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Genomic approach to therapeutic target validation identifies a 
glucose-lowering GLP1R variant protective for coronary heart 
disease

A full list of authors and affiliations appears at the end of the article.

Abstract

Regulatory authorities have indicated that new drugs to treat type 2 diabetes (T2D) should not be 

associated with an unacceptable increase in cardiovascular risk. Human genetics may be able to 

inform development of antidiabetic therapies by predicting cardiovascular and other health 

endpoints. We therefore investigated the association of variants in 6 genes that encode drug targets 

for obesity or T2D with a range of metabolic traits in up to 11,806 individuals by targeted exome 

sequencing, and follow-up in 39,979 individuals by targeted genotyping, with additional in silico 
follow up in consortia. We used these data to first compare associations of variants in genes 

encoding drug targets with the effects of pharmacological manipulation of those targets in clinical 

trials. We then tested the association those variants with disease outcomes, including coronary 

heart disease, to predict cardiovascular safety of these agents. A low-frequency missense variant 

(Ala316Thr;rs10305492) in the gene encoding glucagon-like peptide-1 receptor (GLP1R), the 

target of GLP1R agonists, was associated with lower fasting glucose and lower T2D risk, 

consistent with GLP1R agonist therapies. The minor allele was also associated with protection 

against heart disease, thus providing evidence that GLP1R agonists are not likely to be associated 

with an unacceptable increase in cardiovascular risk. Our results provide an encouraging signal 
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that these agents may be associated with benefit, a question currently being addressed in 

randomised controlled trials. Genetic variants associated with metabolic traits and multiple disease 

outcomes can be used to validate therapeutic targets at an early stage in the drug development 

process.

Introduction

In 2008, the US Food and Drug Administration issued guidance for industry on new 

therapies to treat type 2 diabetes (T2D), recommending that sponsors should demonstrate 

that these treatments are “not associated with an unacceptable increase in cardiovascular 

risk” (1). This mandate challenges drug developers to prove safety during clinical trials, 

which is an expensive and late-phase strategy for the identification of such concerns. 

Instead, genetic approaches may aid in the identification of possible drug side-effects much 

earlier in the drug development process. Genetic variants can inform the treatment and 

prevention of human disease (2, 3), either reducing the prioritisation of potential targets (4, 

5) or implicating new targets (6, 7). Functional exonic variants can be useful surrogates for

drug effects, when, for example, a loss-of-function (LoF) variant may be a useful tool to

understand the consequences of pharmacological inhibition of a particular target protein (7).

Recent sequencing efforts have identified a large number of potentially functional low-

frequency and rare exonic variants in human populations, even among genes under purifying

selection (8–12). Although such variants may influence susceptibility to disease, the high

cost of these sequencing approaches has previously meant that they have not been performed

in the sample sizes required to allow routine investigation of their association with complex

disease and related traits.

A recent targeted exome sequencing study of 202 genes encoding potential drug targets 

identified an abundance of potentially functional exonic variants (8). Among these 202 

genes, six genes encoding drug targets licensed or in development by GlaxoSmithKline 

(GSK) for treatment of obesity and/or T2D were included. Recognizing that these data could 

be used to test for genetic variants mimicking pharmacological manipulation of the encoded 

protein (drug target), we investigated six genes encoding targets of relevance to obesity and 

T2D. These variants could then serve as tools to aid the broader evaluation of drug-related 

risk for adverse events mediated via on-target effects.

As a proof of concept for use of genetic variants to evaluate the cardiovascular safety of anti-

diabetic agents, we evaluated the widely used glucose-lowering glucagon-like peptide-1 

receptor (GLP1R) agonists (13). These agents are long-acting mimetics of the incretin 

hormone GLP1, which increases insulin secretion after oral consumption of glucose but not 

after glucose administered intravenously. There are uncertainties over the role of these 

agents in the aetiology of rare, adverse pancreatic events that have been reported following 

their usage (14). These therapies have been associated with weight loss (15) and reduced 

cardiovascular risk factors, and while a recent trial reported non-inferiority of GLP1R-

agonists in cardiovascular safety(16), multiple trials evaluating cardiovascular safety have 

not yet been completed (17). We used a genetic variant in GLP1R that is associated with 

variation in fasting glucose levels and with T2D risk (18) to evaluate the cardiovascular 
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safety of GLP1R agonists. The low-frequency variant protective for T2D was also protective 

for coronary heart disease (CHD). These findings support the notion that GLP1R agonists 

will not confer an increased cardiovascular risk in people. This study also demonstrates how 

genetic target validation approaches can be employed early in the drug development process 

to evaluate efficacy and safety.

Results

Association of genetic variants in genes encoding T2D and obesity drug targets

The study design consisted of initial discovery of variants with suggestive associations, to 

targeted genotyping and in silico follow-up analyses (Fig. 1). We investigated the association 

of 121 variants in six genes encoding therapeutic targets in use or in development for T2D or 

obesity (CNR2, DPP4, GLP1R, SLC5A1, HTR2C, MCHR1)—drawn from a recent targeted 

exome sequencing study of 202 genes encoding drug targets (8)—with variation in the 

following traits: T2D, obesity, body-mass index (BMI), waist circumference, fasting 

glucose, fasting insulin, and 2-h glucose (Fig. 1). In the “Discovery Analysis”, we identified 

seven variants potentially associated with T2D- or obesity-related traits (where p<0.001, or 

which were in a target of interest to GSK and p<0.05) (Table 1). For these seven variants, 

“Follow-Up Analysis” was performed by targeted genotyping in up to 39,979 additional 

individuals of European ancestry. Where possible, in silico follow-up analysis was 

performed for traits and variants available in large-scale genetic consortia data.

Initial discovery analyses included 1331 tests of association, with the threshold specified to 

reach significance in combined analyses being p<3.8×10-5. In a combined analysis of results 

from the different phases, we identified a low-frequency (∼1% minor allele frequency 

(MAF)) missense variant Ala316Thr; rs10305492 in the GLP1R gene to be associated with 

fasting glucose (Fig. 2A). The variant was in Hardy-Weinberg equilibrium in all genotyped 

samples (p > 0.2). The effect size (i.e. the difference per allele) of 0.09 mM was larger than 

most common variants previously reported for fasting glucose (Fig. 2B), and was recently 

found to be associated with fasting glucose in non-overlapping samples from large-scale 

analyses of coding variant associations with glycaemic traits (18). The combined analysis of 

the six other variants in Table 1 did not show evidence of association (p>3.8×10-5, by linear 

or logistic regression) with the suggestively associated trait in the discovery analysis 

(“Follow-up” p-values > 0.05; “Combined” p-values ≥ 0.005; Table 1).

The GLP1R gene encodes the GLP1 receptor, the target for GLP-1, a hormone that mediates 

the augmented response to insulin secretion following oral glucose administration. This 

receptor is the target for the GLP1R-agonist class of T2D therapeutics and the association of 

this variant with fasting glucose mimicked a major effect of this class of agents. To further 

corroborate the utility of this variant as a surrogate indicator of pharmacological modulation 

of the receptor, we investigated its association with T2D and found that the minor allele was 

associated with lower risk of T2D [odds ratio (OR) = 0.83 [0.76, 0.91]; P = 9.4×10-5; in a 

fixed effect meta-analysis of log-odds ratios from studies and consortia listed in table S1 and 

in Supplementary Materials “Studies contributing to follow-up analyses of type-2 diabetes 

and obesity related traits”; ncases = 25,868, ncontrols = 122,393]. However, we saw no 
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association of this GLP1R variant (Ala316Thr; rs10305492) with fasting insulin, nor with 2-

h glucose (Fig. 2A).

Although there were no individuals carrying putative LoF variants in GLP1R in the targeted 

sequencing study, a single individual in the cohort-arm of the UK10K study had a LoF allele 

(W297*) but did not have an extreme glycaemic phenotype. This individual's fasting glucose 

and insulin concentrations were within the range of 95% of the values for this population. 

Nine high-confidence LoF variants in GLP1R were observed in the ExAC database (19). 

Eight were singletons and the most common had a frequency of less than 1/10,000, 

highlighting the difficulty in restricting analyses to individual LoF variants.

Association of GLP1R variant with quantitative traits and comparison with effects 
observed in clinical trials of GLP1R agonists

To further characterise the extent to which the GLP1R variant associations mirrored the 

effects of GLP1R-agonist therapy, we compared genetic associations to the metabolic effects 

observed in previously reported clinical trials (Fig. 3, table S2). GLP1R agonist therapy can 

result in lower fasting and post-challenge glucose, weight loss, a reduction in systolic blood 

pressure, reduced total- and LDL-cholesterol and an increase in resting heart rate. The 

effects of GLP1R-agonists on glycaemic measures (fasting glucose and 2-h glucose) were 

stronger than those on non-glycaemic factors (Fig. 3), which have been detectable only in 

some meta-analyses of clinical trials (20–23).

Using fasting glucose as the benchmark, the per-allele association of the genetic variant with 

glucose (-0.15 SDs [-0.20,-0.11], from Fig. 2) was 3.3-fold weaker than the effect observed 

for GLP1R-agonist treatment (-0.49 [-0.60,-0.37], from Fig. 3). We therefore rescaled the 

genetic associations to account for this difference, by multiplying the magnitude of all 

observed genetic associations by 3.3 (Fig. 3), and demonstrated that there was little 

difference between the magnitude of association of the GLP1R variant and effects observed 

in clinical trials beyond that expected by chance (α=0.0025). An exception to this 

observation was the impact of GLP1R agonist therapy on weight in non-diabetic individuals 

when compared to the observed association between the variant and BMI (p=2.6×10-4, 

Cochrane's Q test) (table S2). The genetic variant was not associated with BMI (Fig. 3), 

whereas the agonist therapy caused a reduction in body mass in non-diabetic individuals but 

not in individuals with T2D (fig. S1, table S2). However, five of the six trials in non-diabetic 

individuals were performed in obese participants (table S3), whose higher starting weight 

may have enabled a greater weight loss.

GLP1R agonists appeared to have a greater effect on 2-h glucose than the magnitude of 

association observed for the variant (p=2.1×10-12, Cochrane's Q test) (Fig. 3; fig. S2; table 

S2). The difference was most pronounced in comparison to trials in individuals with T2D, 

among whom we observed heterogeneity in the effect of GLP1R agonists on 2-h glucose, 

even within drug class (I2=97%) (fig. S2B). There was no significant difference between the 

magnitude of genetic association and the impact of GLP1R agonist therapy on 2-h glucose 

in non-diabetic individuals (Fig. 3; table S2), although the number of people included in 

such trials was much smaller than in trials including individuals with T2D (table S3).
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Association of GLP1R variant with disease outcomes

Our final aim was to describe the association of the GLP1R variant with CHD and other 

outcomes. In a large-scale international collaboration, we studied 61,846 individuals with 

CHD and 163,728 controls, and found that the fasting glucose–lowering allele of GLP1R 
was associated with protection against CHD (Fig. 4). The association with CHD is greater 

than the 1% reduction in risk that would be predicted based on the association of this variant 

with fasting glucose alone (24) (see Supplementary Methods on “Calculating the reduction 

in coronary heart disease risk attributable to lower fasting glucose levels”), suggesting that 

lowering of fasting glucose alone is unlikely to explain the observed association between the 

GLP1R variant and lower risk of CHD. Although not significant, carriage of the minor allele 

was associated with lower LDL cholesterol, triglycerides, systolic blood pressure, and higher 

HDL cholesterol.

Using data from international consortia, we found no evidence for association of the GLP1R 
variant with pancreatic cancer, although the confidence intervals were wide owing to the 

comparatively small sample size (4987 cases and 8627 controls) and low frequency of the 

allele (Fig. 4). There was no evidence of association with breast, ovarian, or prostate cancer 

risk. Given the interest in GLP1R agonist therapy for neurological disease, including 

Parkinson's (25) and Alzheimer's (26), we also investigated the association of the GLP1R 
variant with those diseases, but found no evidence of association (Fig. 4).

Discussion

Anticipating the side effects of drugs prior to phase III clinical trials could support drug 

discovery and development, reducing attrition rates and saving considerable time and money. 

The promise of human genetics in this endeavour (2, 3, 7, 27) depends on the availability of 

genetic variants that mimic pharmaceutical interventions. We undertook a systematic study 

to identify such genetic variants in the context of diabetes and obesity, and identified an 

association between fasting glucose and T2D with a missense variant in GLP1R, the gene 

encoding the GLP-1 receptor—the target of the GLP1R agonist class of T2D therapies. 

Regulatory authorities require evidence that therapies for T2D are not associated with 

unacceptable increases in cardiovascular risk. The reduced risk associated with the glucose-

lowering genetic variant in GLP1R provides evidence that not only will GLP1R agonists 

meet this regulatory hurdle, but they may also reduce CHD events. Ongoing trials of GLP1R 

agonists are designed to resolve this uncertainty and will also augment the evidence on the 

broader validity of genetic approaches in drug-target validation.

A key consideration in assessing whether genetic variants can be used to understand 

therapeutic effects is how well the genetic variant mirrors the effects of pharmacological 

intervention at the same target. Genetic association data, here and reported previously (18), 

suggest that lifelong carriage of the minor GLP1R allele (at rs10305492) is associated with 

lower fasting glucose and lower risk of T2D, although not with 2-h glucose. Clinical trial 

data from individuals with T2D, who may have a diminished incretin effect, show that 

GLP1R agonists lower 2-h glucose considerably (28), whereas the effect on 2-h glucose is 

smaller in individuals without T2D (29), presumably because non-diabetic individuals are 

less likely to have an impaired incretin effect requiring therapeutic correction. Similarly, 
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GLP1R agonists were associated with greater weight loss in obese individuals than in non-

obese. Such a phenomenon has previously been suggested for the effects of GLP1R-agonism 

on blood pressure, where GLP1R-agonist therapy appears to lower blood pressure in 

individuals with high blood pressure but not in non-hypertensive individuals (30, 31). This 

highlights a limitation in the use of genetic variants in target validation: that the association 

of genetic variants is often tested in individuals of “normal” physiology, whereas clinical 

trials are generally performed in individuals with prevalent disease.

An important step in evaluating the utility of genomics in target validation is to understand 

the functional consequences of variants. For potential novel targets, whether the variant 

confers gain or loss of function informs the development of either an agonist or antagonist 

therapy. For example, LoF variants have been used to understand the consequences of 

antagonism of a novel drug target (7, 32). However, researchers have gained insights using 

variants validated as instruments when their phenotypic associations mirrored 

pharmacological action, even in the absence of strong functional insights into the 

mechanism of those variants (33). GLP1R-agonist therapy reduces fasting glucose in 

humans, as does administration of GLP1, regardless of the duration or severity of T2D (34). 

In mice, the loss of GLP1R leads to fasting hyperglycaemia (35, 36). Together, these 

findings in humans and in mice suggest that the glucose-lowering minor allele at 

rs10305492 confers gain of function. However, differences in basal activity of the human 

and murine GLP1R (37) limit our ability to extrapolate findings from GLP1R knockout mice 

to humans (15, 32). Previous attempts to characterise the effect of this variant in cellular 

models have been inconclusive (38, 39). The rarity of putative LoF alleles in the GLP1R 
impaired our ability to restrict analyses to such variants. Although the absence of definitive 

functional characterisation is a limitation of this study, our observation that the minor allele 

is strongly associated with lower fasting glucose levels and is protective against T2D 

supports the validity of the variant as a genetic instrument for GLP1R-agonist therapy. 

Future integration of large-scale human genetic data with functional characterisation in 

appropriate cell models will allow broader application of variants, other than those 

characterised as LoF, in target validation.

Although the GLP1R variant was not associated with any of the other non-glycaemic or 

quantitative cardiovascular parameters, there was insufficient evidence to suggest the genetic 

associations and pharmacological effects were different. Power calculations indicated that, to 

detect the expected association with systolic blood pressure or resting heart rate, a sample 

size of more than 250,000 individuals would be required. This is considerably larger than 

most current genetic consortia, although this limitation could soon be overcome as larger 

studies become available (40), further strengthening the promise of genomics in target 

validation. Although we did not observe overall evidence for association of variants other 

than the GLP1R variant, the discovery phase, from which we selected variants for follow-up, 

was relatively small in comparison to the overall sample and there remains a possibility of 

type II error in the discovery phase. As larger resources of genetic data become available, 

these potential concerns will also be reduced.

The detection of rare adverse effects of a drug remains a challenge. Pharmaco-

epidemiological approaches using routine database analysis may identify rare adverse 
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outcomes associated with treatment, but the approach is rarely conclusive because of 

confounding, particularly by indication. Our demonstration that the GLP1R variant is not 

associated with pancreatic, breast, prostate, or ovarian cancer, or with Parkinson's or 

Alzheimer's disease is limited by the upper bounds of the confidence intervals, which are too 

high to allow strong inference about the likely long-term safety of GLP1R agonists with 

regard to these outcomes. Although these data represent the largest resources available 

globally, the accumulation of studies with greater numbers of individuals with genetic data 

and robust disease outcome classification will considerably enhance the potential of this type 

of investigation. The comparisons of other traits and disease outcomes, beyond the primary 

indications, makes the assumption that pharmacological effects are mediated via “on-target” 

effects and not “off-target” effects (i.e. those mediated by effects of the agent on other non-

specific targets). Although our results offer insight into the effects of GLP1R agonists, they 

do not necessarily apply to other agents targeting the incretin pathway through different 

mechanisms, such as by DPP-4 inhibition (41).

In conclusion, through a targeted exome sequencing approach, we identified that a low-

frequency missense variant in GLP1R was associated with lower fasting glucose and risk of 

T2D, similar to the effects of GLP1R agonist therapy. This variant was also associated with 

lower risk of CHD, thus providing supportive evidence that these agents are not likely to be 

associated with an unacceptable increase in cardiovascular risk and may indeed be 

associated with benefit, a question currently being addressed in randomised controlled trials. 

We propose that future drug development and investment decisions could be informed by 

genomic data much earlier in the development process, providing insight into both efficacy 

and side-effects.

Methods

Study design

We studied six genes encoding therapeutic targets licensed or in development for obesity or 

T2D (CNR2, DPP4, GLP1R, SLC5A1, HTR2C, MCHR1), drawn from a recent targeted 

exome sequencing study of 202 genes encoding drug targets (8), which represented 

approximately 1% of the coding genome and 7% of all genes considered current or potential 

drug targets (8). In the “Discovery Analysis”, we investigated the association of common 

and rare variants in these six genes with seven T2D and obesity-related traits (Fig. 1). We 

analysed all variants which had i) MAF ≥ 0.5% or well imputed (R2 > 0.5) in CoLaus; ii) 

MAF ≥ 0.5% in GEMS; or iii) MAF ≥ 0.1% in BMI (given the larger sample size) in the 

CoLaus study (42), the GEMS study (43), or all individuals with BMI measurements. We 

examined 121 variants for association with six traits in the CoLaus study (6*121 = 726 

tests); 4 traits in GEMS (4*121 = 484 tests); and 1 trait in the BMI study, comprising a total 

of 1331 tests of association. First, we analysed a subset of the population-based CoLaus 

study (n=2086) for T2D, obesity, waist circumference, fasting glucose, fasting insulin, and 

2-h glucose traits. Second, in the GEMs dyslipidaemic case and normolipidaemic control

study (ncases=787, ncontrols=792), we analysed obesity, waist circumference, fasting glucose, 

and fasting insulin traits. We performed discovery analyses in the CoLaus and GEMS 

studies separately due to the different study designs and traits analysed in attempt to 
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maximise sensitivity to detect associations that might be masked by context-dependent 

associations. Third, BMI measures were available in a larger sample size from 11 studies 

(Fig. 1), and were analysed together. We provide the sample sizes for the discovery analyses 

in Figure 1 and trait-specific sample sizes in Table 1 (n = 505 – 11,806). We augmented the 

sequence data for the CoLaus study with imputed data in the remainder of the study 

(n=3539) where variants were imputable (R2>0.5) using a custom imputation process on 

individuals genotyped on the Affymetrix 500K chip but not included in the targeted 

sequencing experiment (Supplementary Materials).

Using results from the discovery analyses, we identified variants that were associated with 

T2D or obesity-related traits at the p<0.001 level or were located in genes encoding targets 

of strategic interest to GSK, including GLP1R, DPP4, CNR2, and HTR2C with a p value 

threshold of <0.05. To maximise sensitivity to detect associations in these genes of highest 

interest, we took forward to follow up those variants reaching p<0.05 in the discovery 

analyses. However, this did not affect the threshold for statistical significance or overall 

alpha value (3.8×10-5), for which we accounted for all association tests performed in the 

discovery analyses (N=1331). The principal reason for prioritising specific genes was to 

ensure a balance between sensitivity for targets of high priority to GSK and to maintain 

specificity: given that initial replication was performed by de novo large-scale targeted 

genotyping, we were practically unable to follow up vast numbers of variants. This does not 

bias the variants selected for follow-up, nor raise the risk of type I error. Indeed, the only 

variant we determined to be mimicking pharmacological manipulation was well beyond 

“genome-wide significance” even if all possible low-frequency and common variants in the 

genome had been tested.

We then genotyped seven variants in six genes in up to 39,979 follow-up participants of 

European ancestry drawn from multiple studies (Fig. 1): CoLaus (when GEMS was the 

discovery sample), GEMS (when CoLaus was the discovery set), Ely (44) (n=1722), EPIC-

Norfolk (45) (n=25313), Fenland (46) (n=6379), and LOLIPOP (47) (n=6565) studies. The 

follow-up analysis of T2D included participants from the Norfolk Diabetes Study 

(Ncases=5587 and Ncontrols=19012), GenOA study (Ncases=129 and Ncontrols=1501), and 

individuals with T2D from the ADDITION study(48)(Ncases=816) who were combined with 

additional cases from the Ely study (Ncases=116) and compared to non-diabetic controls 

from the Ely study (Ncontrols=1487).

We also sought further in silico follow-up Analysis to further evaluate associations in 

collaborative studies utilizing results from the MAGIC and CHARGE consortia. Five of the 

seven variants were available for in silico analysis (table 1). Further details on each of the 

studies and consortia are provided in the Supplementary Materials and table S1 and S4.

Statistical analyses

We carried out genetic association analyses on variants identified via targeted sequencing 

using an additive genetic model by linear or logistic regression, adjusting for age and sex 

and other study-specific covariates. We combined study-specific estimates using fixed effect 

meta-analysis. We performed analyses on standardised variables (mean=0 and SD =1) and, 

as such, expressed effect sizes as standard deviations (SDs) for quantitative traits. In total, 
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we analysed 121 single nucleotide variants (SNVs). Overall, we performed 1,331 tests of 

association in the discovery analyses and, as such, associations that were α<3.8×10-5 in the 

combined analysis were deemed to be statistically significant.

We performed targeted genotyping of selected variants from discovery analyses using 

Sequenom for the Ely, EPIC-Norfolk, Fenland, and ADDITION studies and KASPar for the 

LOLIPOP study. Imputed data were also available in the GenOA study using reference 

haplotypes from participants in the previous sequencing study (8). We carried out genetic 

association analyses in each study under an additive genetic model using linear or logistic 

regression, again adjusting for age, sex and study-specific covariates. We sought further in 
silico follow-up from summary association results from MAGIC and CHARGE consortia 

(table 1). We converted summary association result effect sizes to SDs using the SD of 

fasting glucose from the population-based Fenland study (SD = 0.65 mM) (46). We meta-

analyzed results from the discovery analysis, follow-up analysis and in silico follow-up 

analysis using a fixed effect, inverse-variance weighted approach. The discovery analysis of 

the CoLaus study included association results from the sequence variants and imputed 

variants (table 1). In the entire CoLaus study, we later directly genotyped (KASPar 

technology) variants which had been imputed in the unsequenced CoLaus participants study 

as part of the original follow-up analysis. The combined analysis results in table 1 therefore 

represent those from the directly genotyped data.

For variants that showed statistically significant associations in the combined analysis 

(p<3.8×10-5), we investigated their association with a range of anthropometric, metabolic, 

and cardiovascular risk factors and disease outcomes in the studies described previously, as 

well as in additional studies described in table S1 and S4 and in Supplementary Materials. 

We also investigated the association of variants reaching statistical significance after follow 

up (α<3.8×10-5) with coronary heart disease (CHD) through targeted genotyping and 

collaboration with large-scale Exome chip consortia (table S1). For these variants, we also 

investigated association with a range of other disease outcomes (table S1), with a particular 

focus on diseases previously suggested as potential opportunities for repositioning (i.e. 

where existing drugs might be used for alternative indications). However, as the variant 

reaching statistical significance was not well covered on existing GWAS arrays or in 

HapMap, we were limited to those disease outcomes for which we could obtain association 

data. For genes that contained variants with p<3.8×10-5 in the combined analysis, we 

investigated the presence of putative LoF alleles in individuals in whom we had performed 

targeted sequencing (8) and in individuals with whole-genome sequencing from the UK10K 

study (www.uk10k.org).

Comparison of clinical trial effects and genetic associations

Randomized clinical trials of GLP1R-agonists were identified through previous systematic 

reviews and by performing a supplementary literature search, as detailed in the 

Supplementary Materials. Only trials with placebo or no-drug comparison groups (i.e. no 

trials with active comparison groups), with ≥ 4 weeks drug treatment (i.e. no single dose 

studies) and ≥ 10 participants per trial arm were included. Treatment effects were expressed 

in SDs before pooling across trials using random effects meta-analysis (see table S3 for 
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details of clinical trials included). P-values derived from Cochrane's Q test were used as a 

guide to assess whether there were pairwise differences between the rescaled genetic and 

trial estimates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overall study design, participating studies, and consortia
Discovery analyses were performed using targeted exome sequencing of variation in six 

genes tested for association with seven traits. Variants were taken forward to follow-up by 

targeted genotyping. Additional in silico results were obtained using available association 

results. Combined results were obtained by fixed-effect meta-analysis of estimates from 

linear or logistic regression, as appropriate. Based on the 1331 statistical tests performed in 

discovery analyses, p<3.8×10-5 was used as the threshold for statistical significance. In 

targeted genotyping, (g) refers to studies that were directly genotyped for relevant markers, 

whereas (i) indicates those in which relevant variants were captured by imputation.
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Figure 2. Association of GLP1R variant (rs10305492) with glycaemic traits
(A) Genetic variant association with glycaemic traits. Data are standard deviations per minor

allele at rs10305492. Fasting glucose results are from the combined analysis (Table 1).

Individual studies contributing to the associations for fasting insulin and 2-h glucose are in

table S4. All results reflect point estimates and 95% confidence intervals (CI) from a fixed-

effect meta-analysis of linear regression estimates. (B) Effect size of the GLP1R variant (in

red) and loci previously reported to be associated with fasting glucose. Effect sizes are

reported from discovery analyses of available MAGIC results (50), and from the combined

estimate for the GLP1R variant in (A).
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Figure 3. Comparison of GLP1R variant (rs10305492) associations with effects observed in 
clinical trials of GLP1R agonists in non-diabetic individuals and in individuals with T2D
Genetic associations are all scaled to match the effects of GLP1R-agonists on fasting 

glucose (i.e. per 3.3 copies of the minor (A) allele). Genetic variant results are beta estimates 

and 95% confidence intervals from fixed effect meta-analysis of linear regression results 

Trial results are estimates from fixed-effect meta-analyses of standardised mean differences 

between treatment and comparison groups of the individual trials listed in table S3. *Trials 

reported effects on body mass, whereas genetic associations were only available for BMI.
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Figure 4. Association of GLP1R variant (rs10305492) with disease outcomes
Association with disease outcomes are reported per-minor allele at rs10305492. Data show 

odds ratios and 95% confidence intervals from logistic regression models.
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