = 0.

In general, this construction gives us a representation of T'L,, in terms of a BGPA, which

can then be identified with a matrix algebra. Viewing as matrices, we have:

Az, T'Lo;
. 10 ) 5 0 X 0 0
1, = é1 = f2=
0 1 00 0 1
TLs;
X o1 441
€y =
+5~1 51
T Ly;
§ 000 571 45710 0 5§ 000
00 00 +5~1 51 0 0 00 00
€1 = €9 = €3 =
00460 0 0 o1 451 0000
0000 0 0 461 st 000§
Ay, TLs;
51 u(/?()lu)(22) 0 000
ep=| 0w @ g fs=10 0 0
0 0 0 001
T Ly,
51 M%@ 0 0 0 5§00 0 0
u%@ Zg;j 0 0 0 000 O 0
ég = 0 0 51 “%(ﬁ) ol ea=000 o0 0
pO)u(2)  p(2)? p(?  p)pB3)
0 0 1(1)2 (D)2 0 000 w(2)? w(2)?
pMp@E)  pB3)?
0 0 0 0 0 0.0 0 "5 oL
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For a general choice of A,,, the restriction on § becomes:

p03? p( T p(i)? T - 1)

5 M _ p(0) +p%(2) _ pli =1+ p(i+ 1) p(n —2)?

Denoting the equation for the restricted ¢ for A, by bn, this gives:

52 =41

b3=(0—by) P =(6—6"H"

3.4 Temperley-Lieb Category

The Temperley-Lieb algebra has an alternative categorical description as a tensor category,
that is sometimes more useful to work with [13, 66].

Let [m,n] be the set of boxes with m points along their top edge, n points along their
bottom edge, and (m + n)/2 non-intersecting strings joining pairs of these points. Let
K[m,n] be the free vector space over a field K with [m,n] as its basis.

The Temperley-Lieb Category, T Ls, is the category whose objects are the natural numbers
N, and whose morphisms Homg(m,n) := K[m,n]. Composition of morphisms is given
by concatenation of compatible boxes, i.e. if a € [m,n] and b € [z,y], then ba € [m,y] if
n = x. The objects have an obvious grading given by whether they are an odd or even
number of points. There is a functor, called the tensor map, ® : TLs — T Ls defined
on objects by m ® n := m + n. For morphisms, a ® b is the (m 4+ x,n + y)-box given
by adjoining b to the right of a. This is extended bilinearly to all morphisms, giving
K[m,n] ® K[z,y] C K[m + z,n + y]. The parameter 6 € K defines a relation such that
if a morphism contains a closed loop, then removing this loop multiplies the morphism
by 6. The Temperley-Lieb algebra from the previous section can be redefined in terms of
this category as T'L,, := Endk[n], as Endg|n| is simply the K-vector space with the set of
n-point T'L diagrams as its basis. Planar maps on T'L can be rewritten as combinations
of the tensor map and Homg(m,n).

By considering the idempotent completion of this category, we find the simple objects of
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T Ls are the Jones-Wenzl projections, which are identity maps on themselves. As objects,
we will denote these projections by X,,, and as morphisms by f,, so we have:

fn = 1x, € Endg(X,), X, € Ob(TLs), dim Endg(X,) = 1. The object Xy is the unit
object, and satisfies Xg ® Y =Y ® Xg =Y for any object Y. The simple objects satisfy:
Xn® X1~ Xpo1 @ Xpta [21].

Many examples of fusion and modular tensor categories can be constructed from 7 Ls.
The structure of such categories is partially encoded by their fusion rules [7, 59].

Let {Xi} € Ob(C) be the set of simple objects, then for any A; € Ob(C), we have:
A ® Aj = P NfXy, (3.6)
k

with N/ € N.
Some of the simplest examples of fusion rules are the Semion rules, with simple objects

{1,Y}, and fusion rules:
1Y =Y®l=Y, YeY =1 (3.7)
the Fibonacci rules, with simple objects {1, X}, and fusion rules:
1 X =X®1=X, XX=19X (3.8)
and the Ising rules, with simple objects {1,Y, ¥}, and fusion rules:
Y®Y =1, Y =YoU =17, YU=1¢Y (3.9)

We give examples of the construction of these using the Temperley-Lieb category with
notation as above. Given a fusion rule and a set of simple objects, each construction will

follow the same outline:

e Find isomorphism maps ®;; : X; ® X; — ?N@Xk such that (I)i_jlq)ij = lx,x;,
NE
-1
;¢ =1gnix, = ? D 1x,
k
e These maps will generally rely on relations given by some quotient of 7Ls by a

Jones-Wenzl projection.

e Use these maps to construct the maps for the fusion of three objects, i.e. ®(;;); and
®;(jx)- These will have some linear relation that we solve for either by use of the

pentagon equation, of by capping off of diagrams.

e Similarly construct braiding relations for objects and solve the hexagon equation for

them.
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e Find the twist relation for each simple objects using its identity, or again by capping

off of diagrams.

e Use these results to construct the S and T matrices, then see if they satisfy identities
2.3, 2.4, and 2.5. This allows a way to check if the derived relations are consistent

with the fusion rules.

The pentagon and hexagon equations, and twist identity, are given in section 2.5.
In each construction, the identity object, 1, is the Jones-Wenazl projection Xg. It follows
from this that for any object, tensoring with the identity object is strict, i.e. Xg®Y =
Y ® Xy =Y, for any object Y. For the associativity, braiding, and twist, we only need to
consider the simple objects, as the solutions for any other objects will be based on their
solutions. The associativity maps for three objects can be constructed as follows:

m n
Pupe ="\ ] Pigh =\ Jn
(I)mk CI)zn

|7 |

where @7 is a component of the isomorphism map ®;; giving a map Q7 Xi®Xj; — X

The braid and twist relations will be based on the following:

where r,t € K.

3.4.1 The Semion Construction

An example of the Semion fusion rules can be constructed by setting 1 := Xgand Y := X;

with the additional conditions that X9 = 0, which requires fo = 0 and [3] = 0. This gives
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that Hom(1,1) = Kfy and Hom(Y,Y) = Kf;. As an object, Y will be represented by a
single point, i.e. the start or end point of a string.

Let V denote the transpose vector of V with all diagram entries reflected about the

horizontal. From the condition that [3] = 0, we have:

1+[3] =2
22 =6*=1
§==+1

Using the condition fo = 0, we have:

fo = —(5‘1%
v

=0 _
2=0- o~

where we used 62 = 1. Taking account of this relation, we want to find an isomorphism

map for the semion fusion rule Y ® Y = 1. Given our choice of objects, this is then a map:

P: X1 X1 — Xo

(i)CI) = 1X1®X1 :fl ®f1

D =1y, = fo

‘We have:

N[

b =4 U
5U:
&

O

For associativity, as Y @ Y ® Y ~ 1, we can take the associativity map

HH
KA
I

Od

ayvyy: (YRY)®Y Y ® (Y ®Y) to be:
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| =at |\

for some a € K. All other associativity maps contain 1, and so are strict. Solving the

pentagon equation with this, we have:

(Yoy)eY)eY XYY, (Yo eY)) EEY, YR (YeY)eY)
U - w Y,
||\LOZY,YY

| | aver)vy

Ay Y, (YRY)
_—

YY) (Y ®Y)

Hence a® = 1. For the braiding, as Y ® Y ~ 1, the braiding must be a multiple of ®.

Hence let:

AN

Note that any braiding with 1 is trivial, as 1® A = A ® 1 = A, for any object A.

Solving the hexagon equation, we have:

YoY)ey 2y, Y®(Y®Y)CY<Y_®Y>>(Y®Y )Y vy, Y ®( Y®Y)
levy
(Y ® Y) RY aYYY W_y)
1 > 1
SRSl :
Hence 72 = a. Solving the second hexagon equation gives > = a. As this is the

Temperley-Lieb category, we can assume closure under planar relations. Hence by capping

off the associativity relation, we get:
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Ve V= Q)=

Hence a = é. For the twist, as Y is simple, 6y : Y — Y must be a multiple of fi,

hence we have:

Solving the twist relation, we have:

Hence t = r—1. We have then the relations:

ayyy Y @Y)®Y =Y @ (Y ®Y)
Cy7y(Y & Y) :T(Y & Y)

Qy(Y) =tY

with constraints:

52 :17 a :5, T2 =a, t :7‘71

These will have a solution if we take K as a cyclotomic field, i.e. an extension of Q by

some root of unity [10]. Letting K = Q[i], this gives four possible choices for r, with the

47



other variables dependent on the choice of 7:

r=+1=t, d=a=1

r==x1=—t, 0=a=-1

For the S and T matrices, we first have d(1) = 1, d(X) = 6, so Dim(Semion) = 2.

Similarly we get £(Semion) = %, which requires r # —1 to be non-zero. Hence:
1 (1 72 2% 1 0
S p— L (3.10)
V22 g2 (I+rHs \ 0 +!

3.4.2 The Ising Construction

An example of the Ising fusion rules is constructed by setting 1 := Xy, ¥ := X; and
Y := X, with the additional condition that X3 = 0, which requires f3 = 0 and [4] = 0.
Clearly Hom(Xo, Xo) = Kfo, Hom(X1,X1) = Kfi, Hom(X2, X2) = Kfs. Using the

identity for quantum numbers from Appendix A gives:

As we want [2] # 0, we must have [2]2 = 2, as well [3] = 1. Hence §% = 2, and % = 0.

From the condition f3 = 0, we have:

fa=1f|l-6 | X

f3=0—=]f

I
(@2
D (

From this, by considering (fo ® f2)(fs ® 1)(f2 ® f2), we then get:
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J2

J2

2

2

However, from this we have:

2

2

N

2

o

2

J2

Hence this gives:

|f| |f| f2 f2 f2 f2
21 J2 N -
ST T s 7]+ N
.8 2
J2| /2 /f\
| I — f2 f2 If2| ,f2,
f2 f2 fuﬁ f2 f2
- N
fo| Jo AN @
_ T s N PEl R
2 fuﬁ e
//.\ o J2
Jo| f2 A o
| f2 f2 f2 f2
=0 =2 fo]l4o2 X =0



Using this, for the fusion rule Y ® Y ~ 1, we have:

Dyy 1= f2 f2
N
J2| J2 f2] f2
Ci)YYCI)YY: % =
J2| J2 fa| f2

(I)YY(i)YY —

fa] f2

[2]7]
[21/:]

= (62 — 11y, = 1x

E
E

=P

= 1x,0x,

0

Hence ®yy : Y ® Y — 1 is the isomorphism map for Y ® Y ~ 1. For the fusion rule

YU ~1aY, we have:
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Qgyg = .
f2
3 %U <%m) f2> 5_1© fo 1y, 0
CyyPyy = L = ) ,U, = 0 1y
IE £2| |k ’
| | L
) i f2> i )
gy Pyy = 7 o I 5_1m+ .f2. :‘ ‘:1X1®X1

Hence ®gy is the isomorphism map for V@ ¥ ~ 1 & Y. Finally, for the fusion rules
YU ~U®Y ~ ¥, we have:

KA
}..<
W
KH
>.<
S
I
~—
el
1=
L)
~__ —
~—
o
1=L
=
~__ —
|
(&%)
D
I
1=
I
(Y
5
X
s

For the second case, we first need the following:
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o
I
>,
D (

Using this, we then have:

(o9
N[

Lf2 :5x = f2 — 1X1®X2
|

N 1| e |
Qyy Pyy = 52Lf2| 52Ff2 =i/l 2| =|=1u
I |

Hence we have found isomorphism maps for the Ising fusion rules.
The next step is to solve the pentagon equation for the associativity maps.
We have Y ® Y ® Y ~ 1, so there must be some ag € K such that ®yy)y = aogPy(yy).

Diagrammatically, this is:
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Solving the pentagon equation with this gives a% = 1, However, by capping off the top

we get:

vl anulll
Lo fo] f2|= @] f2| f2] f2
7T T

Hence ag = 1 and we have:

Pyvyvyy = Py(vy)

Indeed this technique of ”capping off” diagrams is very useful, and gives us a much sim-
pler alternative to solving the pentagon equation. Once given the isomorphism maps for
(A® B)® C and A® (B ® C) for objects A, B, and C, we can cap off the maps to find

relations between them.

AsU U VW ~ U@V, the situation is more complicated, and the associativity relation
will be in terms of a matrix. The isomorphism maps for (¥ @ ¥) @ ¥ and ¥ ® (¥ @ ¥)

can be constructed from previously given isomorphism maps as follows:

QPypy: (VRV)V - VoV, Pwnyw = (f1 © Puy)(Poy @ f1)

Pye) VR (VRVY) - VaV, Pypw) = (f1 © Pyw)(f1 @ Pyv)

Diagrammatically, these are:
1 1
Vo _/ Vo _/

(I)(\IJ\I/)\IJ — - (I)\I'(\II\I/) = L

For the associativity map between (¥ @ U) @ ¥ and ¥ ® (¥ ® V), we can write it as:

ap a
Qpuyy = Qy(py)
a3z a4

Diagrammatically this is:
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C> | a |
5| =% MNEﬁ, ﬁ(éz% mmsﬁ

o \ o
=% mﬂgﬁ, m{é=% mwsﬁ

Hence da; =1, a3 = 6. Combining the two solutions gives:

1 1 1 -1
alp =— as =— as =— a4y =——=—

5’ 5’ 5’ )
Hence we have the associativity relation:

ot st
Qpoyw = Py (ww)
T
Next, we want to find the associativity relations for Y QY V¥ ~ YUY ~ ¥RY®Y ~ V.

For this we need the following isomorphism maps:

Pyy (Y QY)W = U, Dy yy) Y @ (Y QU) —» U
Py (¥PRY)RY = U, Pyyy) ¥R (Y QY)—> U

Again, these can be constructed from the previously given isomorphism maps for two
objects. For example, @y gy is given by Ogy (Pyyw ® f2). Diagrammatically, the maps

are:
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Pyyyw = J2| f2 Py vy = o] f2 fzJ cp(wl)yzé fzJ fa
\\;j/ 9 | N 3 U |

Py (wy) = 0 {2\@ D yyy = 0 f2uf2| Qyyvy) = @
9 ’

The associativity relations must take the following form:
Qvyyw =a5Py (v, P yvo)y =a6Pywy), Qwyy =arPyyvy)
where as, ag, a7 € K. By applying M| to the isomorphism maps, we get:
as =1, ae =1
By applying |M to the maps, we get:
ary =
Hence we have:
Qvyyr =Py vy, Qyvoy =Py wy), Qwy)y =Py(vy)

Finally, we want to find the associativity maps for U@URY VY QU ~Y UV ~

Y @& 1. Diagrammatically, the isomorphism maps are:

w f | |
%U £ WJQ fzv
Sy =, Dy py) = — Qyyyw = -
f J:
f2] f2 & \J/2 Ve 2|
="/ £l /) |/
=) =) 2]
Dy yw) = 3 IfQIJ Qyuyw = V5 If2| Cy () = .f. |f|
N, 2 2
| ’ N ) N
Ja fo

Although the image of these maps is two-dimensional, the image objects aren’t isomor-

phic, and so any associativity map won’t mix between them. The associativity relations
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must then be of the form:

0 as aio 0
Q gy = Py wy), Qv = Py v,
ag 0 0 ail
0 ao
Qyuyw = Py (vu)
ais 0

where the first and third matrices are non-diagonal to account for ®(gy)y and Py (gpy)
having the map to 1 on the bottom instead of the top. By applying N|| to the isomorphism

maps, we get:

ag =1, ayo =1, ajpr =—1

By applying |N| to the maps, we get:

ag =1, ayz =1, a3 =1
Hence we have:

0 1 1 0

Qyu)y = Py (wy), Qwyyw = Py (v,
1 0 0 -1
0 1

Qiyoyy = Py (g
1 0

Hence we have found all the associativity constraints for our construction of the Ising

fusion rules.

The next step now is to find braiding relations.
Any braiding with 1 will be trivial, so we only need to consider the cases Y Q Y, ¥V @ ¥,

and ¥ ® Y. Staring with Y ® Y, diagrammatically, we must have:

\/K L L

el 2] =[r]r]=r[r] %

Solving the hexagon equation with this, we have:
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Yoy e Y yeryey) XY yveviey XYY yeyey)
L] L1 AL A
NN N

f2f2f2:f2f2f2: > = S
N ] | N f2| f2] 12 fo| f2| J2

YeY) oY SOOI Yo eY) LN Yoy oY)
\ \ N
Nl Nl %L
~1 o1 =2 S
To — T =Ty

2| 2] f2 2| 2] J2

Hence r( 2 = 1. Solving the second hexagon equation gives r2=1.

For ¥ @ U, the braiding relation is:

5V B

For Y ® Y and Y ® W, the relations are:

f2J =713 || f2 Jo| =74 f2\J
| |’ | |

To Solve the hexagon equation for Y® W, we have to consider two cases, VRUVRWV — 1,

and Y @ ¥ @ ¥ — V. For the first case, we have:

o7



Ty 2WT.v, IEY), (YUY 2P, TR (T D)

W, :51‘u+tf2 = 54\%‘“*?3)(6#”3) S

N
s N f2
1l cvw
f |
‘ I
(TRU)o ¥ ”‘”% U@ (TeW) ce, v U (Te W)

) T Y
2

f2
| \

For the second case, we have:

ToU)ey ST, U (T W) v, (ren), (\I/®\IJ Qvwv, U@ (Ue W)
= — 1|\ 1| gk L\\ 1 TS 1+r3
f 52 ol £ 32 +

2

(TeU) QW AL VR ((Ue W) cvw U@ (e D)
1 2

-1 — 3N ol N — iy N 72N
T2 /\ 57 ( R | 7 () "5 \/
2

f2 fa
| | \

Hence we have:
1

5_2(14—7“3_1) :(5_11"1_2, 5_1(1 —7“3_1) :1"1_17"2_ ,

5_3(1—7‘51) :5_2Tf1r51, 5_2(1—|—r§1) =—5! 72
Solving the second hexagon equation similarly, we get:

5_2(1 +73) :5_17“%, 5_1(1 —r3) =riry,

631 —r3) =6 2ri7ro, §2(147r3)=—0"143

We can simplify these to give ro and r3 in terms of r; and 4, as well as a polynomial that

r1 must satisfy.

For the braiding on ¥ ® Y, instead of solving the hexagon equation, we use the following:
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N <// PN N

Hence r3 = r4. The braiding solutions are then:

0
ré =1, Ty =T, ry =ry = 013 — 1, r{ —orf +1 =0
1

Finally we want to find the twist on ¥ and Y. These are:

| = o 751

We can solve for these by capping off braiding relations. For ¥, applying N| we have:

SV

Hence tg = rfl. For Y, applying m|| we have:

HEEEN HEEEE i
fol f f2:7“0_1 fol fol 2ol =1 f2 f f2:7“0_1f2 f2 fo

o = 1Te |

Hence we have t; = 7y !, However, using the twist identity, (2.5), for Y ® ¥, we have
that t; = r3 2. Hence t;! = rg = 13 = °r{ — 20r} + 1 = v} — 6r} = —1. We have then

found constraints for all associativity, braidings, and twists.
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The constraints we have found on associativity, braiding, and twists, have a solution when
K = Q[(1¢6], where (¢ is a sixteenth root of unity, and there are eight possible solutions

to the constraints:

tim F3iw .

5 =2, ry=e 8 : ro =€ 8 | rg==41
+7im 5im .

ry=e 8 ro =e 8 | r3=F1

+3im +Tim .

§=—12, ry=e 8 ro =e 8§ rgs=F1
+5im timw 3

ro=e 8 ro =€ 8 r3=F1

For the S and T matrices, we find first that d(1) = 1, d(Y) = 1, and d(¥) = 4, so
Dim(Ising) = 4. The first row and column of the S-matrix are just d(Y'), as braiding
with the identity is trivial. By symmetry, we have Syg = S’\p’Y = —¢, as well as gyy =1.
For 5"1,7\1,, we need to sum over the two fusion outcomes, giving S\qu = 7’% + 7’% = 0. For

the T-matrix, we have (Ising) = 0y. Hence:

1 4 1 (9\1;>T 0 0
1
S=51d 0 -0 T = 0 (6y)3 0 (3.11)
1 -5 1 0 0 —(6y)F

3.4.3 The Fibonacci and Yang-Lee Construction

An example of the Fibonacci model can be constructed similarly, by setting 1 := Xy and
X := Xy, with the condition X, = 0, which requires f; = 0 and [5] = 0. For the condition

[5] = 0, this gives:

2]

[317 =[3] + 1, (32 =[2%, [4] =@’ [4]7 =1
We only consider the case [2] = [3], which gives us two values for § = &2‘/5, as well as

4] = 1.

The condition fy = 0 gives:
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|| [ 1l [
fs=| /|| — x Ja=| f3 ||-9 X
‘ ‘ If2l 7 ‘ ‘ ‘ IJTSI
NN IR [ 2 2
fa=l ol — x —ol /o +0 +0 —6l /o
T Te @, @\l
NI e RIS v N 2
fa=0—=]fo]]|= x +ol f2] -0 —0 +4] f2
‘ ‘ |f2| ‘ ‘ m |f2| f\ |f2lq l,fQﬂ

By considering (f2 ® f2)f1)(f2 ® f2) we then have:

If.zl If2l f2 f2 If2l If2l f2 f2

f2 ’
7, 0 fd A L J
-0 w—l-(s f2
|
.f 2 N .f 2| ~ .f 21 f2ﬂ

;f2| If2| f2 f2 If2| If2| f2 f2 f2 f2

d=L

AE
1 22 g B2 o
2| J2 2| /2 \J 2| J2 ~ a EE
a2 [ElE] = LB

— = | X | 40 || — =6 | f2]| +5
NN
e [R]e] & 7] 2] =/SNay e
UL UL f2f2 UL f2f2 UL

We want to give an isomorphism map for the Fibonacci fusion rules. This is

Pxx: X®X =10 X. We have:
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7| 2] f2
>
Dxx = ) ‘f2‘ ‘f2‘
o
Ja
) Ll L
NZ f2 f2 m f2
= N1G[e]n] § 2
vocdon=| o[R]R] || T LELE
N~
fa
L . Ll
AN fa N/ f2| f2
) vd T 1 =
Oyx by = T ‘fQ‘ ‘fQ‘ 5| f2| fo
N
f2

o f2
% L 2| VO 2o
N\ f2| f2
_ R
fan f2
fa| f2 /ﬂ\\
Vo TT 8% 2 o
A
T f2
f2 f2 e [ |
N\ J2| f2 £l f2
=42 f +l\\w —
T
/ﬂ\\ fz f2 f2 f2
f2 f2 L prr

1x, 0

0 1X2>

=1lx0x,

Given this map, we can construct isomorphism maps for X @ X @ X ~ X 16 X.

These maps are:

They are given by @ xx)x = (1® xx)(Pxx ® f2), Px(xx)

Diagrammatically, these maps are:

Ve

Vo

dIE

E1RE

J2] J2] J2

Vs

dIE

f2| f2

V5

J2] J2) J2

7
f2
Qxx)x = Pxxx) =

52

2] f

2| f2
\U/f/

7

\ Y
f2
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J2

o

2| 2] f2
N
fa

D x(xx) XRXeX) > XeleX

((I)XX & 1)(f2 X CI)X)().



We to find the associativity constraints for these maps. This takes the form:

aq 0 aq
Pxx)x=| 0 ax 0 |[Pxxx)
as 0 a4

We have:

Ll 2| 2| = =/ fa

fa f2| J2 f2
f2 o

Hence we must have as = 1. The remaining conditions to solve can be given as:

Ll ol o= ool fo] fo| fo | +ai83| fo | f2] f
<77 T \\j\w
fa
>
fo

| I N I I 5IIIIII | N |

fa| f2] f2 —agd > fol 2] o | Haa
N

AEAARE
N\ N T
fo \\sz
< =

2

2

By applying M|| to these we get:
1 =5 -2
ap + a162 =0, a302 +agd “ =0
By applying ||M to them we get:
=3 -2
a05 =1, a35 2 =)
Combining these, we get:
—1 -1 -1 1
a0:5 s a1:52, a3:52, a4:—5

Hence the associativity constraint is:

S0 82
Qxx)x = 0 1 0 P x(xx)
5z 0 —6



Next we want to find the braiding relations. Diagrammatically, these are given by:

[ ||| L |1 Ll L
fal f2|= To] f2] /2 Ll 2= | f2] /o
: N N
3 R
2 T

For solving the hexagon equation, we have three different cases to consider, which are

given by the three components of @ x y)x. For the first case, we have:

|(X|®|X?®|X| — |X|®EX|®|X)|M> |(X|®|X?®|X| — X@?(lX(?)l()l |
Ll =07 L =07 2| | 2] = (”Zfl) ol J2| J2
T T == //@
+ +
I I I I | \\\ +
f2 f2 f2 \\\\\ I T N I
Cx. X H f-J _ _
\L’ 52 \\lﬁ 527,11 f2 fz f2 5(1—7“11) f2 ﬁ f2
AN ©)
L = I
|f2| f2
|
I()(I ®|X? ®| Xl M IX |® $X|® I)()I % X (gi ()I( @i )(I) | |
7’0_1 2| 2] [2 = 5_17”0_1 Jal J2| J2 = 5_17“0_2 o f2| f2
S ) 7%
_|_
8rg | f2| f2] fo ,;fil f2| f2| f2
R
7 ©)
/ 2
=
|f2| f2
Hence we have:
(1461 4 1 21,1
572:5 o, S(L—ry") =0"ry 1]
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The second hexagon equation gives:

(5(1 — 7’1) :527“07'1

For the second case we have:

(X@X)®X XX X @ (X ®X) N0 (X @X)oX axx X @ (X ©X)
[ ] | | | | [ ] | | | [ ] | | | | \\\\\ \\\\\
Lol Lo Lo = | o) 2] J2 :T‘o_l Ja) f2] f2 :7“0_1 75 =7”0_1 75
N N k\HfH Jal 2] J2 Ja| f2 | J2
7 P N o
NS N ! T 7
o ||
(XeX)epX oxxx, X@XeX) XX X®((X®X)
| I I | \\ \\ \\\
it 2l 2] = ot | | = 2 | | = 2 /0
@j f2 fuﬁ ol 2] J2 ARE
fQ : R
2 2 fa

Hence this gives r 1= ry 2 The second hexagon equation gives ro = 2. For the third

case, we have:
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|(X| ®|X? ®|X s X|® |(X|® |X)| D,
f2| f| 22| =070 o] o] £
N T <
fo _
2 T2 f2] f2
f2 )
- - \\/fQ
f.J
\th,X 2
(XoX)pX oxxx
sl -
T = 03]
T2 f2] J2
e/
fo B

\

2

Hence this gives:

(1—r; 1) 7“517“1

-1

I

The second hexagon equation gives:

Combining these results, we find:

(1 — 7“1) _Tror1
gt

7’1+r1_1:

.

(X®X)®X o,

X ®((X®X)

=073 £, _ (@-rh AL
51 2| f2] J2
N/
-1 - f2
| /2 f2] /2 (64:;1>
—
G (
f.J
|
IX |® €X|® I)()I CX—’X> X (XI) ()I( (8i ){) | |
Jo| f2] 2 = ’"0_;;’1_1 2| f2] /2
= %5
ABRE A
=7 =
e T
/ fo
J2
T 2
(5"‘7“11) 77“172
62 1)
(6+r1):_ﬁ
52 6

_51

We now find to find solutions for the twist on X. Diagrammatically, this is:
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=to[ f

By considering the braid relation on X ® X — 1, and applying ||M, we have:

L] L] mH mH
f2] 1 f2=?“0_1f2 2l f2 1= f2] f f2=7“51f2 fa] f2

TE T TE

Hence tg = 1 L
We have then found constraints for the associativity, braiding, and twist relations. These

have solutions when K = Q|(10], for (19 a tenth root of unity. There are four choices of

solutions, which can be given in terms of r1. They are:

+3im Fdin 1 + \/5
rn =€ 5 | o =e 5 , )= 5

+im +in 1-— \/5
K =€ 5 s T0 =€ 5 s 6 = 2

From these, we find the S and T matrices are:
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Chapter 4

The Quantum Group U,(sly)

We introduce the restricted quantum group Uq(slg), describe its indecomposable mod-
ules, their fusion rules and homomorphisms. We also give the decomposition of tensor
powers of the two dimensional irreducible module X; , and describe the dimensions of its

endomorphisms algebras.

4.1 Uq(ﬁ[g)

For ¢ = €/™/?, p > 2, and p € N, the restricted quantum group U,(sls) over a field K is the

Hopf algebra generated by E, F, K subject to the relations:

K—-K!
q—q!

EP =0 FP =0 K% =1 (4.2)

KEK™ ' =¢’E KFK™' =¢%F EF —FE =

and coproduct A, counit €, and antipode S:

ArE—EQK+10FE FF1+K'®F K KoK (4.3)
€e:E—0 F—0 K—1 (4.4)

S:Ew —EK! Fs —KF Kw— K} (4.5)

This is a quotient of the quantum group U,(slz) by the relations in equation 4.2, and so
we can consider (the better understood) U, (sl2) modules [45] as U, (sly) modules. This al-

gebra is 2p?® dimensional, [60], and so has a finite number of finite dimensional irreducible

and projective indecomposable modules. We define the quantum integer [n] := q;:qq:ln

with [2] = ¢ + ¢~!. For details on quantum integers, see appendix A.
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The finite dimensional indecomposable modules for U,(sly) that are relevant to our con-
struction were given in [42, 60, 65], and consist of the following: 2p — 2 simple modules,
Xsi, 1 < s < p, two simple projective modules Xpi and 2p — 2 indecomposable projective-
injective modules PF.

The category of Uq(ﬁ[g) modules can be given as a direct sum of full subcategories
é C(s) where C(0) and C(p) are semisimple, with A,F € Ob(C(p)), &, € Ob(C(0)). The
szc)egories C(s), s # 0,p, contain two simple objects each, X, X~ € Ob(C(s)) and two
indecomposable projective objects PJ, P,_s € Ob(C(s)) [1]. An object P is projective if
for every surjective homomorphism f : M — N, and homomorphism g : P — N, there is

a homomorphism h : P — M such that fh =g.

As well as these, there are also three series of indecomposable modules in each C(s),

s#0,p:

M (n) M,,_s(n) 2<neN
Wt (n) W,_s(n) 2<neN
EX(n;\) Eps(ns ) 1<neN A € PL(K)

However, our planar algebra construction is based on (Xzi)@", and the these three series

do not appear in its decomposition, so our focus will be on the modules that do, which

are X, PE.

For the simple modules X}, 1 < s < p, they can be given in terms of a basis as

{ag}n—o,. s—1 with the action of U, (sl2) given by:

Ka, = +¢° '"?"q,
Ea, = £[n][s — n]a,—1
Fa, = an+1

n__,—n
where a_; = as = 0 and [n] = qqiqq_l

. For X, this basis and action is equivalent to
the basis and action for the irreducible U,(slz) module V,_; given in [24] by the map
ag +— [k]'ws_1_ox. Hence we have X;” ~ V,_1. For X, this is the action of Uq(slg) under

the automorphism given by K — —K, F+— —E, F — F [11].

The projective modules PF, 1 < s < p, for a given choice of p, can be given in terms
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of the basis {a;”,b;"}o<i<s—1 U {x?, yj’p}ogjgp,s,l. The action of Uy(sly) is given by:

J
Ka; = +¢° 7%,
_ o ps—1-2j
Kzj=7F¢" Ta;

Eai = :]:{Z][S - i]ai_l

sz — Zl:qs_l_%bi

p—s—1-235,_

Ky; = Fq Yj

Eb; = +i][s — i]bi—1 + a;—1 Eby = xp—s—1

Ezj=F[jllp— s — jlzj Ey; = Fjllp — s — jlyj— Eyo = as—1
Faj =4 Fay, s 1 =ao Fyj = yj+

where x_1 =a_1 = as = yp—s = 0 [23].

The decomposition of tensor products for the modules is given in [42, 63].

Let 1 < s <t < p, then define;

I;={r=t—s+2i—1li=1,...,s,7<2p—s—t}

Jopt ={r=2p—2i—t+s+1li=1,...,s,7 <p}

(4.6)

(4.7)

and set Iy s = I, Jits = Js4¢ for s > t. The simple and projective modules then satisfy:

xXrext~ @ xt @ Pt

rels: r€Js+t
XEQX 2 X7 @ XF ~ XF

PER A ~ X @ PE =~ PF

(4.8)

(4.9)

(4.10)

Prox ~xteri~ PP @ 2P @ 2r;

TGIs,t

Pe P ~2XF o P P2y, o P

PR Z~ZQP

(4.11)

Ter+t TGJp_S+t

(4.12)

(4.13)

where Z is an arbitrary module, and we take P;t = Xpi.

4.2 Tensor Decomposition of Modules

As a starting point, we want to use equations 4.6 - 4.13 to give the tensor decompositions

of various modules for small values of p, as examples for a general decomposition. Note

that because of the relations in 4.2, p = 1 is trivial.
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For the case p = 2, the module decompositions are given by:

Js-i—t 1 2
1|0 {2
2 {2} {1}
Xy @ Xy ~ P X @ P~ 2P @ 2Py PP ~ 2Pt 2P

Let X := X5 and X®" = (X;7)®", then we have:

X ~pt X®~opfo2p, X ~2Pfo2p;  X® 8PS o8Py

For the case p = 3, the module decompositions are given by:

I,/ 1 2 3 Jege | 1 2 3
1| {1} {2} 0 Lo 0 {3}
2 {2} {1} 0 2 |0 {3p {2}
310 0 0 3 {3} {2} {1,3}

XfeoX ~xfePf xfeoPf~Pye2P; PreP ~2Pf ¢2P; @4P;
X @ X~ Py X @Pf ~Pra2Py  PrePf ~2Pf @2P; ©4P;
XX ~PrePf XfoeoP~2Pfo2r; PFePy ~2P @4Pf @2Py

X @Pf ~2Pf @2py

X®2 o X @ Py X~ X 0P
X~ o P3Py X~ X @ 4P @ 2P
X%~ X" 0 9PF @ 4P @ 2Py X%~ X @ 13P) @ 12P; @ 2Py

For the case p = 4, the module decompositions are given by:

L] 1 2 3 4 Jowt | 12 3 4
1 ({1} {2} {3} 0 Lo 0 0 {4
2 | {2} {1,3} {2} 0 2 o 0 {4 {3}
3 {3 {2} {1} 0 310 {4 {3} {24}
41 0 0 0 0 4 ({4} {3} {2,4} {1,3}
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Xy @ X~ X @ X
XXt ~xtop

X @ X ~PfoP

Xt @ Pl ~ Pl @2P;

X @ Pf ~PoP

X @ Pl ~ Py @2P;

X @P ~Pf @2Pf @2P;
Xt @ P ~Pf e2P)

X @Pf ~Pteo2Pf

X P ~2P ®2P; 2P,
X, @ P ~2Pf @ 2Py

X @Pf ~2Pf @ 2P @ 2P,

2
X~ xtox;

X&' ~oxt @2x @ PF

X%~ 4x @ 4x @ 5P o P

X @ X ~ XS opf
X @ Xt ~Pf

X0 X ~Pers

P @ Pl ~ 2Pt @ 2P; @ 4P;
Pl @ P ~2PF & 2P; @ 4Py @ 4Pf
Py @ Py ~ 2P @ 2P @ 2P, @ 2P;
Pl @ P ~ 2P @ 2P @ 4P;
Py @ P ~ 2Py @ 4P @ 2P; @ 4P,

Py @ Py ~ 2P} @ 4P @ 2P

X® ~oX o P
X ~4X @ 4Pf & PS

X%~ 8X @ 14P] @ 6Py @ 2P,

X%~ 8 @8 @ 20P @ 6P @ 2Py X®0 ~ 16X @ 48P @ 267, @ 16P; @ 2P,

General Decomposition of (X;")®".

Taking p as arbitrary, and denoting X;’ by X, we can work out some general decomposition

rules for tensor powers of X.

Using the formulae 4.6 - 4.13 given previously, we first note that if s+¢ < p then Js1 ¢ = 0,

and I, 2 = {n —1,n+ 1} if 2n + 3 < 2p. Hence if n < p — 2 we have:

XfoX~X eX,

Forn=p—1weget Ip_12=p—2and J,41 = p, giving X;Ql QX ~ Xptz &) 79;'. Note,

that 732_?," ~ /’\,’Ij . This is so far the same as the decomposition for Uy (slz) modules.

For n = p, we have I,o = (), and Jp2 = p — 1, giving & @ X ~ P;‘_l.

As Jspp =0 if s+t < p, then Jp_gy = 0 if —s+¢ > 0 and hence Jp_pt2 = 0 if n > 2.
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‘o oivag DT ~ Dt +
This gives prl QX ~ 73%2 @® 273p .
For 2 <n <p-—2wehave P}, ® P, ;.

Finally for n =1, (and p > 3), we find I 5 = 2, Ji42 =0, Jp—1 = p, giving:
P @ X ~Pf @2P,;

As P} @ X~ ~ P, the decomposition follows in the same way for the negative modules.

Hence we have the general decomposition:

X%~ xth @ A

X9 ~2xt @ xf

X® ~oxt @ 3X @ A

X ~5xF @4xt @ X5

X% ~5X1 @ 9X @ 5Xx @ X

X~ 145 @ 14X @ 6X @ A5

X ~ P
X®Pt) ~  @opt @ P,

X®Pt) ~ o3Pt aPt,

X2 ~ g Ppf
XD~ @oP;

X ~ @2p

X®Cr=2 ~ @ 2Py

We can see that the first indecomposable module to appear in the decomposition is 73;71
which appears in the decomposition of X®P. Further, we have that all positive projective
modules appear by the (2p — 2)th tensor power, and all negative projective modules will
appear by the (3p—2)th tensor power. However, we have that no modules X~ will appear
in the decomposition of X®" for any n, and hence we must tensor by X; to get these
modules.

This suggests that End(X®") ~ TL,, for n < p, so the first possibility of finding
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End(X®") 2 TL, is when n = p, however we shall see that this doesn’t occur until
n=2p—1.

Note that End(X;) ~ C, Hom(X;",X) = 0. As X7 @ X7 ~ X" and XF @ &) ~
X ® /'\,’,j[, we can conclude that A2! @ X% @ A’ ~ X,fll ® X,f;... ® X,f: if and only if
a10s...ap = [102...0n.

Hence if we are looking at tensor powers of Xzi, we need only consider the two cases where

the product of the signs is either positive or negative.

4.3 Multiplicity of Modules and dimension of End((X;)®")

A basic question we want to answer is what is the dimension of End(X®™). To answer

this we need to know the multiplicities of each module in the decomposition of X®".

For counting the multiplicity of each module appearing in a tensor decomposition, we
construct the following diagram: First number the possible vertex positions left to right
by 1,...,3p — 1, which correspond to the modules X;", ...X;L_I,PJ, ...,PfL,Pp_, P I
module B appears in the decomposition of X®*, and a module A appears in the decom-
position of B® X; , we put an edge between vertex B of row k and vertex A of row k+ 1.
Summing over the number of paths downwards to a vertex gives the multiplicity for the
corresponding module. Then the kth row gives the decomposition of X ®*.

Edges only connect odd vertices to even ones, and vice versa. The only vertex in row 1
connected to an edge is vertex 2. Generally we have edges connecting vertex n of row k
to edges n — 1 and n 4+ 1 of row k + 1, with the following exceptions:

For any k, vertex p of row k only connects to vertex p 4+ 1 of row k + 1, and likewise for
vertex 2p. Vertex p + 1 of row k is connected by a double edge to vertex p of row k + 1
(as well as a single edge to vertex p + 2), and likewise for vertex 2p + 1. Vertex 2p — 1 of
row k is connected by a double edge to vertex 2p of row k + 1 (as well as to vertex 2p — 2
by a single edge). Vertex 3p — 1 of row k is connected to vertex p of row k+ 1 by a double
edge (as well as to vertex 3p — 2 by a single edge).

As an example, the graphs for p = 2, 3,4 are given in figures 4.1, 4.2, 4.3:

74



xr Py P Py Pr

ANXNX
AVAVAY

oo



Y

NN
NN
NERNPAN
VAVANERN
NN
A VAN

. \/\/\4
/\/x/x/

tion Diagram of (X,7)®" for p =3



XX X PSPy PSP Pr Py Pr Py

.
2 VNNV ANERNVAN
NV WANVARS o w2
/ N N NN\

Figure 4.3: Module Decomposition Diagram of (X;")®" for p = 4.

We can check that the module multiplicities given by these decomposition diagrams

are consistent by comparing dimensions of the modules. For example, when p = 4 the

diagram gives (X,7)®7 ~ 8X,F @ 14P) @ 6P @ 2P, . X, has dimension 2, so (&, )®7

has dimension 27 = 128. For the other side, Pj and P, have dimension 4, and 73; has

dimension 8. Hence we have 8(2) + 14(4) + 6(8) + 2(4) = 128, and so the dimensions of

the two sides match.

We can use these diagrams to find the dimension of Enall-]q(sb)((/'\,’QJr )®™), by counting
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the number of possible maps between the various modules. For this, we need the following

from [60]. We give our own proof in section 4.4:

Theorem 4.1. The dimensions of the Hom-spaces of indecomposable modules are given

by:

1. [Hom(XF, X5)| =0 fors#t or1 fors=t, for 1 <s,t <p.

2. |[Hom(XE, XF)| =0 for any 1 < s,t < p.

3. |H0m(P§t,Xti)\ =0fors#torl fors=t, for1<st<p-—1.

4. |[Hom(PE XF)| =0 for any 1 < s,t <p—1.

5. |Hom(PE, PE) =0 fors#t or2 fors=t 1<st<p-—1.

6. |Hom(PE,PF) =0 fors#p—tor2fors=p—t, for1<st<p—1.

Given modules A, B, for direct sums of multiples of them n A, and ngB,
(na,np € N), the homomorphisms between them are given as an n4 X np matrix with

entries in Hom(A, B), i.e.

11 qing

Hom(naA,npB) ~

Apyl Ansnp

where «;; € Hom(A, B). Hence |[Hom(naA,ngB)| = nang|Hom(A, B)|.

Given the decomposition of (X, )®", denote the multiplicity of a module A by M(A),

then we have the following;:

p
| Endg, ) ((65)°™)] = (M(P;))? + > (M(X))?
=1
p—1
+y° <2(M(7>j+))2 +2(M(P;))? + 2M(X; )M (P}) + 4M(Pj)M(7’;j)>
j=1
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Using this we can give the dimensions of Endg,( )((/'t'2+ )®m) for small n and p:

5[2

pnll 23 4 5 6 7 8 9 10 11 12

2 |1 2 8 32 128 512 2048 8192 32768 131072 524288 2097152
3 /1 2 5 14 45 162 621 2446 9733 38866 155381 621422
4 |1 2 5 14 42 132 432 1472 5216 19136 72192 278016
5 |1 2 5 14 42 132 429 1430 4865 16850 59350 212500

The dimension of the nth Temperley-Lieb algebra is given by the nth Catalan number

2n

Cy = %H =1,2,5,14,42,132,429, 1430, 4862, 16796, 58786, 208012... [33]. If we
n

subtract C,, from each entry of the above table, we get:

p\n|l 2 3 4 5 6 7 8 9 10 11 12
2 10 0 3 18 86 380 1619 6762 27906 114276 465502 1889140
3 |00 0 0 3 30 192 1016 4871 22070 96595 413410
4 |0 00 0 O O 3 42 354 2340 13406 70004
5 |00 0 0 0 O 0 0 3 54 564 4488

Denote |Enqu(5[2)((X2+)®”)| by Dy ,. From the second table we see that D,, = C,,

n < 2p — 1, DQP_LP = Czp_l + 3, Dgp,p = Cgp + 12p — 6.

We relabel the multiplicities of modules in the decomposition of (X,7)®" by M;,, where
1 =1,...,p corresponds to Xf, s Xp+, i=p+1,...,2p—1 corresponds to 77;71, ...,Pfr, and
i =2p,...,3p — 1 corresponds to P, , ..., Py .

Clearly for n = 1, My = 1, and all other M;; = 0. When n is odd, Ms;41, = 0, and

when n is even, Mo; , = 0. M;,, =0 for all i > n + 1.
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From the general decomposition rules given in 4.2, we have the following:
Min=M;,_1n-1+ M1, i<p—1, Myp,=0, Mgp,, =0
Myg1n,=1 n<2p—1, Mpy1m=2, m=>2p—1
My 1 prok =My 2piok-1, K2>0
My, piok+1 = 2My i1 prok + My_1 prok, k>0
Map_12py2k = Mop_22piok—1, k>0
Mop opyok+1 = 2Map 1 2pyok +2Mop_12p1ok, k>0

My spiok—1 = 2Maop 1 3p12k—2 + 2Mpy13p2k—2 + Mp_13p12k—2, k>0

In terms of this new labelling, we have:

sz n T Z Z 2M5+] n T 2M22p+j,n + 2Mp—jnMpjpn + AMpyjn Msp—jn)

P
:Zan:Cn, n<p
i=1
Zp
=2 M
i=1

Z M2 .+ 2My i Myijn), n<2p—1
=1

By considering the dimensions of modules we also have:

P p—1
2" = " iM;p + pPMopn + 2D Y (Mpyjm + Mapyjn)
i=1 j=1

Given these formulae, we can now proceed to give a proof of the following, which was

originally detailed in [25]:

Theorem 4.2.
|End((X;7)®™)| = Cp, n<2p—1
|End((X,7)#% 1) = Cop1 + 3

Proof. The case n < p is already known from the Temperley-Lieb algebra, so we only need

focus on the case n > p.

a a a
Let = — , then for n < p we have:
b b b—1
n
Mot = , M, =0, neven
n .
5] =i
n
My, = V”*UJ . s Maiv1, =0, nodd
2



n

o) _ |y

For n > p, this changes slightly, and we find that for terms of the form M,_1_2;, ok,

Or more generally, the non-zero terms are given by Mj ,, = ,J <n+l.

Mo ojipti42k, § <k, 0< k< %, they are now given by:

p+ 2k p+2k
Mp—1-2jp+or = -
kE+j5+1 k—j
p+2k+1 p+2k+1
My—2-2jp+1+2k = -
k+j+2 k—j
We have the combinatorial identity:
n 2
sl
=C,
=0 2

P
and since Dy, p = ) an for n < p, this gives:

=0
2 " 2
p n+1 n+1 n LEJ n
- - Mi,n?éo 2 2 B

For p < n < 2p—1, we have:

p
Dnp=> M2, +2M2,;  +2My inMpiin
1
p—2—2k

_ 2 2 2
Dpiokp = Z Z Mo + My 1 9jpion T 2Mp 4y y0) 540k
=0 =0

i

> |l

+ 2Mp—1-2jpt2k Mpt1425,p+2k
k p—3—2k
D = M? + M? + M? + 2M>?
p+14+2k,p = i,p+1+2k p—2—2j,p+1+2k p,p+1+2k p+2+25,p+142k
7=0 =0

+ 2Mp—2-2j pr1+26Mpt2+2jp+1+2k

We want to show that Dy, or, = Cpiok, Dpyiyorp = Cpr142k- Hence, using the previous
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combinatorial identity, we want to show:

k
2 2
D Moo+ 2My ook + 2Mp 19 prok Mp i1y prok
=0
2 2
p+§2k P+ 2% Qk‘z-i-l P+ 2%
l=p—1—2k L@J +k—|L] 1=0 l

k

2 2 2
E My 5 2jpr1tok + Mppirior +2Mp 049 pi140k T 2Mp2-2jpr1rarMpror2jpr1+2k
i=0

2 2
_ngk p+2k+1 _%? p+2k+1
1=p2-2k | |5 +k+1—]%] 1=0 l

For the first case, we have:

k
D Mook + 2M g ok + 2Mp 10 p ok My ya) o
=0
2 2
k p+ 2k p+ 2k p+ 2k
-y - 2

§=0 kE+j+1 k—j k—j

p+ 2k p+ 2k p+ 2k

+2 -
E+j+1 k—j k—j
2 2 2
k p+ 2k p+ 2k p+ 2k p+ 2k p+ 2k
:}2 -2 + +2
j=0 | k+j+1 E+j+1 k—3j k—j k—7j
2
p+ 2k p+ 2k p+2k
k+j+1 k—j k— j
2 2 2

53 p+2k p+ 2k Al 2k
j=0 |\ k+5+1 k—j 1=0 l

For the second case, we have:

k
2 2 2
E Mp7272j7p+1+2k + MP,P+1+2k + 2Mp+2+2j7p+1+2k + 2Mp7272j,p+1+2kMp+2+2j,p+1+2k
Jj=0

_ﬁé p+2k+1 p+2k+1 a+ p+2k+1 2+2 p+2k+1 2
7;’:0 kE+j+2 k—j k+1 k—j
oy p+2k+1 | | pt2k+l p+2k+1
k+j+2 k—j k—j

82



2

Fol pr2k+1
=

§=0 k+j+2

p+2k+1 p+2k+1 p+2k+1
+
k+j+2 k—j k—j
2
p+2k+1 5 p+2k+1 p+2k+1
_|_
k—j k+j42 k—j
2 2
p+2k+1 p+2k+1 %i? p+2k+1
k—3j kE+1 1=0 !

Hence we have shown that D, , = C,, for n <2p — 1.

For Dgy,_1 p, we have:

_As2
DQP—LP _M2p,2p71 +

For the M; ;, we have:

My 2p—1 =

2p 1+Z

2p—1

NS

Mpvgpfl :0, D Odd

Mspop—1 =
Mo op—1 =

Msjop—1 =

For p odd, we then have:

(p=1)
{I)QIJ 2]9—1

Dyp1p= > 4

i=1 0

+2

2p—1
0
2p—1
p—1
2p— 1

P—1J

2p—1

p—1

iop—1 t2M +z op—1 1t 2My—iop 1 Mpyiop—1

, D even

2p—1
— , 0<2i<p—1
i

, p<25<2p—1

2p—1 2p—1 2p—1
p—1 1 ]

2p—1 2p — 1
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2p—1 2p—1 2p—1 2p—1
+ 2

pu— 4 _—
i=1 0 p—1 p—1 )
2 2
2p— 1 2p—1 2p—1 2p—1
+ +2 +2
i i p—1i 7
2
2p—1
_9 p
1
{(p—nJ 2 2 2
2 A 2p —1 2p — 1 2p —1
i=1 0 p—1 ]
. 2 2
P 2p — 1 2p —1
=>4+ =Cy1+3
1=0 l 0
For p even, we have:
p 1) 2 2 2
2p—1 2p—1 2p— 1 2p—1
Dop1p= Z 4 + + -
0 £ p—1i i
2
2p—1 2p—1 2p—1 2p—1
+2 +2 —
i p—1 i 1
V%l)J 2 2 2
2 2p— 1 2p —1 2p — 1
= > 4 + +
i=1 0 B p—1
2 2
2p —1 2p—1 2p—1 2p—1
_ 9 p D P P p
p—1 1
2
2p—1 2p—1 2p—1
+2
p—1
L(p_nJ 2 2 2
2 2p — 1 2p —1 2p—1 2p — 1
= 4 + +
i=1 0 7
. 2
r 2p—1 2p — 1
=y +3 = Cop_1 + 3
i=0 i
Hence we have shown that Dy,_1, = Cop_1 + 3. O
_ 2
L5 n n , . n
Let G = 3. 2 + (12 - 1)1
j=0 1+1—7 j 5] +1

We claim that in general, the dimension of Endpy, s, ((X5F)®™) can be given by the
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following formula:

Conjecture 4.1.

Dy =Cot Y (n+1)(n+3)Gnpn(js2)
j=0

for all n.

4.4 U,(sly) Invariant Maps between Modules.

As both a proof of theorem 4.1, and for later use, we want to classify the sets of linear
maps on the projective modules that commute with the action of U,(sl2) and describe
them in terms of module bases. We can split these maps into three types; endomorphisms
on the projective modules, homomorphisms between different projective modules, and ho-

momorphisms between the projective and simple modules.

Consider first endomorphisms on the projective modules.

4.4.1 Projective module Endomorphisms

Proposition 4.1. Given P¥, 1 < s < p, Enqu(ﬁ[Q)(Pgt) is two-dimensional and

0 : PE — PE, has the general form:
9(@2) = fai 9(()2) = gay; + fbl (4.14)
0(x;) = f; 0(y;) = fy; (4.15)
where 0<i<s—1,0<j<p—s—1and f,g € K.
Proof. As the action on the positive and negative modules only differs by a sign change,
we restrict the proof to the positive case.
Note that because of the K-action, any endomorphism can only map elements to those
with the same K-weight. For the K-action on P} we have:
K (z;) = —¢"— " K(y;) = —¢" """
K(al) — qs—l—Qiai K(bz) — q8_1_2ibi
For there to be a map between the subspaces with bases {a;, b;} and {x},y;} would require

that 2p — s — 1 —2j = s — 1 — 2¢ mod 2p, which requires 2i — 2j = 2s mod 2p. As
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0<i<s—1,0<j <p—s—1, we have that 2s + 2 — 2p < 2i — 25 < 25 — 2. Hence
there is no possible solution, and so there are no maps between {a;, b;} and {z;,y;}. This

means that any endomorphism on P is of the form:

0(ai) = fiai + gibi 0(bi) = fbi + gias
0(x;) = fiz; + giy; 0(y;) = f{y; + gjz;

where f,g € K.

The F-action is non-zero on every element, except for y,_s_1 and a,—1. Hence we have:
F0(yp—s—1)) = F(f) s 1Yp—s—1+ Gp—s_1Tp—s-1) = Gp_s_100 = O(F(yp-s-1)) = 0

this gives g7 . 1 = 0, and 0 0(yp-s—1) = f5 o 1Up—s-1-

Given E(y;) = —[jllp — s — jlyj-1, E(x;) = —[j]lp — s — jlzj—1 we have:

E(0(y;)) = E(f]y; + gjx;) = —[jllp — s = 51(f} yj—1 + gj2j-1)

0(E(y;)) = —lillp — s = 10(y;—1) = =[jllp — s = 3171951 + gj125-1)

which means f/ = f/ |, g/ =g/ |, and hence 0(y;) = f_,_,y;.
By a similar argument we get 0(x;) = fiz;.

As E(yp) = as—1, we then have:

E0(y0)) = £ B(yo) = £ 1051

H(E(yO)) = e(asfl) = fg—lasfl + gg—lbsfl

and so f¢ , = g_s_l, g%, =0, which gives 0(as_1) = f;j_s_las_l.
Similarly, as F(zp—s—1) = ag, we get 8(ap) = f§ao.

Given F(a;) = ajt+1, F(b;) = biy1, we then have:

F(0(as)) = F(ffai + g2bi) = faip1 + gibia
0(F(a;)) = 0(ais1) = foiaiv1 + gly1bis

Y

which gives f{ = f,, ¢ = gfﬂ, and so 6(a;) = fga;. This then gives f§ = f,_ . ;.

7

Hence we have now that the endomorphisms must be of the form:

0(a;) = fyai 0(b;) = f2b; + gla;

0(z;) = fox; 0(y;) = fovj
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Given F'(bs—1) = yo, F'(as—1) = 0, we have:

F(0(bs-1)) = F(fg—lbs—l + 95 105-1) = ff—lyO

O(F(bs-1)) = 0(vo0) = f5yo

then f¢ ;= fg.

Finally, given F'(b;) = b;j+1, we have:
F(0(bi)) = F(fPbi + gf'ai) = flbit1 + glais
O(F(bi)) = O0(bip1) = fli1biv1 + g 10i

which gives fl-b = fl-bJrl, gi = gi,1, and so 0(b;) = fibi + gi'a;.

Hence any endomorphism on P can be written in terms of the identity map and &, where
€(bi) = Q, E(a,‘) = E(xj) = E(yj) = O, 62 =0. ]
4.4.2 Homomorphisms between projective and simple modules.

As the actions on positive and negative modules differ only by a minus sign, we only need

consider the cases:

Pl =Xt
Xt —Pr
PH— &
X, — Pf
Homomorphisms 6 : P} — X,

Let P; have basis {ag, ..., as—1, b0, ., bs—1} U {T0, .o, Tp—s—1, Y0, -, Yp—s—1} and X" have

basis {zo, ..., zt—1}-

Proposition 4.2. The homomorphism 6 : P} — Xt+ is only non-zero when s =t and

has the form:

foralll1<i<s—1,1<j<p—s—1and f € K.
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Proof. We start by noting the K-action is given by:
K(xj) = =" ¥ K(yj) =~
K(az) _ qs—1—2iai K(bl) — qs—1—2ibi
K(Zk) — qt7172kzk

Consider the general form of 6:

t—1 t—1

0(x5) = i DI
k=0 k=0
t—1 t—1

0(ai) = flzn 0(bi) =Y flrz
k=0 k=0

Starting with z;, as both Exg = 0, Ez9 = 0, but Ez; # 0 for 1 < k <t — 1, then we

must have f3, =0, for 1 <k <¢— 1. As any map must preserve K-weights, we have

Kzxg=—qP~°"!, Kzy = ¢!, hence we need 2p —s —1 =t —1 mod 2p which requires
t=—s mod 2p. However this has no solution, therefore fi, = 0. For any other f]?”k, we
have:

9(1‘]) :Q(Fjl‘o) == FJG(CL‘()) =0

Hence §(x;) = 0 for all j. A similar argument gives (y;) = 0 for all j.

For O(a;), we have:
Q(CLZ) = 0(Fi+1a}p_3_1) = Fi+19(33p_5_1) =0
Hence 6(a;) =0 for 0 < i < s — 1. Finally, for (b;), we have:
t—1 t—1
E(0(bo)) =Y forEz =Y foxlkllt — Klzp—a
k=0 k=1
0(E(bo)) =0(xp—s—1) =0
which means fg,k; =0for 1 <k<t—1, and so 0(by) = f&ozo. Hence we have:
0(bi) =0(F'bo) = F'0(bo) = f§ 0z

We need the K-actions to match, and so we need ¢*~! = ¢/~! which means s — 1 =1¢ — 1

mod 2p, and therefore s = ¢. B
Homomorphisms I : Xt+ — P

Proposition 4.3. The homomorphism T" : X;’ — Pt is only non-zero when s =t and

has the form:

I'(2) = ga;
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for all i and g € K.

Proof. Consider the general form for I':
s—1p—s—1
T(zk) =Y > g sai+ g} b + gb ja; + 9 v

i=0 j=0

As Ezy = Fz_1 =0, we have:

s—1p—s—1

ET(20)) =Y > ([ills — ilg8; + 90 )ai-1 + [il[s — lgg ibi—1
=1 j=1

(2
—[illp — s — 4195 521 — [illp — 5 — 198 ;95 + 96,0Tp—s—1 + 9 951
=0
['(20) =96.0a0 + 95,070
As they have different weights, either g5, = 0 or g5, = 0. We have Kzg = q' 120,
Kag = ¢ tag, Kzg = —¢P~*'zg. For zg, we need 2p —s —1 =t —1 mod 2p, which
requires s = —t mod 2p, which has no solution. Hence g5, = 0. For ag, we need

s—1=t—1 mod 2p which gives s =¢. Hence we have:

I'(z0) =g5,0a0
I'(zk) :F(szg) = ka‘(zo) = g&oak

0<k<s-1

Homomorphisms 0 : P} — X~

Proposition 4.4. There are no non-zero homomorphisms 6 : P — X .

Proof. Consider the general form of 6:

t—1 -1

0(s) =Y Finan Ous) = D_ fiio
k=0 k=0
t—1 t—1

Oa) = > fis 6b:) = >_ fix
k=0 k=0

By considering the E-action on ag, we have 6(ag) = f§ 20, however comparing K-weights,

we have Kag = ¢* tag, Kzp = —¢'

~129. This gives f6.o = 0. From this, we have:
9(0,1) :0(Fia0) = FiH(ao) =0
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The other options for mapping to zy are zg, by, and yg, however again from the K-weights,
we must have 0(by) = 0. For zy and yo, the weights force ¢ = p — s. However, as

Eby = xp_s_1, Fbs_1 = yo, we then have:

0(x0) =f50%0
0(x;) =F70(x0) = foF 20 = [0

fo.02-s-1 =0(xp—s-1) = 0(E(bo)) = E(6(bo) = 0

which gives f7, = 0, and so 6(z;) = 0.

A similar argument gives 6(y;) = 0, and hence § = 0. O

Homomorphisms I': X, — P}

Proposition 4.5. There are no non-zero homomorphisms T : X, — P,

Proof. Consider the general form of I":

s—1p—s—1
D(zk) =Y D g iai+ g7 b + gb o + 9 ;s
i=0 ;=0
Then as Fzy = 0, we have:
s—1p—s—1
E((20) = > ([ills —ilg§; + gb)ai-1 + [i]ls — gt ibi-1
i=1 j=1

— [llp — s —dlgg jxj-1 — lllp — s — 3lgg ju; + 96.0Tp—s—1+ 90 gts—1
=0

I'(20) =95 020 + 95,00

t

Comparing weight spaces, we have Kzy = —¢' "'z, Kag = ¢* lag, Kzg = —¢P~* ay.

From the first case, we have that the only possibility is gi, = 0. For the second case, we
have p —s —1=1¢—1 mod 2p, which means ¢ = p — s. However, as F'x,_s_1 = ao, this

then gives:

T'(z1,) =T(F*20) = F*T(20) = g5 0

FP™°T'(20) =g5 0a0 = [(FP"%2) =0

which gives g§, = 0, and so I'(z9) = 0.
We then have I'(z) = I'(F¥29) = F¥T'(20) = 0, and hence T" = 0. O
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4.4.3 Homomorphisms between projective modules
Homomorphisms 6 : PS — P,

Let 0 : P — P:r. Denote the elements of Pf by a;, b;, T, Ui

Proposition 4.6. There are no non-zero homomorphisms 0 : P — P} except when

s =t.

Proof. From the E and F actions, the only possibilities for # acting on the sub-basis
{ag,bo} are either {ag,bp} {&0,50} or {ap,bo} — {Zo,%0}. However, comparing K-

weights, we have:

t—1

Kao :qs_lao K&O =q CNLO Ki’o = - qp—t—l T

o

Hence we have either s — 1 =t —1 mod 2p, which gives s =¢t, orelse s —1=2p—t—1
mod 2p, which reduces to s = —t mod 2p, which has no solution. Hence the only non-zero

case for 6 is when s = ¢, which reduces to the endomorphisms on P; given previously. [J

Homomorphisms 6 : P} — P,

Proposition 4.7. The only non-zero homomorphisms of the form 6 : Py — P, occur

when t = p — s and is given by:

0(a;) = 0

0(bi) = i + foli
0(xj) = faa;

0(y;) = f1a;

for1<i<s—1,1<j<p—s—1, and f1, fo € K.

Proof. Again from the E and F actions, the only possibilities for § acting on {ag, b} are

either {ag,bo} — {ao,bo} or {ag,bo} — {Fo,%0}. Comparing K-weights, we have:

Kag =¢"ag Kag=—q"ao Kig =¢"~"&o

Hence either s —1 =p+t—1 mod 2p, which reduces to s = p+t mod 2p, which has no

solution, or else s — 1 = p —t — 1 mod 2p which gives t = p — s. 8 must then have the
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general form:

O(Cbz) = ff’xlfi + fia’y:lji Q(bl) _ ff,sz + fib’yﬂi
O(z;) = £ + £7°b; 0ys) = £ + [0
O<i<s—l 0<j<p-s-1

We have:
0= 0(E(ao)) =E(6(a0)) = E(f5""%0 + f5"" o)

:fgjydpfsfl
and so fi"Y = 0, which gives 0(ag) = f3"* Zo.
We then have 0(a;) = f3""&; for all ¢, however:

0= H(F(as_l)) :Fe(as_l) = fg’xF:i'S_l = fg’xd()
hence f;™* =0, and therefore §(a;) = 0 for all i.
Next, we have:
0 = 0(E(x0)) =E(6(z0)) = E(f3 “do + f3 "bo) = f5""#s1

therefore f = 0, which gives 6(zo) = f2* a0, and 0(z;) = [
Similarly, we get 0(y;) = f2 a;.
Next, as Eby = xp_s—1, we have:
f5 “ap—s—1 =0(E(bo)) = E(8(b)) = E(fg"#o + fo"0) = fo¥ap-s—1
I =1"
FP5 &+ 17V =0(F () = F'(0(b)) = fo""&i + fg5i
0(b:) =10 % + fo "5
As Fbs_1 = yp, we have:
[y o1 =0(F(bs1)) = F(B(bs-1)) = F(fg o1 + fo"Gs-1) = fy s
y,a _ bz
s—1 —J0
Hence we have the general form of 6 is:
0(ai) =0 0(bi) = fo "% + f3 B

0(z;) = foa; 0(y;) = fo"a
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Chapter 5

The U,(sly) Planar Algebra.

Our construction of the U,(sly) planar algebra is a diagrammatic description of
End((X,7)®™)), similar to the constructions of [20, 24, 43, 47]. We will show that for

n < 2p — 1, this is equivalent to the Temperley-Lieb algebra on n points with parameter
d=q+q ' and for n > 2p — 1, End((X;“)@m)) contains an extension of the Temperley-
Lieb algebra by two extra generators. The main focus of this chapter is theorem 5.2, which
describes a number of relations on the extra generators of the Uq (sl2) planar algebra. This
is not a complete list of relations, but we believe that any other relations should come
from a generalization of the ones given, mainly relations 5.15, 5.17, 5.21, and 5.22. For the
case, p = 2, n = 4, theorem 5.2 gives a complete list of relations. A proof of a complete list
of generators and relations for the Uq (slz) planar algebra is a potential future endeavour.

For the rest of this chapter, we denote X := X; .

The module X has basis {vp, v1}, with U,(slz) action:

K () = quo E(1) =0 F(v) =wn

K() =q 'y E(v) =w F(r1)=0

The action of Uy(sly) on X®" is given by use of the coproduct.

We denote by p;, . .. the element of X®? with vy at positions i1, ...,i,, and vq else-
where. We also occasionally omit the ® sign, and combine indices. For example,

P1,35 = V1 Q@ Q1 V& Vy = V10100-

The elements of X®* can be described in terms of the K-action on them. For x € X®?,
with K (x) = Az, A € K, we call X the weight of x. Alternatively for basis elements we can

write this as K (pi, . i,..) = ¢ 2"z, and refer to n also as the weight. X®* will then have
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the set of weights {¢*, ¢* 2, ...,¢> %,¢~*}. Denoting the set of elements of X®* with weight

V4
g7 2 by X, ., we have X9z = U Xi.. The weight spaces X, X, . both have a single
i=0

element, which we denote by zq, := (10)%?, 2, := (11)%* respectively, and occasionally

drop the second index if the context is clear. We have p;, . ;.. € X, ..

in,
We record a number of combinatorial relations involving Uy (sly) and its action on X®? in

Appendix A.

The module X;" ~ K has basis {v} and action:

Kv)=v E(v)=0 F(v)=0 (5.1)

5.1 The Temperley-Lieb Algebra

The aim of this section is to prove the following:
Theorem 5.1. End(X®") ~TL,(q+q¢ '), n<2p—1

Proof. In section 4.3, we showed that the dimension of End(X®") is equal to the dimen-
sion of TL,(q+ ¢~ ') for n < 2p — 1. Hence we just need to show that End(X®") has a

set of generators satisfying the same properties as the Temperley-Lieb generators.

We define the following maps U : X®? — Xfr, n: Xf — X2 by

U(rig) = v (5.2)
U(vo1) = —quv (5.3)
U(roo) = U(r11) =0 (5.4)

N(v) = q 'vi0 — v (5.5)

where v is the basis of X}
We define &; := 120-D @ (NU) @12 =1 ¢ End(X®"). Then the maps éi, ..., é,_1 satisfy

the Temperley-Lieb relations. O

These éi act as é(l/()o) = é(l/n) = 0, é(l/lo) = q_11/10 — o1, é(l/()l) = qVp1 — V10- From
this we can see that the €; act on weight spaces as €; : X , — X}, and hence any element

of End(X®™) for n < 2p — 1 must map weight spaces to themselves.

The Temperley-Lieb algebra contains a set of projections known as the Jones-Wenzl pro-

jections. The nth Jones-Wenzl projection, f,, for 0 < n < p — 1, is the unique projection
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satisfying:
fo 1 XO" = X5, — XO"

Details on this are given in Appendix B.

5.2 The U,(sl;) Planar Algebra

The Uq(slg) planar algebra, with ¢ = e™/P and 2< p e N, is a diagrammatic description
of End(X®"™). An element of End(X®") is given by a planar box with n points along the
top and n points along the bottom. More generally, an element of Hom(X®™ X®") is a
planar box with m points along the top and n points along the bottom. A box with zero
points along an edge is used to represent a map to or from X1+ , with our choice of these
maps defined by equations 5.2 - 5.5. The identity map in End(X®") is given by n vertical
strings, and the identity map on Xf’ is given by an empty box. We sometimes denote
multiple parallel strings by a single thick string, and omit the external box.

Some basic examples are:

1: X5 — X =

XX — A =

"

1: X — X =

Our Uq(5[2> planar algebra construction is given by the Temperley-Lieb algebra with

§ =q+q ', and two (2p — 1)-box generators a, 3, which are defined in section 5.3. We
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denote by «, B; the elements 120~ D @a@1(~2=1=2) 1(-1)g[x1n-2r-=2) ¢ End(X®"),

n>2p—1.

Theorem 5.2. The generators o and B of the Uy(sly) planar algebra satisfy the following

properties:

> =p2=0
afa =y
pap =~p

v = (=P (lp - 1))
o = ajog = Biff; = BB =0, |i—jl <p
QiQi+p = Qj4pQy
BiBi+p = Bit+pbi

af + Ba = vyfop—1

(5.6)
(5.7)
(5.8)
(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

We denote by U;, N; the corresponding maps, (equations 5.2 - 5.5), acting on the ith and

(i + 1)th points. Denote by R, the (clockwise) (n,n)-point annular rotation tangle. We

then have:

an; =Ua=6n=U;=0, 1<i<2p—2

Q41N = aiNipop—2
Uiaiip1 = Uigap—20y
Bi+1Mi = BiNit2p—2
UiBir1 = Uir2p—205;i

R4p72 (a) =«

Rap2(B) =B
4p—1
> kiRj(a®1)=0
=0
4p—1
> kiR, (B®1)=0
=0

where k; = (—1)'[i — 2]k1 + (—1)%[i — 1]ka, for arbitrary ki, ko € K.

Diagrammatically, these relations are:
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(5.17)
(5.18)
(5.19)

(5.20)

(5.21)

(5.22)
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e

B:O

Figure 5.1: Relation 5.6

=[5

Figure 5.2: Relation 5.7 and 5.8

Figure 5.3: Relation 5.10
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Figure 5.4: Relation 5.10

o Q 5 5
oz_oz 5_5

Figure 5.5: Relation 5.11 and 5.12

. [
HE

Figure 5.6: Relation 5.13
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Figure 5.9: Relation 5.15 and 5.16
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Sl=12]| |Lad=15

Figure 5.10: Relation 5.17 and 5.18

- S |=La

Figure 5.11: Relation 5.19 and 5.20

I I I I I
kil a | |[+k | « || +ks on +oo ko1 || o Ko Loz
| = = ad |

/ _/ /

| = |

+hopii| | Q0 |+kopio FOz +Fkopis3 o |+ +ky| =0
|

Figure 5.12: Relation 5.21

)

| | | | |
k1 6 +ko BJ + ks BJ +...+ Koy LB +kop Lﬁ
| ) ﬁ f/_\J

=T I R =
—I—k2p+1 5 —I—k2p+2 F/B —I—k2p+3 /B ...+ k’4p /B =0
| |

Figure 5.13: Relation 5.22
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We also have the partial traces given by:

i

Figure 5.14: The partial trace of  and f.

Figure 5.15: The partial trace of af and Ba.

The aim of the rest of this chapter will be to prove the existence of these generators
and their relations. The formulae for the partial traces of 8 and Sa will be proven in

section 6.6 of the following chapter.
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5.3 The Generators a and S.

Let o € Xo,2p—1 and x9,_1 € Xop_1,2p—1, For any z € X}, 9,1, there is e, f € K such

that EFz = eyxo and F2P—F-1gp = fzwap—1. We define the maps «, 8 by:

afz) = e, B lag, 4

B(z) == f F*Pxy
where we take E~! =0, F~! = 0. In terms of weight spaces, they act as:

a:Xpop 1= Xpipop1

B Xgop-1— Xp—p2p-1

Then « is zero for k > p and S is zero for k < p. Hence o? = 52 = 0.
From their action on weight spaces, it’s clear that «, 5 ¢ T'Lo,—1. We want to prove that

o, B € End(X®@r—1),

5.3.1 Proof of the commutivity of a and 3 with the U,(sly) action.

We want to show that a and 3 commute with the action of U,(sl2), and so that

o, B € End(X®(r=1), Starting with a, for commutivity with K we have:

a(K(:E)) — q2p7172ka(x) — q2p7172k6pr7k71x2p_1 — q7172kepr7k71x2p_l
K(a(z)) = e, KEP " oy, 1 = Pe, EKEP * 209, | = ¢ 2 2¢, EP* 1Ky, 4

2p—2k—2, 12 —k—1 ~1-2k —k—1
=q”* g Pe EP T2p—1 = ¢ ex BP xop—1 = oK (x))

Hence a commutes with K.

For the commutivity of a with E' we need the following:

Let E(z) = v, so that E*1v = e,x0, then:

e e _ _
a(B(x) = Za(w) = Ze,BP Frg, | = e, BP Fag, 4
€y €y

E(a(z)) = e, B(EP " tag, 1) = e, EP *19, 1 = a(E(z))
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Hence o commutes with E.

Finally for the commutivity of o with F'| using equation A.8, we have:

Ek—HF(J}) — (FEk:—l-l ( )(qukK_ q—k:EkK—l»m

k4 1]
q- —1

[
q-—
= (FEM (q[k Jrqf]l N *KE* — ¢* K E"))a
[k + 1]
q—q!
=ezlk +1][2p — 1 — K]z

[k + 1]
q—q1

g "K — ¢" K ao = ey G G S P

= 6:(;(

a(F(z)) = ex[k +1][2p — 1 — k]| EP 229, 4

Fla(z)) = e, FEP " gy,

— k-1
= ot (B ot )
—k-1 _ _ i b4 i
_ em([pq — ])(qk p+2+2p—1 pp—k—2 _ P k—2+1-2p pp—k 2)9021,,1
—k—-1
= ex([pq — q—l ])(qk+1+pEpfk72 _ qufkflEpfk72)w2p_1

=ep—k—-1]p+k+ l]Ep*k*Q@“gp_l

= e, [k +1][2p — k — NEPF 205, 4

Hence the identity holds for all 0 < k < p, so we have shown that a commutes with F,
and so the action of U,(slz) commutes with «.

Hence we have that o € End(X®Z~1),

For commutivity of the action of Uy(sly) with 3, starting with K we have:

B(K(x)) = ¢ ' 72FB(x) = ¢~ 7 fu Py
K(/B<m)) = fokapr = q72f$FKFp7kflgj0 = q2p*2kf$Fk*pr0

_ qu_Qk;QZp—lfok—pr _ q—l—Zkfok—PxO = B(K(Jf))

Hence f commutes with K.

For commutivity with F' we need the following:

Let F(z) = ;—zy so that F?P~%=2(y) = f,z9,_1. We have:

fe
Jy

F(B(x)) = f[o FF* P (20) = foF*PHag = B(F(x))

B(F(x)) = T By) = foF* Py
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Hence f commutes with F.

Finally for the E action, using equation A.6, we have:

FQp_kE(ZE) — (EFQp—k + ( [2]) __kl] )(q2p—k—1F2p—k—1K—1 _ q1+k_2pF2p_k_1K))$
q—4q
2p — k
:(Eszfk + ([ p ])(qu2p7k71 . qko2pfk71))x

q—q!
LQJi ;_kl] )(q* — ¢ F)wop-1 = fol2p — K][K]w2p1

B(E(x)) =fu[2p — KI[KJF* "

E(B(x)) = foB(F* Pay)

k—
:fz (Fk’_pE + (q[_ql_)]l)<q1—k+ka—p—1K o qk‘—p—le’—p—lK_l))wO
k=2l | 1-ktptap—1 ph—p-1 ke—p—1+1—2p prk—p—1
=fal —P)(g TR gt PP P )
q—4q
[k _p] 3p—k k—3p\ pk—p—1
:ffr(ﬁ)(q — ¢ P)F Zo

= fulk — p][3p — K] FF"P 2z = f.[2p — k][K]F*P~1 = B(E(x))

Hence the identity holds for all p < k < 2p, and we have shown that § commutes with F,
and so 3 commutes with the action of Uy(slz).

Hence 8 € End(X®®r~1),

5.3.2 Proof that Ima~1Im [~ X .

We want to show that the images of the maps a and 8 are actually the module X". We
do this by constructing suitable bases from the images, similar to the construction of the
simple modules from the highest weight vector. We then show that the action on each
basis is the same as the action on X"

Note that a(zg) = EP~lxg, 1, and that K(a(xg)) = KEP Loy, 1 = ¢?P2EP 1 Kx9y, 1 =

g2 EP g, 1 = ¢ a(zo) = —¢Pra(xp). We have:

([p—ll

Flalwo)) =FE" tampoy = (BIF + (= )@ PEP KT = ¢ 2B Yy

_ -1 _ e
=(E? 1F—I—(q[pq]l)(quEp 2_glPEp 2))$2p_1

:[p — 1] [p + 1]Ep72l’2p_1 = _Ep72$2p_1
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Define wg := a(xg), wy := F(a(z)) = —EP~2x9, 1, wy, := F¥(a(z0)). We want to show

that {wog, ..., wp—1} =~ &,". We have:

K(wg) = KF*(a(z0)) = KFFEP a9, 1 = ¢ FFKEP ag,
— q72kq4pf2FkEp71Kx2p_1 —_ q72kq4p72q172kaEp71x2p_1
— q—2k—1yk _ _qp—l—kak

F(wy) = F* (a(0)) = wia

F(wp-1) = FP(a(x)) = 0

E(wy) = E(a(xg)) = EPx9p—1 =0
Using equation A.6 we have:

E(wy) = EF*(a(x0)) = EFFEP 29, 4
(]

— (Fk‘EI + ( — )<q1—ka—1K o qk_le_lK_l))Ep_1$2p_1
k
— (q _[ ;1 )(qlkok:flK . qklekflel)Epflxzp_l
k
— (q _[ i_l )(ql—k+2p—2+1—2ka:—1 _ qk—1+2—2p+2p—1Fk—1)Ep—1x2p_1
_ ( [k] )( kokfl . k:kal)Epflx
- q-— q,l q q 2p—1

= —[k]QFkilEpilxgp_l = —[k] [p — k]FkilEpflxgp_l

= —[Kllp — Klwg—

Hence we have that the set of elements {wy, ..., wp—1} is isomorphic to the basis of X,

and so Im o ~ Xp*.

Define z,_1 := B(x2p-1), 2k—1 = mEzk, letting zp, = ckEp_l_’“zp_l where

(=DP1*([K]Y)

k= KT We want to show that {zp, ..., zp—1} =~ X,;". We have:

K(z) = cx KEP 7z = p KEPTV R PP g = P27 2P EP IR R PP 1y
_ Ckq2p7272kq272pEp717ka71Kxo _ ckq*%qu*lEp*l*ka*lxo
gy, = g1k,

E(z) = —[K|[p — klzk—

E(20) = coEEP ™'z, 1 =0

F(zp1)=FFP 1z =0
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Using equation A.8 we have:

F(Zk) = CkFEp_l_kzp_l = CkFEp_l_k(ﬁ(xgp_l)) = CkFEp_l_ka_l.T}O

-1-k
= ¢y, (Ep—l—kF + ( [p - ] )(qk—p+2Ep—k—2K—1 o qp_k_2Ep_k_2K))Fp_1:E0

q9—q
-1—-k
= ck(M)(qk—p+2+2p—2+1—2pEp—k—2 _ qp_k_2_2p+2+2p_1Ep_k_Q)Fp_lxo
—-1—-k
= Ck([p;_ql])(qk—P"rlEp—k—Q _ qp—k—lEp—k—Q)Fp_le

= —cplp—1 - kPEP R 2Py = —qp[k +1)[p — 1 — K] EPF 2P~ 1g

k-2
= cpr 1 BV 21 = 21

Hence F(z) = F(zk+1), and we have that the set of elements {zo, ..., z,—1} is isomorphic
to the basis of X, and hence we have Im  ~ X .

Note that Rank(a) = Rank(8) = p, and as U,(slz) commutes with both o and 3, we have
proven that I'm(a) ~ Im(8) ~ &, .
From this we can state that the composition of any (non-identity containing) 7L element
with « or 3 is zero, as any T'L element can be thought of as a map to X" or P, but

there are no non-zero homomorphisms between &, and these modules, hence the product

must be zero.

5.3.3 Composition of a and

What are f(a(z)), a(B(x))? Consider first f(a(z)). If v € Xp_1,9p—1, then a(z) = ezx2p—1
and B(a(z)) = e, FP~lzg. However for other elements it is not so straightforward. First
we need to calculate f,(,) where F?~™"1(a(z)) = fa@) Tap-1-

From before, we have:

Fla(z)) =e, FEP " o, | = e [k +1]2p — k — 1]EP " 229, 4
([k+41)(2p — k — 1]!)Ep—k’—j—1
(KI)([2p — & — 5 —1]1)
—1N([2p -k —1]Y)

Hence F/(a(z)) =€, Zop—1

Fp—k—l(a(x)) =e, ([p

D@y
Therefore fy(y) _%W
This means:
(2p =k -1]Y

FFao, ©€ Xpop1, 0<k<p-—1

M) = e« =i
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For a(B(z)), if z € Xp2p—1, then B(z) = foz0 and a(B(z)) = frEP Lxg,_1. For the other

elements, we have:

E(B(x)) =f. EF* Py = f.[2p — K][k]F* P~z

oo o (22— kg~ DY oy
Hence E’(B(x)) _fz([Qp ([ - j]l)Fk xo

bp iy — g (= ID(EY
B2 6@) =Ly =k = 0 (o™
- (1)
Therefore €5y =/ 7 =1 A0
This means:
- (k) Pk
(B@) = fa i =gy B a1 7€ Xeapr, PSR 21

Note that, given = € Xy 9p—1, a(B(2)) € Xp2p—1, B(a(x)) € Xp 2p—1, and a(B(x)) = 0 for
0<k<p-1 Ba(z) =0forp<k<2p—1.

Combining these further, we find that:

— k=1 |
oty = e 2P E )

©(ED (- k= 1)[p2

Note that as [p + i] = —[i], we can simplify this to get:

es(a() = ex(—1)P H([p—1]1)% 0<k<p-—1
a(B(e(x))) = e (1P ([p = 1N)2EPFagy, 4

Similarly, we have:

y g ([KID([3p — k —1]1)
alB@) = I (2 — & — 1N([k — p]")[p]

Which simplifies to give:
fa@(@y) = fo(=1)PH([p —1)1)?
Bla(B(x))) = fo(=1)" ([p — 1]1)*F*Paq

Let v = (—1)P"!([p — 1]")2. Then we have:

afa = ya BaB =8
afaf =~yap Baba =ypa
0B, _af fa, _ Bo
(7) (7) (,Y) (,Y)

From previously in section 5.3.2, we know that a and 3 give the image of P, . Hence, the
two maps (0‘76) and (’6:70‘) are the projections onto the image of the two copies of P, in

X®2—1) Tt follows that o and 3 are then the maps between the two copies of this module.
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5.3.4 Proof that Q0 = Blﬁj =0 if |Z — j| <p

We prove this by considering four cases; ajira1, o111k, S140x01, B1P11k-

Before we proceed we note equation A.9:

n
AE" =) NnE' @ K'E"
=0

where )\O,n = )\n,n =1, )\i,n = )\i—l,n—l + qim)\i,n—l-

For ayypaq, let B/x = €Tk, Ely = eyTo2p—1—k, £z = e;x0, then:

B (2 @ y) =X (Ez) @ (KT E'Y) = \jjreaey @@ Fzg0, 1

a1(z @y ®2) =Njjpieseyq (BT g, 19, 1) @2

p—j—i-1
— —j(k+1
= D Ngrieaeyq TN x

7=

% (Elwk:,k:) Q (KiEpijililii.fgp_l_kgp_l_k) ® 2

To apply a4y to this, we need E*~17% acting on Top—1—k2p—1—k 1O get to zgop_1_k,
however, since EP = 0, this implies that oy (a1 (x ® y ® 2)) will be zero if

2p — 1 — k > p, which reduces to k < p — 1.

Consider now aq(a14x(z ® y ® 2)). We have:

EF™M(y @ 2) =\ pm(Bly) © (K'E™2) = eye N i1md wo,2p-1

a1 @Y ® 2) =eyeNimd T @ (EP " gy 19p-1)

p—l—m—1
_ k) A
= €y€2q ALl+mAip—l—m—1X

i=0
X ® (B'wap 1 pop-1-k) @ (K EPTImm= 170y 1)
To apply a1 to this, we again need EZp—1-k acting on wop_1_g2p—1—k to get xgo2p—1-k-

Hence this will be zero if 2p — 1 — k > p, which reduces to k < p — 1.

For 3, we first note equation A.10:
AF" = XK 'F" @ F
i=0

where )\O,n = )\n,n =1, )\i,n+1 = >\i—1,n + qi2i}\i,n-
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Let Fiz = foxgp, F'y = fy®op-1-kop-1-k, F™2 = frapp.

For 814101 we have:

Fithz @ y) = N ju(K ' Flz) @ (Fy) = fofyhijnd zop-1,2p-1

Bz @y ®2) = fofyMjrd (FP 7 mg0, 1) @2
p—j—i-1

= Z FefuN 1@ N p i (KT FP=I7 500 ) @ (Flagop 1 1) ® 2
i—0

To apply Bii1 to this, we need F2P~17F to act on x0,2p—1—k- However, since FP = 0, this

will be zero if 2p — 1 — k > p — 1, which reduces to k < p.

For (18k+1 we have:

F5™(y @ 2) =Xnim (K" Fly) @ (F™2) = fy f-Amiem@™ Mo, 1951

Ber1(z @y @ 2) =fy f-hmurma ™ 2 @ (FP7m " g9, 1)

p—Il—m—1
=0

fyszm,l—&-mq i,p—l—m—1X

(2

Xz @ (K FPmm=1=0 o 1 k) @ (Flags)

To apply Bi to this, we again need F?~1=F acting on 20,2p—1—k, Which will be zero if

2p — 1 —k > p— 1, which reduces to k < p.

Hence we have shown that cjoiixy = ayiper = G161k = Biwxf1 = 0if k < p, and

so we have proven:
Proposition 5.1. The Uy(sly) generators satisfy cia; = Bif3; = 0 if |i — j| <p

Note that in the proof, this only depended on the amount of overlap, i.e. the value of
k in ajaq . Hence this condition holds, even if there is another element acting between
the non-overlap parts.
For example, o;8;4p0; =0 if k > p— 1.

In general any diagram with « or 8 acting twice on p or more strings is zero.

5.3.5 Proof that o;a;4, = ipa; and B,y = Bitpli

Using the same notation as the previous section, we have a1 (x @ y ® z) =

p—j—i—1
Z >‘j7j+leweyq7j(p+1))‘i,p—j—l—l(sznp) ® (KlEpijilﬂilwp—Lp—l) ®z

1=
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Then we have EITHitm((ipp—i-l=i-lp ,  )®2z) =

i i p—j—l—i—1 4 om
Ajiiyjiipm (B KU EPTY Tp—1p-1) @ (K/TTE™2)

2i(p—j—l—i—1)+i(1— -1 14
:ez>‘j+l+i,j+l+i+mq( Hp—g—i=i= L p))(Ep Tp-1p-1) © (K7* +1550,17)

2i(p—j—l—i—1)+i(1—p)+p(j+i+i) (Ip — 1)) 20,291

=it j++i+m€zq

As EP = 0, we only need to consider the terms where j + 14 ¢+ m < p — 1, which gives
i<p—j—1—m—1. Hence we have ajp(a1(z ®y® z)) =

p—j—l-m—1
—j(p+1
> Ngrieeeyq PPN Ny ime=q
=0

x ([p = UN(E'zpp) @ (BP9 717 Mgy g9y 1)

2i(p—j—l—i—1)+i(1—p)+p(j+i+1)

p—j—l-m—1 ,p—1—j—Il—i—m
_ 2ip—i—j—2ij—2il—2i>4-pl
= E ( exeye,Z)‘jijrl)\i,pfjflfl)‘j+l+i,j+l+i+mq( pmImE Pl x
=0 n=0

X A p1—j—t—icm([p = U (E'zpp) @ (E"ap-1p-1) @ (K"Ep_l_j_l_i_m_%p,p))
Next we have ajp(z @y ® 2) =
p—Il—m—1
Z eyequp)‘l,l-‘rm)‘r,p—l—m—lx ® (ET‘/EP—LP—l) ® (KTEp_l_m_r_lxp,P)

Then we have:

Ej“’_"_l(m Q@ (E"Tp—1p-1)) :)‘j,j+pfrfl(Ej$) ® (KjEp_lﬁpfl,pfl)

:ex)\j,j-i-p—r—lqj(pil) ([p - 1] !)x0,2p—1

Again as EP = 0, we only need consider the terms where j+p—1r—1 < p— 1, which gives

r > j. Hence we have aj(a4p(z @y ® z)) =

p—Il—m—1
Y eyl dNimArpiomo1€a A japr1d? PV (Ip = 1)) %

r=j
X (Er_j@p—l,?p—l) ® (KrEp_l_m_T_lxp,p)

p—l-m—-1 ,r—j
= Z ( Z exeyez)‘l,l—i-m)\r,p—l—m—l)‘j,]’erfo1qlp+3(p_1) ([p - 1] ') X

r=j s=0

X Asp—j (E*Tpp) ® (KsEr_j_sﬁpfl,pfl) ® (KTEp_l_m_r_lxp,p)>
Let t = r — j, then this becomes:

p—l—-m—j—1 t
> ( > exeye:NitmMtjp—t—m-1Xjp-t-1¢7 P ([p — 1]1)
t=0 s=0

X At (E°2pp) ® (KsEt*sxp_Lp—l) ® (Kt+jEplmjt1xp7p)>

)

110



w

w u w
Using the summation identity > > @y, = > > Ty, this becomes:

u=0v=0 v=0u=v

> Yo e NimAiiptomo1Aip-t-10" TP ([p = 1]1)x

p—l-m—j—1 (plmjl
s=0 t=s

)

X Ast(BEPzpp) @ (KsEt_sf’fpfl,pfl) ® (Kt+jEp_l_m_j_t_1mp,p)>

Let n =t — s, then we have:

p—l—-m—j—1 ,p—l-m—j—1—s
lp+j(p—1
Z < Z exeyez)\l,l+m>\n+s+j,p—l—m—1Aj,p—n—s—lq prilp )([p - 1]!)X
s=0 n=0

X As,n+s(Es$p7p) ® (KsEnl"p—lyp—l) ® (KnJrSHEplmjnSlxpm))

Letting s = ¢ we have:

p—l—m—j—1 <p—l—m—j—1—z'

> Y ety NimAntitip—t-m—1Xjp-n—i-1¢?T D ([p — 1)) x
=0 n=0

X )‘i,nJri(EifUp,p) ® (KiEnxpfl,pfl) ® (Kn+i+jEp_l_m_j_n_i_1$p,p))

p—l—m—j—1 <p—l—m—j—1—i

_ Ipti(p—1
= E § CaCyCz Al tmAntitjp—l—m—-1Njp—n—i—1q" i1 x
=0 n=0

X q2m=i®=1)) g 204) =t =m—j === =p() ([jy — 1]1) A, i X

X (Eimnp) ® (E"rp-1p-1) ® (KnEp_l_m_j_n_i_lxnp))

= Z Z exeyez>\l,l+m/\n+i+j,p—l—m—1)\j,p—n—i—1([p - 1]!)X

p—l—m—j—1 <p—l—m—j—1—i
1=0 n=0

(lp7i72i273j74ij72j2721'172jlf2im72jmf2jn+2jp))\

X q i,n+i X

X (Eil'p,p) ® (E"wp-1p-1) ® (KnEp_l_m_j_n_i_levP)>

This is now the same summation as a14,01, hence we want to show that the coefficients

are equal for both. We then want to show:

(2ip—j—2ij—2il—2i2+pl))\

q 55 H NG p—j—l—1Aj i, itmAnp—1—j—l—i—m

ip—2il—2im—4ij—2i2 —i—2j1—2jm—2j2—2jn—2j
=qlP ! 22 22N o At em A\ pen—i 1 Nt

for0<i<p—Il-m—-—j—land0<n<p—I[l—m—j—1—14. For this we need to use

the following from Appendix A:

_—ay (WY
Aew =0 (y - 2]
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The coefficients then become:

q2ip—i—i =26 =22 +pl) (52— (1)) o (I —il(p—i~1=1))

((j+l+i)2—(j+l+i)(j+l+i+m))q(n2—n(p—l—j—l—i—m)) (i +0YH

d U@ ™
} (p—j— =N+t i+m])(p—1—j—1—i—m}
@5 — 1 —i— )+ L+ ) () (p— 1= — 1 —i—m —n]}

:q(lp—i—2i2—3j—4ij—2j2—2il—2jl—2im—2jm—2jn+2jp)

X

(P =1(tm)) g ((ni)? = (b 47) (=1 =1)) (2 =3 (p=n—i=1)) (P =i(+) ([ +m])

(@ ([m]Y
) (Ip—1—m—1])(p—i— U)(n+4]!)
i+t p—l—m—1-n—i— 0G0 —n—i—1— )Y

This simplifies to give:

xq

q (lp—i2 —j—ij—il—jl—im—jm—Im+n+in+jn+in+mn+n2 +ip—np) «

G000 —j— 1= U+ i+i+m)(p—1—j—l—i—m])
(p—j—l—i=1)(G+1+1i]})
=q (lp—i2 —j—ij—il—jl—im—jm—lm+n+in+jn+ln+mn+n2—ip—np)

X

X

o [m(p =1 =m = 1([p —n —i —1)([n +!)
(In+i+iN(p—n—i-1-4]})

Simplifying further, we get:
U+ 1)(p =3 — L= )+ 1+ i+ ml)(fp—1—j =1~ i = m])
(lp=j—l—i=1)( +1+1]")
_ aip L+m])(p = =m —1)))([p —n —i—1])([n +1]")
(n+i+ N)(p—n—i-1-j]!

As [p — z] = [z], we have ([z]!)([p — 1 — z]!) = ([p — 1]!). Therefore it reduces to:

(lp—1) =q¢ *([p—1])

Hence the coefficients are equal, and so we have shown that ooy, = a14p01.

For the 8 case, again using the notation from the previous section, we have:

p—j—i-1
fiz@y®z) = Z FofuM 1@ Nip—ji (K P70 ) @ (Flagp-1) @ 2

'L:
Then we have:
FPAm=i=1(Fizg, 1) ® 2) =Amprm—i1 (K "FP e, 1) @ (F™2)

:fz)\m,p—ﬁ-m—i—lqm(pil) ([p - 1] !)pr—l,Qp—l
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As FP = 0, we only need to consider the terms where p+m —i — 1 < p — 1, which gives

i > m. Hence we have f11,(f1(zQy® z)) =

S fefafAuiriNip—j—ic1Ampim—io1dP TP ([p — 1)) x

=m

p—j—Il—1

X (KPP 717100 ) @ (F "m0, 2p-1)

p—j—l-1 ,i—m
= Z ( Z fxfyfz)\l,j—l—l)\i,p—j—l—l)\m,p+m—i—l)\n,i—mqlp+m(p_1)([p - 1]') X
i=m n=0

X (K_in_j_l_l_ixo,p) ® (K_"F"_m_":co,p_l) ® (F"woyp)>

Let t = i — m. This becomes:

p—j—l—-m—1 t
Z < Z fxfyfz)\l,jJrl)\t«#m,pfjflflAm,p—t—l)\n,tqlp—’—m(p_l)([p - 1]') X

t=0 n=0

X (Ktmmppmi et g ) @ (K" F T "ag 1) © (F%O,p))

w u w w
Using the summation identity > > yp = Y, > Zyu, this becomes:

u=0v=0 v=0u=v

Z Z fmfyfzAl,j+l)\t+m,pfjfl71)\m,p—t—l)\n,tqlp+m(p_1)([p - 1]') X

p—j—l—-m—1 (p—j—l—m—l
n=0 t=n

x (K—tmppd=t=l=temg, Y@ (K"F g, 1) © (F"xo,p)>

),

Let s =t — n, then we have:

p—j—l—-m—1 <pjlm1n

lp+ —1
Z Z frfyfz)\l,j+l)\s+n+m,p—j—l—1Am,p—s—n—l)\n,s—l—nqp m(p=1) X
n=0 s=0

X ([p — (K> ppit sy ) @ (K Foag ) @ <F":co,p>>

Replacing n with r this becomes:

p—j—l-m—1 <pjlm1r

l -1
Z Z fwfyfz)\l,j—i-l)\s+r+m,p—j—l—1)\m,pfsfrfl)\r,errq pm(p )X
r=0 s=0

X ([p— (KSR g ) @ (KT Fo2g 1) © (Frfﬂo,p)>

Next we have BHp(x QYR z) =

p—l—m—1
Z fyfz)\m,lerqim(erl))\r,pflfmflx & (Kierilimilirx(Lp—l) ® (Fr$07p)

=

Then we have FITHm+r (@ (K—rpplzm=1=ry, . 1)) =

e ! o pp—l—m—1—
Aipmrjipmir (KT FIg) @ (FTMHT KRR g )

(I+m+r)+2r(p—l—-m—1—r)—r(p—1) ([p _ 1][)

:f:r:)\l+m+r,j+l+m+rqp T2p—1,2p—1
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Again as FP = 0, we only need to consider the terms where j +1+ m +r < p — 1, which

gives r <p —j—1—m — 1. Hence we have 1 (fi4p(z @y ® 2)) =
p—j—l—-m—1
Z fmfyfz/\m l+m>\r pflfmflq(p(l+m+r)+2r(pilimi17T)7m(p+1)7r(p71)) X
r=0
X Mpmetr jiimir([p — D) (FP 77 g 5 1) @ (F o p)

p—j—l—m—1 <p—j—l—m—r—1

= § E fzfyfz)‘m,ler)\r,pflfmfl)\l+m+r,j+l+m+r)\s,pfj7l7m7r71 X
r=0 s=0

% q(p(l+m+r)+2r(p—l—m—1—7")—m(p+1)—7"(p—1)) (Ip — 1] x
% (KstP*jflfmeflfsmoyp) ® (FSxO,p—l) Q (Fra:(),p))

This is the same summation as f14,31. Hence we want to show that the coefficients are

equal for both. We then want to show:

q (lerm(pf1)+2rsfr(p71)+2(s+r+m) (pfjflfmfsfrfl)fp(s+r+m)) %

X )\l,j+l )\s+r+m,pfjflfl )\m,p—s—r—l )\r,s—i-r

=q (p(l+m+r)+2r(p—l—m—1—r) —m(p+1)—r(p—1)+2s(p—j—l—m—r—s—1) —sp) %

X )‘m,l—f—m)‘r,p—l—m— 1 )‘l+m+r,j+l+m+r As,p—j—l—m—’r—l

Using Ay = q(x2_‘”y)%, this becomes:

[=]!

q (lp+m(p71)+2rsfr(p7 D+2(s+r—m)(p—j—l-m—s—r—1) 7p(s+rfm)) %

% q(l2—l(j+l)+(s+r+m)2—(s+r+m)(p—j—l—1)+m2—m(p—s—r—1)+r2—r(s+r)) ([J +l]')
(UbIFID)

" (lp—j—1-1(p—s—r—1])(s +r]")
(s+r+m)(p—j—l—m—r—s=1Y)([m])([p —m —r—s—1)([r])([s]")

(m2 —m(l4+m)+r2—r(p—l—m—1)+I+m+r)2—(I+m+r) (G+H+m+r)+s2—s(p—j—l—m—r— l))

% q(p(l+m+r)+2r(p—l—m—1—'r’)—m(p+1)—r(p—1)+2s(p—j—l—m—r—s—1)—sp) ([l + m]') %
([m]) (1Y)
(p—1—m— U0 +1+m+r)(p—j—l—m—r—1)
(P (p =t =m—=r =1L +m+ )P =G =l =m—r—s—1]})

Simplifying this, we get:

q(—ZTp)([j +IN(p—J—1=1)(p—s—r —1H([s + ]!
([s+r+mH([p—m—-—r—s—1]
([+m)(p—l=—m -1+ I+m+r)(p—j—1—m—r—1]}
(p=t—m—r—=1)([l4+m+r]")

X

Again using ([z]!)([p — 1 —z]!) = ([p — 1]!), this becomes:
¢ P (p-1]) = (Ip—1])
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Hence the coefficients are equal, and so we have shown that 51814y = B14p01-

Hence we have proven:

Proposition 5.2. The U,(sly) generators, o and 3, satisfy:
QiQ4+p = Qj4+pQy
BiBi+p = Bi+pbi

for all 1.

5.3.6 Proof that af + fa = Yfap_1

We want to show that af + Ba = ~fap—1, where fo,_1 is the (2p — 1)th Jones-Wenzl
projection.

From section 5.3.3 we have:

ﬁ(O&(l‘)) = 6xWFkl‘o, x € Xk,2p—1a 0< k < p— 1
a(B(z)) = fu 2 —(l[’ck]—‘)l]')[p] E2p_k_1x2p717 r€ Xgop-1, p<k<2p—1

From appendix B we have:

. ) _ = 4P — L= 1) mon
fop—1(piy....in,2p-1) =4 ’ 2p=1]) F20,2p1

For 0 <n <p-—1, we have:

_ (=302 ) () (2p — n =111,
JPi 1) = () -

(n2p-1)-32-m)~(3- i) (]2p — n — 1]1)

=1

= ] o

=Yfap—1(Pir,...rin2p-1) 0 <N <p—1

For p <n < 2p — 1 we have:

o

(rp-D)=3m>-m) (L i) (12p — 1 — n])([n])
aB(piy,....in2p-1) =4 = ([([Zp —n _]1])!()[[])]] )EQP " 1x2p—1,2p—1

n

(n2p-1)=30-m)~(3 i) ([n]!)

=q j=1 7E2p—n—1

Top—1,2p—1
] P
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We need to rewrite EQP_”_lxgp,Lgp,l in terms of F'. Using equations A.15 and A.17 we

have:
(NI E*P =" gy 10p 1 =(12p — n — 1)) F'wo 251
Hence we have that:

aﬂ(pil,...,i",Qp—l) :7f2p—1(pi1,...,in,2p—1)7 p<n< 2p -1

Combining the two results we have:

(aB + Ba)(piy,...in2p—1) = Yop—1(Pir,.sin,2p—1)s 0<n <2p—1

Therefore a8 + fa = Yfap—1

Note that although technically we should be taking EP*ixo, 19, 1 = FPTiagq, 1 = 0,

here we are only using them to represent elements of X,,_;_1 2,1, Xp4i2p—1 respectively.

5.4 Relations between «, § and the Temperley-Lieb algebra.

We saw at the end of section 5.3.2 that applying a cup or cap to « and [ gives zero and
so that given any element = of T'Lg,_; that doesn’t contain the identity, o = ax = z8 =
Bx = 0. However, for a cup or cap such that only one string acts on «a or 3, the result can
be non-zero. We prove in this section some more general relations between the generators
and the Temperley-Lieb algebra, as well as a result that generalizes a large number of

relations.

5.4.1 Proof of capping and cupping relations.

We want to prove the cupping and capping relations given in equations 5.15 - 5.18. We
shall see that we only need to prove the capping relations, and can then use them to
diagrammatically prove the cupping relations, as well as rotational invariance of o and 3,
and that their partial traces are zero.

The capping relations are:

(e
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We start our proof with a.
Explicitly, we want to show that o (N2p(piy.....in,2p—-2)) = @2(M1(Piy,....in,2p—-2))-

Given N(v) = ¢ 'vip — vo1, We can rewrite this as:

q_la(pil,...,'in,2p72 Q1) @ Vg — alpiy,...in,2p—2 @ 1) @ 11

=q¢" 11 ®@ a(vo @ pin,...in2p—2) — V0 @ (V1 @ piy,.in2p—2)
To simplify this, we need equation A.9:

n
(AE)" =D AnE'® K'E™
i=0
o (i2—in)___(0)Y)
where \; , = ¢ =T
Given E"p;, . i, 2p—2 = enTo2p—2, then we only need to consider the relevant part of

(A(E))", where one side of the coproduct acts on p;, ;. 2p—2 and the other part acts on

o,
the vy or vy at the end. As Evg = 0 and E?v; = 0, then we only need to consider the
terms of (A(E))™ with no F on the relevant side for vy, or E for vy.

For o(pi, .. i, 2p—2 ® 1), any E acting on the zero at the end will give zero, so we only

need consider the action of E™ ® K™. Hence we have:
E™"(piy,....in2p—2 @ 10) = (E" @ K™)((pin,....in,2p—2 @ 10) = q" €nT0,2p—1
iy, in2p—2 @ 1) = ¢"en EP " a9y 951

For a(piy ... in.2p—2 ®v1), we need an E acting on the one at the right, as well as E™ acting
on the left, so we need to consider the term of (A(E))"™! given by A\, ,+1E" @ K"E.

Hence we have:

E" iy inap—2 @ 1) = Ayni1(B" @ K"E)(piy i 2p—2 @ V1) = ¢ Ant1€nT02p—1

n —n—2
a(piy,.sin2p—2 @ V1) = " ApprrenEP Top—1,2p—1

For a(0iyis...i,_»), We use the term 1 ® E™ to get:

E" (1 ® piy,...in2p—2) = (1 ® E") (10 ® pi,....in,2p—2) = €nZ02p—1

—n—1
(Vo ® Piy,....in,2p—2) = en P Top_12p1

Finally for a(v1 ® pi,,. . in2p—2), We need an E to act on the left, so we use the term

Mni1E ® KE™ that appears in (A(E))", which gives:

E"™ (v @ piyin2p-2) = M1 (E @ KE™) (11 ® iy in2p—2) = €27 2 M nt16n202p—1

2p—2 “n-2
a(V1 @ piy,.in2p—2) = ¢ AN pyr1en P Top—1,2p—1
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Hence the relation becomes:

n—1 —n—2 n —n—1
4" Annren(EPT"  wop12p-1) @ vo — ¢ en(BPTT wop_1,9p-1) ® 11

1 n-1 22 n-2
=q en1 @ (EP 7" T xop_12p—1) — ¢ A ng1€nl0 @ (BP0 1 2p—1)

Note that A 41 = Apnt1 = ¢~ "[n + 1], so we have:

¢+ 1(EP " gy 19p-1) @ 1o — ¢ (BP " gy 19p-1) @ 11

=¢ 11 @ (EP " gy 10p-1) — 2P "+ o @ (EP" 229 19p-1)

We want to show that both sides of this relation are actually equal to ¢ ! EP~" " lzq, 9.

Before we proceed further, we need equation A.17:

E'z..= Y ¢ = (0] in s,

Using this, we can rewrite E"x,11 .41 as:

1 z+1—nA
(Let1-n)E-—nt2-( 3 i)
2 h
Enxz—i-l,z—i-l = Z q =t
1<ij<z+1

nj: pi17---7iz+1—n72+1

(31-m G-t~ 3 i)
= > ¢ (D A T

1<ij<z

(%(erlfn)(zfnJrQ)fzflf(:g? i)

+q ([nYpir,..ie iz © 11

:[n] (En_lwz,z) R v+ q_n(Enl'z,z) X v
Hence we have that:
g+ 1(EP " P2y 10p1) @10 — ¢ (BP " agp 10p 1) @v1 = q T EP T g0

Alternatively, we can rewrite E" "1z, .41 as:

z+l—n
(Jet-m)E—n42)-( 3 i)
. _
E'apion= Y g R ()T ——
1<i; <2+1
1 5
(3G+1-m)e—n42)-( 3 i)
= > 2 D0 ® piinia s
2<ij<z2+1
z41l-n
(3Etr-mE—nt2 1= % i)
+q j=2 ([n]hrr @ Piz—1,..jizp1-n—1,2

:qnfzfl[n]yo ® (E"fla:zvz) +1v @ (E"x, ;)
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Note that we had to account for the changing positions of the ;.

Hence we have that:
¢ v ® (Ep_n_ll‘prl,prl) — ¢ "+ 1w ® (Ep_n_2$2p71,2p71) = q_lEp_n_lmp,Zp

and so both sides of the relation are equal to q_lEp_"_lxgp,gp.

Hence we have shown that aqNgp—1 = aay.

We want to repeat this for 8. Explicitly, we want to show that

B1(N2p(Pin, . in2p-2)) = B2 (pin, i 2p—2)). We can rewrite this as:

q_lﬁ(pil,..‘,in,2p72 Q1) @ Vo — B(Piy,...in2p—2 @ V) @ 11

=q"'1 @ BV @ pis....in2p—2) — Vo @ B @ Pin,...in 2p—2)
To simplify this, we need equation A.10:
(AF)" =) AinK F" @ F
i=0
. (i2—in) ([n]D)

where Ain = ¢ g Gy

Given F"Vjiy. iy, o = fnT2p—22p—2, then we only need to consider the relevant part of
(A(F))™ where one part of the coproduct acts on p;, ;. 2p—2 and the other part acts on
the vy or v; at the end. As F?yy = 0, Fv; = 0, we only need to consider the terms of

(A(F))™ with one F' on the relevant side for vy, of no F for v;.

For B(piy,....in2p—2 @ 1), any F acting on the one at the end will give zero, hence we

only need to consider the action of F" ® 1. Hence we have:

F™(piy,..osin,2p—2 @ 1) = (F" @ 1)(piy,...in,2p—2 @ V1) = foTop—1,2p—1
B(Pin,..oiin2p-2 @ 11) = [ FP " gy 1
For ,B(pih“.’ime_Q ® 1), we need an F' to act on the zero on the right. Hence we need to

consider the action of the term Ay ;41 (K 1F"® F). Note that this appears in (A(F))" L.

Hence we have:

F™" Wiy inop—2 @10) = Mt (KT F" @ F)(piy,im2p—2 @ 10) = 72 fa M ns1%9p—1,2p-1

2p—2 —n—2
B(pir,in2p—2 @10) = P oMt FP 7" 20 2p—1
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For f(v1 ® piy.....in.2p—2), We consider the action of K" ® F™ in (A(F'))™. This gives:
F™"(11 ® piy,...in2p—2) = (K" @ F™") (1 @ piy,...iin2p—2) = q" fnZ2p—1,2p—1
B @ iy, inop—2) = ¢ fnFP " w0.0p1

Finally for B(vo ® pi,.....in.2p—2), We need an F' to act on the zero on the left. Hence we

consider the action of Ay, 11 (K "F ® F™) that appears in (A(F))""!. Hence we have:
F'™ Y v @ piyin2p—2) = At 1 (KT"F @ F™) (0 @ piy.. v 2p—2) = ¢ Fadnnt12p—12p—1
B @ pin....in2p-2) = " Fadnns1 FP " 200 251
Hence we can rewrite the relation as:
¢ (PP w02p1) @ v — ¢ fudi et (FP 7" 0 .0p-1) © 11
=" d i1t @ (FP" 22005 1) — ¢" faro @ (FP" 129, 1)

We want to show that both sides of this relation are equal to q_le_”_lxmp.

Before we proceed further, we need equation A.15:

3

ij))

(4 4+m)=(;
t (D2

anO,z: Z q !

(Ln24n) (3 i)

2 .

Flag.i1= Y, ¢ = ([0 i i 21
1<ij<z+1

Hence we have that:
-1/ pp—n—1 —n—2 p—n—2 _ —1lpp—n—1
q (F 20,2p—1) @ Vo — ¢ [n + 1](F Toop—1) 1 =¢q F Z0,2p

Alternatively, we have that:

ij))

(D)D) Pis ..o sim 21

M=

(L (n24m)—(.
anO,z—‘rl = § q J
1<i;<2+1

- Y

2<i;<z+1

(%(n2+n>—1—<§2ij>)

Il
-

Z'j))

(L(n2+n)—(
([nNo ® pir—1,...in—1,2

.
it

+q ([n]Dv1 @ pig—1,.in—1,2

=q¢ " ® (F"xo,) + [n]r1 ® (Fn*lﬂfo,z)
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Hence we have that:
g 41 @ (FP"2209p-1) — ¢"vo @ (FP " taggp_1) = ¢ LFP " mg gy

and so both sides of the relation are equal to ¢~ F p*”ﬂmo,gp, and we have shown that

B1N2p—1 = B2Ny.

Given this relation and the equivalent one for «, we can prove the following diagram-

matically:

Uzp—101 = Ujo

Ugp—151 = U132

B

ajio]
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For a, we have:




The proof for S follows similarly.
We can also use the capping relations to show that the partial traces of a and S are zero.

For o« we have:

The case for § follows similarly.

5.4.2 Relations from the Rotation tangle

In section 5.4.1, we saw that a and § are rotation invariant. We want to use this to give
a relation using the rotation tangle acting on o ® 1 and f® 1. As an example, acting the

(clockwise) rotation tangle on @ ® 1 for p = 2, we get:

l
||
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where the rotation tangle Rg is:

=]

Denote the rotation tangle by R4y, then we have:

C

Ryp(ar1) = aregy 1
R}, (1) = aregp_1€p_s
2p—1

R ( ) = alegp_legp_g...el
Riﬁ(al) = (9

Ri£+1(a1) = €19

Ri£+2(a1) = €e9€e10
4p—1

R4p (Oq) = €2p_1€2p—2...€10¥2

Rib(a1) = an

and similarly for g.
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4p—1 )

Consider the sum FP,, := »_ kiRj,(c1). Assume that P, = 0. Then by consid-
i=0

ering Ug,_1P,,, we find ki 4+ dk2 + k3 = 0. Repeating this for each position, we get

ki 4+ 0kit1 + kir2 = 0 for all i, where we take k4py1 := k1.

We need to show that the k; are non-zero. We do this by showing that the Rflp(al)
are linearly-dependent. Note that each Rip(al) acts on the K-weight spaces by

Rflp(al) : Xn2p = Xntp2p- We have previously given all homomorphisms between inde-
composable modules in section 4.4, and from this we see that each map can only act as
Xn» — Xn,., except for the maps between P; and P,_s- Hence as we are considering
maps acting on (X, )®?P, we only need consider the maps between P;" and P,_1, as well
as maps between the two copies of Py

As an example, for p = 3, in terms of weight spaces, the modules 771+ and P, can be given

as:

Py

—lT

X6 Xog  Xge  Xug  Xsg
T r1 {a,b} Yo Y

Xoe X16 Xog Xze Xug Xse X
v {ag,bo}{ai,01} {z,y} {ao,bo}{a1, b1} ¥

W_JW_J

Py Py

The possible maps (omitting maps acting as X, o, — Xy, 2,) are then given as:
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Xoe X16 Xog Xz Xug Xse Xeg
v {ag,bo}{ai,b1} {z,y} {ao,bo}{a1,01} ¥

Hence there are two maps acting as Xy, 2, — X, 4p2p, and two acting as
Xn2p — Xpn—p2p- There are also two maps from the first copy of P, to the second, and
vice-versa (as there are two endomorphisms on P,_;), however these can be given as a
composition of the other maps and a map acting as X, 2, — X, 2,. Note that this ac-
counts for the multiplicity of P, , but not for the multiplicity of Pf . So the total number
of maps acting as X, 2, — Xpypop is 2M(731+). From this we can conclude that the
diagrams Rflp(oq) must be linearly-dependent if 2M (P;") < 4p. From the module mul-
tiplicity formulae given previously in section 4.3, we can see that M (P;") in (X, )®% is

2p—1

= 2p — 2. Hence, there are 4p — 4 maps acting as X, 2, — Xy 4p2p, and so
1

the Rflp(al) are linearly dependent.

By the same argument, we have that the terms Rflp(ﬂl) are linearly dependent.
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The Coefficients k;

We want to show that the coefficients k; satisfy ky411 = (—1)PT'k;. For this, we need a

specialisation of equation A.1:
[m+ 1] = 2[m| — [m — 1]
Given k; = —0k;_1 — k;_o, we can rewrite this as:
ki = (—1)'Qik2 + (—1)'Qi—1k1

where Qo = —1, Q1 =0, Q; = 0Q;—1 — Qi—2. Then, as Q2 = 1, we have Q; = [i — 1], and

so Qp = —1, Qpy1 = 0. This then becomes:
ki = (—=1)i — ko + (—=1)%[i — 2]k
Hence:

kpi1 = (=P plks + (1) [p — 1k

= (~1)PHky
Hence, in general ky; = (—1)P" 1 k;, kopii = k.

Using this, we can write any of the k; in terms of k; and ke. For example, we get

kop = (—=1)?P[2p — 1]k + (—1)?P[2p — 2]k;.

Some Examples of relations.

We can use the sums P,, and P, to prove new relations. For example, consider 81 Py, f1.

As capping or cupping [ gives zero, this reduces to:

k1Bra1B1 + kafraresy 161 + kopr1BiasBy + kapBrey 10181 =0

Similarly for 2Py, 82 we get:

k1B201 B2 + kopBaciesp 1€2, 2...€102 + kap 1820282 + kopiofoeres...exy 11l =0

From (2 P,, /1 = 0 we have:

k1Baa1 By + kopBresp—101 81 + kopy1B20B1 + kapPace S =0

Setting k1 = 0, this reduces to:
Bregp—101 01 = —frazer B2
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and hence:

Baa1 f1 = — B2 1

Similarly, from £ P,, B2 = 0 we have:

k1Bra1 B2 + kaBrep 1012 + kapy1B1a2B2 + kopyofrazerfo =0

Setting k1 = 0, this reduces to:

Bregp—101 2 = —fraze o

and hence:

pra1fe = —BrazBs

Diagrammatically these are:

k1| &« —|‘/C2p Q —|—]€2p+1 v +k4p a | =0
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kil @ | +ka || & | ko]l o |Hr2l oo || =0

g
Ep

Q

?

1
(] -- @ [d--[
0 @ O

Using this, we find that 81 P,, 81 + B2P,, B2 simplifies to give:

Brazfi + ot fo = —y(B1 + B2)

Swapping « and [ gives similar relations. Further, considering 81 F,, 81 when k1 = 0
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and ko = 1, giving k4, = —1, we have:

For BQP ,BQWth k‘l 1 ]CQ O k‘gp—* :

(7]
-
o

For 8o P, P2 with k1 =0, ks =1, kgp—— :
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l(
-
w(
!
|
I

Hence, we can use F,, and Pg, to reduce compositions of o and /3.

We can also use P,, and P, to reduce compositions of o; and f; when |i — j| > 1.

For example, consider B3(P,, ® 1) with k; = 1, kgp—1 = 0, which gives ko = —371[3],
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ki = (—1)1613][i — 1] + (=1)'[i — 2] and:

Note that to set k&1 = 1 and kg,—1 = 0, we need that 2p—1 # 1 mod p, which isn’t true
when p = 2. Instead, for p = 2, we take k; = 1, ko = 0, which gives kg; = 0, kg; 11 = (—1)"

and:

_/
a
-

In general, we can’t use the rotation relation to reduce diagrams of the form a1 f8y41,
Brapy1. This is can be thought of as due to them being a form of ”higher generator”,

that maps between copies of 77;' in X®GP=1_ Indeed, this continues to occur for general

X®(np—l)_
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Chapter 6

Projections and Homomorphisms

on Indecomposable Modules.

In the non-restricted case, the Jones-Wenzl projections are the projections onto the simple
modules of Uy,(slz). In the restricted case, as we have the appearance of indecomposable
modules, we should also have projections onto these modules, as well as homomorphisms
between modules. We want to find diagrammatic descriptions for the projections and

homomorphisms on the indecomposable modules of Uy (sl3).

We start by summarizing the various maps.

6.1 Summary of Projections and Morphisms.

The projection X®" — X7 | — X®" for 0 < n < p—1 is given by the nth Jones-Wenzl

projection. See appendix B for details.

As shown in the previous chapter, the projections X®%»~1 — P, = X ®2=1 onto the
: - : -1 -1 et ®2p—1 - -
two copies of P, are given by v~ "af and v~ Sa. The projection X“¥~* — P &P, —

X®2r=1 ig given by the Jones-Wenzl projection fo,—1, where Yfop—1 = a8 + Ba.

The homomorphism X®@—i-1) _, 731-+ — Xﬁ — X®0-D for 1 <4 < p—1is given

diagrammatically by:
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fp—l

where the box labelled f,_1 is the (p — 1)th Jones-Wenzl projection.

The homomorphism X®~1 — X;r — 73; — X®2r=i=1 i5 given diagrammatically by:

|
fp—l

p—1i

For 1 < i < p—1, the set of endomorphisms on 73?[ is two dimensional, and can be
given as a projection and a second endomorphism &, where €2 = 0. For Pf , this second

endomorphism X®(2P=i=1) Pt 5 pt  x©Cr=i-1) ig given diagrammatically by:

|
fp—l

NI
)
fp—l
|

For P;”, accounting for the two copies of P, , the second endomorphisms

X@Gp=i=1) o p= 5 P X@Gr—i=1) are given diagrammatically by:

134



p—i p—i
P

a_
Q.

p=i

For each copy of 731,_71-, 1 <4 < p-—1, there are two maps PP_% — 73;“, and two maps
77;“ — PP__Z». As there are two copies of 77p__i in X®?PT—1 we then have four maps in each
direction. For the four maps X®?Pi—1 Py — Pt — X®2P==1 two of the maps are

given diagrammatically by:

4 &

We conjecture that the other two maps are given diagrammatically by:

all B
A1) Lo

For the four maps X®%*~~1 — P+ — P, i—X ®2pt+i—1 two are given diagrammati-

7

cally by:
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p—isy p—i

We conjecture that the other two maps are given by:

al| B
S| Lo

p—iy p—i

Finally, we conjecture that the projections onto 73;' are given by:

P’i T f2p—2—1 —|_ [p] m
—1

and the projections onto P,” @ P;” are given by:
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|
f2p—1
/
)

Py @ P = fapoios + B

[2p]

f2p—1

The remainder of this chapter is devoted to proving these results, as well as further
describing the conjectures. We also prove a result stated in section 5.2 of the previous

chapter about the partial trace of a8 and Sa.

6.2 Formula for maps on P;".

To prove the diagrammatic forms of the maps XZ-+ — 73;“ , 73;“ — Xf, we first need to
describe the maps X®%~i—1 Pf , P;r — X®2r=i=1 i terms of their bases. Although
we are not able to do this fully, we can describe it enough to allow us to prove the first

three diagram relations in section 6.1.

6.2.1 General Formula for the map 6 : X®%~~1 — P

+ . ~ ~ ~ ~ 7 7 ~ ~
Pi has basis {CL‘(), vy Tp—i—1,0A0, -+-y Aj—1, bo, ceey bifl, YOy +eey yp,ifl}.

Let piy....in.- € Xy . be the element with ones at positions i1, ...,4, and zeros elsewhere.

in’

We note equation A.12:
E"piy,.inz = ¢ =t ([n)")zo,-
By comparing weight spaces, we find that the general form for 6 is:

0(piy....inopi—1) = iz, 0<n<p—i-1

i1 yeein) < i1rein) g .
O(pir,...in2p—i-1) = dﬁii_p Vamtip+ eﬁii_p butip, P—i<n<p-—1

f(i1,...,in)

n—p gn—p7p§n§2p_7f_1

O(pin,...in2p—i—1) =

For &, € P, we have EZ, = —[n][p — i — n]¥,_1, and hence:

e __penD(p =i =111 -
E"%, = (1) ([p—i—n—l]!)ag




Then we have for 1 <n <p—i—1:

0(x0,2p—i—1) = coZo

(n(2p—i-1)~L(n2—n)— (z:;”))

O(E" piy.....in2p—i—1) = q ([n]")coTo
ngr oy D= = 1Y) G-
E e(pn,---,lmzp—l—l) - ( 1) ([p —i—n— 1]|) Cp, Lo
(np—i-D-3@ -~ i) (p—i —n —1]1)
O(pir,...in2p—i—1) = ¢ =t —i—1 CoTn

We have Ea,, = [n][i — n]an_1, and Eb, = [n][i — n]bp_1 + dn_1. Given g;a; + hjb; € P;",

g; h; € K, we then have:

E*(gja; + hjb) = gj—kj—k + hj_bj_y

Gj—k = gj—kr1lj —k+ 1[I —j+k =1+ hj_g1

(G =+ k=11
T = HDE—3 — 1Y)

W DG =1
T

hj_kx =

EY (955 + hibj) =
Ignoring the coefficients for a;, we have for p —i <n <p—1:

(n(2p—i-1)=1(m2=n)~(3 i)
j=1

Q(Enpil,...,in,prifl) =q ([n]')cozi‘g
n . ) . _ p—i— ([p—i—l]') ([n+z— ] )([7'_1] ) (115ees0n) ~
E 9(p21 ..... zn,2p—z—1) _(_1) ! ([p n— 1] ) Cnti—p O

- (n(ep-im1) L2 -n) (3 i)
Q(pil,...,in,Qp—i—l) :d?(’:iz Zn)Nn-‘rl p+( 1)p—l—1q 2 j=1 J

([ ([p —n —1]) .
([n+i—p]!)([p—@'_1]!)2([i_1]!) n-+i—p

X

As EP = 0, we have to proceed differently for g,,.

Given p;, ..

in,

» € Xy, . we have:

(na—1(m2—m)—(3" i)
F*™piy i) =0 (R0 e

Then for p <n < 2p—1i— 1 we have:

O(piy,....in2p—i—1) = f&};“’zn)ﬂnfp
, (n(2p—i—1) =L (n2—n)=(3" i)))
OEP iy inop—ic1) = 4 =
F2p_i_1_n9(pi1,..,,in,2p—i—1) f(Zl """ ) Yi—1

O(piy,... in2p—i~1) = q
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i1 yeip—1) ~ 1yensip1)7 Lyeensip—1) ~
However, F(dl(jl i 1)ai_1 —i—el(jl P 1)51'—1) = egjl P 1)y0.

Hence:

—1
(e-Der-0-36*-n~(T i)
p2

O(FP " piy, iy 1, 2p—i-1) = ¢ (Ip = ") fo—im1lp—i

From previously, we have:

0(piy,...ip_1,2p—i—1) Zd&i'"’i”*l)di—1 + (=1)P g =1 T x
(Ilp—1]Y) -
bi
IR DE
p—1
. (G-DE-)-30*-P—~(Z i) (—1p—iY(p—1])
et = B (PEr S el

(Ip—11Y)
([p—i=192([e = 1]H*([p — 41"

fp—i—1 =(—1)p~! co

Putting this all together, we have the general formula for the map #¥?P~—1 — P;L is:

(rp—i=1)=3 (=)~ i) ([p — i — n — 1))

O(piy,... in2p—i—1) =4 J b —i—1 CoZn, 0<n<p—i—1

_ rimndeten- (B 0) e —n 1))
Privitpmict) =0 Gt i — (o — ¢ — TP — 1)

iy i p—i<n<p—1

(n2p—i-D)-1-m)~(% i) (~1)p=L([p = 1])([2p—i — 1 —n]!) _
Hieinmit) =0 o ([)p i _([?1»2(][29 (- z’]!)] b

p<n<2p—i—1

6.2.2 General Formula for the map I': P}t — X®2~i-1
Again by comparing weight spaces, we have that I' must be of the form:
['(zy) € Xpn2pi-1, 0<n<p—i—1
'(an) € Xntp—izp—i-1, 0<n<i—1

F(Bn) € Xn+p—i,2p—i—la 0<n<i-1

L'(Jn) € Xngp2p—i-1, 0<n<p—i—1

Let I'(Zo) = go%opri-1, 9o € K. As F"%g = &, 0 < n < p—i—1, F&, ;1 = ao,

F*ag = ay, 0 < k <1i— 1, then we have:

['(z,) = goF"zo2p—i-1 0<n<p—i—1

(@) = goF" P 'z 0p—i-1 0<n <i—1
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Given Ui € P;r, and Ey; = —ljllp—i— j]gjj,l, Eyg = a;—1, we have:

o =i =g k=)
S (71T Py T

Let I‘(gjp_i_l) = hp—i—lep—i—l,Qp—i—l- Then we have:

N —7—1—K
C(Jp—i—1—k) =(—-1)* &E_ ; - 1]')([]4]} |)) hp—ic1E*xop i 19p—i 1
(=P ([n]!)
i 1(p—i— 1)
0<n<<p—1-—-1

B e 1 i
D) =0 et B apimapin

~ —i—1-n
L(gn) = hp—i—1 EP Top—i—1,2p—i—1,

Note that both prlxo,gp_i_l and Ep*ixgp_i_l,gp_i_l lie in X},_1 2p—;—1, however compar-

ing coefficients we have:

p
(1@*-»)—(X i)
_ 2 2. Y
FPlzgppici= ) g = (e = NP 2p—im1

EP %oy i 10pi1= Z q =t ([p =i piy,ip1 2p—i1
1<i;<2p—i—1
. —_m
EP ' 2op i 12p—i-1 = (([[;)_ 1 ')) FP a0, i1
Hence:
. — 3 l)
C1Nen = (gt (=)
([p ])gO ( ) ([p—Z—I]')2 p—i—1
i (=) (p — i —11)?
hy i = (—1)P71 : 90
e ([p—1]!)
L t 1—\ 7 — ('L’lr'-yin«l»pfi) . i .
€ ( n) Z mn Pit,..ingp—i,2p—i—1-
1<i;<2p—i—1

Putting these together, we have the general form for I': P;r — X®2%i-l g

F(i'n) :gan-TOQp—i—ly 0<n<p-i-1
T(an) =goF" P20 9p—i—1, 0<n<i—1
F(i)n) _ Z mgllMqanrpii)ij,4..,in+p_i,2p—i—17 0<n<i-—1

1<i;<2p—i—1

L(gn) =(=1)" (([7[;9] 'i([;]j,)_([;]Y(Z[p__lz__nl]],;) GoEP T T gy i 1 0pi 1,

0<n<p—1-—-1
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6.2.3 General Formula for the Second Endomorphism on P;'.
We can combine our general formula for 6 and T" to find the general form of
I . Xx®=i=l  ph — x®2=i-1jg:

(ntr—i-D)=3=n)~(2 i) ([p— i — n — 1]!
0(piv....in,2p—i-1) =4 ’ ([p([p i 1],)] >6090F"$0,2p471,

<.
-

0<n<p—1-1

(4150050m)
O(Piv...sin,2p—i—1) =dp )" goF " w0 2p—i—1+

1<jp<2p—i—1
([n))([p —n —1]! i),
[t i— oo —i— G — 1) ™ Jp%wh@zl),

p—1<n<p-1

- (n@p-im D)= A2~ (3 i) oDl — 1112
0(pi,...sin2p—i—1) =(=1)""""'g ’ = (In — P (p — 11Y) X

([p =i =1([i = 1H*([p — i)

2p—i—1—
X cogo P T T w1 2p—i—1,
p<n<2p—i—1

The second endomorphism € on P;" is given by e(b,) = an, 0 <n < i—1, () = e(ay) =
e(ym) = 0,0 <m < p—i— 1. Using this, along with the maps previously, we can have

the map:
. v ®2p—i—1 + & pt ®2p—i—1
Ol : XOP™'70 5 PT — P — X

This is given by:

n(2p—i—1)—x(n2—n)— Qs
OEF(Pil,...,in,zp—iﬂ) :(_1)p—i—1q( (2p )—3( ) (j;l ])) "

()lp — n— 11 .
(= plp =i — 20— ) P9 0

p—i<n<p-1

Hsl“(pil,,,.ﬂmgp_i_l) =0, n<p—1, n>p—1

6.3 The Homomorphisms P;" — X

We want to give a diagrammatic description of the map:

g Xl opt o ot o x©d
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Explicitly, using sections 4.4 and 6.2.1, this is a composition of the following maps:

| - (n@p=i—D)=1(n2=n) (3 i)))
X@p—izl Pi Piyin 2p—io1 (=1 -

([n)([p —n —1]Y)
([n 4= pI)(li =Y (p -7 = 1])

Pr— X ;=0

sbntiop, p—i<n<p-1

:ap +— 0
b — oz, 0<k<i—1
ij'—>0

X;r — X®i_1 R Fkl'o,i,1

Combining them, we get:

(n(2p—i—1)—%(n2_n)—(J§1 i)

0(piy,...in2p—i—1) =(—1)P7""1q )

(In)(lp = n = 1]} neti—pg,
([n—i—i—p]!)([i—l}!)([p_i_1]!)2F 0,i—1

p—i<n<p-1

O(piy,...sin2p—i—1) =0, 0<n<p—i, p—1l<n<2p—i—1

We want to show that, up to a constant, this is given diagrammatically by:

|
fp—l
|\

Proof. Given an element p;, . ;. 2p—i—1, We can rewrite it as:

in»

Pt seeryivyp—1 @ Py +1=p)ys(int1—p)ip—i € Xn,2p—i—1
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Acting f,—1 ® 1¥P~% on this we get:

(ro-D-32-n=(5, ) (fp— 1 = 1))
q W(F ﬂfo,p—l) @ P(ips1+1=p),...,(in+1—p),p—i

& (o3t~ i) ([p— 1 — 1))
2. -1

X (K_mFT_mﬂfo i-1) @ (F™Z0,p—i) @ Pliy141—p),...,(int1—p) p—i

Am,r X

T

Z r(p—1)—L(r —r)+2m(r—m)—m(i—1)—(j§l ij))MA y
- q (p—1H ™™

X (F""woi-1) @ (F"20,p—i) @ Pliyyy+1-p)s..oy(in+1—p)p—i

We now want to apply (p — i) copies of U to this. Note that from section 5.1, we have
U(rgo) = U(ri1) = 0, U(rip) = 1, U(ro1) = —q. This means that the number of zeros in

(F™wop—;) must be equal to the number of ones in p(;,_, 41-p) Hence we

77(’L7l+17p)7p71.

need p—i—m=n—r, and so m =p — ¢ — n+r. This then gives:

(r(p—1) =3 (r2 =)+ (p—i—ntr)(@nti—2p+1)—( _fjl i) (p—1—7])
J= - @@ -7 .
‘ 1]y v

X (F"™ " Pg, 1) @ (FP7 720 53) @ Pliysst1—p)os(int1—p) pi

_ oy (= to—imn),

|
] p—i—n4r,r X
P (lp—1])
(r(p—1)= L (2 =)+ (pimmtr) @nti—2p )4 b (pimnt ) (pimntr 4 )~ i)~ 5 )
X q =1 =1 %

n+i—p,. . . . . .
x (F 20,i-1) ® Py, i ngrp—i @ Plipp1-+1—p)os(int+1—p),p—i

Denote the positions of the zeros in pg, .k, ; .., p—i DY K1y kin_p. To apply U (p — 1)
times 10 Pk, ky i nirp—i © Pivi1+1=p),...,(in+1—p),p—i> We need that

(p_l—i_l_]~€ ) ( —i+1—7~€1):(ir+1+1—p),...,(2‘n+1—p),andso

m=r)(1=p)+ 3 d;=(m—r)p—i+1)—(3 k). However, we also have
J=r+l1 =1
p—i—n+r ~ p—i
Z k; + Z km, Z k=2%(p—1i)(p—i+1). Hence we have
k=1
p—i— n+r 1 ) ) n
T k=i it D+ (-nG-w) S
j=r+
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We can now apply U (p — i) times to get:

(r(p—1)+n—r—%(7’2—r)+%(p—i—n+r)(3n+i—3p+7"+3)—(ZT: ij)_(p—i—rH—r l))
(1" =TT A
(p=1=r)(p—i—n+r]) +ie
X Ap—ientre F T TP i
(Ip—11) . v
(r=1)= 302 =)+ L (=it ) Br+i=3p+r+3)— 3 (p—i) =i+ )~ (=) (- 1-20)~( 32 i)~ 3> i)
:q j=1 Jj=r+1 X
(p=1=N(p—i—n+r]h e
x (=) Ap—i—npre F" T P
( ) ([p _ 1]|) /4 +

:q(T(p_1)_%(r2—r)+§(p—i—n+r)(3n+i—3p+r+3)—§(p—i)(p—z‘ﬂ)) y

(~(r=r)(i=1=2p)+ (p—i=ntr)2—r(p=imnt)~( 32 i)
X q J=1 X

- (p=1=r)(p—i—n+rID{[r)) nii-
1T % : > FTiTPy i
X B —i—ar Mnri-ph O

:q(r(p—l)—%(r2—7“)+%(p—i—n+r)(3n+i—3p+r+3)—%(p—i)(p—i—&—l)) »

(~(n=r)(i=1-2p)+(pi=ntr)r(p=i-nt)~(3 i)
p

X q X

_1\n—r ([p —-1- 7’]')([7’]') n—&-i—px .
SRR PE T e R
_ (n(2p7i71)7%(n27n)+i(p71)fp(p7n71+r)f(]ZZ:I zj)) (_1)nfr([p _1— T]‘)([T]‘)
- (o — 1+ i —pl)
o (mer-im D302 1) (jp— 1 — ) ([r])
—(_1\p—i—1 j=1
== - ([ +i—p])

Note that as [p — j] = [j], we have ([r])([p—7r—1]!) = [p—1]! = ([»]!)([p —n —1]!). Hence

n41i—
F Paroiq

n—+i—
Fr' ' Prgi1

this is equal to:

Lp—i-1,

—q T (pi17,...7in,2p—i—1)

Note that we included an extra minus sign to account for our choice of U. ]

6.4 The Homomorphisms X" — P;".

We want to give a diagrammatic description of the map:
[: x5 xt 5 pt o x®2-i-l
1 (2

Explicitly, using sections 4.4 and 6.2.2, this is a composition of the following maps:

(n(i—1)—%(nz_n)_(é1 i) ([i — 1 —n)!)
([ = 1]1)

Xt 5 Xt s el q Zn, 0<n<i—1

+ +.
X" =Pl izp e oan

P:_ — X®2p—i—l Ay Fn+piil’072p_z‘_1
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Taking their composition we get:

(ni—D)=3m2=m)—(> i) ([i — 1
F(Pil,..,,in,i—l) =q ’ J=1 ’ WFn+p Z[EQ 2p—i—1 0 <n< 1 —1

We want to show that diagrammatically, up to a constant, this is given by:

| ™
fp—l

Proof. Given pj, .. . -, let J1s -y Jo—i be the positions of the zeros. As N(v) = ¢ 'vio—vo1,

we have that the z-fold cap is given by:

z
-k _—k
Z( Z (_1)Z q pjlv“'vjk’(Qerl5zk)7~~~7(2z+131)72Z>

k=0 *1<j<z

Hence given p;, . ;. i—1, we want to consider the action of (fp_1 ® 1®p*i) on the following;:

p—1i
§ : § : 1)P— i—k
( -1 G Pir i - LS Pj1 (2021 Fpi i) (2D 204 1= 1) 29— 2’)

=0 M1<j5,<p—i
This is given by:

n k

(k) (p—1)— L (n+k) (nth—1)—k(i—-1)— (32 i)~ (> 31))

< Z )p i— kq—kq j=1 =1 X

].<]l<p 7

(p=1=n—KY nn
([ - 1]') (F xo’p_l) ® p(p_i"’_l_‘;p—i—k)7"‘7(p_i+1_31)7p_7:

*B
s

=0

n

(k) p=1)— S (k) b= 1)—i— (35 i) —(52 )

- ( Z —1)P~ i— kq j=1 =17

(lp=1—n—k nr
T =1 (E™" 7 20,p-1) @ Plyit1 -G, o )y (p—it1=G1) i
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p—i—k _
Note that as Z.?l + Z Jm = 3(p —i)(p — i + 1), we have:

. n p—i—k _
P X ((n+8) (p—1) = § (n+k) (n+k—1) —ki—( 3 i)~ & (p—1) (p—i+1)+( > jz))
Z( Z (=1)P~ kg =1 =1 %
k=0 *1<j<p—i
(lp=1—n—k) np
(-1 (E" 0 20,p-1) @ Plyit1-G, )y (p—ict1-G1) i
p—i (k) (p—1) 3 (n-+k) (n+h—1)— kif(fj i)~ (p—i)(p—it+1))
3 Z ¥ x
k=0 *1<m,<p—11<j;<p—1i
(pfifki 1 b Bt n+k )
< ( El g+ 5 (n+k)(n+k+ )—(g1 mr) (—1)p‘i_k><
(lp—1—n—EkN(n+ k]!
(-1 Pkt © Plp i1, )i
n p—i—k _ n+k
pi ( (p(nth)—ki—( X i)~ L) p—it)+( X J)—( 3 my))
Z Z q j=1 =1 r=1 X
=0 Y 1<m,<p—11<5;<p—i
k(P =1 —n—Kk)([n + k]!
< (=17 ([p— 1Y Pt oMo (20— i) (20— 1) 2p—i— 1
Let ri :=2p—1— jp,i,k,...,rp ik = 2p —1i — J1, then
p—i—k p—i—k
Yoorm=pP—-i-k)(2p—1)—( Z Jm), and we can rewrite as:
=1
. n+k
P (p(n-+k)—ki— (Z ij) =3 (p—i)(p—i+1)+(p—i—k)(2p—i)—( 32 mj))

(2 ¥ .

k=0 *1<m;<p—1p<r;<2p—i—1

(*(”;Zj::kn)) p—i—k([P—l—n—k]!)([n+k]!) |
= (_1) ([p _ 1][) pm1,...,mn+k,r1,...,rpi.k’gpZ1>

n n+k i
(np—(zz‘j>f%<p—z'><p—i+1>+(p—i>(2p—z’)f(i m)—( ¥ )

Sy oy E S

1<m,; <p—1p<r;<2p—i—1

X q

_1)p—i )
x (=1) pmlvnvanrkﬂ"lw'»Tpik72p_1_1>

Relabelling my, 4+ := 71, 1 <1 < p—1i — k, this becomes:

= Y (-

1<m; <2p—i—1

n+p—1

(=3 1)~ 3 -+ D+ 2p-)~( = m)))
j=1 j=1 .
pml,...mn+p_i,2p—z—1

_ Z iq( p(p—1)+i(n—p+1)—1 (n%+n)— (zijlij))x
1<m; <2p—i—1 ([n+p—i]!)

n+p—1

(%(n+p—i)(n+p*i+1)*( > mj))
X q =1 (In+p =i pmy,cmpppi2p—i-1
i(n+1)—p—L(n2+n)— (32 i
:q(z(n )—p 2(71 n) (];1 Z])) ;‘Fn+p_i$0,2p—i—1
([n+p—i]h)
([ =11
_ A\ =)
=q ([ _ 1]!)F(p117,..,zn,z—1)
where again we included an extra minus sign to account for our choice of N. -

146



6.5 The Second Endomorphisms P; = P

We want to give a diagrammatic description of the map:
O X P S P XE]
(2 7

Explicitly, using sections 4.4, 6.2.1, and 6.2.2, this is the composition of the following

maps:
, C (np—i—1) - L2 —n)—(3 iy)
XOW= P g i apeio1 (—1)p_z_1q( ’ = )><
([n])([p —n—1]") b
(n+i—p)([i—Y)(p—i— 127

p—i<n<p-1

PjSPj:ka% 0<k<i-1
Tym—0, 0<m<p—i-—1
Ym +— 0
ap — 0

p:r — X®2p_i_1 ap — Fk+p_i$072p,i,1

Combining them, we get:

(n(?p—i—l)—%(nZ—n)_( > ij)) (—1)P==1[4]

D (piy,...in,2p—i—1) =¢ =t

p—i<n<p-1

O (piy,..in2p—i-1) =0, n<p—i, n>p—1

We want to show that, up to a constant, this is given diagrammatically by:

|
j%—l

p—1

f}—l
|

Proof. We prove this by showing that ® is equal to the composition of the maps given in
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sections 6.3 and 6.4, i.e:
2p—i—1 i—1 i1
® =16 XOP7=1 ,pt o xt o x®-1 o xpf o pF o xOW

We have:

(nap—i-D)- 32~ 33 i)

0(Pi1,...,in,2p,i,1) :(,1)p—i—1q §

([ ([p —n —1]") nticpy
T i) (00— s

p—i1<n<p-1

kol

k(i—1)—5(k*=k)= (2 i) ([i — 1 — k]!
F(Pil,...,ik,,i—l):q( 1 ' )W

FMP =iy on i1, 0<k<i—1

To take their composition we first need to rewrite 6:
- (nep=im )= (2 —m)—( i i)
O(pis,... in,2p—i—1) =(—1)P g 2 =7
(Im)(fp —n ~ 119 n
X Fnti—p .
i) - — i T2 it
n+i—p

(n(2p—i-1)= L (n2—n) (32 i)+ (nti—p) (n-+i—p+1)—( )

e Z q Jj=1 X
1<jp<i—1
im Dlp —n—1N(n+i—p]"
—1)p—t 1 ([n] ) S
T i — (= (fp — i = 2P
n n+i—
(n@p—i—1)~ 1 (n2—n)+ L (nti—p) (nti-p+ D)~ (32 i) —( > 3w))
— Z q Jj=1 k=1 X
1<jp<i—1
_1yp—i—1 ([n)(lp —n —1]1) o ,
TG (- gyt
Applying I" to this we get:
n n+i—p
n(2p—i—1)= 1 (n—n)+ & (nri—p)(n+i—p+1)—( 2 ij)~( > )
LOPinin2p—i—1) = q( ’ ’ A e )><
1< <i—1
. . . . n+17p .
y q((n+z—p><z—1>—é<n+z—p>(n+z—p—1>—< =) (1)l
((H(p—n—=1N(p—-1-n])) , ,
S (R TR A
n(2p— i(i—p)— % (n?—n)— S 15)— "N
_ oy (_1)%171(]( (2p=1)ili=p) =0 —n)=( 3 i)-2( 5 ) .
1<jp<i—1
[i*(p—1-n]) .,
oy e
n—+i—p n
20 3 ) - (n@p=1)+ili-p) = F(n2—n)—(3 i))
1<jp<i—1
[i’(p—1-n]") .,
ey
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We now need to use equation A.22:

S B e ()
1<ij<z ([n]')([z - n]')
25 ")
- Jk L i1
Hence 1<jk2<:i_1 q k=1 = ¢ip—i—n) ([nﬂ_p]!)(l[];_l_n}!). Therefore we have:
(2p—1)+i(i—p)+i(p—i—n)— L (n2—n)—( 32 i
(_1)p_i_1q( @ttt ilp=im)—dn*-m~(E i)
[i*([p =1 =n)))([i = 1]!)
F20 0 i
-1 -ay O
i e ) ) g
(lp = 1D([n+i—p]h) ’
n(2p—i—1)—1(n?—n)— 3 ij ;
_ (_1)p_i_1q( (p=i=D)= 3 -n)~(3 ) [i] [

=P (piy, .. i, 2p—i—1)

6.6 The Partial Trace of o and S«

We want to prove the following:

I I

Qo s Qo s
15 o)

I I

fp—l
—/
)
fp—l

Note that the second two relations follow from the capping and cupping relations, or
by rotating the diagrams. Hence we only need prove the first two relations.

We prove them by showing that both partial traces are equal to the second endomorphism
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e on P

6.6.1 The partial trace of S«

We want to show that these are equivalent to (I)(pli,“.’z‘ngp_g), from section 6.5, which

takes the form:

p—1

(p-DEP-2-3 -1 (r-2)~(T ip)) (—1)p~2

=1 L FP g g
(-2

D(piy,..sip1,2p—2) =4
Q(piy,...in2p—2) =0, n#p—1

For the first relation, consider X®2=2 @ N. It’s elements take the form
G Pirin 2p—2 @ V10 — Piy,.. i 2p—2 @ Vo1. We want to apply (Ba ® 1) to this.
From section 5.3.3, we had that given x € X 9,1, 0 <k <p—1,

([2p—k—1]Y)
([F])[p]

k
F¥x02p-1

Bla(x)) = e

We then have:

E" Y piyin2p—2 @ 11) =Xt 1 (E" @ K"E)(piy...in 2p—2 @ V1)

(n(2p—2>—é<ntn>+nf(§ i)

=q Annt1([n))xo,2p—1

(n(2p-1)= L (=)~ (32 iy))

Bla(piy,...in2p—2 @ V1)) = =17
D (Ep—n—2)) .
e )
(arb-torn=E0) | (2p—n -2l
=q i= )\n’nJerX

X <(Fn+1l‘0,2p2) X vy + q”_2p+2[n + 1](Fn33072p,2) X l/1>

E™(piy,...in2p—2 @ 10) =Ant1n+1(E" @ K™)(piy....in 2p—2 @ 1)

(n(2p-2)— 3 (2—n)+n—( 32 i)

=q =t ([n]hzozp—

(rCp=1=3r=m=( 2 ) ([n]!) ([2p — m — 1]1)
([n])[p]

n ——an—n—nij o —

(n(2p—1)~ 3 (n?—n) (%, ) (12p [n] 1)
p

X ((F"$o,2p—2) ®@vo+ ¢ P ] (F" wg0p—2) ® V1>

B(a(pi,....in,2p—2 @ 10)) =4 F"zo2p-1

=q

Note that due to the appearance of E™™! in the above, we will have to treat the case

n = p — 1 separately. For 0 <n <p — 2, we have:
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(Ba@1)(q Py, in2p—2 @ V10 — Pi,.onsin 2p—2 @ V01) =

(n(2p—1)—1(n2—n)—1-(3" i)

2p —n —2]!
q Jj=1 >\n’n+1([ p n ] )

[n + 1[p]

x <(Fn+1$0,2p2) ® oo +q" P 0+ 1(F 0.2p-2) @ V10>

- q(n(2p—1)—é(n"’—n)—(é1 i) (12p —n — 11
[p]
X <(Fnl’0,2p—2) ® vo1 + ¢ P ) (F" 2 9p-0) ® V11>

Applying 19%P=2 @ U to this, we get:

(n2p-1) L (n2—n)—1-( 32 iy)) ([2p — n — 2]
= N e g 2P 1|1F _
n(2p—1)- 1 (n?—n)+1-(3 ij) I
. q( : X)) ([2p—n— 1)) —
[p]
n(2p—1)— L (n2—n)—1—( 3" i) o]l
:q( ? F= T )—([2]) [Z] 2]) <[7”L + 1] + [Qp —n— 1]>Fn$0,2p_2
n(2p—1)— L (n2—n)—1—( 3" i) AT
:q( 2 =7 )M <[n +1]—[n+ 1]>F"x072p_2
[p]
=0

For the case n =p —1, as p;; ..i,_, 2p—2 @11 € Xpop—1, we have

(Ba @ 1) (g piy,.ip_1.20—2 ® V10 = Pir,eosip1,2p—2 @ Vo1) =

- q(<p—1)<2p—1)—§<p—1><p—2)—(jiiij>) ZhN
[}

X ((Fp_lﬂﬂozp—z) ® o1+ q Plp — 1)(FP 2102p—2) @ V11)

Applying 19%P=2 @ U to this, we get:

—1
(-DEp-1)+1-3 (-1 -2—(T i) B
q = ([p =N EFP x0,2p—2

Dividing by v = (—=1)P~([p — 1]!)? we get:

p
(p—1)(2p—2)— 2 (p—1)(p—2)— (X i5)
(_1)p_2q( 2 P ) 1 Fp_1x072p72

=0 (piy,....ip_1,2p—2)

6.6.2 The partial trace of af

Consider again X®?~2 ® N with elements of the form

1
Q™ Pir,.in,2p—2 @ V10 — Piy, ... in,2p—2 & V01-
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From section 5.3.3, given x € Xy 2,1, p < k < 2p — 1, we have:

B N
N = ek

We then have:

F2P727 (0 inap—2 @ 11) =Xo2p—2-n(FP 727" @ 1) (piy,.o i 2p—2 @ V1)

ij))

([229 —-2- n]!)prfl,prl

i) ([n +1]!)

o

(n(2p—2)— 1 (n?—n)—(
:q J

1

(n(2p—2)— L (n2—n)—(

.
i

a(B(pir,... in2p—2 @ V1)) =q 5 B 2 19yt
n(2p—2)—1(n2—n)— S 15
:q( (2p=D)=§n*=m)— (2 J))([nil]!)x
p

. <[2p —n = 2(E* " g, 99, 2) @ 1g
+ @ (BT g 50, 0) ® V1>

F27 0 in2p—2 @ 10) =M ,2p-1-n (KT FP 7270 @ F) (piy i 2p—2 @ 1)

(n(2p-2)+2p-2-1(n2—n)—( 3" §y))
:q J=1 X

X ([2p —2 = n]") A 2p—1—nTop—1,2p—1
(n(2p—2)+2p—2-L (n2—n) (32 iy)) nll
(B(pis,...in 22 @ 10)) =4 = M X

X Moap-1-nEP " g, 19,1
(n(zp—2)+2p—2—%(n2_n)_(]§1 i) ([n])A1.2p—1—n
[2p — 1 —n][p]

- <[2p —n = 1(E* "2, 29, 2) @ g

=q

+ "B 59, 0) ® V1>

Note that as p;, ... i, 2p—2 ® 1 € Xy 41,2p-1, We need to consider the case n = p — 1, which

we treat separately.
For p < n < 2p—2, we have (a8 ® 1)(q™ piy,...in.2p—2 @ V10 — Pir,...im2p—2 @ Vo1) =
(n(zp,g),l,%(nz,n),(j; i) ([n+1]!)

[p]

X ([2}7 —n = 2J(B* " 3ag, 00y 2) @ vgo + ¢ T(EP T 20, 0, 0) ® V10>

q

(2230235 1) ([al) A ap-1n
2p =1 —n]p]

X ([219 —n—1(E*® " 219, 99y 2) @vor + ¢"TTP(EP T g, 50, 0)® V11>

—4q
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Applying (19272 @ U) to this we get:

. (n(2p—2)—1— % (n2_n)_(J§1 l])) Wgn_2p+2E2p_n_2

+q( n(2p—2)+2p—1- L (n?—n)— (] ij))([n]!)ALQp_l_nEprnfz
[p]

T2p—2,2p—2

<.
it

T2p—2,2p—2

(n@p=2)tn+1-10?—n)~( 3 i) ([n]!
—q 2 = J ([[7;)]] ) ([n + 1] + [2]? . n])E2p—n—2x2p_272p_2

n

(n(2p-2)tnt1- 3 (n2-m)~( 35 45)) ([n]!)

Jj=1

- 7]

=0

<[TL + 1] — [n + 1]> E2p—n—2$2p_2,2p_2

For the case n = p — 1, noting that p1, ., 2p—2 ® o € Xp_1,2p—2, We have

(@B @ 1)(q  piy. i 2p—2 @ V10 — Piy.in2p—2 @ v01) = (@B @ 1) (¢ piy..in 2p—2 @ V10) =

q((p—l)(2p—2>—1—§<p—1><p—2>—<j§iij)) ([p1Y)
[p]

X ([p — 1(EP aop—n.2p—2) @ vo0 + ¢ P(EP ' wop_n2p—2) ® V10>

X

Applying (19272 @ U) to this we get:

(e-DEr-2-1-L-1)(-2)- (Z“))@ L-ppp-1
q Ei

—1

(-1 E-2-L -1 -2—(X i) »
= (p = UNEP xop99p—2

L2p—2,2p—2

=—q

Dividing by -y, we get:

(r-DE-2-L-D-2-(T i) 1
T 2 T e

We need this with FP~! instead of EP~!. To change this, we need equations A.12 and

A.13:
(3 =) (z—n+1)— (2"%))

2
xZZ _Zq =t ([n]!)pjlv"'7jz—n7z

(L2 4m) (32 i)
F" Z0,z = Z q JZl ’
From this we have that E"xay, 2, = F"x02,. Hence:

P .
(_1),3_2(1(@*1)(2?*2) -1 (p-2)- (];m) 1
(lp—11)

P .
:(_1)p_2q(<p 1)(2p-2)~ 3 (p—1)(p—2)— (];m) 1
(lp—1]1)

—1
EP™ 29, 99p-2
Fr-1

T2p—2,2p—2

=0 (piy,....ip_1,2p—2)
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6.7 The homomorphisms P~ — Pl

In section 4.4.3, we found that there were homomorphisms 6 : P;L — 73;0__1-, I: PP__i — 73;“ ,

given by:

B(am) = 0 D(@n) = 0

0(bim) = frZm + faim L(bn) = k12 + kayn
0(zn) = foan IN(Zy,) = koam

0(yn) = fran L(Jm) = k1am

for0 <m<i—1,0<n < p—1i-—1, and fy, fo,k1,ko € K. We denote the case

Ji=1,f2=0by 0, fi =0,fo =1by b, ky =1,ko =0 by I'1, and k; = 0,k =1 by I's.

We want to describe these homomorphisms diagrammatically. For 6, this will be a di-

agram given by
0. . R2p—1—1 + - ®(2p—1+1
9] - X P ? — ‘])i - ’]D i — X ( z)

Note that there are two copies of 731; appearing in X®?~1*+% one in the weight spaces

i
X0,2p—1+i7 -~-7Xp+i,2p—1+i7 the other in the weight spaces Xp_172p_1+i, ...,Xgp_1+z‘72p_1+i.
Denote the maps onto these as 6;;, 0, respectively, with j € {1,2}. In terms of the

weight spaces, these maps can be characterized as:

010 Xpop—i-1 = Xipip2optri-1 p—t<k<2p—i-1
021 1 X op—i—1 — Xpyi2pti—t 0<k<p-1
01,0 0 Xiop—i—1 — Xkpiopti-1 p—i<k<2p—i—1
02,0 1 Xkop—i—1 = Xkspti2p+i—1 0<k<p-1

From how these maps act on the weight spaces, we can conclude that they can’t be given
diagrammatically in terms of Temperley-Lieb elements, and so must be in terms of o and
B. As the diagrams will have 2p — i — 1 points at the top and 2p + i — 1 points at the
bottom, then considering the properties of o and 3, we see that the diagrams for 6;; and

62, must be of the form:
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~

We also conjecture that the diagrams for 65 ; and 6y, are of the form:

@271 = (91’u .=

{Lk

T

From the properties required for 65, 61 4, i.e. the number of strings along the top and
bottom, and how they act on weight spaces, we see that the diagrams must either be of
the above form, or else a similar diagram with the bottom box shifted rightwards, or some
linear combination of these diagrams and Temperley-Lieb elements. We have chosen the

simplest case as our conjectured diagrams.

In terms of weight spaces, I' can be characterized as:

Ty Xeoprio1 — Xg—i2p—i1 i<k<p+i-—1
Loy Xk opti-1 — Xkgp—i2p—i—1 0<k<p-1
Iy Xeoprio1 — Xp—pi2p—i—1 pti<k<2p+i—1
Fow: Xpoprio1 — Xk—i2p—i-1 p<k<2p-1

Again from how these maps act on the weight spaces, we can conclude that the diagrams

for Iy, and I'y; take the form:
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We also conjecture that the diagrams for I'y ; and I'y,, are of the form:
o 15
15 o

TQ/ ] TQ/

Again from the required properties for I'; ; and I'z,,, we see that they must be either

~
.

Fll .= Fg,u .=

the above diagrams, or similar diagrams with the top box shifted rightwards, or some lin-
ear combination of these diagrams and Temperley-Lieb elements. Again, we have chosen

the simplest case as our conjecture diagrams.

Taking compositions of maps, we find that 6,I'y = 62I'y = 0, and 6;I's and 6>I'; both
give the second endomorphism on 73p:i.

In terms of weight spaces, we have the following:

01,020 0 Xeoprio1 — Xk2pri1 i<k<p-1
01,020 1 Xgoprio1 — Xk—p2pti-1 pt+i<k<2p-—1
01,ul'21  Xioptrio1 — Xkgp2pti—t 1<k<p-1
01,020+ Xioptio1 — X 2pri—1 p+i<k<2p-—1
0201 0 Xkopri-1 — Xk2pri1 i1 <k<p-—-1
02,110+ X optri-1 — Xk—p2pti—1 p+i<k<2p-—1
Ooul'1,1 + Xpoprio1 — Xiyp2pri-1 i<k<p-1
0210 0 Xg2ptrio1 = Xp2prio1 p+1<k<2p—-1

From the uniqueness of the second endomorphism, and as the multiplicity of P,_; in
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X®2+i—1 is two, we must then have the following:

01,02 = 02,11,
01,024 = 02,114
01,ul2; = 02,11

el,ur2,u = 92,url,u

Hence the second endomorphism on the two copies of P;” in X @3p—i—1 ig:

a_

p—1 ) p—i

The second endomorphism should square to zero, and indeed, using the partial trace

of a3, we have:




Note that given our conjectured diagrams above, we should expect the following rela-

tions to hold:

|Z |7, |Z |Z
Q Q 15 15
3 U T o
< = LO) O — T
A s Q A
Q Q 15 15
|2 |Z’ |z |z
| o |
Q I s I
5 o Qo 5
/ _ _/ / _ _/
N\ ) N\ )
o 15 o] o)
Al ThE T

We showed that the case ¢ = 1 is true in section 5.4.2 using the rotation relation.

6.8 A Conjecture of the formula for the indecomposable

projections:

We showed in section 5.3.6 that o + Ba = ~f2p—1, and conjecture that the projections

onto 73;“ and P, @ P;” for 1 <¢ < p—1 can be given diagrammatically by the following:
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Pfj— c= f2p—i—1 + M

|
f2p—1

PP = fy g + 2 x

2p]
f 2p—1

where the boxes represent the (p — 1) or (2p — 1)th Jones-Wenzl projections.

We claim that these diagrams can be expanded in terms of the (p—1) or (2p —1)th Jones-
Wenzl projections, and simplified so that the quantum integers [p] and [2p] do not appear
in any denominator, so that the diagrams are finite when evaluated for the value of p.
Given the simplified diagram, substituting each (2p — 1)th JW projection with either

v~ laf or v~ Ba gives a projection onto P;.

For ¢« = 1,2 this gives:
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+ [p—1] NI
Pp—l =t [p] N
fp—l
|
_ _p—1]
=/ 7]
= | 5
1 I
7);—_2 = fp—l _% fp—l —+
1 1T
7I_
~(fr + [ﬁ@ﬂ;):}:
1
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where for the second case, we used:

[n—1]

2] 1

[n][n +1]

The negative case is:

T

[n+1]  [n]
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By using the inductive formula for the Jones-Wenzl projections, we can rewrite the

formula for the indecomposable projections to get the following inductive formula:

,Pz+ fp—l
_ l2p—i—1] n ([z‘—u | [lli=1]2p—i—1]

[2p—1] [p] [p][i+1][2p—i] )[3
,Pj— fp—l

p—i—1

162



where the starting point is just the formula for the projection on 77 _ s le fpo1 ® 1.

As evidence for our conjectured formulae, we can show that they are idempotent, and

contain the relevant projection. For this we first need the following:

n—l—l
In—k+1]

Taking the square of our formula for P;r , we get:
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Hence the formulae is idempotent. Further, applying the second endomorphism ¢ to

the diagram, we get:
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So taking the composition of € with the conjectured formula gives . However, from
section 4.4, we see that the only homomorphism with this property, is the identity on 73;’ ,
so the conjectured formula must contain the identity on 77;“ , i.e. it contains the projection

onto 79;“.
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Appendix A

Combinatorial Identities

Throughout this thesis we use a number of combinatorial identities related to quantum

integers, we record these identities here.

A.1 Quantum Integers

The quantum integer [n] is defined by:

n

Q" —q
[n] = ——"+
q—q

for ¢ € K\{0,+1}. Alternatively, it can be written:

for ¢ € K. It satisfies:

for m > a.

Proposition A.1.

n

D Ri+1]=[n+1]

=0

Proof. For n = 0 we just have [1] = [1]%.
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Assume true for n, then for n + 1 we have:

n+1 n
D Ri+1]=>[2i+1]+[2n+3] = [n+1]* + [2n + 3]
=0 =0
_ (qn+1 o q_—ln—l)2 N q2n+3 _ q_—12n—3
a—q a—q
B q2n+2 2+ q—2n 2 + ( —q 1)(q2n+3 _ q—2n—3)
- (g—q1)?
_ q2n+2 ) q—2n 2 + q2n+4 _ q2n+2 _ q—2n—2 + q2n+4
a (¢g—q1)?
B q2n+4 _94 q2n+4 B qn+2 . q—n—2)2
o a—a)? Y gt
= [n+ 2]

A.2 Relations on (X,5)®*

The quantum group U,(sls) was defined in 4.1, and its relations can be used to give the

following generalized conditions:

AF(K) = K&

k
1=0
k
ARF) =Y (KH®) @ F e (19¢1)
1=0

1 | o .
EFk:FkE+( pe 1)(Fk‘ lK( q 22)_Fk lK l(' qQZ))

ol
—
T
—

<.
I
o
o~
I
o

— FkE+( [k]il)(ql—ka—lK o qk—le—lK—l)

q—q
1 k 1 k—1 ‘
-7 7,:() i=0
k
— EkF+( [ ]_1)(q17kEk71K71 o qkflEkflK)
q—q

k
=> ApE' @ K'EF
=0
k
=Y ApK P @
=0
Aij = q(i2—z‘k) : ([k]1) :
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(A.10)
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The coefficients );; can be proven by setting up recurrence relations from (AE)(AE¥),

(AEF)(AE). The module X3~ has basis {1, 11}, and action defined by:

K(v) = quo K(1n) = qilul
E(V()) =0 E(Vl) =1
F(l/o) =1 F(Vl) =0

We denote by pi, .. i, . the element of (X;)&z with v at positions i1, ...,4,, and v
elsewhere. We also occasionally omit the ® sign, and combine indices. For example,
pP1,35 = V1 @V ® V1 QYo & Vo = V10100-

The elements of (X;")®* can be described in terms of the K-action on them. For

z € (X,)®%, with K(z) = Az, A € K, we call A the weight of z. Alternatively, for

2ng, and refer to n also as the

basis elements we can write this as K(p;, . i.2) = ¢~
weight. (X;7)®* will then have the set of weights {¢*,¢*72,...,¢* %,¢"*}. Denoting the
set of elements of (X;7)®? with weight ¢*~2" by X, ., we have (X;)@)Z = LZJ Xi .. The
weight spaces Xy . X, . both have a single element, which we denote by a:éj:z (v0)®%,
T, = (v1)® respectively.

We have p;,..i,.- € Xy 2.

sln,

The U,(sly) action on the basis elements satisfies the following:

(ne=2(n2—n)—( 3" i)

E"piy.inz =4 =t ([n]hwo 2 (A.12)
3 (nzf§(n27n)f(i ij)
F*"piiinz =4 =t [z =n])z, . (A.13)
k
k=(20)) [
Fk:x[LZ — Z q( j=1 J ) (H (Z q(21—2))>p21’71k72 (A‘14)
1<i;<z =1 =1

- > 4 = (060, e (A.15)

(cket 1240~ i)

k l
Be.= Y =) (H(Zq(%2))>pi17m7iz_k7z (A.16)

=1 =1

=>4 AT i e (A7)

1<i;<z
Efviq .41 = KB 2, ) @ vo + ¢ F(EFz, ) @ (A.18)
= qk_z_l[k:]uo ® (Ek_lwzz) +11® (Ekznz,z) (A.19)
FFuo i = (FFzo.) @ vo 4+ "k (FF o) @ 1y (A.20)
=q "y ® (FFao.) + [kv @ (FF 1y ,) (A.21)
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These come from considering all contributions to the coefficient as different orderings of

the integers i1, ..., ¢,,, where each ordering describes the order in which the zero’s appeared.

For the standard ordering with i1 < is < ... < 4, its contribution to the coefficient is just
(—=nzt 37 i5)

q g gt — ¢ i=1 | Interchanging two integers in the ordering multiplies

this by ¢*2, and the coefficient comes from considering all possible permutations.

For integers 1 <11 < iy < ... < 1, < 2, we have:

R > B (1) o
o= 2 - -
gn,z :q72Z€n—1,z—1 + fn,z—l (A23)

where the recurrence relation comes from considering the two cases in &, ,, when i, = 2

and when i, # z.
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Appendix B

The Jones-Wenzl Projections

The projections f; : X®% — X | — X®* are given by:

(ne=202=m)~(3 ) ([z — n]!)
s !
(p 1yeesln, ) q ’ ([Z]!) ’:L'O,

The Jones-Wenzl projections in the Temperley-Lieb algebra, T'L(J), are defined by:

fi=1

[2]
[z + 1]

fer1=f.®1— (f. @ 1e.(f. ®1)

They were originally defined in [64], and are the unique projections such that

TL(2 COS(%))/ is positive-definite, for 3 < n € N. We want to show that the projec-

n—1
tions onto X, are the Jones-Wenzl projections f,1.
We show this by substituting the definition for f, into the inductive relation for the Jones-

Wenzl projection and show that it gives the formula for f,, ;. For this, we need to consider

two cases, piy,..in.> @ vo and p;, 4, > @ V1.
We start with p;, . ;... ® vg. We have:

(n=+D= % -m) (% i) (2 + 1 = n]!)

(n(z+1)—%(n2—n)—(£: z‘j)) ([z4+1—n])
:q Jj=1 _—
([ +1]Y)

X ((F"a:QZ) ® vg + q"fzfl[n](anlxovz) ® 1/1>
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Alternatively, we have:

(ne=3n=m=(3 ) (|2 = m])

(£, @ 1)(pin,...in,> ® 10) =q i=1 W(F”ﬂio,z) ® 1
(g (S i) ([2 — )
— =

X ((ano,z—l) ® voo + ¢ ) (F" wg.m1) ® I/m)

1

nz—3(n*—n)+n—z—(3 i;) —nl
ez(fz X 1)(pzl ,,,,, inyz @ 1/0) :q( : = )MX

x <q_1(Fn_13«"0,z—1) ®vio— (F" 'mo.m1) ® 1/01>

nz—i(n?—n)4n—z—( zn: i;)
Let G := q( 2 = ) ["](([[ZZ]*!)"]!), then this becomes:

e.(f. ®1)(piy,....in,- ®10) =G "rgm1) @vio — (F" ag 1) @ 1/01>

< (F
(22-n)-(S )
Z =

([n = 1])Gox

Je<
<q Pt yefn—1,2—1 @ V10 = Pj1,ccjn-1,2—1 & VOl)

(f, ® 1)e,(

z\'z-h

R 1)(piy,..sin,z ® V0) =

Ln2_n)— S0, nz—i(n2-—n)—1—z— S0, —_nl!
5 q(2< ) (Eﬂ’“))([n 16 (q( L(n—n) (X 3) ([z —nl))

(EIRA

1<jp<z—1

n—1
z(n—1)—1(n—1)(n—2)— j —
(z0-D=3(=D=2~(T 3w) ([z = n +1]))

([z]!)

—q (F" zg,) ® l/1>

We now need to use equation A.22:

225 _ oy (Y
2 1 = G A

1<i; <2

Hence we have (f, ® 1)e.(f. @ 1)(pi,....in.z @ 10) =

(%(nz—n)—z(n—l)) [ ]')([Z - 1] ) (nz—%(n2—n)—1—z) ([Z - n]') n. y
‘ (= 1z >G0<q ED A
. (z(n 1)‘*(” 1)( ) ([z —n+ 1] ) n—lxo vy
i Gy en)
=Gy <q[Z](F"330,z) Ry — qn_1W(Fn_1$0,z) ® l/1>

_ et ) ) (=l
~ (ED
—1 —n
X <q(anEO,z) & vy — qnilw

) e on)
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Then we have that:

[2] _
(f.o1- PRy (£: @ Dex(f: @ 1)) (pir,..in,z @ 10) =

(nz—;(nz_n)_(jzijl i) ([z — n!)

q W(ano,z) KV

n

(n=dn2=m)tn—s~(2 i9) [n]([z — n]!) [2]
—q ([2]) [;>;+1]><

-1 z—n+1
« <q[z](an072) ® vy — qn—lg(}?n—lx&z) ® Vl)

[2]
(nz—%(rﬂ_n)—(ﬁ:l i) ([z — n]!)

(EDI
X <<1 —q" ! [z[i]l] ) (F"2o,2) @ 1o + q2n,z,1—[z —[Zn:ﬁ][n] (F" '20,) ® Vl)
Note that:

[z +1] — qn—z_l[n] _ (qz—H _ q—z—l _ qn—z—l(qn _ q_n))

(¢—qt)
z+1 _  2n—z—1
:(q G _qqf1) ) =q"[z—n+1]
Hence we have:
q(nz—%(nQ—n)—(jZ::I i) ([z — n)!) .
([=]")
n [Z —n+ 1] n 2n—z—1 [Z —n+ 1] [n] n—1
X (q [Z+1] (F $0,2)®V0+q [Z+1] (F I072)®V1
_ et =) (s — 1))

NS <(F "20..) @ vo + ¢V ] (F" g L) ® ,,1>

=f. 1 1(piy,..in,z @ 10)

Hence we have proven the first case.

For the second case, we have:

(nGe+)-302+0)—( i) ([ — ]!

_ ; ) n—+1
for1(Pir,in,: @11) =q ! MF 20,241
nz—i(n?—n)— 3 i —
et 0) (e — )
(= + 1)

X <(F”+1x072) Quvy+q" Fn+1](F'zo.) ® 1/1>
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Alternatively we have:

(nz—%(ﬂ?—n)—( Xn: ZJ)) ([Z - n]')

(fz & 1)(/021 ..... in,2 & Vl) =q =t W(ano,z) ® vy
 (me=bmrom (2 ) ([2 — )
- =N

X <(an0,z—1) ®@vo1 + ¢" ) (F" tagm1) ® I/11>

ez(fz & 1)(:0@1 ,,,,, in,2 ® Vl) :q(n27§(n 7n)7(J§1 Z])) ([Z([;]'T;]')

X <Q(Fn96o,z—1) Qo1 — (F'wg.—1) ® V10>

(nzf%(nzfn)*( 2": ZJ)) ([z—n]")

Let G1 :=¢ i=1 GO then this becomes:
(Ln24n)—( 3 )
Z q" =1 ([n]) Gy (Qle ..... Jnz—1 @ V01 = Pj1,inr—1 D V10>

Using equation A.22 again, this reduces to:

q(%(n2+n)fnfn(zfl)) ([’I’L]')([Z — 1]') )Gl (q(nzé(ngn)%&) M(FHLEOJ) ® 1

@ == 1] (=
_ q(z(”ﬂ)*%(”%")%) W(FnJrlxo’Z) @ VO)

—G (qn+1 [Z [;]n] (ano,z) Qv — [;(FHH%,Z) & V0>

B (nz—%(n2—n)—(. 7'3)) ([z —n]") n+1 [z —n]
=4 qw><q 2]

M=

1
(F0.) 8 01 = (P . 90

Then we have that:

[2]

(fz®1_[2+1]

(F. @ e (f. @ 1)) (piy,...pin, @ V1) =
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(ot

:q(nzfé(rﬂfn)—(j;l ij)) ([z = n]!) y

(=19

(gt e (10 )0 o)

IS

Note that:

(qz+1 o q—z—l o qn—l-l(qz—n _ qn—z))

(¢—q71)
2n—z+1 —z—1
q —q n—z
= - =q""[n+1]
(g—q7")

[z + 1] —q”“[z—n] =

Hence we have:

(=302~ i) ([ —nl) [ 1, w1,
q e i (== LA BEER i == L RED)
(na—L(n2—n)—( z”;lij)) ([z —n)!)

., z () @+ o+ U0 o

([z+ 1]

=, 1 1(pir,..in,z @ 1)

Hence we have shown that the projections f, satisfy the Jones-Wenzl recurrence relation.
Since the projection f; : X — X; — X is just the identity, then we have shown that the

projection f; : X®* — X | — X®* is the Jones-Wenzl projection.
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Appendix C

An alternate proof of the
diagrammatic formula for the

Second Endomorphism on P;r

End(P;“) is 2-dimensional, with basis {1,¢}, with the second map given by E(Ej) = aj,

e(a;) = e(Zx) = €(yr) = 0. We can therefore construct a map:

: bir>i; ,
D, : X ®2p—i=1 _, Pj AN P;r _y x®2p—i-l

This is given by:

Qi (piy,...sin,2p—i—1) :(_1)p—i_1q("(2p7i71)*%(n27n)—(J§1 Z-j)) )
x ([n])(lp = n —1])
([n+i—p")([p—i— 12 —1]")

p—i<n<p-1

mn
F"zg0p—i—1,

Di(piy,...in2p—i—1) =0, n<p—1i, n>p—1

We want to prove that ® can be given diagrammatically in terms of the (p — 1)th Jones-

Wenzl projection by the following:
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~.

|
fp—l

Tr
|

p—i -
L)
~1

To prove this, we first show that taking the partial trace of ®; gives ®;,1. We then

prove explicitly the case ®;.

C.1 The partial trace of the second endomorphism

We want to show that taking the partial trace of ®; gives ®; .

Diagrammatically this is:
, _ [P :
b, BGRIE (I)z+1

Using equation A.20, we have F"xg .41 = (F"z0.) ® 1o + ¢ 1 2[n](F" l20..) ® v1.
Consider X®2P~i=2 @ N. Its elements take the form
G Pirnsin 20—i—2 @ V10 — Pin v, 2p—i—2 @ Vo1
®; ®1 is non-zero on p;, .. i, 2p—i—2®@vig for p—i—1 <n < p—2andon p;, i, 2p—i—2 R Vo1

forp—i<n<p-1.
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For n=p—i— 1, we have ®;(¢ ' pi....in.2p—i—2 @ V1) =

(_1)p_i_1q((l'—i)(2p—i—1)—%(p—i)(p—i—l)_(gp_i_1)_1_( ].;1 ij)) .
w (p =) (i —1]Y
(lp—2—1D)2([1 —1]Y)
:(—1)p_i—1q((p_i_l)@p_i_l)_;(p—i)(P—i—l)—l—(pJZijllij)) )
il
(lp—i—1]

FPzg0p i1

i
X FPwgop i1

Using equation A.20, we have (®; ® 1)(q_lpil,,,_,iVFth_i_g ® i) =

i—1
(L1 ((p—i—1)(@p—i—1)— L (p—i) (p—i—1)—1— <pjg i)
[p — Z] p—1 .
([p — 17— 1]!) (F $0,2p—z71) X1
—i—1
— (r=i=D) @i -3 -0 p=i-1)=1=( = i;))
=(— q 1= X
& (FP~ig _2) ® 1 _,_ql—p[p_z-](pp—i—lx i) ® v
Acting 1%PT~2 © U on this we get:
—i—1
. (mmnEe-imn-Se-de-i-n-p-( 5 i)
(=D)"""q =X
12
—i—1
., (=mnee-imn-Le-de-i-0-C'S i)
=(=1)"""¢q =X
[p —i? —i—1
12
p—i
—[p[_i_]l]Q‘I)iJrl(Pil,...,ipil,2pi2)
[i]?

:mq)i—H (Pitsip—i1,2p—i—2)

For n =p — 1, we have ®;(—pi,,... i, 2p—i—2 @ Vo) =

p—1

—1)(2p—i—1)—L (p—1)(p—2)— i
(_1)p72.72q(<p )(@p=i=1)-3(r-D-D~(Z, J>)X
([p—1]) o1

S PRSI

Z0,2p—i—1
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Again using equation A.20, we have (®; ® 1)(—piy,....i,_1,2p—i—2 @ Vo1) =

—1
((p-1)(2p—i-1)~ 3 (p—1)(p—2)— <§ ij)

(—1)P~"2q x

(p— 1)) -
i e

 (e-D@-i-)-L -1 -2-(% i)
:(_1)p7z72q j=1 X

L (-1
(=i - 12(i — 11

Acting 1%P7=2 ® U on this we get:

20 ,2p—i—1) @ V1

<(Fp—1930,2p—¢—2) ®@vo1 +¢'[p — U(FP?202p—i—2) ® l/11>

—1

(-1 @p—i—1)- 1 (-1 p-2)+1-(S 1))

(_1)p—i—3q P .
(Ip - 1) o
T R T
7 2
T L
W
_[i +1]2 i+1(Pin,esip_1,2p—i—2

Finally, for p —i <n < p — 2, we have ®;(¢7pi,,....in2p—i—2 ® V1 — Piy,....in,2p—i—2 @ Vo) =

1) (2p—i—1)— L (n24n)— (2p—i—1)—1—( 3" i;
(—U“’lq(( H)Cpim D)=+~ pim )13 n)x

. ([ + 1)) (fp — n — 2
(In+1+i—p)([p—1di—1H2([ - 1]
(n@p,i,l),%(n2,n),(jé i)

1
F 2 0p—ic1

N x
) () (jp —n — 1))
v i— ) —i— )26 -1
I O e (O o) ([ (fp — n — 1]
_(_1\p—i—1 j=1
=D = (e =i =2 1)

—n— +1]
X n—1 [n Fntl . _pm o
<q [n+1+i—p|lp—n-—1] 20,2p—i—1 £0,2p—i—1

n
F"x00p—i—1

Using equation A.20, we have (®; ® 1)(q ' ps,....in,2p—i—2 ® V10 — Piy.oosin 2p—i—2 @ Vo1) =

L (nep-im - Em2en) (3 i) ([a)([p — n — 1)1)

_1\p—i—1 j=1

(=7 Tri—p—i— 2 —1)

T e z[n_;]lb]? —n—1] (™" a0ap-i1) @ vo = (F"003p-i-1) ® Vl)

 (n@p-im D)= S 2 —(3 i) () (jp — n — 1!

_(_ —i—1 j=1 X
== It i—p(p—i— 1020 — 1)

* <q_n_1 [n+1+ z'[n—JJFO]I[J]? —n—1] (F"20,9p—i2) © 10

+ qi72p+1 [n + 1]2 (anO,Qp—i—2> ® 110

[n+1+1i—plp—n-—1]

— (F"20,9p—i—2) @ vo1 — " [n — 1)(F" w0 2p—i—2) ® V11>
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Acting 19712 @ U on this we get:

B (z i) ()Y (fp —n —1])
_1)p—i-1
e (It i—p)(lp—i— 1020 - 1)
i [n+1]2 .
X (q +1 n+14+i—pllp—n—1] +q>F Z0,2p—i—2

We now need the following simplification:

/ [n+ 1] L dIn Pt 14i-pllp—n—1]
[n+1+i—plp—n-—1] [n+1+i—plp—n-—1]
¢n+1+n+1+i—p
N n+1+i—p]

qi[n + 1} + [n +1434 _p} :(q _ q—l)—l (qn+i+1 _ qi—n—l + qn+1+i—p _ qp—i—n—1>
:(q . qfl)fl (qn+i+1 _ qifnfl _ qn+i+1 + qin1>

=(q—qg H Mg =g = i)

[n+1]?
n+1+i—p|[p—n—1]

Therefore qi[ +1= —qfnfl[[;],. Hence we have:

n+1+i—p]

NgE

(_l)p—i—lq(n(2p_i_1)_%(n2_n)_(]‘:1ij)) ([n]')([ —n- 1]‘ %

(n+i—p(lp—i—1Y)*([i = 1]1)

i [n + 1) .
X (q +1 [ R pa—— +q>F Z0,2p—i—2
_Laypig (D) () (Ip = n = 1)) »

([n+i—=p(lp —i— 1)l = 1]
(4]

X ———— " i
[n+14i—p] 10,2p—i=2

=.7_1]2‘I’z’+1(pz'l,...,z‘nzp—z‘—z)

=7 5 Pit1(Piy,...in,2p—i—2)

Hence we have shown that the partial trace of ®; is ®;1.

C.2 The second endomorphism on P;

We now want to prove that ®; is given diagrammatically by:
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Explicitly, @ is given by:

-1
(-Der-2-2e-0e-2-( ) ([p—1))
@1(Pi1,...,ip_1,2p—2) :(_1)p*2q j=1 WFP 1x0,2p—2

Q1 (pi,...in2p—2) =0, n#p—1

The zth Jones-Wenzl projection f, onto the module X;l in X®* is given by:

NgE

(na=3n2-m)—(2 i) ([ — n]!)
fz(pzlv"'7ln7'z> q ! ([Z]‘) xoyz

ceey

(F-1 @ 1% ) (piy . sinip-1 @ Pjrjonp—1) =

(np-1-30-m)~(32 ) ([p — 1 — n]!)

! g W(F%Omfl) ® Pjt e 1

(rp—(X i)=(X 1) ([p — 1 = n])([n]!)
= Z q =t =1 (p—1]) Pkt ok p—1 @ Pj1 e imp—1

Given U(v10) = v, U(vp1) = —qv, U(rge) = U(v11) = 0, applying cups repeatedly to this,
we get zero if m+n#p—1orif {ky,...kx} N {p—J1, 0P —Jm} #Z0. Un+m=p—1

and {k1, ...k} N {p —j1,..,0 — jm} = 0, then we have:

(np+p71*n*(é)1 i)~ k) ([p—1—=n]"([n]")

Z (_1)P—1—nq ; =1 ‘ v
k1,...,kn ([p - 1])
—1-n— S 15)— S k
- Z (-1 _lq(p 1 (ng /) (’; l))u
ki, kin
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Note that for each choice of ji, ..., jm, there is a unique choice of k1, ..., k,, satisfying the

above conditions, i.e. {k1,...,kn, D — ji, .., p — Jm} = {1,...,p — 1}, and so we have that:
n 1 m
;kz =5 (0% —p) —mp+ ler
= r=

(p-1-n—(3 i)~ (3 k)
Hence we have Y. (—1)P"!q i=1 =,
Ketyomkin

(_1)p_1q(P—1—”—(j§1 ij)—%(pQ—pHmp—(TX:jljr))

) =L (2 ) — (32 i )— .
:(_1)p,1q(<p+1><p 1=m=3 =5 )~(£00)

p—1
:(_1>p_1q((p+1)(pflfn)f%(pzfp)+(p71)(pilin)i(j§1 1]))

14
_ _n_l 2_ _p—liA
:(_1)p_1q(2p(p 1-n)—35(P*-p) (]2:31 g))y
_ 12 _pili.
» 1)p—1q( 20 =(5 1)

where 41, = jr +p — 1.

Given pi, . .in.z, let i1y ...,45—n be the positions of the zeros. As N(v) = ¢ tvio — o,

we have that the z-fold cap is given by:

z

zZ—n, —n 5 5
E :( E : (=1)" "¢ pil,...,in,2z+1—iz_n,..,,22+1—i1,22)

n=0 “i1,...,in
Taking z = p — 1, this becomes:

p—1

_1\p—1-n_-n - -
E < E (-1 qa Py, z‘n,2p—1—z‘p1n,...,2p—1—z‘1,2p—2)

n=0 “i1,...,in

Applying f, 1 ® 19771 to this we get:

p—1 4
> (X o o
n=0

p—1 n(p—1)— - i) — =
:Z< Ty (_1)p717nq( (r=1)=(3 i) <k§1m)X
n=0 Ni1,.c.in J1,rlin
([p =1 = nlH([n]")
o) Pednr O P piip
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Z( S (gD Do L o1 (0-2)

n=0 Ul yeeesbn J15ee5dn

n —1-n _

(=142 (-1 (p—2)~ 2o D (p—1-m)~( 32 ji)+( ¥ i)
X q k=1 j=1

([p =1 = n)))([n]")
x (lp—1)1)2 (1P = 1N0)1... o 2p-1-5p -1y 2p-1-T1.2p2
L (np+ (1)) (p-1+3 (—1) (—2) 5

1 P11 (p-D)(p-2)~ (T k)
= ( > (-t oy ¢ ’ = (e = NPk k1,202

n=0 k1,.es k‘pfl '

Where we have taken ky := ji, ..., kp := jn, knt1 :=2p—1 —Ep_l_n, vy kp1i=2p—1 — 1.

Combining this with the first part we get:

(Lp2—1p+2) (X 45 )) 1)2p-2
q 2 _7 J E[ ) ] )Fp—].x2p_2
(302 —p+1 (3% —5p+2)— (i ) (-nH=2
=q i=1 = 1]‘)Fp R
(3@ —sp+2~('S 1) (— 1)1 o
= J= _ 7
! p-1up°
-
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