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Abstract – One of the most highly debated questions in the field of animal swarming and social
behaviour is the collective random patterns and chaotic behaviour formed by some animal species,
in particular if there is a danger. Is such a behaviour beneficial or unfavourable for survival? Here
we report on one of the most remarkable forms of animal swarming and social behaviour —fish
schooling— from a hydrodynamic point of view. We found that some fish species do not have
preferred orientation and they swarm in a random pattern mode, despite the excess of energy
consumed. Our analyses, which include calculations of the hydrodynamic forces between slender
bodies, show that such a behaviour may enhance the transfer of hydrodynamic information, and
thus the survivability of the school could improve. These findings support the general hypothesis
that a disordered and nontrivial collective behaviour of individuals within a nonlinear dynamical
system is essential for optimising transfer of information —an optimisation that might be crucial
for survival.
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Introduction. – The concurrent movement of fish in
a school involves significant hydrodynamic interactions.
The relative longitudinal and lateral distances and veloci-
ties between the fish, as well as their relative lengths and
cross-sectional areas determine the magnitude of the hy-
drodynamic forces and moments involved [1–3], which, in
turn, could affect the school overall manoeuvrability [4].
It is not the aim of the current study to discuss how in-
formation due to a sudden movement is (physiologically)
transferred among the school members in terms of sen-
sory systems [5], environmental effects [6], or aerobic ca-
pacity [7]. Neither our intention is to dig into the complex
aspects of the flowfield generated by the three-dimensional
locomotion and the associated dynamics of complex wakes
and vortices. Rather, we treat the fish as solid slen-
der bodies moving in a potential flow. In this respect,

the overall manoeuvrability of a given school is depen-
dent of the instantaneous school structural pattern (mode)
which dictates, to leading order, the hydrodynamic
interactions.

Although it has been suggested that fish might be
found to swim in a diamond-shape pattern to increase
hydrodynamic efficiency [8], or other preferred orienta-
tions and angles, observations (fig. 1) and analyses (fig. 2)
of aerial photographs and videos of different schools of
fishes (Jacks, blue-lined snapper, yellow-spot emperor,
goggle-eye, and bluestreak fusilier) reveal random-shape
patterns instead. A comprehensive work on the shape and
structural patterns in schools and swarms is found in [9],
which also includes a long list of relevant references. The
supporting theoretical analysis we present here shows that
swimming in random modes increases the mean hydrody-
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Fig. 1: (Colour online) Examples for schools of fishes swim-
ming in random pattern mode: (a) Jack Caranx sp. (60 cm);
(b) blue-lined snapper Lutjanus kasmira and yellow-spot em-
peror Gnathodentex aurolineatus (35 cm/24 cm); (c) goggle-eye
Priacanthus hamrur (40 cm); and (d) bluestreak fusilier Ptero-
caesio tile (25 cm). (Photos by F. Brümmer.)

namic forces by a factor of two to five, depending on the
school size. Introducing a sensitivity threshold force (i.e.,
minimum force felt by the fish), we find that fish swimming
in random modes feel the sudden change in movement of
other fish at a more remote distance, which may in turn
result in a decrease in the overall response time (more fish
are aware of the change at any given instant) of the fish
school and thus enhance the overall manoeuvring of the
school. An increased energy consumption that enhances
the manoeuvring efficiency is thus essential for survival
especially amongst smaller fish that cannot escape fast
enough from predators.

Methods. –

Hydrodynamic model. The model by [8] accurately
predicts diamond-shape pattern modes especially for rela-
tively large fish or dolphins [1,10], and for different types
of fish preferred orientations might be identified. How-
ever, for smaller fish (e.g., Jack Caranx sp., 60 cm) the
school pattern shapes were found to be random; especially
when fish encounter a danger (e.g., due to the presence
and sudden movement of scuba-divers) their behaviour
becomes more disordered within the school; at any given
instant the relative distances and angles between neigh-
bouring fish fail to form ordered patterns, as we observed
(fig. 2). It is observed that the probability density function
(PDF) of the relative distances and angles are Gaussian,
indicating continuous random variables. This observation
raises the question as to whether random school patterns
and disordered behaviour, which are probably due to a
natural “panic” reflex [11], are beneficial or unfavourable
for survival.

In order to evaluate the effect of random school patterns,
we carried out a theoretical analysis, based on the studies

Fig. 2: (Colour online) Top: distribution of 32–36 Jack Caranx
sp. (60 cm); at time 00.04.44 (circles), 00.05.44 (star), 00.06.59
(square). Middle: probability density function (PDF) of the
distance between each fish and the closest upper downstream
neighbour. Bottom: PDF of the angle between each fish and
the closest upper downstream neighbour. All dimensionless
quantities were normalized with respect to the mean fish
length.

by the authors of [12], and [13] who investigated the hy-
drodynamic interactions between two submerged slender
bodies of revolution at various separation distances in po-
tential flow. For the sake of brevity, the actual motion of
each fish in the school is now translated into the motion
of a slender ellipsoid with d/L = ε, where d and L are the
maximum lateral and longitudinal dimensions of the body,
and ε is assumed to be small. For the potential flow past
an ellipsoid moving with arbitrary velocity, the solution
can be represented, equivalently, by a volume distribution
of doublets, or a doublet-layer distributed over the lim-
iting confocal ellipse, as well as by a source-layer or a
doublet-layer distributed over the ellipsoid or over an in-
terior confocal ellipsoid. Moreover, based on the singu-
larity method, solutions for the internal flow between two
confocal ellipsoids in relative motion are found (see [14]).
On this basis, an approximate solution is sought for the
hydrodynamic quantities of interest. Each two stream-
lined bodies move through an ideal fluid with constant
velocities Ui and Uj along parallel paths. The relative po-
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Fig. 3: (Colour online) Nondimensional hydrodynamic forces
and moments as a function of the square root of the fish school
size n (the fish school size is n×n); for random (∗) and diamond
(�) patterns. Top: longitudinal forces. Middle: lateral forces.
Bottom: yawing moments.

sitions of the two bodies change in time as a quasi-steady
approximation, where each position is calculated individ-
ually. The two bodies are separated by a lateral distance,
ηij , and fore-and-aft distance, ξij , which is a function of
time t. For each two bodies we define two coordinate sys-
tems, (xi, yi, zi) fixed on body i and (xj , yj , zj) fixed on
the upper upstream neighbour, body j, which are related
to the fixed coordinate system (x0, y0, z0) so that

x0 = xi +Uit = xj + Ujt − ξij(0);
y0 = yi = yj + ηij ; z0 = zi = zj ,

(1)

and

ξij(t) = xj − xi = (Ui − Uj)t + ξ(0), (2)

where ξij(0) is the initial longitudinal distance between
bodies i and j. The flow about the i-th body is considered
asymptotically steady, and can be estimated by standard
methods of slender body theory [15]. It is also assumed
that the separation distance ηij is O(εLi) to allow calcu-
lations of small lateral separation distances. Thus, the
three-dimensional velocity potential in the outer region is
expanded in a Taylor series about the other body. Using
the method of asymptotic expansions we find a solution
to the longitudinal motion. The inner solution is gov-
erned by the two-dimensional Laplace equation and the
no-penetration boundary condition. The outer solution is
governed by the three-dimensional Laplace equation and
by the condition at infinity where the potential diminishes.
These solutions are matched in an overlap region, leading
to, after rather long but straightforward algebra, expres-
sions for the longitudinal and lateral forces, and moment
acting on body j due to the presence and/or movement of
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Fig. 4: (Colour online) The hydrodynamic force effect of the
upper fish row (presented by •) on the remaining fish school.
Force exerted on each individual fish: blue (low) to red (high).
Upper subplot: diamond pattern. Remaining subplots: ran-
dom patterns.

body i [1,2,15]:

Xj =
n∑

i=1

ρ

4π

∫
Li

S′
i(xi)

[
U2

i + U2
j

∫
Lj

S′
i(xi)Tj(xj)σijdxj

]

×dxjdxi, (3)

Yj =
n∑

i=1

ρUjηij

4π

∫
Li

(2Uj − Ui)S′
i(xi)

∫
Lj

Tj(xj)dxjdxi, (4)

Nj =
n∑

i=1

ρUjηij

4π

∫
Li

[xi(2Uj − Ui)S′
i(xi) + 2UjSi(xi)]

×
∫
Lj

Tj(xj)dxjdxidxi. (5)

where n is the school size, j = 1, 2, . . . , n, and Tj(xj) =
S′

j(xj)(σ2
ij + η2

ij)
−3/2; σij = (xj − xi − ξij); Sj(xj) =

Sj(0)(1 − 4x2
j/L2

j ), where Sj(xj) is chosen to be a sim-
ple sectional area distribution of parabolic form; Sj(0) is
a constant related to the cross-sectional area of the j-th
body, S′

j ≡ dSj(x)/dx and Sj(xj) = πr2
j ; and rj is the

radius of the cross-sectional area. For nondimensional
representation we define FXj

≡ XjL
2/ρU2S2; FYj

≡
YjL

2/ρU2S2; MNj
≡ NjL/ρU2S2.

Data collection and analysis. A total of 48 photos and
eight videos (total duration: 300 seconds) of fish schools in
the open sea (Red Sea) from 11 different species were ex-
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Fig. 5: (Colour online) The hydrodynamic force effect of the
upper fish layer (not presented here) on the remaining fish
school, for random and diamond cases with average lateral
distances η0/L = 0.12, 0.22, and 0.42 from top to bottom,
respectively. Fish that experience at least a threshold force are
represented by a white bullet.
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Fig. 6: (Colour online) The hydrodynamic force effect of the
upper fish layer (presented by dark blue •) on the remaining
fish school. Force exerted on each individual fish: blue (low) to
red (high). Left: side views (fish move to the right). Middle:
front views (fish move into the page). Right: isometric view.
First row: 27 fish, in a 6× 3× 3 box. Second row: 64 fish, in a
8× 4× 4 box. Third row: 125 fish, in a 10× 5× 5 box. Fourth
row: 216 fish, in a 12 × 6 × 6 box.

amined for analysis. Data presented in fig. 2 was processed
from a movie (MPEG-4 format) which recorded movement
and distribution of fish in a school for 00.59.36min. The
video was converted to TIF file formats (at 15 frames per

Table 1: Calculations of the mean total forces per school size
for diamond and random patterns. In the case of a random
pattern, the mean total forces are a factor of two to five times
larger.

School size Diamond Random

2 × 2 0.3974 2.0754
3 × 3 0.9302 2.6132
4 × 4 1.4072 3.1733
5 × 5 1.1768 3.0591
6 × 6 1.1690 2.9400
7 × 7 0.9532 3.3220
8 × 8 0.9422 3.1863
9 × 9 0.8139 3.3187

10 × 10 0.7812 3.3280
11 × 11 0.6810 3.2530
12 × 12 0.6641 3.1084
13 × 13 0.5921 3.1943
14 × 14 0.5734 3.0777

second giving a total of 894 frames) using the tool iMovie
(Mac). Positions (x and y coordinates) of fish were de-
termined at three different frames (71, 86 and 104), cor-
responding to movement at times 00.04.00, 00.05.44 and
00.06.59min, respectively, using image analysis software
(SigmaScan Pro 5.0). The eyes of the fish were taken as
reference points.

In the case of figs. 3 and 4, the velocities and lengths of
the fish were considered unity, and the slenderness param-
eter ε = 0.1. For the diamond pattern cases the longitudi-
nal and lateral distances between each two neighbouring
fish rows and columns are ξ0/L = 1.1, and η0/L = 0.12,
respectively. In the case of a random pattern mode, the
same amount of fish was randomly distributed within a
similar domain size; the longitudinal and lateral distances
were calculated based on a Monte Carlo algorithm as
presented in the statistical guidelines. In fig. 5, we con-
sidered η0/L = 0.12, 0.22, 0.42 and a constant threshold
force FY,th/FY,max = 0.69, where FY,max is the absolute
maximum force in the figure. In the case of fig. 6, the
algorithm was extended to three dimensions.

The random pattern data presented in fig. 3 were ob-
tained by carrying out a Monte Carlo algorithm. Each
data point represents an average of repeated random com-
putations of a size of at least a hundred repetitions. For
each school size, n × n, the length and width of the com-
putation domain, l × w, are given by l = n × Li, and
w = n × d. The location of the fish are generated ran-
domly, such that no overlaps are allowed. The longitudi-
nal and lateral forces, and yawing moments between each
two fish are computed using eqs. (3), (4), and (5). Note
that the random pattern data presented in subplots (a)–(j)
of fig. 4 are for a single calculation (no repetition). The
(layer) school size is 20 × 20.
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Results. – The analysis presented here considers two
structural patterns: diamond and random. The mean lon-
gitudinal and lateral forces acting on a fish in a random
pattern mode are larger than those in a diamond mode,
whereas the mean moments are similar in both modes
(fig. 3). In this respect, a diamond-shaped swimming
pattern is optimal in terms of energy saving which sup-
ports previous findings by [8]. Such mode might be ob-
served in schools migrating in “safe” zones, or in large
fish or mammals, e.g., dolphins [1,10], that use the saved
energy for extra thrust during escape. However, smaller
fish count on their manoeuvrability for survival, which in-
creases with the total hydrodynamic forces [16,17]. Table 1
compares between the mean total hydrodynamic forces,
Ftot =

√
F 2

X + F 2
Y , of the two patterns. It indicates that

the mean total force in random patterns is two to five
times larger than in diamond patterns. Given that there
is a hydrodynamic force threshold at which a fish can sense
the instantaneous movement of another remote fish, swim-
ming in a random pattern mode allows fish to interact at
larger distances, resulting in a more efficient distribution
of “information” transfer, from a hydrodynamic perspec-
tive. This can be seen by the following example. Assume
a (layered) rectangular fish school of the size of 20 × 20
(fig. 4), the fish on the sides of the rectangle represent an
envelope that separates the remaining fish from the sur-
rounding. If, for the sake of brevity, the whole upper fish
row (presented by •) encounters a danger, then the surviv-
ability of the whole school depends on how far the infor-
mation is transferred at each instance through the whole
school, again from a hydrodynamic perspective. In other
words, we are interested in the distribution of the total
hydrodynamic effect of the first fish row on the remaining
fish school. In a diamond pattern mode (upper subplot)
the effect on each row is almost homogeneous. While the
lateral forces experienced by the second row are relatively
small, due to the fact that ξij is large, the effect is largest
on the third row and the general trend is that the hydro-
dynamic forces decrease with the (double) rows. However,
for random pattern modes (subplots (a)–(j)) higher forces
penetrate through the rows, which can be seen in the fig-
ure by the differences in colour gradients across the vertical
layers (i.e., orange yellow and green compared to blue). As
an example, if the sensitivity threshold force FY,th is pre-
sented by the forces on the fifth row of the upper subplot
of fig. 4 —meaning that a change in the first row cannot be
felt on rows 6 and further— larger forces can be found on
rows 8–11 in the random cases. A quantitative compari-
son of the location of the most remote fish that experience
the threshold force FY,th is given in fig. 5. In all presented
cases we considered a constant FY,th with a value of 69%
of the absolute maximum force, i.e., FY,th/FY,max = 0.69
on the scale bars. For a relatively large average lateral sep-
aration distance η0/L = 0.42, only few fish would experi-
ence the threshold force deeper in the fish school (reaching
the fifth row), in the case of random structural pattern,
compared to the diamond pattern where FY,th does not

exceed the fourth row. Nevertheless, in the random case,
some of the fish found on the fourth row experience larger
forces compared to the diamond case. Obviously, taking
the limit were η0/L � 1 none of the fish will experience
any threshold force, nor in random neither in diamond
structural patterns. On the other hand, for smaller sepa-
ration distances the effect becomes much more noticeable,
whereby the threshold force penetrates through 6 more
rows (i.e., 30% of the whole school lateral size) in the case
of random structural pattern with η0/L = 0.12. Thus, the
reaction at the next time instant would occur at multi-
level rows simultaneously deeper in the school, which may
enhance the overall manoeuvrability of the fish school as
a whole.

Discussion. – Consider n fish of the first row exert-
ing lateral forces on a fish at the furthest row k where
the threshold force can still be experienced. Since FY ∝
ε2L2/η2

0 , we can derive a relation of the threshold force as

FY,th = βε2
n2L2

k2η2
0

, (6)

where β = 0.3228 is the proportionality constant calcu-
lated from the numerical results, say for η0/L = 0.12.
Alternatively, we can write for the k-th row

k =

⌊√
β

FY,th

nd

η0

⌋
(7)

where the special brackets present the floor function. Re-
lation (7) shows that the furthest row in which a fish
may still feel the sudden movement of the fish in the
first row decreases inversely with the square root of the
force threshold, e.g., if the fish sensitivity increases by
two, the information would penetrate four times further
away. Moreover, we see that fish that school at smaller
average lateral separation distances, or have a less slender
shape would contribute to further penetration of the in-
formation. Substituting the values of the other two cases
η0/L = 0.22, and 0.42 (given in fig. 5) into relation (7)
we obtain k = 10, and 5, that are in agreement with the
numerical results.

Note that as η0/L � 1 the above relation is no
longer valid and the exact lateral separation distance,
η = η(xi, xj) has to be considered, and thus a higher-order
solution is required (see [2]). In this case, the lateral forces
become even larger, and thus one expects the threshold
force to penetrate deeper in the school. This analysis is im-
portant when the characteristic school size is much greater
than the penetration distance. However, even if the char-
acteristic school size is relatively small, within a random
structural pattern a manoeuvring fish experiences, on av-
erage, larger centripetal forces, and thus can reach larger
angular velocities (ω ∝ Ftot

1/2). Since each fish, within a
random pattern, applies on average larger hydrodynamic
forces on the school, its manoeuvring, e.g., as a response
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to danger, results in larger impact on the fish school and
in particular on its proximate neighbours. Therefore, the
hydrodynamic changes within the school as a whole are
larger in case of random pattern mode, which may enhance
its survivability. Note that the mathematical analysis pre-
sented in fig. 4 considers discrete layers of the school, an
assumption which is rarely met in Nature [4,18,19]. How-
ever, it is easy to show that the three-dimensional fish
school analysis would result in larger hydrodynamic forces,
and thus a change in movement can be felt more remotely
and it is likely to further enhance the school manoeuvra-
bility, and alertness. Such an analysis is carried out in
fig. 6. Here, we examined the three-dimensional effect of
the upper fish group (presented in dark blue •) on the
remaining school members. We considered four different
school sizes, 27, 64, 125, and 216, within boxes of dimen-
sions 6×3×3, 8×4×4, 10×5×5, and 12×6×6, respectively.
The fish swim from left to right relative to the side view.
The hydrodynamic effects made by the upper fish group on
the remaining school members are somewhat disordered,
which can be seen by the inhomogeneous distribution of
colours. It is also notable that the analysis of the videos
show that the different fishes, of each school, may have dif-
ferent lengths, speeds, and orientations, (e.g., [20]) as well
as locomotion techniques that create wakes and vortices
in a much more complicated flowfield, which may all add
to the disordered behaviour of transferring the hydrody-
namic “information” among the school members spatially.

The analysis made here has been described in the con-
text of specific fish schooling species, though similar analy-
sis can be carried out for other fishes, swarming behaviour
in general, and bird flocking in particular, e.g., by a
straightforward extension of the work by [21], and [22].
The work presented here can also be applied for interac-
tion between multiple AUVs with a submarine, e.g., [23].
Finally, our findings support the general hypothesis that a
disordered and nontrivial collective behaviour of individ-
uals within a nonlinear dynamical system is essential for
optimising transfer of information —an optimisation that
might be crucial for survival.
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