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An Optimization Approach for Localization
Refinement of Candidate Traffic Signs

Zhe Zhu, Jiaming Lu, Ralph R. Martin, and Shimin Hu, Senior Member, IEEE

Abstract— We propose a localization refinement approach
for candidate traffic signs. Previous traffic sign localization
approaches, which place a bounding rectangle around the sign,
do not always give a compact bounding box, making the subse-
quent classification task more difficult. We formulate localization
as a segmentation problem, and incorporate prior knowledge
concerning color and shape of traffic signs. To evaluate the
effectiveness of our approach, we use it as an intermediate step
between a standard traffic sign localizer and a classifier. Our
experiments use the well-known German Traffic Sign Detection
Benchmark (GTSDB) as well as our new Chinese Traffic Sign
Detection Benchmark. This newly created benchmark is publicly
available,1 and goes beyond previous benchmark data sets: it
has over 5000 high-resolution images containing more than
14 000 traffic signs taken in realistic driving conditions. Experi-
mental results show that our localization approach significantly
improves bounding boxes when compared with a standard
localizer, thereby allowing a standard traffic sign classifier to
generate more accurate classification results.

Index Terms— Traffic sign localization, optimization, graph
cut.

I. INTRODUCTION

TRAFFIC signs are specially designed graphics which
give instructions and information to drivers. Although

different countries’ traffic signs vary somewhat in appearance,
they share some common design principles. Traffic signs
are divided according to function into different categories,
in which each particular sign has the same generic appearance
but differs in detail. This allows traffic sign recognition to be
carried out as a two-phase task: detection and classification.
The detection step focuses on localizing candidates for a
certain traffic sign category, typically by placing a bounding
box around regions believed to contain such a traffic sign.
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Fig. 1. Two examples of traffic sign localization: (a) Detection result using
a cascaded detector (yellow rectangle). (b) Optimized detection result using
our approach (green rectangle). (c) Segmentation result (white pixels).

Classification then examines these regions to determine which
specific kind of sign is present (if any).

Two well known benchmarks are used to assess detection
and classification separately. The GTSDB detection bench-
mark [1] consists of 900 images with resolution 1360 × 800,
in which the size of traffic signs ranges from 16 to 128 pixels.
The GTSRB classification benchmark [2] contains more than
50,000 images, but here the objects of interest fill much of
each image. Although various methods have achieved good
performance on both detection and classification benchmarks,
it is still a challenging task to recognize traffic signs in an
image where the objects of interest occupy a small fraction
of the whole image. There is still a significant gap between
detection and classification, caused by inaccurate detection
results: detected bounding boxes do not always enclose the
sign as compactly as possible. The Jaccard similarity coeffi-
cient is often used to evaluate the effectiveness of a traffic sign
detector, and in particular, in the GTSDB competition, candi-
dates with Jaccard similarity greater than 0.6 were regarded
as having correctly detected the sign. However, this criterion
results in many inaccurate bounding boxes being regarded as
correctly detecting the sign, yet such loose boxes provide a
poor basis for classification.

Thus, in this paper, we propose a new localization refine-
ment approach for candidate traffic signs. Our optimization
approach is intended for use as an intermediate step between
an existing detection method and the classification step. Start-
ing from an approximate bounding rectangle provided by
some other detector, our approach is intended to give a more
accurate bounding box. This step can significantly improve the
detection quality, leading to better classification results. In [3]
a radial symmetry detector [4] is used for fast detection of cir-
cular signs. Although it can accurately localize signs by using
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Fig. 2. Templates for the four most common shapes for traffic signs in China:
(a) circle, (b) triangle, (c) inverted triangle, (d) octagon.

centroids, it works for circles only, and cannot be generalized
to other shapes of traffic signs. Our approach is generic, and
we do not need to design a detector for a particular shape. Our
approach just uses a shape mask as a template to provide prior
knowledge: for different shapes of traffic signs we just need
to change the template. In Figure 1(a) the yellow rectangle
marks the region detected by a well-trained cascade using HoG
features. Our approach more accurately localizes the traffic
sign as illustrated in Figure 1(b). The final segmentation result
is illustrated in Figure 1(c).

We formulate localization refinement as a segmentation
problem using prior shape and color knowledge. The shape
prior is provided in the form of planar templates of standard
shape, as illustrated in Figure 2. Our approach encourages
the segmented shape to appear similar to the pre-defined
template, allowing for a homography transformation caused
by camera projection. To provide a color prior, we note
that traffic signs in a particular category have a relatively
fixed proportion of intrinsic colors. However, under different
illumination conditions, these colors may look quite different,
so setting color thresholds is impractical. Instead, we use a
training set to train a Gaussian mixture model (GMMs) for
each particular category of traffic signs to model expected
foreground colors.

To demonstrate the utility of our approach, we use the Viola-
Jones cascade framework [5] with HoG [6] and Haar [7]
features, as well as a state-of-the-art convolutional neural
network (CNN) based object detector—Fast R-CNN [8],
as baseline detectors whose output we aim to improve upon.
Fast R-CNN uses an image and a set of object proposals
(e.g. obtained from selective search [9]) as input, and processes
the whole image with several convolutional and max pooling
layers to produce a feature map. Then for each proposal it
extracts a fixed length feature vector which is fed to a sequence
of fully connected layers. The final layer outputs softmax
probability estimates for M object classes plus a background
class. We use these detectors for two reasons: (i) the detectors
can achieve good performance without any application specific
modification, and there are publicly available implementations
of the main steps, making it easy for others to reproduce
our results, and (ii) HoG features are useful for capturing the
overall shape of an object while Haar features work well for
representing fine-scale textures. CNNs have proven successful
in many object detection scenarios and generally outperform
traditional detectors.

The rest of the paper is organized as follows: in
Section II we give a brief review of related work. Our
localization refinement algorithm is detailed in Section III.
Experimental results are provided in Section IV while we draw
conclusions in Section V.

II. RELATED WORK

A. Traffic Sign Detection

Color and shape are two important cues used in traffic sign
detection. Early work [10], [11] applied color thresholds to
quickly detect regions having a high probability of containing
traffic signs. Although color-based methods are fast, it is
hard to set suitable thresholds suitable for a wide range
of conditions, as different illumination leads to severe color
differences. While requiring greater computation, shape-based
methods are less sensitive to illumination variance, and so
are more robust than color-based methods. Directly detecting
shapes [3] and using shape features [12] are the two major
approaches to shape-based detection. While directly detecting
shapes can accurately locate shapes, there are two obvious dis-
advantages. One is that different detectors are typically needed
for different shapes, e.g. the algorithms for detecting triangles
and circles are different. A second is the need to take into
account the homography transformation between the projected
traffic sign in an image and its standard template shape, which
complicates direct shape detection. Training a shape detector
using shape features is more robust than directly detecting
shapes. To detect traffic signs in an image, a multi-scale sliding
window scheme is used, and for each window a classifier such
as SVM or AdaBoost decides whether it contains a traffic
sign [12]. Although feature based shape detectors are more
robust than direct shape detectors, the detected candidates are
still not always accurately localized. Another way to detect
traffic signs is to regard the regions containing traffic signs as
maximally stable extremal regions [13], but this method needs
manual selection of various thresholds.

B. Traffic Sign Classification

Various object recognition methods have been adapted to
classify traffic signs. In [11] a Gaussian-kernel SVM is
used for traffic sign classification. Lu et al. [14] used a
sparse-representation-based graph embedding approach which
outperformed previous traffic sign recognition approaches.
Recently, many works have used CNNs for traffic sign clas-
sification, such as the committee of CNNs approach [15], use
of hinge loss trained CNNs [16] and multi-scale CNNs [17].
CNN based traffic sign classification methods can achieve
excellent results, but to do so requires images (like those
in existing classification benchmarks) containing an approx-
imately centered traffic sign that fills much of the image.
To work well, classification relies on accurate detection and
localisation of candidate traffic signs. Some works [10], [13]
have tried to concatenate detection and classification, adding
a normalization step which aims to accurately locate the
detected candidates. However these normalization steps just
rely on shape detectors and are not robust enough for real
applications.

For other traffic sign detection and classification methods,
a detailed survey can be found in [18]. Recently, promising
results have been achieved for simultaneously detection and
classification of traffic signs in the wild [19].
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C. Image Segmentation

The core of our approach is to segment the foreground
using prior knowledge of color and shape. Segmenting fore-
ground from background in images is an important research
topic in computer vision and computer graphics. Level set
methods [20]–[22] and graph cut methods [23], [24] are two
popular approaches. However, we concentrate on methods
which have the potential to solve our specialised segmen-
tation problem. To model segmentation using shape priors,
Cremers et al. [20] include a level set shape difference term in
Chan and Vese’s segmentation model [21]. However their
method needs initialization of the shape at the proper location,
totally covering the shape to segment, while a standard traffic
sign detector only offers a rough position of the object, so is
unsuitable for this purpose. To handle possible transforma-
tions between the shape template and the shape to segment,
Chan and Zhu [22] incorporate four parameters in the shape
distance function, representing x and y translation, scale
and orientation. These only permit similarity transformations
between shapes, whereas we need to handle a homography.

In [25] foreground and background color GMMs are used
for segmentation, but the models rely on a user-selected rec-
tangular region of interest. Freedman and Zhang [23] require
user input to estimate rotation and translation parameters and
then find the scale factor by brute force, again only handling
similarity transformations. Vu and Manjunath [24] use nor-
malization images [26] to align the segmented shape with the
template shape, but this approach is very sensitive to noise, and
it is only affine invariant. No current segmentation approach
can simultaneously incorporate color and shape priors while
allowing for a homography transformation.

III. LOCALIZATION REFINEMENT VIA

ENERGY MINIMIZATION

Given the image containing the traffic sign with an initial
rough rectangle locating it, we aim to accurately localize the
traffic sign by segmenting it precisely. Each sign is contained
within a set of pixels of interest, a subregion in the image
that contains the traffic sign, found by somewhat enlarging the
result of a standard traffic sign detector. Restricting processing
to this region for each sign significantly reduces the compu-
tation time.

Segmentation can be formulated as an energy minimization
problem based on the following energy function:

E(L) =
∑

p∈P

Edata(L p)+ λsmooth

∑

{p,q}∈N

Esmooth(L p, Lq).

(1)

The above equation is a Markov random field formulation
with unary and pairwise cliques [27] weighted by λsmooth.
{p, q} denotes a neighbourhood pixel pair. L = {L p|p ∈ P}
is a labeling of all pixels of interest in the image where
L p ∈ {0, 1}; 1 stands for foreground (i.e. belonging to the sign)
and 0 stands for background. Lq is defined in a similar way.

The data term accumulates the cost of giving label L p

to each pixel p while the smoothness term considers the
pairwise cost of giving neighbourhood pixels p and q

labels L p and Lq respectively. The neighbourhood N is deter-
mined by 8-fold connectivity. The data term is further split into
a color term and a shape term. The color term encourages
assignment of foreground (or background) labels to pixels
consistent with a pre-trained foreground (or background) color
model. The shape term encourages the shape of the labeled
foreground to be similar to the prior shape template. The
smoothness term penalises low-contrast boundaries. We next
give detailed explanations of these energy terms.

A. Data Term

The data term is defined as follows:

Edata(L, H ) = Ecolor (L)+ λshape Eshape(L, H ), (2)

where λshape controls the relative importance of its two
components. H is the homography transformation we must
also estimate: see Section III-C.

1) Color Term: As in [25], we use GMMs to model the
foreground and background color distributions in RGB color
space. Both foreground and background have a GMM with
K components (choice of K will be described later). The color
term is defined as:

Ecolor (L) =
∑

p∈P, k∈{1,...,K }
Dcolor (L p, k p, Ip, θ) (3)

where Dcolor (L p, k p, Ip, θ) is the cost of assigning label L p

to pixel p and component kp to the GMM color model.
Ip is the RGB value of pixel p and θ is the GMM model.
Following [25], Dcolor (L p, k p, Ip, θ) is defined as:

Dcolor (L p, k p, Ip, θ)

= − logπ(L p, k p)+ 1

2
log det�(L p, k p)

+ 1

2
[Ip − μ(L p, k p)]T�(L p, k p)

−1[Ip − μ(L p, k p)].
(4)

In the above equation, π (·), μ (·) and � (·) are respec-
tively the mixture weighting, mean and covariance of the
GMM model.

2) Shape Term: The shape term encourages the shape of
the segmented image to be similar to a pre-defined shape
template. To compute the distance between two shapes, we use
the function defined in [22] for binary images:

Dshape(ψ
a, ψb) =

∑

p∈P

(ψa
p(1 − ψb

p)+ (1 − ψa
p)ψ

b
p), (5)

where ψa , ψb are two shapes given by binary images, and for
a pixel p, ψp is its binary value.

Since traffic signs are planar objects, a homography trans-
formation relates a particular traffic sign to its standard shape
template. Taking the homography transformation into consid-
eration, our shape term is defined as:

Eshape(L, H ) = Dshape(L, Hψ), (6)

where L is the binary labeled image, H is the homography
transformation to be estimated and ψ is the pre-defined shape
template.
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B. Smoothness Term

The smoothness term encourages the segmentation bound-
ary to follow high contrast boundaries in the image.
In practice, the magnitude of the image gradient may be used
as the contrast metric. Following [25], smoothness energy is
defined as:

Esmooth(L p, Lq) = ∣∣L p − Lq
∣∣ exp

(
−β(Ip − Iq )

2
)

(7)

where β is a constant (whose setting will be described later),
and the difference between two neighbourhood pixels is cal-
culated in Euclidean norm. If two neighbouring pixels have
the same label, then the cost is zero, and this term penalizes
low contrast boundaries.

C. Iterative Optimization

Our goal is to minimize the energy function in Eqn. (1) to
get the labeling Li . As the variable H us also unknown, we
should write Eqn. (1) as:

E(L, H ) =
∑

p∈P

Edata(L p, H )

+ λsmooth

∑

{p,q}∈N

Esmooth(L p, Lq ). (8)

Simultaneously finding L and H is difficult, so we use
an iterative optimization approach as in [28]. First, we just
use the color term and smoothness term to get an initial
segmentation result using graph cut [29]. We then estimate an
initial homography transformation (see Section III-D). Then
during each iteration, we do the following:

• Fix H and update L. Given H , L can be computed using
graph cut.

• Fix L and update H . Given L, H can be estimated as
described in Section III-D.

If the number of changed labels divided by the total number
of pixels is less than the threshold td then we regard the
process as having converged, and in any case we stop after a
maximum of Tmax iterations. Examples of segmentation results
during successive iterations can be found in the first 5 columns
in Figure 9.

D. Homography Estimation

To estimate the homography given the shape template and
current segmented result as target shape, we first sample
Ns points on each shape boundary and compute its shape
context descriptor [30]. (This is a histogram describing the
distribution of relative positions of other sample points).
Given this pair of shape context descriptors, finding the
correspondence between the shapes is a quadratic assign-
ment problem. To robustly handle outliers, we follow the
strategy in [30], and add dummy nodes for each shape.
The problem can be solved efficiently using the algorithm
in [31]. As we know that the transformation between the two
shapes is a homography, we finally fit a homography trans-
formation between the two point sets using RANSAC [32].
An optional way to match shapes is to use graph matching [33]
techniques.

Fig. 3. Segmentation results with varying parameter r . Top left: source region
of interest containing a triangle sign. Top right: r = 2. With this setting,
the shape term is always weaker than the smoothness term, so segmentation
is dominated by contrast. Bottom left: r = 4. The color term now plays
a more important role in earlier iterations while the shape term dominates
the energy in later iterations. Segmentation converges to the desired result.
Bottom right: r = 8. The shape term dominates the energy too soon and
iteration fails to converge to the correct segmentation.

E. Implementation Details

1) Varying the Shape Weight During Iteration: During
iterative optimization, since the initial shape is only a rough
estimate, the color information should play a more important
role in early iterations while the shape constraint should
dominate the energy term in later iterations. We thus change
the weight of the shape term during iteration, successively
increasing it as follows:

λi
s = wr i−1, i ∈ [1, Tmax] (9)

In the above equation λi
s is the shape weight during the i th

iteration, w is the initial shape weight, and r controls its rate
of increase.

2) Using the Initial Bounding Box: Although the initial
input bounding box for each sign may not be accurate,
it gives a rough position for the traffic sign. To be able to
use it to initialize segmentation, we first enlarge it to twice
its size to give a looser bounding box, which we assume
will always completely cover the foreground object. Pixels
outside it can be safely regarded as background pixels, and
are given the maximum penalty for having a foreground
label.

3) Parameter Settings: The parameter K in the energy
term is set to 6, as most traffic signs have 2 or 3 dominant
colors (e.g. prohibitory signs are typically white, red and
black). Following [25] we set λsmooth to 50 and β to 0.3.
For shape alignment, we set Ns to 50 empirically. During
iterative optimization we set td to 0.001, w to 0.5, r to 4 and
Tmax to 5 empirically; choice of r is justified as explained
in Figure 3.
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TABLE I

QUALITY HISTOGRAM STATISTICS FOR ORIGINAL AND REFINED LOCALIZATION QUALITY USING GTSDB

IV. EXPERIMENTS

We evaluate the effectiveness of our approach using two
criteria: the improvement in localization, and the benefits to a
subsequent classifier.

A standard detector provides its localization result in the
form of an initial bounding box; we produce a refined bound-
ing box. The quality of detection Q can be assessed as

Q = | ∩ (D,G)| / | ∪ (D,G)|
where | · | denotes the number of pixels in a region, D is
the detected traffic sign region, and G is the ground truth
region. A quality of 0 means there is no overlap between the
detected region and the ground truth, while 1 means perfect
agreement. We compute this quality for the output of the
standard detector and for the output of our approach, and for
a series of test cases, make a detection quality histogram in
steps of 0.1 between 0 and 1. We compare the histograms
for the standard detector and for the results of our refinement
approach, both visually, and by computing the median value,
mean value and standard deviation for each histogram.

Separately, to evaluate the benefits to a classifier of our
approach, we cropped the detected traffic signs to the bounding
box determined by a standard detector and our approach, and
compared the classification performance of an appropriately
trained classifier on test data.

Our experiments used two datasets used for evaluation:
GTSDB and a newly created dataset which we call CTSDB
(Chinese Traffic Sign Detection Benchmark). GTSDB is
widely used in the research community for detection eval-
uation. It contains 900 images with 43 classes of German
traffic signs. Since the number of signs in each class is
unbalanced, some classes have insufficient samples for training
a classifier (it is intended for evaluating detection only), so we
only used this dataset to evaluate improvement of localization
quality. CTSDB has 5488 images in total, and was used
both to evaluate localization quality and benefits to classifier
were evaluated performance. Compared to GTSDB, CTSDB
is a step forward. Firstly, it contains many more images
and traffic signs; the image resolution is also higher than
in GTSDB. Secondly, the images in this benchmark were
captured in tens of different cities in China, under a wide
range of illumination and lighting conditions corresponding to
actual driving conditions. We are making this dataset publicly

available, in the hope that the community will find it useful
in future.

We carried out our experiments on a PC with an Intel i7
3770 CPU, an NVIDIA GTX 780Ti GPU and 8GB RAM.
To detect the rough positions of the traffic signs, we used
3 different object detectors: a cascade detector with HoG
features, a cascade detector with Haar features, and a
Fast R-CNN detector. We implemented our algorithm using
C++ and CUDA. For the shape matching step, we used a
CUDA implementation of the parallel bipartite graph matching
approach [34] which is the bottleneck in sequential imple-
mentation; for the graph cut step, we used the CUDA graph
cut implementation [35] directly. Our localization refinement
algorithm takes 15ms for a typical traffic sign, so can achieve
about 67 fps.

A. Experiments on the GTSDB Benchmark

To evaluate the improvement of localization when using the
GTSDB benchmark, we again used the first 600 images for
training and last 300 for testing. To enhance the robustness of
the detector which provides our input, we used a data augmen-
tation strategy: for each image we generated 18 samples using
a random transformation by translating it in the range [−5, 5]
pixels, scaling it in the range [0.9, 1.1] and rotating it in
the range [−20◦, 20◦]. This benchmark has 4 sign categories:
‘Prohibitive’, ‘Danger’, ‘Mandatory’ and ‘Other’; we ignore
the ‘Other’ category as such signs have no fixed shapes.
We considered three alternative detectors, a HoG feature based
cascade detector, a Haar feature based cascade detector, and
a Fast R-CNN detector. In each case, we trained 3 different
detectors for the 3 target categories separately.

Quality histograms of unrefined and refined localization
output are given in Figure 4 while statistics summarizing
the histograms are provided in Table I. It can be seen that
the distributions for the refined results have shifted closer
to 1 than for the unrefined localisation, which is confirmed by
the statistics in Table I: the refined results have higher median
and mean quality, and a smaller spread compared to the
unrefined results. Localization is improved by our refinement
approach.

We show three typical results in Figure 5, illustrating
that our localization results (green rectangles) are closer to
the ground truth (blue rectangles) than the standard detector
output (yellow rectangles).
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Fig. 4. Improvements in localization achieved for the three sign categories in GTSDB. Blue bars: quality of original detector. Yellow bars: quality of detection
after refinement. Top to bottom: detectors using HoG features, Haar features and a Fast R-CNN detector. Corresponding statistics (median, mean and standard
derivation of each histogram) are given in Table I.

TABLE II

QUALITY HISTOGRAM STATISTICS FOR ORIGINAL AND REFINED LOCALIZATION QUALITY USING CTSDB

B. Experiments on the CTSDB Benchmark

To evaluate the localization quality of our approach on
other types of traffic signs as well as its benefit to the
subsequent classification task, we created a new, large, traffic
sign benchmark which we call the Chinese Traffic Sign
Detection Benchmark. We collected 25000 360◦ panoramas
from Tencent Street Views and cropped four sub-images: a
front view, left view, right view and back view: see Figure 6.
These panoramas were captured in good weather conditions
using 6 DSLR cameras, in tens of different cities in China.
Each cropped image has a resolution of 2048 × 2048. Each
class of traffic signs is represented with large appearance

variations in scale, rotation, illumination and occlusion. Our
dataset is intended to be more realistic of practical scenarios
than the images provided by earlier datasets. As some captured
images contain no traffic signs, we hand-selected 5488 cropped
images which contain traffic signs for manual annotation of
location plus type of sign. We separated this benchmark into
three subsets each containing the same number of traffic
signs. For the detection experiment we pick two subsets as a
training set and a testing set; in the classification experiment
we performed cross validation by choosing two subsets as
a training set and a testing subset each time. All warning,
prohibitory and mandatory Chinese traffic signs are listed
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Fig. 5. Localization refinement results for examples from GTSDB.
Rows: different categories of sign. Left: after refinement by our
approach. Center: output of standard detector. Right: ground truth annotation.

Fig. 6. Four views cropped from a panoramic image. Blue: front view.
Red: left view. Yellow: right view. Green: back view.

in Figure 7 (neglecting variants with different characters).
More than half of these classes appeared in our benchmark.
The total number of traffic signs in our benchmark is 14227.
This dataset plus its detailed annotation is publicly available.

We first used this dataset to evaluate the localization quality
of our approach as before. We selected a subset of the signs
in each category with similar color and shape. In particular,
while in the warning category, all signs have similar shape and
colour, for the prohibitory category, we only considered signs
with a red circle and diagonal bar. For the mandatory category,
only blue circles with white foreground were selected. Similar
testing was carried out as for the CTSDB benchmark; the
results are shown in Figure 8 and Table II. Further results
are shown in Figure 9, illustrating how our approach improves
the localization quality for images in this benchmark. As was
found for CTSDB, our refinement approach provides quality
scores with a higher median and mean, and a lower standard
deviation, showing that our approach improves localization for
the CTSDB benchmark. Note that while CNNs are currently
popular for many tasks, the localization quality of Fast R-CNN
is not actually better than that of the other approaches. This
is because Fast R-CNN uses general object proposals, and the
proposal generator does not perform well for small objects in
large images such as traffic signs in our benchmark.

TABLE III

CLASSIFICATION ACCURACY ACHIEVED BY PRESENTING
A CLASSIFIER WITH DIFFERENT BOUNDING BOXES

We show some negative examples in Figure 11. Origi-
nal localization results are presented in the first row while
optimized results are presented in the second row. The first
two cases are caused by irregular shapes of the traffic signs.
In these two cases, the color in the bottom of the signs is too
close to the background color. The third case is the bended
sign, and it is no longer a planar shape. Thus, the homography
assumption between the shape template and the target shape
is not correct. Thus the segmentation fails to converge to the
right shape.

We also evaluated the extent to which classification per-
formance can be improved by using our method to refine
localisation. We picked the 4 specific kinds of sign in each
category having the most images and trained classifiers. These
classes are illustrated in Figure 10. The classifier was trained
using the images in the training data part of the benchmark.
Data augmentation was again performed as in Section IV-A.
For classification, to filter out redundant proposals distrib-
uted around the traffic signs, non-maximum suppression
was applied to the initial proposals, and we manually dis-
carded as unsuitable any candidates with no overlap with
the ground truth bounding boxes. For the HoG features and
Haar features, appropriately trained SVMs with a Gaussian
kernel were used as classifiers, using the output bound-
ing boxes of the previous detectors as the input. For Fast
R-CNN, we trained a multi-class neural network as a clas-
sifier, using the top 5000 proposals from the selective search
results.

Classification results achieved using the original candi-
dates (after the above filtering), the candidates optimized by
our approach, and user annotated bounding boxes are given
in Table III. The results in Figure 8 and Table III show
how our refined bounding boxes lead to better classification
performance. Since appearance variations exist in traffic signs
between the training set and the testing set, and the user-
provided bounding boxes are not entirely accurate, the classi-
fier does not achieve 100% accuracy even when provided with
the ground truth localisation.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 7. Chinese traffic signs. Signs in yellow, red and blue boxes are warning, prohibitory and mandatory categories respectively. Greyed out signs do not
appear in CTSDB.

Fig. 8. Improvements in localization achieved for the three sign categories in CTSDB. Blue bars: quality of original detector. Yellow bars: quality of detection
after refinement.Top to bottom: detectors using HoG features, Haar features and a Fast R-CNN detector. Corresponding statistics (median, mean and standard
derivation of each histogram) are given inn Table II.

C. The Benefit of Shape Constraints
The main difference between our approach and previ-

ous traffic sign segmentation methods is the use of shape
constraints while estimating the pose of the shape. Segmenting

foreground traffic signs in the practical scenarios using only
color constraints is not robust, because the distribution of
foreground color has a limited range while the the back-
ground color can be arbitrary. Additional use of a shape
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Fig. 9. Detection refinement results for various CTSDB images. Columns 1–5: segmentation results as iteration proceeds. Column 6: our localization
results (green rectangles). Column 7: unrefined input from the cascade detector (yellow rectangles). Column 8: ground truth annotations (blue rectangles).

constraint guarantees that our segmentation process converges
to a predefined shape in some appropriate pose. Figure 12
shows some segmentation results with and without shape
constraints. The second column illustrates failures in seg-
mentation caused by similar background and foreground
colors. Adding shape constraints gives correct segmentation
results (see the third column), as in the last few iterations the
shape term becomes a hard constraint.

D. Limitations
We cannot guarantee that our approach will generate an

accurate location in all cases. Our experiments showed that
failures have three main causes: very low light levels (see
Figure 13(a)), regions that have similar color or shape
(see Figure 13(b)), and regions containing multiple signs (see
Figure 13(c)). The energy minimization process in the seg-
mentation step may not converge under poor illumination,
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Fig. 10. Examples showing the 4 most frequent classes of sign for each of
the 3 categories in the CTSDB benchmark.

Fig. 11. Negative examples: (a) and (b) are caused by irregular target shapes.
(c) target sign is bended, and it is no longer a planar shape.

Fig. 12. Importance of shape constraints in segmentation, when the
background has similar color to the sign. Left: source image. Center: seg-
mentation result without shape constraints. Right: segmentation result with
shape constraints.

in which case we retain the initial location. We also constrain
the transformation relating the bounding box of the segmented
result and the initial bounding box: the offset in x and y

Fig. 13. Limitations: (a) convergence failure under low illumination,
(b) confusion of similar shapes with similar color (the sky area is approx-
imately circular at top left), (c) convergence on wrong sign given multiple
adjacent signs.

directions must not exceed half of the initial width and height,
the scale should lie in the range [0.65, 1.5] and the rotation
should not exceed 45◦. These constraints allow us to discard
obviously incorrect interpretations. Another limitation of our
approach is that it requires the output of a sufficiently good
coarse location detector as input. If the input contains no signs,
our approach will clearly fail.

V. CONCLUSIONS

This paper has given a localization refinement approach for
candidate traffic signs. Color and shape priors are utilized
in an iterative optimization approach to accurately segment
the traffic signs as foreground objects. We have shown the
effectiveness of our approach by comparing the localization
quality of a cascade detector using HoG feature or Haar
features, as well as the advantages of our approach when using
CNNs: results using the GTSDB and CTSDB benchmarks
show that our approach can improve localization quality.
We have also shown that improved localization can lead to bet-
ter classification using the CTSDB benchmark. While CNNs
perform better than traditional detectors and classifiers, our
approach still has the ability to further improve performance in
this case too by giving more accurate bounding boxes. We have
also provided CTSDB as a benchmark for further work in this
field.
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